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ABSTRACT

A REAL-TIME SIGNAL CONTROL SYSTEM TO
MINIMIZE EMISSIONS AT ISOLATED INTERSECTIONS

MAY, 2015

FARNOUSH KHALIGHI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eleni Christofa

Continuous transportation demand growth in recent years has led to many traffic

issues in urban areas. Among the most challenging ones are traffic congestion and the

associated vehicular emissions. Efficient design of traffic signal control systems can be

a promising approach to address these problems. This research develops a real-time

signal control system, which optimizes signal timings at an under-saturated isolated

intersection by minimizing total vehicular emissions. A combination of previously

introduced analytical models based on traffic flow theory have been used. These

models are able to estimate time spent per driving mode (i.e., time spent accelerating,

decelerating, cruising, and idling) as a function of demand, vehicle arrival times,

saturation flow, and signal control parameters. Information on vehicle activity is used

along with the Vehicle Specific Power (VSP) model, which estimates emission rates

per time spent in each operating mode to obtain total emissions per cycle. For the

evaluation of the proposed method, data from two real-world intersections of Mesogion

and Katechaki Avenues located in Athens, Greece and University and San Pablo

v



Avenues, in Berkeley, CA has been used used. The evaluation has been performed

through both deterministic (i.e. under the assumption of perfect information for

all inputs) and stochastic (i.e. without having perfect information for some inputs)

arrival tests. The results of evaluation tests has shown that the proposed emission-

based signal control system reduces emissions compared to traditional vehicle-based

signal control system in most cases.
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CHAPTER 1

INTRODUCTION

Increases in traffic congestion caused by growth in population and car ownership

threaten mobility and quality of life in populated cities around the world. Traffic

congestion is directly associated with reduced mobility as well as increased wasted

time, fuel consumption, and pollutant emissions. Particularly, in urban areas motor

operations have a huge contribution to increasing level of air pollutants such as CO2,

CO, HC, and NOx. Among the traffic-generated air pollutants emitted by vehicles

near intersections, NOx is of great importance. Current scientific evidence links short-

term NO2 exposure, ranging from 30 minutes to 24 hours, with adverse respiratory

effects including airway inflammation in healthy humans and increased respiratory

symptoms in people with asthma (EPA, 2015). Furthermore, other studies show that

motor vehicles are responsible for 57% of NOx emissions in the United States (Black,

1942).

Reducing congestion by adding new roads is not always feasible because of spatial

and financial constraints. This is particularly hard in the United States that funding

surface transportation has been faced with some difficulties in recent years (Dilger,

2002). Additionally, a significant amount of emissions is usually produced during the

construction process. Furthermore, increasing road capacity could result in increased

future demand, so not only it cannot reduce congestion in the long run but it can

lead to worse emission inventories. Therefore, employing another method to deal

with the problem of reducing emissions and at the same time maintaining efficient

and reliable traffic operations is necessary. Traffic signals, if controlled appropriately,
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can be promising tools for improving traffic conditions, since they can be implemented

using existing infrastructure and do not need large investments.

Signal control systems have been traditionally designed to reduce travel time or

vehicle delay at intersections. However, recently with increased requirements and

emission standards, a lot of attention has been attracted to evaluating the environ-

mental impacts of signal control strategies and developing methods to estimate and

reduce emissions at intersections. Studies show that minimizing delay does not nec-

essarily result in reduced emissions. The main reason for high emission levels at ur-

ban intersections is non-smooth traffic operations and stop-and-go vehicle movements

(Chen and Yu, 2007). Highly interrupted movements of vehicles result in much more

time spent in the acceleration mode. During acceleration, a vehicle’s engine power is

at a higher level, and it causes excessive fuel consumption and emissions (Frey et al.,

2000). Therefore, to minimize emissions, the emissions should be taken into account

directly when optimizing signal timings.

1.1 Problem Statement

There have been studies on emission estimation and the impact of signal timings

on emissions at signalized intersections. Most of these studies have been performed

through field measurements or simulation software. However, estimating emissions

through simulation studies and field measurements is not always efficient and even

feasible since they are time-consuming and in some cases prohibitively expensive.

Therefore, there is an imperative need to develop real-time signal control systems to

estimate emissions with minimum inputs and use these estimates to develop real-time

signal control systems to improve air quality. In addition, in such real-time signal

control systems, it is necessary to account for emissions produced by both autos and

transit vehicles at multimodal signalized intersections since the amount of emissions

2



produced by autos and transit vehicles are considerably different due to the higher

emission rates of transit vehicles.

So, the question that motivates this research is the following:

How should real-time signal control systems be designed to minimize emissions at

signalized intersections, accounting for emissions produced by both autos and transit

vehicles?

1.2 Research Goals

This study has develop ed a real-time signal control strategy to minimize emissions

at an isolated intersection that operates at undersaturated traffic conditions.

The proposed system first predicts the time spent on each operation mode: accel-

eration, deceleration, cruising, and idling for both autos and transit vehicles with the

use of previously develop ed analytical models (Christofa et al., 2013, Shabihkhani

and Gonzales, 2013). Then, information on time spent p er driving mode is used

along with modal emission rates to estimate total emission levels. Then the total

emissions is minimized through optimizing signal timings. The proposed real-time

signal control strategy has been tested through deterministic (i.e., under the assump-

tion of perfect information ab out auto and transit vehicle arrivals) and stochastic

(i.e., when perfect information is not available for auto and transit vehicle arrivals)

arrival tests at two real-world intersections that vary in their geometric as well as

traffic and transit characteristics.
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CHAPTER 2

LITERATURE REVIEW

Extensive literature exists on the environmental impacts of signal control strategies.

Traditionally, traffic signals have been designed to improve traffic congestion, delay,

travel time, and vehicles’ speed. However, in recent years investigating and studying

the environmental effects of traffic control strategies has attracted lots of attention in

response to growing restricted emission standards for transportation projects. Con-

sidering the need to estimate vehicular emissions, several studies have been performed

and a number of emission models have been developed. These studies can be cat-

egorized into three groups of field measurements, simulation studies, and analytical

studies based upon their approach to estimate emissions. Furthermore, a number of

emission models have been developed, which can be integrated within traffic simula-

tion models to provide estimates of emission inventories based on vehicles’ activities.

This chapter presents models and methods that have been developed to estimate

vehicle emissions in addition to signal timing optimization systems that aim at re-

ducing emissions at signalized intersections.

2.1 Vehicle Emission Estimation

The environmental impacts of transportation have always been important to trans-

portation professionals. According to the Clean Air Act Amendments (CAAA) in

1990, emission estimates had to be provided for any proposed traffic improvement

project (Rakha et al., 2004a).
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Traditionally, signal control strategies have been designed such that they reduce

delay. However, reducing delay does not necessarily result in fewer emissions and

fuel consumption. Several studies have indicated that higher emission levels are pro-

duced in operation modes that cause higher engine power. The acceleration mode

contributes most to emissions production because of the higher vehicle’s engine power

associated with this mode (Frey et al., 2000). Accelerations occur after each stop,

so the number of stops is a key factor in estimating emissions (Barth and Boriboon-

somsin, 2008). Considering the need to estimate vehicular emissions, several models

have been developed and studies have been performed. The models are aimed to

estimating emissions as functions of certain inputs. The studies that have evaluated

the impact of traffic operations and signal control on emissions can be categorized

into three groups of field measurements, simulation studies, and analytical studies

based on their approach for estimating emissions.

2.1.1 Vehicle Emission Models

Many traffic operations software packages include an emission model to assess the

emission levels resulting from traffic operations. Emission models utilized within

traffic models are typically developed based on laboratory dynamometer tests. In

dynamometer tests, standardized driving cycles under controlled ambient conditions

are defined. Each driving cycle is characterized by an overall average speed, and has

a unique profile of stops, starts, cruises, accelerations, and decelerations.

In response to the need for estimating emissions several emission models have

been developed. A number of vehicle emission models were developed by the U.S.

Environmental Protection Agency (EPA) such as the mobile source emission factor

model (MOBILE), and the California Air Resources Board (CARB) like the EMission

FACtors (EMFAC). However, these models were not designed to estimate emissions

of operational-level projects such as traffic signal coordination, ramp metering, and
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other Intelligent Transportation System (ITS) strategies. Therefore, developing a

tool, which can predict the environmental impacts of operational-level projects was

necessary (Rakha et al., 2004a). The Multi-Scale Motor Vehicle and Equipment Emis-

sion System (MOVES), the Comprehensive Modal Emission Model (CMEM), and the

VT-Micro are examples of models, which have made operational-level emission esti-

mation possible. All these models are described in greater detail in the next sections.

Mobile Source Emission Factor Model (MOBILE)

MOBILE is one of the first emission estimation models, which provides emission

estimates for highway motor vehicles. MOBILE is a macroscopic emission model

that calculates emissions as a function of aggregate parameters like average speed and

vehicle miles traveled (VMT). Therefore, it cannot give valuable emission estimates

for traffic control projects, which affect changes in speed but not necessarily the

average speed. Due to this shortcoming it has not been integrated with a lot of traffic

simulation software packages (Rouphail et al., 2001).

The MOBILE emission model has been updated periodically and older versions

have been replaced by newer ones. So far, six different versions of MOBILE (MO-

BILE1 to MOBILE6) have been developed from 1978 to 2002. Each new version

has been developed by collecting and analyzing new test data, and accounting for

changes in vehicle types, engine, emission control system technologies, and emission

standards. MOBILE6 is the latest version of this model released in 2002. It is ca-

pable of providing estimates for a wide variety of pollutants including hydrocarbons

(HC), carbon monoxide (CO), oxides of nitrogen (NOx), exhaust particulate matter,

tire wear particulate matter, break wear particulate matter, sulfur oxide (SO2), and

carbon dioxide (CO2) (Koupal et al., 2003).

The main disadvantage of MOBILE is that it only estimates emissions in large

scale and is not able to predict the environmental impacts of operational-level projects
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(Rakha et al., 2004a).

EMission FACtors (EMFAC)

EMFAC is a mobile source emission model approved for California. It was developed

by the California Air Resources Board (CARB). Similar to the MOBILE emission

model, EMFAC is a macroscopic model and uses only average speed as the primary

descriptor of a vehicle’s driving cycle to estimate exhaust emissions. Without taking

speed changes into account, average speed-based methods may inaccurately estimate

emissions from actual driving behavior. Hence, EMFAC and MOBILE are not capable

of accounting for different emissions rates for the four operating modes: acceleration,

deceleration, cruising, and idling (Bai et al., 2009).

