
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

November 2015

Modifying Instruction Sets In The Gem5 Simulator To Support Modifying Instruction Sets In The Gem5 Simulator To Support

Fault Tolerant Designs Fault Tolerant Designs

Chuan Zhang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Zhang, Chuan, "Modifying Instruction Sets In The Gem5 Simulator To Support Fault Tolerant Designs"
(2015). Masters Theses. 310.
https://scholarworks.umass.edu/masters_theses_2/310

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32442104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/310?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MODIFYING INSTRUCTION SETS IN THE GEM5 SIMULATOR

TO SUPPORT FAULT TOLERANT DESIGNS

A Thesis Presented

by

CHUAN ZHANG

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2015

Electrical and Computer Engineering

© Copyright by Chuan Zhang 2015

All Rights Reserved

MODIFYING INSTRUCTION SETS IN THE GEM5 SIMULATOR

TO SUPPORT FAULT TOLERANT DESIGNS

A Thesis Presented

by

CHUAN ZHANG

Approved as to style and content by:

Israel Koren, Chair

C.Mani Krishna, Member

Sandip Kundu, Member

__

Christopher V. Hollot, Department Head as

Department of Electrical and Computer Engineering

To my parents.

v

ACKNOWLEDGMENTS

I would like to thank Gem.org for providing the platforms for all Gem5 users and

developers to communicate and discuss.

I would also like to thank Professor Koren for his guidance and support over the

years.

I would also like to thank my girlfriend Jane Teergele, who supports me in spirit

over the years.

vi

ABSTRACT

MODIFYING INSTRUCTION SETS IN THE GEM5 SIMULATOR TO SUPPORT

FAULT TOLERANT DESIGNS

SEPTEMBER 2015

CHUAN ZHANG

B.S., BEIJING INSTITUTE OF TECHNOLOGY

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren

Traditional fault tolerant techniques such as hardware or time redundancy incur

high overhead and are inefficient for checking arithmetic operations. Our objective is to

study an alternative approach of adding new instructions to check arithmetic operations.

These checking instructions either rely on error detecting code or calculate approximate

results and consequently, consume much less execution time. To evaluate the

effectiveness of such an approach we wish to modify several benchmarks to use checking

instructions and run simulation experiments to find out their execution time and memory

usage. However, the checking instructions are not included in the instruction set and as a

result, are not supported by current architecture simulators. Therefore, another objective

of this thesis is to develop a method for inserting new instructions in the Gem5 simulator

and cross compiler. The insertion process is integrated into a software tool called Gtool.

Gtool can add an error checking capability to C programs by using the new instructions.

Keywords: Gem5, compiler, error checking, ISA modification.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT... vi

LIST OF TABLES... ix

LIST OF FIGURES .. x

CHAPTER

1. INTRODUCTION .. 1

1.1 Objectives.. 1

1.2 Related Work... 2

1.3 Thesis Organization... 3

2. BASIC BACKGROUND.. 4

2.1 Compiler and simulators ... 4

2.2 Decode process in Gem5... 5

3. APPROACH TAKEN... 7

3.1 Introduction ... 7

3.2 Insertion in the compiler ... 8

3.2.1 Insertion in the cross compiler... 10

3.2.2 Source-code modification .. 10

3.2.3 Checking arithmetic operations ... 11

3.3 Insertion of new instructions into Gem5... 23

3.3.1 Difference between Alpha and MIPS .. 23

3.3.2 Instruction decoding block... 24

3.3.3 Insertion of new instruction ... 25

4. EXPERIMENTAL SETUP... 26

5. RESULTS ... 30

viii

5.1 Performance comparison... 30

5.2 Fault detection comparison ... 32

6. CONCLUSION... 35

BIBLIOGRAPHY... 36

ix

LIST OF TABLES

Table Page

Table 2.1 Comparison of three simulators .. 4

Table 3.1 Upper bounds for the relative precision loss. ... 19

Table 3.2 Updated ranges of the relative precision loss ... 22

Table 3.3 Comparison between opcode of Alpha and MIPS.. 24

Table 4.1 Processor Configuration ... 26

Table 4.2 Checker instructions for the Alpha ISA.. 27

Table 4.3 Integer workloads ... 28

Table 4.4 Floating-point workloads.. 29

x

LIST OF FIGURES

Figure Page

Figure 2.1 Decoding process in Gem5 (Alpha) .. 6

Figure 3.1 Steps for modifying the compiler and simulator ... 7

Figure 3.2 Human-computer interactions ... 8

Figure 3.3 Steps of compiling a test program with new instructions.................................. 9

Figure 3.4 C code modifications... 10

Figure 3.5 Structure of truncated floating-point values .. 12

Figure 3.5 Distribution of relative precision loss in additions.. 20

Figure 3.6 Distribution of relative precision loss in subtractions 20

Figure 3.7 Distribution of the relative precision loss in multiplications 21

Figure 3.8 Distribution of the relative precision loss in divisions 22

Figure 3.9 Instruction field labels ... 23

Figure 3.10 Instruction decoding block .. 24

Figure 5.1 Performance comparison (integer). ... 30

Figure 5.2 Performance comparison (floating-point). .. 31

Figure 5.3 Memory use comparison (integer)... 31

Figure 5.4 Memory use comparison (floating-point).. 32

Figure 5.5 Fault detection coverage comparison (integer) ... 33

Figure 5.6 Fault detection coverage comparison (floating-point) 33

Figure 5.7 Weighted fault detection coverage for floating-point operations.................... 34

1

CHAPTER 1

INTRODUCTION

1.1 Objectives

Instruction set modification can be a significant challenge. For example, in the

development of embedded systems where a standard Instruction Set Architecture (ISA) is

often not optimal, Peymandoust et al. developed a methodology to automatically add new

instructions to the Tensilica’s ISA to reduce the execution time [26].

