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ABSTRACT

MODIFYING INSTRUCTION SETS IN THE GEM5 SIMULATOR TO SUPPORT 

FAULT TOLERANT DESIGNS

SEPTEMBER 2015

CHUAN ZHANG

B.S., BEIJING INSTITUTE OF TECHNOLOGY

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren

Traditional fault tolerant techniques such as hardware or time redundancy incur 

high overhead and are inefficient for checking arithmetic operations. Our objective is to 

study an alternative approach of adding new instructions to check arithmetic operations.

These checking instructions either rely on error detecting code or calculate approximate 

results and consequently, consume much less execution time. To evaluate the 

effectiveness of such an approach we wish to modify several benchmarks to use checking 

instructions and run simulation experiments to find out their execution time and memory 

usage. However, the checking instructions are not included in the instruction set and as a 

result, are not supported by current architecture simulators. Therefore, another objective 

of this thesis is to develop a method for inserting new instructions in the Gem5 simulator 

and cross compiler. The insertion process is integrated into a software tool called Gtool.

Gtool can add an error checking capability to C programs by using the new instructions.

Keywords: Gem5, compiler, error checking, ISA modification.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

Instruction set modification can be a significant challenge. For example, in the 

development of embedded systems where a standard Instruction Set Architecture (ISA) is 

often not optimal, Peymandoust et al. developed a methodology to automatically add new 

instructions to the Tensilica’s ISA to reduce the execution time [26].

However, the majority of processor simulators and compilers do not support

modified ISAs. Gem5, one of the most popular processor simulators, only supports six

standard instruction sets. Cross compilers have a similar situation, and there is almost no 

prior work on modifying ISA in cross compilers.

In this project, we developed a new software, Gtool that allows the insertion of 

new instructions into a given ISA. The new instructions can be inserted into the Alpha 

ISA or the MIPS ISA automatically by Gtool.

Our main objective in developing Gtool is adding instructions for real-time 

checking of arithmetic operations. In this project, integer checking instructions rely on 

the residue number system, while floating-point checking instructions use truncated 

floating-point values. The checking procedures which include checking instructions and 

comparisons of the results are added to target programs by Gtool. The resulting fault-

tolerant target programs may have lower overhead when compared with traditional 

redundancy techniques.
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1.2 Related Work

Bloom presented a method of adding pseudo-instructions to Gem5 in his blog 

[17]. He provided a tutorial on how to add instructions to the x86 ISA and used the new 

instructions only in full-system simulations.

However, adding pseudo-instructions is not the same as ISA modification. Pseudo 

instructions are not currently supported by all types of instruction sets. Only the x86 ISA 

has full support for adding such instructions. Moreover, although these new instructions 

can be functionally regarded as actual instructions, the execution of pseudo-instructions is

still different from the execution of the original instructions. In his blog, he conceded that

pseudo-instructions cannot be integrated tightly with the pipeline [17]. In addition, these 

pseudo-instructions can only use the reserved opcodes whose number is limited. In

conclusion, pseudo-instructions cannot be used for the purpose of adding error checking.

Some efforts have also been made to add customized instructions to GCC (GNU 

compiler collection). However, these efforts have not produced good results. One reason 

is that the target ISA (PISA) is not widely used [20]. Secondly, GCC cannot use the new 

instructions as it was not designed to use them. Instead, the user must manually insert the 

instructions into the inline assembly syntax.

Eibl et al. proposed the use of reduced precision floating-point values to check 

floating-point operations [2]. They also discussed the differences between the reduced 

precision results and the precise results. However, their research only focused on 

comparing the result of a reduced precision addition to the corresponding exact result.
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Lipetz et al. studied the application of residue check to floating-point operations 

where the mantissa addition is checked [6]. They discussed hardware implementations

and fault detection coverage of different moduli. Their research focused on reducing the 

cost of hardware redundancy in terms of power consumption and chip area.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the simulator 

and compiler. In Chapter 3, the insertion of new instructions into the cross compiler and 

Gem5 simulator is explained. Chapter 4 presents the parameters of the experiments, 

including those of the simulator and workloads. Chapter 5 presents the results of the 

experiments. Finally, conclusions are presented in Chapter 6.
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CHAPTER 2

BASIC BACKGROUND

2.1 Compiler and simulators

In this project, Gem5 is used as the base simulator, and crosstool-NG is used to 

build cross compilers with GCC and Binutils.

