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ABSTRACT 

A HIGH-RESOLUTION PALEOENVIRONMENTAL AND PALEOCLIMATIC 

HISTORY OF EXTREME EVENTS ON THE LAMINATED SEDIMENT RECORD 

FROM BASIN POND, FAYETTE, MAINE, U.S.A. 

 

SEPTEMBER 2015 

 

DANIEL R. MILLER, B.S., THE OHIO STATE UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Distinguished Professor Raymond S. Bradley 

 

 

Future impacts from climate change can be better understood by placing modern 

climate trends into perspective through extension of the short instrumental records of 

climate variability.  This is especially true for extreme climatic events (such as 

hurricanes, floods, fires and droughts), as the period of instrumental records provides 

only a few examples and these have likely have been influenced by anthropogenic 

warming. Multi-parameter records showing the past range of climate variability can be 

obtained from lakes. Lakes are particularly good recorders of climate variability because 

sediment from the surrounding environment accumulates in lakes, making them sensitive 

recorders of climate variability and providing high-resolution histories of local 

environmental conditions in the past. Furthermore, algae and other microorganisms 

produced within the lake (and its surrounding catchment area) can also be used as 

sensitive recorders of past environmental conditions of the lake, such as lake temperature 

and lake productivity. In some cases, such as at Basin Pond, Fayette, Maine, sediment is 

preserved efficiently enough to produce distinguishable annual laminations (varves) in 

the sedimentary record. The varved record at Basin Pond was used to construct an 

accurate, highly-resolved age-to-depth model over the past 300 years.     
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Using a multi-proxy analysis, including organic biomarker analysis of molecular 

compounds and sedimentological features preserved in the sediment record, a history of 

environmental change at Basin Pond was constructed. Basin Pond and its surrounding 

catchment area has been affected by human activity throughout the 20th century, as seen 

through the fluctuations in lake productivity levels mid-century. The most significant 

change, seen as a drop in dinoflagellate algae activity in the lake in the mid-20th century, 

is most likely an effect of the chemical treatment of Basin Pond to remove “unwanted 

species” from the lake environment.  

  These sedimentary analyses were compared with the record of known extreme 

events (from instrumental measurements and historical documents), including 129 years 

of high-resolution (daily) precipitation and temperature meteorological data, 19 tropical 

systems over the past 145 years, and two known wildfire events over the past 190 years. 

While only the largest storms show a possible signal in the sedimentary record, longer-

term trends in precipitation, including the increase in precipitation seen throughout the 

last half of the 20th century and the decreased precipitation of the mid-20th century, are 

thought to be captured in the analysis of long-chain n-alkane distributions. Furthermore, 

Polycyclic Aromatic Hydrocarbons (PAHs), a class of organic compounds that can be 

used to trace combustion activity, were found in abundance in the Basin Pond 

sedimentary record. Peaks in the abundances of two PAHs (retene and chrysene) and the 

ratio retene/(retene + chrysene) were found to be highly correlated with the known 

wildfire events occurring in the historical period, demonstrating the potential for using 

these compounds and ratio as a robust proxy for regional wildfire events in northeastern 

U.S lacustrine sediment records.   
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CHAPTER 1 

INTRODUCTION AND PROJECT BACKGROUND 

1.1 Introduction 

Climate change is one of the most complex and challenging issues facing the 

world today. A changing climate will affect humankind economically and alter our 

physical environment, presenting ethical challenges in how we respond. Future impacts 

from climate change can be better understood by placing modern climate trends into 

perspective through extension of the short instrumental records of climate variability.  

This is especially true for extreme climatic events (such as hurricanes, floods, fires and 

droughts), as the period of instrumental records provides only a few examples and these 

have likely have been influenced by anthropogenic warming.  

The northeastern United States (NE US) is one of the most heavily-populated and 

developed regions of the world. The region is comprised of complex, sprawling urban 

centers and rural regions, both of which are vital to the economic and cultural character 

of the region. Furthermore, both urban and rural regions in the NE US contain 

communities that have been historically susceptible to extreme climatic events and 

climate change (Horton et al., 2014). Over the past 120 years, average temperatures in the 

NE US have increased by 2ºF, precipitation has increased by more than 10%, and sea 

levels have also risen (Kunkel, 2013). Despite our knowledge of the long-term trends in 

the region’s climate, little is known about how extreme events have been affected by 

climate change. A future increase in the frequency of climate extremes due to climate 

change would have major social and economic impacts in the NE US (Horton et al., 

2014). However, the natural frequencies at which extreme events occur in the NE US are 
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presently unknown. 

In order to better understand how extreme events are evolving with climate 

change in the NE US, this thesis project aims to (1) determine how known extreme events 

are documented by instrumental measurements and historical records, (2) to identify how 

human activities and rapid environmental change in lakes and lake catchment areas are 

expressed in the sedimentary record, and (3) to distinguish and evaluate how climatic 

events are expressed in the physical and geochemical properties of a lacustrine 

sedimentary sequence. Using this information, analysis and interpretation of the 

sedimentary record can be used to extend the record of known extreme events beyond the 

brief period of instrumental measurements into pre-historic times, providing a better 

understanding of the background frequencies of extreme events in the region before 

anthropogenic forcing.  

To address these questions, a suite of sedimentary, organic geochemical, and 

inorganic geochemical techniques have been used to examine the record of hurricanes, 

floods, droughts, and fires from a single site. Such a study has not yet been conducted at a 

lake in the NE US. The sedimentary record of Basin Pond, Fayette, Maine, presents a 

unique archive of paleoenvironmental information in the region. Basin Pond is unique in 

that the sedimentary record provides an excellent archive of paleoenvironmental 

conditions due to the discrete nature of sediment deposition. While many lakes are 

diamictic and experience turnovers of the water column, helping to transport oxygen to 

all depths, Basin Pond’s water column is meromictic, or is sufficiently stratified to 

prevent any late turnovers (Wetzel, 1983; Frost 2005). As a result, the sediments are 

preserved with minimal mixing, and likely form annual layers (“varves”) because the 
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bottom waters are continuously devoid of oxygen (O’Sullivan, 1983), making this lake an 

ideal target for a high-resolution paleoclimate analysis.  

1.2 Overview of Geologic and Environmental History of the Northeastern U.S. 

The modern landscape of the NE US – particularly New England – was largely 

shaped into today’s environment during the last glaciation of the Northern Hemisphere 

and the subsequent deglaciation leading from the Pleistocene Epoch into the Holocene 

Epoch. Near the end of the Pleistocene epoch, the Laurentide Ice Sheet covered most of 

northern North America, including almost all of New England, extending to the 

Ronkonkoma Moraine on Long Island, NY and Georges Bank in the Gulf of Maine 

(Stone and Borns, 1986).  Throughout the transition from the Pleistocene into the 

Holocene epoch, deglaciation occurred across the region in a south – to – north 

progression.   

Extensive work has been performed over the past century on documenting the 

glacial melt progression across New England.  In the early 1920’s, geologist Ernst Antevs 

began constructing the New England Varve Chronology (NEVC) from glacial deposits 

preserved in the annually laminated sediment sequences of glacial lake Hitchcock 

(Antevs, 1922; Ridge et al., 2012). Since then, more work has been performed to update 

the original sequence using radiocarbon dating techniques as well as additional varve 

chronologies, helping to form the new North American Varve Chronology (NAVC), a 

continuous sequence spanning most of the last deglaciation (18,200-12,500 yr BP) (Ridge 

et al., 2012).     

A slightly different story unfolds when addressing the timing of the deglaciation 

of Maine and eastern New England. Glacial geology of Maine also records the northward 
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recession of the Laurentide Ice Sheet as seen in the NAVC, but on differing time scales 

than Western New England. The pattern of deglaciation across southern Maine has been 

reconstructed from various end moraines, fans, and deltas, using radiocarbon dating to 

constrain the chronology more accurately (Borns Jr. et al., 2004; Weddle and Retelle, 

2001). These chronologies show that Maine was deglaciated in a northward progression 

between 14,500-10,000 yr BP, with rapid recession occurring between 13,000-11,000 yr 

BP during the Bolling/Allerod time period (Borns Jr. et al., 2004). In south-central 

Maine, deglaciation can be constrained even more through a radiocarbon age taken from 

a Portlandia Arctica mollusk shell in Lewiston, Maine, dating to 12,300 yrs BP (Borns Jr. 

et al., 2004; Weddle and Retelle, 2001). The deglaciation of Maine is illustrated in Figure 

1.1 (Borns Jr. et al., 2004). 

Through this deglaciation process, the landscape was drastically altered. As 

glaciers moved, they scoured the landscape and bedrock, producing rock basins and 

damming river valleys. In the NE US, as the ice receded, these basins and dammed 

valleys became lakes and ponds. One other particular feature formed by deglaciation are 

the numerous kettle holes and kettle ponds found throughout the NE US (Bennett and 

Glasser, 2011). As a glacier recedes, large ice blocks calve from the front terminus of the 

glacier and can become partially or entirely buried by glacial outwash. As the large 

blocks of ice melt, kettle holes are left in place of the ice, which fill with water and form 

kettle ponds (Bennett and Glasser, 2011).  While most kettle ponds are less than ten 

meters deep, some kettle ponds, such as Basin Pond, can be much deeper.   

Following deglaciation of Maine and the NE US, vegetation migrated northward, 

slowly shifting from tundra to a heavily forested landscape over a 1,000-4,000 year 
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period (Davis and Jacobson Jr., 1985; Frost, 2005). In the region of south-central Maine, 

high-resolution postglacial pollen records show that a tundra landscape dominated the 

area from deglaciation to 10,800 14C years BP, when an abrupt increase in arboreal pollen 

concentrations occurred, indicating a transition to woodland, and then to forest by 7,300 

14C years BP (Anderson et al., 1992; Frost, 2005). The landscape has undergone little 

change since then, apart from anthropogenic disturbances over the past 200 years 

(Anderson et al., 1992; Frost, 2005).  

Figure 1.1: Deglaciation History of Maine, Borns et al. (2004). Red Star indicates 

location of Basin Pond, Fayette, Maine.  
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1.3 Laminated Sediment Records in the NE US 

Multi-parameter records showing the past range of climate variability can be 

obtained from lakes. Lakes are particularly good recorders of climate variability because 

sediment from the surrounding environment accumulates in lakes at relatively high rates, 

providing high-resolution histories of local environmental conditions in the 

characteristics of their sediments (Bradley, 2014; Ellis et al., 2004). Therefore, sediment 

cores can potentially provide detailed climate and paleoenvironmental records in their 

stratigraphies.  

One caveat of using lake sediment cores for paleoenvironmental and paleoclimate 

reconstructions is that these records are usually dependent on radioisotopic dating 

methods to create accurate age-to-sediment depth models, in order to look at these 

sediment records with respect to time. Accurate dating is of critical importance in 

paleoclimatic studies, as without them it is impossible to make inferences as to when 

certain climatic shifts or events occurred (Bradley, 2014). Therefore, having a precise age 

model for a sedimentary record is a fundamental component of paleoclimatic studies. 

In certain cases, lacustrine systems can record the annual climatic cycle extremely 

well through the deposition and preservation of annually resolved laminated sediment 

(Anderson and Dean, 1988; Bradley, 2014; Zolitschka et al., 2015). These laminations, 

known as “varves”, can be immensely useful in paleoclimatic and paleoenvironmental 

studies, as they allow for a sub-annual analysis of the sedimentary sequence and can 

bridge the divide between long, poorly-resolved sediment records and short, detailed 

climatic monitoring records (Zolitschka et al., 2014). However, varves are rarely 

preserved in lacustrine and marine settings due to multiple processes that can mix, 
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disturb, or alter the preservation of these annual laminations (Bradley, 2014).  

One of the main characteristics of lakes with varved sedimentary sequences is 

maintaining continuous stratification of the water column, known as meromixis (Frost, 

2005; O’Sullivan, 1983). In order to sustain a strongly stratified water column, 

meromictic lakes are usually deep enough to prevent any seasonal overturning or mixing 

of the water column throughout the year from surficial processes (e.g. wind-driven 

mixing of the water column, etc…). Due to this stratification, bottom waters are devoid 

of any oxygen, known as anoxia (O’Sullivan, 1983; Wetzel, 1983). Anoxic conditions at 

the sediment-water interface may also be separated from the upper water column by a 

salinity gradient, or a chemocline, that makes the bottom waters of meromictic lakes an 

unfavorable place for aerobic organisms to live (Bradley, 2014; Frost, 2005; Wetzel, 

1983). As a result, there is a lack of organisms to cause bioturbation of the sediment, 

aiding in the preservation of the laminated sediments (Zolitschka et al., 2015).  

Varved sediments have been classified into four types based on their composition 

(O’Sullivan, 1983).  Ferrogenic and calcareous laminae are formed by seasonal changes 

in the chemical precipitation at a site (O’Sullivan, 1983). Clastic varves occur mainly in 

polar regions and are caused by a large influx of allochthonous sediment washing into a 

lake for a portion of the year. Each clastic laminae is comprised of a coarse bottom 

caused by the allochthonous material being washed in during the spring and summer 

seasons from fluvial input, with a clay-rich cap that is formed during the winter season 

(Frost, 2005; O’Sullivan, 1983). Finally, biogenic laminae are formed by seasonal 

deposition of organic material, usually caused by blooms of microalgae in certain seasons 

of the year. Biogenic varves are composed of a light-colored, diatom-rich layer deposited 
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from a spring or summer bloom, with a darker, humous-rich layer deposited during the 

iced-over winter season (O’Sullivan, 1983).    

In the central and northeastern United States, varved sediment sequences from 

several lakes have been utilized in paleoenvironmental studies. At Elk Lake, Minnesota, 

studies led by Walter Dean and J. Platt Bradbury have been conducted looking at the 

continuous varved sediment record that spans the entire Holocene epoch (Bradbury and 

Dean, 1993). Extensive analyses of this sediment record have included varve thickness, 

gray-scale density, various inorganic geochemical and stable isotope measurements, all 

aimed at reconstructing past climatic changes in the central US throughout the Holocene 

(Bradbury and Dean, 1993; Bradbury et al., 2002; Dean, 2002, 1997; Dean et al., 2002). 

The varved sediment record at Fayetteville Green Lake, New York, has been studied 

looking at late glacial-Holocene atmospheric circulation and precipitation across the 

region (M. Kirby et al., 2002; Kirby et al., 2001; M. E. Kirby et al., 2002). Pollen records 

have been reconstructed at several sites with laminated sediment records (e.g. Pout Pond, 

New Hampshire: Allison et al., 1986; Laurel Lake and Stockbridge Bowl, Berkshires, 

Massachusetts: Ludlam, 1976; Soukup, 1975). Finally, a laminated sediment record from 

Lower Mystic Lake, Boston, Massachusetts, was used to reconstruct a hurricane record 

from varve thickness (Besonen, 2006; Besonen et al., 2008). This record will be 

discussed in more detail later in this chapter.  

It is important to note that the laminated sediment record at Basin Pond, Fayette, 

Maine, has also been the center of several studies over the past three decades (Clark et 

al., 1996; Clark and Royall, 1996, 1994; Doner, 1990; Frost, 2005; Gajewski, 1988; 

Gajewski et al., 1987; Perkins, 1985). The focus and results of these studies will be 
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discussed in detail in chapter two.   

1.4 The Record of Extreme Events in the Northeastern U.S. 

The NE US is historically susceptible to extreme climatic events, such as tropical 

storms, wildfires, extreme flooding events and severe droughts. Landfalling tropical 

storms in the region were some of the deadliest and costliest natural disasters on Earth 

(e.g. Hurricane Sandy, 2012) (Murnane and Liu, 2004; National Oceanic and 

Atmospheric Administration (NOAA), 2014a). The NE US has also been home to some 

of the deadliest and largest wildfires in North America during the historical period (e.g. 

Miramichi Fire, 1825) (Fahey and Reiners, 1981; Fobes, 1948). Furthermore, with sixty-

four million people living in the Northeastern United States, the Northeast Megalopolis is 

home to several of the largest cities in the US, the nation’s capital, and several of the 

world’s largest companies, businesses, and financial centers (Horton et al., 2014).  

Despite the fact that the NE US is prone to extreme climatic events, little is 

known about the long-term frequency of these events, as accurate meteorological records 

and observational data only extend back roughly 100 years across the region. To address 

this issue, extensive work has been conducted on reconstructing longer records of 

extreme events in the NE US. The work thus far has been focused in two main areas: 

compilations and assessments of historical records from recent centuries, and 

paleoclimate reconstructions of extreme events – particularly of hurricane strikes, 

wildfires, and droughts and flooding – on multi-centennial to millennial time scales.  

1.4.1 Extreme events in the Historical Period 

Historical records of extreme events in the NE US exist from present day and 

extend back into the late 15th Century. In 1494, Christopher Columbus encountered and 
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documented the first known European record of a “true West Indian storm”, or a 

hurricane, while on his second voyage to the Americas (Ludlum, 1963). This was the first 

European record of extreme events in the region, and over the next four centuries, 

documents, journal entries, and news archives were the primary source of information on 

extreme events. In the middle to late 19th century, meteorological observations began in 

many areas of the NE US, allowing for the tracking and impact of events to be recorded 

more accurately than ever before. Another large step forward in tracking extreme events 

occurred in the middle 20th century, with the beginning of satellite era and aircraft storm 

reconnaissance. 

1.4.1.1 Modern Records (1944 – present) 

The modern era, or the time period from 1944 to present day, is defined by a 

couple of major developments in technology and in the field of meteorology. In storm 

tracking, the establishment of the modern storm monitoring and detection system can be 

dated to 1944, when routine aircraft reconnaissance missions of North Atlantic Basin 

storms began (Goldenberg et al., 2001). This aided in producing reliable and accurate 

data on the positioning, movement, and strength of the storm, whereas prior to this, 

records were taken from surface observations and historical accounts. The second 

primary development in tracking most climatic events came in the early 1960’s with the 

development and use of satellites. TIROS III (Television Infrared Observational 

Satellite), launched in July of 1961, was the first satellite to ever photograph a hurricane 

from above the atmosphere. While Hurricane Esther was the first hurricane to be 

discovered by satellite, four other hurricanes during the 1961 hurricane season were also 

photographed: Anna, Betsy, Carla, and Debbie (Cortright, 1968). Furthermore, it became 
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evident through the images that there was a correlation between hurricane intensity and 

the degree of organization seen in the satellite images of the storms. Outside of tracking 

hurricanes, satellites have also been used to identify and track wildfire expansion, as 

smoke plumes and burn scars can be identified in satellite imagery. These major 

developments brought in a new era of wildfire management and storm tracking, making it 

possible to remotely track the lifespan of an extreme event.  

Statistical studies have been able to utilize the vast amount of data from this time 

period by looking at storm tracks and their impacts on the NE US. Work has also been 

done on the influence of tropical storm precipitation on annual extreme precipitation 

amounts. Barlow et al. (2011) performed an analysis of daily observational data from 

1975-1999 over North America and found that the majority of extreme precipitation 

events along the east coast (especially in the northeastern US) are associated with 

hurricane-related activity  

1.4.1.2 Pre-Modern Records (1851-1944) 

Prior to 1944, high-resolution climate and meteorological data regarding extreme 

events becomes more scattered but still exists. Daily meteorological data, including 

precipitation and temperature measurements, exist for a handful of stations across the NE 

US, some of which extend back to the 1880’s. This is extremely useful in identifying 

extreme events such as droughts, storms, and fires in the region.  