EMFAC2011 is the latest version of this model, which was released in response

to the new requirements of the Federal Highway Administration for presenting emis-

sion estimates of proposed traffic projects. EMFAC2011 includes the latest data on

California’s car and truck fleets and travel activity. In order to incorporate new

data for emission estimation of diesel trucks and buses, a modular emission modeling

approach was used in the development of EMFAC2011. EMFAC2011 has three mod-

ules: 1) EMFAC-LDV, which estimates emissions of passenger vehicles. This module

is used for estimating the emissions from gasoline powered on-road vehicles, diesel

vehicles with a gross vehicle weight lower than 14,000 pounds, and urban transit

buses; 2) EMFAC-HD that estimates emissions from diesel trucks and buses. This

module is used for estimating emissions of diesel trucks and buses with a gross vehi-

cle weight greater than 14,000 pounds; and 3) EMFAC-SG that integrates the output

of EMFAC-LDV and EMFAC-HD and applies scaling factors to estimate emissions

consistent with user-defined VMT and speeds. EMFAC provides users with the abil-

ity to perform scenario assessments for transportation planning projects in terms of
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emission production.

Multi-Scale Motor Vehicle and Equipment Emission System (MOVES)

MOVES is a microscopic emission model developed by EPA. Before developing MOVES,

EPA’s emission estimation tools and underlying emission factors were calculated as

functions of average vehicles’ operating characteristics such as average travel speed

and VMT for broad geographical areas (e.g., nationwide scale) nationwide scale to

assess overall trends. However, in recent years needs to assess the environmental

impacts of operational-level projects have led to the development of finer-scale mod-

eling approaches. In the development of modal emission rates for MOVES different

sources of data such as EPA dynamometer data, EPA on-board data, and NCHRP

dynamometer data for Tier 1 vehicles only were used. The following points have been

considered in the development of MOVES to improve the accuracy of its emission

estimates compared to the previous emission models:

• applicability to a wide range of spatial and temporal scales (macroscale, mesoscale,

and microscale)

• inclusion of all mobile sources at the levels of resolution needed for various

applications either operational-level or network-level, and all pollutants (e.g.,

HC, CO, NOx, particulate matter, air toxics, and greenhouse gases)

• ease of updating the model, and

• ability to interface with traffic simulation models

One advantage of MOVES is that it is a modal emission model: it derives emission

estimates based on second-by-second vehicle performance characteristics for various

driving modes. The modal nature of MOVES’s emission rates allows the model to

more accurately estimate emissions at analysis scales ranging from those associated
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with individual transportation projects to large regional emission inventories. The

MOVES model serves as the approved model for developing on-road emission esti-

mates for state implementation plans (SIPs) and regional or project-level transporta-

tion conformity analyses (Bai et al., 2009).

To estimate modal emission rates, MOVES uses the vehicle specific power (VSP)

approach. VSP is an indicator of the vehicle’s engine power. With a few simplifying

assumptions like assuming no wind, VSP becomes a function of only acceleration,

speed, and link’s grade. VSP is a useful metric for estimating vehicle emissions and

has been used in many studies. The advantage of this metric is that it combines

several physical factors like vehicle speed, acceleration, road grade, and road load pa-

rameters such as aerodynamic drag and rolling resistance into a single value (Koupal

et al., 2003). The VSP measure has a better correlation with emissions than average

vehicle speed, which is used by models like EMFAC and MOBILE. VSP values are

grouped into 14 bins, and an emission rate, which is measured through on-board mea-

surements, is associated with each bin. Therefore, in order to use the VSP approach,

the VSP value should first be calculated and then the corresponding emission rate

can be chosen.

MOVES incorporates input data that include vehicle fleet composition, traffic op-

erations, fuel type, and meteorology parameters and conducts modal-based emissions

calculations. Based on the resulting modal-based emission rates, emission inventories

or emission factors are then generated for a desired geographic scale (macro, meso,

or micro scale) as well as temporal resolution (year, day, and hour) (Bai et al., 2009).

The framework of MOVES is made of four major functions: 1) an activity gener-

ator, 2) a source bin generator, 3) an operating mode distribution generator, and 4)

an emission calculator. The role of these four functions is as follows:

1. Total activity generator: Basic activity data in MOVES are vehicle population

and VMT for base year 1999. This function uses growth factors to adapt the
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vehicle population and VMT to a target analysis year and then allocates the

data by road type, vehicle class, vehicle age, and time period to nationwide

observed and projected data from various sources.

2. Source bin distribution generator: The MOVES model classifies vehicles into

different source bins. The bins are defined based on combinations of vehicle

class, model year group, vehicle weight, engine size and technology, and fuel

type. Then source bin fractions are produced to derive weighted emission rates

(i.e., the emission rate associated with each bin is weighted by the percentage

of vehicles included in that bin).

3. Operating mode distribution generator: It classifies vehicle operating modes

into different bins associated with VSP and speed.

4. Emission calculator: This function incorporates modal emission rates into vehi-

cle activity. Generated emission rates from the source bins are first adjusted by

a series of factors accounting for parameters like fuel supply and temperature.

Then weighted emission rates obtained from function 2 are matched with activ-

ities, and the total emissions for a certain type of vehicle in a certain operating

mode are estimated.

VT-Micro

The VT-Micro model was developed using chassis dynamometer data on a number

of light-duty vehicles and trucks (Rakha et al., 2004b). It is a microscopic modal

emission model that estimates vehicle pollutants on a second-by-second basis using

either vehicle engine or vehicle speed/acceleration data. Like any other microscopic

emission model, using speed and acceleration levels in the emission estimation model

not only allows the model to be utilized in conjunction with Global Positioning System

(GPS) data for the field evaluation of environmental impacts of operational-level

transportation projects (Rakha et al., 2000a, 2004b) but also to be incorporated with
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microscopic traffic simulation software that can provide second-by-second trajectory

data (Rakha et al., 2000b). Currently, the model has been incorporated with the

INTEGRATION microsimulation software (Rakha et al., 2004b).

Unlike MOBILE and EMFAC, which categorize vehicles into general groups of

light-duty gasoline vehicle (LDGV), light-duty truck (LDT), and heavy-duty truck

(HDV), VT-Micro has a three-level vehicle classification. The first level categorizes

vehicles into three groups of light-duty vehicles, light-duty trucks, and heavy-duty

trucks. The second level categorizes vehicles based on fuel type (i.e., whether a ve-

hicle is gasoline-fueled or diesel-fueled). Finally, the third level categorizes vehicles

using the statistical Classification and Regression Tree (CART) algorithms to further

group them into classes that are similar in their emission characteristics. The CART

algorithm is a data-mining technique that searches for important patterns and hidden

structures in a complex set of data. Applying the CART algorithm to vehicles of the

LDGV group, vehicles are further categorized based on model year, engine size, and

mileage. Performing the same test for the LDT group, only one variable, the model

year, was found to be important for their further categorization (Rakha et al., 2004b).

Comprehensive Modal Emissions Model (CMEM)

CMEM was developed by researchers at the University of California, Riverside along

with researchers from the University of Michigan and the Lawrence Berkeley National

Laboratory (Barth et al., 2000). It was developed with the goal to evaluate the en-

vironmental impacts of operational-level projects as well as considering the modal

emission levels of a vehicle. CMEM is a modal emissions model that can estimate

emissions for light-duty vehicles (LDVs). The word “comprehensive” refers to its ca-

pability of estimating emissions for a wide variety of LDVs in various conditions (e.g.,

properly functioning, deteriorated, malfunctioning). Like other emission models, the

emission rates of CMEM were developed using the chassis dynamometer testing.

11



Before CMEM, several different approaches had been used for the development of

modal emission models. For example, one approach was to set up a speed/acceleration

matrix to characterize vehicle operating mode, which contains emission rates for each

cell, and another similar matrix that contains time spent in each driving mode (Barth

et al., 2000). Therefore, by multiplying these two matrices, the total emissions could

be estimated. Although, setting up such matrices is relatively easy, this method

does not account for other factors affecting emissions such as road grade, or use of

accessories like air conditioner.

Another modal emission modeling approach used is to create an emission map that

is based on engine power and speed. By basing emissions on engine power and speed,

the effects of acceleration, road grade, and use of accessories are considered. However,

in order to create emission inventories, engine power and speed need to be derived from

second-by-second velocity profiles, which can be very time-consuming and expensive.

In the previous approaches, the matrices are based on steady-state emissions and do

not account for transient operations. Additionally, averaging emission rates within

each bin and using extrapolation/interpolation among bins is not very realistic and

could generate many errors.

One of the key advantages of CMEM is that it uses a modal emission estimation

approach that avoids the associated problems that other non-modal emission estima-

tion approaches have. In CMEM, the entire emission estimation process is broken

down into different components corresponding to the physical event associated with

vehicle operation and emissions production. Then, each component is modeled as an

analytical function of certain parameters of that process. These parameters vary by

vehicle type, engine, and emission technology. Most of these parameters, which are

characteristics of the vehicle such as fuel used per unit of distance or fuel type, are

readily available by the vehicle manufacturer. Other important parameters of vehicle

operation and emissions production can be obtained by comprehensive testing pro-
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grams like dynamometer tests, which are much less complex than creating emission

maps for a wide range of vehicle operating modes.

In this modeling method all vehicle factors that have an impact on emissions are

taken into account, and different components model the different processes that are

related to emissions. Another benefit of this type of modeling is that the major ef-

fort is done in the model-development phase rather than in the application phase.

Therefore, data required in the application phase is limited compared to other meth-

ods. Furthermore, this modal modeling approach makes it possible for CMEM to be

used along with both microscale and macroscale vehicle operation characteristics. For

example, if the second-by-second velocity profile is available, the model can provide

microscopic emission estimates, and if the average speed is available, the physical

model can be used based on average power requirements (Barth et al., 2000).

2.1.2 Field Measurements

Field measurements of tailpipe emissions can be performed with the use of on-board

instrumentation of vehicles. On-board devices allow measurement of emissions at

any location in the network and under any weather conditions. Additionally, since

field measurements account for all parameters that affect emissions, they provide

more reliable estimates. However, they are not always feasible because of the high

cost associated with them. In past years the use of such methods was very limited

due to the prohibitively high expenses of the emission measurement devices and other

associated costs (Frey et al., 2003). In recent years, with the development of affordable

portable instruments, this type of measurements has become more popular.

A portable emission measurement device, which has been widely used for field

studies in recent years is the On-board Emission Measurement (OEM 2100) unit. The

OEM 2100 is a portable device manufactured by Clean Air Technologies International,

Inc (Clean Air Technologies International, Inc., 2015). It can be installed easily in
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a light-duty vehicle in approximately 15 minutes. The OEM unit measures mass-

flow tailpipe gases, such as CO, CO2, NOx, HC, and O2, during real-world vehicle

operations. The OEM consists of two five-gas analyzers, an engine diagnostic scanner,

an on-board computer, and it can be connected to the vehicle through the On-Board

Diagnostic (OBD) link. This link can get engine and vehicle operational data and

import them into the OEM’s computer. Since each gas analyzer requires a zeroing

procedure every 10 minutes, using two gas analyzers allows the unit to collect data

continuously as well as to provide two sets of data that can be averaged at the end

(Rakha et al., 2004a). The OEM unit is designed to measure both engine data

and emissions from any gasoline-fueled vehicle equipped with an OBD link. This

makes it possible to understand the relation between instantaneous speed and vehicle

emissions. Figures 2.1(a) and 2.1(b) show how an OEM unit should be installed in a

vehicle and how it is connected to vehicle’s tailpipe.