The main reason for choosing Gem5 is that it is the most popular simulator for 

computer architecture research. Besides, it is a modular discrete event-driven simulator 

platform, which can be rearranged, parameterized, extended or replaced easily to suit 

project requirements [24]. Furthermore, Gem5 supports several instruction sets including 

Alpha, ARM, MIPS, x86, POWER and SPARC. However, these instruction sets are not

equally supported in Gem5. Among these six ISAs, Alpha is the most supported one and 

therefore it is one of the target ISAs in our project. Table 2.1 compares Gem5 with two 

other popular simulators, SimpleScalar and SESC. 

SimpleScalar SESC Gem5

Multicore

supported
No Yes Yes

Supported ISA Alpha, PISA MIPS
Alpha, x86, ARM, SPARC, PowerPC,

MIPS

ISA modification No Yes
Only pseudo-instructions in full-system 

Mode

Table 2.1 Comparison of three simulators

Gem5 supports full-system and system-call modes. The operating system needs to 

be loaded in full-system mode simulation. On the other hand, in system-call mode

simulations, system services are called only when necessary. In this project, all 

simulations were performed in the system-call mode.
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Crosstool-NG is a software tool that is used to build cross compilers for multiple 

architectures. We use crosstool-NG to build cross compilers in this project. However, the 

recommended configuration does not work for Alpha ISA. The cross compiler for Alpha 

ISA in this project was built with a configuration that we have developed.

2.2 Decode process in Gem5

In Gem5, the decoding process cannot be done in a single step. It needs multiple

steps that involve different parts of the instruction set structure. The instruction set 

structure consists of a decoder section and a declaration section, as shown in Figure 2.1. 

The decoder section describes the decoding process and functional behavior by providing 

entries for all types of instructions. It classifies and extracts the variable values from the 

machine code, then assigns these values to the simulator, while the declaration section 

explains the details of the simulations. For example, the decoder section can recognize 

the machine code 0x01002240 as addl $1, $2, $1. Then, it transfers addl $1, $2, $1 to the 

IntegerOperate part of the simulator since this is an integer arithmetic operation. In other 

words, the ISA description works like a dictionary for simulators. The decoder file is an 

index for the dictionary, while the declaration sections are definitions of words.
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Figure 2.1 Decoding process in Gem5 (Alpha)

The declaration section defines the functionality of multiple types of instructions.

In Gem5, each instruction has a unique format that is defined in the declaration section.

Since the existing formats cover all types of instructions, we do not modify the 

declaration section in the project.

Both the decoder file and the declaration sections are written in the M5 ISA 

description language. This language is used for describing instruction sets and generating

C++ code for simulations. 
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CHAPTER 3

APPROACH TAKEN

3.1 Introduction

Setup

Modify compiler/simulator

Rebuild compiler/simulator

Setup for ISA type and directories of 
compiler and simulator

Modify the source files of the 
complier/simulator with predefined 

instructions

Rebuild the compiler/simulator from 
the modified source files

Figure 3.1 Steps for modifying the compiler and simulator

Modifying the source code is necessary in order to use the modified compiler and 

simulator. Since the modified source code cannot be directly processed by the compiler

and simulator, it is necessary to rebuild the compiler and the simulator after modifying

them as shown in Figure 3.1. Rebuilding a cross compiler is very time-consuming. It 

takes hours to rebuild the cross compiler for Alpha by using crosstool-NG. The 

rebuilding time of Gem5 depends on the amount of changes and can vary from minutes to 

half an hour.