Although reliable data on hurricane tracks and intensities are scarce prior to 1944, 

much work has been done over the past several decades on compiling a North Atlantic 

Hurricane Database back through 1851. Some of the first efforts to construct a hurricane 

database were done in the 1960’s to help provide information on tropical storm 
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forecasting (Murnane and Liu, 2004). From this, a historical data set of all tropical storm 

activity (including hurricanes and tropical storms) in the North Atlantic Basin from 1851 

through present day – known as HURDAT – was created. This database has been used as 

the primary source of information in studies pertaining to hurricane activity in the 

Atlantic (Jarvinen et al., 1984; Murnane and Liu, 2004). HURDAT is based upon the 

“best tracks” information of storms from 1851 to present, using synoptic times for best 

track times (00, 06, 12, and 18z).   

Recently, a second generation of the database, known as HURDAT2, expanded 

upon the original format, adding “best tracks” available from the Automated Tropical 

Cyclone Forecast system database. HURDAT2 includes non-synoptic best track times to 

track maximum rainfall and intensity, tropical depressions (the original HURDAT only 

included tropical storms and hurricanes), and best track wind radii (Landsea et al., 2012). 

Storm tracks and intensities from 1851 through the present day can been seen in Figure 

1.2, based upon data from the HURDAT2 database (National Oceanic and Atmospheric 

Administration (NOAA), 2014a). Apart from the National Hurricane Center databases 

and meteorological observation archives, the other primary source of information on 

extreme events are news archives. A handful of extreme events have been well 

documented by local newspapers and news stations throughout the NE US, including 

floods and wildfires. For example, in October of 1947, newspapers across New England 

documented a week-long spread of wildfires throughout many towns in southern Maine, 

dubbing the event “The Week Maine Burned” (Fahey and Reiners, 1981; Fobes, 1948). 

This wildfire event caused an estimated $25 - $30 million in 1947 dollars ($230 - $280 

million in 2006 dollars), burned 2,655 structures, killed 16, and injured over 10,000 
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people, making it one of the costliest natural disasters in Maine history (Butler, 2014; 

Fahey and Reiners, 1981; Fobes, 1948). 

1.4.1.3 Early Historical Period (1500-1850) 

Prior to 1850, there is very little information about extreme events in the NE US.  

As there are no (or extremely limited) observational data prior to this time period, the 

main source of data come from news articles, personal diaries, or ship logs about the 

impact of these events, mainly landfalling hurricanes. Several compilations of certain 

storms or time intervals have been made. An example of this is the work of Noves 

Darling, Esq. in 1842, where Darling compiled all the historical accounts of a hurricane 

passing over New England in September 1815, including 28 accounts from sea and over 

25 accounts from land (Darling, 1842).  Accounts of wildfires in the region are extremely 

limited; only a small handful of accounts record past wildfire activity prior to the 20th 

Figure 1.2 – Hurricane Tracks from 1859 – present within 150 miles of Boston, MA, 

USA. (National Hurricane Center, NOAA) 
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century.  One such event occurred in 1825, when the Great Miramichi Fire burned an 

estimated three million acres of land across Maine and New Brunswick, killing over 160 

people (Fobes, 1948). 

Perhaps the most influential compilation of all records during this time-period of 

American history comes from David Ludlum.  In 1963, Ludlum published a compilation 

of hurricanes from 1494 - 1870.  The first account of a hurricane in the Americas came 

from Christopher Columbus’s second voyage in 1494, where he described a “true West 

Indian storm” (Ludlum, 1963).  Over the next several centuries, progressively more 

records of hurricanes (especially landfalling hurricanes) were kept as the Americas 

become more populated. Ludlum’s 1963 work has been the main source of historical 

hurricane information for studies over the past 50 years from the period prior to 1850.  A 

summary of all storm records found by Ludlum can be seen in Table 1.1.    

1.4.2 Extreme Events in Paleoclimate and Paleoenvironmental Studies 

One of the fundamental issues when looking at the natural variability of extreme 

events in the Northeastern U.S. is that our records from the historical period are 

inadequate when attempting to determine variation in frequencies on centennial or longer 

timescales. Reliable records, as discussed previously, only extend back roughly 100-150 

years in the US, as records prior to this are sparse and potentially have large error.  

Time Period Hatteras North Hatteras South Gulf Coast Total 

1501-1700 7 5 5 17 

1701-1814 29 40 23 92 

1815-1870 29 56 51 136 

T able 1.1: Summary of storm records by time period, found by Ludlum (1963). 
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Therefore, accurately reconstructing extreme events from pre-historic times is essential 

for looking at the natural variability and frequencies of storms, droughts, floods, and 

wildfires in the NE US. Fortunately, a growing amount of paleoclimate research in recent 

years has focused on reconstructing records of hurricane frequencies, precipitation trends, 

and wildfire histories. 

1.4.2.1 Paleotempestology    

Paleotempestology, or the study of prehistoric tropical cyclones, is a growing 

field of research that has attempted to extend our records of hurricane activity in the 

Atlantic Basin thousands of years into the past (Murnane and Liu, 2004; Nott, 2004).  

While multiple types of records have been studied (tree rings, corals, speleothems, and 

sediment records), sedimentary records have dominated this field of study, particularly in 

the NE US. Nevertheless, tree ring studies (e.g. Miller et al., 2006; Reams and Van 

Deusen, 1996), coral studies (e.g. Hetzinger et al., 2006, 2008), and speleothem records 

(e.g. Frappier et al., 2007) have given valuable insight into hurricane activity across the 

eastern US and North Atlantic Basin, in some cases on sub-annual time scales.  

The majority of work over the past two to three decades in the field of 

paleotempestology has been through the use of geological sediment records from coastal 

lakes, marshes, and lagoons (Murnane and Liu, 2004).  These coastal lakes, marshes, and 

lagoons have a barrier, usually a narrow strip of sandy land, blocking it from the ocean. 

However, during intense storms such as severe hurricanes, these barriers can be 

overwashed due to high surf and storm surge flooding, and sand layers from the storm are 

deposited in the protected lake, marsh, or lagoon. These sand layers deposited during an 

overwash storm event can be easily identified in sediment cores from these areas (Figure 
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1.3), making them a potential proxy for past hurricane strikes on much longer time scales 

than any of the other proxy records previously discussed (Donnelly et al., 2001; Murnane 

and Liu, 2004; Nott, 2004). It is important to note that this while this work originated 

largely in the Gulf Coast region of the U.S., it has been applied to a handful of sites in the 

Northeastern U.S. in recent years. 

The first overwash records for the 

NE US were obtained by Dr. Jeffrey 

Donnelly and colleagues at Brown 

University. In Donnelly et al. (2001), a 700 

year record from Succotash Salt Marsh, 

East Matunuck, Rhode Island, included six 

overwash deposits. The top four fans were correlated with known hurricane strikes in the 

historical period (1954, 1938, 1815, and 1635/1638).  The remaining fans were estimated 

to have been deposited between 1411-1446 AD and 1295-1407 AD through radiocarbon 

dating (Donnelly et al., 2001). A similar study was done by Donnelly and colleagues in 

2001 on a salt marsh in Whale Beach, New Jersey.  This study found two major storm 

strikes over the past 700 years, including one seemingly correlated with the hurricane of 

1821, and another prehistoric storm dated between 1278-1438 AD. Interestingly, the Ash 

Wednesday “Nor’easter” of 1962 also was recorded as an overwash event, indicating that 

at this site both Nor’easters and hurricanes can produce sufficient surge to create an 

overwash event in the sediment record. 

Other records from New England have been obtained over the past decade 

producing similar hurricane reconstructions. A record from Brigantine Marsh, New 

Figure 1.3: Donnelly et al., 2001 
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Jersey, indicated several fans relating to both Nor’easters and hurricanes, including two 

prehistoric storms dating between 550 – 1400 AD (Donnelly et al., 2004). Several salt 

marshes on western Long Island were studied and produced a record of hurricane activity 

over the past 3,500 years, including storm deposits that likely correspond to events in 

1893, 1821, 1788, and 1693 (Scileppi and Donnelly, 2007). These records showed little 

evidence of intense hurricane strikes over several hundred years prior to the 18th century, 

with multiple overwash deposits during the time period from ~2,200 – 900 years before 

present. More recently, advances in technology have allowed for new techniques to be 

utilized in core analysis.  In a study by Boldt et al. (2010), X-Ray Fluorescence (XRF) 

scanning was performed on sediment cores from Mattapoisett Marsh, Cape Cod, in 

southeastern New England. Radiographs from each core were used to find overwash 

deposits at a high resolution (200 microns) as seen in Figure 1.4. This study found that 23 

prehistoric (pre-1630) storm layers were deposited, or an average of 1.5 events per 

century. Interestingly, this record produced a relatively constant hurricane frequency over 

the past two millennia, with the 15th-16th centuries being the most active time period of 

the past 2,000 years. Due to the high resolution of this record, this is to date the longest 

and most complete reconstruction of hurricane-induced overwash in the northeastern U.S. 

(Boldt et al., 2010). 

Despite the fact that the majority of work done in paleotempestology has focused 

on sediment overwash studies in the NE US, there are several limitations that influence 

the results seen in these studies. One of the most apparent limitations pertains to the age 

models used in these studies, and more specifically the dating of the overwash deposits. 

Almost all of these studies rely on a small number of radiocarbon dates occurring near an 
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overwash deposit in the sediment core. The errors associated with radiocarbon dating can 

be substantial, as seen in Donnelly et al. (2004), where a prehistoric overwash record had 

an age range of roughly 850 years (550AD – 1400 AD).   

While overwash studies provide invaluable information about landfalling storms 

in a region, more work is needed to independently confirm the results seen in these 

studies. In addressing the issue of the low resolution of these studies, highly-resolved 

records of hurricane activity extending back into prehistoric times are needed to be able 

to make accurate statements on the variability and frequencies of hurricanes. One such 

study has been done by Mark Besonen and colleagues at Lower Mystic Lake outside of 

Boston, Massachusetts. This record is particularly significant due to the annual 

Figure 1.4: XRF Radiograph images from Boldt et al. (2010), with identified 

storm deposits correlated across cores. 
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laminations (“varves”) that are present 

throughout the recent sediment.  The 

varves in this sediment record are caused 

by the chemical stratification of the lake 

water due to mixing of salt water into the 

lake during periods of high tide or low 

outflow, which aided in making the water 

anoxic at depth, protecting the sediment 

from bioturbation and allowing fine 

laminations to occur over the last 

millennium (Besonen, 2006). These 

varves allowed an annually-resolved 

hurricane record to be reconstructed for 

the Boston area by analyzing the thickness of graded beds throughout the sediment 

record. Results from this study, seen in Figure 1.5, show that almost all of the prominent 

graded beds in the historical period correspond to years in which category 2 to 3 

hurricanes are known to have made landfall in the region (Besonen et al., 2008). Looking 

at prehistoric times, it was found that hurricane activity was high from the 12th – 16th 

centuries, and was low from the 17th – 19th centuries.  While these results are different 

from the overwash study results from this region, they are consistent with other 

paleoclimate indicators for the North Atlantic such as sea surface temperature (Besonen 

et al., 2008). Therefore, this study shows the most complete and accurate record of 

hurricane activity for the greater Boston area. However, this is a single record, so in order 

Figure 1.5: Varve Thickness and 

Hurricane History from Boston, MA, 

USA (Besonen 2006) 
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to make accurate statements about landfalling hurricane frequencies over larger areas and 

regions (such as the entire NE US), more study sites are needed to validate these findings 

and to aid in further constraining results seen in overwash studies.  

1.4.2.2 Flood Events in Paleoclimatic Studies 

While hurricanes can cause widespread flooding and catastrophic damage across a 

region, other types of extreme precipitation events, such as non-hurricane related 

flooding and severe droughts, can have severe consequences in the NE US. Some of the 

earliest work regarding flood frequencies throughout the Holocene found that even slight 

changes in climate can cause significant changes in flood frequency in a short period of 

time (Ely, 1997; Knox, 2000, 1993). Recently, increased interest and attention has been 

directed into flood records, as understanding how climate effects changing flood 

variability has “low to medium confidence” (IPCC, 2012). Studies have begun to 

reconstruct precipitation regimes in regions throughout the world using a multi-proxy 

approach, combining multiple analyses and proxies in a single study. This approach can 

be particularly advantageous for determining laminations linked to past floods 

(Schillereff et al., 2014).  

Recent work on lacustrine sediment records from Europe have used analyses such 

as bulk density, magnetic susceptibility, elemental composition through X-Ray 

Fluorescence, grain size, and carbon and nitrogen isotope analysis to identify flood layers 

and to determine flood frequencies across the continent. These studies have been 

performed in the Swiss and North Italian Alps (Glur et al., 2013; Wirth et al., 2013), and 

southern Scandinavia (Støren et al., 2012; Støren and Paasche, 2014), resulting in records 

that extend back thousands of years.  In the United States, paleoflood studies have been 
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completed using similar approaches in the western U.S. (Ely, 1997), in the Upper 

Mississippi River Valley and Midwestern U.S. (Knox, 2000, 1993), and the Northeastern 

U.S. (Noren et al., 2002; Parris et al., 2010).  

1.4.2.3 Droughts in Paleoclimate Studies 

Long term fluctuations in the precipitation balance, including precipitation 

extremes such as droughts, have also been studied across the United States in recent 

years. Some work looking at drought frequency has been done using tree-ring 

chronologies. For example, in a study by Pederson et al., thirty-two tree ring chronologies 

were used to reconstruct a precipitation history for New York, a city that has suffered 

from several water warnings and emergencies in the past three decades despite an 

increase in precipitation and no severe droughts. Research found that droughts similar to 

the last severe drought, occurring from 1962-1966, were more frequent and longer in 

duration throughout the 16th and 17th centuries (Pederson et al., 2012). 

Over the past decade, lake level reconstructions extending throughout the 

Holocene have been performed in the Midwestern and NE US using a multi-proxy 

analysis of transects of cores from kettle ponds. For example, Shuman and Donnelly 

reconstructed past fluctuations in lake level in two small closed kettle ponds in 

southeastern Massachusetts using ground-penetrating radar (GPR). GPR was used to 

identify unconformities located near shore in lacustrine sediments, which provide the 

approximate magnitude of past lake level declines (Shuman and Donnelly, 2006).  Since 

then, more proxies have been used in combination with GPR, including pollen 

assemblages, stable isotope analysis, Loss-on-Ignition (LOI) analysis, and X-Ray 

Fluorescence (XRF) analysis (Newby et al., 2014; Shuman et al., 2009; Valero-Garcés et 
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al., 1997). 

1.4.2.4 Extreme Event Reconstructions in Biogeochemical Studies 

Another area of research that can be used to examine a precipitation regime in 

sedimentary records is through studying the biogeochemistry of the sediment records. 

Organic geochemical proxies have been increasingly used in studies to reconstruct 

paleoenvironmental and paleoclimatic variability  in lacustrine sediment records 

(Castañeda and Schouten, 2011). Organic matter preserved in lacustrine sediment can 

record signals of past environmental conditions at the time of deposition, making them an 

advantageous and effective tool in environmental reconstructions. In particular, 

compounds preserved in sediments that can be traced to a particular organism or process, 

known as biomarkers, can be analyzed to monitor lake conditions throughout time 

(Castañeda and Schouten, 2011). Biomarker work can be particularly useful when a lake 

efficiently preserves organic matter in its sedimentary sequence. 

1.4.2.4.1 Precipitation History using Biogeochemistry 

One such biomarker class that has been used extensively in paleoenvironmental 

studies is straight-chained n-alkanes. Due to their stable molecular structure and lack of 

functional groups, n-alkanes are long-lived molecules that can survive in the fossil record 

for millions of years (Eglinton et al., 1991; Peters et al., 2005). n-alkanes are produced by 

numerous organisms, and the dominant chain lengths, carbon number distributions, and 

isotopic compositions can vary depending on their source (Bush and McInerney, 2013; 

Castañeda and Schouten, 2011). Long-chain n-alkanes (C27 – C35) have been found to be 

produced mainly in the epicuticular waxes of higher terrestrial plants (Bush and 

McInerney, 2013; Castañeda and Schouten, 2011; Eglinton and Hamilton, 1967). Short-
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chain (C17 - C21) n-alkanes are mainly produced by aquatic algae (Cranwell et al., 1987; 

Giger et al., 1980), while mid-chain (C23 - C25) n-alkanes are a dominant component of 

aquatic plants, or macrophytes (Ficken et al., 2000).  

Due to particular n-alkane distributions that are produced by certain source 

organisms, biogeochemical studies of sedimentary n-alkanes have focused on the 

application of ratios of particular chain lengths in an effort to reconstruct past 

environmental conditions (Bush and McInerney, 2013). Long-chain (C27+C29+C31) to 

short-chain (C15+C17+C19) ratios have been used to assess the relative input of terrestrial 

versus aquatic sources of organic matter in lacustrine settings (Castañeda and Schouten, 

2011; Meyers, 1997; Sun et al., 2013). The Average Chain Length (ACL) ratio of n-

alkane distributions in sediment can be used in some lakes to look at aridity and 

temperature fluctuations over time (Peltzer and Gagosian, 1989; Rommerskirchen et al., 

2003; Zhang et al., 2006). The “Paq ratio” describes the abundance of mid-chain n-

alkanes over the sum of mid-chain and long-chain n-alkanes, and has been used to 

estimate moisture-dependent variations in lake sediments (Ficken et al., 2000; Sun et al., 

2013; Zhou et al., 2010).  

Other measurements commonly utilized include compound-specific carbon and 

hydrogen isotope measurements (δ13C and δD, respectively). δ13C values of long-chain n-

alkanes provide information on the carbon fixation pathway used during photosynthesis, 

thus giving a way to distinguish the plant types (C3 or C4 plants) from which the n-

alkanes are sourced (Freeman et al., 1990; Schefuß et al., 2003). Furthermore, water-use 

efficiency (WUE) has been found to be a significant factor that affects carbon isotope 

composition in plants, and studies have shown a significant negative correlation between 
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δ13C values and effective precipitation in a region (Sun et al., 2013). The hydrogen 

isotopic composition (δD) of n-alkanes can also be correlated with precipitation. While in 

some locations δD tracks moisture sources, δD of n-alkanes can potentially be used as a 

hydrology and temperature proxy when processes regarding isotope fractionation are 

understood (Pautler et al., 2014). When utilized in combination with other proxies, these 

two measurements of isotopic composition of n-alkanes can be useful indicators of 

effective precipitation or drought stress in a region (Sun et al., 2013; Yamamoto et al., 

2010; Zhou et al., 2010).  

One study that utilizes a majority of the proxies described above in reconstructing 

fluctuations in precipitation was performed by Sun et al, 2013 in northeast China. This 

study was performed on a varved sediment record from Lake Xiaolongwan, and 

correlated several n-alkane proxies (ACL, Paq, grass-to-tree values, and δ13C values) 

with historical precipitation, flood, and drought records from the region over the past 

1,600 years (Table 1.2). This study found that these proxies, particularly the Paq ratio and 

δ13Cwax values, show distinct decadal variations that correlate well with the precipitation 

history for the region. Furthermore, they found that these proxies also correspond to 

warm and cold phases of the Pacific Decadal Oscillation (PDO), which regulates summer 

monsoon rainfall on decadal timescales in the region, as seen in Figure 1.6 (Sun et al., 

2013). This study is a good example of how research on n-alkane distributions in lake 

sediment can be used to look at long-term precipitation trends and extremes, such as  

severe droughts.   
Proxy Calculation 

ACL Σ(C23 to C33) 

Paq Ratio (C23+C25)/(C23+C25+C29+C31) 

Grass to Tree Ratio C31 / C27 

Table 1.2: Summary of the proxies used in Sun et al. (2013). 