However, the majority of processor simulators and compilers do not support

modified ISAs. Gem5, one of the most popular processor simulators, only supports six

standard instruction sets. Cross compilers have a similar situation, and there is almost no

prior work on modifying ISA in cross compilers.

In this project, we developed a new software, Gtool that allows the insertion of

new instructions into a given ISA. The new instructions can be inserted into the Alpha

ISA or the MIPS ISA automatically by Gtool.

Our main objective in developing Gtool is adding instructions for real-time

checking of arithmetic operations. In this project, integer checking instructions rely on

the residue number system, while floating-point checking instructions use truncated

floating-point values. The checking procedures which include checking instructions and

comparisons of the results are added to target programs by Gtool. The resulting fault-

tolerant target programs may have lower overhead when compared with traditional

redundancy techniques.

2

1.2 Related Work

Bloom presented a method of adding pseudo-instructions to Gem5 in his blog

[17]. He provided a tutorial on how to add instructions to the x86 ISA and used the new

instructions only in full-system simulations.

However, adding pseudo-instructions is not the same as ISA modification. Pseudo

instructions are not currently supported by all types of instruction sets. Only the x86 ISA

has full support for adding such instructions. Moreover, although these new instructions

can be functionally regarded as actual instructions, the execution of pseudo-instructions is

still different from the execution of the original instructions. In his blog, he conceded that

pseudo-instructions cannot be integrated tightly with the pipeline [17]. In addition, these

pseudo-instructions can only use the reserved opcodes whose number is limited. In

conclusion, pseudo-instructions cannot be used for the purpose of adding error checking.

Some efforts have also been made to add customized instructions to GCC (GNU

compiler collection). However, these efforts have not produced good results. One reason

is that the target ISA (PISA) is not widely used [20]. Secondly, GCC cannot use the new

instructions as it was not designed to use them. Instead, the user must manually insert the

instructions into the inline assembly syntax.

Eibl et al. proposed the use of reduced precision floating-point values to check

floating-point operations [2]. They also discussed the differences between the reduced

precision results and the precise results. However, their research only focused on

comparing the result of a reduced precision addition to the corresponding exact result.

3

Lipetz et al. studied the application of residue check to floating-point operations

where the mantissa addition is checked [6]. They discussed hardware implementations

and fault detection coverage of different moduli. Their research focused on reducing the

cost of hardware redundancy in terms of power consumption and chip area.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the simulator

and compiler. In Chapter 3, the insertion of new instructions into the cross compiler and

Gem5 simulator is explained. Chapter 4 presents the parameters of the experiments,

including those of the simulator and workloads. Chapter 5 presents the results of the

experiments. Finally, conclusions are presented in Chapter 6.

4

CHAPTER 2

BASIC BACKGROUND

2.1 Compiler and simulators

In this project, Gem5 is used as the base simulator, and crosstool-NG is used to

build cross compilers with GCC and Binutils.

The main reason for choosing Gem5 is that it is the most popular simulator for

computer architecture research. Besides, it is a modular discrete event-driven simulator

platform, which can be rearranged, parameterized, extended or replaced easily to suit

project requirements [24]. Furthermore, Gem5 supports several instruction sets including

Alpha, ARM, MIPS, x86, POWER and SPARC. However, these instruction sets are not

equally supported in Gem5. Among these six ISAs, Alpha is the most supported one and

therefore it is one of the target ISAs in our project. Table 2.1 compares Gem5 with two

other popular simulators, SimpleScalar and SESC.

SimpleScalar SESC Gem5

Multicore

supported
No Yes Yes

Supported ISA Alpha, PISA MIPS
Alpha, x86, ARM, SPARC, PowerPC,

MIPS

ISA modification No Yes
Only pseudo-instructions in full-system

Mode

Table 2.1 Comparison of three simulators

Gem5 supports full-system and system-call modes. The operating system needs to

be loaded in full-system mode simulation. On the other hand, in system-call mode

simulations, system services are called only when necessary. In this project, all

simulations were performed in the system-call mode.

5

Crosstool-NG is a software tool that is used to build cross compilers for multiple

architectures. We use crosstool-NG to build cross compilers in this project. However, the

recommended configuration does not work for Alpha ISA. The cross compiler for Alpha

ISA in this project was built with a configuration that we have developed.

2.2 Decode process in Gem5

In Gem5, the decoding process cannot be done in a single step. It needs multiple

steps that involve different parts of the instruction set structure. The instruction set

structure consists of a decoder section and a declaration section, as shown in Figure 2.1.

The decoder section describes the decoding process and functional behavior by providing

entries for all types of instructions. It classifies and extracts the variable values from the

machine code, then assigns these values to the simulator, while the declaration section

explains the details of the simulations. For example, the decoder section can recognize

the machine code 0x01002240 as addl $1, $2, $1. Then, it transfers addl $1, $2, $1 to the

IntegerOperate part of the simulator since this is an integer arithmetic operation. In other

words, the ISA description works like a dictionary for simulators. The decoder file is an

index for the dictionary, while the declaration sections are definitions of words.