Gtool users need to input the name, opcode, type and other information about the 

new instructions to both simulators and instructions. Gtool checks all inputs and then 
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modifies the source code of Gem5 and cross compiler. Figure 3.2 shows the human-

computer interface of Gtool.

User

Gtool

Gem5

Setup

Compiler

ISA directory

Binutils 
opcodes 
directory

Check input 
information

Insert 
instructions

Directory of Gem5
Directory of compiler

Directory of output
  ...

Instruction s name, 
opcode

And type
  ...

Figure 3.2 Human-computer interactions

The next part of this chapter discusses the approach taken with the cross compiler

and simulator.

3.2 Insertion in the compiler

There are two types of inputs that need to be provided to the compiler during 

instruction insertion. One is the opcode of the instruction. The other is the name of the 

instruction. 

Insertion is the first step of using a new instruction in the cross compiler. Since 

the compiler is not optimized with the new instruction, the instruction can only be used in 

inline assembly code. In this project, a new method of using new instructions is used for 

real-time checking.
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Our approach combines source-code modification and insertion into the cross

compiler to make use of the new instructions. The steps of compiling a test program with 

the new instructions are shown in Figure 3.3.

Compilation

Source Code 
&Header Files
Test.c & Test.h

Assembly
Test.s

Assembly
Linking

Executable
Test.out

Modified Assembly
Test_Modified.s

Modified Source Code 
&Header Files
Test.c & Test.h

Figure 3.3 Steps of compiling a test program with new instructions

Target source code are modified by inserting a duplicate operation after each to be 

checked operation. Then, the modified code is compiled to assembly code. The next step 

is to replace the assembly line for the duplicate operation with a new instruction. The 

linker then links the modified assembly file to generate an executable program. In this 

process, the compiler only needs to know how to translate new instructions to machine 

code. It does not need to be aware of the functionality of the new instructions.
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3.2.1 Insertion in the cross compiler

In this project, Binutils is used as the assembler and linker for the cross compiler. 

It stores the opcode of the supported architectures in a directory named opcode under the 

root directory of Binutils’ source code. The opcode for the Alpha instructions are defined

in alpha-opc.md. Therefore, adding instructions requires adding lines in alpha-opc.md. 

Then, the cross compiler needs to repackage the source code of Binutils and replace the 

original package with the new one for crosstool-NG.

3.2.2 Source-code modification

Source-code modification consists of two parts: C code modification as shown in 

Figure 3.4 and assembly code modification. 

Figure 3.4 C code modifications

In the C code modification, the Gtool first defines new variables and copies 

values from the original variables to the new variables. Afterward, Gtool uses the original

computation statements. (c=a+b; in Figure 3.4). Then, Gtool insert a flag followed by the 
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duplicated operations with new variables. Finally, an if statement is used to compare the

two results. If the two results do not match (result matching does not mean that the results 

are identical, instead, it means that either the residues match or the difference between the 

results is smaller than the maximum allowed), the program will be terminated.

The assembly code that stands for moving a value from register one to register 

one is used as a flag since it is easily recognizable and does not affect the results of the 

program.

Gtool uses this flag to locate the instruction that needs to be replaced by a 

checking instruction.

3.2.3 Checking arithmetic operations

The checking method for integer operations is based on the residue number 

system. For integers X, Y and m, the following equations hold [14]:

|𝑿 + 𝒀|𝒎 = ||𝑿|𝒎 + |𝑿|𝒎|𝒎 = |𝒙 + 𝒚|𝒎

|𝑿 − 𝒀|𝒎 = ||𝑿|𝒎 − |𝑿|𝒎|𝒎 = |𝒙 − 𝒚|𝒎

|𝑿 × 𝒀|𝒎 = ||𝑿|𝒎 × |𝑿|𝒎|𝒎 = |𝒙 × 𝒚|𝒎

where, |𝑋|𝑚 = 𝑥 is the residue of X modulo m. 

In the inserted comparison, integer results are checked by comparing the residues

of the original result and the duplicate one. 

