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ABSTRACT 

IMPACTS OF LAND COVER AND CLIMATE CHANGE ON WATER RESOURCES 
IN SUASCO RIVER WATERSHED 

 
SEPTEMBER 2015 

 
AMMARA TALIB, BS., PUNJAB UNIVERSITY LAHORE 

 
 MS., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Tim Randhir 

 
Hydrological balance and biogeochemical processes in watershed are significantly 

influenced by changes in land use land cover (LULC) and climate change. Those changes 

can influence interception, evapotranspiration (ET), infiltration, soil moisture, water 

balance and biogeochemical cycling of carbon, nitrogen and other elements at regional to 

global scales. The impacts of these hydrological disturbances are generally reflected in 

form of increasing runoff rate and volume, more intense and frequent floods, decreasing 

groundwater recharge and base flow, elevated levels of sediments and increase in 

concentration of nutrients in both streams and shallow groundwater. Water quality of 

Sudbury, Assabet and Concord (SuAsCo) watershed in Massachusetts is also 

compromised because of influx of runoff, sediments and nutrients. There is a crucial need 

to evaluate the synergistic effects of LULC change and climate change on the water 

quality and water quantity in a watershed system. A watershed simulation model is used 

to simulate hydrologic processes and water quality changes in sediment loads, total 

nitrogen (TN), and total phosphorus (TP). The model is calibrated and validated with 

field-measured data. Climatic scenarios are represented by downscaled regional 

projections from Global Climate Model (GCM) models and regional built out scenarios 

of LULC are used to assess the impacts of projected LULC and climate change on water 
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quality and water quantity. Simultaneous changes in LULC and climate significantly 

affect the water resources in the SuAsCo River watershed. Change in climate increased 

ET (4.7 %) because of high temperature, but independent change in land cover reduced 

ET (6.5%) because of less available vegetation. Combined change in land cover and 

climate reduced ET (2.1%) overall, which indicates that land cover change has significant 

impact on ET. Change in climate increased total run off (6%) and this increase is more 

significant as compared to 2.7 % increase in total runoff caused by land cover change. 

Change in land cover increased surface runoff more significantly (69.2%) than 7.9 % 

increase caused by climate change. Combined change in land cover and climate further 

increased the average storm peak volume (12.8 percent) because of high precipitation and 

impervious area in future. There is a potential for reducing runoff, sediments and 

nutrients loads by using conservation policies and adaptation strategies. This research 

provides valuable information about the dynamics of watershed system, as well as the 

complex processes that impair water resources. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

This section describes about the issues regarding water quality and water quantity 

in watershed systems. Information about stressors such as LULC and climate change that 

impact hydrological processes significantly has been provided. This chapter includes 

general objectives, specific objectives, null and alternative hypothesis.  

Inadequate water quantity and poor water quality is becoming an increasing 

concern in the United States and other parts of the world [Kosmas et al., 1997 and Kim et 

al., 2013; Santhi et al., 2006]. The water quantity issues are in form of increase in 

evapotranspiration (ET), decrease in infiltration and soil moisture, increasing runoff rate 

and volume, changes in timing of spring and winter runoff event, decreasing groundwater 

recharge and base flow , more intense and frequent floods in some areas and droughts in 

the others [Pielke and Avissar, 1990; Moscrip and Montgomery, 1997]. Poor water 

quality is another concern. In United States, 35%, 45%, and 44% of the assessed rivers 

and streams, lakes, and estuaries, respectively, are impaired by one or more pollutants 

according to recent report to Congress regarding water quality [US Environmental 

Protection Agency, 1999]. In addition, the impairment of 30% or 135,000 km2 of the 

nation’ s impaired rivers and streams,44% of the impaired lakes, and 23% of the impaired 

estuaries is caused by two prime nutrients: Nitrogen and phosphorus [Sauer et al.,2008]. 

These changes in hydrological balance and biogeochemical processes in watershed also 
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influence earth-atmosphere interactions, biodiversity, water budget, biogeochemical 

cycling of carbon, nitrogen and other elements at regional to global scales [Tang et al., 

2005]. 

LULC change is one of the stressors that significantly affect hydrological balance 

and then aggravate water quantity issues [Fu et al., 2009]. Hydrological processes such as 

infiltration, groundwater recharge, base flow and surface runoff are influenced by land 

use changes in a watershed [Lin et al., 2007]. LULC modification such as changes in 

vegetation cover, alter surface roughness and Leaf Area Index (LAI) that can lead to 

disturbance in surface energy balance and evapotranspiration (ET) [Pielke and Avissar, 

1990]. The changes in energy balance and ET may significantly affect the timing and 

magnitude of evaporative losses to the atmosphere and the amount of water yield that 

governs soil moisture content, runoff and base flow patterns of regional hydrologic 

responses [Hendersen-Sellers et al., 1993; Jones and Post, 2004]. Hence these disturbance 

in hydrological balance lead to increase in runoff rate, volume and more intense and 

frequent floods [Kosmas et al., 1997;Brath et al., 2006].  

In addition to water balance, LULC also impacts water quality, especially 

sediment loading that is mainly caused by uncontrolled urban runoff and soil erosion 

[Randhir and Tsvetkova, 2011].  Many studies assess the impacts of LULC change on 

watershed [Wolter et al., 2006; Randhir and Hawes, 2009; Xia et al., 2012]. These studies 

show a strong tie between land cover patterns and soil erosion and sediment yield in 

watersheds. Soil erosion via deforestation, bank edges not protected by fencing, livestock 

poaching at feeding lots,  tillage , and ploughing for afforestation cause loading  of 

sediments in water bodies [Evans et al., 2006; Ozturk et al., 2013; Yang et al., 2013]. Soil 



 

3 

erosion is also caused by inappropriate land use and poor management that can lead to 

land degradation and deterioration of surface water quality [Singh et al., 2011]. Hence, 

soil erosion induced by LULC change not only reduces soil productivity but also 

increases sediment and other pollutants loads to receiving water bodies [Deng et al., 

2008]. High suspended sediment loads and the resulting turbidity can impact the use of 

surface waters for water supply and other designated uses. Mukundan et al., [2013] 

reports that changes in fluvial sediment loads influence material fluxes, aquatic 

geochemistry, water quality, channel morphology, and aquatic habitats. Considering the 

fact that hydrological processes and sediment transport capacity varies for different types 

of land cover, sediment export to rivers is a function of type of land use [Shi et al., 2013; 

Yan et al., 2013; Wasige et al., 2013]. Therefore, quantifying spatial and temporal 

patterns in sediment loads is important both for understanding and predicting soil erosion 

and sediment transport processes as well as watershed-scale management of sediment and 

associated pollutants. Having said that, it is necessary to address the issue of sediment 

loadings in water because the quality of aquatic life and performance and life of 

reservoirs, canals, drainage channels, harbors, and other downstream structures is 

determined by sedimentation rates and amounts [Lane et al., 1997].  

LULC change also causes excessive nutrient loading or eutrophication [Artola et 

al., 1995] that leads to lack of potability in drinking water and death of aquatic organisms 

especially fish. The eutrophication of downstream water bodies are caused by excess 

nutrient export from natural and anthropogenic sources, which is transported through the 

fluvial network [Dodds et al., 2011]. The prominent anthropogenic sources of nutrients 

loads are production and applications of fertilizer, discharge of human waste, livestock 
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operation and clearing land [Cloern, 2001]. The structure and function of the aquatic 

ecosystem are affected by high nutrient concentrations which is a threat to the ecosystem 

integrity [Aguilera et al., 2012]. The increased growth of algae and aquatic weeds is the 

most obvious consequence of eutrophication that interfere with the use of water for 

fishing, recreation, industry, agriculture and drinking [Carpenter et al., 1998]. Hence the 

impairment of aquatic resources by eutrophication can have substantial economic impacts 

[Carpenter et al., 1998]. 

Climate change is another stressor [International Panel on Climate Change (IPCC) 

2001, 2007].Water cycle is disturbed by climatic change because of feedbacks between 

rising temperatures and hydrologic processes and the consequences of these disturbances 

in form of changes in patterns of precipitation and runoff and more frequent occurrence 

of extreme weather events [Milly et al., 2005; Milliman et al., 2008; Boyer et al., 2010]. 

According to IPCC Assessment Report 5 (AR5), it is likely that the frequency of heat 

waves has increased in large parts of Europe, Asia and Australia. There are likely more 

land regions where the number of heavy precipitation events has increased than where it 

has decreased. In addition, the frequency or intensity of heavy precipitation events has 

likely increased in North America and Europe. Change in climate disrupts the climate–

runoff relationship, water budget and, vegetation responses to higher temperature (ET) 

that leads to changes in the timing and intensity of rainfall [Vaze et al., 2010]. Over 

several decades, climate change impacts on the hydrological cycle, e.g. leading to 

changes of precipitation patterns, have been observed. Higher water temperatures and 

changes in extremes hydro-meteorological events (including floods and droughts) are 

likely to aggravate different types of pressures on water resources with possible negative 
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impacts on ecosystems and human health [Mozumder et al., 2011. In addition, climate-

related changes in water quantity are expected to affect food availability, water access 

and utilization, especially in arid and semi-arid areas, as well as the operation of water 

infrastructure (e.g. hydropower, flood defenses, and irrigation systems) [Forsee and 

Ahmad, 2011; Quevauviller, 2011]. 

In addition to characteristics of the water that are influenced directly by climate 

change, land surface processes that regulate the production, release, and transport of 

natural materials and anthropogenic contaminants to ground and surface waters are also 

affected by climate change [Williams et al., 2008; Campbell et al., 2009]. Water and air 

temperature, precipitation amount and intensity, and droughts are the hydroclimatic 

factors that affect water quality by influencing the transfer of contaminants [Kundzewicz 

et al., 2007; Park et al., 2010]. Water temperature can directly influence temperature-

dependent water quality parameters including dissolved oxygen, redox potentials, pH, 

and lake stratification, mixing, and microbial activity [Park et al., 2010; Luo et al., 2013; 

Shrestha et al., 2012]. Analyses on the combined impact of climate and land use changes 

showed that the impact of land development on stream flow will be enhanced by climate 

change [Kosmas et al., 1997; Li et al., 2009]. The combined effects of modifications in 

river hydrology and geomorphological processes will likely impact riparian ecosystems 

[Wilson and Weng., 2011; Kim et al., 2013]. Changes in the LULC and climate regime 

can influence natural processes of a watershed ecosystem [Abbaspour et al., 2007; Shen 

et al., 2011; Singh et al., 2011] and have long-term implications on economic and 

ecological processes [Singh et al., 1999;  Albek et al., 2004 ;Santhi et al., 2006]. 
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Many studies show that mitigation measures that are effective for soil erosion can 

be assumed to control diffuse pollution losses, because of the strong relationships 

between runoff, sediment and the transport of P, N, pesticides, pathogens, and metals 

[Ahiablame et al, 2013; Dechmi and Skhiri et al., 2013]. Low impact development (LID) 

practices have been utilized to mitigate hydrologic and water quality impacts of 

urbanization. To reduce non-point source pollution and improve water quality, land 

management practices such as conservation tillage and optimum irrigation are also 

routinely used [Barrington et al., 2013; Delgado et al., 2013]. BMPs and better fertilizer 

application management is needed to control NPs of TN, TP. As compared to employ 

individual crop and tillage management practices and structural controls, combinations of 

crop, tillage and structural control scenarios revealed to have more potential to reduce 

sediment yield [Chen et al., 2012; Hong et al., 2012].The interaction of land use and 

climate change varies greatly in time and in space, as fluxes of water within a catchment 

move both vertically (e.g. evapotranspiration) and laterally (through soils, hill slopes, 

aquifers and rivers). Thus, as water moves through the catchment any impacts of the 

climate change and land use can be transmitted through the catchment [Falkenmark, 

2003].  So the assessment of LULC and climate change usually includes evaluation of 

spatial patterns of hydrological consequences to different LULC maps, temperature, 

precipitation, comparison of simulated hydrological components to LULC and climate 

changes at the basin scale, and examination of temporal responses in channel discharge 

with changes in LULC and climate [Stohlgren et al., 1998; Nie et al., 2011].  

Modeling has become one of the most powerful tools for watershed management 

in the last decades [Albek et al., 2004]. To predict/or forecast storm water quantity, storm 
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water runoff models have been widely used but due to the complexities of the processes 

affecting storm water quality current modeling efforts have had limited success in 

accurately predicting storm water quality (Obropta and Kardos, 2007). Most hydrological 

studies have focused on results from simplified models [Horton et al., 2006; Zhang et al., 

2012]. But as land use and meteorological forcing such as heat waves, droughts, heavy 

precipitation and floods may dramatically evolve, one can however question the 

adequacy of such models in a changing climate [Hock et al., 2005; Magnusson et al., 

2010]. While an adequate amount of research has been conducted on the potential 

impacts of LULC change on hydrology [White and Greer, 2006; Tran et al., 2010; Carey 

et al., 2011; Girolamo and Porto et al., 2012], and future climate on water resources, most 

of these studies did not integrate future land use configurations in their analysis .There 

are very few studies that have analyzed the combined effects of climate and land use 

changes on water quality and water quality [Wilson and Weng, 2011; Tong et al., 2012; 

Kim et al., 2013]. As a result, the synergistic impacts of future detailed urban land use 

configurations and trends, under various climate emission scenarios, on surface water 

quality at the sub-basin level are currently fuzzy [Wilson and Weng, 2011; Cuo et al., 

2013; Tran and Neill., 2013]. Hence to assess the impacts of LULC and climate change 

on catchment hydrological response, there is a need of an appropriate approach, that is 

sensitive to LULC and climate changes and which adequately represent hydrological 

processes [Ewen, J. and G. Parkin, 1996; Choi and Deal, 2008]. Having said that there is 

a need of an integrated approach involving hydrological modeling is required to quantify 

the contributions of changes in individual land use types to changes in stream flow and 

sediment yield. Those integrated hydrological simulation models provide information 
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about watershed that helps in making decisions regarding the development and 

management of water and land resources in a watershed.  

In this study, we use integration of GIS and simulation modeling to investigate the 

hydrological response of a semi urban watershed to a changing climate and land cover. 

The physically based models are particularly useful in estimating the major components 

of the water balance at a daily time step (evapotranspiration, surface runoff, baseflow and 

interflow) from rainfall, pan evaporation and gauged total stream flow. These model 

requires input information on LULC, soil properties, sources of nitrogen (N) and 

phosphorus (P), stream reach characteristics, and time series of precipitation, 

temperature, solar radiation and potential evapotranspiration. The models predict flow 

rate, sediment loads, TN and TP loads. Then calibrated model can be used to project the 

future changes in streamflow, TN and TP load under different climate and land use 

change scenarios the watershed. Water quality of the SuAsCo watershed is compromised 

because of influx of sediments and nutrients [Smith, 2000; Riskin et al., 2003; Giles, 

2005].  There is a crucial need to analyze source, transfer, and fate of sediments and 

nutrients at watershed scale.  

Therefore, this study will examine the potential combined effects of climate and 

LULC changes on watershed system. One study by Zarriello et al [2010] in SuAsCo 

watershed has examined the impacts of land use land cover change, but there is no study 

about combined impacts of landuse and climate change on water resources in SuAsCo. 

This study quantifies contributions of change for individual LULC and climate change to 

different hydrological responses.  Understanding how land-use and climate change will 

affect water resource quantity and quality, in the context of watershed geomorphology, 
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will aid watershed managers and stream ecologists in the protection of adequate water 

supply for human needs and habitat availability for stream biota. 

A comprehensive deterministic, distributed and physically based modeling system 

capable of simulating all major hydrological processes in the land phase of the 

hydrological cycle [Zarriello and Ries, 2000; Albek et al., 2004] is  used in this study. 

Unlike other empirical and conceptual hydrological model, HSPF is a physically based 

model that is able to explicitly represent the spatial variability of some, if not most, of the 

important land surface characteristics such as topographic elevation, slope, aspect, 

vegetation, soil as well as climatic parameters including precipitation, temperature, and 

evapotranspiration distribution. The HSPF model is chosen for this study from the range 

of existing water quality models for two main reasons: (1) its comprehensive catchment 

description, which accounts for the numerous different factors influencing flow and water 

quality [Ribarova et al.,2008] and (2) its capability to run at time steps of less than a day 

(Bicknell et al., 2001). A rigorously calibrated and validated physically-based macroscale 

hydrological model over the SuAsCo, aims to identify changes in observed streamflow at 

several locations and to explore the causes of streamflow changes by examining climate 

change impacts on water balance terms, and land cover/use change impacts on 

streamflow. 

1.2  Research Objectives 

Both general and specific objectives are given below.  
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1.2.1 General Objective 

 

The general objective of my research is to evaluate the synergistic effects of 

LULC change and climate change on the water quality and water quantity in a watershed 

system.  

1.2.2 Specific Objectives 

 

Specific objectives of my research are to: 

i. Simulate baseline biophysical processes (such as runoff, sediment, TN, TP loads)  

in the watershed system using continuous-time, process model; 

ii. Evaluate impacts of land use land cover (LULC) change on runoff, sediments, TN 

and TP loads; 

iii. Assess the impacts of climate change on runoff, sediments, TN, and TP loads; 

iv. Quantify the combined effects of both (LULC) and climate change on runoff, 

sediments, TN and TP loads; 

1.2.3 Hypothesis 

 

1
st
 objective:  

Ho: Obs-Sim =0 

Baseline simulations are significantly close to observed information 

Ha: Obs-Sim ≠0 
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Baseline simulations significantly deviate from observed information 

2
nd

 objective 

Ho: ∆WQ/∆LULC = 0 

LULC changes have no impacts on water quality and water quantity  

Ha: ∆WQ/∆LULC ≠ 0 

LULC changes have significant impacts on water quality and water quantity 

3
rd

 objective 

Ho: ∆WQ/∆CC = 0 

Climate change has no impacts on water quality and water quantity. 

Ha: ∆WQ/∆CC ≠ 0 

Climate change has significant impacts on water quality and water quantity. 

4
th

 objective 

Ho: ∆WQ/∆ ∆LULU=0 

Combined impacts of LULC change and climate change on water quality and 

water quantity are insignificant. 

Ha: ∆WQ/∆ ∆LULU≠0 

Combined impacts of LULC change and climate change on water quality and 

water quantity are significant. 

1.3  Thesis Plan 

Thesis is divided into four chapters. The first chapter presents the introduction, 

and background information about water quality and water quantity issues. The second 

chapter describes about literature review, general objectives, and specific objectives, null 
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and alternative hypothesis. Third chapter is about description of study area, database and 

HSPF calibration. Forth chapter is about results and discussion about assessment of the 

impacts of climate change and LULC on water quality and water quantity. Fifth chapter 

is about conclusion and identification of the mitigation strategies to minimize the impacts 

of LULC and climate change on watershed system. Appendices, tables and figures are 

presented at the end of thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

 

             This section provides a review of background literature related to LULC and 

climatic impacts on watershed systems. The review is presented in five categories: 

watershed modeling, LULC change, climate change, combined LULC and climate 

change, and policy adaptation. 

2.1  Watershed Modeling 

Hydrological modeling is important for watershed management as hydrology is 

the driving force behind many processes occurring on the watershed. In order to explain 

the mechanisms governing processes in a water body (streams, lakes or groundwater), 

hydrology and hydrological relationships must be investigated and simulated. Many 

different large-scale watershed flow models exist which describe processes related to the 

movement of runoff, sediments and nutrients through large drainage networks of river 

basins. Equations of such models can be applied on different scales.  