 

25 

  

1.4.2.4.2 Wildfire History using Biogeochemistry 

Wildfire reconstructions have become a major topic in climate change research 

over the past several decades. Understanding wildfires, including fire frequency and 

anthropogenic impacts on wildfires, is critical in the context of global climate change 

because wildfires have direct impacts on carbon storage, atmospheric composition, 

ecosystem diversity, and land management practices (Clark and Royall, 1995; Denis et 

al., 2012; Gill and Bradstock, 1995; Kirchgeorg et al., 2014; Werf et al., 2004). Fire 

frequency is expected to increase in most global warming scenarios, and costs relating to 

wildfire management and damage have already been shown to be increasing in recent 

years (Denis et al., 2012). Furthermore, there is still uncertainty about how human 

Figure 1.6 – Correlation of n-alkane proxies with the Pacific Decadal Oscillation 

(PDO) and precipitation in Northeast China. A) δ13C values of long-chain n-alkanes 

(blue) and the PDO index (red, B) Paq index (blue) and the PDO index (red). (Sun et 

al 2013) 
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disturbance, particularly in the NE US, affects the natural, pre-settlement burning regime 

due to our lack of continuous records of fire history for pre-settlement times (Clark and 

Royall, 1995). Therefore, reconstructions of wildfire history are a major factor in 

understanding climate-wildfire feedbacks and how climate influences natural wildfire 

regimes (Denis et al., 2012).    

Reconstructions of wildfire history have been performed across the NE US and 

Eastern Canada for several decades (e.g. Swain, 1973). Until recently, the most common 

methods used for wildfire reconstructions were the analysis of sedimentary charcoal and 

tree-ring fire scars. In the NE US, tree-ring studies looking at fire history are extremely 

limited due to human disturbance on forest ecosystems in the region (Barton et al., 2012; 

Lorimer, 1977; Parshall et al., 2003). Because of this, most wildfire studies have focused 

on charcoal fossil counts in the lacustrine sediment record (e.g. Devil's Bathtub, NY 

(Clark et al., 1996); Crawford Lake, Ontario (Clark and Royall, 1995); Maine and New 

Hampshire (Fahey and Reiners, 1981); Cape Cod, Massachusetts (Parshall et al., 2003); 

Piermont Marsh, lower Hudson River Valley, New York (Pederson et al., 2005); Swain, 

1973). 

While this method has greatly increased our understanding of past wildfire 

activity, there are some limitations. Charcoal analysis is a time intensive procedure and 

can require large volumes of sediment per sample (up to 5 cc of sediment) depending on 

sediment composition and charcoal abundance (Denis et al., 2012; Whitlock and Larsen, 

2001). Other factors, such as the physical processes of charcoal deposition and 

decomposition, as well as remobilization and re-deposition, can also affect fire history 

reconstructions and interpretation of results (Whitlock and Anderson, 2003).  
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Recent developments in instrumentation and in the field of biogeochemistry have 

facilitated the study of compound classes that can also be used as a wildfire proxy.  One 

such compound class that has been increasingly studied is polycyclic aromatic 

hydrocarbons (PAHs). PAHs are a group of hydrocarbons (organic compounds that 

consist of the elements carbon and hydrogen) that can be produced through natural and 

anthropogenic processes (Bianchi and Canuel, 2011). PAHs were first found in soils by 

Blumer in 1961, and have since been studied across various ecosystems and 

environments, including lakes. There are three major types of PAHs: petrogenic PAHs 

(related to petroleum processes), biogenic PAHs (generated by biologic processes such as 

early diagenesis), and pyrogenic PAHs (predominantly unbranched, mostly 3-6 ring 

hydrocarbons, made through the partial combustion of organic material) (Page et al., 

1999).  

Due to the fact that pyrogenic PAHs are mainly created during combustion, these 

compounds can be used to trace combustion processes, such as fossil fuel burning or 

forest fire activity (Denis et al., 2012; Page et al., 1999; M.B. Yunker et al., 2002). 

Therefore, the historical record of PAHs in sediment cores can be used in pre-industrial 

periods as proxies for the frequency and size of wildfires (Musa Bandowe et al., 2014). 

One study that reconstructed wildfire history using PAHs was carried out at Swamp Lake 

in Yosemite National Park, U.S.A. Researchers found that PAHs produced during 

wildfires record local fire events and intensity, and that low molecular weight (LMW) 

PAHs (e.g., fluoranthene, pyrene, and benz[a]anthracene) are the best recorders of fire at 

this location, whereas high molecular weight (HMW) PAHs likely record fire intensity 

(see Figure 1.7) (Denis et al., 2012). Other studies have created ratios of different PAHs, 
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such as Retene/(Retene + Chrysene), and Anthracene/(Anthracene + Phenanthrene), 

which have been utilized as proxies for varying sources of the PAHs, such as fossil fuels 

or modern biomass burning (Denis et al., 2012; Kuo et al., 2011; Yan et al., 2005; Mark 

B Yunker et al., 2002).  

Due to their usefulness as a proxy for wildfire detection in relation to climatic and 

anthropogenic forcing, PAHs have been used in reconstructions prior to the historical 

period (pre-1800AD), with several studies across the world looking at pre-historic fire 

history using PAHs. One such study created a 2,600 year-long record of PAH deposition 

Figure 1.7 – PAH abundances through time compared with charcoal, fire, and 

precipitation histories at Yosemite National Park, USA. PAH fluxes are shown as the 

Sum of Low Molecular Weight (LMW) PAH and the sum of High Molecular Weight 

(HMW) PAH. Denis et al (2012) 
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in sediment cores at Holzmaar, Germany, and used it as an indicator of  

variability in climate and human activity in the region (Musa Bandowe et al., 2014). 

Another study, performed on sediment cores from Lake Lille Lungegardsvannet, Bergen, 

Norway, looked at PAH concentrations during the last 5,400 years. This study found 

several significant concentration increases in pre-industrial times, corresponding to urban 

fires in the city of Bergen, Norway, as well as human factors in recent times (i.e. heating, 

traffic pollution, etc..) (Andersson et al., 2014). While more work is needed to constrain 

PAHs as a proxy for fire activity, they have been shown to correlate well with fire 

history, and provide a promising method to reconstruct proxy for wildfire activity to 

supplement more traditional methods of measurement, such as charcoal analysis. New 

techniques for measuring PAHs in low abundances due to analytical improvements have 

been developed, allowing for more studies to use PAHs as proxies for fire history.  

1.5 Summary  

The Northeastern United States is one of the most heavily populated regions in 

the world that is susceptible to multiple types of extreme climatic events such as 

hurricanes, flooding events, severe droughts, and wildfires. Furthermore, this region has 

experienced anthropogenic climate change over the past century. Despite our knowledge 

of how anthropogenic climate change is affecting the region’s climate, little is known 

about how the frequencies of extreme events in the northeast have been affected by 

climate change. In order to address this issue, this thesis project aims to (1) determine 

how known extreme events are documented by instrumental measurements and historical 

records, (2) to identify how human activities and rapid environmental change in the 

catchment area are expressed in the sedimentary record, and (3) to distinguish and 
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evaluate how climatic events are expressed in the physical and geochemical properties of 

a lacustrine sedimentary sequence. This information can then be used to extend the record 

of known extreme events beyond the brief period of instrumental measurements into pre-

historic times.   

To address these questions, the following hypotheses will be tested: 

(1) There has been human disturbance in the catchment area during the past 200 

years, and is seen in the sedimentary record of Basin Pond  

(2) Extreme events (hurricanes, floods, droughts, and wildfires) can be identified 

in the Basin Pond sedimentary record throughout the historic period using a 

suite of sedimentary, organic geochemical, and inorganic geochemical 

analyses.  

While the NE US has a rich history in paleolimnological studies looking at the 

region’s environmental history, most studies that have been performed focus on pollen 

analysis and Loss-on-Ignition to reconstruct vegetation changes and organic matter input 

throughout the Holocene (Allison et al., 1986; R. Brugam, 1978; R. B. Brugam, 1978; 

Davis, 1969; Davis and Ford, 1982; Gonzales and Grimm, 2009; Leopold, 1956; Oswald 

et al., 2007; Shuman, 2003; Shuman et al., 2001; Spear et al., 1994; Thorson and Webb, 

1991; Wellner and Dwyer, 1996; Whitehead, 1979; Winkler, 1985; Winkler and Sanford, 

1995). Furthermore, as described previously in this chapter, most studies reconstructing 

extreme events in the Northeast have primarily focused on one type of event (e.g. 

hurricane records or wildfire reconstructions).  This creates a unique opportunity for this 

research, as looking at multiple extreme events in this annually-resolved sediment record 

in the NE US has not been carried out before.  
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CHAPTER 2 

SITE INFORMATION AND FIELD WORK AT BASIN POND, FAYETTE, 

MAINE 

2.1 Site Information 

Basin Pond is a small (13.8 hectares (ha) lake area) and deep (32.6 m max depth) 

lake located in Fayette, Kennebec County, Maine at 44º28’N, 70 º03’W at an elevation of 

124 meters above sea level (Frost, 2005; Gajewski et al., 1987; Perkins, 1985) (see Figure 

2.1).  At 53.0 Ha, the Basin Pond watershed is roughly 3.5 times larger than the lake size 

(Frost, 2005). The pond has no inlets, with the main source of water input into the lake 

coming from groundwater and precipitation. The only outlet from Basin Pond is a small, 

dammed stream running westward into the adjacent David Pond (Frost, 2005; Perkins, 

1985). The catchment area of the pond contains one residential building, with the 

remaining majority of the area being located within the “Basin Pond Conservation Area” 

(Frost, 2005). Basin Pond is managed and maintained by the Basin-Tilton-Davis Pond 

Association and is annually stocked with splake by the Maine Department of Inland 

Fisheries and Wildlife (starting in 1981), with conservative regulations in place to protect 

the fishery in Basin Pond (United States Geological Survey (USGS), 1996).  

The surficial deposits of Basin Pond and its watershed are comprised almost 

entirely of glacial till over bedrock, with the catchment area situated on an intrusive 

Devonian granite pluton (Baker, 1999; Frost, 2005). The granite consists of quartz, 

plagioclase, microcline, muscovite, biotite, and chlorite (Baker, 1999). The western and 

southern shorelines of the lake are steep banks, whereas the northern and eastern 

shorelines are gentle-sloping banks with large boulders present. The catchment area is   
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dominated by a well-developed forest, comprised of deciduous hardwoods and evergreen 

trees, with hemlock being the most abundant species (Perkins, 1985).  

 Basin Pond has been surveyed multiple times throughout the past 60 years by the 

United States Geological Survey (USGS),the Maine Department of Inland Fisheries and 

Wildlife, and the Department of Environmental Protection, with the first survey occurring 

in 1955 and revisions in 1970, 1987, and 1996.  With the first surveying, the pond was 

“chemically reclaimed” to remove undesired species that were in competition with the 

trout population of the pond, using the chemical piscicide rotenone (United States 

Geological Survey (USGS), 1996; personal communication, Department of 

Environmental Protection). Since this chemical reclamation, three unwanted fish species 

have become re-established in the pond. In each survey, as well as in a couple of the 

studies performed at Basin Pond (discussed in the next section), water profiles were 

taken, consisting of water quality, temperature, pH, salinity, and other profiles (Frost, 

2005; Perkins, 1985; United States Geological Survey (USGS), 1996). In modern times, 

pH values of Basin Pond waters range between 6.53-6.76 (Doner, 1985).  Average air 

temperatures at Basin Pond range from roughly 21ºC in the summer to -5.5ºC in the 

winter, and average total annual precipitation is roughly 112 cm (Baker, 1999). Water 

column temperature profiles have found that the surface waters fluctuate with the air 

temperature, peaking near 25.5ºC in the summer, while bottom waters stay near 4 ºC 

throughout the entire year (United States Geological Survey (USGS), 1996). Basin Pond 

ice-in occurs from late November – early December, while ice break usually occurs from 

mid-March – mid April. A more in-depth discussion of the modern climate of the region 

is given in the next chapter. 
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2.1.1 – Past Studies at Basin Pond 

 A handful of past studies have taken place on the sediments of Basin Pond, each 

focusing on different aspects of the region’s environmental history. Beginning in 1984, a 

study by Joanne S. Perkins was conducted on investigating the Basin Pond catchment 

area’s response to a major shift in the forest structure of the region, known as the 

Hemlock Decline, occurring at roughly 4,800 years before present. In this study, Perkins 

proposed to reconstruct the environmental history from this time period using Loss-on-

Ignition, pollen, and grain-size analyses, using varve-counts as the chronology for the 

sedimentary archive (Perkins, 1985). However, little information could be found on the 

results of this study. This study was further investigated by Dr. Lisa Doner in 1990 at the 

University of Maine - Orono, who studied the Basin Pond sediment record of the 

Younger Dryas stadial and the early Holocene using LOI and grain size analyses (Doner, 

1990). 

 Through the 1980’s and 1990’s, studies reconstructing past environmental 

changes in the Basin Pond catchment area were conducted focusing on pollen and 

charcoal records. In a study by Konrad Gajewski and colleagues, pollen records indicated 

various shifts in the dominant type of tree species at the pond over the past 1600 years. 

High levels of Tsuga and Fagus were found early in the record, shifting to mainly non-

arboreal pollen in the last 150 years, indicating human disturbance (see figure 2.3) 

(Gajewski et al., 1987). Further work by Gajewski reconstructed past annual precipitation 

and summertime temperatures for Basin Pond over the past 1600 years from this pollen 

record, which was marked by a steady decrease in temperature throughout the record and 

a relatively stable precipitation regime until recent years, when precipitation decreased 
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(Gajewski, 1988). In the 1990’s, J.S. Clark and P.D. Royall investigated the fire history at 

Basin Pond throughout the past 1600 years using sedimentary charcoal analysis (see 

figure 2.4), and found that there was very low fire frequency or even a lack of a fire 

signal seen at Basin Pond (Clark and Royall, 1996, 1994).  

 The most recent work conducted on the Basin Pond sedimentary record prior to 

this study was done by Daniel Frost as part of an undergraduate thesis at Bates College, 

Lewiston, Maine, in 2005.  Frost’s thesis focused on using proxy data based on physical 

sedimentology (lithology, varve thickness, Loss-on-Ignition) and bulk organic matter 

biogeochemistry (organic matter carbon/nitrogen ratios, δ13C), based upon varve 

chronologies and radiocarbon ages, to reconstruct climate variability throughout the past 

12,000 years (Frost, 2005). Several valuable results came from this study, such as water 

column profiles taken at different times throughout the year, indicating anoxia and a 

persistent chemocline at depth (see figure 2.5). This thermal and chemo-stratification of 

the water column at times when overturning usually occurs (spring and fall), was found 

to be sufficient to prevent turnover at any point in the year in the Basin Pond water 

column. While these water column profiles suggest that Basin Pond loses thermal 

stratification directly before “ice-in”, the rapid development of ice prevents any 

significant mixing and wind-driven circulation of the water column, making the diffusion 

of dissolved oxygen into the bottom waters minimal (Frost, 2005).  

2.1.1.1 Age Models of Past Studies 

 While numerous studies have been performed on the Basin Pond sedimentary 

record, a concise, independently dated age model has been difficult to produce in all of 

the studies carried out so far. In nearly every past study, varve chronologies were the only 
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dating method used on the sedimentary record. While this gives a reasonably accurate 

method of dating on yearly timescales, this method is based on the assumption that the 

Basin Pond sedimentary record is truly varved, which to date has not been proven.  Thus, 

other dating methods independent of varve counts, are needed to help confirm the annual  

nature of these laminations. It is important to note that many of the early studies that used 

age models based on varve counts had vastly differing age chronologies (on the scale of 

several hundred years), indicating the error that can exist when conducting varve counts.  

 The only study completed at Basin Pond that utilized another method of dating 

was the study by Frost (2005).  In this study, several radiocarbon dates were obtained 

from plant macrofossils preserved in the sediment record, and ages were found with 

varying error margins. When comparing the ages from varve counts to the ages from 

radiocarbon dating, the discrepancies were significant, as can be seen in table 2.1. This 

was interpreted as errors in both dating methods due to several unconformities in the 

sediment record, but brings light to the necessity of further work constraining the age 

model from the Basin Pond sedimentary record.  

Depth (cm): 119 - 120 cm 179 - 180 cm 254.5 cm 

Radiocarbon 

Ages: 3600 +- 50 6290 +- 60 10960 +- 60 

Varve Ages: 2306 4338 -- 

Age Difference: 1,294 yrs 1,952 yrs   

 2.1.2 Basin Pond during the Historical Period 

 Based on the past studies performed on the lake, as well as work completed by the 

USGS and Maine Department of Inland Fisheries and Wildlife, a rough view of the 

catchment history over the past century can be formed. This is particularly important, as 

Table 2.1: Varve count ages and radiocarbon age estimates from the Basin Pond 

sedimentary sequence from the Frost (2005) study. 
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most past studies performed at Basin Pond acknowledge a signal of human disturbance in 

the catchment area, but discuss it in little detail, leaving this time period a gray area in the 

catchment history. The best example of this involves deforestation of the catchment area: 

to the best of my knowledge, no historical records exist on the timing of the logging of 

this area. However, most studies indicate varying time periods where catchment 

deforestation is assumed, based on proxy data.  

 One major event in Basin Pond was the chemical reclamation of the pond, 

occurring in 1955, by the Department of Inland Fisheries and Wildlife. This consisted of 

chemically altering the water column with rotenone to remove unwanted fish and algal 

species that are competitors with trout or inhibit trout growth. Rotenone is a highly active 

photosensitizer used as an insecticide and piscicide, and works by inhibiting the cellular 

respiration of animals (Robertson and Smith-Vaniz, 2008). Apart from this event, little 

altering of the water column has been performed, apart from an experimental introduction 

of blueback trout in 1969 and an experimental stocking program of splake in 1981 

(United States Geological Survey (USGS), 1996). A house was built in the 1980’s in the 

catchment area, but to the best of our knowledge, no other major construction project was 

completed. 

2.2 Field Work 

 Primary field work at Basin Pond was completed on March 8, 2014, by Dr. 

Raymond Bradley and graduate student Daniel Miller of the Department of Geosciences 

at the University of Massachusetts – Amherst, with colleagues Dr. Mike Retelle, Daniel 

Frost, and undergraduate student Julie Savage from Bates College in Lewiston, Maine. 

Sediment coring was performed from the ice surface in the deepest part of the lake at a 
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depth of 32 meters (44º27.456’ N, 70º 03.149’ W). A total of five sediment cores were 

taken over the course of the day using UWITEC gravity coring system. The first two 

cores, BP2014-1D (65cm length) and BP2014-2D (72cm length), were taken in hopes of 

capturing the sediment-water interface for Lead-210 and Cesium-137 dating.  However, 

the interface was overshot, so these cores were capped and saved for analysis.  The third 

core, BP2014-3D (37cm length after subsampling), captured the sediment-water 

interface, and was then subsampled in the field at 0.5 cm resolution. Samples were stored 

in whirl-pak™ bags, while the remainder of the core was capped and saved for analysis. 

Cores BP2014-4D and BP2014-5D (1.5 m and 1.75 m, respectively) were taken and 

capped with zorbitol and florofoam.   

