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ABSTRACT 

STUDYING NANOPARTICLE/CELL AND 
NANOPARTICLE/BIOSURFACE INTERACTION WITH MASS 

SPECTROMETRY 

SEPTEMBER 2015 

SINGYUK HOU 

B.S., WUHAN UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Richard W. Vachet and Professor Vincent M. Rotello 

 

Nanoparticles (NPs) have been used widely in various fields ranging from 

biomedical applications to life science due to their highly tunable properties. It is essential 

to understanding how NPs interact with biological systems of interest, therefore, analytical 

platforms to efficiently track NPs from cell to animal level are essential. In this thesis, laser 

desorption ionization mass spectrometry (LDI-MS) and inductively-coupled plasma mass 

spectrometry (ICP-MS) has been developed and applied to quantify NP/cell and 

NP/biological surface interactions. These two methods provide fast, label-free and 

quantitative analysis. New capability of LDI-MS to differentiate cell surface-bound and 

internalized NPs were established and ICP-MS coupled with a library of surface- 

functionalized AuNPs were used to probe the affinity between NPs and human hair surface. 

NPs interacting with biological surfaces and plasma membrane were quantified and the 

interactions were controlled by the chemical properties of the interface between NP and 

biological systems.  
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CHAPTER 1 

DIFFERENTIATION BETWEEN CELL SURFACE-BOUND AND 

INTERNALIZED NANOPARTICLES USING LASER 

DESOPRTION/IONIZAITON MASS SPECTROMETRY 

1.1 Introduction 

The ability to finely control the size, 1  shape 2  and surface properties 3  of 

nanoparticles (NPs) coupled with their ability to provide controlled release4,5 makes them 

potent carriers for cellular delivery of therapeutics. The unique optical and magnetic 

properties of NP cores likewise make them important imaging reagents.6,7 The localization 

of these materials is, however, essential to their utility with efficiency of cellular uptake is 

a key figure of merit in the engineering of NPs for biomedical applications. Most strategies 

for achieving uptake, however, rely on modification of NPs with ligands designed to 

interact with specific receptors or to interact strongly with the plasma membrane.8,9 Both 

strategies will generate simultaneous cell surface adhesion and internalization, with very 

different therapeutic/imaging outcomes for these two locations. 

Despite the central importance of quantifying cellular uptake, quantitative 

differentiation of internalized and cell surface-bound NPs remains a significant 

challenge. 10  Confocal optical microscopy 11  and transmission electron microscopy 

(TEM)12 enable the visualization of cell surface-bound versus internalized NPs. Issues 

such as aggregation13 and self-quenching14 make quantification challenging using optical 

microscopy, and TEM is not suitable for high-throughput strategies.  

In practice, quantitation of the NP cell uptake typically uses either inductively-

coupled plasma mass spectrometry (ICP-MS) or flow cytometry. 15 , 16   Despite the 

sensitivity and generality of these methods, they do not differentiate cell surface bound and 

internalized NPs. Chemical etching of extracellular NPs has been used as a strategy to look 

separately at internalized NPs.17,18  These methods, however, use disruptive conditions 

including toxic reagents and disruptively low ionic strengthError! Bookmark not defined.  that limit 

their applicability.19 
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In this chapter, I present a method that uses tuned laser energy in laser 

desorption/ionization mass spectrometry (LDI-MS) to rapidly quantify cell surface-bound 

and internalized NPs. This LDI-MS method quantitatively distinguishes between cell 

surface-bound and internalized gold nanoparticles (AuNPs) through laser energy 

absorption by the NP core that then enables desorption and ionization of attached 

monolayers. 20  LDI-MS is a versatile strategy that has been successfully used to 

characterize a wide range of NP surface monolayers on a variety of materials.21,22 This 

method has also been used to determine cellular uptake23 and monitor stability of NPs in 

cells. 24 , 25  With these approaches, however, the challenge remained of differentiating 

internalized and surface-bound particles. In our current study, we show that the proper 

choice of laser energy allows the selective ionization, detection, and quantitation of NPs 

on cell surfaces. Combining this method with overall NP amounts then enables the 

quantitative differentiation of extra- and intracellular NP distributions (Figure 1). We 

demonstrate the utility of this method through quantitative assessment of the role of 

proteoglycans in determining cellular uptake of NPs, a challenging question that requires 

effective differentiation of surface-bound and internalized NPs.  