[Singh et al., 1999] applied, MIKE SHE, the physically based distributed 

modeling system, to simulate the hydrological water balance of a small watershed. Soil 

Water Assessment Tool (SWAT) was used by Santhi et al., [2006]; Abbaspour et al., 

[2007] and Chen et al., [2012] to simulate all related processes affecting water quantity, 

sediment, and nutrient loads and to evaluate the long-term impact of implementation of 

Water Quality Management Plans (WQMPs) on nonpoint source pollution at the farm 
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level and watershed level using a modeling approach. Agricultural Pollution Potential 

Index (APPI) and Pollution Load (PLOAD) model was used for non-point priority source 

area and pollution load estimation in Fujiang watershed, China [Shen et al., 2011]. Water 

erosion prediction project (WEPP) model was used to develop appropriate vegetative as 

well as structural measures to control sediment yield from a small multi-vegetated 

watershed in high rainfall and high land slope conditions of eastern Himalayan range in 

India [Singh et al., 2011]. Albek et al., [2004] used a mathematical modeling program 

called Hydrological Simulation Program—FORTRAN (HSPF) for the hydrological 

modeling of the Middle Seydi Suyu Watershed in Turkey. 

[Singh et al., 1999] applied, MIKE SHE, the physically based distributed 

modeling system, to simulate the hydrological water balance of a small watershed in the 

western part of the Midnapore district of West Bengal, India, with the objective of 

developing the irrigation plan for paddy crops. Results showed that it is possible to meet 

the irrigation demand of the crops with the proper planning. That study indicated the 

applicability of a comprehensive hydrological modeling system for the management of 

water resources for agricultural purposes in a watershed. 

Albek et al., [2004] used a mathematical modeling program called Hydrological 

Simulation Program—FORTRAN (HSPF) for the hydrological modeling of the Middle 

Seydi Suyu Watershed in Turkey. They conducted base simulations for the 1991–1994 

water years to determine and compare the response of the watershed to various scenarios. 

The findings showed that the watershed outflows will decrease by 21% due to an annual 

mean temperature increase of 3 °C caused by climate change.  
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Santhi et al., [2006] used Soil Water Assessment Tool (SWAT) to evaluate the 

long-term impact of implementation of Water Quality Management Plans (WQMPs) on 

nonpoint source pollution at the farm level and watershed level using a modeling 

approach. The results showed that the benefits of the WQMPs were greater (up to 99%) 

at the farm level and the benefits due to WQMPs were 1–2% at the watershed level. This 

study also showed that a modeling approach can be used to estimate the impacts of water 

quality management programs in large watersheds.  

Abbaspour et al., [2007] used the program SWAT to simulate all related processes 

affecting water quantity, sediment, and nutrient loads in the Thur River basin (area 

1700 km2) which is located in the north-east of Switzerland and is a direct tributary to the 

Rhine. They concluded that it is feasible to use SWAT as a flow and transport simulator 

for a watershed with good data quality and availability and relatively small model 

uncertainty. They observed that simulation of particulates such as sediment and 

phosphorus are subject to large model uncertainties because of the “second-storm” effect, 

among others. They found large-scale watershed models effective for simulating 

watershed processes and therefore watershed management studies.  

Shen et al., [2011] used Agricultural Pollution Potential Index (APPI) and 

Pollution Load (PLOAD) model for non-point priority source area and pollution load 

estimation in Fujiang watershed, China. The study indicated that in order to achieve the 

regional goal of water quality, the agricultural activity and effective treatment of the 

human and livestock discharge should both be carried out to control the non-point source 

pollution. They found out that, based on the NPS pollution evaluation in subbasins, the 

land use was the major contributor for total nitrogen (TN), whereas human and livestock 
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discharge was the main cause for total phosphorus (TP). They also propose that in order 

to control the non-point source pollution (NPS) pollution, best management practices 

(BMPs) regarding the agricultural activity and effective treatment of the human and 

livestock discharge should both be carried out. 

Singh et al., [2011] used water erosion prediction project (WEPP) model to 

develop appropriate vegetative as well as structural measures to control sediment yield 

from a small multi-vegetated watershed in high rainfall and high land slope conditions of 

eastern Himalayan range in India. Simulations of combinations of management practices 

indicted that sediment yield can be reduced up to 78.40%, by replacing traditional  upland 

paddy crop with maize, soybean, and peanut, because that soybean and peanut in upland 

situations with field cultivator or drill-no-tillage system, and structural control in the 

drainage line has potential to make agriculture sustainable in the watershed. 

Chen et al., [2012] identified the spatial and temporal distribution of nitrogen (N) 

in the upstream watershed of a typical drinking water reservoir, in the city of Ningbo, 

Zhejiang province. They estimated the N load for the 254 km2 upper stream watershed 

by using a watershed model, Soil and Water Assessment Tool (SWAT). The findings of 

this study revealed that, in order to protect soil and water resources, modeling and 

monitoring of NPS at multiple scale, provides information to assess trends and the status 

of NPS both long-term and short-term trends. 

Hong et al., [2012] used a combined socio-economic–ecological toolbox 

(ArcECON, ArcGEOMOD, and ArcGWLF), running on the ArcGIS platform, is used for 

two New York State catchment areas, Onondaga Creek watershed and Wappinger Creek, 
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to analyze subsequent impacts on stream flow and nutrient export using the spatial 

pattern of urbanization in response to anticipated socio-economic conditions and 

scenarios through a year 2020.  They predicted higher flashier stream flow as well as 

worsening stream condition caused by estimated higher economic growth to induce 

increased new housing permits and spread of impervious surface areas, which was 

aggravated when only the forest lands were allowed to be developed. 

Most approaches to assess the LULC and climate change impacts showed that 

integrated approaches that model the combined effect of LULC and climate changes can 

be used for scenario analysis, because most of the integrated models simulate hydrology, 

sediment, and nutrient loads with reasonable accuracy. TN and TP increase under all 

future climate and land use scenarios. BMPs and better fertilizer application management 

is needed to control NPs of TN, TP. As compared to employ individual crop and tillage 

management practices and structural controls, combinations of crop, tillage and structural 

control scenarios revealed to have more potential to reduce sediment yield. 

2.2  Land Use Land Cover (LULC) Change 

Wolter et al., [2006] studies the Land Use/Land Cover (LULC) change to 

understand the near shore ecology of U.S Great Lakes Basin, for the U.S. portion of the 

Great Lakes basin for 1992 and 2001. ) They observed the  33.5% increase in low-

intensity development and 7.5%  increase in road area and on the other hand 2.3% 

decrease in agricultural and forest land. They results revealed the loss of 38% of wetlands 

caused by new developments near coastal areas of the Great Lakes. 
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Randhir and Hawes [2009] used dynamic model that links land use, overland 

flow, suspended sediment, and an aquatic species to evaluate alternate land use policies 

in Hatfield Mill River watershed. They used dwarf wedge mussel that is classified as 

endangered in the region as an indicator species of aquatic health in a watershed in 

Massachusetts. The simulation model was used to evaluate spatial nature of processes 

and land use policies.  Spatial and temporal changes in runoff, sediment loading, and 

mussel population were modeled over a period of 4 years. Scenarios with an increase in 

sediment loading above the baseline mean exhibited an irregular recovery of the mussel 

population from high loading events. The results showed the need for best management 

practices to decrease runoff and sediment loading in the watershed, through education 

and incentive programs. 

Xia et al., [2012] used the landscape pattern index method using GIS tools, to 

compare the landscape patterns of Baiyangdian Watershed in 2002 and 2007, and to 

determine the transformation rules of landscape essential factors, and analyze the 

correlation between the changes of landscape patterns and water quality in Baiyangdian 

Watershed. Their findings revealed that urbanization could lead to decrease in the degree 

of fragmentation of man-made landscape and increase in the natural landscape of 

watershed. This study showed that river pollution is mostly contributed by construction 

land and farmland; however water quality can be improved by higher percentage of forest 

cover.  

Shi et al., [2013] used hydrological modeling and partial least-squares regression 

(PLSR) to investigate the landscape patterns within watersheds in the Upper Du River 

watershed (8973 km2) in China. They examined how the spatial patterns of land cover are 
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related to the soil erosion and sediment yield of watersheds. Their study showed that in 

order to provide quantitative information to allow decision makers to make better choices 

regarding landscape planning, partial least-squares regression PLSR can be used to 

simply determine the relationships between land-cover patterns and watershed soil 

erosion and sediment yield. 

Yan et al., [2013] used an integrated approach involving hydrological modeling 

and partial least squares regression (PLSR) was used by to quantify the contributions of 

changes in individual land use types to changes in stream flow and sediment yield. They 

used land use maps from four time periods for the Upper Du watershed in China to study 

the changes in stream flow and sediment yield. The changes to farmland, forest and urban 

areas were the major land use changes that affected streamflow in that watershed. 

 Wasige et al., [2013] used a combination of ancillary data and satellite imagery to 

study the impacts of large-scale human induced land use and land cover changes 

(LUCC), on sustainable agriculture and water quality of Kagera Basin in the Lake 

Victoria watershed. The results showed that the rates of LUCC observed were higher than 

those reported in Sub Saharan Africa (SSA) and other parts of the world. This study 

combined the multi-source spatio-temporal data on land cover to enable long-term 

quantification of land cover changes. 

Yang et al., [2013] investigated the relation of variation of dissolved organic 

carbon (DOC), total phosphorus (TP) and dissolved nitrogen (DN) in surface runoff 

water with varying land uses in the Saint Lucie Estuary and Indian River Lagoon, 

Florida. They observed that rainfall events were largely responsible for temporal 

fluctuation of DOC and DN, and loads of DOC, TP, TN, and metals in runoff water from 
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agricultural fields. Results showed that Ranch had the greatest DOC and DN 

concentrations in runoff water out of eight investigated land uses, followed by vegetable 

farm and forest, and golf course usually had the lowest DOC in runoff water. 

Ozturk et al., [2013] studied the land use dynamics in a rural watershed, Bartin 

spring, located in the northwestern Turkey. They land use dynamics model coupled with 

a spatially distributed three-dimensional surface–subsurface hydrologic model. Based on 

alternative land use and forest management scenarios, the coupled model was used to 

simulate the water budget. Their investigation showed that the water budget is most 

sensitive to variations in precipitation and conversion between forest and agricultural 

lands. They found coupled model to be a useful tool for assessing the impact of land use 

change on the watershed hydrological processes. 

All of these studies showed that there are strong ties between land cover patterns 

and soil erosion and sediment yield in watersheds. Absence of protective land cover 

largely determines soil erosion, whereas on-site sediment production and the connections 

between sediment sources and rivers determine sediment export to rivers. Considering the 

fact that hydrological processes and sediment transport capacity varies for different types 

of land cover, sediment export to rivers is a function of land use. 

2.3  Climate Change 

Merritt et al., [2006] studied the hydrologic response to scenarios of climate 

change in sub watersheds of the Okanagan basin, British Columbia. They used three 

global climate models (GCMs) to generate high and low emission scenarios. The models 

predicted an increase in winter temperature of 1.5–4.0 °C and a precipitation increase of 
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the order of 5-20% by the 2050s. Summer temperatures were simulated to increase by 

approximately 2–4 °C. The scenarios raise questions over the availability of future water 

resources in the Okanagan Basin, particularly as extended periods of low flows into 

upland reservoirs are likely to coincide with increased demand from agricultural and 

domestic water users. 

Marshall and Randhir., [2008] used a continuous simulation model to evaluate 

potential implications of increasing temperature on water quantity and quality at a 

regional scale in the Connecticut River Watershed of New England. They observed that 

climate change can have significant effects on streamflow, sediment loading, and nutrient 

(nitrogen and phosphorus) loading in a watershed. Climate change also influences the 

timing and magnitude of runoff and sediment yield. Changes in variability of flows and 

pollutant loading that are induced by climate change have important implications on 

water supplies, water quality, and aquatic ecosystems of a watershed. Potential impacts of 

these changes include deficit supplies during peak seasons of water demand, increased 

eutrophication potential, and impacts on fish migration. 

Park et al., [2010] studied the potential effects of climate change on the watershed 

biogeochemical processes and surface water quality in mountainous watersheds of 

Northeast (NE) Asia. The results from a four-year intensive study at a forested watershed 

in Chongquing province showed that during the years with lower precipitation, when year 

to year variations in precipitation was a key factor in modulating the effects of acid 

deposition, the concentrations of sulfate and nitrate in soil and surface waters were 

generally lower. 
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Boyer et al., [2010] studied the important modifications into the hydrological 

regimes of the St. Lawrence tributaries (Quebec, Canada), induced by projected changes 

in temperature and precipitation for the next century. They used three General Circulation 

Models and two greenhouse gas emissions scenarios to create a range of plausible 

scenarios.  Most of the hydrological simulations projected an increase in winter 

discharges and a decrease in spring discharges. They suggested that higher winter 

discharges are expected to have an important geomorphological impact mostly because 

they may occur under ice-cover conditions. On the other hand, lower spring discharges 

may promote sedimentation into the tributary and at their confluence with the St. 

Lawrence River. 

Mozumder et al., [2011] conducted a survey to draw out responses from experts 

and decision makers serving the Florida Keys regarding vulnerability to global climate 

change. They concluded that proactive adaptation measures can assist vulnerable 

community’s better cope with adverse environmental and socioeconomic impacts. They 

propose that a large majority of respondents consider additional funding and assistance 

for climate science and adaptation, better intergovernmental organization and public 

workshops will be highly effective to support adaptation. 

Shrestha et al., [2012] investigated the climate-induced hydrologic changes in the 

Lake Winnipeg watershed (LWW), Canada. The hydrologic model, Soil and Water 

Assessment Tool (SWAT), was employed to simulate a 21-year baseline (1980–2000) 

and future (2042–2062) climate. They found the future increases in annual precipitation 

and temperature in various seasons and regions of this catchment and such changes are 

expected to influence the volume of snow accumulation and melt, as well as the timing 
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and intensity of runoff. The effects of future changes in climatic variables, specifically 

precipitation and temperature, are clearly evident in the resulting snowmelt and runoff 

regimes. The most significant changes include higher total runoff, and earlier snowmelt 

and discharge peaks. Some of the results also revealed increases in peak discharge 

intensities. They proposed that such changes will have significant implications for water 

availability and nutrient transport regimes in the LWW. 

Luo et al., [2013] investigated the climate change impacts on water supply and 

ecosystem stressors .They applied the Soil and Water Assessment (SWAT) model to 

quantify the impacts of projected 21st century climate change in the northern Coastal 

Ranges and western Sierra Nevada. Proportional to the projected increases in air 

temperature, increases in annual average stream temperature was predicted by model. 

Compared to the present-day conditions, 30–60 more days per year were predicted with 

average stream temperature > 20 °C during 2090s. 

Climate change and increased variability, including extreme events, have been 

suggested to have significant impacts on water quality around the world through various 

studies. Climate-induced increase in surface temperatures can impact hydrologic 

processes of a watershed system.  

Climate change can impact human health and aquatic ecosystems through water quality 

deterioration caused by higher water temperatures, increased precipitation intensity, and 

longer periods of low flow. Climate change can affect water quality, not only by directly 

changing the characteristics of the water, but also by influencing land surface processes 

that regulate the production, release, and transport of natural materials and anthropogenic 

contaminants to ground and surface waters.  
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2.4  Combined Land Use Land Cover (LULC) and Climate Change 

Kosmas et al., [1997] studied the effect of land use and precipitation on annual 

runoff and sediment loss in eight different sites along the northern Mediterranean region 

and the Atlantic coastline located in Portugal, Spain, France, Italy and Greece. The 

investigation showed that that runoff and soil erosion could greatly be affected by land 

use. They also found out that erosion in shrub lands increased with decreasing annual 

rainfall and then it decreased with decreasing rainfall. 

Li et al., [2009] studied the impacts of land use change and climate variability on 

hydrology in an agricultural catchment on the Loess Plateau of China. They assessed the 

impacts of land use change and climate variability on surface hydrology (runoff, soil 

water and evapotranspiration) Using the SWAT (Soil and Water Assessment Tools) 

model. SWAT proved to be a useful tool for assessing the effects of environmental 

changes including land use change and climate variability in the Loess Plateau. They 

observed that overall; climate variability influenced surface hydrology more significantly 

than land use change.  

Wilson and Weng., [2011]  investigated that  the future land use and climate 

changes have the potential of dramatically changing the concentration levels of total 

suspended sediments and phosphorus at both the general watershed and sub-basin scales 

in the Des Plaines River watershed. They also found out that future climate change exerts 

a larger impact on the concentration of pollutants than the potential impact of land use 

change. They suggested that modeling the effects of past and current land use 

composition and climatic patterns on surface water quality provides valuable information 

for environmental and land planning. 
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Kim et al., [2013] investigated the separate and combined impacts of future 

changes in climate and land use/land cover (LULC) on stream flow in the Hoeya River 

Basin, South Korea. They simulated the stream flow in future periods under three 

scenarios (climate change only, LULC change only, and climate and LULC change 

combined) by the Soil and Water Assessment Tool (SWAT) model. They observed that 

stream flow increased in spring and winter but decreased in summer and autumn under 

climate change, on the other hand high flow during wet period increased but low flow 

decreased in dry periods under LULC change. The results showed that although the 

LULC change had less effect than climate change on the changes in stream flow, but 

stream flow is significantly affected by LULC. Larger seasonal changes in stream flow 

were observed under combined scenario; however the result for the combined scenario 

was similar to that of the climate change only scenario. They inferred that the problems 

of increased seasonal variability in stream flow caused by climate change may heightened 

by LULC changes. 

 Tran and Neill., [2013] employed a nonlinear model applied to a spatial dataset 

of more than 180,000 catchments to study the effects of land use/land cover (LULC) 

along with other climate and geomorphologic factors on mean annual stream flow in the 

Upper Mississippi River Basin (UMRB). The results showed that the magnitude of the 

impact on stream flow varies from one LULC to another. It is not a simple function of a 

LULC’s spatial extent but arguably a result of complex interactions among various 

LULCs as well as other climate and geomorphologic factors.  

Cuo et al., [2013] examined the observed stream flow over the past decades in the 

upper Yellow River Basin (UYRB) to better understand the climate change impact and 
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long-term and recent land cover/use change impact.  They employed the modified 

variable infiltration capacity (VIC) model. VIC simulations suggest that these changes in 

observed stream flow were due to the combined effects of changes in precipitation, 

evapotranspiration, rainfall runoff, and base flow. They observed that the areas where 

human activity was relative intense, the impacts of land cover change/use including 

agriculture, industry, urbanization, and reservoir operations became important.  

Analyses on the combined impact of climate and land use changes showed that 

the impact of land development on stream flow will be enhanced by climate change. The 

combined effects of modifications in river hydrology and geomorphological processes 

will likely impact riparian ecosystems. Changes in the LULC and climate regime can 

influence natural processes of a watershed ecosystem and have long-term implications on 

economic and ecological processes. Hence to protect the water resources and 

environmental quality, assessment of hydrologic responses these changes is also required.   

2.5  Policy Adaptations 

Ghimire and Johnston [2013] studied the impacts of domestic and agricultural 

rainwater harvesting systems on watershed hydrology for Albemarle-Pamlico river basin 

(USA).  Results indicated that a 100% rain water harvesting (RWH) caused a reduction in 

average monthly water yields by up to 16%, 9%, and 19% for Back Creek, Sycamore, 

and Green Mills watersheds, respectively. 

Delgado et al., [2013] studied about the conservation practices for water 

resources. They propose that for adaptation to LULC change and climate change impacts 

on watershed resources, conservation practices will be key and must be used, such as the 
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use of conservation tillage, management of crop rotations and crop residue (including use 

of cover crops where viable), management of livestock grazing intensities, improved 

management of irrigation systems, use of technologies, and precision conservation. They 

propose that projected spatial changes in the hydrological cycle, such as wetter and drier 

regions, and periods of drought should be considered as an important adaptation practice. 