 Cores were transferred to the Department of Geosciences at UMass – Amherst 

and stored vertically in a walk-in freezer in the Department of Geosciences facilities until 

analysis. Core splitting occurred March 11, 2014, using a geotek core splitter. Because of 

the length of core BP2014-5D, it was cut into two sections for analysis prior to splitting. 

Each section was then renamed BP2014-5D.A (100 cm in length) and BP2014-5D.B 

(roughly 75 cm in length). It is important to note that approximately 2cm of sediment was 

lost at the bottom of core 5D.A during the splitting of 5D. Upon splitting, cores were 

preserved in several layers of plastic wrap and returned to the freezer until analysis.  
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Figure 2.1: Google Earth 

Map of Basin Pond, located 

in south central Maine.   

Figure 2.2: Basin Pond Bathymetric Profile, completed by the USGS (2015) 
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Figure 2.4: Charcoal counts plotted with various pollen assemblages taken from 

the Gajewski 1987 study. (Clark and Royall 1996) 

Figure 2.3: Pollen Assemblages based on Pollen Accumulation Rates (PAR) of the 

Basin Pond sedimentary record over the last 1,600 years. (from Gajewski 1987) 
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Figure 2.5: Fall-Winter water column profiles from Frost (2005). Profiles depicted 

were taken over a year on Sept 17, 2003, Sept 20, 2004, and Oct 31, 2004. Note a 

persistent chemocline and anoxia at depth in all profiles. 
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Figure 2.6: Images from March 2014 Basin Pond Field Campaign. A)Top left: 

subsampling Core BP2014-3D for radioisotopic dating. B)Top Right: Basin Pond at 

sunset. C)Bottom, from Right to Left: Dr. Raymond Bradley, Daniel Frost, Julie 

Savage, and Daniel Miller with Core BP2014-5D. 
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CHAPTER 3 

DATA COLLECTION AND METHODS 

3.1 Climatic and Meteorological Data during the Historical Period 

  Historical records for Basin Pond, Fayette, Maine, have been compiled and are 

comprised of meteorological observations and of local archives of information such as 

newspapers or news stations. The vast majority of these are meteorological daily 

observational data (including precipitation amounts, temperature, cloud cover, snowfall 

amounts, humidity) from meteorological observational stations (MET stations) located 

within 20 miles of Basin Pond. Daily records were maintained and accessed through the 

National Climatic Data Center (part of the National Oceanic and Atmospheric 

Administration). In order to ensure maximum temporal coverage, daily records from the 

three closest stations – Kents Hill, Farmington, and Livermore Falls – were compiled, as 

shown in table 3.1 (Figure 3.1). Fortunately, these data formed a nearly continuous and 

complete 129 year record of observational data fromOctober of 1885 to the present day 

(National Oceanic and Atmospheric Administration (NOAA), 2014b). Analysis included 

obtaining the yearly monthly, seasonal, and yearly averages of both local precipitation 

and temperature. 

 A record of historical storm tracks was compiled from the archives of the 

National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center and 

the National Hurricane Center. A search for any storm (hurricane, tropical storm, tropical 

Station Name Elevation (m) Start Date End Date 

Kents Hill 152.4 10/1/1885 5/31/1893 

Farmington 128 6/1/1893 07/31/2002 

Livermore Falls 115.8 08/01/2002 10/14/2014 

Table 3.1 – Meteorological Stations used in the creation of a met data stack for 

Basin Pond, Fayette, Maine 
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depression, or extratropical) was conducted within a 50 mile radius of Basin Pond, 

Fayette, ME as a search filter (Figure 3.2). Results from the search included 25 total 

storms from 1869 to present, or the last 145 years. The results of this search, including 

details on the type and strength of the storms, can be seen in Appendix A. Precipitation 

amounts for storms post-1885 were taken from the MET stations records described 

previously. Lastly, extreme events were found, as described through Maine news 

archives. This was particularly important for events such as wildfires.    

3.2 – Analyses Performed 

Shortly after coring, all sediment cores were split, extruded, and logged at the 

University of Massachusetts – Amherst, Joseph Hartshorn Quaternary Laboratory. 

Examination and laboratory analysis on the physical and biogeochemical properties of 

the Basin Pond sedimentary record began in March of 2014.  Details on the completed 

analyses are described below.     

3.2.1 – Age Model 

 Age estimates for the Basin Pond sediment record are based on radioisotopic 

dating, radiocarbon dating, and varve counts. For radioisotopic analysis, core BP2014-3D 

was subsampled at 0.5cm resolution slices in the field. Each slice was stored in a 4 ounce 

WhirlPak™ bag and brought back to UMass for radioisotopic dating analysis. Samples 

were then freeze dried, homogenized, and transferred to plastic containers for analysis. 

Heavy metal counts of lead-210, lead-214, and Cesium-137, were conducted on a 

Gamma Counter in the UMass sedimentology lab.  

 Radiocarbon dating was also carried out on discrete samples from the sediment 

record. Four macrofossils of plant material were taken from the BP2014-5D core at 



 

44 

varying depths, and were sent to the U.S. Geological Survey Eastern Geology and 

Paleoclimate Science Center Radiocarbon Laboratory in Reston, Virginia, for 

radiocarbon analysis in June of 2014. An additional six samples were sent to The Woods  

Hole Oceanographic Institute AMS radiocarbon facilities for radiocarbon analysis in 

February of 2015. Radiocarbon age estimates of terrestrial macrofossils were calibrated 

to years before present (1950) and then compared with the Pb-210 and Cs-137 horizons 

using the ‘R’ program ‘BChron’.  No corrections for ‘old’ carbon were made to these 

dates since they came from terrestrial macrofossils. A summary of radiocarbon samples 

can be seen in Table 3.2, including depths in the sedimentary record at which each  

sample was found, dry weight (in mg), and type of sample. 

 Finally, varve counts were completed using X-Ray radiograph images from cores 

BP2014-1D and BP2014-5D. Scans were completed on the ITRAX X-Ray Fluorescence 

analyzer at the University of Massachusetts. Each radiograph was completed at 100 

micron resolution, allowing for the density fluctuations between laminations to be seen 

throughout both cores. Raw grayscale values were then extracted from the radiographic 

Sample Name Core Depth (cm) Type Dry weight (mg) 

BPR-DRM-001 5D 1/2 29 – 31 plant 11.0** 

BPR-DRM-002 5D 1/2 75 – 76 plant 11.1** 

BPR-DRM-003 5D 2/2 135.5 - 136.5 plant 35.5** 

BPR-DRM-004 5D 2/2 165 - 167 plant 10.1** 

BPR_WHOI_004 5D 1/2 20 – 21 plant/seed 2.7 

BPR_WHOI_008 5D 1/2 26 – 27 plant 7.4 

BPR_WHOI_009 5D 1/2 33 – 35 plant 4.0 

BPR_WHOI_012 5D 1/2 36 – 39 plant 3.3 

BPR_WHOI_022 5D 1/2 82 – 84 plant 1.7 

BPR_WHOI_026 5D 1/2 54 – 56 plant 2.7 

Table 3.2: Description of radiocarbon samples. **Denotes wet macrofossil weight in 

mg, not dried. 
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images. Each lamination in the upper 16cm of the sediment record was then counted and 

compared to the age-depth models compiled from the radioisotopic and radiocarbon 

dating techniques described above.  

3.2.2 – Nondestructive Analysis 

3.2.2.1 - Geotek Multi-Sensor Core Logger (MSCL) 

All split sediment cores were imaged and logged on the Geotek MSCL at the 

University of Massachusetts – Amherst for gamma ray attenuation density, magnetic 

susceptibility (MS), and spectral properties. Core images were taken using a Nikon AF 

Nikkor 50mm f/1.8 D lens equipped with a Tiffen circular polarizer. Magnetic 

susceptibility was measured using a Bartington Point Sensor, while the color 

spectrophotometry was measured using a Konica Minolta Spectrophotometer CM-2600d.  

All geotek measurements were made at 0.3cm resolution.  

3.2.2.2 Itrax X-Ray Fluorescence (XRF) Core Scanner 

Split core sections were also scanned at 1mm resolution on an ITRAX X-Ray 

Fluorescence (XRF) core scanner (Cox Analytical Systems) located at the University of 

Massachusetts – Amherst using a Molybdenum (Mo) tube. Due to the lack of resolution 

between core laminations in the X-Ray radiographs as well as the elemental data, 

BP2014-1D and BP2014-5D were rescanned at a higher (100 micron) resolution. XRF 

core scanning allows for the high-resolution identification of changes in elemental 

composition throughout a sedimentary record, as well as producing X-Radiograph images 

(Shanahan et al. 2008; Rothwell & Rack, 2006). X-radiograph and XRF settings for all 

runs are shown below in Table 3.3.  

3.2.3 - Discrete Sample Analysis 
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3.2.3.1 Biogeochemical Analysis 

 Thirty discrete samples were extruded from core BP2014-5D 1/2 at 0.5cm 

resolution, starting at the sediment water interface and extending down to 15cm depth. 

An additional twenty-seven samples (0.5cm width) were taken every 2cm down to 68cm 

depth. All samples were placed in Whirl-Pak™ sample bags and were subsequently 

freeze-dried for 36 hours. Samples were homogenized in sample bags after freeze drying, 

and then were weighed in preparation for lipid extraction. Sample descriptions, including 

depth in core, dry sediment weight, and lipid extract weight, can be found in Appendix A.  

 Each sample was subjected to Accelerated Solvent Extraction (ASE) to obtain the 

total lipid extract of each sediment sample. Due to the organic-rich nature of each sample, 

relatively small amounts of sediment were needed for lipid extraction. Samples weighing 

between 0.10 and 0.30 grams were mixed with equal amounts of pre-extracted 

Core 

Rad 

Voltage 

Rad 

Current 

Rad 

Exposure 

Time 

Step 

size 

XRF 

exposure 

time 

XRF 

voltage 

XRF 

current 

BP2014-

1D 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

2D 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

3D 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

4D 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

5Da 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

5Db 60 kV 50 mA 1200 ms 1 mm 10 s 30 kV 55 mA 

BP2014-

1D 40 kV 45 mA 1000 ms 100 μm 10 s 30 kV 55mA 

BP2014-

5Da 40 kV 45 mA 1000 ms 100 μm 10 s 30 kV 55mA 

Table 3.3 – Radiograph and XRF settings used for all core scans on the Itrax XRF 

Core Scanner at UMass – Amherst. Radiograph is abbreviated “Rad” in the table. 
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diatomaceous earth. Samples were then extracted using a Dionex accelerated solvent 

extractor (ASE 200) with 60ml Ichem vials at a temperature of 100ºC with a 

dichloromethane/methanol (9:1, v/v) mixture. The resulting Total Lipid Extract (TLE) 

was dried under a steady stream of N2 gas using a TurboVAP sample drier. Once dried, 

vials containing the TLE were again weighed, so that the weight of each TLE could be 

obtained. TLEs were then transferred to 4ml combusted glass vials using a small amount 

of 2:1 DCM:MeOH, rinsing each vial 4 times to ensure maximum transfer of TLE’s.  

 TLEs were then separated into apolar (9:1 Hexane:DCM v/v), ketone (1:1 

DCM:Hexane v/v), and polar (1:1 DCM:MeOH v/v) fractions using alumina oxide 

column chromatography. Columns were made using 5¾-inch glass Pasteur pipettes with 

a small amount of packed quartz wool placed in the bottom of each column. Columns 

were then filled approximately 2/3 full with activated alumina oxide, heated at 150ºC for 

two hours and cooled for 1.5 hours to activate the alumina oxide. Just prior to use, 

columns were rinsed with 3-4ml of 9:1 hexane:DCM (v/v). Samples were then run 

through the columns using ~1ml of each solvent mix listed above per rinse. This process 

was repeated 4 times with each mix, so that roughly 4ml of each solvent mix, loaded with 

the TLE, was run through the column. Each fraction was collected in new, combusted 

4ml glass vials, and was dried under a constant stream of N2.  

 Apolar and ketone fractions were dried down under a constant stream of N2 and 

then transferred to 2ml vials using 2 hexane rinses and 2 DCM rinses. Samples in 2ml 

vials were then dried and brought up in 100 μl of hexanes for analysis. Polar fractions 

were split in half so that a portion could be filtered for analysis on a high-performance 

liquid chromatograph (HPLC). The other half was derivatized using 25μl of acetonitrile 
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and 25μl of bistrimethylsiyltrifluoroacetamide (BSTFA) at 60 ºC for 30 minutes. 

Derivatized polar fractions were then dried and brought up in 100 μl EtOAc for analysis.  

3.2.3.1.1 n-alkane Analysis 

 Analysis of n-alkanes was done by analyzing the apolar fractions of each sample. 

These compounds were identified in the apolar fractions using a Hewlett Packard 6890 

series gas chromatograph coupled to an Agilent 5973 Mass spectrometer (GC-MS) using 

a Restek Rtx-5ms column (60m x 250 μm x 0.25 μm). For details on the programming of 

the GC-MS for apolar analysis, see table 3.4. Mass spectra were measured from 50 to 600 

m/z, and compounds were subsequently identified based on their characteristic 

fragmentation patterns in each mass spectra and also by their retention times throughout 

the run.  

 n-alkanes were quantified using an Agilent 7890A dual gas chromatograph-flame 

ionization detector (GC-FID) equipped with two Agilent 7693 autosamplers and two 

identical columns (Agilent 19091J-416: 325°C: 60m x 320μm x 0.25 μm, HP-5 5% 

Phenyl Methyl Siloxan). The GC-FID method for sample apolar sample analysis was 

similar to that on the GC-MS, and can be found in table 3.4. n-alkanes concentrations 

were quantified through the comparison of integrated peak areas to an external calibration 

curve of peak areas where squalene was injected and run using the same method at 

multiple concentrations on both GC-FID injectors. 

3.2.3.1.2 Analysis of Polycyclic Aromatic Hydrocarbons (PAH) 

 Polycyclic aromatic hydrocarbons (PAH) were identified and quantified on the 

GC-MS system described above. PAH compounds were first found in the ketone 

fractions and were thus analyzed in this fraction. However, after finding significant PAH 
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abundances in the apolar fractions, the ketone and apolar fractions were combined and 

analyzed on the GC-MS and GC-FID. Only methods and results from the combined 

fractions will be discussed from this point forward. 

 Due to the low abundances of PAH compounds in each sample, peaks could not 

be identified and quantified on the GC-FID runs. PAH were identified and also quantified 

on the GC-MS running in Selected Ion Monitoring (SIM) Mode. Running in SIM mode, 

as opposed to full-scan mode, allows for a pre-determined set of major ion masses to be 

counted, allowing certain compounds with those characteristic major ions to be more 

readily identified. The SIM method used on the GC-MS to identify PAH samples is 

described in table 3.4. In this SIM mode, 12 ion masses were targeted, and 17 common 

PAH compounds were identified. 16 of these PAH were identified from a RESTEK SV 

Calibration Mix PAH Standard, while retene was identified from a CHIRON AS 

standard. Both standards were diluted to 100μg/2mL vial and run on the GC-MS. PAH 

peak retention times and mass spectra were then compared to sample runs, allowing for 

Instrument 

Carrier 

Gas 

Fraction 

Analyzed Temperature Ramp 

Max Temp 

Duration 

(mins) 

GC-MS He Apolar 

70ºC - 130ºC @ 20ºC min-1   

130ºC - 320ºC @ 4ºC min-1  20 

GC-FID He Apolar 

70ºC - 130ºC @ 10ºC min-1   

130ºC - 320ºC @ 4ºC min-1  10 

GC-MS He Apolar/Ketone 

50ºC - 130ºC @ 10ºC min-1   

130ºC - 320ºC @ 4ºC min-1  15 

GC-MS He Polar 

60ºC - 130ºC @ 20ºC min-1   

130ºC - 320ºC @ 4ºC min-1  15 

GC-FID He Polar 

60ºC - 130ºC @ 20ºC min-1   

130ºC - 320ºC @ 4ºC min-1  15 

Table 3.4 - Instrument method information, including carrier gas, fractions analyzed, 

temperature ramps for each method, and duration the maximum temperature was held. 
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PAH peaks to be identified in all samples. PAH abundances were quantified on the GC-

MS after creating calibration curves for each of the 17 PAH compounds, based on 

varying injection amounts on GC-MS runs.   

 3.2.3.1.3 Analysis of Polar Fractions  

 A handful of compounds, including algal lipids, n-alkanols, sterols, and stanols, 

were identified and quantified using the same GC-MS and GC-FID systems described 

previously. Method information on both GC-MS and GC-FID runs can be found in table 

3.4.  

3.2.3.2 Bulk Geochemical Analysis 

 Discrete sediment samples were taken from core BP2014-5D 1/2 at 0.5cm 

resolution from 0cm – 15cm depth for bulk geochemical analysis. Samples were then 

Retention 
Order  PAH Compound  

Major 
Ion 

Average 
Retention Time Standard 

1 naphthalene 128 12.989 Restek 

2 acenaphthylene 152 19.617 Restek 

3 acenaphthene 153 20.55 Restek 

4 fluorene 166 23.176 Restek 

5 phenanthrene 178 28.465 Restek 

6 anthracene 178 28.731 Restek 

7 fluoranthene 202 35.414 Restek 

8 pyrene 202 36.704 Restek 

9 retene 219 38.641 Chiron 

10 benzo(a)anthracene 228 43.829 Restek 

11 chrysene 228 44.094 Restek 

12 benzo(b)fluoranthene 252 49.857 Restek 

13 benzo(k)fluoranthene 252 50.012 Restek 

14 benzo(a)pyrene 252 51.495 Restek 

15 indeno(1,2,3,cd)pyrene 276 56.754 Restek 

17 dibenz(a,h)anthracene 278 56.831 Restek 

16 benzo[g,h,i]perylene 276 57.97 Restek 

Table 3.5 – PAH compounds identified on the GC-MS and retention times. 
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freeze-dried for 24 hours and stored in a dessicator until analysis. Between 2.5-3.5 mg of 

dried sediment per sample was weighed using an analytical mass balance and transferred 

to combusted silver capsules for bulk geochemical analyses, including total organic 

carbon (TOC) content and total nitrogen (TN) content. Samples were analyzed by a 

Costech ECS 4010 Elemental Analyzer.   

Dry bulk density was measured at 0.5cm resolution from Core BP2014-5D from 

0cm to 15cm depth. Wet sediment samples of a known volume (1cc) were taken using 

combusted glass pipettes and were weighed. Samples were then placed in a 100ºC oven 

for 24 hours to dry. Once samples were dried, they were stored in a dessicator to cool to 

room temperature, and then weighed again. Dry bulk density was calculated by taking the 

dry sediment weight over the known sediment volume. 
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Figure 3.1 – Map of all meteorological (met) stations used in the compilation of the 

met records used in this study. 

Figure 3.2 – Map of historical storm tracks within 50 miles of Basin Pond, Fayette, 

Maine (red circle). (NOAA). 
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CHAPTER 4 

RESULTS 

4.1 Basin Pond Climatic History 

 Daily meteorological station data was compiled for the period October 1885 to  

September 2014. Analysis was performed on the precipitation and temperature records to 

obtain monthly, seasonal, and yearly averages for the Basin Pond region. Records 

throughout this 129 year period were 98.71% complete. From 1886-1897, coverage was 

slightly less than the remaining data stack (1897-present), with 13 of the total 144 months 

with incomplete data sets (90.97% coverage).  Thus, any interpretations of proxy data in 

relation to the meteorological data prior to 1897 will be done with caution. After 

addressing the early years of station data collection, records are essentially continuous 

from 1898 – 2014 (99.6% coverage), with the only missing data occurring from August – 

December 1909.  