(a) OEM 2100 unit

(b) Sampling probe that measures tailpipe emis-
sions

Figure 2.1: OEM 2100 unit installed in a vehicle (Source: Rouphail et al., (2001))
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A number of studies have used the OEM unit to estimate emission rates or evaluate

the effects of traffic conditions on emissions. Frey et al. (2001a) used the OEM unit to

estimate emission rates for different vehicle operation modes. Rouphail et al. (2001)

studied the impacts of traffic conditions on real-world vehicle emissions utilizing the

OEM unit. Emission rates during each operating mode were measured, and it was

demonstrated that the emission rates during acceleration are much higher than other

operating modes. In another study by Unal et al. (2003) the impacts of signal

coordination strategy on vehicle emissions were evaluated through performing field

measurements using OEM-2100. A signal timing plan obtained from SYNCHRO was

implemented at two signalized arterials in North Carolina, and changes of HC, NO,

and CO emissions, as well as other performance measures were measured. The study

showed that signal coordination reduces emissions by 10% to 20% in most cases.

Zhang et al. (2009) also used the OEM unit to measure emission rates required for

an integration of the Vehicle Specific Power (VSP) approach with the VISSIM traffic

microsimulation software. They evaluated the effects of signal coordination on emis-

sions, and showed a reduction of 50% and 30% for the HC and CO emission factors,

respectively, and an increase of 10% for the NOx emission factor after implementing

a coordinated signal timing plan.

A study by Wang et al. (2008) was performed to evaluate the effects of a proposed

signal coordination strategy on both emissions and delay using field measurements

obtained with OEM-2100. The tested signal coordination strategy resulted in 39.19

kg/hr reduction in total exhaust emissions.

Recently, Salamati et al. (2015) used an OEM unit to measure emission rates

needed for the VSP approach in order to compare the emissions produced at sig-

nalized intersections and roundabouts. Their study showed that for low demand

to capacity ratio, signalized intersections generally produce higher emissions than

roundabouts. However, as demand approaches capacity, the emission rates are higher
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at roundabouts than signalized intersections. In addition, at oversaturated traffic

conditions roundabouts have a steady increase in emissions generated, but signal-

ized intersections show a large jump in the amount of emissions produced as demand

exceeds capacity.

2.1.3 Simulation Studies

The majority of studies for evaluating the environmental impacts of traffic manage-

ment such as signal control strategies have been performed in a simulation environ-

ment by integrating an emission model with a traffic microsimulation model such as

VISSIM, PARAMICS, CORSIM, INTEGRATION, and AIMSUN (Ahn et al., 2002,

Stathopoulos and Noland, 2003, Kun and Lei, 2007, Stevanovic et al., 2009, Cham-

berlin et al., 2011, Guo and Zhang, 2014, Li et al., 2015) or macrosimulation model

such as AVENUE. However, not all studies have used emission rates from existing

emission models. Instead, some studies have estimated emission rates through field

measurements to use them along with emission calculation approaches (e.g., VSP)

(Zhang et al., 2009, Chen et al., 2015).

An integration of MOVES and CMEM with the traffic microsimulation software

PARAMICS, was used in a study to evaluate the emission levels resulting from chang-

ing a signalized intersection to a roundabout. It was shown that the emissions as-

sociated with the roundabout are higher than the signalized intersection for both

light and heavy traffic volumes (Chamberlin et al., 2011). Furthermore, Zegeye et

al. (2009) integrated the microscopic dynamic emission model, VT-micro, with a

microscopic traffic flow model, METANET, to estimate and reduce emissions (CO

emission), fuel consumption, and travel time implementing a dynamic speed limit

control strategy. They showed that the focus on the reduction of total CO emis-

sions or fuel consumption alone can have negative impacts on the traffic flow under

congested traffic conditions. However, when all three measures (i.e., CO emission,
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fuel consumption, and travel time) were included in the objective function, the pro-

posed dynamic speed limit control strategy indicated a 40.57%, 23.05%, and 28.26%

reduction in total travel time, CO emissions, and fuel consumption, respectively.

In addition to the above studies, some other studies evaluated the impacts of signal

control strategies on emissions with the use of simulation software. Guo and Zhang

(2014) developed a microsimulation environment by integrating VISSIM and MOVES

to define the relationship between mobility and emissions at a signalized intersection

controlled by an actuated signal timing plan obtained from SYNCHRO. VSP is one

of the most important parameters used in MOVES. The traffic microsimulation tools

are used in such studies to find the VSP distribution of vehicles. There are other

studies that used VISSIM as the microsimulation tool but this time integrated it

with the CMEM emission model to evaluate new signal control strategies in terms

of emissions and/or fuel consumption (Stathopoulos and Noland, 2003, Kun and Lei,

2007, Stevanovic et al., 2009). Stathopoulos and Noland (2003) evaluated the effects

of traffic flow improvement strategies including signal coordination on both short-term

and long-term emissions and fuel consumption. They showed that in most cases long-

term emission reductions are unlikely to be achieved. Kun and Lei (2007) evaluated

the impacts of 5% increase in the green time of the major direction at a signalized

intersection and showed that it can reduce NOx, CO, and HC emissions produced by

cars by 2.6%, 7.2%, and 4.5%, respectively.

Stevanovic et al. (2009) used the VISGAOST signal timing optimization tool and

optimized signal timings for different objective functions including minimization of

CO2 emissions and fuel consumption. Although they achieved lower emission and

fuel consumption levels when both CO2 and fuel consumption were included in the

objective function at the same time, these objective functions were not always reliable

for the optimization of signal timings since they could increase delay significantly.

Therefore, they needed to be combined with other traffic performance measures like
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vehicle delay. This study also concluded that the lengthy computation times make the

application of this research impractical for real-time optimization of signal timings.

Li et al. (2015) utilized a combination of MOVElite (Koupal et al., 2003) and

VISSIM. MOVElite is a simplified version of MOVES designed by the U.S. EPA. It

considers a limited number of vehicle types. Therefore, it requires fewer emission

source bins, a less complex emission rate search process, and is computationally more

efficient. In this study, estimates provided in the integrated simulation environment

were used along with a Lagrangian Relaxation approach to optimize signal timings

by reducing emissions and fuel consumption. The proposed signal control strategy

resulted in a 2% reduction in fuel consumption compared to delay-based optimal

signal timings when it was implemented for a signalized corridor.

An integration of CORSIM and VT-Micro was used by Park et al., (2009) to

estimate emissions and fuel consumption with the goal of developing a sustainable

signal control system by minimizing emissions through introducing a speed manage-

ment strategy. Their system reduced emissions and fuel consumption with moderate

trade-offs in delay and stops compared to traditional traffic control strategies, which

are aimed at minimizing delay and stops.

Oda et al.(2004) utilized macroscopic estimates of traffic conditions obtained

through a macroscopic simulation model, AVENUE, along with regression models

to estimate CO2 in order to investigate the correlation between emissions and both

delay and number of stops at arterial roads. They also optimized signal timings by

minimizing CO2 emissions using a meta-heuristic method, and achieved a reduction

in CO2 emissions of 7%.

The INTEGRATION traffic microsimulation tool has also been used along with

emission regression models for the purpose of estimating emissions (Rakha et al.,

2000a,b). Rakha et al. (2000a) evaluated the impacts of three types of signal coordi-

nation (poor, real-time, and good coordination) on delay and emissions, and achieved

18



significant reductions in emissions (∼50%). It must be noted here that these results

are specific to the network and traffic characteristics that were modeled. Specifi-

cally, only through-traffic in a single direction was modeled. If cross-street demands

were considered in addition to traffic in either direction along the major arterial, the

benefits would be less significant.

Although several simulation studies that estimate and minimize emissions at sig-

nalized intersections or corridors have been performed, they are not always applicable

in the real-world due to their lengthy computation times. Use of microsimulation is

also time-consuming and not easily transferable to other sites, since the models need

to be re-calibrated and validated for each new test site. Therefore, developing analyt-

ical emission estimation model and signal timing optimization strategies that utilize

those models while maintaining reasonable computation times for real-time applica-

tions is necessary.

2.1.4 Analytical Models

Analytical models have been developed in response to the time-consuming calibrating

efforts required for simulation studies and the high cost of field measurements. In ad-

dition, they can be applied easier, do not require a lot of parameters to be calibrated,

and can provide reliable estimates of emission inventories. Analytical models that

are capable of providing accurate emission estimates, are among the most practical

approaches and can be incorporated within the existing signal timing process. In re-

cent years, researchers have developed several analytical models to estimate vehicular

emissions. These models use average travel characteristics such as speed, delay, and

number of stops as inputs (Hellinga et al., 2000).

The 2nd edition of the Canadian Capacity Guide (CCG) presents an emission

model, which provides estimates for CO, HC, and NOx emissions as a function of

the number of stops and average stopped delay in each lane during each phase, as
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well as the average cruising speed and distance. Therefore, the CCG emission model

provides emission estimates as an indirect function of signal timing parameters since

the number of stops and average stopped delay are calculated from the traffic de-

mand and signal control parameters (Teply et al., 1995). Hellinga et al. (2000) has

also proposed regression models to estimate emissions using traffic demand, roadway

characteristics, and traffic signal timing parameters like signal cycle or green splits as

explanatory variables.

A number of studies have developed analytical models to first predict vehicle ac-

tivity (i.e. time spent in each operating mode) at signalized intersections, then use

corresponding emission rates for each mode to calculate the total emissions produced

(Skabardonis et al., 2013, Shabihkhani and Gonzales, 2013). A key factor in estimat-

ing time spent in each mode in these studies is the total number of vehicle stops at the

intersection, which is a function of vehicle arrival flow and signal timings. Estimating

the number of stops is important because it is directly associated with the number

of deceleration/acceleration events that occur before and after each stop, and conse-

quently, the total time spent on these modes. Estimating the number of stops and

time spent in different operation modes is usually based on queuing theory (Rakha

et al., 2001) or kinematic wave theory (Lighthill and Whitham, 1955; Richards, 1956).

Shabihkhani and Gonzales (2013) evaluated the effect of the number of stops and time

spent in each operating mode on emissions. They use MOVES to calculate emission

rates. They performed the tests for different traffic saturation rates and showed that

as traffic conditions approaches saturated conditions, the number of stops increases

and consequently, the emissions rates increase significantly.