Soil and water conservation policies should also consider conservation practices that 

contribute to increased water-holding capacity in the soil profile, improved drainage 

practices, and the development of new crop varieties and cropping systems that are more 

resistant to drought. 

 Barrington et al., [2013] proposed that there is a need of an overarching company 

policy to minimize water use and effluent discharge and the use of alternate water sources 

such as rainwater runoff and reuse of water within process units will help in water 

conservation They also suggested that water auditing has an important role in achieving 

water conservation in industries and to improve water conservation through technical, 

cultural and behavioral adaptations, many opportunities existed.  

Ahiablame et al, [2013] investigated the effectiveness of low impact development 

practices in two urbanized watershed. The 2–12% reduction in runoff and pollutant loads 

is achieved by various application levels of barrel/cistern and porous pavement for the 

two watersheds. Reduction in runoff not only led to reduction in total stream flow but 

also associated pollutant loads by 1–9% in the watersheds. 

Dechmi and Skhiri et al., [2013] evaluated best management practices under 

intensive irrigation for outlet Del Reguero watershed in sapin. The results showed that the 



 

28 

load reductions were increased when individual BMPs were combined. The BMP 

scenario combining optimum irrigation application, conservation tillage and reduced P 

fertilizer dose was the best, leading to a TP load reduction of about 22.6%. 

Many studies showed that mitigation measures that are effective for soil erosion 

can be assumed to control diffuse pollution losses,  because of the strong relationships 

between runoff, sediment and the transport of P, N, pesticides, pathogens, and metals,. 

Low impact development (LID) practices have been utilized to mitigate hydrologic and 

water quality impacts of urbanization. To reduce non-point source pollution and improve 

water quality, land management practices such as conservation tillage and optimum 

irrigation are also routinely used.  
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CHAPTER 3 

METHODOLOGIES 

 

This section describes about study area, baseline of HSPF model, database and 

methods used to calibrate and validate HSPF.  

3.1 Description of Study Area  

SuAsCo is a small semi urban watershed in eastern Massachusetts about 25 mi 

west of the Boston metropolitan area and is one of the 27 major watersheds in 

Massachusetts.  SuAsCo stands for the Sudbury, Assabet, and Concord Rivers and is the 

land area surrounding these three rivers. The total drainage area of SuAsCo is 391 mi2 

(249,782 acres). Lower Concord River Basin is the portion of the basin that drains 

directly to the Concord River, which is formed at the confluence of the Sudbury and 

Assabet Rivers in the town of Concord. Sudbury River Basin composes 162 mi2 and is 

about 44% of the total SuAsCo basin, and the Assabet River Basin 177 mi2 is about 41% 

of SuAsCo basin, while the Lower Concord River Basin 60 mi2 is about 15 percent of the 

total SuAsCo River Basin area (Figure 1). Mean annual streamflow from the basin at 

outlet NWIS gaging station CONCORD R BELOW R MEADOW BROOK (station no. 

1099500) is about 650 ft3/s (421 Mgal/d). SuAsCo watershed encompasses partially or 

wholly 36 Massachusetts town. About 400,000 people lived in the SuAsCo Basin in 

2000. In Assabet river Basin, an estimated 129,000 people were residing and 185,200 

people lived in the Sudbury River Basin in 2000 (Zarriello et al., 2010). Population per 
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unit area in the Sudbury River Basins (1,140 people/mi2) was estimated to be about 60 

percent greater than in the Assabet River Basin (730 people/mi2). 

3.1.1  Climate 

SuAsCo watershed is characterized with humid continental climate, with warm 

summers and cold, snowy winters. Annual average precipitation in SuAsCo is 47.71 

inches. Mean annual temperature and evapotranspiration is 48.57 FO and 25.47 inches 

respectively. The index of dryness, i.e. the ratio of potential evapotranspiration to 

precipitation is 0.53.  Three weather stations were used for climate data in SuASco. 

Worcester WSO AP (Station no. MA 199923) weather station located about 22 mi 

southwest from the center of the Sudbury and Assabet River Basins. Walpole 2 (Station 

no. 198757) is located about 19 miles southeast from the center of Sudbury and Assabet 

River Basins. Bedford (Station no. MA 190535) is located about 5 miles to the south east 

of lower Concord river basin.   

3.1.2  Soil Type 

Based on texture predominant soil types in SUASCO include fine sandy loam 

(34%), outcrop and urban land complex (24%), loamy sand (11%) and muck (10%).  

Other soil types include pit quarry, dumps, sand and gravel, loamy coarse sand, loamy, 

loam, sandy, loamy sand, loamy fine sand, mucky fine sand, loam, mucky silt loam, 

sandy loam, silt loam and very fine sandy loam (all combined 20%). Soil with hydrologic 

group A and D covers about 34.6 % and 25.6 % of watershed respectively. While about 

23.8% and 16.1% of watershed comprises of hydrologic group C and B respectively. A 

complete list of soil types, associated texture and hydrologic group used in simulation 

runs is given in Table 1.  
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3.1.3 Topography 

SuAsCo Basin is located in the coastal lowlands near the border with the central 

highlands along the southwestern portion of the basin [Denny, 1982]. The hillier terrain 

more common, in the southwestern part of the basin, particularly in the Assabet River 

Basin, The Sudbury River drops from a maximum elevation of about 700 ft to about 100 

ft at its confluence with the Assabet River. Along its 33 mi length, the river gradient 

averages about 5.2 ft/mi, but low-gradient reaches are common in wetlands and reservoirs 

found in many reaches.  The Assabet River drops from a maximum elevation of about 

750 ft to about 100 ft at its confluence with the Sudbury River. Over its 32 mi length, the 

river gradient averages about 6.8 ft/mi, but low-gradient reaches behind impoundments 

are common. The river gradient flattens considerably below the Maynard streamgage 

[Zarriello et al., 2010]. The Concord River drops from a maximum elevation of about 348 

ft to about 118 ft at its confluence with the Sudbury and Assabet River. 

3.1.4  Land Use Land Cover 

Forest is the predominant land use in watershed. About 43% of watershed is forest 

(Figure 2). Wetlands, both forested and non-forested, constitute to about 13 % of the 

watershed. 5% of the land use is for agriculture, pasture and brushland. About 35 % of 

the watershed is urban land.  The rest of the area includes barren land, public/transitional 

areas and cemeteries (Table 2).  

3.1.5 Surface-Water Resources and Streamflow 
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The upper Sudbury River Basin was once a major source of drinking water for the 

Boston metropolitan area. Eight reservoirs were built in the Sudbury basin to meet the 

rapidly growing demand of water. These reservoirs include Lake Cochituate, Ashland, 

Hopkinton, Whitehall, Sudbury, Foss, Brackett, and Stearns Reservoirs. However, after 

Wachusett Quabbin Reservior to the northwest and Quabbin Reservoir to the west were 

constructed in 1939, water from Sudbury basin was no longer needed and also of less 

desirable quality [Zarriello et al, 2010]. MWRA (Massachusetts Department of 

Conservation and Recreation, 2008) classified Sudbury and Foss Reservoirs are classified 

as reserve water.  The operation of these reservoir for reactional and maintenance can still 

effect streamflow in this part of the basin, even though withdrawals are no longer made 

from these reservoirs. The Assabet River Basin contains several water-supply 

reservoirs—Lake Williams and Millham Reservoir that, along with MWRA, supply water 

to the city of Marlborough and Gates Pond that supplies water to the town of Hudson. 

Along with number of reservoirs for mill power, Warner Pond in Concord, Lake Boon in 

Stow, and Fort Meadow Reservoir in Marlborough were built in the 18th and 19th 

centuries and now these reservoirs are regulated for recreational purposes. More recently 

built reservoirs, such as A1 in Westborough, provide flood control. Streamflow below 

impoundments can be directly altered by flow regulation and indirectly through 

evaporation losses. About 13% of the SuAsCo watershed consist of wetlands that can 

affect streamflow through storage and evapotranspiration (ET) losses. In addition, 

withdrawals, diversions, and wastewater-treatment facility discharges can also affect 

streamflow.  Figure 3 shows the location of lakes and impoundments in SuAsCo. 
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3.2  Conceptual Model 

Conceptual framework for assessing impacts of LULC changes and climate 

change on watershed system is presented in Figure 4. Watershed system consists of three 

components: 1) Abiotic, 2) Biotic, and 3) Socio-economic component. The interaction 

among those components impacts water quality and water quantity. Those change i.e. 

changes in LULC and climate can not only lead to increased runoff, declined percolation, 

increased ET, but also elevate sediment and nutrient levels. Hence climate change and 

LULC change are the stressors for watershed. However policy adaptation e.g. use of best 

management practices (BMPs) can help to reduce the impacts of those stressors. 

3.3  Empirical Model 

Empirical model (Figure 5) is combination of specific methods that assess 

particular components and changes in watershed system. These methods are explained 

below in detail: 

HSPF is a continuous simulation model based on the principle of conservation of 

water mass, that is, inflow equals outflow plus or minus any change in storage [Zarriello 

and Ries;  2000]. In HSPF, watershed is divided into subbasins to represent the spatial 

heterogeneity of the study area. Based on unique soil-landuse combination, each subbasin 

is further discretized into a series of hydrologic response units (HRUs). HRUs are divided 

into pervious-area land segments (PERLNDs) and impervious-area land segments 

(IMPLNDs). PERLNDs and IMPLNDs have zones that retain precipitation at the surface 

as interception storage or snowpack storage. All water that is not evaporated produces 

surface runoff from IMPLNDs. In PERLNDs storage volumes and processes are 
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represented by upper, lower, and groundwater zones, since PERLNDs allow excess 

precipitation to infiltrate into the subsurface. Because of that processes that control the 

rate of infiltration and change in subsurface storage make simulation of PERLNDs 

considerably more complex than simulation of IMPLNDs [Zarriello and Ries, 2000]. The 

length of stream channels, lakes and reservoirs is represented by RCHRESs. For each 

HRU and RCHRES in the model, water budgets (inflows, outflows, and changes in 

storage) are calculated for each time step. In the model simulation, surface runoff from 

PERLNDs and IMPLNDs and subsurface discharge from PERLNDs are typically 

directed into reaches. The hydraulic properties of the reaches are defined by the 

relationship between depth, storage, and discharge in function table (FTABLE) of the 

model input [Barbaro and Sorenson, 2013].  

 Two primary input files are required for HSPF operation, the User Control Input 

(UCI) file and the Watershed Data Management (WDM) file. The UCI file directs the 

process actions used by the model and sets input parameter variables. Process actions or 

algorithms in the model calculate the movement of waterand changes in storage. To 

simulate different processes, the three main blocks of the UCI file are (1) PERLNDs, (2) 

IMPLNDs, and (3) RCHRESs.  Modules and sub-modules are present within each block. 

Some of these modules and sub-modules are mandatory for simulations and others are 

optional. For example, the PWATER modules are required to simulate the hydrology of 

pervious areas, but the SNOW module is optional for simulating snowpack buildup and 

melt. 

The SCHEMATIC or NETWORK blocks are used to represent the physical 

layout of the basin. The area of each IMPLND and PERLND that drains to a RCHRES 
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(also referred to as a reach) is defined in this section of the model to formulate subbasins. 

The SCHEMATIC or NETWORK blocks also are used to area of each IMPLND and 

PERLND that drains to a RCHRES. The MASSLINK section associated with a SCHE-

MATIC block or NETWORK block controls the linkage of flow components between 

model elements. Typically, this linkage involves routing (1) surface runoff from 

PERLNDs and IMPLNDs to reaches, (2) interflow and base flow from PERLNDs to 

reaches, and (3) streamflow from reach to reach. The physical layout of the basin is 

represented by the SCHEMATIC or NETWORK blocks. This section of the model is 

used to define the area of each IMPLND and PERLND that drains to RCHRES to 

formulate subbasins. The MASSLINK section associated with a SCHEMATIC block or 

NETWORK block controls the linkage of flow components between model elements. 

Typically, this linkage involves routing (1) surface runoff from PERLNDs and IMPLNDs 

to reaches, (2) interflow and base flow from PERLNDs to reaches, and (3) streamflow 

from reach to reach [Barbaro and Zarriello, 2007].  

 Surface runoff can discharge to a reach from impervious surfaces (SURI) and 

pervious surfaces (SURO). Infiltrated water can discharge to the reach through the 

subsurface as interflow (IFWO), which is analogous to a fast-responding shallow 

subsurface flow, or from active ground water (AGWO), which is analogous to a slow-

responding base-flow component, or, optionally, exit from an HRU as a deep ground-

water flow that discharges outside of the basin (IGWI). Inflow to a reach also can come 

from upstream reaches (IVOL), direct precipitation, and other user-specified point 

sources such as treated wastewater [Zarriello and Ries, 2000]. 
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Five outflow exits (or gates) can be used to direct volumetric outflow from a 

reach. Water was routed downstream through the third outflow exit (OVOL 3) in reaches 

with withdrawals; in reaches with no withdrawals, a single outflow exit representing 

outflow to the downstream reach was specified. Water from the time series of cumulative 

withdrawals was directed through the second outflow exit (OVOL 2) in reaches. When 

two outflow gates are specified (OVOL 1), the volume time series of water withdrawals 

(OUTDGT 1) for each reach is read from the EXT SOURCES block (external sources). 

3.4  Conceptual Parameters used in HSPF 

Three conceptual parameters are used in HSPF to separates moisture inputs 

(precipitation and snowmelt) into infiltrating and non-infiltrating fractions. Those three 

conceptual parameters include, a surface storage capacity value (UZSN), an interflow–

inflow index (INTFW), and an infiltration-capacity index (INFILT) (Johnson et al., 

2003). Chezy–Manning equation and average values of the surface roughness, length, and 

slope for the overland flow plane of each HRU are used to generate overland flow 

[Donigian et al., 1999].  

Subsurface lateral flow also known as interflow–outflow (IFWO) in HSPF is 

calculated on the basis of a linear relation between the conceptual interflow-storage 

volume and lateral flow as a function of the interflow-recession coefficient (IRC). IRC, 

which is the ratio of the present rate of IFWO to the value 24 h earlier, can be input on a 

monthly basis to allow for annual variations in soil-moisture and the timing of IFWO 

[Bicknell et al., 1997]. Subsurface lateral flow has a substantial effect on stormflow 
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hydrographs, particularly in areas where vertical percolation is retarded by bedrock or a 

shallow, poorly permeable soil layer [Johnson et al., 2003]. 

HSPF computes evapotranspiration (ET) as a function of moisture storage and 

PET, which is adjusted for vegetation cover, and estimates actual ET from the potential 

demand from five sources  (1) interception storage, (2) upper-zone storage; that is, some 

or all the moisture in depressions and near-surface retention, (3) vegetation demand, 

which is satisfied from lower-zone storage through the parameter LZETP, which can be 

adjusted monthly to account for seasonal changes in the plant growth stage and soil 

moisture, (4) deeply rooted vegetation demand, which is satisfied from active 

groundwater storage through the parameter AGWETP, and (5) riparian-vegetation 

demand, which is satisfied by active groundwater outflow as stream baseflow through the 

parameter BASETP [DeGaetano et al., 1994, and Johnson et al., 2003].  

3.5  Database  

A list of database is given below.  

3.5.1  Watershed Data Management (WDM) 

Watershed Data Management (WDM) file is used to store time-series data 

required for simulations and time series generated by the model [Kittle et al., 1998]. The 

WDM data base is organized by data sets with a unique data set number (DSN) assigned 

to separate time series. Each data set also has attributes that describe the data type, time 

step, location, and other important features. In the SuAsCo WDM file, the first 100 DSNs 

are used for input meteorologic time-series and observed streamflow. Data sets with 

numbers larger than 100 are generally organized by reach. Table describes the general 
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organization of the WDM file. The sum of individual ground-water withdrawals plus any 

surface-water withdrawals provides the total water withdrawal time series for given reach 

and these time series (OUTDGT) are entered into the WDM file in data set. Time series 

for point source loading (effluent volume, sediments, nutrients, BOD and temperature of 

effluent) are also entered in WDM.  

3.5.2  Stream Flow Data 

Observed daily-flow data were obtained for the USGS gaging stations at four 

gaging stationsv (Figure 7).  Gaging station at Concord River below R Meadow Brook at 

Lowell (station no. 01099500) was used for calibration for a time period 1973-2008. 

Gaging station at Nashoba Brook near Acton (station no. 01097300) for time period 

1973-2008, Assabet River at Maynard (station no. 01097000) for time period 1973-2008 

and Sudbury River at Saxonville (station no. 01098530) for time period 1980-2008 were 

used for validation.  Streamflows for these four gaging stations are in DSN 1, 2,5,18 in 

WDM file (Table 3). 

3.5.3  Meteorological Data 

Meteorological data, including precipitation, air temperature, dew-point 

temperature, solar radiation, and wind speed for the SuAsCo watershed was gathered 

from National Climatic Data Center (NCDC) for three USGS stations; Bedford, 

Worcester WSO AP and Walpole 2 for duration of January 1973 to December 2008.  

Annual average precipitation (1973-2008) recorded at  Bedford weather station is about 

48.01 inches with minimum and maximum precipitation is 33.5 and 62.2 inches 

respectively. Walpole 2 weather station recorded annual average precipitation of 47.7 

inches with minimum and maximum precipitation is 30.6 and 60.8 inches respectively for 
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a period from 1973 to 2008. Annual average precipitation (1973-2008) recorded at the 

Worcester WSO AP is about 47.42 inches with minimum and maximum precipitation is 

32.01 and 64.3 inches respectively. Annual Average temperature is 48.6 FO, 49.7 FO and
 

47.4 FO
 
 at  Bedford, Walpole 2 and Worcester WSO AP respectively. Mean annual 

potential evapotranspiration was 25.8 inches, 26.5 inches and 24.1 inches at Bedford, 

Walpole 2 and Worcester WSO AP weather station respectively for the simulation 

duration.  HSPF algorithms use hourly values meteorological data.  The Thedatabase 

contained both this Pan Evaporation dataset and a computed Potential Evapotranspiration 

(PEVT) dataset. The PEVT dataset is appropriate as an input to the HSPF model for both 

potential evapotranspiration applied to the land surface and for lake evaporation applied 

to water surfaces 

3.5.4  Water Withdrawals and Return Flows 

Most of the water withdrawals are for municipal use and from ground water. 38 

withdrawals are from ground water and 12 are from surface water in Assabet River 

(Table 4). In Sudbury River there are 27 ground water withdrawals and 4 surface water 

withdrawals. 5 withdrawals are from ground water and 1 withdrawal is from surface 

water in Concord River Basin (Table 5). The total annual water withdrawals during 1973-

2008 average about 11 Mgal/d from Assabet River Basin, 14 Mgal/d from Sudbury River 

Basin and 4 Mgal/d from Concord River Basin. Table 6 present locations of withdrawals 

for agricultural, commercial and industrial uses. Daily discharges records were obtained 

from 14 WWTP (Figure 8) in SuAsCo for the period of 1973-2008 and cross checked 

with the monthly wastewater discharges reported to the U.S. Environmental Protection 

Agency (USEPA) for the period January 1, 1993, through December 31, 2003.  
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Average annual discharges ranged from 0.008 to 2.99 Mgal/d at Raytheon 

Sudbury Factory WWTP and Billercia WWTP respectively. Shrewsbury WWTP diverted 

to Westborough WWTP in 1987 and Digital Equipment Corporation Company WWTP 

stopped working after 1995 and the facility was used by senior citizen. Overall 

Wastewater discharge averaged 8.3 Mgal/d in the Assabet River Basin, 2.8 Mgal/d in the 

Sudbury River Basin and 4.6 Mgal/d in Concord River Basin (Table 7).  