6

Figure 2.1 Decoding process in Gem5 (Alpha)

The declaration section defines the functionality of multiple types of instructions.

In Gem5, each instruction has a unique format that is defined in the declaration section.

Since the existing formats cover all types of instructions, we do not modify the

declaration section in the project.

Both the decoder file and the declaration sections are written in the M5 ISA

description language. This language is used for describing instruction sets and generating

C++ code for simulations.

7

CHAPTER 3

APPROACH TAKEN

3.1 Introduction

Setup

Modify compiler/simulator

Rebuild compiler/simulator

Setup for ISA type and directories of
compiler and simulator

Modify the source files of the
complier/simulator with predefined

instructions

Rebuild the compiler/simulator from
the modified source files

Figure 3.1 Steps for modifying the compiler and simulator

Modifying the source code is necessary in order to use the modified compiler and

simulator. Since the modified source code cannot be directly processed by the compiler

and simulator, it is necessary to rebuild the compiler and the simulator after modifying

them as shown in Figure 3.1. Rebuilding a cross compiler is very time-consuming. It

takes hours to rebuild the cross compiler for Alpha by using crosstool-NG. The

rebuilding time of Gem5 depends on the amount of changes and can vary from minutes to

half an hour.

Gtool users need to input the name, opcode, type and other information about the

new instructions to both simulators and instructions. Gtool checks all inputs and then

8

modifies the source code of Gem5 and cross compiler. Figure 3.2 shows the human-

computer interface of Gtool.

User

Gtool

Gem5

Setup

Compiler

ISA directory

Binutils
opcodes
directory

Check input
information

Insert
instructions

Directory of Gem5
Directory of compiler

Directory of output
 ...

Instruction s name,
opcode

And type
 ...

Figure 3.2 Human-computer interactions

The next part of this chapter discusses the approach taken with the cross compiler

and simulator.

3.2 Insertion in the compiler

There are two types of inputs that need to be provided to the compiler during

instruction insertion. One is the opcode of the instruction. The other is the name of the

instruction.

Insertion is the first step of using a new instruction in the cross compiler. Since

the compiler is not optimized with the new instruction, the instruction can only be used in

inline assembly code. In this project, a new method of using new instructions is used for

real-time checking.

9

Our approach combines source-code modification and insertion into the cross

compiler to make use of the new instructions. The steps of compiling a test program with

the new instructions are shown in Figure 3.3.

Compilation

Source Code
&Header Files
Test.c & Test.h

Assembly
Test.s

Assembly
Linking

Executable
Test.out

Modified Assembly
Test_Modified.s

Modified Source Code
&Header Files
Test.c & Test.h

Figure 3.3 Steps of compiling a test program with new instructions

Target source code are modified by inserting a duplicate operation after each to be

checked operation. Then, the modified code is compiled to assembly code. The next step

is to replace the assembly line for the duplicate operation with a new instruction. The

linker then links the modified assembly file to generate an executable program. In this

process, the compiler only needs to know how to translate new instructions to machine

code. It does not need to be aware of the functionality of the new instructions.

10

3.2.1 Insertion in the cross compiler

In this project, Binutils is used as the assembler and linker for the cross compiler.

It stores the opcode of the supported architectures in a directory named opcode under the

root directory of Binutils’ source code. The opcode for the Alpha instructions are defined

in alpha-opc.md. Therefore, adding instructions requires adding lines in alpha-opc.md.

Then, the cross compiler needs to repackage the source code of Binutils and replace the

original package with the new one for crosstool-NG.

3.2.2 Source-code modification

Source-code modification consists of two parts: C code modification as shown in

Figure 3.4 and assembly code modification.

Figure 3.4 C code modifications

In the C code modification, the Gtool first defines new variables and copies

values from the original variables to the new variables. Afterward, Gtool uses the original

computation statements. (c=a+b; in Figure 3.4). Then, Gtool insert a flag followed by the

11

duplicated operations with new variables. Finally, an if statement is used to compare the

two results. If the two results do not match (result matching does not mean that the results

are identical, instead, it means that either the residues match or the difference between the

results is smaller than the maximum allowed), the program will be terminated.

The assembly code that stands for moving a value from register one to register

one is used as a flag since it is easily recognizable and does not affect the results of the

program.

Gtool uses this flag to locate the instruction that needs to be replaced by a

checking instruction.

3.2.3 Checking arithmetic operations

The checking method for integer operations is based on the residue number

system. For integers X, Y and m, the following equations hold [14]:

|𝑿 + 𝒀|𝒎 = ||𝑿|𝒎 + |𝑿|𝒎|𝒎 = |𝒙 + 𝒚|𝒎

|𝑿 − 𝒀|𝒎 = ||𝑿|𝒎 − |𝑿|𝒎|𝒎 = |𝒙 − 𝒚|𝒎

|𝑿 × 𝒀|𝒎 = ||𝑿|𝒎 × |𝑿|𝒎|𝒎 = |𝒙 × 𝒚|𝒎

where, |𝑋|𝑚 = 𝑥 is the residue of X modulo m.

In the inserted comparison, integer results are checked by comparing the residues

of the original result and the duplicate one.