Skabardonis et al., (2013) evaluated the impacts of optimized signal timings ob-

tained from TRANSYT-7F on delay and emissions. They tested three different ob-

jective functions: 1) minimization of system delay, 2) Minimization of system delay

and stops with weighting factors for one of the directions, and 3) minimization of

20



system delay and stops with queue penalty. They showed that minimization of delay

and stops either with weighting factor or queue penalty is more effective in reducing

emissions because it results in fewer stops and leads to smoother traffic operations.

Emission estimates provided in this study were only for autos and transit vehicles

were not considered despite of their significant impact on emissions.

2.2 Summary of the Literature

A number of macroscopic and microscopic models have been developed for emis-

sion estimation. These models can be incorporated with traffic simulation models

to estimate the emissions based on aggregate or second-by-second traffic character-

istics. Furthermore, multiple emission estimation studies at signalized intersections

have been performed to assess the impact of traffic management strategies on emis-

sions. These studies can be categorized in three groups: 1) field measurements, 2)

simulations studies, and 3) analytical studies. Field measurements are not always

feasible due to their prohibitively high costs. In addition, they cannot be used for the

pre-evaluation of traffic projects. Estimating emissions through simulation software

requires a lot of effort since the simulation model needs to be re-calibrated for many

parameters for each case. Furthermore, they have long computation times, which

makes them inapplicable for real-world uses.

A few studies have developed analytical models to estimate emissions at signalized

intersections. However, not all of them have considered the emissions of both autos

and transit vehicles. Furthermore, very fewer of these studies have developed signal

control strategies to minimize emissions using analytical models. Instead, they use

signal timing optimization software such as TRANSYT-7F or SYNCHRO to obtain

optimal signal timings.
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CHAPTER 3

RESEARCH APPROACH

This chapter presents the goals of this study and the approach used to reach these

goals.

3.1 Research Objectives

The objective of this study is twofold: 1) develop an analytical model to estimate

emissions for both autos and transit vehicles at isolated intersections that operate

at undersaturated traffic conditions, 2) based on this analytical model, develop a

real-time signal control system to minimize emissions.

First, the methodology to estimate and minimize emissions is presented. Then,

time spent in each vehicle’s operating mode is estimated for both autos and tran-

sit vehicles. Then, the mathematical program formulation used for calculating the

optimal signal timings is developed. Finally, the approach used for modal emission

rate estimation is presented and the rates for different vehicle’s operating modes for

gasoline cars and diesel buses are calculated.

3.2 Research Methodology

The mathematical formulation for the estimation of delay for autos and transit vehi-

cles is based on research by Christofa et al. (2013). Christofa et al. (2013) developed

a person-based signal control system that provides priority to transit vehicles by ac-

counting for their higher passenger occupancy. In this thesis the proposed signal

control system has utilized the same formulation to estimate time spent in idling
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mode for both autos and transit vehicles. After estimating the time spent in idling,

a methodology developed by Shabihkhani and Gonzales, (2013) has been utilized to

estimate the time spent in acceleration, deceleration, and cruising for both autos and

transit vehicles.

The estimated times per operating modes are then multiplied by the correspond-

ing average emission rate of that mode. Accounting for the emissions of different

modes separately is necessary, since vehicle emissions vary significantly during dif-

ferent operating modes. The amount of emissions per second spent in acceleration

is much higher than other modes. Emission rates are calculated using the Vehicle

Specific Power (VSP) approach. Emission rates associated with each VSP bin pro-

vided by Zhai et al. (2008) and Frey et al. (2006) for diesel buses and gasoline cars,

respectively were utilized.

Several assumptions on driving characteristics, signal control parameters, and

traffic conditions are made in order to be able to calculate vehicle operating times,

including:

• constant cruising speed and acceleration/deceleration rates;

• constant signal cycle length, phase sequence, and yellow times;

• deterministic vehicle arrival rates;

• fixed and known capacity for each approach; and

• mixed use lanes for autos and transit vehicles.

After developing the model to estimate emissions per operating mode, signal tim-

ings are optimized with the goal of minimizing emissions. To account for the effects

of signal timing optimization of design cycle T on the next cycle, T + 1, the sum of

emissions for both cycles are minimized for both autos and transit vehicles as it was
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done in the study by Christofa et al. (2013) for total person delay. The optimiza-

tion program calculates optimal phase splits for every cycle assuming certain upper

and lower bounds for the green times of each phase, which guarantee that phases are

not skipped and traffic conditions remain undersaturated. The emissions and person

delay resulted from the proposed emission-based signal control system are compared

with the corresponding outcomes obtained from person-based signal control system

developed by Christofa et al. (2013) and the commonly used vehicle-based optimiza-

tion and the percent changes in both emissions and person delay are reported in

chapter 4.

The next section presents the models for estimating time spent in each operating

mode first for autos and then for transit vehicles.

3.2.1 Estimating Time Spent in Each Mode

In order to estimate total emissions, we need to account for each vehicle operating

mode separately, since emission rates during different modes are considerably differ-

ent. Therefore, first, the time spent in each mode was estimated and then those times

were multiplied by the corresponding emission rate of that mode.

Figure 3.1 illustrates a queuing diagram at an intersection at undersaturated traffic

conditions. It can be used to estimate the number of stops as well as the time spent

in idling for both autos and transit vehicles. As shown in this figure, each lane group1

j is assumed to have a constant vehicle arrival rate, which is denoted by qj.

1A lane group is defined as one or more adjacent lanes at each intersection approach that can be
served by the same phases (HCM, 2000).
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Figure 3.1: Queuing diagram for lane group j for undersaturated conditions, (Source:
Christofa et al. (2013))

Certain components of each cycle are defined as follows to simplify the formulation

of the analytical model:

R
(1)
j (gi,T ) =

kj−1∑
i=1

gi,T +

kj−1∑
i=1

yi (3.1)

Ge
j (gi,T ) =

lj∑
i=kj

gi,T +

lj−1∑
i=kj

yi (3.2)

R
(2)
j (gi,T ) =

I∑
i=lj+1

gi,T +
I∑

i=lj

yi (3.3)

The generalized formulation of the mathematical program that minimizes emissions

for all vehicles at one intersection for a signal cycle T is as follows:

min

AT∑
a=1

∑
m

eamta,m +

BT∑
b=1

∑
m

ebmtb,m ∀m ∈ {id, cr, acc, dec} (3.4)

gi min ≤ gi,T ≤ gi max ∀i (3.5)
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lj∑
i=kj

gi,T +

lj−1∑
i=kj

yi ≥ gj min ∀j (3.6)

I∑
i=1

gi,T + L = C (3.7)

where:

AT : total number of autos that are considered in the optimization of cycle T ;

BT : total number of transit vehicles that are considered in the optimization of cycle

T ;

eam: emission rate of autos during operating mode m [gr/sec];

ebm: emission rate of transit vehicles during operating mode m [gr/sec];

ta,m: time spent in mode m by auto a [seconds];

tb,m: time spent in mode m by transit vehicle b [seconds];

id: idling mode;

cr: cruising mode;

acc: acceleration mode;

dec: deceleration mode;

gi,T : green time allocated to phase i in cycle T [seconds];

gi min/max: minimum/maximum green time of phase i [seconds];

kj/lj: first/last phase in a cycle that can serve lane group j;

yi: yellow time for phase i [seconds];

gj/min: minimum green time of lane group j [seconds];

I: total number of phases in a cycle;

L: total lost time per cycle [seconds];

C: cycle length [seconds].
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The next sections explain the models that are used to estimate time spent in each

mode for autos and transit vehicles, separately.

Auto Vehicles

Time Spent Accelerating/Decelerating

To calculate time spent in deceleration/acceleration, we first estimated the number

of stops because before and after each stop, vehicles spend some time in these modes.

At undersaturated conditions, which is the focus of this thesis, vehicles stop at most

once upstream of the intersection so, the total number of vehicle stops is equal to the

number of vehicles in queue. As mentioned before to account for the effects of signal

timing optimization of the design cycle T on the next cycle, T + 1, the sum of auto

emissions for both cycles is included in the objective function. Considering Figure

3.1, the number of stops can be calculated by equations 3.8 and 3.9. These equations,

which have been adopted by Shabihkhani and Gonzales (2013) calculate auto vehicle

stops for cycles T , Ns,T and T + 1, Ns,T+1.

Ns,T =
J∑
j=1

qj
1− qj

sj

(
R

(2)
j (gi,T−1) +R

(1)
j (gi,T )

)
(3.8)

Ns,T+1 =
J∑
j=1

qj
1− qj

sj

(
R

(2)
j (gi,T ) +R

(1)
j (gi next)

)
(3.9)

where qj and sj measured in [vph] are the auto arrival flow and the saturation flow

of lane group j, respectively. J is the number of lane groups at the intersection, and

gi next is the green time for phase i for cycle T +1, which for the purpose of this study

was set to the provided fixed optimal green times by TRANSYT-7F (Wallace et al.,

1984). The assumed values for gi next do not affect the results considerably since they

will be updated in the optimization of cycle T + 1.

To estimate acceleration/deceleration times from a stop to cruising speed or vice

versa first the cruising speed is divided by the constant acceleration/deceleration rate.
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This gives the acceleration/deceleration time for each stop. These calculated times

are multiplied by the number of stops to provide an estimation for the whole time

spent in these modes during a cycle. The total time spent in acceleration/deceleration

modes during cycles T , tacc/dec,T , and T+1, tacc/dec,T+1, can be estimated by equations

3.10 and 3.11.

ta,acc/dec,T =
va,cr

aa,acc/dec

[
J∑
j=1

qj
1− qj

sj

(
R

(2)
j (gi,T−1) +R

(1)
j (gi,T )

)]
(3.10)

ta,acc/dec,T+1 =
va,cr

aa,acc/dec

[
J∑
j=1

qj
1− qj

sj

(
R

(2)
j (gi,T ) +R

(1)
j (gi next)

)]
(3.11)

where va,cr is the average cruising speed of approaching autos in [m/s], and αa,acc/dec

is the average acceleration/deceleration rate of autos in [m/s2].

Time Spent Idling

Figure 3.2 shows the trajectories of vehicles as they travel from a distance upstream

the intersection and pass the intersection. As shown in this figure, vehicles that have

to stop first travel at cruising speed, then arrive at the intersection and stop at the

back of the queue, and then when the signal turns green, they move forward at cruising

speed. Note that the time-space diagram is drawn assuming that traffic conditions

can be represented by a triangular fundamental diagram as the one shown in Figure

3.3. However, in reality vehicles cannot instantaneously stop or reach cruising speed,

but they travel some time in acceleration/deceleration mode as shown in Figure 3.4.

As Figure 3.4 indicates that some of the time we consider as idling or cruising is

actually spent on deceleration and acceleration. Therefore, half of the required time

for acceleration and deceleration is subtracted from the idling mode and half of it is

subtracted from the cruising mode.