3.5.5  Representation of the Basin 

The physical and spatial representation of the basin in the model is defined by the 

combination of HRUs (PERLNDs and IMPLNDs), their contributing area to a reach, and 

the linkage of one reach to another. The process of defining HRUs, their linkage to 

reaches, and the linkage of reaches to each other often is referred to as the schematization 

or discretization of a basin. A Geographic Information System (GIS) was used to 

discretize the watershed. To build a basin project, Universal Transverse Mercator 

coordinate (UTM), zone 18 projection was used. The watershed delineation process 

defines a boundary around the entire land area contributing to flow in a stream. 

Automatic delineation tool in BASIN (Better Assessment Science Integrating point & 

Non-point Sources) 4.1 will be used to define 157 hydrologically connected 

subwatersheds within study area. Watershed was delineated based on Networked Hydro 

Centerlines. Cataloging unit boundaries were used as a focusing mask. Other data layers 

used in the discretization process were obtained from MassGIS, and include 1:25,000-

scale MassGIS  Soil Survey Geographic (SSURGO)layer, 1:25,000-scale land use and 

1:25,000-scale hydrography. The spatial data were simplified and grouped to obtain 

categories that were considered important to the hydrology of the watershed. The soil 
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data layer was was simplified into 4 on the basis of permeability and storage 

characteristics: Soil type A (2) Soil type B (3) Soil type C and (4) Soil type D.  

Watershed delineation was done by using threshold method by using different threshold 

values (Figure 6). The threshold area was set to 1.4 sq. mi. for 780 numbers of cells, 

because this value most accurately modeled the stream network.The watershed was 

segmented based on three meteorological stations (Bedford,Worcester WSO AP and 

Walpole 2) different landuse types and soil types by using intersect tool in ArcGIS 10.1 

and watershed segmentation tool in BASINS 4.1. 

3.6  Hydrologic Processes Represented by HSPF 

The detail of hydrologic processes is given below.  

3.6.1 Hydrologic Response Units 

The land-use data layer was simplified from 32 categories to 9 land-use 

categories: (1)agriculture/grassland/shrubs, (2) commercial/industrial,(3) Forest, (4) high 

density residential area, (5) low density residential area, (6) medium density residential 

area, (7), Public/institutional (mixed residential) (8)water, and (9) wetlands. HRUs were 

obtained by combining the soil and the simplified land-use data layers. Intersection of the 

combined soil and land-use data layers with the subbasin delineations yielded the area of 

each HRU for each subbasin. Commercial, industrial, and transportation areas are 

generally referred to herein as commercial because this is the dominant land-use type. 30 

possible combinations of soil and land use covered areas to warrant unique HRUs for 

pervious land and 5unique HRUs for impervious land for each of three segments (based 

on met stations) were used in model. 



 

42 

3.6.2  Impervious Areas (IMPLNDs) 

Some impervious surfaces drain runoff onto surrounding pervious surfaces that 

allow infiltration, hence water can infiltrate into the ground. In the HSPF model, 

IMPLNDs are used to simulate effective impervious areas, which are impervious surfaces 

that drain directly to streams and thus produce only surface runoff.  Five IMPLND types 

were used in the model—commercial, high density, low density, medium density and 

mixed residential area. Initial estimates of effective impervious area were obtained from 

Zarriello and Ries [2000] for similar land-use types.  

Sutherland Equations [Sutherland, 2000] were used to determine final effective 

impervious area. Overall, about 35.4 percent of the basin is classified as developed, and 

12.1 percent of basin area in impervious area (IA) but only 7.6 percent of basin area is 

simulated as effective impervious area (EIA). Hence IMPLND areas ranged from 59.5 

percent for commercial, transportation, and industry to 33 percent for high-density 

residential, 18.6 percent for medium-density residential, 16.4 percent for 

public/transitional area and 7.6 percent for low density area (Table 8). 

3.6.3  Pervious Area (PERLNDs) 

Of the 30 unique PERLND HRUs defined for the basin 4 represent forested areas 

over soil type A, B, C,D. Cropland, pasture, orchards, nurseries and 

brushland/successional were included in one class and that class named as 

agriculture/pasture. 4 unique HRUs represent agriculture/pasture over 4 soil types. One 

HRU represent open water and one HRU represent wetlands and these two HRUs were 

not further distinguished by the underlying soil types. Twenty HRUs represent various 

combinations of residential-area densities and soil types.  Four HRUs represent 
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commercial/industrial areas over four combinations of soil types. Commercial/industrial 

HRUs include commercial and industrial areas.  HRUs for residential areas represent 

public/institutional, low-, medium-, and high-density development. High-density 

residential HRUs represent multi-family residential and single-family residential on lots 

smaller than or equal to 0.25 acre. Medium-density residential HRUs represent 

transportation and single-family homes on lots between 0.25 and 0.5 acre. 

Public/Institutional HRUs include mining, open land, participation recreation, 

transitional, waste disposal, power line utility, golf course, urban/public/institutional, 

cemetery and junkyard.  Low-density residential HRUs represent single-family homes on 

lots larger than 0.5 acre.  Forest HRUs are the dominate HRU type in the basin (43 

percent) more than collective developed HRUs (35 percent). Most developed areas are 

classified as low- to medium-density residential (21 percent). In general, hydrologic 

characteristics are similar for PERLNDs with similar surficial geology; however, upper- 

and lower-zone storage and infiltration are less for developed PERLNDs than for forested 

PERLNDs. The decreased storage allows developed PERLNDs to respond more rapidly 

to precipitation than the same surficial geology type undisturbed by development.  

3.6.4  Stream Reaches 

The Assabet, Sudbury and Concord River Basins were discretized (divided) into 

157 stream reaches on the basis of hydrologic features. Tributaries at Assabet River were 

divided into 67 reaches; 17 of which are on the main stem of the river. Thirteen 

tributaries (North Brook, Beaver Brook, Hog Brook, Fort Meadow Brook, Danforth 

Brook, Taylor brook, Elizabeth Brook, Inch Brook, Heath Hen Meadow Brook, Spring 

Brook, Fort Pond Brook, gates pond Brook and Grassy Pond Brook) upstream of 
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Maynard gaging station (station no. 1097000) and one tributary (Spencer Brook) 

downstream of that gaging station, were divided to create reaches at reservoirs and major 

tributary confluences.  Three tributaries (Nagog Brook, Connant Brook and Nashoba 

Brook) are at upstream of Nashoba Brook gaging station (station no. 1097300) near 

action at Assabet river basin, and one tributary (Butter Brook) is at downstream of gaging 

station.  

Sudbury River Basin is divided into 65 reaches, 38 of which are upstream from 

the Saxonville streamgage (station no. 01098530). 11 of the 38 upstream Sudbury River 

reaches are on the main stem. Fifteen tributaries upstream from the Saxonville 

streamgage (Snake Brook, Angelica Brook, Stony Brook, Jenny Dugan Brook, Rutters 

Brook, Course Brook, Munroe Brook, Waushakum Pond brook, Denny Brook, Indian 

Brook, Jackstraw Brook, Whitehall Brook and Dunsdell Brook, Cochituate Brook and 

Peppermint brook) and nine tributaries (Hop Brook, baiting Brook, Cold brook, Dudley 

Brook, Landham-Allowance Brook  and Mill Brook 1) downstream of Saxonville 

streamgage  were subdivided to create reaches at reservoirs and major tributary 

confluences.  

Tributaries at Concord River basin are divided into 26 reaches. Seven tributaries  

(Russel Millpond brook, Cold Spring brook, Farley Brook, marginal Brook, Pages Brook, 

River meadow Brook, Sawmill Brook)  upstream of Concord river below R meadow 

brook at Lowell gaging station (station no. 1099500) were subdivided to create reaches at 

reservoirs and major tributary confluences. "Manning's "n" Values and REACHES names 

are presented in Table 9. 



 

45 

3.6.5  Hydraulic Characteristics (FTABLEs) 

The hydraulics of a river reach or reservoir (RCHRES) segment was described in 

FTABLE by defining the functional relationship between water depth, surface area, 

volume, and outflow in the segment. The number of rows in the FTABLE depend on the 

range of depth to be covered and the desired resolution. The SuAsCo watershed 

topography is piedmont, so FTABLES are computed for the piedmont province by using 

alternative method of FTABLES that is based on power regression equations. Power 

regression equations for Piedmont province are: Q=xDA
y  (x =0.015, y= 0.989); 

A=uQ
d  

(u=3.53, d =0.65); 
Wm=aQ

b  ( 
a=11.95, b= 0.47); 

Ym=cQ
f  (c=0.28, f= 0.22); V=KQ

m  ( 
k= 

0.35, m=0.25); 
n = 0.77;(uQ

d
)(cQ

f
)
2/3

 (S
1/2

)/xDA
 ;Where: A= Cross-sectional area (m2); 

Q=Discharge (m3/s); DA=Drainage Area (Km2); Wm=Mean flow width (m); Ym=mean 

flow depth (m); n= Manning’s Roughness   coefficient; V= velocity (m/s); (x, y, u, d, a, b, 

c, f,  k, m)=Empirical constants, n = Manning’s coefficient (uses Manning’s equation 

assuming a parabolic shape with a hydraulic radius equal to 0.67.Ym. 

The cross-section geometry and Manning’s roughness coefficients were obtained 

from surveys conducted at river reaches for flood-insurance studies, and from streamflow 

measurements made at continuous- and partial-record stations in the basin (U.S. Army 

Corps of Engineers, 1966; FEMA, 1979; FEMA, 1982). When this detailed information 

was not available, channel widths and cross-section elevations were obtained from USGS 

1:24,000-scale digital topographic maps and field observations.  
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3.7  Model Calibration 

The model was calibrated for 36 year period from January1, 1973, to December 

31, 2008, by minimizing the differences between simulated and observed streamflow at 

the four streamgages in the model area. HSPF models by USGS for similar landuse type 

watersheds Ipswich [Zarriello and Ries , 2000],  Blackstone [Barbaro and Zarriello, 

2007]  and Taunton River [Barbaro  and Sorenson, 2013]  were used as a guide for 

parameters values. 

The optimum parameter values that reflect watershed-specific physical processes 

are generally obtained through the calibration process. To assist with the calibration 

process in watershed HSPEXP tool [Lumb et al., 1994] was used. HSPEXP statistical 

criteria, monthly flow, cumulative flow and regression of observed vs. simulated flow 

were used for calibration. Hydrologic parameters necessary for HSPF simulation are 

estimated using guidance provided by BASINS Technical Note 6 (Estimating Hydrology 

and Hydraulic Parameters for HSPF). An iterative process was then used to adjust 

variable values for HRUs. Discharge measured at Concord River below R Meadow 

Brook at Lowell (station no. 01099500) for a time period 1973-2008 provided the main 

data sets for model calibration.  

For validation, discharges measured at Nashoba Brook near Acton (station no. 

01097300) for time period 1973-2008, at Assabet River at Maynard (station no. 

01097000) for time period 1973-2008 and at Sudbury River at Saxonville (station no. 

01098530) were used. Calibration is done by adjusting relevant parameters to reduce 

differences between simulated and observed streamflow characteristics, such as volume 

error, highest flows and lowest flows, storm and seasonal volume error, low flow 
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recession, summer and winter volume. Parameters that influence the simulate infiltration, 

interflow, surface and soil moisture storage and losses through evapotranspiration, and 

interflow and groundwater recession rates during simulation have generally large effect 

on runoff volume and error [Johnson et al., 2003].  The R 2 and the Nash-Sutcliffe model-

fit efficiency coefficient (E) were used to measure the quality of the model fit.  The Nash-

Sutcliffe E provides a more rigorous evaluation of the fit quality than R2 does because E 

is sensitive to differences between the observed and simulated means and variances, 

whereas R2 measures only the differences between mean values [Legates and McCabe, 

1999]. Hydrographs and flow-duration curves of the daily mean flow reflect climate, 

topography, and hydrogeologic conditions of the basin. 

Calibration mainly focused on minimizing differences between simulated and 

observed flows at at Lowell gaging station at Concord River below R Meadow Brook. 

Hence, fitting the model to the Lowell was weighed against the benefits of fitting the 

model to the Maynard streamgage, which was less affected by reservoir operations. 

Simulated flows at the nashoba Brook near Acton streamgage showed least goodness of 

fit because that reach is not present on the main stem of Assabet River.   

For sediments, JRER (exponent in soil detachment equation) approximates the 

relationship between rainfall intensity and incident energy to the land surface for the 

production of soil fines. Wischmeier and Smith [1978] proposed the following 

relationship for the kinetic energy produced by natural rainfall. Y = 916 + 331 log X, 

Where Y = kinetic energy, ft/ton/acre/in.; X = rainfall intensity, inches/hr.  

The fraction of solids storage which is removed each day when there is no runoff  

(per day) is estimated by using REMSDP parameter. These removal processes include 
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wind, air currents from traffic, aggregation to larger, less transportable particles, and 

street cleaning activities. The effects of street cleaning can be estimated as: R = P*(E/D); 

Where: R = sediment removal by street cleaning; P = fraction of impervious area where 

cleaning is performed;  

E = efficiency of cleaning; D = frequency of cleaning.  

Critical bed shear stress values (τc) are calculated from Shields’ equation using 

bed and channel properties, as follows: τc = θ (γs - γ) D, Where: θ = dimensionless 

Shields parameter for entrainment of a sediment ;D=Sediment particle of size; γs = the 

unit weight of bed sediment; γ = the unit weight of  water. 

Donigian and Love [2005] have used these procedures to estimate τc values and 

assess channel stability issues in urbanizing watersheds using HSPF. Erosion is primarily 

a function of the amount of soil exposed directly to rainfall and surface runoff, which in 

turn is affected by rainfall, land cover, land slope, soil disturbance, and transport 

properties of the soil [Donigian and Love, 2005]. The USLE is an empirical equation 

commonly used to estimate erosional rates as a function of these factors.  

The USLE formula is expressed as follows: A = R * K * L * S * C * P, where: A = 

annual soil loss in tons per acre per year; R = rainfall erosivity factor; K = soil erodibility 

factor; L = slope length factor; S = slope gradient factor; C = cover management factor; P 

= erosion control practice factor. In HSPF, if the model reach being simulated is a stream 

or river, the bed shear stress is determined as a function of the slope and hydraulic radius 

of the reach, as follows: TAU = SLOPE*GAM*HRAD, Where: TAU = stream bed shear 

stress (lb/ft2 or kg/m2); SLOPE = slope of the RCHRES; GAM = unit weight, or density, 
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of water (62.4 lb/ft3 or 1000 kg/m3); HRAD = hydraulic radius (ft or m). The hydraulic 

radius is calculated as a function of average water depth (AVDEP) and mean top width 

(TWID) as follows: HRAD = (AVDEP*TWID)/ (2.*AVDEP + TWID), Average depth is 

computed as: AVDEP = VOL/SAREA. The mean top width is found using: TWID = 

SAREA/LEN, Where: LEN = length of the RCHRES (ft or meter); SAREA=Surface area 

of water in the reach (m2). 

Other parameters necessary for sediment and nutrient calibration were estimated 

using guidance provided by BASINS Technical Note 8 (Sediment Parameter and 

Calibration Guidance for HSPF) [EPA, 2007]. 

3.8  Model Statistical Tests 

The statistical tests of model results will be performed to compare simulated flow, 

sediment, TN and TP loads with the observed (field-measurements) flow, sediment, TN 

and TP loads. Those statistical tests are (1) percent flow difference [calculated as: (total 

model simulated flow–total observed flow)/total observed flow], (2) regression 

coefficient: R2
, and (3) the Nash–Sutcliffe efficiency (NSE) [Nash and Sutcliffe, 1970]. 

The model efficiency or agreement between observed and the simulated daily discharge 

data series will be measured by the Nash–Sutcliffe model efficiency (NSE). NS= 1-[Σi
n 

(Qsim-Qobs)
 2
]/ [Σi

n 
(Qobs-Qavg)

 2
] ; where n is the number of time steps, Qsim and Qobs the 

simulated and observed streamflow at time stepi, and Qavg the average observed 

streamflow over the simulation period.  
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3.9 LULC Change Impacts 

 The Land Transformation Model (LTM) is used for future land use change 

prediction. LTM model have been developed and used by Human Environment Modeling 

& Analysis laboratory (HEMA lab) at Purdue University. The information that is used to 

conduct forcasting studies via this model include a set of spatial interaction rules and 

machine learning, through neural net technology, to determine the nature of spatial 

interactions of drivers, such as transportation, urban infrastructure and proximity to lakes 

and rivers, that have historically contributed toward land use change in the past. 

3.10  Climate Change Impacts 

 For the Fifth Assessment Report of IPCC, the scientific community has 

defined a set of four new scenarios, denoted Representative Concentration Pathways 

(RCPs). They are identified by their approximate total radiative forcing in year 2100 

relative to 1750: 2.6 W m-2 for RCP2.6, 4.5 W m-2 for RCP4.5, 6.0 W m-2 for RCP6.0, 

and 8.5 W m-2 for RCP8.5. These four RCPs include one mitigation scenario leading to a 

very low forcing level (RCP2.6), two stabilization scenarios (RCP4.5 and RCP6), and 

one scenario with very high greenhouse gas emissions (RCP8.5). For RCP6.0 and 

RCP8.5, radiative forcing does not peak by year 2100; for RCP2.6 it peaks and declines; 

and for RCP4.5 it stabilizes by 2100. Each RCP provides spatially resolved data sets of 

land use change and sector-based emissions of air pollutants, and it specifies annual 

greenhouse gas concentrations and anthropogenic emissions up to 2100. RCPs are based 

on a combination of integrated assessment models, simple climate models, atmospheric 

chemistry and global carbon cycle models. For all RCPs, additional calculations were 
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made with updated atmospheric chemistry data and models (including the Atmospheric 

Chemistry and Climate component of CMIP5) using the RCP prescribed emissions of the 

chemically reactive gases (CH4, N2O, HFCs, NOx, CO, NMVOC). These simulations 

enable investigation of uncertainties related to carbon cycle feedbacks and atmospheric 

chemistry. RCP4.5 is used in this research to assess the impacts of climate change in 

SuAsCo watershed. According to RCP4.5 projection, average annual temperature will 

increase 2.7 0C and precipitation will increase 7 percent by 2100.   

3.11  Combined Impacts of LULC and Climate Change 

 For Objective 4, the combined impacts of LULC and climate change impacts is 

assessed by using future land use and climate change scenarios for year 2100.  

3.12  Management Implication 

                 This research presents information about the fate and transport of runoff, 

sediments and nutrients in the SuAsCo watersheds. The modeling helps to estimate the 

impacts and compare levels of stress. All sites provides reliable estimates of water flows 

in watershed and quantify runoff, sediments and nutrient loads in the HSPF model, which 

will be valuable in providing a better understanding and in forecasting pollutants  

concentrations for future. Changes in river hydrology, morphology, and water quality are 

expected by increasing the magnitude and response time of runoff entering a river 

system. I expect that baseline simulations closely match with the observed information. 