 Average precipitation over the 129 year time period varied greatly from 80 

cm/year to over 160 cm/year. Upon smoothing the data set, a strong cyclicity is evident 

on a 15-20 year period, with a gradual, steady increase in precipitation occurring over the 

past 60 years. Average yearly temperatures fluctuate from 4°C to 10°C. Again, upon 

smoothing the data set, temperatures are steady or increasing slightly in the early record 

until the 1950’s, when they rapidly decrease. This occurs until the late 1970’s, after 

which they begin to increase to present-day levels. Yearly precipitation and temperature 

trends can be seen in Figure 4.1. These trends correlate well with other data stacks for the 

larger region, such as temperature averages for the state of Maine (Figure 4.2), and will 

therefore be assumed to be an accurate representation of local climate of the micro-region 
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of Basin Pond (Berkeley Earth Surface Temperature).  

4.2 Basin Pond Age Model 

 Lead-210 and Cesium-137 counts were measured and results can be seen in Table 

4.1.  Typically, the onset and peak in Cs-137 activity correlate well with the onset of 

global atmospheric nuclear testing (1954) and the peak in nuclear testing (1963), while 

the Pb-210 decay curve correlates with the onset of industrialization in a region. At Basin 

Pond, however, due to the detection of Cs-137 for several centimeters down-core of the 

peak and onset of atmospheric nuclear testing, it is likely that Cs-137 is migrating 

throughout the sediment after deposition, causing the failure in the Cs-137 dating method. 

This has been observed in other lakes throughout the Northeastern U.S., and has been 

hypothesized to be caused by the molecular diffusion and re-adsorption of Cs-137 in 

sediments (Davis, 1984). For Pb-210 calibration to ages, supported Pb-210 activity was 

described as the background state, or the measured activity of the deepest sediment 

sample at 14.75cm and were then converted to ages before present (before 2013). 

Depth (cm) Pb-210 Activity  

Pb-210 

unsupported 

Pb-210 

Yrs 

Cs-137 

Activity 

Cs-137 

yrs 

1.00 4.5124 4.4283 - 0.2340 - 

2.25 2.6172 2.5330 1995.0383 0.3553 1963 

3.00 1.8558 1.7717 1983.5439 0.0445 1954 

3.75 1.1202 1.0360 1966.2912 0.0394 - 

4.25 0.9909 0.9067 1962.0053 0.0303 - 

4.75 0.7258 0.6417 1950.8879 0.0344 - 

5.25 0.5141 0.4299 1938.0122 0.0252 - 

5.75 0.4387 0.3546 1931.8130 0.0186 - 

6.50 0.4022 0.3181 1928.3220 0.0248 - 

14.75 0.0842 0.0000 1819.6411 0.0000 - 

Table 4.1- Summary of lead-210 (Pb-210) and cesium-137 (Cs-137) radioisotopic 

dating results. Activity are measured in Bq/g. 
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Varve counts were performed using inverted X-Ray radiographic images from the 

Itrax Core Scanner (Figure 4.3a,b). Grayscale values were extracted from radiographs, 

and peaks were counted with respect to depth. Apart from 0 – 0.58cm depth, varves were 

clearly visible in the radiograph values allowing for relatively simple detection 

throughout the top 16cm. An age model was created for the varve chronology by 

performing a linear regression on the data, producing a strong correlation (R2 = 0.995) 

(Figure 4.4b). 

 Results from the ten AMS radiocarbon dated samples can be seen below in Table 

4.2. Three of the four radiocarbon ages from USGS (BPR-DRM-001, BPR-DRM-002, 

and BPR-DRM-004) were excluded from this analysis as they were incorrectly weighed 

when sampling, and were too small to likely produce accurate ages with traditional dating 

techniques at the USGS radiocarbon facilities. The remaining samples were analyzed 

using small sample techniques at WHOI NOSAMS facilities. One of the six samples 

came back as post-modern (occurring after the calendar year 1950), and has been 

excluded from the age model. This exclusion is not due to an anomalous age, but rather 

due to higher-resolution, more detailed dating techniques for the post-modern time period 

mentioned above. The remaining radiocarbon ages were calibrated to years before present 

(1950) using the northern hemisphere IntCal13 14C calibration curve. This was done 

using the ‘R’ package BChron, which calibrates ages and calculates and plots the 

probability of each age along with the standard deviation (Figure 4.4a).  

Average sedimentation rates in the Basin Pond sediment record from Pb-210 

dating is roughly 0.057cm per year, while the average sedimentation rate from the varve 

chronology is slightly higher at 0.070cm per year. While there is a slight difference in  
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sedimentation rates, this difference is minor, and helps support the varve chronology. 

 The average sedimentation rate from the 14C age model is roughly 0.071cm/year, 

further supporting the varve chronology for the historic period. Based on the deepest 

radiocarbon age, this sedimentation rate seems fairly constant throughout the sediment 

record. 

 4.3 Non-destructive Analysis 

4.3.1 Geotek Core Scanner Data 

The Basin Pond sediment record is uniformly comprised of laminated, dark 

colored, organic-rich gyttja throughout the entirety of the record (Figure 4.5a). Geotek 

Sample Name C14 Lab Depth (cm) 

Age 

 (yrs BP(1950)) Error (+- yrs) 

BPR-DRM-001 USGS 14 - 16 530 35 

BPR-DRM-002 USGS 60 - 61 350 60 

BPR-DRM-003 USGS 120.5 - 121.5 1700 35 

BPR-DRM-004 USGS 150 - 152 1200 30 

BPR-WHOI-004 WHOI 5 - 6 

Modern 

 (post-1950) - 

BPR-WHOI-008 WHOI 11 - 12 95 20 

BPR-WHOI-009 WHOI 18 - 20 205 25 

BPR-WHOI-012 WHOI 21 - 24 170 20 

BPR-WHOI-026 WHOI 39 - 41 310 35 

BPR-WHOI-022 WHOI 67 - 69 835 20 

  Varve Counts 

Radioisotopic 

Dating (Pb-210) Radiocarbon Dating 

Sedimentation Rate 

(cm/year) 0.0699 0.057 0.071 

Table 4.2 - Summary of radiocarbon dating results. C14 Lab indicates where samples 

were processed and analyzed: U.S. Geological Survey Eastern Geology and 

Paleoclimate Science Center Radiocarbon Laboratory(USGS), or the Woods Hole 

Oceanographic Institute AMS Radiocarbon Facilities (WHOI).  

Table 4.3: Average Sedimentation Rates of the Basin Pond sediment record from 

various dating techniques (varve count chronology, radioisotopic dating, 

radiocarbon dating).  
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core scanning produced magnetic susceptibility values ranging between 0.5 – 1.5 SI x 10-

5 throughout most of the core, with the exception of the upper 15cm, where values 

increase to 2.5 – 3.0 SI x10-5(Figure 4.5b). Similarily, bulk density was consistent 

throughout the sediment record, varying from 0.93gm/cc at the core top to 0.98gm/cc at 

the core base (Figure 4.5c). Spectral properties show more variability, with L* values and 

reflectance throughout the visible spectrum of light (wavelengths 360 – 740 μm) 

fluctuating from 15 – 35 and 2 – 8, respectively (Figure 4.5d).  

4.3.2 Elemental XRF Scanning Data 

 The Itrax XRF core scanner at UMass – Amherst, outfitted with a 3kW 

Molybdenum tube, gives the ability to identify and measure elements ranging in 

molecular weight from aluminum to lead.  Thus, a suite of 40 elements were identified 

and measured on the Basin Pond sediment record, including Si, Ar, K, Ca, Sc, Ti, V, Cr, 

Mn, Fe, Ni, Cu, Ge, Se, Br, Rb, Sr, Y, Zr, Pd, In, Sb, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Gd, 

Tb, Yb, Lu, Hf, Ta, Re, Os, Ir, and Hg. XRF scans also produced x-ray radiographs, 

which show high-resolution variability in core density, as seen above when utilized in the 

varve count chronology (see Figure 4.3a). 

 Fluctuations seen in radiographic images and were compared with abundances of 

certain minerogenic elements (Fe, K, Si, Ti). Little correlation was found when 

comparing lamination grayscale values and abundances of iron and potassium (after 

normalizing to titanium) at the same sampling resolution (100 μm), with correlation 

coefficients of roughly 0.03 (figure 4.6a,b). However, slightly greater correlation exists 

between titanium and silicon (Si/Ti) counts, two additional elements used to track 

minerogenic, clastic, or detrital input, and the radiographic greyscale values (correlation 
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coefficients of 0.22-0.25) (figure 4.6c,d). These correlations are statistically significant 

(pTi:Rad =1.4417x10-218; pSi/Ti:Rad = 1.3431x10-92), which tells us that these particular 

minerogenic elements fluctuate at least somewhat with the annual laminations and sub-

annual layers throughout the sediment record (figure 4.7). This indicates that the 

laminations of the Basin Pond sedimentary record, have a minor clastic component to 

them, and can potentially track minerogenic input into the lake. As seen in figure 4.7b, a 

highlighted interval (spanning 12 years) shows how the radiographic imagery closely 

tracks the varve chronology. Lower values, indicating a decrease in density, indicate 

lighter layers created during the bloom of microalgae during the growing season, whereas 

higher values (indicating an increase in density) are composed of darker, humous-rich 

layers of organic material  deposited outside of the algal blooming period of the year. 

4.4 Biogeochemical Data 

 Thirty discrete, 0.5cm samples from the Basin Pond sediment record were 

analyzed for several suites of biomarkers. These include long-chain hydrocarbons (n-

alkanes), various algal lipids, and polycyclic aromatic hydrocarbons (PAHs).  

4.4.1 n-alkanes 

 From the apolar fractions of each sample, a suite of n-alkanes were identified and 

quantified. In all samples, n-alkanes of chain lengths 21 through 33 (C21 - C33, or alkanes 

with 21 carbon atoms to alkanes with 33 carbon atoms) were identified and peak areas 

from analysis on the GC-FID were measured. Areas were then converted to compound 

weight per sediment weight (μg compound per g of sediment extracted), and relative 

abundances of each n-alkane were then found.  

4.4.2 Polycyclic Aromatic Hydrocarbons  



 

59 

 17 PAH compounds were searched for on the GC-MS in all samples. 5 of the 17 

PAH compounds could not be identified and were not present in most samples, including 

acenaphthene, fluorene, anthracene, indeno(1,2,3,cd) pyrene, and benzo[g,h,i]perylene. In 

most samples, the remaining 11 of the 17 PAH compounds searched for were identified. 

In particular, 4 PAH compounds were found in all samples: naphthalene, pyrene, retene, 

and chrysene. Mass spectra for each PAH compound can be seen in Appendix A. 

4.4.3 Algal Lipids and n-alkanols 

 Various lipids eluting in the polar fractions of each sample were identified and 

quantified on the GC-MS and GC-FID, respectively. Compounds identified include: 

loliolide, isololiolide, cholesterol, cholestanol, C30 1,13 n-alkyl diol, campesterol, 

campestanol, C29-brassicasterol, C29-brassicastanol, β-sitosterol, β-sitostanol, dinosterol, 

dinostanol, and arborinol. Similarily, straight-chained n-alkanols of various chain lengths 

were identified. In all samples, n-alkanols of chain length C16 – C30 (those with 16-carbon 

chains through those with 30-carbon chains) were identified, excluding the C29 n-alkanol, 

which could not be identified in any sample.  

4.5 Bulk Geochemical Data 

 Total bulk carbon and nitrogen values, as measured by the Elemental Analyzer 

(EA), range from 17 – 27% (carbon) and 1.5 – 2.5% (nitrogen) (Figure 4.8 a, b). Due to 

the lack of carbonate in the Basin Pond sediment record, as found in (Frost, 2005), no 

acidification step was taken in preparation of the samples for elemental analysis, and total 

carbon can and will be interpreted as Total Organic Carbon (TOC). C/N ratios for the 

samples vary between 10.5 and 13.5 (Figure 4.8c). Dry bulk density, measured on the 

same samples, show little variation, with a general decrease in values down-core. Dry 
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bulk density values range from 0.05 g/cm3 to 0.20 g/cm3 (Figure 4.8d).  

  

Top: Figure 4.1, showing annual precipitation totals (in mm) and average annual 

temperatures (in degrees C). Bold lines are seven-year moving averages. 

Bottom: Figure 4.2, showing average temperature (and associated error) for the state 

of Maine, U.S.A, over the past 250 years. Data compiled by the Berkeley Earth 

Surface Temperature Project from 97 current stations and 74 former stations. 
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Left- Figure 4.3a: Core BP2014-5D ½ X-Ray Radiographic Image, 

showing high – resolution (100μm) fluctuations in density, 

detailing the fine-scale laminations throughout the Basin Pond 

sedimentary record.  

 

Above – Figure 4.3b: zoomed-in view of core 5D ½ radiographic 

image, with associated radiograph greyscale values plotted in blue 

and overlayed onto the image. Varve counts were performed 

through this record.    

 

 

30 mm 

5 mm 



 

62 

  

y = -14.3076x + 2013.3617 

R2 = 0.995 

Above- Figure 4.4a: Basin 

Pond Age Model, based 

upon radiocarbon ages, 

varve chronology, and Pb-

210 radioisotopic dates. 

 

Left- Figure 4.4b: Age 

Model for the historic 

period of the Basin Pond 

sediment record, based on 

varve counts (black points) 

and Pb-210 dates (green 

points). Thin black line 

shows linear regression of 

varve chronology, with the 

regression equation and 

associated correlation 

coefficient listed. 
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From Left to Right- Figures 4.5a-d: Image of the Basin Pond sediment core, bulk 

density values, magnetic susceptibility, and L* spectral values, as measured from the 

geotek core scanner. 
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  R
2 = 0.031 R2 = 0.0369 

R2 = 0.2457 R2 = 0.2294 

Figure 4.6: Correlation plots with linear regression analysis of X-Ray Radiographic 

Greyscale Values versus iron (top left, green), potassium (top right, light blue), titanium 

(bottom left, red), and silicon (bottom right, dark blue). All elemental data have been 

normalized to titanium. Correlation coefficients can be seen in the upper right corner of 

each plot. Note statistically significant (p<0.00001) correlation of Si/Ti and Ti with 

radiographic values, but little correlation is seen with Fe/Ti or K/Ti. 



 

65 

  

Figure 4.7a (top): Titanium abundance, Si/Ti abundances, and radiographic greyscale 

values plotted over the past ~230 years. Boxed-in section on top plot indicates the 

highlighted interval seen in figure 5.5. 
 

Figure 4.7b (bottom): Highlighted interval from 1815 – 1827 seen in figure 5.4. This 

section was chosen based on distinguished laminations in the radiographic record.  
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Figure 4.8: Bulk geochemical data from discrete samples of the Basin Pond 

sedimentary record, including a) total organic carbon content (TOC), b) total nitrogen 

content, c) the ratio of total carbon to total nitrogen (C/N), and d) dry bulk density, 

measured in grams per cubic centimeter. 
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CHAPTER 5 

DISCUSSION 

As stated in chapter 1, the goals of this thesis were to (1) determine how known 

extreme events are documented by instrumental measurements and historical records, (2) 

to identify how human activities and rapid environmental change in the catchment area 

are expressed in the sedimentary record, and (3) to distinguish and evaluate how climatic 

events are expressed in the physical and geochemical properties of a lacustrine 

sedimentary sequence. To address these questions, the following hypotheses have been 

tested: 

(1) There has been human disturbance in the catchment area during the past 200 

years and is seen in the sedimentary record of Basin Pond  

(2) Extreme events (hurricanes, floods, droughts, and wildfires) can be identified 

in the Basin Pond sedimentary record throughout the historic period using a 

suite of sedimentary, organic geochemical, and inorganic geochemical 

analyses.  

Answering these hypotheses require an in-depth multi-proxy analysis of the 

sedimentary record, and will comprise the bulk of the discussion in this chapter.   

5.1 Human Disturbance and Catchment History 

 In order to accurately interpret how human activities have affected the 

paleoenvironmental signals recorded by organic matter in the Basin Pond sedimentary 

record, organic matter sources must first be identified and understood throughout the 

record. By a comparison of proxy records compiled through analyses performed, we see 

that the source of organic matter has varied over the historic period, giving insight into 
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Basin Pond’s history.   

5.1.1 Lake Primary Productivity Fluctuations from Lipid Biomarkers  

In lacustrine environments, lipids found in the sediment record are dominantly 

sourced from microalgae organisms found within the lake (Castañeda and Schouten, 

2011). Some of these lipid biomarkers can be very useful in studying lake sediments and 

can give valuable insight into catchment history, environmental change, and variability in 

productivity levels of certain types of algae throughout time.   

Two such classes of compounds are sterols and stanols. Sterols and stanols are 

molecular compounds that are produced in all eukaryotic organisms and are utilized as 

membrane rigidfiers. Many sterols (and their saturated counterparts, stanols) can be 

indicative of certain groups of source organisms, in particular specific phytoplankton 

groups (Castañeda and Schouten, 2011; Volkman, 2003; Volkman et al., 1998). For 

example, dinosterol and dinostanol are found in dinoflagellates and are not produced in 

higher plants, and are therefore used as a biomarker for dinoflagellate species (Castañeda 

and Schouten, 2011; Volkman et al., 1998, 1999; Gillan et al 1983). The phytosterol 

class, including β-sitosterol/stanol and campesterol/stanol, has been linked to 

terrestrially-derived higher plant sources, along with arborinol (Fernholz and 

MacPhillamy, 1941; Segura et al., 2006; Volkman, 2003, 1986), but have also been found 

to be produced in certain algal species (Rampen et al., 2010). The compounds isololiolide 

and loliolide are known to be anoxic degradation products of diatoms, and have been 

used as a biomarker for diatom species (Castañeda and Schouten, 2011).  Long-chain 

alkyl diols are produced by Eustagmatophyte algae, or yellow-green algae, and can be 

indicative of this algal class (Volkman et al., 1998).  
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In the case of Basin Pond, these lipid biomarkers help shed light on major 

changes in the lake productivity, as well as potentially the land-use changes and human 

disturbances in the catchment area throughout the historic period. Based on the mass 

accumulation rates of thesis lipid biomarkers, three distinct periods of activity can be 

seen: a slow decline in all lipids prior to ~1860 (i), a period of relatively flat lipid 

productivity from 1860 - 1920 (ii), and finally a large overall increase in all compounds 

throughout most of the 20th century, punctuated by an abrupt decline in the 1950’s and 

1960’s (iii) (figure 5.1).  

 While absolute abundances and accumulation rates of individual lipids can be 

meaningful, relative abundances of algal lipids can also illustrate how the lake’s 

ecosystem and productivity levels fluctuate over time. Due to their usefulness as 

biomarkers described above, and their abundance in the sedimentary record, a selection 

of these algal lipids was used to be representative biomarkers for certain algal classes. 

Dinosterol/stanol was chosen as a representation of dinoflagellates, C30 1,13n-alkyl diol 

for eustagmatophyte algae, Isololiolide/loliolide for diatoms, and β-sitosterol/stanol for 

higher terrestrial plants (figure 5.2). By looking at the relative abundances of these lipids, 

again the most apparent change is a large overall increase in sitosterol/stanol and a 

similar decrease in dinoflagellate productivity throughout most of the 20th century, with 

the most rapid shift occurring post 1950 (figure 5.2). Interestingly, this occurs at roughly 

the same time period as the abrupt decline in the absolute abundances of all compounds 

seen in figure 5.1 during the 1950’s and 1960’s. 