Queuing diagrams such as the one illustrated in Figure 3.1 allow us to estimate

delays (i.e., idling time) for both autos and transit vehicles. Since the y-axis of
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Figure 3.2: Time-space diagram for an intersection approach in undersaturated con-
ditions
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Figure 3.3: Fundamental diagram

Figure 3.4: Acceleration-deceleration cycle for a single stop

this graph represents the cumulative number of vehicles the areas Dj,T and D̂j,T+1

represent the total auto delay at the intersection for cycles T and T + 1, respectively.

However, half of the total acceleration and deceleration time should be subtracted
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from the total auto delay for cycle T , Dj,T , and the total auto delay for cycle T + 1,

D̂j,T+1. Therefore, for all autos that stop, the total time spent idling in cycles T ,

ta,id,T , and T + 1, ta,id,T+1, can be calculated as follows:

ta,id,T =
1

2

J∑
j=1

[
qj

1− qj
sj

(
R

(2)
j (gi,T−1) +R

(1)
j (gi,T )

)2
−
(ta,acc,T + ta,dec,T

2

)]
(3.12)

ta,id,T+1 =
1

2

J∑
j=1

[
qj

1− qj
sj

(
R

(2)
j (gi,T ) +R

(1)
j (gi next)

)2
−Ns,T+1

(ta,acc,T+1 + ta,dec,T+1

2

)]
(3.13)

Time Spent Cruising

The last operating mode whose duration needs to be estimated is the cruising mode.

For the estimation of cruising time we need to consider certain lengths for sections

both upstream and downstream of the intersection to ensure that stopping vehicles

experience a full operation cycle (i.e., cruising, deceleration, idling, acceleration, and

cruising again). This adjustment is made because not all vehicles experience a full

operation cycle. These two distances are defined as L1 and L2 and are shown in

Figure 3.2. L1 and L2 should be long enough that any vehicle experiences a complete

operation cycle. The cruising time of vehicles during cycles T and T +1 are estimated

by equations 3.14 - 3.19. Equations 3.14 and 3.17 calculate time spent in cruising

mode for vehicles that have to stop in cycles T and T + 1, which are denoted by

t
(1)
a,cr,T and t

(1)
a,cr,T+1, respectively. Autos that arrive during the green phase after the

clearance of their lane group’s queue can pass the intersection without stopping and

travel the whole link distance in cruising mode. Equations 3.15 and 3.18 calculate

time spent in cruising mode for vehicles that do not have to stop in cycles T and

T + 1, which are denoted by t
(2)
a,cr,T and t

(2)
a,cr,T+1, respectively. Then, the total time

spent in cruising mode in each cycle, ta,cr,T and ta,cr,T+1, is calculated by Equations

3.16 and 3.19.
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t
(1)
a,cr,T =

[
qj

1− qj
sj

(
R

(2)
j (gi,T−1) +R

(1)
j (gi,T )

)(L1 + L2

va,cr

)]
− 1

2
(ta,acc,T + ta,dec,T ) (3.14)

t
(2)
a,cr,T =

L1 + L2

va,cr

[
qjC −

qj
1− qj

sj

(
R

(2)
j (gi,T−1) +R

(1)
j (gi,T )

)]
(3.15)

ta,cr,T = t
(1)
a,cr,T + t

(2)
a,cr,T (3.16)

t
(1)
a,cr,T+1 =

[
qj

1− qj
sj

(
R

(2)
j (gi,T ) +R

(1)
j (gi next)

)(L1 + L2

va,cr

)]
− 1

2
(ta,acc,T+1 + ta,dec,T+1)

(3.17)

t
(2)
a,cr,T+1 =

L1 + L2

va,cr

[
qjC −

qj
1− qj

sj

[
R

(2)
j (gi,T ) +R

(1)
j (gi next)

]]
(3.18)

ta,cr,T+1 = t
(1)
a,cr,T+1 + t

(2)
a,cr,T+1 (3.19)

where C is the cycle length [seconds]. Therefore, the total auto emission component

of the objective function is as follows:

AT∑
a=1

∑
m

eamta,m +

AT+1∑
a=1

∑
m

eamta,m = eaidta,id,T + eacrta,cr,T + eaaccta,acc,T + eadecta,dec,T

+ eaidta,id,T+1 + eacrta,cr,T+1 + eaaccta,acc,T+1 + eadecta,dec,T+1 (3.20)

Transit Vehicles

The time estimation for all operating modes of transit vehicles is similar to auto

vehicles except for the idling mode. For estimation of transit delay we only consider

transit vehicles that are served or arrive during design cycle T . Transit vehicles

that arrive in cycle T + 1 are not taken into account for the optimization of cycle T

since their arrival time information is not available when optimizing cycle T . Transit

vehicles that arrive during cycle T + 1 are considered in the optimization of the next

cycle.

Assuming that transit vehicles decelerate or accelerate at a constant rate, the total

time spent on these modes during cycle T , tb,acc/dec,T , can be estimated as follows:
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tb,acc/dec,T =
vb,cr

ab,acc/dec
(3.21)

where vb,cr is the cruising speed for transit vehicle b in [m/sec], and ab,acc/dec is the

average acceleration/deceleration rate of transit vehicle b in [m/sec2].

The idling time (i.e., delay) of a bus, b, depends on its arrival time, tb, relative to

the end of the last phase that can serve its lane group in cycles T − 1 and T , which

are denoted by τj,T−1 and τj,T , respectively (see Figure 3.1) and can be expressed as

follows:

τj,T−1 = (T − 2)C +R
(1)
j (gi,T−1) +Ge

j (gi,T−1) (3.22)

τj,T = (T − 1)C +R
(1)
j (gi,T ) +Ge

j (gi,T ) (3.23)

Figure 3.1 also shows examples of two transit vehicles that arrive at times t1 and t2

and their corresponding delays, d1,T and d̂2,T+1 that are used to estimate bus idling

time. Transit vehicles are categorized into three groups based on their arrival time:

• Transit vehicles that arrive before the end of the green phases that can serve

them in cycle T and before the queue has dissipated. This time interval is

denoted as α. d1,T in Figure 3.1 represents the idling time for a transit vehicle

of this group.

• Transit vehicles that arrive before the end of the green phases that can serve

them in cycle T but after the queue has dissipated. The time interval of this

group is denoted as β. These vehicles experience no delay and pass through the

intersection without stopping.

• Transit vehicles that arrive after the end of their green phase in cycle T . This

time interval is denoted as γ. d̂2,T+1 represents the delay for a transit vehicle

in this group.
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The idling time for transit vehicles of the above mentioned groups, accounting for the

fact that half of the idling time is allocated to acceleration/deceleration modes, as it

was the case for autos, is calculated by equations 3.24 - 3.26.

tαb,id,T = (T − 1)C +R
(1)
j (gi,T ) +

qj
sj

(tb − τj,T−1)− tb −
(tb,acc,T + tb,dec,T

2

)
(3.24)

tβb,id,T = 0 (3.25)

tγb,id,T = TC +R
(1)
j (gi next) +

qj
sj

(tb − τj,T )− tb −
(tb,acc,T + tb,dec,T

2

)
(3.26)

where tαb,id,T , tβb,id,T , and tγb,id,T are the time spent in idling mode by transit vehicles

that arrive in time intervals α, β, and γ, respectively.

Therefore, the cruising time of transit vehicles that stop and do not stop during cycle

T is given by equations 3.27 and 3.28, respectively:

t
α/γ
b,cr,T =

L1 + L2

vb,cr
− tb,acc,T + tb,dec,T

2
(3.27)

tβb,cr,T =
L1 + L2

vb,cr
(3.28)

In order to consider the right equations for a transit vehicle’s operating time, three

integer variables, (ωαb , ω
β
b , ω

γ
b ), which correspond to time intervals, (α, β, γ), are intro-

duced. If the transit vehicle arrives during interval f , ωfb will be equal to 1, otherwise

it will be 0 for f ∈ {α, β, γ}. Therefore, the transit emission component of the

objective function becomes:
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BT∑
b=1

[
ebacc

[
(ωαb + ωγb )tb,acc,T

]
+ ebdec

[
(ωαb + ωγb )tb,dec,T

]
+ ebid

[
ωαb
[
(T − 1)C +R

(1)
j (gi,T ) +

qj
sj

(tb − τj,T−1)− tb −
(tb,acc,T + tb,dec,T

2

)]]
+ ωγb

[
TC +R

(1)
j (gi next) +

qj
sj

(tb − τj,T )− tb −
(tb,acc,T + tb,dec,T

2

)]]
+ ebcr

[
(ωαb + ωγb )

[(L1 + L2

vb,cr

)
−
(tb,acc,T + tb,dec,T

2

)]
+ ωβb

(L1 + L2

vb,cr

)]]
(3.29)

The constraints of person delay component for transit vehicles are as follows:

(T − 1)C +R
(1)
j g(i, T ) +

qj
sj

(tb − τj,T−1)− tb ≥ −(1− ωαb )M1 ∀b (3.30)

(T − 1)C +R
(1)
j g(i, T ) +

qj
sj

(tb − τj,T−1)− tb ≤ ωαbM1 ∀b (3.31)

(1− ωγb )tb ≤ τj,T ∀b (3.32)

(1− ωγb )M2 + ωγb tb ≥ τj,T ∀b (3.33)

Ge
j(gi,T ) ≥ qj

sj
C ∀j (3.34)

I∑
i=1

gi,T +
I∑
i=1

yi = C (3.35)

gi,T ≥ gi/min ∀i (3.36)

gi,T ≤ gi/max ∀i (3.37)

ωαb + ωβb + ωγb = 1 ∀b (3.38)
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ωαb , ω
β
b , ω

γ
b ∈ {0, 1} ∀b (3.39)

where M1 and M2 are big numbers. Constraints 3.30 to 3.33 ensure that the correct

delay formula is used for each transit vehicle. Constraint 3.34 ensures undersaturated

traffic conditions for each lane group. Constraint 3.35 ensures the sum of obtained

green times and fixed lost time equals to the cycle length. Constraints 3.36 and 3.37

set lower and upper bounds for green times. Finally, constraints 3.38 and 3.39 ensure

that only one binary variable equals to one (Christofa et al., 2013).

