University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 22nd, 9:30 AM - 10:10 AM

Plenary Speaker: Universal Lessons from Fish Passage Research, Design and Application in Australia

Martin Mallen Cooper Fishway Consulting Services

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Cooper, Martin Mallen, "Plenary Speaker: Universal Lessons from Fish Passage Research, Design and Application in Australia" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 101. https://scholarworks.umass.edu/fishpassage_conference/2015/June22/101

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

Fish passage in Australia: universal lessons

Martin Mallen-Cooper

Fishway Consulting Services

- Background
- Hydraulics
- Migration ecology
- Fishway design trends
- Challenges

Background - Geography

Hydrology: Tropical rivers Arid rivers Temperate rivers

Tropics - freshwater sawfish

Arid – desert rainbowfish

Temperate – Murray cod

40,000 years

- Cotreso

Shallows-

attie.

в

rock

autoria

mud bank

Stoney

atthe attre

e

mud

..... D

Rocks

attle attle

attle attle

- 200+ species of freshwater fish
- Most are endemic
- No native salmonids
- Anadromous fish are <u>rare</u>

(migrate from the sea to freshwater to spawn)

Common Migration Strategies - coastal rivers

Australian bass - catadromous

Migrate downstream to spawn in estuary/sea

Juveniles migrate upstream

Common Migration Strategies – large rivers

Golden perch - potamodromous

Eggs, larvae drift downstream

But . . . diversity of migration!

Juveniles migrate upstream

Less Common (but no less important) Migration Strategies

"Non-migratory", "resident" species?!

Summary for Fish Passage:

- 20-1400mm fish migrating upstream
- larvae drifting downstream
- Complex intergenerational movements
 - Iongitudinal and lateral

History of Fishways in Australia

Europeans – 227 years

Irrigation - 125 years

Fishways - 110 years

Fishways – for 80 years, based on salmonid designs

Note: little monitoring

History of Fishways

Head loss or step height between pools:

300 mm is a salmonid standard165 mm for larger native fish50-100 mm for small native fish

- Background
- 👄 Hydraulics
 - Migration ecology

Denil fishways – limits for small fish

- Fishway design trends
- Challenges

Energy entering the pool Pool volume

Vertical-slot design & turbulence - increased roughness in the slot

Experiment, replicated, controls No improvement in fish passage!

Modelling with Computational Fluid Dynamics (CFD)

Vertical-slot design & turbulence Standard design

Results:

- Wall roughness slight improvement for 1 of 3 species
- Reducing discharge (same velocity) <u>10X</u> increase in fish numbers

Manipulate baffle profile

Modelling a powerful tool; but test with fish!

Denil fishways – limits for small fish

Experience in Australia

- 180 mm fish 1:6 gradient
- 60 mm fish
- 20-60 mm???
- 1:12 gradient

Denil fishways – limits for small fish

Denil fishways – limits for small fish

Results:

• 1:25

Small fish (25-60 mm)

2 species effective passage at 1:25 2 species very poor – all gradients

Conclusion:

- Denils remain useful for larger fish
- Very poor for small fish <60 mm

- Species
- Life stage

Migration Ecology

Biology ↔ Hydrology

Time

Small fish, low flows Low turbulence

Biology and hydrology basis of design

Small fish, low lows Low turbulence

- Also, fish lock for small fish & vertical-slot for large fish
- Separating ecological & hydrological function

Trapezoidal Weirs

- Small fish
- Attraction flow
- Gauging
- Pass debris

- Function determines design
- Scientists/engineers partnership

Nature-like hybrids

Pool-type fishways "cone fishway"

Fishway Design – other developments High Fish Passage

Tallowa Dam 20-700 mm fish Physical modelling

3 other dams, incl.

- trap & transport
- D/S fish lock
- D/S fish lift
- screened intakes

- Entrance
 - integrated from the beginning
- Low maintenance

• Simplicity

Fishway Design - trends Physical modelling

design of abutments, spillways, gates, weir orientation . . .

• Entrance

- Low maintenance
 - Fishway design choice, application
 - Designed to ensure continuous operation
- Simplicity

- Hydraulically sensitive
- Collects debris

- Hydraulically robust
- Debris passes

Central channel passes debris Nature-like fishways: Random variable quality rocks variable cost variable maintenance solvable

• Entrance

• Low maintenance

- Simplicity
 - minimising flow-control gates & manual controls
 - selecting non-mechanical fishways where possible
 - ensure continuous operation

Challenges

- 1. Research and monitoring
- 2. Performance indicators

4.

- common vs rare species
- long-lived vs short-lived species
- 3. Reservoirs as fish barriers (larval drift)

Ease of funding:

- 1. Fishways
- 2. Monitoring
- 3. Research

Challenges

Reservoirs as fish barriers

Murray River Profile

Minimum spatial scale of flowing water habitat required

- 1. Research and monitoring
- 2. Performance indicators
- 3. Reservoirs as fish barriers (larval drift)
- 4. Tropical Fish Passage
 - Low weirs solvable, with research
 - Large dams: larval drift

turbine passage and tropical species high biomass, high flows, diversity of behaviour attraction flow

Mekong River

Gradient 1:100 to 1:250 90% time > 70 m³/s River = 20,000 m³/s; channel = 2,000 m³/s

1. Design Process

- 2. Site focus; catchment vision
 - conserve flowing water (lotic) habitats
- 3. Transparency risk, knowledge gaps
- 4. Collaborate