Integer division constitutes a special case. Even though the result of the division

𝑋 𝑌⁄ can be checked through
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|𝑿|𝒎 = |𝒀|𝒎 × |𝑸|𝒎 + |𝑹|𝒎

where Q is the quotient and R is the remainder. The checking result cannot be 

done in a C program as the remainder R is not made available. Therefore divisions can be 

only checked by recalculation.

It is more complicated to check floating-point results. It is obvious that the results 

of truncated floating-point operations are different from the original results. The question 

is to determine whether these differences are due to the truncation or real errors. This

requires calculating an upper bound for the truncation error. The upper bound can be 

viewed as the reference difference. Results that have a smaller difference than the 

reference are marked as correct.

We next explain the truncation procedure and derive the reference difference.

Sign Exponent Truncated Mantissa Removed portion of Mantissa

Figure 3.5 Structure of truncated floating-point values

The truncated floating-point value keeps the sign bit, exponent bits and part of 

mantissa bits as shown in Figure 3.5. We denote by 𝑛 the number of fraction bits in the 

truncated mantissa. In single precision, n = 8, which is the same as was used in [2]. In 

double precision, n = 20 as this would truncate a double precision value from 64 bits to 

32 bits. We denote by 𝜀 the difference between the precise and the truncated values.

𝜀 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑒𝑠𝑢𝑙𝑡𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
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In practice, the relative value of the difference compared to the Result is more 

important. Therefore, we will estimate 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒 instead of 𝜀. In most cases, 𝜀 is 

very small compared to 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒. For convenience, we use 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 which 

is almost equal to 𝜀/𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒𝑐𝑖𝑠𝑒.

According to the definition of floating-point values, the original floating-point

value and the truncated one can be written as:

F𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝 ∙ 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝 ∙ 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 +

(−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝−𝑛 ∙ 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑

where

1 < 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 < 2

0 < 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 1

and exp is the exponent, 1. 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 is the truncated mantissa and 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 is

the part of the mantissa that was removed during the truncation. As a consequence, the 

exponent of the second part of F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 is much smaller than the first part. For 

convenience, we use F𝑟𝑒𝑚𝑜𝑣𝑒𝑑 to denote the difference between F𝑝𝑟𝑒𝑐𝑖𝑠𝑒 and F𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑.

F𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = (−1)𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝−𝑛 ∙ 0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Since

0. 𝑓𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 1
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then

|F𝑟𝑒𝑚𝑜𝑣𝑒𝑑| < 2𝑒𝑥𝑝−8 (𝑆𝑖𝑛𝑔𝑙𝑒) 𝑜𝑟 2𝑒𝑥𝑝−20 (𝐷𝑜𝑢𝑏𝑙𝑒) 

The exact value of this upper bound depends on the type of operation performed 

and is analyzed for each operation separately.

Addition and subtraction:

Denote by A and B the operands and by R the result.

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = 𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒 + 𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

                 = 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

                              = 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

If A and B have the same sign, R will also have the same sign. Then,

𝜀 = 2𝑒𝑥𝑝𝐴−𝑛 ∙ 0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 2𝑒𝑥𝑝𝐵−𝑛 ∙ 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 (1)

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑| = 2𝑒𝑥𝑝𝑅 ∙ 1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

The relative error is

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
= 2𝑒𝑥𝑝𝐴−𝑛−𝑒𝑥𝑝𝑅 ∙

0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
+ 2𝑒𝑥𝑝𝐵−𝑛−𝑒𝑥𝑝𝑅 ∙

0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Both 
0.𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1.𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
and 

0.𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1.𝑓𝑅_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
are less than 1. The equation becomes

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅 + 2𝑒𝑥𝑝𝐵−𝑒𝑥𝑝𝑅) (2)

Since
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𝑒𝑥𝑝𝑅 ≥ 𝑒𝑥𝑝𝐴

and

𝑒𝑥𝑝𝑅 ≥ 𝑒𝑥𝑝𝐵

The term in the parenthesis in (2) is always smaller than 2.