Integer division constitutes a special case. Even though the result of the division

𝑋 𝑌⁄ can be checked through

12

|𝑿|𝒎 = |𝒀|𝒎 × |𝑸|𝒎 + |𝑹|𝒎

where Q is the quotient and R is the remainder. The checking result cannot be

done in a C program as the remainder R is not made available. Therefore divisions can be

only checked by recalculation.

It is more complicated to check floating-point results. It is obvious that the results

of truncated floating-point operations are different from the original results. The question

is to determine whether these differences are due to the truncation or real errors. This

requires calculating an upper bound for the truncation error. The upper bound can be

viewed as the reference difference. Results that have a smaller difference than the

reference are marked as correct.

We next explain the truncation procedure and derive the reference difference.

Sign Exponent Truncated Mantissa Removed portion of Mantissa

Figure 3.5 Structure of truncated floating-point values

The truncated floating-point value keeps the sign bit, exponent bits and part of

mantissa bits as shown in Figure 3.5. We denote by 𝑛 the number of fraction bits in the

truncated mantissa. In single precision, n = 8, which is the same as was used in [2]. In

double precision, n = 20 as this would truncate a double precision value from 64 bits to

32 bits. We denote by 𝜀 the difference between the precise and the truncated values.

𝜀 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑒𝑠𝑢𝑙𝑡𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

13

In practice, the relative value of the difference compared to the Result is more

important. Therefore, we will estimate 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒 instead of 𝜀. In most cases, 𝜀 is

very small compared to 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒. For convenience, we use 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 which

is almost equal to 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒.

According to the definition of floating-point values, the original floating-point

value and the truncated one can be written as:

F𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝 ∙ 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝 ∙ 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 +

(−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝−𝑛 ∙ 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑

where

1 < 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 < 2

0 < 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 1

and exp is the exponent, 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 is the truncated mantissa and 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 is

the part of the mantissa that was removed during the truncation. As a consequence, the

exponent of the second part of F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 is much smaller than the first part. For

convenience, we use F𝑟𝑒𝑚𝑜𝑣𝑒𝑑 to denote the difference between F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 and F𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑.

F𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝−𝑛 ∙ 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Since

0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 1

14

then

|F𝑟𝑒𝑚𝑜𝑣𝑒𝑑| < 2𝑒𝑥𝑝−8 (𝑆𝑖𝑛𝑔𝑙𝑒) 𝑜𝑟 2𝑒𝑥𝑝−20 (𝐷𝑜𝑢𝑏𝑙𝑒)

The exact value of this upper bound depends on the type of operation performed

and is analyzed for each operation separately.

Addition and subtraction:

Denote by A and B the operands and by R the result.

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = 𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒 + 𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

 = 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

 = 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

If A and B have the same sign, R will also have the same sign. Then,

𝜀 = 2𝑒𝑥𝑝𝐴−𝑛 ∙ 0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 2𝑒𝑥𝑝𝐵−𝑛 ∙ 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 (1)

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑| = 2𝑒𝑥𝑝𝑅 ∙ 1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

The relative error is

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
= 2𝑒𝑥𝑝𝐴−𝑛−𝑒𝑥𝑝𝑅 ∙

0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
+ 2𝑒𝑥𝑝𝐵−𝑛−𝑒𝑥𝑝𝑅 ∙

0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Both
0.𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1.𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
and

0.𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1.𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
are less than 1. The equation becomes

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅 + 2𝑒𝑥𝑝𝐵−𝑒𝑥𝑝𝑅) (2)

Since

15

𝑒𝑥𝑝𝑅 ≥ 𝑒𝑥𝑝𝐴

and

𝑒𝑥𝑝𝑅 ≥ 𝑒𝑥𝑝𝐵

The term in the parenthesis in (2) is always smaller than 2.

Equation (2) becomes

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1 (0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

When A and B have different signs, A+B will be performed as subtraction. Then

assuming that A > B.

𝜀 < 2𝑒𝑥𝑝𝐴−𝑛 ∙ 0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 − 2𝑒𝑥𝑝𝐵−𝑛 ∙ 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 (4)

Similar to the addition case, when 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≠ 0

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅 − 2𝑒𝑥𝑝𝐵−𝑒𝑥𝑝𝑅)

If 𝑒𝑥𝑝𝐴 = 𝑒𝑥𝑝𝐵, (4) results in

𝜀 < 2−𝑛2𝑒𝑥𝑝𝐴(0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 − 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

Clearly

𝜀 < 2−𝑛2𝑒𝑥𝑝𝐴0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 2−𝑛2𝑒𝑥𝑝𝐴1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 2−𝑛|𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

Since A>B, then |𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑| < |𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

The result indicates that errors in the mantissa bits of the result of subtraction

cannot be detected under the worst case (𝐴 ≈ 𝐵).

16

If 𝑒𝑥𝑝𝐴 = 𝑒𝑥𝑝𝐵 + 1, then 𝑒𝑥𝑝𝑅 is equal to either 𝑒𝑥𝑝𝐴 or 𝑒𝑥𝑝𝐴 − 1

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅) < 2−𝑛21 < 2−𝑛+1

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1 (0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

If 𝑒𝑥𝑝𝐴 ≥ 𝑒𝑥𝑝𝐵 + 2, in which case 2𝑒𝑥𝑝𝐴 = 2𝑒𝑥𝑝𝑅 and 2𝑒𝑥𝑝𝐵 ≪ 2𝑒𝑥𝑝𝑅 , then

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(0.39% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.000095% 𝐷𝑜𝑢𝑏𝑙𝑒)

Multiplication

Let the product of A and B be denoted by R.