LULC changes will have impacts on water quality and water quantity, as well as climate 

change will have impacts on water quality and water quantity. LULC change and climate 
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change will have combined impacts on sediments and nutrients loading. This study will 

provide useful information that could be used in developing watershed management plans 

for semi urban watershed areas. The watershed modeling is capable of assessing the 

spatial and temporal variability of runoff, sediments and nutrients fate in the river so that 

it also can be considered as an auxiliary assessment tool to provide necessary data 

reference for ecological risk and human health assessments after water pollution 

occurred. The results of this research will have numerous management implications for 

the watershed system. A modular approach is an effective way to develop integrated 

watershed assessment tools. The outputs of the models will provide comprehensive 

information of the contaminant distribution in a multimedia environment at watershed 

scale. The significance of the watershed modeling will be for purposes in identifying 

environmental management opportunities to mitigate water pollution and preserve 

aquatic and human health. This research will facilitate in-depth analysis of inter-media 

transports and multimedia system behaviors under dynamic conditions while preserving 

the requirements of modest data input and rapid scenario analysis. 
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CHAPTER 4 

RESULTS & DISCUSSION 

This chapter is about discussion regarding HSPF calibration for runoff, sediments 

and nutrients. The assessment of impacts of climate change and land cover change has 

also been discussed in this section.  

Watershed is calibrated for runoff and Table 11 gives a list of adjusted parameters 

for calibration of hydrology in HSPF model. Gaging stations at Concord River below R 

Meadow Brook at Lowell is used for calibration. Gaging station at Sudbury River at 

Saxonville, Assabet River near Acton and Assabet River at Maynard is used for 

validation. 

4.1  Water Quantity Calibration 

Water quality calibration is give below.  

4.1.1  Concord River below R Meadow Brook at Lowell (01099500, RCHRES 157) 

Model is calibrated for this gaging station and other three gagging stations are 

used for validation. Simulated streamflow in the Concord River at Lowell gaging station 

is generally in good agreement with observed flow over a wide range of flow conditions 

and seasons (Figure 9A). Simulations during the calibration period captured the observed 

evolution and magnitude reasonably well for both daily and monthly time scales. Rising 

limbs of daily hydrographs and baseflow were simulated especially well. Scatter plots of 

simulated flows in relation to observed flows indicate a slight undersimulation of high 

flows and over simulation of low flows. Differences between simulated and observed 
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flows may also be caused by uncounted transfers of water into the Reservoirs at Assabet 

River from outside the basin or by uncounted regulation of the Assabet Reservoir system. 

On average, the mean daily flow over the calibration period was undersimulated by about 

8.9 percent, which is largely attributed to the inaccurate accounting of transfers of water 

into the basin. Flows, on average, during summers were undersimulated by about 8 

percent and during winters undersimulated by about 10 percent. Summer storm flow is 

oversimulated by 14.5 %.  This difference also may be caused by unaccounted reservoir 

operations. An oversimulation of stream flow could be caused by uneven distribution of 

localized connective storms that caused high measurement of precipitation than that 

recorded by surrounding stations. The model fit for the daily, monthly and yearly mean 

flow had an R2 of 0.79 (Figure 10A), 0.84, and 0.88 respectively, and an NSE of 0.78, 

0.83, and 0.71 respectively (Table 10). Figure 11A shows hydrograph of percent chance 

daily exceeded for simulated total runoff and observed flows. For year 1985, there was no 

difference in observed and simulated stream flow.  

4.1.2  Sudbury River at Saxonville (0198530, RCHRES 140) 

Simulated streamflow in the Sudbury River at the Saxonville streamgage is 

generally in good agreement with observed flow over a wide range of flow conditions 

and seasons (Figure 9 B). Scatter plots of simulated flows in relation to observed flows 

indicate a slight undersimulation of high flows and low flows. Differences between 

simulated and observed flows may also be caused by uncounted transfers of water into 

the Sudbury Reservoir from outside the basin or by uncounted regulation of the Sudbury 

Reservoir system. On average, the mean daily flow over the calibration period was 

undersimulated by about 13.3 percent, which is largely attributed to the inaccurate 
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accounting of transfers of water into the basin. Flows, on average, during summers were 

undersimulated by about 12 percent and during winters undersimulated by about 13.9 

percent. Summer storm flow is oversimulated by 1.8 %.  Years with undersimulated or 

oversimulated flows are consistent with the difference in annual precipitation recorded at 

the Saxonville station relative to precipitation recorded at nearby surrounding climate 

stations. The model fit for the daily, monthly and yearly mean flow had an R2 of 0.75 

(Figure 10B), 0.82, and 0.85 respectively, and an NSE of 0.73, 0.79, and 0.54 

respectively (Table 10).  Hydrograph of percent chance daily exceeded for simulated total 

runoff and observed flows are presented in Figure 11B. 

4.1.3  Assabet River at Nashoba Brook near Acton (01097300, RCHRES 99) 

Streamflows at Nashoba streamgage are affected by occasional regulation of an 

upstream ponds that is unaccounted for in the model and by alteration of the stage-

discharge relation by beavers, resulting in streamflow records that are often rated as poor 

during the calibration period, particularly at low flows. Simulated and observed flow-

duration curves (Figure 12A) are generally in close agreement. On average, the mean 

daily flow over the calibration period was oversimulated by about 2.6 percent .Scatter 

plots of simulated flows in relation to observe flows indicate a oversimulation of high 

flows and low flows. Flows, on average, were oversimulated by 22 percent during 

summer months and undersimulated by about 6 percent during the winter months. 

Summer storm flow is oversimulated by 27.4 %. The model fit for the daily, monthly and 

yearly mean flow had an R2 of 0.69 (Figure13A), 0.76, and 0.62 respectively, and an NSE 

of 0.67, 0.75, and 0.61 respectively (Table 10). Simulated and observed flow-duration 

curves are closely matched over the entire exceedance probability (Figure 14A). 
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4.1.4  Assabet River at Maynard (142) (01097000) 

Simulated streamflow in the Assabet River at the Maynard streamgage is 

generally in good agreement with the observed flow over a wide range of flow conditions 

and seasons (Figure 12B). On average, the mean daily flow over the calibration period 

was oversimulated by about 7.97 percent. Scatter plots of simulated flows in relation to 

observed flows indicate undersimulation of high flows and oversimulation for low flows.  

Flows, on average, were oversimulated by 4.4 percent during summer months and 

undersimulated by about 9.5 percent during the winter months. Summer storm flow is 

oversimulated by 2.6 %.  The model fit for the daily, monthly and yearly mean flow had 

an R2 of 0.80 (Figure 13B), 0.84, and 0.78 respectively, and an NSE of 0.78, 0.80, and 

0.65 respectively (Table 10). Simulated and observed flow-duration curves are closely 

matched over the entire exceedance probability (Figure 14B).  

In general for all gaging stations, the range of seasonal error is from -10% to 22 % 

and range of mean daily flow error is less than -13.3% to 7.97%. The yearly stream flow 

differences between simulated and observed flows at Concord river meadow brook and 

Sudbury Saxonville streamgages are relatively consistent. For example for year 1999 and 

2002, stream flow is undersimulated for these two gaging station and over simulated for 

other years.  The yearly stream flow differences between simulated and observed flows at 

Nashoba Brook and Assabet River at Maynard are somehow consistent. For example for 

year 1985,1991,1992,1999 and 2002 stream flow is undersimulated for these two gaging 

station and over simulated during 1973,1975,1979,1980,1982, 1986, 2005 and 2008. 

However the differences between all streamgages were not always consistent for all years 

or in relation to precipitation variability.  Hence the inconsistent differences did not 
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warrant further changes to the model because these changes could adversely affect the 

model calibration in the SuAsCo Basin. These discrepancies can likely be explained by 

problems either in the input data or the measured discharge values or a combination of 

both. Table 10 shows that model is able to represent the dynamics of the hydrograph well 

at the daily, monthly and yearly scale. For the three validation gaging stations, the 

performance is somewhat reduced as compared to calibration gaging station. The 

reduction is, however, limited and the model is able to maintain a very good 

representation of the overall water balance and the interannual and seasonal variability, as 

well as the general pattern. 

4.1.5  Hydrologic Flow Components and Water Budgets 

The majority of the outflows in the water budget compose of discharge to streams 

and the loss of water through ET for each HRU.  Various hydrologic flow components 

that contribute to outflows include discharge to streams through surface runoff (SURO), 

interflow (IFWO), and baseflow or active groundwater (AGWO), and ET losses through 

interception (CEPE), upper-zone (UZET), lower-zone (LZET), and active groundwater 

storages (AGWS). The relative proportion of the three components of the stream 

discharge (SURO, IFWO, and AGWO) depends on the physical characteristics of the 

watershed, the land use and the soil characteristics.   

Annual water budgets per unit area are generally similar for HRUs with similar 

soil types, but still differ among land-use types .Annually, discharge to streams per unit 

area from HRUs overlying soil type A averaged about 90 percent from active 

groundwater flow, about 9.8 percent from interflow, and a negligible amount (0.12  

percent) from surface runoff.  High contribution of active ground water and interflow as 
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compared to surface runoff in water balance is because of the small segment of 

impervious zones in the catchment, which would otherwise facilitate quick surface 

overland flow. In effect, the mainly foreseted watershed favors infiltration in the soil 

zone and thereby lateral subsurface flow along subsurface channels, macro pores in soil 

type A (that covers about 34.6% of watershed), and fractures in cultivated land. This 

would explain the relatively small contribution of overland flow to the streamflow. 

Discharge to streams from HRUs overlying soil type D about 61 percent from 

active groundwater, 34 percent from interflow, and 5 percent from surface runoff. 

Discharge to streams from HRUs overlying soil type B and C are greater than discharges 

from HRUs overlying soil type A and lesser that discharges from HRUs overlying soil 

type D. This is because of lesser permeability for soil type D as compared to other soil 

types. Forest contributes to base flow (active ground water recharge) the most and 

commercial areas contribute to the base flow the least because impervious area reduces 

the base flow.  Discharges to streams from wetland HRUs are 57% from active ground 

water, 39 percent from interflow and 4 percent from surface runoff.  All discharge to 

streams from impervious area HRUs (IMPLND) is from surface runoff. Surface runoff 

and interflow was highest from commercial areas because of high impervious area, low 

interception and infiltration in commercial land, while surface runoff and interflow 

produced by forest was lowest because of high infiltration and interception. On average, 

about 47.7 in. of precipitation fell on the basin during 1973–2008 of which about 35, 47.6 

and 46.9 percent per unit area discharged to streams from HRUs overlying soil type A, 

soil type D and wetlands, respectively. The remainder was mostly lost to ET, per unit 

area, from interception, upper zone and lower-zone storage transpiration. Loss by LZET 
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ranged from 27 to 26 percent for soil type A and soil type D HRUs, respectively. LZETP 

is a bit higher in soil type A and this is because ET losses in the upper and lower zone are 

assumed to occur at a rate proportional to the relative moisture content of each of the 

systems. Hence soil type A has more moisture content than soil type D, because fine soils 

with narrow pore spacing hold water more tightly than soils with wide pore spacing. 

 ET loss per unit area from interception and upper-zone storages (CEPE and 

UZET, respectively) accounts for about 16.5% to 10.9 % of the annual moisture supply to 

the basin. ET loss per unit area from active groundwater (AGWET) accounts for 1.9 

percent to 2.5 percent of the annual moisture supply to the basin. Lower-zone 

evapotranspiration is highest in forested PERLND types and lowest in 

commercial/industrial PERLND types. 

Forested HRUs compose the major portion of the basin water budget (Figure 15), 

expressed in inches over the basin, because forested HRUs represent about 43 percent of 

the total basin area. Forested HRUs contributed about 18.2 in. (46 percent), mostly from 

active groundwater, of the 39.8 in. of total mean annual discharge to streams. Discharge 

to streams from forested areas came predominantly from HRUs overlying soil type D (3.2 

in.).  In 2005, highest stream flow was during March and April because of low ET, and 

lowest stream flow was during July, August and September because of high ET.  

4.1.6 Water quality Calibration Results for Sediments and Nutrients 

HSPF Model is calibrated for sediments and nutrients (total nitrogen and 

phosphorus).  Observed data was obtained from MassDEP (Division of Water Pollution 

Control Massachusetts Water Resources Commission). 808 observations are used for 
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sediments calibration. Out of 808 observations, 509 samples are collected from Assabet 

River, 158 samples from Sudbury River and 141 samples were collected from Concord 

River.  Figure 16 shows the location of samples for observed data. Table 12 shows a list 

of adjusted parameters for calibration of Sediments in HSPF model. The mean and 

variance of observed daily TSS data with 808 observations is 5.92 and 4.08 respectively 

and mean and variance of simulated daily TSS data for 808 values is 5.34 and 3.66 

respectively. The variance in simulated data is little less than that of observed data .The 

Pearson correlation for t-Test (paired sample for observed and simulated means is 0.84. 

 Paired t-test is a test on the difference between the two values (observed and simulated). 

Thus, the two-tail p-value for this t-test is p=0.006and t=2.92. Figure 17 (A, B) and 

Figure 18 shows scatter plot, bar graphs between observed, simulated mean daily 

sediments and coefficient of variance for observed, simulated mean daily TSS 

respectively. Regression coefficient R2 is 0.701 for sediments.  

919 observations are used for total nitrogen calibration, out of which 617 samples 

are collected from Assabet River, 205 samples are from Sudbury River and 97 samples 

are from Concord River (Figure 16).  The mean and variance of observed daily total 

nitrogen data with 919 observations is 1.81 and 1.72 respectively and mean and variance 

of simulated daily total nitrogen data for 808 values is 2.26 and 3.14 respectively. Overall 

model is simulating a little bit higher nitrogen and that could be because of presence of 

some dams and lakes in the sampling locations.  In contrast to sediments, The variance in 

observed data is less than that of simulated data for total nitrogen .The Pearson 

correlation for t-Test is 0.87.The two-tail p-value for this t-test is p=0.53and t=0.64. 

Figure 19 (A,B)  and Figure 20 shows scatter plot and bar graphs between observed, 
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simulated mean daily total nitrogen and coefficient of variance for observed, simulated 

mean daily total nitrogen respectively. Regression coefficient R2 is 0.75 for total 

nitrogen. The t-test shows that the observed and mean values are not significantly 

different.  

For total phosphorus calibration 922 observations are used, out of which 622 

samples are collected from Assabet River, 114 samples are from Sudbury River and 186 

samples are from Concord River (Figure 16).  The mean and variance of observed daily 

total phosphorus data with 922 observations is 0.17 and 0.024 respectively and mean and 

variance of simulated daily total phosphorus data for 922 values is 0.076 and 0.026 

respectively. In contrast to nitrogen, overall model is under simulating phosphorus that 

could be because of presence of some dams and lakes in the sampling locations .The 

Pearson correlation for t-Test is 0.8.The two-tail p-value for this t-test is p=0.000049and 

t=4.8. Figure 21 (A,B)  and Figure 22 shows scatter plot and bar graphs between 

observed, simulated mean daily total phosphorus and coefficient of variance for 

observed, simulated mean daily total phosphorus respectively. Regression coefficient R2 

is 0.65 for total phosphorus. The t-test shows that the observed and mean values are not 

significantly different.  

4.2  Assessment of Land Use Land Cover Change in SuAsCo Watershed by Land 

Transformation Model (LTM) 

The LTM is useful for simulating land use/cover changes across large regions. It 

can be used to simulate land change in areas that contain several million to even a few 

hundred million cells. It is thus a useful tool to couple to regional climate, hydrologic and 
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carbon sequestration models. Land-use change from 2000 to the LTM-projected 2035, 

2065 and 2100 conditions is illustrated in Figures 23 for the simplified land-use 

categories used to develop the model HRUs. In general, the majority of land-use change 

was from forest to low-density residential, development. According to LTM 2100 

projection, In SuAsCo watershed agriculture/pasture is decreased by 30 percent (Table 

13). Commercial/industrial area and high density area is increased by 72 percent and 62 

percent respectively. Medium density and low density residential area is increased by 83 

percent and 93 percent respectively. Forested area is decreased by half (50 percent 

decrease). Wetlands are decreased by 45 percent, while open water remains unchanged. 

Stream flow decreased by 9% for month of April by 2100 and increased by 18% 

for month of September by 2100. The large decrease in stream flow that occurs in April 

and significant increase in stream flow between July to October. For March, May, June 

precipitation changes nearly canceled out ET changes and streamflow showed 

insignificant change during the same time period compared to other months. Hence in 

hydrological simulation model, both increases and decreases in streamflow occur in both 

relative and absolute terms at different seasons or time periods, providing clues about 

causal mechanisms, and geomorphic and ecological consequences, of vegetation 

change. The largest relative changes in streamflow occurred in summer months and early 

fall after removal of forest. 75 percent increase in effective impervious area and 50 

percent decrease in forest area from 2005 to 2100 causes 2.7 percent increase in total 

runoff and 69.2 percent increase in surface runoff. 6.5 percent reduction in 

evapotranspiration leads to 3 percent decline in interflow (Table 14). Base flow is 

decreased by 11.2 % from 2005 to 2100 because of increase in impervious area. Because 
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in any series of storms, the larger the percentage of direct runoff, the smaller the amount 

of water available for soil moisture replenishment and for ground storage. Decrease in 

ground water recharge and decrease in baseflow is observed because of increase in total 

runoff as a result of imperviousness, for a given series of storms. Thus, increased 

imperviousness has the effect of increasing flood peaks during storm periods and 

decreasing baseflows flows between storms. In addition, water that runs off, particularly 

if it is channeled through storm sewers, never has a chance to recharge ground water that 

lead to reduced base flow.  Figure 23 and Figure 24 represents changes and percent 

changes in water budget with future land cover projections. Water-budget outflow 

components (Figure 25) by hydrologic response unit (HRU) in SuAsCo watershed under 

2005 land use and projected 2100 land-use conditions shows about 10 percent reduction 

in interception because of deforestation. Land use change impacted evaporation by lower 

zone (16.8 percent reduction) more significantly than evaporation by upper zone (2 

percent reduction), because according to the water budget in SuAsCo evaporation by 

lower zone is more than double than evaporation from upper zone.  

10 percent low flows are increased by 10.7 percent by 2100 because of decrease 

in evapotranspiration. There is a small decrease in storm volume (0.5 percent) but 

average storm peak volume is increased by 4.1 percent by 2100 because of less 

infiltration. Due to land cover change sparse vegetation cover which in case of high 

rainfall intensities may trigger siltation and disconnect macropores from the soil surface, 

resulting in surface sealing and a drastic decrease in hydraulic conductivity at the soil 

surface as well as a decline in macropore connectivity [Niehoff et al., 2002]. The increase 

in siltation, crusting and compaction of surface soil because of land cover change can 
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lead to reduction in infiltration that caused the increase in storm peak volume. 

Streamflow winter volume is increased by 5.1 %. But the increase is summer volume 

(about10 percent) is more significant than winter volume.  The increase is summer 

volume partly due to the fact that the summer potential evapotranspiration is a bit higher 

in forested and agricultural areas than in urban areas and, therefore, changing some of the 

forested land into urban land use leads to an increase in the runoff. There is more 

potential for infiltration in the summer than in the winter, especially, at the early phase of 

the storm event because storm events in the summer are generally preceded by a dry soil 

condition [Hundecha and Bárdossy, 2004]. The runoff would be higher because of less 

possibility for infiltration due to surface sealing triggered by land use change from 

forested/agricultural land to urban areas.  