Equation (2) becomes

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1 (0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

When A and B have different signs, A+B will be performed as subtraction. Then 

assuming that A > B.

𝜀 < 2𝑒𝑥𝑝𝐴−𝑛 ∙ 0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 − 2𝑒𝑥𝑝𝐵−𝑛 ∙ 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 (4)

Similar to the addition case, when 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≠ 0

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅 − 2𝑒𝑥𝑝𝐵−𝑒𝑥𝑝𝑅)

If 𝑒𝑥𝑝𝐴 = 𝑒𝑥𝑝𝐵, (4) results in 

𝜀 < 2−𝑛2𝑒𝑥𝑝𝐴(0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 − 0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

Clearly

𝜀 < 2−𝑛2𝑒𝑥𝑝𝐴0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 < 2−𝑛2𝑒𝑥𝑝𝐴1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 2−𝑛|𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

Since A>B, then |𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑| < |𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

The result indicates that errors in the mantissa bits of the result of subtraction 

cannot be detected under the worst case (𝐴 ≈ 𝐵).
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If 𝑒𝑥𝑝𝐴 = 𝑒𝑥𝑝𝐵 + 1, then 𝑒𝑥𝑝𝑅 is equal to either 𝑒𝑥𝑝𝐴 or 𝑒𝑥𝑝𝐴 − 1

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(2𝑒𝑥𝑝𝐴−𝑒𝑥𝑝𝑅) < 2−𝑛21 < 2−𝑛+1

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1 (0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

If 𝑒𝑥𝑝𝐴 ≥ 𝑒𝑥𝑝𝐵 + 2, in which case 2𝑒𝑥𝑝𝐴 = 2𝑒𝑥𝑝𝑅 and 2𝑒𝑥𝑝𝐵 ≪ 2𝑒𝑥𝑝𝑅  , then

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(0.39% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.000095% 𝐷𝑜𝑢𝑏𝑙𝑒)

Multiplication

Let the product of A and B be denoted by R. 

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = 𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

    =  (𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑)(𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

    = 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 +

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

    = 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑑𝑒𝑑𝑢𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 +

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

then

  𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

= 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Since 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 is a very small value compared to the other two, the 

equation can be simplified to the following:
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𝜀 ≈ 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝜀 = 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵−𝑛1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵−𝑛0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Since 

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 2𝑒𝑥𝑝𝐴+𝑒𝑥𝑝𝐵1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

then

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
= 2−𝑛(

0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
+

0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐴_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
)

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛+1(0.78% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.00019% 𝐷𝑜𝑢𝑏𝑙𝑒)

Division

Assume

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 =
𝐴𝑝𝑟𝑒𝑐𝑖𝑠𝑒

𝐵𝑝𝑟𝑒𝑐𝑖𝑠𝑒

then

𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 =
𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
+

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

where 

𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

2𝑒𝑥𝑝𝐴−𝑛0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

2𝑒𝑥𝑝𝐵1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 2𝑒𝑥𝑝𝐵−𝑛0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑
     

= 2−𝑛2𝑒𝑥𝑝𝑅
0. 𝑓𝐴_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1. 𝑓𝐵_𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 2−𝑛0. 𝑓𝐵_𝑟𝑒𝑚𝑜𝑣𝑒𝑑
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𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 + 𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
< 2−𝑛2𝑒𝑥𝑝𝑅 < 2−𝑛|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|

The other factor which causes the difference between the precise and truncated 

results is the divisor’s truncation.

𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑+𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

1+
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Since

𝜀 = 𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑒 − 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≈ 𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 (
1

1+
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

− 1) +
𝐴𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑+𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

(5)

and

(
1

1 +
𝐵𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐵𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

− 1) < 0

then 

𝜀

|𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑|
< 2−𝑛(0.39% 𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 0.000095% 𝐷𝑜𝑢𝑏𝑙𝑒)

The upper bounds for the relative differences between the truncated and precise

results are summarized in Table 3.1.
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|
𝜀

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
|

𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑

Single (17/32 

bits)

Double (32/64 

bits)

Addition 2−7 2−19

Subtraction 2−8/2−7/1 2−20/2−19/1

Multiplication 2−7 2−19

Division 2−8 2−20

Table 3.1 Upper bounds for the relative precision loss.