Decrease in Algal Productivity in the 1950’s and 1960’s 

This abrupt decline could likely be a repercussion of the chemical treatment of the 
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lake using rotenone, which took place in 1955 (USGS, personal communication). 

Rotenone is a naturally occurring chemical with insecticidal, acaricidal and piscicidal 

properties, which exerts a toxic action by acting as a general inhibitor of cellular 

respiration. It has been used for fish eradications as part of water body management, and 

has been shown to have long-term effects (multi-year) on the biodiversity of a water body 

(Maslin, 1996). Rotenone’s effects on the biodiversity of other aquatic organisms 

(specifically microalgae) and on lake productivity levels is unclear, but the Basin Pond 

record suggests that there were system-wide, long-term ecological effects on the aquatic 

biodiversity, resulting in abrupt declines in algal abundances.  

20th Century Increase in Lipid Abundances  

The 20th century overall increase in absolute lipid abundances could indicate a re-

advancement of the forest around the catchment area in the mid-20th century to the 

current heavily-forested structure of the catchment area. If this were true, it would mean 

that the catchment area was influenced by human activity throughout the historical period 

up until the 1950’s. In order to test this hypothesis, other sedimentological properties and 

data can be used to shed light on the deforestation of the catchment area. Magnetic 

susceptibility, which detects the presence of iron-bearing minerals per unit volume within 

sediments, can be used as a proxy for terrigenous inputs (Stein, 2004). Bulk density and 

minerogenic elemental abundances similarly can be used as proxies for clastic or 

allochthonous input, as clastic material is usually more dense and higher in minerogenic 

elements. However, at Basin Pond these proxies do not support this hypothesis, as 

magnetic susceptibility, bulk density, or minerogenic elemental abundances do not 

fluctuate substantially or indicate deforestation and increased runoff into the lake system 
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(figure 5.3). 

It is important to note that this shift in algal abundances could be tracking a 

change in productivity in the lake that is not connected with large-scale catchment area 

land use changes (e.g. forest clearance or re-advancement). When looking at the relative 

abundance of sitosterol/stanol (lipids that have been considered “terrestrially” derived) 

and comparing it to other proxies of terrestrial organic matter input into the lake (long-

chain n-alkane abundances), large discrepancies between the two are seen throughout the 

time period. This is indicating that at Basin Pond, these lipid compounds are not sourced 

from terrestrial plants, and that these lipids (such as sitosterol/stanol) are realistically 

tracking some other aquatic algal species produced in situ in Basin Pond.   

 To summarize, while it remains somewhat murky, human impact on Basin Pond 

and its catchment area seems to have been present, but minor. By looking at multiple 

lines of evidence from independently analyzed proxy records, an abrupt decrease in algal 

productivity in Basin Pond occurs in the 1950’s and 1960’s, and is likely a consequence 

of the chemical treatment of Basin Pond in 1955.  The overall increase in algal lipid 

abundances throughout the remainder of the 20th century could be caused by other minor 

disturbances in the catchment area (i.e., construction of a home within the catchment 

area). One house is situated in the catchment area, and while this would be a minimal 

disturbance, it is reasonable to assume that at least minor catchment disturbance and lake 

contamination has occurred. It is common to see an increase in nutrient loading (and 

therefore an increase in certain algal species productivity) in lakes from increased human 

activities nearby, as increased nutrient loading can cause an increase in algal productivity. 

When comparing this with other proxies, it seems unlikely that human activity in the 
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catchment area had a large influence. C/N ratios, magnetic susceptibility, and elemental 

abundances during this time period do not exhibit a similar change (figure 5.3). Changes 

in these proxies would be expected if more catchment soil and terrestrial matter from 

deforestation or human disturbance in the watershed occurred (Kylander et al., 2011). If 

the catchment area was ever completely and continuously logged and harvested, a 

stronger signal of increased runoff would likely be evident in the sediment record. While 

there are large fluctuations in terrestrial long-chain n-alkane abundances, again there is 

no similar variation in inorganic terrestrial input. One possibility for this is that the 

catchment area was logged, but not fully, and was allowed to recover quickly afterwards. 

This would allow for drastic changes seen in long-chain n-alkane abundances without a 

corresponding signal in clastic input into the lake (partial clearance would aid in keeping 

more soil trapped by trees and other higher plants, as opposed to total clearance where 

more soil would be washed into the lake). Unfortunately, at this time no further 

information in historical documents could be found on the catchment area’s history, but 

that would be a valuable task to undertake in future work on this lake.  

5.2 Extreme Events in the Sedimentary Record 

5.2.1 Paleo-storm Records at Basin Pond 

 In heavily-forested lake catchment areas such as at Basin Pond, well-developed 

soils and vegetation aid in limiting the availability and transport of minerogenic material 

into the lake. In these systems, decaying organic matter (both terrestrially and aquatically 

sourced) is transported into the lake sediment record and can form biogenic (organic) 

varves, reflecting the annual (or sub-annual) cycles of organic productivity at the lake 

(Zolitschka et al., 2015). In most biogenic-varved lakes, however, organic varves rarely 
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exist without some clastic components. It depends on the dominating component whether 

the sediment record of a lake is attributed to a more minerogenic (clastic-biogenic) or a 

more biogenic (biogenic-clastic) varve type.  

 It has previously been proposed that the Basin Pond sediment record is composed 

of biogenic varves due to the organic–rich nature of the sediments (Frost, 2005). The 

elemental abundances acquired from the XRF core scanner provide further evidence for 

this. If the Basin Pond varves were dominantly clastic in nature, elemental abundances 

indicating minerogenic or clastic input would correlate with the laminations seen in the 

radiographic images. Due to the potential of the laminations tracking minerogenic input 

from the catchment area into the lake, the data was compared to the storm and 

precipitation record from the past 150 years (figure 5.4). Extreme precipitation events 

(defined as events occurring from May to October, and greater than 4σ from the mean 

event in the MET records, or events producing greater than 3.61cm) were compiled and 

compared to elemental abundances of Fe and Ti, as well as varve thickness. Interestingly, 

the largest events (e.g. 16cm event on September 16, 1932 and 18.87cm event on June 

14, 1998) are seen in the varve thickness record, with large peaks occurring in 1933 and 

1999. Furthermore, peaks in the elemental abundances seem to occur at roughly similar 

times as these events (figure 5.4).  

 In conclusion, while there are large fluctuations in the varve characteristics and 

elemental data that do not correlate with individual precipitation events, the largest 

precipitation events in the record seem to be recorded by these proxy records. This shows 

that the Basin Pond laminations have potential to be used to reconstruct a storm history, 

as seen at other varved sites (i.e. Lower Mystic Lake, Boston, MA (Besonen, 2006; 



 

74 

Besonen et al., 2008)). However, more work is needed on better constraining these 

proxies and in applying them as a storm reconstruction. Furthermore, it should be noted 

that varve characteristics (such as varve counts and thickness) have only been performed 

in this study by one person up to this point, where common practice includes having three 

or more independent measurements being conducted for accurate results due to human 

error and bias during analysis. Having verification of the current varve data could help 

provide more conclusive evidence as to the relationship between these annual laminations 

and storm history.  

5.3.2 Precipitation History and Hydrological Interpretations 

 Longer-term precipitation trends can also be seen in the varve thickness record 

(figure 5.5). When comparing the growing season total precipitation (May-October) to 

the varve thickness record, a relationship seems to exist, where the varve thickness record 

is slightly leading the precipitation record (figure 5.5). In reality, the varve thickness 

record should be equal to or slightly lagging the precipitation record, as sedimentation 

and preservation of varve layers occurs after precipitation events. In this case, the offset 

between records is minor (roughly 5 to 7 years) and can be explained by the error in the 

varve chronology. 

Furthermore, results from biomarker analysis serve as an indicator of precipitation 

variability on longer time scales (multi-annual to decadal). Distributions of n-alkanes 

demonstrate a strong odd-over-even carbon number predominance, which is expected 

from past studies (figure 5.6). Generally, long-chain n-alkanes (C27-C33) are produced by 

terrestrial plants, whereas short-chain n-alkanes (C17-C21) are produced by aquatic algae, 

and mid-chains (C23-C25) by aquatic macrophytes. Therefore, the use of several proxies 
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such as the Average Chain Length (ACL) (average of C21:C33), percent aquatic (Paq) 

((C21+C23)/C21:C33) ratio, and the ratio of long-to-short chain n-alkanes can generally 

show trends relating to the sources of alkanes of particular chain length. However, 

caution must be exercised in using these proxies, as a handful of exceptions to the general 

chain-length distributions exist. Rhisozolenoid diatoms have been known to produce 

long-chain n-alkanes, while some aquatic macrophytes can produce C27 and C29 alkanes 

(Sun et al., 2013). At Basin Pond, due to the catchment area being dominated by C3 forest 

(figure 5.7) with little variability, it is likely that the general conditions hold true, where 

terrestrial plants are producing long chain lengths and aquatic organisms are producing 

shorter chain lengths.  

 While at some sites these proxies capture temperature fluctuations, at Basin Pond 

these proxies capture the long-term trends in the precipitation regime (figure 5.8). The 

ACL is interpreted in this study as tracking input of terrestrial organic matter 

(allochthonous material) versus aquatic input (autochthonous production). Due to the fact 

that Basin Pond is a closed system, where input comes mainly from precipitation and 

groundwater discharge, fluctuations in ACL can be interpreted as loosely tracking 

precipitation changes. This is further supported by the Paq ratio, which is the abundance 

of mid-chain aquatically-derived n-alkanes over the distribution of all chain lengths, and 

is used to estimate moisture-dependent variations in lake catchment areas (Ficken et al., 

2000; Sun et al., 2013; Zhou et al., 2010). The ratio of long-to-short (L:S) chain n-alkanes 

((C31+C33)/(C21+C23)) gives further support, showing similar trends to both the ACL and 

Paq (R2 = 0.91 and -0.96, respectively). At Basin Pond, the Paq and ACL are negatively 

correlated (R2 = -0.936).  
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Interestingly, at Basin Pond the correlation between these proxies and 

precipitation is the opposite of what is expected. The biological function of n-alkanes in 

higher terrestrial plants is to maintain the moisture balance between the plant leaves and 

the environment. During hotter or more arid conditions, plants produce longer n-alkane 

chain lengths, as longer chain lengths have higher melting temperatures and are more 

rigid (Bush et al., 2013). Therefore, an increase in ACL and L:S values (indicating an 

increase in relative abundance of longer chain lengths to shorter chain lengths) can either 

be interpreted as an increase in aridity or an increase in temperature. However, at Basin 

Pond, we see the opposite relationship arise between the ACL and L:S proxies and 

growing season (April-September) precipitation, with higher values seeming to correlate 

well with increased precipitation. While the shorter-term cyclicity of the precipitation 

record may not be as well captured in these biomarker proxies, the long-term 

precipitation trends of the meteorological records are captured well by the proxy data, as 

seen in figure 5.8. This lack of short-term resolution is somewhat expected, as sampling 

resolution is likely too low to capture these pronounce cycles seen in the meteorological 

record. Unfortunately, none of the higher-resolution proxy records (XRF elemental 

scanning data) show any clear correlation with precipitation trends.  

This surprising result is highlighting the possibility that n-alkane distributions and 

associated proxies seem to be dominated by a signal of the compound deposition rates as 

opposed to a signal of the biological function of these compounds. This theory is further 

supported when comparing the mass accumulation rates of the long-chain n-alkanes 

(MARlong) to these proxies, as increases in MARlong, ACL, and L:S values all correlate 

with increased precipitation. Furthermore, this brings light to the idea that the timescale 
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and resolution of studies involving n-alkane distributions is extremely important in how 

to interpret the proxies with respect to precipitation trends. In highly-resolved studies like 

the Basin Pond record, fluctuations in the production of n-alkane chain lengths in plants 

might be insignificant (or overshadowed) in the sediment record by the flux of 

compounds being washed into the lake from changes in precipitation. This would be an 

interesting hypothesis to test in other high-resolution studies, and could be an interesting 

development of our understanding of precipitation as a driver of varying chain lengths 

and the n-alkane proxies.  

5.2.3 Wildfire Record  

 The northeastern U.S., while not typically a region that is viewed as being prone 

to wildfires, has experienced major forest fire disasters throughout the past 200 years. 

The most recent outbreak, taking place in October of 1947, saw hundreds of fires burn 

over 200,000 acres across southern Maine over a week, and became known as “The 

Week Maine Burned”. A larger wildfire, known as the “Miramichi Fire”, burned over 3 

million acres of land in October of 1825 throughout Maine and New Brunswick, and 

remains one of the top 3 largest wildfires in North American history (Butler, 2014). 

These fires demonstrate that the northeastern U.S. is susceptible to wildfire catastrophes.

 Pyrogenic polycyclic aromatic hydrocarbons (PAH) have been used in this study 

as organic biomarkers indicating regional fire activity. In particular, the PAH retene was 

investigated in detail, as it is produced from the diagenesis of abietic acid, which is 

prevalent in conifer resin (Ahad et al., 2015). Therefore, retene is found to be produced in 

abundance in coal tar from resinous woods or by the pyrolysis of conifer trees (Ramdahl, 

1983). Due to the fact that retene can be produced through pyrolysis of conifer trees, it 
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has been utilized as an indicator of biomass in the Basin Pond region, as conifers 

(specifically hemlock) are an important part of the ecosystem in northern New England 

(Denis et al., 2012; Ramdahl, 1983). Furthermore, the retene/(retene+chrysene) ratio has 

been used in the past to distinguish the source of retene, as lower values (0.15 to 0.5) tend 

to indicate a fossil fuel source while higher values (>0.8) indicate a soft-wood 

combustion source (Denis et al., 2012; Kuo et al., 2011).  

At Basin Pond, the retene/(retene + chrysene) ratio seems to track wildfire activity 

in the region extremely well, with clear peaks occurring in sediment samples roughly 5 to 

12 years after the two large wildfires (figure 5.9). This ratio helps distinguish a wildfire 

signal from individual PAH abundances, which can show greater variability as seen in the 

MARs of both retene and chrysene (figure 5.9) For instance, while retene MAR records 

the 1947 and 1825 fires, there are multiple peaks throughout the record apart from these 

fires which make it difficult to distinguish the wildfire signal.  

 Through using PAH abundances and associated ratios, we now have the ability to 

capture distinct wildfire events on a regional scale in an area that traditionally 

demonstrates low frequencies in wildfire activity. The retene:chrysene ratio shows 

promise as a proxy for wildfire activity in the northeastern U.S. and as a way to 

reconstruct paleofire activity throughout the region.   

Climatic Controls on Fire Activity  

 While there are multiple controlling factors that affect wildfire activity, 

frequency, and occurrence, climatic controls seem to be the most influential on short time 

scales. Environmental shifts, such as forest structure or ecosystem diversity changes, can 

have large effects on wildfire risk, but on centennial to millennial time scales. On annual 
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to interannual time scales, climate extremes (such as severe droughts) have large effects 

on fire occurrence.  

Using the Fire of 1947 as an example in the historical period, the fire aligns with a 

short-term (sub-annual) intense drought that took place in the fall of 1947 (figure 5.10).  

Interestingly, the fire seems to be much more effected by seasonal precipitation totals 

(August-September-October) rather than annual precipitation totals, indicating that 

seasonal precipitation extremes have more of an effect on wildfire activity than longer-

term precipitation trends, even on the annual timescale. Despite only having one example 

in the precipitation record to compare with the fire history of the region, this result is still 

significant, as the northeastern U.S. is prone to short, severe droughts on seasonal time 

scales. 

5.3 Conclusions  

 The analysis of the sedimentary record from Basin Pond, Fayette, Maine, provides 

an intricate record of paleoenvironmental and paleoclimatic variability, as well as the role 

of human influence on the lake ecosystem and processes, throughout the historical period. 

The organic-rich characteristics of the sediment record makes the sediment an ideal target 

for biomarker analysis, as organic compounds that are in abundance throughout the 

record can be indicative of climatic fluctuations. Furthermore, due to the varved nature of 

the sediment record, Basin Pond provides a unique opportunity to study environmental 

change on a highly-resolved, accurate time scale, and allows for an opportunity to study 

shorter-term, rapid environmental and climatic extreme events.  

Mixed results were seen in the application of multiple proxies to the sediment 

record. While some proxies seem to be tracking environmental change and human 



 

80 

disturbance in the catchment area, others seem to be tracking climatic change in the 

region, while others fail in tracking environmental or climatic change. While multiple 

sedimentary proxies (i.e. bulk density, magnetic susceptibility, elemental abundances) 

seem to fail to track any human disturbance in the catchment area, organic compounds 

(such as algal lipids) are tracking catchment area changes. Several proxies relating to the 

distribution of straight-chained n-alkane hydrocarbons correlate well with long-term 

(decadal to multidecadal) precipitation trends in the region. Perhaps more excitingly, 

polycyclic aromatic hydrocarbons were used to look at wildfire events in the northeastern 

U.S. It was found that the retene/ (retene + chrysene) ratio shows a strong correlation 

with known regional wildfire events, having both events in the historical period 

distinguishable in the proxy record.  The use of the ret/ (ret+chr) ratio is a somewhat 

novel method to tracking wildfires in the Northeastern U.S, and provides promise to its 

utilization in future wildfire studies in this region.  

In conclusion, the goals of this thesis were to (1) determine how known extreme 

events are documented by instrumental measurements and historical records, (2) to 

identify how human activities and rapid environmental change in the catchment area are 

expressed in the sedimentary record, and (3) to distinguish and evaluate how climatic 

events are expressed in the physical and geochemical properties of a lacustrine 

sedimentary sequence. To address these questions, the following hypotheses were tested 

and answered: 

(1) There has been human disturbance in the catchment area during the past 200 

years and is seen in certain proxies of the sedimentary record of Basin Pond: 

as seen through biomarker analysis, human disturbance on lake productivity 
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levels is evident throughout the 20th century, however changes in the lake 

catchment area appear to be minor, as other traditional sedimentary proxies 

and analysis (magnetic susceptibility, bulk density, elemental abundances) fail 

to provide any major fluctuations in the historical period.  

(2) Extreme events (hurricanes, floods, droughts, and wildfires) can be identified 

in the Basin Pond sedimentary record throughout the historic period: Using a 

suite of sedimentary, organic geochemical, and inorganic geochemical 

analyses, major precipitation events can be seen in the sedimentary record, as 

well as longer-term precipitation trends and regional wildfire activity 

throughout the past 200 years.   

5.4 Future Work 

5.4.1 Extension of Paleoclimate Records into the Pre-historic Era 

 The first and most apparent direction of future work on the Basin Pond sediment 

record involves extending selected analyses into prehistoric times. Because of the robust 

correlation with known fire events in the historic era, studying the PAH distributions 

throughout the sedimentary record would provide useful information on regional wildfire 

activity and would allow for fire frequencies of the region to be determined. Furthermore, 

the extension of the precipitation proxy records could provide a useful tool in 

determining the relationship between wildfire activity and precipitation trends in the 

northeastern U.S. Furthermore, the Basin Pond sedimentary record potentially has a 

continuous, annually-resolved record since deglaciation, which makes it a valuable and 

unique site in the Northeastern U.S. for paleoclimatic and paleoenvironmental studies.   
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5.4.2 Comparison of PAH Fire Record and Other Fire Proxies 

 Comparing the PAH record from Basin Pond sediments with other, more 

traditional methods of paleofire reconstructions, would provide a useful constraint on 

each method and its usefulness as a proxy in this region. Traditionally, sedimentary 

charcoal counts or tree ring fire scars are used in looking at past fire activity at a site. 