There is a substantial increase in summer storm volume about 90.6 percent and 

22.6 percent reduction in winter storm volume. Reduction is winter storm volume may be 

because of reduction of floods caused by ice-jams or ice-jam breaks. The reduction of ice 

jams may be partly because of regional warming or in part from increase in salt content 

and water temperature caused by the inflow of waste water and cooling water. Based on 

these results human induced land use change reduced evapotranspiration, baseflow and 

interflow that lead to increase in overland flow.  An increased loss of precipitation to 

runoff (rather than infiltration) leads to increased peak flow (storm flow) and decreased 

baseflow. It shows how baseflow and peak flow varies as a function of urbanization. 
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4.3  Assessment of Climate Change in SuASCo Watershed by RCP4.5 Scenario  

IPCC produced clime scenarios as a plausible representations of future climate 

conditions (temperature, precipitation, and other aspects of climate such as extreme 

events) using a variety of approaches including analysis of observations, models, and 

other techniques such as extrapolation and expert judgment [Stocker, et al., 2013]. The 

IPCC’s Fifth Assessment Report (AR5) considers new evidence of climate change based 

on many independent scientific analyses from observations of the climate system, 

paleoclimate archives, theoretical studies of climate processes and simulations using 

climate models. It builds upon the Working Group I contribution to the IPCC’s Fourth 

Assessment Report (AR4), and incorporates subsequent new findings of research. The 

degree of certainty in key findings in this assessment is based on the author teams’ 

evaluations of underlying scientific understanding and is expressed as a qualitative level 

of confidence (from very low to very high) and, when possible, probabilistically with a 

quantified likelihood (from exceptionally unlikely to virtually certain). Confidence in the 

validity of a finding is based on the type, amount, quality, and consistency of evidence 

(e.g., data, mechanistic understanding, theory, models, and expert judgment) and the 

degree of agreement1. Probabilistic estimates of quantified measures of uncertainty in a 

finding are based on statistical analysis of observations or model results, or both, and 

expert judgment2. Where appropriate, findings are also formulated as statements of fact 

without using uncertainty qualifiers. Climate change projections in IPCC Working Group 

I require information about future emissions or concentrations of greenhouse gases, 

aerosols and other climate drivers. This information is often expressed as a scenario of 

human activities, which are not assessed in this report. Scenarios used in Working Group 
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I have focused on anthropogenic emissions and do not include changes in natural drivers 

such as solar or volcanic forcing or natural emissions, for example, of CH4 and N2O.  

According to RCP4.5 climate scenario, the annual average temperature will 

increase by 1.1oC, 2.1 oC and 2.7 oC by 2035, 2065 and 2100 respectively in Eastern 

North America and there will be 3%, 5% and 7% increase in annual precipitation by 

2035, 2065 and 2100 respectively. Model is run for RCP4.5 climate scenario for 2035, 

2065 and 2100. Figure 26 shows the changes in stream flow. Total runoff and surface 

runoff is increased by about 6 and 8 percent respectively because of 4.7 percent increase 

in evapotranspiration by 2100 (Figure 27). Figure 28 shows a comparison of water budget 

in SuAsCo watershed under 2005 and projected 2100 Climate Change (RCP 4.5) 

Scenario. Increased temperature reduced available water resources and increased ET. 

Stream flow decreased by 18% for month of April by 2100 and increased by 18% for 

month of February by 2100. The large decrease in stream flow that occurs in April is the 

result of increased ET and reduced precipitation and significant increase in stream flow 

between August to February are likely due to increased precipitation. For March, May, 

June precipitation changes nearly canceled out ET changes and streamflow showed 

insignificant change during the same time period compared to other months. It is 

important to note that increased temperature could increase spring and summer actual 

evapotranspiration, this could counterbalance the effect of a precipitation increase during 

summer and the change in discharge was the smallest in summer. 

 2.7 oC rise in temperature, would considerably reduce the snow storage reservoir 

during winter and thus largely contribute to a shift of flood events in the SuAsCo from 

spring and summer to winter.  
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Interflow is increased by 24.7 by 2100%. Base flow is increased by 1.4 % from 

2005 to 2100. 10 percent high flows and 10 percent low flows are increased by 4.6 

percent and 9.5 percent respectively by 2100. 7 percent increase in precipitation by 2100 

increased storm volume and average storm peak volume by 1.9 and 8.1 percent 

respectively. Hence increase in precipitation and temperature has major effect on storm 

flows.  Stream flow during summer and winters is increased by 11.3 and 17.1 percent 

respectively by 2100 (Table 15). Higher winter discharge is a result of intensified snow-

melt and increased winter precipitation.  

4.4  Assessment of Combined Change in Land Cover Climate in SuASCo Watershed  

To assess the combined impact of land cover change and climate change, model is 

run with LTM projected land cover map for 2100 and climate change scenario (RCP 4.5) 

for 2100 (Figure 29). Total runoff is increased by 9.2 percent and surface runoff was 

increased by 81.4 percent (Figure 30). This increase in surface runoff is because of 

reduced baseflow (about 9% reduction). 

While independent change in climate caused a little bit increase in base flow 

(about 1.42%) because of high precipitation that lead to recharge of subsurface storage, 

independent change in land cover reduced the baseflow by 11.2 %. But overall base flow 

is reduced by 9% because of combined influence of land cover and climate change. This 

is because at local scales, higher summer temperatures and, by extension, evaporation 

rates, could lead to increased convective precipitation, offsetting baseflow reductions 

from 11.2 % to 9%. Although baseflow response to changing land use typically are 

confounded by concurrent climate change, overall combined change in land use and land 
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cover reduced the baseflow, which indicates land cover change impact the baseflow more 

significantly than climate change.  

Both land use change and climate change increase surface runoff and total runoff. 

But impact of land cover change on surface runoff is more significant than climate 

change. Because land cover change reduced the base flow and interflow hence more 

water is available for overland flow. However climate change increased baseflow and 

interflow hence more significantly increase the total stream flow or total runoff as 

compared to land cover. That is why land cover change has more influence on surface 

runoff and climate change has more significant impact on total runoff or stream flow. 

Combined change in land use and climate increased total runoff (9.2%) with significant 

increase in surface runoff (81.4 %).  It should be pointed out that the summation of the 

surface runoff increase by both climate variability and land use change was significantly 

greater than the independent impact of land cover and climate change. Land use change 

reduces interflow (3%) in contrast to climate change that increases interflow significantly 

(24.7%) and overall interflow is increased by 21.6% under the combined influence of 

land cover and climate change. 

Combined change in land cover and climate increased the low flows (20.4%) 

more significantly than high flows (5.5 %). These changes in high flows and low flows 

can be explained by rising temperatures. In addition, precipitation more often falls as rain 

instead of snow. Therefore, thaw happens earlier and less water is stored as snow pack 

leading to increase winter and summer flood peaks. Summer volume and winter volume 

is also increased by 22.2 % and 19.1 % respectively. Increase in winter discharge is 

because of increase of both rainfall and the melt water runoff contribution that will 
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increase peak flows. Increment in average peak volume is 12.8 % (Table 16). Figure 31 

shows water-budget outflow components by Hydrologic Response Unit (HRU) simulated 

by the Hydrological Simulation Program–FORTRAN (HSPF) in SuAsCo watershed 

under 2005 and projected 2100 Land Use and Climate Change Scenario. Figure 1 shows 

comparison of independent change in land cover and climate with combined change in 

land cover and climate 
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CHAPTER 5 

CONCLUSION 

 This research presents information about the fate and transport of runoff, 

sediments and nutrients in the SuAsCo watersheds. The modeling helps to estimate the 

impacts and compare levels of stress. All sites provide reliable estimates of water flows 

in watershed and quantify runoff, sediments and nutrient loads in the HSPF model, which 

will be valuable in providing a better understanding and in forecasting pollutant 

concentrations for future. Baseline simulations closely match with the observed 

information. LULC and climate changes have impacts on water quality and water 

quantity and the impact on watershed is aggravated by combined change in LULC and 

climate in future.  Independent Change in climate increased ET (4.7 %) because of high 

temperature, but independent change in land cover reduced ET (6.5%) because of less 

available vegetation (Figure 32). Overall base flow is reduced by 9% because of 

combined influence of land cover and climate change.  Combined change in land use and 

climate increased total runoff (9.2%) with significant increase in surface runoff (81.4 %) 

and interflow (21.6%).  Land use change reduces interflow (3%) in contrast to climate 

change that increases interflow significantly (24.7%) and overall interflow is increased by 

21.6% under the combined influence of land cover and climate change.  

Independent increase in climate change and land use change increased low flows 

by 9.5 % and 10.7 % respectively and increase in low flows reached to 20.4% when 

model was run with combined projected land cover and climate data. 10% high flows are 

decreased (1.1%) by change in land use but increased (4.6 %) with change in climate and 

that increase become a little more significant (5.5 %) with combined change in land cover 
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and climate. Independent change in climate and land cover increased summer flows 10 % 

and 11.3 % respectively and summer stream flow volume increased further (22.2%) with 

combined change in land cover and climate change. Climate change increase the winter 

flows (17.1%) more significantly than increment (5.1%) caused by land cover change. 

Winter flows are increased by 19.1 % by combined change in land cover and climate. 

Average storm peak volume is increased by 8.1 % and 4.1 % by change in climate and 

land cover respectively.  Combined change in land cover and climate further increased 

the average storm peak volume (12.8 percent).  

This study provides useful information that could be used in developing 

watershed management plans for semi urban watershed areas. The watershed modeling is 

capable of assessing the spatial and temporal variability of runoff, sediments and 

nutrients fate in the river so that it also can be considered as an auxiliary assessment tool 

to provide necessary data reference for ecological risk and human health assessments 

after water pollution occurred. The results of this research have numerous management 

implications for the watershed system. A modular approach is an effective way to 

develop integrated watershed assessment tools. The outputs of the models provide 

comprehensive information of the contaminant distribution in a multimedia environment 

at watershed scale. The importance of watershed modeling is significant in identifying 

environmental management opportunities to mitigate water pollution and preserve 

aquatic and human health. This research facilitates in-depth analysis of inter-media 

transports and multimedia system behaviors under dynamic conditions while preserving 

the requirements of modest data input and rapid scenario analysis.  Better comprehensive 

and sustainable watershed protection programs, including erosion and sediment control, 
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storm water management, and best management practices, could be devised by help of 

information in this research, to minimize the adverse impacts of flow and non-point 

source pollution in the face of these impending changes. Our understanding of the 

dynamics of the physical system in a watershed would improve by assessing not only the 

separate but also the combined impacts of climate and land use changes on water 

resources A possible range of future flow and water quality conditions are shown by 

various scenario results, which could be of values to the decision-makers in their 

development of adaptation and mitigation strategies in preparation for future climate and 

land use changes. 

The efficacy of HSPF in modeling water quantity and quality under a watershed 

scale is demonstrated by this research. The application of LTM coupling with climate 

change scenario also proved to be effective in simulating future land use and climate 

changes, providing a more realistic land use and climate change pattern for the year 2100. 

This comprehensive approach seemed to be reliable and might provide a reasonable tool 

for predicting the long-term impacts of land use and climate changes on water resources, 

useful to environmental scientists, state and local agencies, watershed managers, and 

regional planners.  

However, there are limitations to such modelling studies, since land-use, climate 

change and hydrological models are accompanied by a high degree of uncertainty. This 

uncertainty is due to insufficient data availability or quality and related space-time 

heterogeneity (data uncertainty), insufficient knowledge on the physics and the stochastic 

features of the processes involved, in particular during extreme precipitation periods 

(process uncertainty), and simplifications inherent in the model structure (model 
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uncertainty) [Niehoff et al., 2002]. Due to the large number of parameters and long 

computing times involved, a rigorous procedure for uncertainty analysis is not easily 

transferable to detailed process-oriented hydrological models like HSPF. 
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APPENDIX A 
 

TABLES 

 

Table 1: Textural characteristic and associated Hydrologic Group of Soils in SuAsCo 
Watershed 

Soil Texture Hydrological Group Percentage area (%) 

Sandy Loam C 0.02  

Pit Quarry A 0.03  

Sandy Loam B 0.05  

Silt Loam D 0.08  

Dumps A 0.09  

Very Fine Sandy Loam C 0.25  

Sand & Gravel A 0.49  

Loamy Coarse Sand A 0.51  

Loamy A 0.58  

Loam B 0.76  

Loamy Sand B 0.86  

Silt Loam B 0.87  

Sandy A 0.94  

Loamy  Sand C 0.96  

Loamy Fine Sand B 1.23  

Fine Sandy Loam D 1.24  

Silt Loam C 1.32  
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Urban-outcrop Land Complex C 1.66  

Mucky Fine Sandy Loam D 1.72  

Sandy Loam A 1.89  

Mucky Silt Loam D 1.93  

Urban-outcrop Land Complex B 2.38  

Very Fine Sandy Loam B 3.29  

Water A 3.61  

Fine Sandy Loam B 6.63  

Fine Sandy Loam A 6.65  

Urban-outcrop Land Complex A 9.34  

Muck D 9.66  

Loamy Sand A 10.45  

Urban-outcrop Land Complex D 10.96  

Fine Sandy Loam C 19.56  
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Table 2: Land use Land Cover in SuAsCo Watershed 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Land use Area (Acres) Percentage Area (%) 

Agriculture/Pasture 11360 5 

Commercial/Industrial 11303 5 

High Density Residential 10606 4 

Medium Density Residential 22188 9 

Low Density Residential 31035 12 

Public/Transitional 13347 5 

Open Water 8601 3 

Wetlands 32948 13 

Forest 108394 43 

Effective Impervious area 18983 7.6 
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Table 3: Description of Data Set Numbers (DSNs) in the Watershed Data Management 
(WDM) system for the SuAsCo Watershed, Mass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSN Purpose 

1-12 Observed Stream Flow 

101-501 Simulated Stream Flow 

1001-1009 Simulated Flow Components for HSPEXP 

1010-1231 Simulated Sediment Components 

1232-1240  Simulated Stream Flow 

1241-1291  Simulated Sediment Components 

1292-1297  Simulated Nutrients 

1300-1413  Simulated Nutrients 

1723-1766  Water Withdrawals 

2411-2420  Point Sources Loads 

3111-3120  Point Sources Loads 

3411-3420  Point Sources Loads 

4111-4120  Point Sources Loads 

4211-4220  Point Sources Loads 

4711-4720  Point Sources Loads 

5511-5520  Point Sources Loads 

5611-5620  Point Sources Loads 

6011-6020  Point Sources Loads 

9111-9120  Point Sources Loads 

9911-9220  Point Sources Loads 
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Table 4: Annual Average Withdrawals in SuAsCo Watershed, 1973-2008 

River Name Water System Name Reach Name 

in Model 

Withdrawals 

(MG/day) 

Concord River River Meadow Brook Canal Street Well # 1 1 0.19 

Assabet River Marshall well and Kennedy well # 1-4 11 0.41 

Assabet River Fort Pond Brook and Nashoba Brook 15 0.01 

Assabet River Nagog Pond 16 0.42 

Assabet River Whitcomb Well, Clapp Well, Rock Well and Fort 

Pond Brook Well # 2 

19 0.22 

Assabet River  Elizabeth Brook Well # 1, Dunster House Well, 

Eliot House Well and Leverett House Well 

21 0.04 

Assabet River Fort Pond Brook Rock Well # 2 and 5 24 0.07 

Sudbury River Jennie Dugan Well and Deaconess Well 25 1.87 

Assabet River Second Division Well 27 0.56 

Sudbury River White Pond Well 29 0.40 

Assabet River Stow Acres Country Club 31 0.16 

Assabet River Old Marlborough Road Wells # 1-3 and Great Road 

Well #  4 

34 0.60 

Assabet River White Pond 35 0.30 

Sudbury River Cranberry Bog Well 39 0.55 

Assabet River Kane Well and Chestnit Street Well # 1- 3 45 1.85 

Sudbury River Lowe Sudbury River GP Wells # 2-7 and 9 51 1.86 

Assabet River Howard Street Wells # 1-3 54 0.14 

Assabet River Crawford Street Well 55 0.33 

Assabet River Lyman Street Well and Chauncy Lake Well # 1 and 

2 

61 0.22 

Assabet River South Street Well and Smith pond 64 0.01 
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Sudbury River Hopkinton Road Well, Morse Street Well and 

Cedar Swamp 

72 0.73 

Assabet River Sandra Pond 75 0.88 

Sudbury River  Whithall Brook Well # 4 76 0.11 

Sudbury River Howe Street GP Well # 4-6, Upper Sudbury River 

Wells # 1 and 2,  Whitehall Brook Well # 1 and 

Weston Nurseries 

77 2.12 

Sudbury River Kiddle-Fenwal, Inc 79 0.02 

Assabet River Millham Reservior  83 1.52 

Assabet River Andrews 1, 2 Well, Wilkinson Well 84 0.66 

Assabet River Nashoba Brook Well # 1 85 0.03 

Assabet River Otis Street Well 91 0.30 

Concord River Turnpike Road GP Well # 1 and Mill Road GP 

Wells # 1-3 

101 0.90 

Assabet River Assabet main Stem Wells # 1-3,  Elizabeth Brook 

Well # 1-2 and  Fort Pond Brook Rock Well # 1-2 

103 0.08 

Assabet River Brigham Street Well and Junpier Hill Golf Course 107 0.49 

Sudbury River Upper Sudbury River Wells # 2-3 and Whitehall 

Brook Well # 2-5 

108 0.63 

Sudbury River Hop Brook GP Well # 3, 8 and 10 110 0.61 

Assabet River Conant Well 111 0.14 

Assabet River Conant 2 Wells #  1-5 112 0.06 

Sudbury River Springvale Well # 1-4 and Lake Cochituate 114 2.46 

Assabet River Bigelow Nurseries at Assabet Head Waters 115 0.10 

Assabet River Nashoba Brook Well # 1 119 0.01 

Assabet River Lawsbrook, Christofferson Well and  Scribner Well 122 0.29 

Assabet River Riverneck Road GP Wells # 1-2 123 0.55 
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Assabet River Rimkus Well and Gates Pond Reservior 130 0.06 

Assabet River Assabet main Stem-Digital Equipment / Intel 137 0.01 

Sudbury River Happy Hollow Well # 1-2 and Meadowview Well # 

1 

140 0.93 

Assabet River Assabet Well # 1-2, Assabet Sand & Gravel and 

Concrete Services at Assabet Main Stem 

142 0.76 

Sudbury River Baldwin Pond Well # 1-3 and Campbell Road Well 

# 1 

145 1.05 

Sudbury River Robinson Well, Concord Country Club, Verrill 

Farm and Nashawtuc Country Club 

150 0.29 

Concord River Concord River 155 4.58 
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Table 5:  Water withdrawals Location in SuAsCo Watershed 

Community System 

Type 

System Name Source 

Type 

Reach 

Name 

Assabet River Basin 

Assabet Headwaters 

Marlborough MC Millham Reservoir  SW 83 

Northborough MC Brigham Street well    GW   107 

Northborough MC Lyman Street Well GW 61 

Westborough MC Andrews 1 Well GW 84 

Westborough MC Andrews 2 Well GW 84 

Westborough MC Otis Street Well GW 91 

Westborough MC Wilkinson Well GW 84 

Westborough MC Chauncy Lake Well 1 GW 61 

Westborough MC Chauncy Lake Well 2 GW 61 

Assabet Main Stem 

Acton MC Assabet Well # 1 GW 142 

Acton MC Assabet Well # 2 GW 142 

Hudson MC Rimkus Well GW 130 

Berlin MC Gates Pond Reservoir SW 130 

Maynard MC Old Marlboro Road Wells # 1 and 2 GW 34 

Maynard MC White Pond SW 35 

Maynard MC Old Marlborough Road Wells # 3 GW 34 

Maynard MC Great Road Well #  4 GW 34 

Shrewsbury MC South Street Well GW 64 

Stow NMC Wells # 1-3 GW 103 

Concord MC Second Division Well GW 27 

Elizabeth Brook 

Boxborough NMC Well # 1 GW 21 

Boxborough NMC Dunster House Well GW 21 

Boxborough NMC Eliot House Well GW 21 
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Boxborough NMC Leverett House Well GW 21 