Estimated upper bounds based on experiments

In order to verify the upper bounds for the relative precision loss, we set up 

experiments to find out the distribution of the precision loss. The experiments generate 

random floating-point values and calculate the results of addition, subtraction, 

multiplication and division, for precise and truncated operations. The relative differences 

between the precise and the truncated results were calculated. The following charts show

the distributions of the relative precision loss. Each of the charts is based on results of   

40, 000 operations.

The vertical axis is the frequency of the values and the horizontal axis is the 

relative precision loss. All the floating-point values are double precision. The dotted red 

line in each chart is the corresponding regression curve. 
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Figure 3.5 Distribution of relative precision loss in additions

It is obvious that the range of precision loss in addition is between 0 and 

0.000095 in Figure 3.5. The observed upper bound is half of the calculated upper bound. 

Figure 3.6 Distribution of relative precision loss in subtractions
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The range of precision loss of subtraction is considerably larger than for other 

operations. Still, the frequencies are sharply decreased away from 0 and the values that

are far away from zero are not displayed because of the low frequency. 

Figure 3.7 Distribution of the relative precision loss in multiplications

Figure 3.7 shows the relative precision loss distribution for multiplication. The 

range of the relative loss is from 0 to 0.00019%. This is equal to the upper bound we have 

calculated. 
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Figure 3.8 Distribution of the relative precision loss in divisions

Similar to addition, the upper bound for the relative precision loss in division can 

be narrowed to half of the calculated value. The range of the relative precision loss for

division is from -0.000095% to +0.000095%. 

Based on the above analyses, the range of the relative precision loss based on the 

experiments is shown in Table 3.2. 

𝜀

𝑅𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
Single (17/32 bits) Double (32/64 bits)

Addition 0 ~ 2−8 0 ~ 2−20

Subtraction
−2−8/2−7/1~ + 2−8/

2−7/1

−2−20/2−19/1~ +
2−20/2−19/1

Multiplication 0 ~ 2−7 0 ~ 2−19

Division −2−8 ~  + 2−8 −2−20 ~ + 2−20

Table 3.2 Updated ranges of the relative precision loss
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3.3 Insertion of new instructions into Gem5

Instruction insertion in Gem5 is more complicated than insertion in the cross 

compiler. Gtool needs to choose unused opcode for the new instructions, check 

instruction syntax and insert instruction blocks in the proper places in the decoder file. 

Gem5 labels different instruction fields in 32-bit instructions. These labels mark 

instruction fields as shown in Figure 3.9. For example, OPCODE stands for the bits 25 to 

31 and INTFUNC stands for the bits 5 to 15 in the instruction. Gem5 uses these as entries 

to decode instructions. We use these labels to locate the proper position in the decoder 

file for inserting the new instructions.

Figure 3.9 Instruction field labels

3.3.1 Difference between Alpha and MIPS

The differences between Alpha and MIPS are obvious when comparing their

instruction field labels. The differences are shown in Table 3.3.

Comparison between opcode of Alpha and MIPS

Alpha MIPS

Number of instructions (Include reserved 

opcode)

248 529
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Max number of instruction fields used for one 

instruction

5 8

The most often number of instruction fields 

used by instructions

2 6

Number of integer instructions that can be 

inserted with unused opcode

1959 772

Table 3.3 Comparison between opcode of Alpha and MIPS

MIPS has more instructions than Alpha and each MIPS instruction uses more 

instruction field labels than an Alpha instruction. This means there are more steps when 

decoding a MIPS instruction than an Alpha instruction.