 

Figure 1.1 Scheme for differentiation between cell surface-bound and internalized NPs 

with LDI-MS. 



3 
 

1.2 Result and discussion 

The hypothesis underlying our research is the laser energy could be tuned to desorb 

and ionize monolayers from NPs attached to the outside of intact cells but unable to 

penetrate intact cells membrane to desorb and ionize monolayers from NPs inside the cells. 

We first determined if AuNPs could be detected on intact cells by studying two cationic 

AuNPs (Figure 2a). Cells were cultured on indium-tin oxide (ITO) coated glass slide, so 

that LDI-MS analyses could be performed directly following incubation without further 

manipulation of the cells. HeLa cells (20,000 cells) were incubated with 250 nM of AuNP 

1 and AuNP 2 in serum-free media for 15 min. After incubation, the cells were washed and 

analyzed by LDI-MS. The mass barcodes of AuNPs 1 and 2 (m/z 464 and 422, respectively) 

are readily observed in the mass spectrum, as are fragment ions (loss of H2S from the 

ligands) and Au2+ (m/z 394) ions (Figure 2b). 

 

Figure 1.2 Detection of AuNPs present on intact cells. (a) Structures of the monolayer-

stabilized AuNPs used in this study and the m/z ratios of their molecular peaks. (b) Mass 

spectra of AuNP 1 (left) and AuNP 2 (right) detected from a monolayer of intact cells. 

We determined the appropriate laser energy for selectively detecting surface-bound 

AuNPs by sequentially incubating AuNPs 1 and 2 with the cell and analyzing the cell 

samples by LDI-MS. First, 250 nM of AuNP 1 was incubated with HeLa cells in serum 
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free media for 60 min. After incubation, the cells were extensively washed with PBS to 

remove any AuNP 1 that was still bound to the cell surface. From separate ICP-MS 

measurements, we found that four or more wash cycles were sufficient to remove any 

AuNPs bound to the cell surface (Figure 3a), leaving only the AuNPs inside the cells. After 

removal of cell-surface bound AuNP 1, 250 nM of AuNP 2 was then incubated with the 

cells for different amounts of time to allow AuNP 2 to both bind to the cell surface and be 

taken up by the cells. As expected, a greater amount of AuNP 2 is associated with the cells 

after longer incubation times, as measured by LDI-MS of the cell lysate (Figure 3b), 

indicating that both cell uptake and cell adherence has occurred. During this time the level 

of AuNP 1 remained unchanged due to the relatively slow rate of exocytosis (Figure 3b).26 

We incubated cells with AuNP 1 for 60 min, followed by washing and incubation with 

AuNP 2, at time points that provided approximately equal total quantities of the two NPs 

(Figure 3b). The cells were then subjected to laser irradiation at different energies, and 

mass spectra were acquired. The signal-to-noise ratios of the mass barcodes for each NP 

were then compared (Figure 3c). Results show that no ion signal is measured for either 