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = 𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

 = (𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑)(𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

 = 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 +

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

 = 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 +

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

then

 𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

= 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Since 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 is a very small value compared to the other two, the

equation can be simplified to the following:

17

𝜀 ≈ 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝜀 = 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵−𝑛1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵−𝑛0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Since

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

then

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
= 2−𝑛(

0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
+

0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
)

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1(0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

Division

Assume

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 =
𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒

𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

then

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 =
𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
+

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

where

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

2𝑒𝑥𝑝𝐴−𝑛0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

2𝑒𝑥𝑝𝐵1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 2𝑒𝑥𝑝𝐵−𝑛0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

= 2−𝑛2𝑒𝑥𝑝𝑅
0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 2−𝑛0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

18

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
< 2−𝑛2𝑒𝑥𝑝𝑅 < 2−𝑛|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

The other factor which causes the difference between the precise and truncated

results is the divisor’s truncation.

𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑+𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

1+
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Since

𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≈ 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 (
1

1+
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

− 1) +
𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑+𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

(5)

and

(
1

1 +
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

− 1) < 0

then

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(0.39% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.000095% 𝐷𝑜𝑢𝑏𝑙𝑒)

The upper bounds for the relative differences between the truncated and precise

results are summarized in Table 3.1.

19

|
𝜀

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
|

𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑

Single (17/32

bits)

Double (32/64

bits)

Addition 2−7 2−19

Subtraction 2−8/2−7/1 2−20/2−19/1

Multiplication 2−7 2−19

Division 2−8 2−20

Table 3.1 Upper bounds for the relative precision loss.

Estimated upper bounds based on experiments

In order to verify the upper bounds for the relative precision loss, we set up

experiments to find out the distribution of the precision loss. The experiments generate

random floating-point values and calculate the results of addition, subtraction,

multiplication and division, for precise and truncated operations. The relative differences

between the precise and the truncated results were calculated. The following charts show

the distributions of the relative precision loss. Each of the charts is based on results of

40, 000 operations.

The vertical axis is the frequency of the values and the horizontal axis is the

relative precision loss. All the floating-point values are double precision. The dotted red

line in each chart is the corresponding regression curve.

20

Figure 3.5 Distribution of relative precision loss in additions

It is obvious that the range of precision loss in addition is between 0 and

0.000095 in Figure 3.5. The observed upper bound is half of the calculated upper bound.

Figure 3.6 Distribution of relative precision loss in subtractions

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

3.500%

0.0E+0 2.0E-7 4.0E-7 6.0E-7 8.0E-7 1.0E-6

Addition

0.000%

1.000%

2.000%

3.000%

4.000%

5.000%

6.000%

7.000%

8.000%

-2.5E-5 -2.0E-5 -1.5E-5 -1.0E-5 -5.0E-6 0.0E+0 5.0E-6 1.0E-5 1.5E-5 2.0E-5 2.5E-5

Subtraction

21

The range of precision loss of subtraction is considerably larger than for other

operations. Still, the frequencies are sharply decreased away from 0 and the values that

are far away from zero are not displayed because of the low frequency.

Figure 3.7 Distribution of the relative precision loss in multiplications

Figure 3.7 shows the relative precision loss distribution for multiplication. The

range of the relative loss is from 0 to 0.00019%. This is equal to the upper bound we have

calculated.

0.000%

0.200%

0.400%

0.600%

0.800%

1.000%

1.200%

1.400%

1.600%

1.800%

0.0E+00 2.0E-07 4.0E-07 6.0E-07 8.0E-07 1.0E-06 1.2E-06 1.4E-06 1.6E-06 1.8E-06

Mulitplication

22

Figure 3.8 Distribution of the relative precision loss in divisions

Similar to addition, the upper bound for the relative precision loss in division can

be narrowed to half of the calculated value. The range of the relative precision loss for

division is from -0.000095% to +0.000095%.

Based on the above analyses, the range of the relative precision loss based on the

experiments is shown in Table 3.2.

𝜀

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
Single (17/32 bits) Double (32/64 bits)

Addition 0 ~ 2−8 0 ~ 2−20

Subtraction
−2−8/2−7/1~ + 2−8/

2−7/1

−2−20/2−19/1~ +
2−20/2−19/1

Multiplication 0 ~ 2−7 0 ~ 2−19

Division −2−8 ~ + 2−8 −2−20 ~ + 2−20

Table 3.2 Updated ranges of the relative precision loss

0.000%

0.200%

0.400%

0.600%

0.800%

1.000%

1.200%

1.400%

1.600%

-1.0E-06-8.0E-07-6.0E-07-4.0E-07-2.0E-07 0.0E+00 2.0E-07 4.0E-07 6.0E-07 8.0E-07 1.0E-06

Division

23

3.3 Insertion of new instructions into Gem5

Instruction insertion in Gem5 is more complicated than insertion in the cross

compiler. Gtool needs to choose unused opcode for the new instructions, check

instruction syntax and insert instruction blocks in the proper places in the decoder file.

Gem5 labels different instruction fields in 32-bit instructions. These labels mark

instruction fields as shown in Figure 3.9. For example, OPCODE stands for the bits 25 to

31 and INTFUNC stands for the bits 5 to 15 in the instruction. Gem5 uses these as entries

to decode instructions. We use these labels to locate the proper position in the decoder

file for inserting the new instructions.