3.3.2 Instruction decoding block

Each instruction has its decoding block within the decoder file. A typical

decoding block is shown in Figure 3.10. It consists of the format name, the instruction 

name, the function field and other parts such as flags. Sometimes the labels are also 

included. The decoding block has to be changed when varying the ISA.

Figure 3.10 Instruction decoding block
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Every instruction has its format, which appears in the decoding block. The format 

name and instruction name provide details about how a new instruction would be 

implemented in the simulator.

The function fields use a C-like code, which describes the function of the 

instruction. The variables in the function fields are register names or immediate-value

symbols. For example, in the Alpha ISA, register names are Rc, Ra and Rb with a suffix 

indicating the length of the register while the MIPS ISA, usually, uses Rt, Rd and Rs with 

different suffixes. 

Every time the user inputs information about a new instruction, Gtool prepares a 

decoding block for it. Then, it inserts this block into the proper location in the decoder 

file. 

3.3.3 Insertion of new instructions

Similar to the cross compiler, inserting an instruction into Gem5 requires inserting 

its decoding block into the decoder file. Since the function field defines the behavior of 

the instruction, most of the changes in instructions are related to the function field. It is 

easy to design the function field by using basic C-like symbols. However, truncated

floating-point operations need truncation functions for all floating-point operands. There 

are no such functions in the C language, and as a result, the user should create them.

In the upper-level directory of ISA in Gem5, decoder.cc and decoder.hh can be 

used as function definition files for the current instructions set. Gtool does not need to 

modify these files. In this project, we build the floating-point truncation function and 

error injection function for verifying the fault checking capability.
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CHAPTER 4

EXPERIMENTAL SETUP

The parameters of the processor used in our experiment are shown in Table 4.1, 

and were obtained from [7]. We inserted into the Alpha ISA the new instructions shown 

in Table 4.2. In this project, we used 15 as the residue modulus, which ensures a high 

fault detection coverage.

Width 64 bits

Fetch/issue 6/3

I-cache 32k/64B/4-way/2 cycles

D-cache 64k/64B/4-way/2 cycles

Frequency 2GHz

L2 1MB/64B/8-way/14 cycles

Gem5 CPU model DerivO3CPU

Table 4.1 Processor Configuration

In the fault detection coverage experiments, faults were injected through

erroneous instructions. Erroneous instructions are new instructions which are similar to 

checker instructions. They have the same functionality as regular instructions except the 

extra error generation function in their output. The error generation function changes a 

random bit in the output to its opposite value. For example, it the correct output for a 

regular instruction is 1110 in binary, the error generation function would randomly flip

one bit in 1110. 
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The flipped bit is selected randomly and in each experiment the randomly selected 

bit would be different. However, when comparing two checking mechanisms the same 

random number should be used in both experiments.

Name Opcode Type

mulrf 0x04 0x01 Integer Operation

addrf 0x02 0x00 Integer Operation

subrf 0x05 0x00 Integer Operation

divtr 0x21 0 0,1,5,7 0x23 Floating-Point Operation

addtr 0x21 0 0,1,5,7 0x24 Floating-Point Operation

subtr 0x21 0 0,1,5,7 0x25 Floating-Point Operation

multr 0x21 0 0,1,5,7 0x26 Floating-Point Operation

Table 4.2 Checker instructions for the Alpha ISA

For the experiments, we have selected five integer benchmarks shown in Table 

4.3 [27] and six workloads listed in Table 4.4. The first five workloads in Table 4.4 use 

mostly floating-point operations. The sixth benchmark (edn) has both integer and 

floating-point arithmetic operations. The average results for floating-point workloads do 

not include the results of edn.
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Benchmark Description Bytes Lines of Code

adpcm

Adaptive pulse code modulation 

algorithm.

26852 879

ud Calculation of matrixes. 6 K 163

matmult

Matrix multiplication of two 

20x20 matrices.

3737 163

fdct

A lot of calculations based on 

integer array elements.

8863 239

insertsort

Input-data dependent nested loop 

with worst-case of (n^2)/2 

iterations (triangular loop).