AuNP at energies below 38 µJ, but as the laser energy is increased to 38.6 µJ, AuNP 2 is 

selectively and reproducibly detected. In control experiments using washed and unwashed 

cells that were incubated with only a single NP, only the unwashed cells provided an ion 

signal at laser energies below 39 µJ (Figure 6 in Supplementary figures). As the laser 

energy is further increased past 39 µJ, both AuNPs can be detected from the intact cells, 

indicating that higher laser energies are sufficient to desorb and ionize NPs both inside and 

outside the cell. As expected, the NPs outside the cells are detected more efficiently at all 

the laser energies studied, despite the fact that both NPs are present at approximately equal 

levels and both NPs have similar ionization efficiencies (Figure 7 in the Supplementary 

figures). This latter observation is consistent with our initial hypothesis that the cell 

membrane of intact cells would hinder the desorption/ionization process.  
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Figure 1.3 Differentiation of cell surface-bound and internalized AuNPs. (a) Workflow for 

selective detection of AuNPs adsorbed on the plasma membrane by choosing the 

appropriate laser energy. (b) ICP-MS measurement of AuNP levels in the cell monolayers 

after increasing numbers of wash cycles. (c) LDI-MS quantification of two AuNPs in cell 

lysate at different time points of AuNP 2 incubation. Note that AuNP 1 was first incubated 

for 60 min and then the cell monolayer was washed five times before incubation with AuNP 

2. (d) LDI-MS detection of AuNPs 1 and 2 from the intact cell monolayer.  

 

Figure 1.4 Quantification of cell surface-bound and total AuNPs in HepG2 cells. (a) 

Calibration curve obtained for AuNP 2 (m/z 422) when using AuNP 1 (m/z 464) as the 

internal standard (b) Relative amounts (solid) and absolute amount (pmol) (dashed) of 

AuNPs absorbed on cell surface and associated with the entire cells. The absolute amount 

of total amount of AuNP 2 were measured by ICP-MS and the absolute amount of cell 

surface AuNP 2 was estimated by using relative quantification shown in the same graph. 
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We next quantified the cell surface-bound AuNPs using an AuNP internal standard 

and an external calibration. AuNP 1 was used as internal standard; increasing 

concentrations of AuNP 2 and a fixed concentration of AuNP 1 (100 nM) were incubated 

with cells for 15 min, during which time minimal NPs were taken up (See Figure 3b). After 

incubation, the intact cells were immediately analyzed by LDI-MS at the laser energy (i.e. 

38.6 µJ) that ionized only cell-surface bound AuNPs.  The resulting ion abundance ratios 

of the mass barcodes for AuNP 2 (m/z 422) and AuNP 1 (m/z 464) were plotted against the 

concentration ratio between the two AuNPs to generate a calibration curve (Figure 4a). 

Using this calibration curve, the relative amounts of AuNP 2 bound to the surface of the 

cells monolayer could be determined (black data points in Figure 4b). For each incubation 

time indicated, the internal standard (AuNP 1) was added at 100 nM (12.5 pmol) to the 

incubated sample and allowed to sit with the cells for 15 minutes before LDI-MS analysis.  

For comparison, a fraction of the cells was also lysed after different incubation times and 

the total NP content in the cells was determined by LDI-MS (red data points in Figure 4b). 

The difference between the total (red data) and cell surface bound (black data) amounts 

allows determination of AuNP 2 uptake (Figure 4b).  

We next investigated how different cell-surface proteoglycans influence AuNP 

internalization as a demonstration of the utility of our method. Wild-type Chinese hamster 

ovary (CHO) cells and two proteoglycan knockdown mutants, CHO-2 (xylosyltransferase 

1 deficient) and CHO-3 (galactosyltransferase 1 deficient) cells were incubated with AuNP 

2 and analyzed (Figure 5a) (See Figure 8 in Supplementary figures for calibration curve 

for these cell lines). No measurable cell uptake occurs during the first 15 minutes of 

incubation, providing a quantitative measure of NP distributions in these cells using ICP-

MS measurements on the cells at the 15 min time point and using these values to correlate 

ion abundance ratios in Figure 5a and the absolute NP quantity (see Supplementary 

Information for details). The data in Figure 5b summarize the quantitative NP distributions 

in the three different cell types. Two observations can be obtained from these data: 1) The 