However, these can be somewhat limited in usefulness, as they are both more spatially 

constrained than PAHs, which have much more aeolian characteristics and can travel in 

the atmosphere for greater distances or longer time periods than charcoal. A comparison 

of these proxies would help in determining which proxy is most useful at this site, and 

could even help in determining fire proximity to Basin Pond.  

5.4.3 Age Model Fine-Tuning and Compound-Specific Radiocarbon Dating 

 Another interesting area of future work with the Basin Pond sedimentary record 

would include performing radiocarbon dating analysis on a suite of different organic 

compounds. Due to the highly organic nature of the sediment, organic compounds that 

can be used for compound specific radiocarbon analysis (including n-alkanes) are found 

in abundance throughout the record, and would be well suited for dating. Compound 

specific dating would aid in constraining the age model of the Basin Pond sedimentary 

record, and would shed light on the accuracy of the various dating methods (traditional 

macrofossil radiocarbon dating, radioisotopic dating, and varve counting) used in this 

study.  

 Additionally, comparing the age model found in this study with those of past 

studies (specifically Frost 2005) would allow for an independent accuracy check or 

confirmation of this age model. If the varve chronology found in this study does in fact 
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have an error of 5-7 years (as seen in figure 5.5), adjusting the age model would aid in 

better aligning other records of extreme events (e.g. PAH fire records). 

5.4.4 Temperature Reconstructions from the Basin Pond Sedimentary Record 

Lastly, creating a lacustrine temperature reconstruction from Basin Pond could be 

done. A class of organic compounds known as branched glycerol dialkyl glycerol 

tetraethers (brGDGTs) have been found in abundance throughout the Basin Pond 

sedimentary record. The distribution of brGDGTs in soils is highly correlated with mean 

annual temperature (Weijers et al., 2007) and comprises the methylation of branched 

tetraethers/ cyclization of branched tetraethers (MBT/CBT) temperature proxy (Weijers 

et al., 2007). brGDGTs were initially thought to be produced in soils and subsequently 

washed into lakes and deposited in the sediment record. Yet recent studies have revealed 

these compounds are also produced in situ within the water column of many lakes 

(Loomis et al., 2014; Buckles et al., 2014). This production may occur preferentially 

during summer or fall, i.e. peak productivity seasons, thus recording seasonal 

temperatures instead of mean annual temperatures. To develop a reliable record of the 

natural frequency of extreme cold and warm spells and of temperature reconstructions for 

a site, the timing and location of brGDGT production within a catchment must be 

assessed. 

Currently at Basin Pond, a sediment trap study looking at the temporal 

distribution of organic matter throughout the water column is underway. With this study, 

we hope to determine whether or not GDGTs are being produced at certain times 

throughout the year by certain types of aquatic organisms or whether they are purely 

terrestrially-sourced. This will give the ability to understand what temperature these 
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membrane lipids are recording, and will aid in creating an accurate temperature 

reconstruction for the site, and provide a temperature calibration for mid-latitude lakes 

similar to Basin Pond.     
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Figure 5.1: Mass Accumulation Rates (MAR), measured in μg/yr/cm2, of all algal lipids 

found in Basin Pond sediment samples. From top to bottom: isololiolide and loliolide 

(red), a marker for diatom activity, C30 1,15 Alkyl-Diol (blue), a marker for yellow-

green algae, dinosterol/stanol (purple), a marker for dinoflagellates, and  

brassicasterol/stanol, β-sitosterol/stanol, campesterol/stanol, and arborinol (green), 

markers traditionally used for higher terrestrial plants. 
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Figure 5.2: Relative abundances and distribution of 

selected algal lipids. Selected lipids can be seen in the 

key to the right. Note a substantial decrease in 

dinoflagellate activity (indicated by dinosterol/stanol 

abundances), and a similar increase in Beta-

sitosterol/stanol abundances. 
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Figure 5.3: (top to bottom) Elemental Titanium Counts smoothed to 1mm resolution, 

mass accumulation rates (MAR) of the long-chain n-alkane abundances 

(C27+C29+C31+C33), measured in ug/g sediment), magnetic susceptibility 

measurements, bulk sediment total organic carbon to total nitrogen (C/N) ratio, and 

algal lipid relative abundances. Yellow highlighted area indicates the major shift in algal 

lipids distributions at Basin Pond, while the black dashed line indicates the chemical 

treatment of Basin Pond in July of 1955.   
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Figure 5.4: (top to bottom) Varve thickness anomalies (in mm), measured by 

subtracting varve thickness from the 7-year running average thickness. Titanium (dark 

red) and Fe/Ti (orange) abundances are also plotted. Extreme precipitation events 

(occurring from May – October) greater than 3.61cm in the Basin Pond region dating 

130 years are plotted in the bottom bar graph. Note the highlighted (yellow) 

precipitation events occurring in 1932 and 1998, and the corresponding peaks in each 

of the proxy records shown.  
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Figure 5.5: (top to bottom) Total Growing Season Precipitation record (in mm) and 

varve thickness measurements.  Bolded lines indicate running averages (7-year running 

average). Arrows show potential areas of correlation between the two records, with the 

varve thickness record slightly leading the precipitation record. This slight discrepancy 

is likely caused by an error in the varve chronology by 5-7 years.   
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Figure 5.6 (above): n -alkane distribution throughout the Basin Pond sediment record. 

Histogram bars indicate mean values of each n-alkane (measured in μg/g sediment) 

throughout the record. Note a C29 > C31 > C27 pattern, a typical distribution in 

forested areas. 

Figure 5.7 (above): Image of Basin Pond catchment area, showing C3 forest as the 

dominant vegetation type, and some aquatic vegetation.  
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Figure 5.8:  n - alkane proxies  (from top to bottom, L:S chain ratio, Paq index, ACL, 

and long-chain abundances in μg compound per g sediment) compared to average 

growing season (April – September) precipitation (blue) and temperature (green) at 

Basin Pond. Bolded lines in the precipitation and temperature plots indicate the 7-yr 

averages, replicating the 7-year window of each sample used in biogeochemical 

analysis.    
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Miramichi 

Fire, 1825 
Fire of 1947 

Figure 5.9: top to bottom: Mass Accumulation Rates (measured in μg/yr/cm2) of the 

PAH retene (dark red) and chrysene (green), as well as the retene / (retene + chrysene) 

ratio (black). Vertical red lines indicate known wildfire events in the region, and are 

labeled at the top of the plot. Note a pronounced peak occurring following the 1947 fire, 

and a smaller, but still noticeable, peak occurring after the 1825 fire. 



 

93 

  

 

 

 

  

[Grab your reader’s attention 

with a great quote from the 

document or use this space to 

emphasize a key point. To place 

this text box anywhere on the 

page, just drag it.] 

Fire of 1947 

Figure 5.10: Comparison of precipitation records and the retene / (retene + chrysene) 

ratio from the Basin Pond sediment record (black). Top plot is the annual precipitation 

totals, while the middle plot is the August – September – October (ASO) seasonal 

precipitation totals. Vertical red line indicates the 1947 wildfire. Note that in the annual 

precipitation record, the short-term drought leading up to the 1947 fire is somewhat 

masked by precipitation throughout the year, whereas in the ASO precipitation record, 

the short-term drought is much more pronounced.  
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APPENDIX 

SUPPLEMENTARY DATA TABLES AND MASS SPECTRA 

A.1 NOAA Storm Track Information 

Year Name 

Date of closest 

advisory 

Closest 

Advisory 

Location Cat 

Wind 

Speed 

(kts) 

Pressure 

(mb) 

Range 

(mi) to 

BP 

Precip 

Total 

(cm) 

1869 

Not 

Named Sep 8, 1869 22z (-71.1, 42.8) H3 100 965 15   

1960 Donna Sep 12, 1960 0z (-71.2, 43.1) H2 90 -- 15 7.53 

1869 

Not 

Named Oct 4, 1869 23z (-70, 44) H2 90 -- 20   

1985 Gloria Sept 27, 1985 12z (-72.8, 41.9) H2 85 951 50 4.68 

1858 

Not 

Named Sep 16, 1858 18z (-70, 45.5) H1 70 979 30   

1961 Esther Sep 26, 1961 06z (-69.8, 44.7) TS 35 999 15 5.485 

1961 Unnamed Sep 15, 1961 06z (-70.1, 44.1) TS 35 -- 25 1.36 

1908 

Not 

Named May 31, 1908, 0z (-70.3, 43.8) TS 35 -- 15 6.07 

1894 

Not 

Named Oct 10, 1894 18z (-70.2, 44.8) TS 55 -- 20 3.73 

1893 

Not 

Named Aug 29, 1893 18z (-70.7, 44.3) TS 55 -- 20 3.02 

1874 

Not 

Named Sep 30, 1874 06z (-70, 44.3) TS 60 980 15   

1960 Brenda Jul 30, 1960 18z (-71.1, 43.9) TS 45 -- 50 4.53 

1949 

Not 

Named Aug 29, 1949 12z (-71.9, 43.8) TS 35 1000 50 1.47 

1897 

Not 

Named Sep 24, 1897 13z (-70.6, 43.3) TS 45 -- 50 1.02 

1861 

Not 

Named Nov 3, 1861 12z (-70, 44) TS 50 1000 40   

2005 Cindy July 9, 2005 18z (-69.8, 44.9) TD 30 1006 20 2.435 

1933 Unnamed Aug 25, 1933 18z (-70.4, 44.5) TD 30 -- 5 6.465 

1900 

Not 

Named Oct 14, 1900 18z (-70.7, 44.1) TD 30 -- 20 2.13 

1952 Able Sep 2, 1952 12z (-69.4, 44.4) TD 25 -- 40 3.67 

1934 Unnamed Sep 9, 1934 12z (-70.3, 44.3) ET 40 -- 5 4.57 

1899 

Not 

Named Nov 1, 1899 18z (-68.9, 45.3) ET 45 -- 15 2.67 

1896 

Not 

Named Sep 11, 1896 0z (-70.1, 43.9) ET 50 -- 15   

2007 Barry June 5, 2007 0z (-69.5, 44.6) ET 35 992 30 2.695 

1979 David Sep 6, 1979 18z (-70, 45) ET 40 992 40 3.61 

1916 

Not 

Named May 17, 1916 18z (-70.5, 45) ET 50 990 40 10.23 
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A.2 Meteorological Station Data – Precipitation (measured in mm) 

            

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

1885 - - - - - - - - - 105 105 74.4 - 

1886 193 168 79.3 43.1 102 58.2 72.1 88.9 112 82.3 110 156 1265 

1887 98.2 161 85.4 134 12.7 79.4 - - 16.5 62.3 101 108 - 

1888 131 - 137 44.1 76.9 - - 92.7 218 153 129 62.7 - 

1889 93.5 87.6 - 52.6 96.6 - 193 54 86.9 139 123 53.7 - 

1890 - 90.4 184 47.7 176 118 98.3 129 80.4 104 57.3 93.6 1179 

1891 160 86.6 139 46.9 55.5 77.4 - - - 53.9 45.5 142 - 

1892 124 40.6 45.4 26.8 70.9 144 62.3 160 127 31.8 101 34.7 968 

1893 61.2 115 75 72.4 172 70.7 40.6 95.5 76.6 145 76.1 79.1 1079 

1894 41.8 - 56 47.9 131 81.4 48.8 66.4 146 127 75.3 70.1 891 

1895 103 24.1 47.8 144 77.8 85.8 26.6 151 48.8 50.5 146 159 1064 

1896 20.4 142 275 67.6 56 63.3 95.3 101 117 98.6 107 29.2 1173 

1897 138 - 123 81 95.2 110 206 95 75.8 24.1 127 126 1202 

1898 11.9 174 14 68.7 45.7 110 71.1 83.1 71.8 118 112 11.2 891 

1899 65.4 66.1 147 23.4 50.2 61.3 129 48.6 82.8 36.3 66.1 68.9 845 

1900 157 283 179 44.3 130 140 124 58.5 123 108 216 45 1607 

1901 82.9 26.4 115 175 100 88.2 107 87.7 57.3 76.9 53.4 228 1198 

1902 84.4 60.2 214 93.2 131 134 49 84.8 91.6 119 30.3 110 1201 

1903 91.7 66.8 144 70.4 15 145 109 67.7 29.7 78.3 31.6 107 955 

1904 89.6 18.4 79.5 162 145 26.2 126 116 113 53.2 46.4 44.9 1020 

1905 96.2 18 35.9 53.9 67.5 91.5 103 78.8 136 31.5 65.7 66.8 845 

1906 58.1 48.1 109 52.3 92.6 137 162 61.4 16.7 108 74.7 80.6 1001 

1907 59.5 49.8 73.2 103 65.4 73.2 117 53.1 152 155 114 83.6 1098 

1908 72.1 113 71.7 60.4 149 52.2 71.8 124 37.7 65.8 41.5 78.6 938 

1909 146 161 99.5 100 - 48.3 52.1 - - - - - - 

1910 86.3 75.4 35.8 111 55 80.1 78.8 100 58.4 30.3 58.8 69.7 840 

1911 49.8 52.5 141 26.1 30.4 120 68.2 99.1 81.5 78.2 86.6 77.8 911 

1912 107 70.9 96.8 73.9 166 26.2 51.7 147 89.7 117 117 67.4 1131 

1913 64.5 29.7 - 58.3 87.9 20 73.7 78.6 152 167 58.8 76.7 868 

1914 55.6 46.1 135 125 41.1 67.8 68.1 112 43.6 57.9 80 54.9 887 

1915 89.2 107 3.4 79.3 67.7 62.7 192 99 51.3 59 80 129 1019 

1916 37.8 107 56.7 109 172 131 100 191 133 58.1 106 118 1320 

1917 98.7 48.2 107 81 72.4 273 65 181 43 149 28.6 98.1 1245 

1918 65.1 60.5 48.4 62.6 81.1 126 90.9 59.7 228 142 103 90.5 1158 

1919 66 38.5 147 65.1 147 47.5 63.3 65.3 129 105 138 38 1050 

1920 39.2 153 82.5 167 57.5 52.7 85 183 170 63.8 153 224 1430 

1921 24.6 50.8 70.9 91.7 49 45.3 87.2 142 59.5 87.4 145 37.6 892 

1922 56.1 72 92 91.8 133 218 52.7 132 119 32.3 35.3 78.2 1112 

1923 142 31.7 58.1 189 49.3 56.6 57.8 42.2 42.7 88.4 69.2 111 939 

1924 73.7 50.5 18 138 100 42.8 73.5 125 151 29 83.7 55.9 941 

1925 75.8 104 156 18.1 54.6 129 137 34.3 129 168 130 79.5 1214 

1926 76.4 68.5 68.4 79.5 42.1 100 65.6 90.5 79 98.6 184 72.1 1025 

1927 51.1 98.7 27.5 27.4 172 67.2 72.1 110 41.4 165 118 141 1091 
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1928 104 47.5 73.5 105 162 101 82.1 120 137 66.2 56.1 120 1174 

1929 91.3 56.7 105 148 123 65.5 33.7 68.4 23.4 78.9 72 89.2 955 

1930 76.2 30.7 178 42.8 102 95.8 131 121 27.4 128 83.8 39.3 1056 

1931 89.4 51.3 95.3 78.8 85.8 136 104 117 132 67.3 38 95.2 1091 

1932 119 53.7 89.2 91.9 70.1 43.1 88.9 107 231 62.8 119 52 1129 

1933 77.7 55.6 119 161 55.5 60.7 154 126 72.7 154 61.1 93.9 1192 

1934 89.8 72.9 49.6 136 30.8 105 79.2 48.3 204 50.4 72.4 116 1055 

1935 184 49.8 30.8 75.2 45.5 178 104 65.6 135 21.3 158 49.9 1097 

1936 168 70 282 135 85.4 52.2 71 99.3 64 153 58.2 167 1405 

1937 77.5 93.6 71.6 76 171 131 87 18.6 109 188 137 52.5 1213 

1938 117 48.7 65.9 56 130 87.1 208 51.8 164 77.3 56.4 100 1162 

1939 26.3 65.1 36.4 98.2 33.1 68.7 87.4 57.7 77.8 107 19.1 111 788 

1940 49 50.6 97.2 138 78.9 120 71 69.6 98.4 12 154 80.8 1018 

1941 39.7 53.5 34.6 15.5 61.6 31.8 141 109 61.2 74.4 27.9 58.4 708 

1942 62.5 14.6 158 34.1 45 137 94.3 36 90 80.8 99.8 75.5 928 

1943 17.2 58.4 57.8 78 51.2 159 120 123 42 166 225 30.8 1128 

1944 44.5 93 90.9 74.1 23.1 102 128 26.5 129 80 131 66.3 989 

1945 125 90.3 49.9 126 185 81.3 86.7 74.7 87.8 182 150 112 1350 

1946 94.6 57.7 27.5 77.2 78.8 48.6 97.6 113 136 80.1 74.5 114 1000 

1947 81 85.7 92.9 41.1 144 116 135 31.9 44.5 3.7 135 47.8 959 

1948 58 26.7 70.6 62.4 195 71.3 62.3 38.5 13.2 76.5 203 106 984 

1949 82.3 70.4 41.7 83 80.3 88.1 65.3 51.5 81.1 52.2 108 46.4 850 

1950 143 58.5 148 79.8 35.1 125 52.6 104 38.9 68.3 170 138 1162 

1951 67.1 110 147 186 75.7 48.5 124 91.3 98.3 100 182 139 1369 

1952 91.6 139 81.7 67.7 142 101 16.4 31.2 81.1 69 35.4 146 1002 

1953 106 61.4 286 126 77.3 49.8 57.2 44.4 40.9 101 112 96.3 1157 

1954 97.8 127 108 97.5 133 126 87.7 166 231 162 129 139 1606 

1955 30.2 135 99.8 63.3 114 152 50 132 32.2 119 93.5 30.6 1051 

1956 117 77.7 113 99.6 80.6 74.3 143 95.5 104 61.5 76 68.2 1110 

1957 49.1 30.1 46 52.2 77.9 92.9 89 48.3 44.5 50.8 154 158 892 

1958 218 75.4 96.7 143 96 74.5 101 65.3 86.8 158 90.9 42.1 1247 

1959 93.2 39.6 100 77.5 35.5 204 77.1 105 88.1 159 177 85.2 1243 

1960 70.4 184 40.4 94.1 202 117 161 19.6 102 103 93.8 82.8 1270 

1961 37.3 88.6 65.8 140 95.3 83.8 109 30.8 82.1 52.2 129 72.9 987 

1962 79.4 56.8 59.9 120 66 45.6 96.8 84.5 105 153 123 112 1102 

1963 73.9 62.7 85.7 55 89.7 29.1 70.5 124 56.9 91 287 57.7 1083 

1964 102 21.4 107 70.6 46.9 100 120 112 32.5 68.3 105 94.8 981 

1965 28.6 118 7.9 64.5 31.1 73.4 62.6 126 56.1 106 95.6 41.6 811 

1966 92.3 61.7 108 26.8 62.5 106 74 60.2 88.5 102 161 69.4 1012 

1967 42.8 65.8 17.7 81 103 137 91 132 114 65.1 85.5 108 1043 

1968 68.6 39.4 133 114 73.3 116 67.1 31.9 120 58.8 183 169 1174 

1969 97.8 181 81.3 61.7 76.3 100 124 94.6 100 37.9 178 393 1527 

1970 24.1 178 0 88.6 66.9 105 72.1 68.6 63.9 127 71.5 99.3 965 

1971 37.4 143 112 42.9 98.6 69.6 46.6 110 61.3 76.9 84 66.2 949 

1972 33.3 159 130 111 59.7 152 146 87.9 90 98.3 121 170 1357 

1973 81.8 70.3 63 147 146 164 114 164 106 150 85 366 1657 

1974 68.2 64.8 111 120 153 122 96.3 90.2 90.4 32.5 117 139 1204 
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1975 82 47.3 122 64.9 52.1 139 110 90 126 91.5 125 114 1165 