3.2.2 Mathematical Program Formulation

The optimization problem in this study has a quadratic objective function and lin-

ear constraints. The existence of quadratic terms in addition to the multiplication

of gi,T , which are continuous variables with ωf , which are integer variables leads to

biliniarities. Hence, this mathematical program is a Mixed Integer Non-Linear Pro-

gram (MINLP). To deal with this problem the method suggested by Floudas (1995)

and used by Christofa et al., (2013) has also been used in this thesis. Three new

continuous variables, gαi,b, g
β
i,b, and gγi,b, corresponding to α, β, and γ are introduced

for each transit vehicle b such that:

gi,T = gαi,b + gβi,b + gγi,b ∀i, b (3.40)

where:
gβi,b = gγi,b = 0 ∀i, b iftb ∈ α (3.41)

gαi,b = gγi,b = 0 ∀i, b iftb ∈ β (3.42)

gαi,b = gβi,b = 0 ∀i, b iftb ∈ γ (3.43)

The transit emission component of the objective function based on new green time

variables becomes as shown in 3.44.
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BT∑
b=1

[
ebacc

[
(ωαb + ωγb )tb,acc,T

]
+ ebdec

[
(ωαb + ωγb )tb,dec,T

]
+ ebid

[
ωαb

[
(T − 1)C +

kj−1∑
i=1

yi +
qj
sj

(tb − τj,T−1)− tb −
(tb,acc,T + tb,dec,T

2

)]
+ ωγb

[
TC +R

(1)
j (gi next) +

qj
sj

(
tb − (T − 1)C −

lj−1∑
i=1

yi

)
− tb −

(tb,acc,T + tb,dec,T
2

)]]

+ ebcr

[
(ωαb + ωγb )

[(L1 + L2

vb,cr

)
−
(tb,acc,T + tb,dec,T

2

)]
+ ωβb

(L1 + L2

vb,cr

)]]

+ ebid

kj−1∑
i=1

gαi,b − ebid
qj
sj

lj∑
i=1

gγi,b

]
(3.44)

Constraints 3.36 and 3.37 are replaced by

gfi,b ≥ ωfb gi min ∀i, b ∀f ∈ {α, β, γ} (3.45)

gfi,b ≤ ωfb gi max ∀i, b ∀f ∈ {α, β, γ} (3.46)

The optimization problem in this study is solved with the use of the Branch

and Bound method to identify the global minimum as long as the objective function

remains convex. For the solution of the subsequent non-linear programs of each

branch MATLAB’s function fmincon is utilized.

3.2.3 Modal Emission Rates Estimation

Frey et al. (2001b) has performed field measurements to estimate emission rates

for different vehicle operating modes: acceleration, deceleration, cruise, and idle.

Many studies that calculate vehicle modal emissions use such emission rates assuming

constant speed and acceleration rates for the entire time of each mode (Skabardonis

et al., 2013). However, these rates are not good representatives of the emissions

produced in acceleration and deceleration because of the speed changes that occur

during these modes, i.e., calculating the VSP value based on an average speed for the
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whole acceleration or deceleration is oversimplifying since there are speed changes

from zero to cruising speed and vice versa. Assuming the same speed for whole time

the vehicle is operating in these modes could lead to inaccurate emission estimates

particularly for pollutants like CO and HC that are very sensitive to speed changes

(Rakha and Ding, 2003).

In order to estimate more accurate emissions rates for each mode, first the VSP

mode for every second is calculated using the constant acceleration/deceleration rate

and the average value of the speed for that time interval. Then, the emission rates for

each VSP mode are estimated (for three pollutants, CO, HC, NOx) based on the rates

provided by Zhai et al. (2008) for diesel buses and Frey et al. (2006) for gasoline

autos. Finally, in order to calculate emission rates for acceleration, deceleration,

idling, and cruising modes separately, the emission rates of the VSP bins included in

these modes are averaged.

The assumed free flow speeds and acceleration/deceleration rates for autos and

buses that are used to calculate the VSP modes are consistent with the values used

in the simulation tests and are as follows:

vf,car = 45km
hr

= 12.5m
s

vf,bus = 45km
hr

= 12.5m
s

acccar = 3m
s2

accbus = 2m
s2

deccar = 4m
s2

decbus = 2m
s2

The idling autos fall into VSP mode 3. In addition, assuming a value of 45 km/hr

for the free flow speed the cruising mode falls under VSP mode 4. Also, the idling

buses fall into VSP mode 1. In addition, assuming a value of 45 km/hr for the free

flow speed the cruising mode falls under VSP mode 2.

Tables 3.1 to 3.6 show the process of emission rates calculation for both autos and

buses.
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Table 3.1: Calculation of modal emission rates for gasoline autos for acceleration

Time Speed Average Speed VSP VSP mode NOx HC CO
[sec] [m/s] [m/s] [kw/ton] [mg/s] [mg/s] [mg/s]

[0− 1] [0− 3] 1.5 5.15 5 1.7 0.5 11.0
[1− 2] [3− 6] 4.5 15.47 8 4.2 1.0 29.2
[2− 3] [6− 9] 7.5 25.77 11 7.6 2.1 113.8
[3− 4] [9− 12] 10.5 36.39 13 15.5 4.9 441.8

[4− 4.17] [12.12.5] 12.25 42.60 14 17.9 10.9 882.3
Average 7.7 2.5 178.3

Table 3.2: Calculation of modal emission rates for gasoline autos for deceleration

Time Speed Avg Speed VSP VSP mode NOx HC CO
[sec] [m/s] [m/s] [kw/ton] [mg/s] [mg/s] [mg/s]

[0− 1] [12.5− 8.5] 10.5 -44.46 1 0.9 0.5 7.8
[1− 2] [8.5− 4.5] 6.5 -27.66 1 0.9 0.5 7.8
[2− 3] [4.5− 0.5] 2.5 -10.67 1 0.9 0.5 7.8

[3− 3.13] [0.5− 0] 0.25 -1.07 2 0.6 0.3 3.9
Average 0.9 0.5 7.6

Table 3.3: Modal emission rates for gasoline autos

Operating mode NOx [mg/s] HC [mg/s] CO [mg/s]
Acceleration 7.7 2.5 178.3
Deceleration 0.9 0.5 7.6

Cruising 1.2 0.4 8.3
Idling 0.3 0.4 3.3

Table 3.4: Calculation of modal emission rates for diesel buses for acceleration

Time Speed Avg Speed VSP VSP mode NOx HC CO
[sec] [m/s] [m/s] [kw/ton] [mg/s] [mg/s] [mg/s]

[0− 1] [0− 2] 1.00 2.09 2 133 1.75 35.0
[1− 2] [2− 4] 3.00 6.28 4 220 1.85 73.0
[2− 3] [4− 6] 5.00 10.49 6 255 2.1 95.0
[3− 4] [6− 8] 7.00 14.72 8 320 2.2 60.0
[4− 5] [8− 10] 9.00 18.98 8 320 2.2 60.0
[5− 6] [10− 12] 11.00 23.29 8 320 2.2 60.0

[6− 6.25] [12− 12.5] 12.25 26.01 8 320 2.2 60.0
Average 263.6 2.1 63.6
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Table 3.5: Calculation of modal emission rates for diesel buses for deceleration

Time Speed Avg Speed VSP VSP mode NOx HC CO
[sec] [m/s] [m/s] [kw/ton] [mg/s] [mg/s] [mg/s]

[0− 1] [12.5− 10.5] 11.5 -21.62 1 45.0 1.3 8.6
[1− 2] [10.5− 8.5] 9.5 -17.95 1 45.0 1.3 8.6
[2− 3] [8.5− 6.5] 7.5 -14.22 1 45.0 1.3 8.6
[3− 4] [6.5− 4.5] 5.5 -10.45 1 45.0 1.3 8.6
[4− 5] [4.5− 2.5] 3.5 -6.67 1 45.0 1.3 8.6
[5− 6] [2.5− 0.5] 1.5 -2.86 1 45.0 1.3 8.6

[6− 6.25] [0.5− 0] 0.25 -0.48 1 45.0 1.3 8.6
Average 45.0 1.3 8.6

Table 3.6: Modal emission rates for diesel buses

Operating mode NOx[mg/s] HC [mg/s] CO[mg/s]
Acceleration 263.5 2.1 63.6
Deceleration 45.0 1.3 8.6

Cruising 133.3 1.7 37.1
Idling 45.0 1.3 8.6
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CHAPTER 4

EVALUATION

This chapter presents types of tests performed for the evaluation of the proposed

emission-based signal control system. Then, two test sites whose traffic data is used

in the evaluation tests are described. Finally, the results of these tests are presented.

4.1 Evaluation Tests

The performance of the proposed signal control system is evaluated with the use of

two types of tests: 1) deterministic arrival tests and 2) stochastic arrival tests. De-

terministic arrival tests are performed under the assumption that perfect information

about the transit vehicle arrival times, auto flows and arrival times, as well as auto

and transit vehicles’ passenger occupancies are available in real time without errors.

In addition, the auto vehicle arrival flows at each lane group are assumed to be con-

stant across all cycles. Deterministic arrival tests also assume constant acceleration

and deceleration rates. On the other hand, stochastic arrival tests are performed

through the microsimulation software AIMSUN (TSS, 2010) using Emulation-In-the-

Loop Simulation (EILS). EILS utilizes the Advanced Programming Interface (API)

of AIMSUN, to model the proposed traffic signal control system, as well as the previ-

ously published person-based signal timing optimization algorithm (Christofa et al.,

2013). This way, the real-time signal control system can be tested in a more realistic

environment where there is stochasticity in auto arrival flows and times as well as

transit vehicle arrival times and transit passenger occupancies.
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For stochastic arrival tests, the prediction of auto arrivals is based on two sets of

detectors. The first set of detectors are located at a certain distance upstream of the

intersection and the other set are located at the exit of each lane group. Exponential

smoothing is used the auto arrival flows. The vehicle arrival measurements obtained

by these two sets of detectors during the precious cycle are used to predict auto arrival

flows as follows

q̂j,T = eqj,T−1 + (1− e)q̂j,T−1 (4.1)

where q̂j,T is a weighted average of the prediction q̂j,T−1 and the observed value qj,T−1

of the previous cycle. A value of e = 0.2 is used in this study. The arrival flows used

in the optimization of cycle T is the maximum of two smoothed flows of the previous

cycle from two sets of detectors. In this way all demand that was not served in the

previous cycle are accounted for in the optimization of this cycle (Christofa et al.,

2013).

The timetable of the transit vehicle arrivals at the entry links of the network is

fixed and based on the same headways as in the deterministic arrival tests. Transit

vehicle arrival times are predicted based on information collected by detectors located

upstream on entry links at distances from the intersection equivalent to the travel time

of one cycle length. This way, a transit vehicle’s arrival at the intersection can be

known one cycle in advance and therefore, this information can be used for the signal

timing optimization of the next cycle. The transit vehicle arrivals at the approaches

are predicted using an average nominal speed of 45 km/h.

As mentioned before, gi,next is a user specified value for the green time of the next

cycle, which is used to estimate the delay and emissions of the next cycle. It is set

to the initial value of the fixed optimized green times obtained by TRANSYT-7F

(Wallace et al., 1984) for both types of tests. The green times of each phase are

constrained by maximum and minimum green times, gimax and gimin. For both types
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of tests gimax is set to C −
∑I

i=1 yi , and gimin is set to 7 seconds for left-turning

movements and to 10 seconds for through movements.

In order to predict person delay an average passenger occupancy of 1.25 pas-

sengers/vehicle is used for autos. Also, the average passenger occupancy for each

transit vehicle is assigned a random number of passengers with an average value of

40 passengers/vehicle.