NP amounts on the cell surface do not change significantly during the course of incubation, 

indicating there is a rapidly achieved equilibrium between cell culture media and plasma 

membrane. 2) The NP amounts bound to plasma membrane differ based on cell 

glycosylation. The normal CHO cells have a higher level of cell surface adsorption than 
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the proteoglycan knockdown mutants, consistent with the study by Payne et al. that 

proposed the importance of negatively charged proteoglycans as binding sites for cationic 

nanomaterials.27  

 

Figure 1.5 Quantities of AuNPs associated with the different CHO cell lines. (a) LDI-MS 

measurements of cell surface-bound AuNPs and total AuNPs associated with the different 

CHO cell lines. (b) Absolute quantification of AuNPs associated with the cells after 

correction with the ICP-MS measurements. One-way-ANOVA (P <0.01) was performed, 

n= 3, all error bars represent standard deviation. Letters above the bars indicate significance, 

in which a, b and c are in comparison with CHO, CHO 2 and CHO 3 at the same time point 

respectively.   

1.3 Conclusion 

We have shown that cell surface-bound AuNPs can be selectively detected and 

quantified using LDI-MS by choosing the appropriate laser energy for analysis. 

Combination of this method with overall NP levels obtained through ICP-MS or LDI-MS 
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of the cell lysate provides quantitative values for cell surface-bound and internalized NP. 

This method is rapid, reproducible, and avoids processing conditions that complicate 

etching-based methods. Given the wide range of nanomaterials that have been shown to be 

LDI-active,28, 29, 30, 31 this method provides a highly versatile approach to addressing the 

long-standing challenge of quantifying nanoparticle internalization. 

1.4 Experimental section 

Gold nanoparticle synthesis. The gold nanoparticle and ligands were synthesized 

according to the previous reports.32 The Brust-Schiffrin two-phase synthesis method was 

used to synthesize 2 nm core AuNPs.33 After that, the Murray place-exchange was used to 

functionalize AuNPs.34  

Cell culture and interaction with gold nanoparticles. HeLa and HepG2 cells 

were cultured in a humidified atmosphere (5% CO2) at 37°C and grown in Dulbecco’s 

modified eagle’s medium (DMEM, low glucose) supplemented with 10% fetal bovine 

serum (FBS) and 1% antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin. CHO 

(ATCC CCL-61), CHO 2 (pgsB-618 (ATCC CRL-2241)) and CHO 3 (pgsA-745 (ATCC 

CRL-2242)) cells (20,000 cells/well) were cultured in a humidified atmosphere (5% CO2) 

at 37°C and grown in F-12K medium supplemented with 10% fetal bovine serum (FBS), 

1% antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin) and 1% non-essential 

amino acids. The cells were split into two groups, one was plated on ITO glass slide and 

the other was on 96-well plate. After 24 h of plating, the cells were washed three times 

with cold phosphate buffer saline (PBS). Then, 125 µl of serum free DMEM containing 

AuNPs was added to the cells at 37°C. After incubation, the cells were washed by cold 

PBS with one group analyzed directly on ITO glass slide and the other group was lysed for 

30 min using lysis buffer (125 µl; Genlantis). 

LDI-MS detection and quantification of gold nanoparticles in cell monolayer. 

ITO glass slides was coated with 0.1% poly-lysine solution for 5 minutes and then washed 

with deionized water for 3 times to remove excess poly-lysine. The coated slides were then 

dried in air blow. Open ended Eppendorf (I.D. = 10 mm) tubes were glued to the coated 

slide on one end to generate media reservoir for cell culture. Planted cells on the slides 

were used for incubation with AuNPs. After incubation, the reservoirs were removed and 
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cell monolayer on the substrate were analyzed by LDI-MS. All LDI-MS measurements 

were carried on a Bruker Autoflex III MALDI-TOF mass spectrometer. All mass spectra 

were acquired in the reflectron mode with an average of 100 laser shots at a repetition 

frequency at 100 Hz. The accelerating voltage was set to 19 kV. Bruker software 

(FlexAnalysis Version 3.3) was used for data analysis. 30 spectrum were collected and 

averaged for each sample point. 