1976 68.8 93.5 81.9 73.4 148 71.1 212 186 69.8 157 57.6 95 1313 

1977 98.6 80.5 147 104 30.1 163 22.1 133 179 210 100 144 1410 

1978 222 47.5 95.3 93.5 78.2 100 39.3 59.3 15 87.9 52.6 72.2 963 

1979 235 61.5 121 154 202 33.7 67.3 109 75.7 124 102 71.2 1356 

1980 28.5 20.5 91.7 169 21.9 63.6 125 57.4 104 99.4 106 33.4 920 

1981 13.4 109 23 75.9 76 130 133 90.6 148 163 85.3 110 1158 

1982 103 56.3 84.8 89.1 25.4 131 61.2 131 146 22.6 125 46.6 1021 

1983 126 75.8 147 171 176 55.3 120 144 57 72.2 263 176 1582 

1984 46.7 109 141 145 197 191 64.2 65.6 27.6 66.5 77.1 84 1215 

1985 27.2 101 78.7 53.1 58.7 87.3 48.6 118 112 71.5 120 50.2 926 

1986 201 39.6 99.7 69.7 105 86.2 105 106 84.5 32.7 82.6 97.2 1109 

1987 87.9 16.5 79.3 201 92.2 127 62.4 52.7 133 124 64.2 91.8 1132 

1988 60.3 58.8 26.2 76.3 51.3 56.9 102 166 54.1 89.7 166 42 949 

1989 35.8 54.2 69.9 98.6 252 163 14 144 113 81.3 120 38.4 1184 

1990 115 53.1 45.7 84.1 151 131 70.1 106 117 227 97.9 171 1369 

1991 62.2 22.1 142 91 117 82.3 60.6 227 110 104 89.5 69.5 1178 

1992 85.9 70.8 141 50.2 9.9 142 82.4 103 77.6 68.8 90.1 32.5 954 

1993 42.3 109 136 167 30.9 74.7 54.4 55.4 69.4 81.4 129 107 1056 

1994 117 36.5 124 96.8 89.2 117 86.2 46.6 122 28 95.9 62.2 1022 

1995 98.3 60.4 94.7 40.3 114 30.8 82.5 14.5 43.8 224 186 97.8 1087 

1996 152 89.2 55.1 152 116 94.5 248 11 99.1 90.7 53.3 157 1318 

1997 113 48.1 86.5 107 72.7 139 127 129 75.8 34 146 62.6 1141 

1998 128 107 129 88.6 92 354 82.7 39.7 39.5 167 78.5 38.9 1344 

1999 166 65.1 188 7.4 81.1 81.3 53 100 246 121 90.5 51 1250 

2000 111 77.3 105 179 132 79.7 144 64 53.7 102 90.1 147 1285 

2001 41.7 102 193 22.8 66.7 140 79.9 26.4 112 44.3 53.3 53.2 934 

2002 78 85.4 97.4 126 107 90.7 69.5 18.2 84.9 91.2 108 62.9 1019 

2003 33.9 49.6 84.3 39.1 73.8 51.9 102 63.8 125 212 129 198 1162 

2004 12 45.7 33.9 131 109 60.5 91.6 148 58.4 61.2 132 122 1004 

2005 55.4 86.6 90.1 225 184 151 65.7 86.4 69.6 305 158 111 1587 

2006 105 58 29.4 48.3 123 210 137 77.8 82.1 225 126 81.2 1303 

2007 60.2 41.9 82.1 201 58 60 107 106 55.3 144 164 112 1191 

2008 71 151 99.6 133 30.4 152 124 178 165 103 196 124 1527 

2009 48.1 87.5 58.3 99.4 107 238 162 137 41.2 144 150 138 1411 

2010 106 112 166 91 47.2 106 41 97.1 139 154 132 152 1342 

2011 51.5 79.8 127 160 116 97.9 68.2 182 127 120 96.8 79.6 1306 

2012 79.3 28 53.4 92.5 157 261 52.2 94.9 124 157 16.1 138 1254 

2013 24.3 80 53.6 44 142 170 144 177 117 26.6 117 96.1 1191 

2014 91.8 95.8 123 79.8 129 120 229 119 19.3 - - - - 
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A.3 Meteorological Station Data – Temperature (measured in degrees C) 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1893 -12 -9.1 -3.6 2.4 12 18 20 20 12 9.8 1.4 -7.6 

1894 -8.5 -9.3 1.8 7.1 13 20 21 17 15 8.3 -2.1 -5.3 

1895 -8.3 -8.2 -2.7 6.6 15 21 21 20 17 6 2.8 -4 

1896 -11 -6.6 -2.5 7.3 14 18 23 21 15 7.7 2.2 -6.8 

1897 -7.1 -- -2.1 7.2 13 16 22 19 13 -- -- -- 

1898 -3.4 1.1 4.7 12 17 20 20 15 9.4 2.1 -7 -8.3 

1899 -8.9 -3.6 5.8 12 18 20 19 13 9.2 0.8 -3.5 -8.5 

1900 -7.7 -5.5 5.4 9.3 18 20 19 15 11 2.1 -7.9 -8.9 

1901 -9.3 -2.6 7.1 13 18 21 19 15 8.2 -1.5 -5.3 -8.5 

1902 -5.7 2.7 6.8 12 15 18 17 15 7.9 2.8 -8.1 -8.4 

1903 -6.5 3.2 6.4 13 15 19 16 15 8.4 0.4 -8 -13 

1904 -11 -2.5 4.4 14 17 20 18 13 7.3 -1.7 -11 -11 

1905 -10 -1.6 5.6 12 16 20 17 14 8.5 0.1 -4.5 -5.1 

1906 -7.1 -4.9 4.5 11 16 20 20 14 8.8 1.2 -9.5 -11 

1907 -11 -1.8 3.6 9.5 16 20 18 14 6 1.1 -2.8 -6 

1908 -9.4 -1.9 4.1 13 18 21 18 16 10 1 -7.7 -8.5 

1909 -7.3 -2.2 4.2 17 -- 18 -- -- -- -- -- -- 

1910 -6.4 0.9 8.5 12 16 20 18 14 8.8 1.8 -8.1 -8.7 

1911 -9.8 -4.2 3.9 16 17 22 19 14 8.1 0.9 -1.8 -14 

1912 -8.2 -3.4 4.5 12 15 20 16 13 8.8 1.4 -3.6 -4.7 

1913 -7.8 7.4 -- 11 17 20 18 13 11 2.5 -3.6 -10 

1914 -11 -1.9 3.6 13 16 19 18 15 9.8 -0.1 -7 -7.3 

1915 -4.7 -1.1 7.4 12 17 19 19 16 8.8 1.9 -3.8 -7.8 

1916 -8.1 -5.8 6.1 12 16 21 20 14 7.9 -0.3 -5.5 -9.6 

1917 -9.9 -2.1 4.2 8.8 17 21 20 13 7 -0.3 -11 -13 

1918 -11 -3.5 6.4 15 15 21 19 13 8.1 2.7 -5 -7.1 

1919 -4.4 0.7 5.6 12 19 21 18 13 7.9 0.8 -8.7 -12 

1920 -8.6 -1.2 4.4 12 17 19 21 15 12 -0.4 -4.6 -7.2 

1921 -6.2 2.1 8.4 13 17 23 18 16 8.5 -0.2 -6.7 -10 

1922 -8 0.6 6.6 14 18 20 19 15 7.5 1.9 -7.3 -10 

1923 -11 -5.8 3.4 12 18 19 17 16 8.7 2.1 -0.9 -8.3 

1924 -9.9 -0.1 4.9 11 16 20 19 14 9.5 2.2 -8 -12 

1925 -3.9 0.4 6.5 11 17 20 18 14 4.6 0.7 -6.2 -9 

1926 -8.4 -5.7 1.7 11 15 20 19 14 8 1.3 -7.9 -6.9 

1927 -6.3 1.1 6.2 11 16 21 17 15 10 3.9 -3.7 -6.9 

1928 -7.8 -2.9 4.1 11 16 21 21 13 9.3 1 -2.7 -8.3 

1929 -6.9 -0.1 5.1 12 18 20 18 16 8.6 1.8 -6.6 -8.1 
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1930 -6.5 -1.4 5.1 13 20 20 18 16 9.1 3.2 -4.9 -7.7 

1931 -5.4 1.5 7.2 13 18 22 19 16 11 5 -3.1 -2.5 

1932 -6.7 -2.6 5.8 13 17 20 21 15 11 0.9 -3.2 -3.2 

1933 -3.8 -2.2 5.4 14 19 20 20 16 8.7 -1.1 -8.9 -9 

1934 -13 -2.1 6.7 14 18 21 18 18 7.6 3.4 -7 -11 

1935 -8.3 -1.3 5.7 11 18 22 21 14 9.1 4.1 -6.9 -7.9 

1936 -9.6 1.8 5.5 14 18 20 19 15 8.4 -0.6 -4.2 -3.3 

1937 -3.8 -3.1 5.6 14 19 22 23 16 8.3 2.4 -6.2 -9 

1938 -5.9 -1.3 7.7 12 19 21 21 14 11 2.8 -2.9 -8.2 

1939 -7.2 -5 3.2 13 18 21 22 15 8.9 1.2 -4.6 -10 

1940 -5.3 -2.6 4.3 13 17 21 19 15 7.7 2.4 -6.2 -7.8 

1941 -4.3 -2.7 9.6 14 20 21 19 16 8.2 3.1 -2.4 -7.7 

1942 -6.3 2.1 6.7 14 18 20 19 15 9 2 -7.4 -9.3 

1943 -6.1 -2.7 3.4 13 18 21 19 14 8.9 2.1 -9.2 -6.8 

1944 -7.5 -2.8 3.6 14 17 20 21 15 8.1 2.4 -6.3 -10 

1945 -5.2 2.7 8.5 10 17 20 19 16 6.8 1.1 -9.1 -10 

1946 -9.6 3.4 4.2 12 17 20 19 16 9.8 2.9 -4.9 -9 

1947 -5.1 -0.2 4.5 11 16 22 21 15 12 0.3 -6.9 -10 

1948 -9.8 -1.5 5.3 11 16 20 20 14 8 5.1 -3.4 -4.1 

1949 -5.7 -0.4 7.2 13 19 22 22 14 11 0.3 -3.9 0 

1950 -9 -3.9 3.6 13 18 19 18 12 8.9 4.2 -3.4 -6 

1951 -4.9 -0 6.7 13 17 20 19 15 8.9 0.4 -6.6 -6.7 

1952 -5.8 -0.6 6.3 11 19 23 20 15 7.3 2 -2.4 -4.9 

1953 -5 0.6 6.9 14 18 20 18 15 9.5 4.4 -1.5 -9.5 

1954 -3.1 -1 4.6 11 17 19 18 13 11 2.6 -4.2 -7.6 

1955 -5.6 -2.9 6.5 14 18 22 20 14 8.6 1.6 -9.1 -4.6 

1956 -5.3 -4.8 3.7 9.4 17 17 17 12 8.6 1.9 -4.5 -13 

1957 -5.2 0.3 6.3 12 19 19 17 15 9 4.1 -2.2 -5 

1958 -7.7 2 5.9 9.7 14 19 18 14 6.5 1.5 -12 -9.6 

1959 -10 -3.5 5.5 14 15 21 20 15 7.9 0.9 -4 -8.2 

1960 -4.7 -4.8 4.4 14 17 19 18 14 6.6 2.3 -8.6 -12 

1961 -7.3 -2.1 4.5 11 16 19 18 18 9.4 2.9 -4.1 -10 

1962 -13 -0.3 5.2 10 17 17 18 13 7 0.1 -6.5 -9.3 

1963 -12 -2 4.5 11 18 21 17 12 10 2.9 -10 -7.8 

1964 -7.3 -2 3.7 13 16 20 15 12 6.9 0.7 -6.8 -10 

1965 -9 -1.1 3.6 13 17 18 19 14 6.6 -0.2 -5.4 -7.4 

1966 -6.8 -0.8 3.8 11 17 19 18 12 8 2.5 -4.8 -7.4 

1967 -12 -5.5 2.7 7.4 18 20 19 14 7.9 -0.4 -5.2 -13 

1968 -11 -2.6 6.6 10 15 20 16 14 9 -0.7 -7.6 -10 

1969 -7.4 -4.2 2.3 9.6 16 17 19 14 7.2 2.3 -5.3 -12 
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1970 -8.1 4.6 0 12 16 20 19 13 8.8 2.2 -10 -14 

1971 -9.3 -3.5 3.1 10 16 18 18 14 10 -0.6 -7.3 -11 

1972 -9.4 -5.8 2 11 16 19 17 13 4.9 -0.8 -8.5 -8.1 

1973 -9.9 0.7 4.8 8.7 16 20 20 13 7.6 0.9 -2.9 -9.6 

1974 -8 -4.3 3.9 8 15 18 18 13 3.6 1.4 -4.8 -8.8 

1975 -8.4 -4.4 1.7 13 16 20 18 12 8.4 3 -9.2 -14 

1976 -7.8 -4.4 5.2 9.8 18 17 18 12 6.2 -0 -10 -13 

1977 -8.5 1 4.7 12 15 18 17 12 7.1 2.4 -7.4 -10 

1978 -11 -4.3 2.5 12 15 18 17 11 6.4 -1.1 -7.9 -10 

1979 -11 -1 4.1 11 15 19 16 12 6.1 2.2 -5.4 -8.7 

1980 -11 -4.4 4.1 9.5 14 19 19 12 5.5 -0.7 -11 -14 

1981 -3 -1.3 5.7 12 17 19 18 12 5.5 0.8 -4.6 -16 

1982 -12 -3.7 2.4 11 14 18 16 13 6.8 1.9 -3.1 -8.7 

1983 -6.2 0 4.8 9.7 16 19 18 15 6.7 1.3 -7.5 -12 

1984 -3.9 -6.5 5.2 10 16 19 20 12 8.2 1.7 -4.6 -12 

1985 -7.5 -2.2 4.5 11 14 20 18 13 7.9 0.7 -8.8 -8.6 

1986 -8.4 -2.3 7.7 11 15 18 17 11 6.8 -1 -5.3 -9.9 

1987 -8 -1.4 7 11 17 19 16 13 6.9 0.1 -3.5 -12 

1988 -8.1 -3.4 4.9 12 16 20 19 12 5.6 2.1 -8.5 -9.5 

1989 -8.7 -4.7 2.8 13 16 19 17 14 7.3 0 -14 -6.2 

1990 -8.7 -1.1 4.8 10 16 19 19 13 8.9 2.5 -4.1 -11 

1991 -6.1 -0.8 5.6 13 17 19 19 12 8.2 2.7 -6.4 -9.7 

1992 -8 -4 3.3 11 16 17 17 13 5.5 -0.1 -4.8 -7.3 

1993 -14 -4.2 4.9 12 16 19 19 13 4.9 0.6 -4.2 -15 

1994 -12 -1.6 4 9.7 18 21 18 13 7.9 3 -3.5 -7 

1995 -10 -1.3 2.6 11 17 20 19 11 9.6 -0.7 -8.1 -10 

1996 -8.7 -3.5 4.7 10 16 18 18 14 6.7 -0.5 -1.9 -10 

1997 -7.3 -5.1 3.3 8.5 16 19 17 13 6.8 0.7 -4.6 -7 

1998 -3.5 -1.7 6 14 16 19 19 15 8.1 1.9 -1.5 -9.3 

1999 -6 -0.8 5.3 13 19 20 18 16 5.8 3.3 -2.9 -8.8 

2000 -6 1.2 4.9 11 16 17 18 13 7.7 2.5 -7.3 -9.4 

2001 -9.2 -2.2 4.4 13 18 18 20 14 8.7 3.5 -1.3 -4.6 

2002 -5.3 -1.4 5.5 10 16 19 20 15 5.7 0 -5 -12 

2003 -9.5 -3.2 3.7 10 17 19 20 15 7.3 2.9 -4.8 -13 

2004 -6.9 -0.5 5.6 12 15 18 19 14 7.7 1.7 -6.2 -10 

2005 -6.2 -2.8 5.7 8.9 18 20 19 16 8.9 2.1 -5.3 -4.1 

2006 -6.5 0.1 6.8 12 18 21 17 14 7.9 5.1 -0.6 -7.3 

2007 -9.1 -2.1 3.7 12 17 18 18 15 11 0.5 -6.8 -6.6 

2008 -7 -2.9 5.9 11 17 20 18 14 7.1 1.9 -5.7 -12 

2009 -7 -1.4 7 11 15 18 19 13 5.9 4.1 -4.8 -5.6 
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2010 -2.9 2.8 8 13 16 22 19 15 8.2 2 -3.9 -8.7 

2011 -8 -1.7 5.1 12 16 20 18 16 9.1 3.9 -3 -7 

2012 -4.5 2.8 6.8 13 16 20 20 13 9.7 0.8 -3.3 -7.7 

2013 -4.9 -0.3 5 12 17 21 18 14 9 0.2 -7.3 -10 

2014 -8.8 -6.3 4.8 12 16 20 18 -- -- -- -- -- 
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A.4 Polycyclic Aromatic Hydrocarbon Mass Spectra 

  

Retention 

Order  Compound  

Major 

Ion 

Retention 

Time (min) Standard Used 

I naphthalene 128 12.989 Restek 

II acenaphthylene 152 19.617 Restek 

III acenaphthene 153 20.55 Restek 

IV fluorene 166 23.176 Restek 

V phenanthrene 178 28.465 Restek 

VI anthracene 178 28.731 Restek 

VII fluoranthene 202 35.414 Restek 

VIII pyrene 202 36.704 Restek 

IX retene 219 38.641 Chiron 

X benzo(a)anthracene 228 43.829 Restek 

XI chrysene 228 44.094 Restek 

XII benzo(b)fluoranthene 252 49.857 Restek 

XIII benzo(k)fluoranthene 252 50.012 Restek 

XIV benzo(a)pyrene 252 51.495 Restek 

XV indeno(1,2,3,cd)pyrene 276 56.754 Restek 

XVII dibenz(a,h)anthracene 278 56.831 Restek 

XVI benzo[g,h,i]perylene 276 57.97 Restek 

I 

II 

III 

IV 

V 

VI 

VII VIII 

IX 

X 

XI 

XII 
XIII 

XIV 

XV 
XVI 

XVII 
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II : Acenaphthylene 

(mainlib) Acenaphthylene
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IV : Fluorene 

(mainlib) Phenanthrene

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
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(mainlib) Benz[a]anthracene
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XII : Benzo[b]fluoranthene  
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XVI : Dibenz[a,h]anthracene  

(mainlib) Benzo[ghi]perylene
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XVII : Benzo[g,h,i]perylene  
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