Figure 3.9 Instruction field labels

3.3.1 Difference between Alpha and MIPS

The differences between Alpha and MIPS are obvious when comparing their

instruction field labels. The differences are shown in Table 3.3.

Comparison between opcode of Alpha and MIPS

Alpha MIPS

Number of instructions (Include reserved

opcode)

248 529

24

Max number of instruction fields used for one

instruction

5 8

The most often number of instruction fields

used by instructions

2 6

Number of integer instructions that can be

inserted with unused opcode

1959 772

Table 3.3 Comparison between opcode of Alpha and MIPS

MIPS has more instructions than Alpha and each MIPS instruction uses more

instruction field labels than an Alpha instruction. This means there are more steps when

decoding a MIPS instruction than an Alpha instruction.

3.3.2 Instruction decoding block

Each instruction has its decoding block within the decoder file. A typical

decoding block is shown in Figure 3.10. It consists of the format name, the instruction

name, the function field and other parts such as flags. Sometimes the labels are also

included. The decoding block has to be changed when varying the ISA.

Figure 3.10 Instruction decoding block

25

Every instruction has its format, which appears in the decoding block. The format

name and instruction name provide details about how a new instruction would be

implemented in the simulator.

The function fields use a C-like code, which describes the function of the

instruction. The variables in the function fields are register names or immediate-value

symbols. For example, in the Alpha ISA, register names are Rc, Ra and Rb with a suffix

indicating the length of the register while the MIPS ISA, usually, uses Rt, Rd and Rs with

different suffixes.

Every time the user inputs information about a new instruction, Gtool prepares a

decoding block for it. Then, it inserts this block into the proper location in the decoder

file.

3.3.3 Insertion of new instructions

Similar to the cross compiler, inserting an instruction into Gem5 requires inserting

its decoding block into the decoder file. Since the function field defines the behavior of

the instruction, most of the changes in instructions are related to the function field. It is

easy to design the function field by using basic C-like symbols. However, truncated

floating-point operations need truncation functions for all floating-point operands. There

are no such functions in the C language, and as a result, the user should create them.

In the upper-level directory of ISA in Gem5, decoder.cc and decoder.hh can be

used as function definition files for the current instructions set. Gtool does not need to

modify these files. In this project, we build the floating-point truncation function and

error injection function for verifying the fault checking capability.

26

CHAPTER 4

EXPERIMENTAL SETUP

The parameters of the processor used in our experiment are shown in Table 4.1,

and were obtained from [7]. We inserted into the Alpha ISA the new instructions shown

in Table 4.2. In this project, we used 15 as the residue modulus, which ensures a high

fault detection coverage.

Width 64 bits

Fetch/issue 6/3

I-cache 32k/64B/4-way/2 cycles

D-cache 64k/64B/4-way/2 cycles

Frequency 2GHz

L2 1MB/64B/8-way/14 cycles

Gem5 CPU model DerivO3CPU

Table 4.1 Processor Configuration

In the fault detection coverage experiments, faults were injected through

erroneous instructions. Erroneous instructions are new instructions which are similar to

checker instructions. They have the same functionality as regular instructions except the

extra error generation function in their output. The error generation function changes a

random bit in the output to its opposite value. For example, it the correct output for a

regular instruction is 1110 in binary, the error generation function would randomly flip

one bit in 1110.

27

The flipped bit is selected randomly and in each experiment the randomly selected

bit would be different. However, when comparing two checking mechanisms the same

random number should be used in both experiments.

Name Opcode Type

mulrf 0x04 0x01 Integer Operation

addrf 0x02 0x00 Integer Operation

subrf 0x05 0x00 Integer Operation

divtr 0x21 0 0,1,5,7 0x23 Floating-Point Operation

addtr 0x21 0 0,1,5,7 0x24 Floating-Point Operation

subtr 0x21 0 0,1,5,7 0x25 Floating-Point Operation

multr 0x21 0 0,1,5,7 0x26 Floating-Point Operation

Table 4.2 Checker instructions for the Alpha ISA

For the experiments, we have selected five integer benchmarks shown in Table

4.3 [27] and six workloads listed in Table 4.4. The first five workloads in Table 4.4 use

mostly floating-point operations. The sixth benchmark (edn) has both integer and

floating-point arithmetic operations. The average results for floating-point workloads do

not include the results of edn.

28

Benchmark Description Bytes Lines of Code

adpcm

Adaptive pulse code modulation

algorithm.

26852 879

ud Calculation of matrixes. 6 K 163

matmult

Matrix multiplication of two

20x20 matrices.

3737 163

fdct

A lot of calculations based on

integer array elements.

8863 239

insertsort

Input-data dependent nested loop

with worst-case of (n^2)/2

iterations (triangular loop).

3892 92

Table 4.3 Integer workloads

Benchmark Description Bytes Line of Code

fft1

A lot of calculations based on

floating-point array elements.

6244 219

ludcmp
LU decomposition algorithm. 5160

147

minver

Floating value calculations in

3x3 matrix. Nested loops (3

levels).

5805 201

lcdnum

Loop with iteration-dependent

flow.

1678 64

29

qsort-exam

Non-recursive version of quick

sort algorithm.

4535 121

edn

Finite Impulse Response (FIR)

filter calculations.

10563 285

Table 4.4 Floating-point workloads

In the performance results of the next chapter, the DMR (Dual modular

redundancy) results were from programs that did not use the new instructions. This is

time-redundancy DMR, i.e., every checked instruction is executed twice and the results

are compared.