Stow NMC Well # 1 GW 103 

Stow NMC Well # 1 GW 103 

Stow NMC Well # 2 GW 103 

Fort Meadow Brook 

Hudson MC Kane Well GW 45 

Hudson MC Chestnut Street Well # 1 GW 45 

Hudson MC Chestnut Street Well # 2 GW 45 

Hudson MC Chestnut Street Well # 3 GW 45 

Fort Pond Brook 

Acton MC Whitcomb Well GW 19 

Acton MC Lawsbrook GW 122 

Acton MC Christofferson Well GW 122 

Acton MC Clapp Well GW 19 

Acton MC Scribner Well GW 122 

Boxborough NMC Rock Well GW 19 

Boxborough NMC Well # 1 GW 21 

Boxborough NMC Well # 2 GW 19 

Boxborough MC Well # 2 GW 19 

Maynard MC Rock Well # 2 GW 24 

Maynard MC Rock Well # 5 GW 24 

Stow MC Well # 1-2 GW 103 

Howard and Cold Harbor  Brook 

Northborough MC Crawford Street Well GW 55 

Northborough MC Howard Street Wells # 1-3 GW 54 

Nashoba Brook 

Acton MC Conant well GW 111 

Acton MC Marshall well GW 11 

Acton MC Kennedy well 1-4 GW 11 

Acton MC Conant 2 wells #  1-5 GW 112 

Acton MC Nagog Pond SW 16 

Acton NMC Well # 1 GW 119 
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Westford NMC Well # 1 GW 85 

Sudbury River Basin 

Cedar Swamp 

Westborough MC Hopkinton Road Well GW 72 

Westborough MC Sandra Pond SW 75 

Westborough 

 

MC Morse Street Well GW 72 

Hop Brook 

Hudson MC Cranberry Bog Well GW 39 

Sudbury MC GP Well # 3 GW 110 

Sudbury MC GP Wells # 8 and 10 GW 110 

Indian Brook 

Ashland MC Howe Street GP Well # 4 GW 77 

Ashland MC Howe Street GP Well # 5 GW 77 

Ashland MC Howe Street GP Well # 6 GW 77 

Lake Cochituate 

Natick MC Springvale Well # 1 GW 114 

Natick MC Springvale Well # 3 GW 114 

Natick MC Springvale Well # 4 GW 114 

Natick MC Evergreen Well # 1 GW 114 

Natick MC Evergreen Well # 2 GW 114 

Lower Sudbury River 

Concord 

Concord 

Concord 

MC 

MC 

MC 

Jennie Dugan Well 

Deaconess Well 

White Pond Well 

GW 

GW 

GW 

25 

25 

29 

Concord MC Robinson Well GW 150 

Lincoln MC Farrar Pond Well GW 30 

Sudbury MC GP Wells # 2 and 9 GW 51 

Sudbury MC GP Well # 4 GW 51 

Sudbury MC GP Well # 5 GW 51 

Sudbury MC GP Well # 6 GW 51 

Sudbury MC GP Well # 7 GW 51 
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Wayland MC Baldwin Pond Well # 1 GW 145 

Wayland MC Campbell Road Well # 1 GW 145 

Wayland MC Happy Hollow Well # 1 GW 140 

Wayland MC Happy Hollow Well # 2 GW 140 

Wayland MC Meadowview Well # 1 GW 140 

Wayland MC Baldwin Pond Well  # 3 GW 145 

Wayland MC Baldwin Pond Well # 2 GW 145 

Wayland MC Chamberlain Well # 1 GW 145 

Upper Sudbury River 

Hopkinton NMC Wells # 1 and 2 GW 77 

Hopkinton NMC Well # 3 GW 108 

Hopkinton NMC Well # 2 GW 108 

Whitehall Brook 

Hopkinton MC Well # 1 GW 77 

Hopkinton MC Well # 2 GW 108 

Hopkinton MC Well # 3 GW 108 

Hopkinton MC Well # 4 GW 76 

Hopkinton MC Well # 5 GW 108 

Lower Concord River Basin 

Lower Concord Main Stem 

Billercia MC Concord river SW 155 

Concord MC Hugh Cargill Well GW 152 

River Meadow Brook 

Chelmsford MC Turnpike Road GP Well # 1 GW 101 

Chelmsford MC Mill Road GP Wells # 1-3 GW 101 

Chelmsford MC Riverneck Road GP Wells # 1-2 GW 123 

Chelmsford MC Canal Street Well # 1 GW 1 
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Table 6:  Location of Water Withdrawal Location for Commercial, Industrial and 
Agricultural use in SuAsCo    

Subbasin Use Type User Name Water 

Source 

Reach 

Name 

Fort Pond Brook Agriculture Idylwilde Farm SW 15 

Nashabo Brook Industrial W. R. Grace  GW 15 

Assabet Main Stem Golf Stow Acres Country Club SW 31 

Elizabeth Brook Golf Stow Acres Country Club SW 31 

Assabet Head Water Agriculture  Berberian Farm/Smith pond SW 64 

Cedar Swamp Industrial Tyrolit North American/ Bay State 

Sterling 

GW 72 

Cold Spring Brook Agriculture Weston Nurseries SW 77 

Cold Spring Brook Agriculture Weston Nurseries GW 77 

Indian Brook Agriculture Weston Nurseries SW 77 

Cold Spring Brook Industrial Kiddle-Fenwal, Inc GW 79 

Reservior 1-3 Industrial Kiddle-Fenwal Inc.  GW 79 

Assabet Head Water Golf Junpier Hill Golf Course SW 107 

Lake Cochituate Industrial U.S. Army Soldier System Center GW 114 

Assabet Head Water Agriculture Bigelow Nurseries GW 115 

Assabet Main Stem Industrial Digital Equipment / Intel GW 137 

Elizabeth Brook Industrial Digital Equipment / Intel SW 137 

Danforth Brook Agriculture Great Oak Farm GW 139 

Assabet Main Stem Industrial Assabet Sand & Gravel SW 142 

Assabet Main Stem Commercial Concrete Services SW 142 

Lower Sudbury River Golf Concord Country Club GW 150 

Lower Sudbury River Agriculture Verrill Farm     SW   150 

Lower Sudbury River Golf Nashawtuc Country Club     SW 150 
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Table 7: Annual Average Discharges (Mgal/day) from WWTPs in SuAsCo 1973-2008 

 

 

 

 
 

NPDES WWTP Facility Ownership Receiving 

Water 

Reach 

Name 

Annual Average 

Discharge 

(Mgal/day) 

MA010049 Marlborough Easterly WWTP Public Sudbury River 47 3.28 

MA010041 Westborough WWTP Public Assabet River 91 3.4 

MA010066 Concord WWTP Public Concord River 106 1.14 

MA0100412 Shrewsbury WWTP Public Assabet River 107 1.88 

MA000151 Raytheon Sudbury Factory Private Sudbury River 116 0.008 

MA010048 Marlborough Westerly WWTP Public Assabet River 124 1.61 

MA0001414 Raytheon  Missile System WWTP Private Concord River 131 0.19 

MA010178 Hudson WWTP Public Assabet River 134 2.06 

MA002214 Digital Equipment Corporation 

Company WWTP 

Private 

 

Assabet River 141 0.1 

MA010100 Maynard WWTP Public Assabet River 142 1.41 

MA003428 Raytheon Co Wayland Private Sudbury River 144 0.03 

MA010224 

 

MA Correction Institution (MCI) 

Concord WWTP 

Public 

 

Assabet River 

 

147 

 

0.19 

 

MA003479 

 

Billercia House of Correction 

WWTP 

Private 

 

Concord River 

 

155 0.7 

 

MA010171 Billercia WWTP Public Concord River 156 2.51 
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Table 8:  Effective impervious area by developed land-use type for the Hydrological 
Simulation Program–FORTRAN (HSPF) model of the SuAsCo watershed, 
Massachusetts  

Landuse Total Impervious 

Area (IA) acres 

Total 

Area 

 

Percentage 

of IA 

 

Effective 

Impervious area 

(EIA) acres 

Percentage 

of  EIA 

Commercial/Industrial 7994 11303 70.7 6723 59.5 

High Density Residential Area 4192 10606 39.5 3498 33.0 

Medium Density Residential Area 7217 22188 32.5 4116 18.6 

Public/Transitional 3994 13347 29.9 2185 16.4 

Low Density Residential Area 6785 31035 21.9 2352 7.6 

Total 30182 88478  18874  
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Reach name Reach 

number 

Channel 

"n" 

Overbank 

"n" 

Branch of  River Meadow Brook near Putnam Brook 1 0.045 0.06 

Marginal Brook at confluence with Concord River 2 0.04 0.065 

River Meadow Brook at Confluence of Farley Brook 3 0.04 0.065 

Meadow River Branch  at Curve street 4 0.0325 0.1 

Farley Brook about 775 feet downstream of Smokerise Drive 5 0.05 0.0625 

Branch of Nashoba Brook at upstream of confluence of Butter Brook 6 0.03 0.08 

Branch of Nashoba Brook at upstream of confluence of Butter Brook 7 0.03 0.08 

Pages Brook  at Maple Street 8 0.0315 0.1 

Branch of Butter Brook at Confluence with Nashoba Brook 9 0.04 0.0675 

Branch of Nashoba Brook at upstream of confluence of Butter Brook 10 0.03 0.08 

Butter Brook at Griffin Road 11 0.04 0.0675 

Pages Brook at confluence with Concord River 12 0.0315 0.1 

Tributary to Cold Spring Brook 13 0.04 0.0675 

Spencer Brook about 2000 feet downstream of Lindsay Pond Road 14 0.041 0.061 

Fort Pond Brook upstream of confluence of Inch Brook 15 0.0525 0.095 

Nagog Brook at confluence with Nashoba Brook 16 0.045 0.07 

Conant Brook at confluence with Nashoba Brook 17 0.035 0.06 

Sawmill Brook 2 at Monument Street 18 0.035 0.08 

Inch Brook at confluence with Fort Pond Brook 19 0.035 0.055 

Grassy Pond Brook at confluence with Fort Pond Brook 20 0.0325 0.05 

Elizabeth Brook 1 at Delaney Road 21 0.0375 0.085 

Table 9:  Manning's "n" Values and REACHES description for HSPF model 
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Spring Brook upstream of Alcott Street 22 0.0345 0.095 

Heath Hen Meadow Brook confluence of Fort Pond Brook  23 0.05 0.0625 

Branch of Fort Pond Brook at Erikson Dam 24 0.0525 0.095 

Tributary of Sudbury River upstream of Lowell Road 25 0.061 0.066 

Beaver Brook 4 West Whitcomb Road 26 0.0275 0.09 

Branch of Tributary 2 to Assabet River at Baker Avenue 27 0.0275 0.05 

Beaver Brook 2 about 1200 feet downstream of High Street 28 0.06 0.0675 

Cold Brook at confluence of Pantry Brook 29 0.033 0.075 

Farrar Pond at Sudbury River 30 0.045 0.05 

Branch of Assabet River approximately 1380 feet downstream of 

Hudson Road/ Walcott-Randall Road 

31 0.0375 0.085 

Danforth Brook at confluence of Assabet River 32 0.025 0.08 

Branch of Pantry Brook at confluence with Sudbury River 33 0.028 0.075 

Taylor Brook at confluence with Assabet River 34 0.0425 0.0675 

Boon Pond and branch at Barton Road 35 0.0375 0.085 

Hog brook at confluence with Assabet River 36 0.045 0.08 

Branch of Beaver Brook 1 37 0.0275 0.09 

Run Brook at the confluence of Hop Brook 38 0.0305 0.075 

Branch of Hop Brook at Marlborough/Sudbury Corporate Limits 39 0.025 0.0625 

 Beaver Brook 1 approximately 15 feet downstream of Linden Street 40 0.0275 0.09 

 Hop Brook at Sudbury/Framingham Corporate Limits 41 0.025 0.0625 

Hop Brook at Marlborough/Sudbury Corporate Limits 42 0.025 0.0625 

Mill Brook 1 at Lexington and Wayland Corporate Limits 43 0.035 0.0625 

Pine Brook at confluence of Mill Brook 1 44 0.035 0.0625 

Fort Meadow Brook at Chestnut Street 45 0.0525 0.095 

Branch of Beaver Brook 1 approximately 15 feet downstream of 

Linden Street  

46 0.0275 0.09 
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 Hop Brook at Dutton Road 47 0.025 0.0625 

Dudley Brook at confluence with Hop Brook 48 0.0305 0.0725 

Tributary of Assabet River at Robin Hill Street 49 0.0425 0.0925 

Peppermint Brook at Hildreth Street 50 0.035 0.07 

Landham-Allowance Brook at the Sudbury/Framingham Corporate 

Limits 

51 0.0255 0.06 

Sudbury Reservoir about two mile upstream of Stony Brook Reservoir 

dam 

52 0.061 0.066 

 Assabet Branch as confluence of Assabet River near Williams Lake 53 0.0375 0.085 

 Assabet  Branch  at confluence of Assabet River upstream of 

Boundary Street near Aluminum City Dam 

54 0.0375 0.085 

Assabet Branch near Northborough Reservoir 55 0.0375 0.085 

Baiting Brook at Constance M. Fiske Dam 56 0.0375 0.0825 

Snake Brook at confluence of Lake Cochituate 57 0.035 0.0625 

Angelica Brook at confluence with Reservoir No. 3 58 0.0325 0.055 

Stony Brook  at dam upstream of Deerfoot Road 59 0.0415 0.061 

Stony Brook  at Sudbury Reservoir 60 0.0415 0.061 

Tributary near Chauncy Lake 61 0.0375 0.085 

Tributory at confluence of Lake Cochituate 62 0.035 0.0625 

Tributary upstream of Smith Pond 63 0.035 0.0625 

Tributary at confluence of Smith Pond 64 0.035 0.0625 

Jenny Dugan Brook at the confluence with Sudbury River 65 0.0415 0.07 

Rutters Brook at Conrail in Westborough 66 0.03 0.0625 

Course Brook about 1400 feet downstream of Pond Street 67 0.04 0.056 

Munroe Brook at Bryant Road 68 0.065 0.08 

 Waushakum Pond Brook 69 0.04 0.0675 

Tributary at confluence of Waushakum Brook 70 0.04 0.0675 
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Tributory at confluence of Assabet Reservoir is Westborough 71 0.0375 0.085 

Denny Brook 72 0.03 0.0625 

Upper Assabet River at Assabet Reservoir in Westborough 73 0.03 0.0625 

Tributary to Upper Assabet River 74 0.03 0.0625 

Tributary at Westborough Reservoir (Sandra Pond Dam) 75 0.0555 0.065 

Tributary at confluence with Whitehall Brook 76 0.0425 0.075 

Indian Brook at Hopkinton Reservoir 77 0.0425 0.075 

Tributary at confluence with Whitehall Brook 78 0.0425 0.075 

Tributary at Ashland Reservoir 79 0.0555 0.065 

Branch of Nashoba Brook at upstream of confluence of Butter Brook 80 0.03 0.08 

Jackstraw Brook at Hopkinton Road in Westborough 81 0.03 0.0625 

Whitehall Brook at confluence with Sudbury River 82 0.0425 0.075 

Tributary at Milham Reservoir 83 0.0375 0.085 

Tributary at Assabet river Reservoir 84 0.03 0.0625 

Nashoba Brook upstream of confluence of Butter Brook 85 0.03 0.08 

Course Brook about 190 feet upstream of Merchant Road 86 0.04 0.056 

North Brook 10.0 feet upstream of Linden street in Berlin 87 0.034 0.085 

Mill Brook 1 at confluence with Pine Brook 88 0.035 0.0625 

Branch of Pages Brook at confluence of Concord River 89 0.0315 0.1 

Branch of Nashoba Brook upstream of confluence of Butter Brook 90 0.03 0.08 

Tributary at Hocomonco Pond 91 0.0375 0.085 

Tributary at confluence of Whitehall Brook 92 0.0425 0.075 

Tributary at confluence of Cedar Swamp Pond in Westborough 93 0.0555 0.065 

Pantry Brook at confluence with Sudbury River 94 0.028 0.075 

Tributary at confluence of Hop Brook at Dutton Road 95 0.025 0.0625 

Tributary at confluence of Hop Brook near Stearns Mill Pond 96 0.025 0.0625 

Tributary near Delaney Complex E Bolton Dam 97 0.0375 0.085 
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Sudbury Reservoir about 160 feet downstream of Marlborough Road 98 0.061 0.066 

Nashoba Brook near State Route 27 at Nashoba  Brook Pond 99 0.03 0.08 

Tributary at confluence of Assabet River  downstream of Hocomonco 

Pond 

100 0.0375 0.085 

 Russel Millpond Brook 101 0.041 0.066 

Tributary at confluence of Fort Pond Brook near Elm Street 102 0.0525 0.095 

Elizabeth Brook 1 at Gleasondale Road 103 0.0375 0.085 

North Brook at Crosby street in Berlin near Wheeler Pond Dam 104 0.034 0.085 

Sudbury River about 460 feet downstream of Cordaville Road 105 0.061 0.066 

Tributary at confluence of Heath Hen Meadow Brook  106 0.041 0.0775 

Tributary at confluence of Lower Assabet River  107 0.0375 0.0725 

Sudbury River approximately 190 feet downstream of Cordaville Street 108 0.0555 0.065 

Tributary near Fisk Pond 109 0.0555 0.065 

Hop Brook above confluence of Dudley Brook 110 0.0305 0.0725 

Elizabeth Brook 1 at Great Road 111 0.0375 0.085 

Nashoba Brook at confluence of Fort Pond Brook 112 0.03 0.08 

Fort Pond Brook at Erikson Dam 113 0.041 0.0775 

Cochituate Brook 114 0.0325 0.055 

Tributary near Wallace Pond  115 0.0375 0.0725 

Tributary at conflunce of Landham-Allowance Brook 116 0.0255 0.06 

Sudbury River downstream of Cordaville Road 117 0.061 0.066 

Assabet River about 2500 feet upstream of Boundary Street 118 0.0425 0.0925 

Fort Pond Brook at Laws Brook Road 119 0.041 0.0775 

Landham-Allowance Brook at Landham Road 120 0.0255 0.06 

Sudbury River about 1050 feet downstream of Howe Street 121 0.061 0.066 

Tributary downstream of Fort Pond Brook at Laws Brook Road 122 0.041 0.0775 

River Meadow Brook at Chelmsford/Lowell Corporate Limits 123 0.045 0.06 
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Assabet River about 900 feet downstream of Boundary Street 124 0.0425 0.0925 

Sudbury River about 500 feet upstream Danforth Street 125 0.061 0.066 

Tributary at Warners Pond Brook 126 0.041 0.0775 

Tributary at Framingham Reservoir# 3 127 0.061 0.066 

Tributary at Tyler Dam 128 0.0425 0.0925 

Sudbury River at Myrtle Street 129 0.061 0.066 

Gates Pond Brook at interstate Route 495 130 0.0425 0.0925 

River Meadow Brook at Lowell 131 0.045 0.06 

Sudbury River at Framingham Reservoir # 2 132 0.061 0.066 

Tributary downstream of Gates Pond Brook 133 0.0425 0.0925 

Assabet River at the Hudson/Stow corporate limits 134 0.0425 0.0925 

Sudbury River at Framingham Reservoir # 1 135 0.061 0.066 

Dunsdell Brook at Central Street Dam 136 0.061 0.066 

Assabet River about 1 mile downstream of Cox Street 137 0.0425 0.0925 

Assabet River at confluence of Fort Meadow Brook 138 0.0425 0.0925 

Assabet River at confluence of Boon Pond  139 0.0425 0.0925 

Sudbury River about 1300 feet upstream of Stonebridge Road 140 0.061 0.066 

Assabet River about 1300 feet upstream of Great Road 141 0.0425 0.0925 

Assabet River about 190 feet downstream of Acton Street 142 0.0425 0.0925 

Sudbury River about 1.9 mile downstream of Stonebridge Road 143 0.061 0.066 

Sudbury River at confluence with Wash Brook 144 0.061 0.066 

Sudbury River about 0.5 mile downstream of Lincoln Road 145 0.061 0.066 

Assabet River about 240 feet downstream of Main Street 146 0.0425 0.0925 

Assabet River about 2,000 feet downstream of Concord Turnpike 147 0.0425 0.0925 

Assabet River at the confluence with  Spencer Brook 1 148 0.0425 0.0925 

Sudbury River at the confluence with Pantry Brook 149 0.061 0.066 

Sudbury River about 0.5 mile upstream of Sudbury Road 150 0.061 0.066 
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Sudbury River about 1400 feet downstream of Massachusetts 2A/ 

Concord Turnpike 

151 0.061 0.066 

Cold spring brook about 1800 feet downstream of Monument Street 152 0.0425 0.075 

Cold Spring Brook  about 1.2 miles upstream of Bedford Road 153 0.0425 0.075 

Cold Spring Brook about 1 mile downstream of Bedford Road 154 0.0425 0.075 

Cold Spring Brook 1400 feet downstream of Nashua Road 155 0.0425 0.075 

Concord River at Talbot Mill Dam 156 0.041 0.066 

Concord River at Roger Street in Lowell 157 0.041 0.066 
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Table 10:  Model-fit statistics calculated from observed flows and Hydrologic Simulation 
Program–FORTRAN (HSPF) simulated flows at four streamgages in the SuAsCo River 
Basins, Massachusetts, 1973 to 2008. 