The normal acceleration and deceleration rates of auto vehicles at urban inter-

sections are considered to be 3 m/s2 and 4 m/s2, respectively. Transit vehicles are

assumed to have the same rate for both acceleration and deceleration which is equal to

2 m/s2. An average cruising speed of 45 km/hr is considered for both auto and tran-

sit vehicles for both test sites, which are described in the next section. These inputs

are consistent between the two types of tests. Also, each type of tests is performed

20 times to account for variability in auto and bus arrivals.

Both types of tests are performed using the aforementioned inputs for different

intersection flow ratios 1 (Y ) form Y = 0.4 to Y = 0.9 for the first intersection and

Y = 0.4 to Y = 0.73 for the second intersection to evaluate the impacts of traffic

volume on emissions.

In order to evaluate the performance of the proposed emission-based signal control

system, to types of comparison are performed. First type compares the emissions and

person delay obtained from emission-based optimization with those obtained from

previously developed person-based optimization by Christofa et al. (2013). The other

type compares obtained emissions and person delay obtained from emission-based and

commonly-used vehicle based optimization.

1Intersection flow ratio: the sum of flow ratios (the ratio of demand to saturation flow) for each
critical lane group per signal phase at the intersection (HCM, 2000).
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4.2 Study Sites

The evaluation of the proposed emission-based signal control system is conducted

using geometric, traffic, and signal timing data from two real-world intersections: 1)

intersection of Mesogion and Katechaki Avenues located in Athens, Greece and 2)

intersection of University and San Pablo Avenues, located in Berkeley, CA.

4.2.1 Intersection of Mesogion and Katechaki Avenues

This intersection features high traffic volumes and nine conflicting transit routes with

headways that vary from 15 to 40 minutes for each route. Figure 4.1 illustrates the

intersection’s layout and bus routes that travel through it. The bus routes run in four

conflicting directions with 70% traveling in northeast-southwest approaches (Meso-

gion Avenue) and 30% on the northwest-southeast approaches (Katechaki Avenue).

Autos and buses share the same lanes. The intersection also includes bus stops, which

however are ignored for the purpose of this study.

The volume data have been obtained by detectors located 40 meters upstream of

the intersection for 7:00 AM to 8:00 AM (the morning peak), which is the analysis

period. The intersection operates on a six-phase cycle and has a flow ratio of Y = 0.9

during the morning peak hour. An intersection flow ratio of 0.9 implies conditions

close to saturation, considering a cycle length C = 120 seconds and lost time L = 14

seconds. Information about the bus schedule will be obtained by the Athens Urban

Transport Organization’s website (2010).
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Figure 4.1: Layout and bus routes for the intersection of Mesogion and Katechaki
Avenues, (Source: Christofa et al. (2013)).

4.2.2 Intersection of University and San Pablo Avenues

The intersection of University and San Pablo Avenue is also characterized by high

traffic volumes and it serves several conflicting bus routes. Figure 4.2 shows the

intersection layout and bus routes that travel through it. There are six bus routes

passing the intersections, which share the same lanes with other traffic. Buses travel

in three conflicting directions and 60% of them travel on the north-bound approaches

(San Pablo Avenue) and 40% on east-bound approaches (University Avenue). Bus

headways vary from 10 to 30 minutes per each route. Information about the bus

schedule is obtained from Almanda-Contra Costa Transit District, (2011). There are

a number of bus stops at some distances from the intersection, however, their impacts

on the intersection operation are ignored. The intersection’s signal operates on a 4-

phase cycle. The intersection flow ratio for evening peak hour, which is the analysis

period in this study, is Y = 0.73. This value corresponds to a degree of saturation of
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Xc = 0.88 for a cycle length of C = 80 seconds and lost time L = 14 seconds. This

implies that during the evening peak hour traffic conditions are close to saturation.

Figure 4.2: Layout and bus routes for the intersection of University and San Pablo
Avenues, (Source: Christofa (2012)).

4.3 Results

This section presents the results of comparisons of emission-based optimization with

vehicle-based optimization and person-based optimization. The comparison of the

proposed emission based optimization with base case signal timings obtained from

TRANSYT-7F are not presented since as shown in Table ?? both vehicle-based and

emission-based optimizations are better than base-case scenario. Therefore, proving

the advantage of emission-based scenario over vehicle-based and person-based scenar-

ios justifies its advantage over base-case scenario, too.
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Table 4.1: HC Emissions for Y = 0.5 for Intersection of Mesogion and Katechaki
Avenues (Deterministic Arrival Tests)

HC Emissions (g) HC Emissions (g) HC Emissions (g)
(Auto) (Bus) (Total)

Scenario 0: TRANSYT-7F 72.51 11.86 84.37
Scenario 1: Vehicle-based 68.78 11.70 80.48
Scenario 2: Person-based 68.92 11.11 80.03
% Change in Emissions -5.1% -1.3% -4.6%

between Scenarios 0 and 1
% Change in Emissions between -5.0% -6.3% -5.1%

between Scenarios 0 and 2

Table 4.2: Person Delay for Y = 0.5 for Intersection of Mesogion and Katechaki
Avenues (Deterministic Arrival Tests)

Person Delay Person Delay Person Delay
(pax-hours) (pax-hours) (pax-hours)

(Auto) (Bus) (Total)
Scenario 0: TRANSYT-7F 28.61 8.38 37.00
Scenario 1: Vehicle-based 26.04 6.96 33.01
Scenario 2: Person-based 26.17 5.88 32.05
% Change in Emissions -9.0% -14.4% -10.2%

between Scenarios 0 and 1
% Change in Emissions between -8.5% -29.9% -13.4%

between Scenarios 0 and 2

4.3.1 Intersection of Mesogion and Katechaki Avenues

Figures 4.3 and 4.4 illustrate the improvement in HC emissions from vehicle-based

and person-based optimization, respectively to the emission-based optimization for

the deterministic arrival tests for autos, buses, as well as total emissions for a range

of intersection flow ratios. Error bars show if the results are significant for 95% con-

fidence interval. The Figures show that total HC emissions can be reduced by up

to 2.5% and 4.4% compared to vehicle-based and person-based total HC emission

levels, respectively. The lower the intersection flow ratio the higher the total emis-

sion reduction achieved. This occurs because at lower intersection flow ratios there
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is more flexibility in the cycle to adjust green times to achieve substantial reductions

in the emissions. Figure 4.3 also indicates that the majority of emission reductions

is attributed to reducing bus emissions, which is a result of the higher emission rates

for deceleration, cruising, and idling of buses compared to autos. This implies that

buses are stopped fewer times. Therefore, some level of transit signal priority can

be provided through emission-based optimization for HC compared to vehicle-based

optimization. While bus emissions are reduced, emissions of autos is increased com-

paring the emission-based optimization to vehicle-based optimization (Figure 4.3).

This happens because in emission-based optimization the weight of auto emissions

in the objective function is reduced and it is given to transit vehicles. Therefore, we

see reductions in bus emissions while increases in auto emissions. Comparing person-

based optimization to emission-based optimization indicates that the change in bus

emissions is negligible but a high reduction in auto emissions by up to 5.4% is observed

(Figure 4.4). This Figure shows that auto emissions is reduced from person-based

to emission-based optimization. This is because in emission-based optimization more

weight is given to autos compared to person-based optimization.

The stochastic arrival test results for the same scenarios are shown in Figure 4.5

and 4.6. Due to the lack of perfect information in the simulation tests and the need to

predict vehicle arrivals for both autos and buses, the percent changes for both com-

parisons (vehicle-based to emission-based and person-based to emission-based) reveal

results that are not statistically significant as implied by the 95% confidence intervals

shown on the graphs. Only for very light traffic conditions (Y =0.4) a comparison

of the person-based to the emission-based scenario provides some benefits for overall

emissions while increasing bus emissions.

At the same time total person delay decreases by up to 15% and bus person delay

by up to 33% for low intersection flow ratios and deterministic arrival tests (Figure

4.7). When emission-based optimization is compared to person-based optimization
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bus person delay can increase by up to 41% (Figure 4.8) indicating the higher effec-

tiveness of person-based optimization in providing priority to buses. However, total

person delay only experiences minor changes. Stochastic arrival tests reveal similar

results but with lower bus person delay increases and in some cases not statistically

significant percent change differences (Figure 4.9 and 4.10).

Performing deterministic arrival tests by minimizing NOx emissions demonstrates

improvements in total emissions from 3.6% to 6.7% and bus emissions from 4.6% to

7.6% depending on the flow ratio when comparing vehicle-based to emission-based

optimization (Figure 4.11). For stochastic arrival tests emission-based optimization

seems to be effective in minimizing total emissions for intersection flow ratios up to

0.5 (Figure 4.13). As before, stochasticity in arrivals affects the accuracy of auto

and bus arrival predictions and the inaccuracies are higher at more congested traffic

conditions. When comparing person-based to NOx emission-based the differences in

the results are not statistically significant (Figure 4.12 and 4.14). When comparing

person delay from vehicle-based to NOx emission-based optimization reductions in

total person delay of up to 15% and bus person delay of up to 47% are observed for

deterministic arrival tests (Figure 4.15) and lower percent changes of up to about

10.5% and 29% respectively for stochastic arrival tests (Figure 4.17).

A comparison of the person-based optimization with the NOx emission-based opti-

mization reveals that there are not statistically significant differences in person delays

for both deterministic and stochastic arrival tests (Figure 4.16 and 4.18), which was

also observed for the HC emission-based optimization. A comparison of the results

between the NOx emission-based and the HC emission-based optimization scenarios

shows that higher total emission reductions and bus emissions reductions are achieved

with the former since the emission rates for each operating mode for NOx, especially

for diesel buses are higher than those for HC.
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Figure 4.3: Percent change in HC emissions from vehicle-based to emission (HC)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)

Figure 4.4: Percent change in HC emissions from person-based to emission (HC)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)

49



Figure 4.5: Percent change in HC emissions from vehicle-based to emission (HC)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)

Figure 4.6: Percent change in HC emissions from person-based to emission (HC)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)
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Figure 4.7: Percent change in person delay from vehicle-based to emission (HC)-based
optimization for the intersection of Mesogion and Katechaki Avenues (deterministic
arrival tests)

Figure 4.8: Percent change in person delay from person-based to emission (HC)-based
optimization for the intersection of Mesogion and Katechaki Avenues (deterministic
arrival tests)
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Figure 4.9: Percent change in person delay from vehicle-based to emission (HC)-based
optimization for the intersection of Mesogion and Katechaki Avenues (stochastic ar-
rival tests)

Figure 4.10: Percent change in person delay from person-based to emission (HC)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)
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Figure 4.11: Percent change in NOx emissions from vehicle-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)

Figure 4.12: Percent change in NOx emissions from person-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)
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Figure 4.13: Percent change in NOx emissions from vehicle-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)

Figure 4.14: Percent change in NOx emissions from person-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)
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Figure 4.15: Percent change in person delay from vehicle-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)

Figure 4.16: Percent change in person delay from person-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (deter-
ministic arrival tests)
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Figure 4.17: Percent change in person delay from vehicle-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)

Figure 4.18: Percent change in person delay from person-based to emission (NOx)-
based optimization for the intersection of Mesogion and Katechaki Avenues (stochas-
tic arrival tests)
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4.3.2 Intersection of University and San Pablo Avenues

Comparing the HC emissions resulting from the emission-based optimization to the

vehicle-based and the person-based optimization, we observe minor or insignificant

improvements in total emissions (Figures 4.19 and 4.20). However, bus emissions are

reduced by up to 4.2% when comparing emission-based to vehicle-based optimiza-

tion. Reductions observed in bus emissions are due to higher emission rates of buses.

bus emissions do not improve significantly from person-based to emission-based op-

timization (Figure 4.20). This is because the specific emission rates used do not give

a higher weight to buses compared to the weight that the number of passengers give

them.