In the fault detection coverage experiments, faults were injected into the

benchmarks by using erroneous instructions.

30

CHAPTER 5

RESULTS

We now present the performance and fault detection coverage analysis of the

proposed method. We first compare the performance of using checker instructions to that

of DMR. Then, we compare the fault detection coverage of these two methods.

5.1 Performance comparisons

The performance comparison between the method of using checker instructions

and DMR is shown in Figure 5.1 (integer) and Figure 5.2 (floating-point). On average,

the use of checker instruction reduced the execution time to 94.84% for integer

workloads and to 99.43 for floating-point workloads.

Figure 5.1 Performance comparison (integer).

98.75%

96.40%

88.47%

92.35%

98.21%

94.84%

80.00%

84.00%

88.00%

92.00%

96.00%

100.00%

adpcm ud matmult fdct insertsort Integer avg.

Integer workloads excution time (Percentage of DMR)

31

Figure 5.2 Performance comparison (floating-point).

We also measured the memory usage of these workloads during their execution

and the results are shown in Figure 5.3 (integer) and Figure 5.4 (floating-point).

Figure 5.3 Memory use comparison (integer)

99.51%

98.09%

99.76% 99.93% 99.87% 99.99%
99.43%

94.00%

98.00%

102.00%

fft1 ludcmp minver lcdnum qsort-exam edn Fp avg.

Floating-point workloads excution time
(Percentage of DMR)

99.87%

99.62%

99.02%

99.21%
99.32%

99.41%

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

adpcm ud matmult fdct insertsort Integer avg.

Integer workloads memory use
(Percentage of DMR)

32

Figure 5.4 Memory use comparison (floating-point)

5.2 Fault detection comparisons

As we use residue checking in integer operations and truncated floating-point in

floating-point operations, their resulting fault detection coverage would be different. The

results are shown in Figure 5.5 (integer) and Figure 5.6 (floating-point).

It is obvious that the fault detection coverage of floating-point operations is lower

than that for integer operations, as the checker operations could only detect the errors

which were larger than the largest precision loss.

In the comparisons in Figure 5.5 and Figure 5.6, all errors are considered equally

irrespective of their magnitude.

100.66%

100.35%

100.10%

100.00%

100.21%

99.96%

100.27%

99.60%

99.80%

100.00%

100.20%

100.40%

100.60%

100.80%

fft1 ludcmp minver lcdnum qsort-exam edn Fp avg.

Floating-point workloads memory use
(Percentage of DMR)

33

Figure 5.5 Fault detection coverage comparison (integer)

Figure 5.6 Fault detection coverage comparison (floating-point)

We therefore, performed another experiment. In this experiment, errors were

weighted by their relative value compared to the correct result.

99.57%

97.30%

99.86%

98.80%
99.14% 99.01%

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

adpcm ud matmult fdct insertsort Integer avg.

Integer workloads fault detection coverage
(Percentage of DMR)

63.25% 61.48% 60.74% 62.96% 62.95%

98.95%

62.28%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

fft1 ludcmp minver lcdnum qsort-exam edn Fp avg.

Floating-point fault detection coverage
(Percentage of DMR)

34

Figure 5.7 Weighted fault detection coverage for floating-point operations

As expected, the coverage in Figure 5.7 is higher than that in Figure 5.6, which

indicates that the method of truncated floating-point values can detect almost all of the

large errors.

90.12%

92.30% 92.71%
91.56%

88.03%

99.95%

90.94%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

fft1 ludcmp minver lcdnum qsort-exam edu Fp avg.

Weighted fault detection (Percentage of DMR)

35

CHAPTER 6

CONCLUSION

We have presented an analysis of the performance and fault detection coverage of

using checker instructions and compared them to DMR. Using checker instructions can

benefit integer operations as the lower execution time and reduced memory usage make

the residue checking method better than DMR. In this project, we used 15 as the residue

modulus. Our scheme for injecting erroneous instructions restricts the errors to be

multiples of 2. This means that the fraction of undetected faults will only be 1/30 of the

total number of injected errors in theory. The experiments have shown better results than

predicted by the theory, since divisions are checked by the DMR method.

The truncated floating-point scheme is not as beneficial. The main reason is that

the truncated floating-point operations only reduced marginally the execution time. The

comparison between the truncated results and the precise results consumed the execution

time that was saved in the arithmetic operation. Unless a way to further accelerate the

execution of the truncated operations is found, the DMR approach will still outperform

the truncated floating-point approach.

36

BIBLIOGRAPHY

[1] Forsati, R.; Faez, K.; Moradi, F.; Rahbar, A., "A Fault Tolerant Method for Residue

Arithmetic Circuits," Information Management and Engineering, 2009. ICIME

'09. International Conference on, pp.59- 63, 3-5 April 2009

[2] Eibl, P.J.; Cook, A.D.; Sorin, D.J., "Reduced Precision Checking for a Floating Point

Adder," Defect and Fault Tolerance in VLSI Systems, 2009. DFT '09. 24th IEEE

International Symposium on, pp.145-152, 7-9 Oct. 2009

[3] Piestrak, S.J., "Design of multi-residue generators using shared logic," Circuits and

Systems (ISCAS), 2011 IEEE International Symposium on, pp.1435-1438, 15-18

May 2011

[4]Honda, M.; Kameyama, M.; Higuchi, T., "Residue arithmetic based multiple-valued