3892 92

Table 4.3 Integer workloads

Benchmark Description Bytes Line of Code

fft1

A lot of calculations based on 

floating-point array elements.

6244 219

ludcmp
LU decomposition algorithm. 5160

147

minver

Floating value calculations in 

3x3 matrix. Nested loops (3 

levels).

5805 201

lcdnum

Loop with iteration-dependent 

flow.

1678 64
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qsort-exam

Non-recursive version of quick 

sort algorithm.

4535 121

edn

Finite Impulse Response (FIR) 

filter calculations.

10563 285

Table 4.4 Floating-point workloads

In the performance results of the next chapter, the DMR (Dual modular 

redundancy) results were from programs that did not use the new instructions. This is 

time-redundancy DMR, i.e., every checked instruction is executed twice and the results 

are compared.

In the fault detection coverage experiments, faults were injected into the 

benchmarks by using erroneous instructions.
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CHAPTER 5

RESULTS

We now present the performance and fault detection coverage analysis of the 

proposed method. We first compare the performance of using checker instructions to that 

of DMR. Then, we compare the fault detection coverage of these two methods.

5.1 Performance comparisons

The performance comparison between the method of using checker instructions 

and DMR is shown in Figure 5.1 (integer) and Figure 5.2 (floating-point). On average, 

the use of checker instruction reduced the execution time to 94.84% for integer 

workloads and to 99.43 for floating-point workloads.

Figure 5.1 Performance comparison (integer). 
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96.40%

88.47%

92.35%

98.21%

94.84%

80.00%

84.00%

88.00%

92.00%

96.00%

100.00%

adpcm ud matmult fdct insertsort Integer avg.

Integer workloads excution time (Percentage of DMR)
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Figure 5.2 Performance comparison (floating-point). 

We also measured the memory usage of these workloads during their execution 

and the results are shown in Figure 5.3 (integer) and Figure 5.4 (floating-point).

Figure 5.3 Memory use comparison (integer)
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Figure 5.4 Memory use comparison (floating-point)

5.2 Fault detection comparisons

As we use residue checking in integer operations and truncated floating-point in 

floating-point operations, their resulting fault detection coverage would be different. The 

results are shown in Figure 5.5 (integer) and Figure 5.6 (floating-point).

It is obvious that the fault detection coverage of floating-point operations is lower 

than that for integer operations, as the checker operations could only detect the errors 

which were larger than the largest precision loss. 

In the comparisons in Figure 5.5 and Figure 5.6, all errors are considered equally 

irrespective of their magnitude.
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Figure 5.5 Fault detection coverage comparison (integer)

Figure 5.6 Fault detection coverage comparison (floating-point)

We therefore, performed another experiment. In this experiment, errors were 

weighted by their relative value compared to the correct result.
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Figure 5.7 Weighted fault detection coverage for floating-point operations

As expected, the coverage in Figure 5.7 is higher than that in Figure 5.6, which 

indicates that the method of truncated floating-point values can detect almost all of the 

large errors. 
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CHAPTER 6

CONCLUSION

We have presented an analysis of the performance and fault detection coverage of 

using checker instructions and compared them to DMR. Using checker instructions can 

benefit integer operations as the lower execution time and reduced memory usage make

the residue checking method better than DMR. In this project, we used 15 as the residue 

modulus. Our scheme for injecting erroneous instructions restricts the errors to be

multiples of 2. This means that the fraction of undetected faults will only be 1/30 of the 

total number of injected errors in theory. The experiments have shown better results than 

predicted by the theory, since divisions are checked by the DMR method.

The truncated floating-point scheme is not as beneficial. The main reason is that 

the truncated floating-point operations only reduced marginally the execution time. The 

comparison between the truncated results and the precise results consumed the execution 

time that was saved in the arithmetic operation. Unless a way to further accelerate the 

execution of the truncated operations is found, the DMR approach will still outperform 

the truncated floating-point approach.
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