Figures 4.21 and 4.22 show the results of similar comparisons for emissions for

stochastic arrival tests. As before, almost all results of stochastic tests are insignificant

at the 95% confidence level due to lack of information about auto and bus arrival

times.

Figure 4.23 shows up to 4% reduction in total person delay from vehicle-based

to HC emission-based optimization. Also, bus person delay is reduced by up to 15%

when these two scenarios are compared. Again, the reductions in bus person delay

can be justified by the higher weight given to buses due to their higher emission

rates. However, comparing both total person delay and bus person delay resulting

from person-based to the ones from the emission-based optimization, we see minor

increases, which is expected since the former directly optimizes person delay (Figure

4.24).

Similar tests have been performed for NOx. Figure 4.27 shows that, total NOx

emissions are reduced by up to 3.5% for deterministic arrival tests. As shown in

this figure a high portion of this reduction is due to the reduction in the NOx emis-

sions from buses. This happens because buses have relatively much higher NOx

emission rates compared to autos so they are provided with longer green times and
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consequently, smoother vehicle operations. Comparing NOx emissions resulting from

person-based to the ones from the emission-based optimization, we do not see any

significant differences (Figure 4.28).

The comparison of emissions from vehicle-based and person-based optimization

to emission-based optimization shows no significant results for stochastic arrival tests

(Figures 4.29 and 4.30). Due to the lack of perfect information, the performance

of the emission-based signal control strategy is deteriorated in the stochastic arrival

tests and we do not see any emission improvements.

Figures 4.31 and 4.32 show the comparison of person delay between NOx emis-

sion optimization and vehicle-based and person-based optimization for deterministic

arrival tests. Total person delay is reduced by up to 4% and bus delay by up to 18%

when comparing vehicle-based and emission-based optimization for lower intersection

flow ratios. However, the results of comparing person-based with emission-based op-

timization do not present any significant differences. Figures 4.33 and 4.34 show the

same comparisons for stochastic arrival tests. As before, the performance of the sys-

tem is deteriorated in stochastic arrival tests and almost all results are insignificant.
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Figure 4.19: Percent change in HC emissions from vehicle-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)

Figure 4.20: Percent change in HC emissions from person-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)

59



Figure 4.21: Percent change in HC emissions from vehicle-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)

Figure 4.22: Percent change in HC emissions from person-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)
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Figure 4.23: Percent change in person delay from vehicle-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)

Figure 4.24: Percent change in person delay from person-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)
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Figure 4.25: Percent change in person delay from vehicle-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)

Figure 4.26: Percent change in person delay from person-based to emission (HC)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)
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Figure 4.27: Percent change in NOx emissions from vehicle-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)

Figure 4.28: Percent change in NOx emissions from person-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)
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Figure 4.29: Percent change in NOx emissions from vehicle-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)

Figure 4.30: Percent change in NOx emissions from person-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)
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Figure 4.31: Percent change in person delay from vehicle-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)

Figure 4.32: Percent change in person delay from person-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (deter-
ministic arrival tests)
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Figure 4.33: Percent change in person delay from vehicle-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)

Figure 4.34: Percent change in person delay from person-based to emission (NOx)-
based optimization for the intersection of University and San Pablo Avenues (stochas-
tic arrival tests)
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4.4 Summary of Findings

This research presents a real-time signal control system that minimizes total auto

and transit vehicle emissions at an isolated intersection in undersaturated traffic con-

ditions. The results of the evaulation of the proposed system using data from two

real-world intersections in Athens, Greece and Berkeley, California indicate that in

most cases the proposed system can reduce both total emissions and person delay

compared to a vehicle-based optimization scenario. Additionally, transit person de-

lay in the proposed scenario is considerably reduced compared to vehicle-based opti-

mization, which can potentially result in improved transit ridership. The evaluation

results also show that in most cases it can reduce total emissions when compared to

the person-based optimization system.

A sensitivity analysis with respect to intersection flow ratio shows that the devel-

oped system is more effective in reducing total emissions and person delay for lower

intersection flow ratios. As the flow ratio increases, the vehicle-based and emission-

based signal optimization systems converge since the higher auto demand at nearly

saturated conditions outweighs the weight given to transit vehicles due to their higher

emission potential. In addition, the stochastic arrival tests performed indicate that

the loss in the accuracy of auto and transit vehicle arrivals occurring in a more re-

alistic environment deteriorates the performance of the emission and person-based

optimization methods especially for traffic conditions close to saturation.

Comparing the results of two test sites, we observe smaller improvements in emis-

sions for the same intersection flow ratio for the second intersection. As mentioned

before the intersection of University and San Pablo Avenues features higher demand

levels than the intersection of Mesogion and Katechaki Avenues for the same inter-

section flow ratio. Also, the intersection of University and San Pablo Avenues has

a cycle length of 80 seconds with a total minimum green time of 34 seconds for all

phases, and a lost time of 14 seconds. Therefore, the amount of time remained in each
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cycle to be allocated to other phases is 32 seconds. For the intersection of Mesogion

and Katechaki Avenues the cycle length of 120 seconds, the total minimum green

time of 34 seconds, and lost time of 14 seconds result in a time of 72 seconds that

can be allocated to different phases in each cycle. Therefore, there is much more

flexibility in adjusting green times for the intersection of Mesogion and Katechaki

Avenues compared to the intersection of University and San Pablo Avenues.

Note that the results are sensitive to the specific emission rates that are utilized

and are expected to differ with different types of vehicles and will depend on the

mix of those. In addition, while the presented results are for certain pollutants, HC

and NOx, the same methodology can be implemented utilizing emission rates per

operating mode for any other pollutant.
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CHAPTER 5

CONCLUSIONS

This research presents a real-time signal control system that minimizes total auto

and transit vehicle emissions at an isolated intersection in undersaturated traffic con-

ditions. The proposed system has been evaluated using the data of two real-wold

intersections. The performance of this system has been compared to the performance

of vehicle-based and person-based signal control systems in terms of emissions and

person delay.

This chapter first presents a summary of research findings and the contributions

of this study. Then next steps of improving and extending the model are presented.

5.1 Summary of Research Findings

Evaluating the proposed emission-based signal control systems by performing two

types of deterministic and stochastic arrival tests on two tests sites, which are different

in traffic conditions characteristics, we concluded that:

• emission-based signal control system can reduce both total emissions and person

delay compared to the vehicle-based optimization optimization.

• the transit person delay resulted from the emission-based optimization is consid-

erably reduced compared to the transit person delay obtained from the vehicle-

based optimization, which can result in improved transit operations.

• in most cases the emission-based optimization can reduce total emissions when

compared to the person-based optimization system.
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• proposed system is more effective in reducing total emissions and person delay

for lower intersection flow ratios. As the flow ratio increases, the vehicle-based

and emission-based signal optimization systems converge.

• The loss in accuracy of auto and transit vehicle arrivals deteriorates the perfor-

mance of the system in stochastic arrival tests

• Both the proposed emission-based and the person-based optimization that had

been previously developed can be used to provide priority to transit vehicles and

reduce overall emissions at intersections compared to commonly used vehicle-

based optimization methods.

• person-based optimization is still the preferred signal control strategy when the

goal is minimizing person delay, while emission-based optimization should be

used when the goal is minimizing emissions.

• intersections with more spare time to be allocated to the different phases expe-

rience higher benefits in both person delay and emissions.

• the results of emissions are sensitive to the specific emissions rates that are

utilized.

5.2 Contributions

There is literature on the impacts of signal control strategies on emissions. However,

few studies have developed analytical models to estimate emissions for both autos and

transit vehicles and even fewer have used them to develop signal control strategies to

reduce emissions. In addition, none of the existing studies have explicitly optimize

signal timings by minimizing emissions for both autos and transit vehicles. This study

presents an analytical model to estimate emissions for both autos and transit vehicles

at an isolated intersection, which operates at undersaturated traffic conditions. A
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real-time signal control system that minimizes emissions at an intersection is also

developed.

The proposed real-time control system uses real-time information on auto and

transit vehicle arrivals and is able to adapt to changes in traffic conditions and pro-

vide optimal signal timings accordingly. Adjustments of signal timings to traffic

conditions can potentially improve system efficiency. Furthermore, employing an

analytical model to estimate emissions can result in reasonable computation times,

which makes the use of this system feasible in the real-world.

Furthermore, the proposed system is likely to reduce delay experienced by transit

vehicles. These vehicles have higher weights in the objective function of the optimiza-

tion problem compared to autos due to their higher emissions rates. Therefore, they

are provided with some level of priority to reduce their contributions to the emission

production. This can potentially improve transit ridership and decrease congestion

created by private autos in urban streets.

The signal control strategy that has been developed in this thesis can be a useful

tool in improving the quality of life in urban areas by reducing emissions produced by

autos and transit vehicles. In addition, depending on the traffic volumes, it is expected

that public transportation users will benefit from this system and experience lower

travel times.

5.3 Future work

The real-time signal control system can be extended in a number of ways as follows:

• As we observed in the stochastic arrival test, the performance of the system gets

deteriorated due to lack of perfect information on vehicle arrival flows and times.

Therefore, we plan to improve the performance of the system by designing a

better vehicle arrival prediction algorithm.
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• Due to the assumptions we made in order to estimate vehicular emissions, the

proposed system works for undersaturated traffic conditions, which is usually

not the case during peak hours. Thus, developing an analytical model to esti-

mate emissions of autos and transit vehicles for oversaturated traffic conditions

is one of the future steps of this research.

• Accounting for the upstream and downstream intersections while optimizing

signal timings is very important since there are a lot of signalized arterials in

urban areas, which can benefit from an emission-based signal control system. As

a result, we plan to extend our developed emission-based signal control system

to a signalized arterial.

• While minimizing emissions is imperative at signalized intersections, it is also

necessary to consider the effects of a signal control system on person delay, which

is of the most important performance measures at signalized intersections. The

next step of this study is developing a real-time signal control system to reduce

both emissions and person delay at signalized intersections.
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