VLSI image processor," Multiple-Valued Logic, 1992. Proceedings, Twenty-

Second International Symposium on, pp.330-336, 27-29 May 1992

[5] Shivakumar, P.; Kistler, M.; Keckler, S.W.; Burger, D.; Alvisi, L., "Modeling the

effect of technology trends on the soft error rate of combinational logic,"

Dependable Systems and Networks, DSN 2002. Proceedings. International

Conference on, pp.389-398, 2002

[6] Lipetz, D.; Schwarz, E., "Self Checking in Current Floating-Point Units," Computer

Arithmetic (ARITH), 2011 20th IEEE Symposium pp.73, 76, 25-27 July 2011

[7] Subramanyan, P.; Singh, V.; Saluja, K.K.; Larsson, E., "Multiplexed redundant

execution: A technique for efficient fault tolerance in chip multiprocessors,"

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010,

pp.1572-1577, 8-12 March 2010

37

[8] Smolens, J.C.; Gold, B.T.; Falsafi, B.; Hoe, J.C., "Reunion: Complexity-Effective

Multicore Redundancy," Microarchitecture, 2006. MICRO-39. 39th Annual

IEEE/ACM International Symposium on, pp.223-234, Dec. 2006

[9] Compaq Computer Corporation (1998). Alpha Architecture Handbook. 4th ed.

Compaq Computer Corporation: Compaq Computer Corporation.

[10] Constantinides, K.; Plaza, S.; Blome, J.; Bin Zhang; Bertacco, V.; Mahlke, S.;

Austin, T.; Orshansky, M., "BulletProof: a defect-tolerant CMP switch

architecture," High-Performance Computer Architecture, 2006. The Twelfth

International Symposium on, pp.5, 16, 11-15 Feb. 2006

[11] Gomaa, M.; Scarbrough, C.; Vijaykumar, T.N.; Pomeranz, I., "Transient-fault

recovery for chip multiprocessors," Computer Architecture, 2003. Proceedings.

30th Annual International Symposium on, pp.98-109, 9-11 June 2003

[12] Jeyapaul, R.; Hong, F; Rhisheekesan, A.; Shrivastava, A.; Kyoungwoo Lee,

"UnSync: A Soft Error Resilient Redundant Multicore Architecture," Parallel

Processing (ICPP), 2011 International Conference on, pp.632-641, 13-16 Sept.

2011

[13] Koren, I, and Krishna, C.M.. Fault Tolerant Systems. San Francisco, CA: Elsevier,

2007. 36-41.

[14] Koren, I. Computer Arithmetic Algorithms. Natick, MA: K Peters, 2002. 259-277.

[15] Hennessy, J .L, Patterson A. D. and Arpaci-Dusseau C. A. Computer Architecture: A

Quantitative Approach. Amsterdam: Morgan Kaufmann, 2007.196-264.

[16] Md Salim, S.I.; Sulaiman, H.A.; Jamaluddin, R.; Salahuddin, L.; Zainudin, M.N.S.;

Salim, A.J. "Two-pass assembler design for a reconfigurable RISC processor,"

Open Systems (ICOS), 2013 IEEE Conference on ,pp.77-82, 2-4 Dec. 2013

[17] Bloom, G. (2013). Add a pseudo instruction to gem5. http://gedare-

csphd.blogspot.com/2013/02/add-pseudo-instruction-to-gem5.html/

38

[18] Ortego, M.P.; Sack, P.; (2004). SESC: SuperESCalar Simulator.

http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/

[19] Renau, J.; Fraguela, B.; Tuck, J.; Liu, W.; Prvulovic, M.; Ceze, L.; Sarangi, S.; Sack,

P.; Strauss, K. and Montesinos, P. (2005). SESC: cycle accurate architectural

simulator. http://sesc.sourceforge.net/index.html/

[20] SimpleScalar LLC. (2004). SimpleScalar LLC to serve and project

http://www.simplescalar.com/

[21] Austin, T.; Ernst, D.; Larson, E.; Weaver, C.; Desikan, R.; Nagarajan, R.; Huh, J.;

Yoder, B.; Burger, D. and Keckler, S. (2004). SimpleScalar Tutorial.

http://www.simplescalar.com/docs/ simple_tutorial_v4.pdf/

[22] Koren, I. Introduction to SimpleScalar.

http://www.ecs.umass.edu/ece/koren/architecture/Simplescalar/SimpleScalar_intr

oduction.htm/

[23] Austin, T.; Larson, E.; Ernst, D., "SimpleScalar: an infrastructure for computer

system modeling," Computer, vol.35, no.2, pp.59, 67, Feb 2002

[24] Saidi, A. (2013). the gem5 Simulator System. http://www.gem5.org/Main_Page

[25] Price, C. (1995). MIPS IV Instruction Set Revision 3.2. Mountain View, CA: MIPS

Technologies, Inc.

[26] Peymandoust, A.; Pozzi, L.; Ienne, P. and Micheli, G. D. “Automatic instruction set

extension and utilization for embedded processors.” In Proc. of the Intl. Conf. on

Application Specific Systems, Architectures, and Processors, 2003.

[27] Gustafsson, J. “SWEET Manual”, Mälardalen University, Sweden, 2013

	Modifying Instruction Sets In The Gem5 Simulator To Support Fault Tolerant Designs
	Recommended Citation

	tmp.1439686787.pdf.29Wya