Stream Gage R2 

(Daily) 

NSE 

(Daily) 

R2 

(Monthly) 

NSE 

(Monthly) 

R2 

(Yearly) 

NSE 

(Yearly) 

Concord River below R 

Meadow Brook at Lowell 

0.79 

 

 

0.78 0.84 

 

 

0.83 

 

 

0.88 

 

 

0.71 

 

 

Sudbury River at Saxonville 0.75 

 

0.73 

 

0.82 

 

0.79 

 

0.85 

 

0.54 

 

Assabet River at Maynard 0.8 

 

0.78 0.84 0.8 

 

0.78 

 

0.65 

 

Assabet River at Nashoba 

Brook near Acton 

0.69 0.67 0.76 0.75 0.62 0.61 
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Table 11: List of adjusted parameters for calibration of hydrology in HSPF model 

Process 

Parameter 

Description Calibrated 

Value 

LZSN  Lower Zone Nominal Soil Moisture Storage (inches) 2-6.4 

INFILT  Index to Infiltration Capacity (in/hr) 0.19-0.5 

KVARY Variable groundwater recession (inches-1) 0.9-3.3 

AGWRC Base groundwater recession (unitless) 0.945-0.993 

INFEXP Exponent in infiltration equation (unitless) 2 

INFILD Ratio of max/mean infiltration capacities (unitless) 2 

DEEPFR  Fraction of GW inflow to deep recharge (unitless) 0.25-0.481 

BASETP Fraction of remaining ET from baseflow (unitless) 0-0.2 

AGWETP Fraction of remaining ET from active GW (unitless) 0.13-0.38 

CEPSC Interception storage capacity (inches) 0.01-0.2 

UZSN Upper zone nominal soil moisture storage (inches) 0.05-2 

NSUR 

(PERLND) 

Manning’s n (roughness) for overland flow (unitless) 0.15-0.5 

INTFW Interflow inflow parameter (unitless) 1-10 

IRC Interflow recession parameter (unitless) 0.54-0.84 

LZETP Lower zone ET parameter (unitless) 0.12-0.9 

NSUR 

(IMPLND) 

Manning’s n (roughness) for overland flow (unitless) 0.04-0.16 

RETSC Retention storage capacity (inches) 0.08-0.3 
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Table 12: List of adjusted parameters for calibration of Sediments in HSPF model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process 

Parameter 

Description Calibrated 

Value 

SMPF Management Practice (P) factor from USLE (unitless) 0.1-0.9 

KRER Coefficient in the soil detachment equation (complex) 0.25-0.53 

JRER Exponent in the soil detachment equation (none) 1 

AFFIX Daily reduction in detached sediment (per day) 0.02-0.3 

COVER Fraction land surface protected from rainfall (none) 0.002-0.98 

NVSI Atmospheric additions to sediment storage (lb/ac-day) 0.3-1 

KSER Coefficient in the sediment washoff equation (complex) 0.3-2.5 

JSER Exponent in the sediment washoff equation (unitless) 1 

KGER Coefficient in soil matrix scour equation (complex) 0 

JGER Exponent in soil matrix scour equation (unitless) 2 

KEIM Coefficient in the solids washoff equation (complex) 0.21-0.3 

JEIM Exponent in the solid washoff equation (unitless) 1.8 

ACCSDP Solids accumulation rate on the land surface (lb/ac/day) 0.13-0.14 

REMSDP DP Fraction of solids removed per day (per day) 0.23-0.27 
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Table 13: Land use changes changes simulated in the Hydrologic Simulation Program 
FORTRAN (HSPF) model of SuAsCo Basin, Massachusetts. 

 

 

 

 

 

 

 

 

 

 

Land use Area 

(Acres) 

Percent 

Area 

(%) 

Percent 

Change 

Area 

(Acres) 

Percent 

Area 

(%) 

Percent 

Change 

Area 

(Acres) 

Percent 

Area 

(%) 

Percent 

Change 

 2035   2065   2100   

Low Density 

Medium Density 

Public/Transitional 

Commercial/Industrial 

High Density 

Open Water 

Agriculture/Pasture 

Wetlands 

Forest 

37850 

29271 

16559 

14410 

13432 

8078 

14848 

26933 

88263 

15 

12 

7 

6 

5 

3 

6 

11 

35 

 

22 

32 

24 

28 

27 

0 

31 

-18 

-19 

 

46389 

34265 

19655 

16571 

15164 

8078 

11924 

23683 

73913 

19 

14 

8 

7 

6 

3 

5 

9 

30 

50 

55 

47 

47 

43 

0 

5 

-28 

-32 

59756 

40498 

24236 

19472 

17185 

8078 

7899 

17985 

54529 

24 

16 

10 

8 

7 

3 

3 

7 

22 

93 

83 

82 

72 

62 

0 

-30 

-45 

-50 

Effective Impervious 

Area 

23966 9.6 26.3 27960 11.2 47 33202 13.3 

 

75 
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Table 14: Summary of Predicted Annual Average Stream Flow Values  and Percentage 
Change for SuAsCo, MA in Future Land Cover Projections for 2005, 2035 and 2100 

Stream Flow Units 2005 2035 Percent 

Change 

(%) 

2065 Percent 

Change 

(%) 

2100 Percent 

Change 

(%) 

Total Runoff Inches 23.0 23.2 1.0 23.4 1.8 23.6 2.7 

Surface Runoff Inches 3.2 4.0 24.6 4.7 43.7 5.5 69.2 

Interflow Inches 3.443 3.402 -1.2 3.4 -1.5 3.3 -3.0 

Evapotranspiration Inches 20.1 19.6 -2.5 19.2 -4.2 18.8 -6.5 

10% High Flows Inches 7.2 7.1 -0.6 7.1 -0.9 7.1 -1.1 

25% High Flows Inches 13.025 13.003 -0.2 13.0 -0.1 13.0 -0.1 

50% High Flows Inches 18.672 18.747 0.4 18.8 0.8 18.9 1.4 

50% Low Flows Inches 4.3 4.5 3.5 4.6 5.9 4.7 8.8 

25% Low Flows Inches 1.3 1.4 4.4 1.4 7.2 1.4 10.7 

10% Low Flows Inches 0.3 0.342 4.3 0.4 7.0 0.4 10.7 

Storm Volume Inches 6.765 6.755 -0.1 6.7 -0.3 6.7 -0.5 

Average Storm 

Peak Volume 

cfs 

 

2045 

 

2070 

 

1.2 

 

2094 

 

2.4 

 

2130 

 

4.1 

 

Baseflow 

Recession Rate 

Inches 

 

0.965 

 

0.962 

 

-0.3 

 

1.0 

 

-0.4 

 

1.0 

 

-0.6 

 

Summer Volume Inches 3.2 3.4 3.7 3.5 6.4 3.6 10.0 

Winter Volume Inches 6.8 6.9 1.5 7.0 3.1 7.1 5.1 

Summer Storms Inches 0.512 0.531 3.7 0.5 6.4 1.0 90.6 

Winter Storms Inches 1.785 1.787 0.1 1.8 0.4 1.4 -22.6 
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Stream Flow Units 2005 2035 Percent 

Change 

(%) 

2065 Percent 

Change 

(%) 

2100 Percent 

Change 

(%) 

Total Runoff Inches 23.0 23.6 2.7 23.9  3.9 24.4  6.0 

Surface Runoff Inches 3.2  3.4 3.2  3.4  5.5  3.5 7.9 

Interflow Inches 3.4 3.8 9.3  4.0 16.8  4.3 24.7 

Evapotranspiration Inches 20.1 20.4 1.6 20.8 3.5 21.0 4.7 

10% High Flows Inches 7.2  7.4 2.5  7.4 2.5 7.5 4.6 

25% High Flows Inches 13.0 13.4 2.5 13.55 3.6 13.8 5.8 

50% High Flows Inches 18.7 19.1 2.5  19.4 3.7 19.8 5.8 

50% Low Flows Inches 4.3  4.5 3.1   4.5 4.5  4.6 6.8 

25% Low Flows Inches 1.3  1.3 3.7  1.4 6.0  1.4 8.7 

10% Low Flows Inches 0.3  0.3 3.7  0.3 6.4  0.4 9.5 

Storm Volume Inches 6.8 6.9 1.8  6.8 1.0  6.9 1.9 

Average Storm 

Peak Volume 

 cfs 

 

2045 

 

2140.8 

 

4.7 

 

2167.6 

 

6.0 

 

2211.1 

 

8.1 

 

Baseflow 

Recession Rate 

Inches 

 

 1.0 

 

 1.0 

 

  -0.2 

 

 1.0 

 

-0.2 

 

 1.0 

 

-0.4 

 

Summer Volume Inches  3.2  3.4 4.4  3.5 7.6  3.6 11.3 

Winter Volume Inches 6.8  7.3 7.2  7.7 13.1  8.0 17.1 

Summer Storms Inches  0.5  0.5 5.5  0.6 9.6  0.6 13.9 

Winter Storms Inches 1.8  1.8 3.5 1.9 5.1  1.9  7.1 

Table 15: Summary of Predicted Annual Average Stream Flow Values  and Percentage Change for 
SuAsCo, MA in Future Climate Change  Projections (RCP4.5) for 2005, 2035 and 2100 
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Table 16: Summary of Predicted Annual Average Stream Flow Values and Percentage 
Change for SuAsCo, MA for Future Land cover change Climate change Projections 
(RCP4.5) in 2100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stream Flow Units 2005 2100  Percent Change (%) 

Total Runoff Inches 23.0 25.1 9.2 

Surface Runoff Inches 3.2 5.9 81.4 

Interflow Inches 3.4 4.2 21.6 

Evapotranspiration Inches 20.1 19.7 -2.1 

10% High Flows Inches 7.2 7.6 5.5 

25% High Flows Inches 13.0 14 7.2 

50% High Flows Inches 18.7 20.1 7.9 

50% Low Flows Inches 4.3 5.0 14.8 

25% Low Flows Inches 1.3 1.5 19.1 

10% Low Flows Inches 0.3 0.4 20.4 

Storm Volume Inches 6.8 6.9 2.3 

Average Storm Peak 

Volume 

cfs 2045 2306.9 12.8 

Baseflow Recession Rate Inches 0.97 1.0 -1.1 

Summer Volume Inches 3.2 4.0 22.2 

Winter Volume Inches 6.8 8.1 19.1 

Summer Storms Inches 0.5 0.6 24.2 

Winter Storms Inches 1.8 1.9 6.4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SuAsCo, MA watershed
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APPENDIX B 

FIGURES 

SuAsCo, MA watershed 
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Figure 2: Land Cover types in SuAsCo Watershed, MA 
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Figure 3: Lakes and impoundments in SuAsCo 
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Figure 4: Conceptual framework to study the changes in LULC and climate change on 
waters systems 
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Figure 5: Empirical Model of LULC and climate change impacts
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: Empirical Model of LULC and climate change impacts 

 



 

 

Figure 6: Watershed Delineation
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: Watershed Delineation 



 

108 

 

Figure 7: Location of Gaging Station in SuAsCo 
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Figure 8: Locations of WWTPs in SuAsCo 

 



 

A) 

B) 

 

Figure 9:  Daily mean Hydrographs at (A) Concord
Lowell streamgage (01099500, 
streamgage (01098530, RCHRES 140)
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Daily mean Hydrographs at (A) Concord River below Meadow Brook at 
Lowell streamgage (01099500, RCHRES 157), (B) Sudbury River at Saxonville 
streamgage (01098530, RCHRES 140) 

River below Meadow Brook at 
Sudbury River at Saxonville 



 

A) 

B) 

Figure 10: Scatter plot for simulated total runoff and observed flow at (A) Concord
below Meadow Brook at Lowell streamgage (01099500, 
River at Saxonville streamgage (01098530, RCHRES 140)
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: Scatter plot for simulated total runoff and observed flow at (A) Concord
below Meadow Brook at Lowell streamgage (01099500, RCHRES 157), (B)

Saxonville streamgage (01098530, RCHRES 140) 

: Scatter plot for simulated total runoff and observed flow at (A) Concord River 
RCHRES 157), (B) Sudbury 



 

A) 

 

B) 

Figure 11: Hydrographs of percent chance daily exceeded for simulated total runoff and 
observed flow at (A) Concord
(01099500, RCHRES 157), (B)
RCHRES 140) 
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Hydrographs of percent chance daily exceeded for simulated total runoff and 
observed flow at (A) Concord River below Meadow Brook at Lowell streamgage 

RCHRES 157), (B) Sudbury River at Saxonville streamgage (01098530, 

Hydrographs of percent chance daily exceeded for simulated total runoff and 
River below Meadow Brook at Lowell streamgage 

River at Saxonville streamgage (01098530, 



 

A) 

 

B) 

 

Figure 12: Daily mean Hydrographs at (A) Assabet River at Nashoba Brook near Acton 
streamgage (01097300, RCHRES 99), (B)
(01097000, RCHRES 142)
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Daily mean Hydrographs at (A) Assabet River at Nashoba Brook near Acton 
RCHRES 99), (B) Assabet River at Maynard streamgage 

(01097000, RCHRES 142) 

Daily mean Hydrographs at (A) Assabet River at Nashoba Brook near Acton 
Assabet River at Maynard streamgage 



 

A) 

B) 

 

Figure 13: Scatter plot for simulated total runoff and observed flow at (A) Assabet River 
at Nashoba Brook near Acton streamgage 
Maynard streamgage (01097000, RCHRES 142)
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Scatter plot for simulated total runoff and observed flow at (A) Assabet River 
at Nashoba Brook near Acton streamgage (01097300, RCHRES 99), (B) 
Maynard streamgage (01097000, RCHRES 142) 

Scatter plot for simulated total runoff and observed flow at (A) Assabet River 
 Assabet River at 



 

 

 

A) 

 

 

B) 

Figure 14: Hydrographs of percent chance daily exceeded for simulated total runoff and 
observed flow at (A) Assabet River at Nashoba Brook near Acton streamgage 
RCHRES 99), (B) Assabet River at Maynard streamgage (01097000, RCHRES 142)
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Hydrographs of percent chance daily exceeded for simulated total runoff and 
observed flow at (A) Assabet River at Nashoba Brook near Acton streamgage 

Assabet River at Maynard streamgage (01097000, RCHRES 142)

Hydrographs of percent chance daily exceeded for simulated total runoff and 
observed flow at (A) Assabet River at Nashoba Brook near Acton streamgage (01097300, 

Assabet River at Maynard streamgage (01097000, RCHRES 142) 



 

 

 
Figure 15: Mean annual 1973
and over the entire Basin simulated by the Hydrological Simulation Program
(HSPF) model of the SuAsCo Basin, Massachusetts
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nnual 1973–2008 water-budget outflow components in inches per acre 
and over the entire Basin simulated by the Hydrological Simulation Program
(HSPF) model of the SuAsCo Basin, Massachusetts 

budget outflow components in inches per acre 
and over the entire Basin simulated by the Hydrological Simulation Program–FORTRAN 
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Figure 16:  Location of observed samples for sediments, Total nitrogen and phosphorus 
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A) 
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Figure 17: A) Scatter plot between observed and simulated mean daily TSS in SuAsCo 
(1973-2008) B) Bar graph between observed and simulated mean daily TSS in SuAsCo 
(1973-2008) 
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Figure 18: Bar Graph between Coefficient of Variance (CV) of observed and simulated 
mean daily TSS in SuAsCo (1973-2008) 
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Figure 20:  Bar Graph between Coefficient of Variance (CV) of observed and simulated 

mean daily Nitrogen in SuAsCo (1973-2008) 

 

 

 

Figure 19: A) Scatter plot between observed and simulated mean daily Total Nitrogen in 
SuAsCo (1973-2008) B) Bar graph between observed and simulated mean daily Total 
Nitrogen in SuAsCo (1973-2008) 
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Figure 20: Bar Graph between Coefficient of Variance (CV) of observed and simulated 
mean daily total nitrogen in SuAsCo (1973-2008) 
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Figure 21: A) Scatter plot between observed and simulated mean daily Total Phosphorus 
in SuAsCo (1973-2008) B) Bar graph between observed and simulated mean daily Total 
Phosphorus in SuAsCo (1973-2008) 

 

Observed daily mean Total Phosphorus (mg/l) 

Si

mu

late

d 

dail

y 

me

an 

Tot

al 

Ph

osp

hor

us 

(m

g/l) 

Reach ID  

Co

effi

cie

nt 
of 

Va

ria

nc

e 

(C

V) 

Bar Graph for Total Phosphorus 



 

123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:  Bar Graph between Coefficient of Variance (CV) of observed and simulated 
mean daily Total Phosphorus in SuAsCo (1973-2008) 
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Figure 23: Changes in Annual Average Water Balance with Future Land Cover Change 
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Figure 24 : Percent Changes in Water Balance with Future Land Cover Change 
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Figure 25: Water-budget outflow components by Hydrologic Response Unit (HRU) 
simulated by the Hydrological Simulation Program–FORTRAN (HSPF) in SuAsCo 
watershed under 2005 land use and projected 2100 land-use conditions 
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Figure 26: Changes in Annual Average Water Balance with Future Climate Change 
Scenario (RCP4.5) 
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Figure 27: Percent Changes in Water Balance with Future Climate Change Scenario 
(RCP4.5) 
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Figure 28: Water-budget outflow components by Hydrologic Response Unit (HRU) 
simulated by the Hydrological Simulation Program–FORTRAN (HSPF) in SuAsCo 
watershed under 2005 and projected 2100 Climate Change (RCP 4.5) Scenario 
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Figure 29: Changes in Annual Average Water Balance with Future Climate Change and 
Land Use Change 
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Figure 30 : Percent Changes in Water Balance with Future Land use change and Climate 
Change Scenario 

 

 

 

 

 

 

 

 

 

 

 

 

Pe

rce

nt 

(%

) 



 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 : Water-budget outflow components by Hydrologic Response Unit (HRU) 
simulated by the Hydrological Simulation Program–FORTRAN (HSPF) in SuAsCo 
watershed under 2005 and projected 2100 Land Use and Climate Change Scenario 
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: Comparison of independent change in land cover and climate with combined 
change in land cover and climate 
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