LDI-MS detection and quantification of gold nanoparticles in cell lysate. The 

lysed cells contained AuNP 1 and/or AuNP 2 were centrifuged at 14,000 r.p.m. for 30 min, 

cell pellets generated by this process was collected and washed with 60% acetonitrile/40% 

water to remove excess surfactants. Then, the pellets were transferred onto 384 MTP 

grounded steel MALDI target for LDI-MS analysis. External calibration curves were 

generated before sample analyses (See Figure 9 in Supplementary figures). A series amount 

of AuNP 1 (0, 1, 2, 5, 10 and 20 pmol) and constant amount of AuNP 2 (5 pmol) was 

spiked into cell lysate and vortexed for 15 min. The resulting pellets from centrifugation 

were washed and analysed by LDI-MS. The intensity ratios of the molecular ions for both 

AuNPs were plotted against AuNP molar ratios to generate a calibration curve. The 

quantity of AuNP were then determined by comparing with the calibration curve.  

ICP-MS sample preparation and measurement. After interaction, the lysed cells 

were digested with 0.5 ml of fresh aqua regia (highly corrosive, use with high caution) for 

15 min. The digested samples were diluted to 10 ml with deionized water. A series of gold 

standard solutions (0, 0.2, 0.5, 1, 2, 5, 10 and 20 ppb) were prepared before each experiment 

in 5 % aqua regia. The gold standard solutions and cell lysate samples were measured on a 

Nexion ICP mass spectrometer (PerkinElmer). The instrument was operated with 1,100W 

radiofrequency power, and the nebulizer argon flow rate was optimized around 0.9 to 1.1 

l/ min.  
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1.5 Supplementary Information 

 

Figure 1.6 LDI-MS of AuNP 2 on cell monolayers before and after washing. 250 nM 

AuNP 2 was incubated with the cell monolayer for 60 minutes in serum free media at 37 

ºC. After incubation, the cell monolayer was either washed four times (washed) or one time 

(unwashed) before LDI-MS analysis.  

 

Figure 1.7 Relative ionization efficiency between AuNP 1 and AuNP 2. A constant 

concentration of AuNP 1 was mixed with different concentrations of AuNP 2 and then 

analyzed by LDI-MS. The LDI-MS intensity ratios between AuNP 1 and AuNP 2 were 

then plotted against the molar ratio between the two nanoparticles. The resulting slope from 

the plot provide information about the relative ionization efficiency of the two AuNPs. A 

slope closer to 1 indicates that the two AuNPs have more similar ionization efficiencies. 
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Figure 1.8 LDI-MS calibration curves for AuNP 2 on the cell surface. CHO, CHO 2 and 

CHO 3 cells were cultured on ITO-glass slide. Increasing concentrations of AuNP 2 were 

mixed with AuNP 1 (internal standard) and incubated with cells as described in the text. 

Cells on the glass slide were detected using 38.6 µJ to only detect AuNPs on cell surface. 

Molecular ions of both AuNPs were plotted against molar ratios.  
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Figure 1.9 LDI-MS calibration curves for AuNP 2 in cell lysate. Increasing concentrations 

of AuNP 2 were mixed with AuNP 1 (internal standard) and spiked into cell lysate of HeLa, 

Hep G2, CHO, CHO 2 and CHO 3 cells. After centrifugation, the resulting pellets were 

deposited on a stainless steel target and analyzed with LDI-MS. Molecular ions of both 

AuNPs were plotted against molar ratios. 

 

Calculation of absolute quantity of total, internalized and cell surface-bound AuNP 2 

by coupling LDI-MS and ICP-MS 

After incubation and addition of the internal standard (AuNP 1), the cells are lysed for ICP-

MS detection. The gold amount measured from the sample is denoted by X (ng). X arises 

from contributions from the gold amounts of AuNP 2 (X (AuNP 2) total) and AuNP 1 (X 

(AuNP 1)). The LDI-MS measured molar ratio between AuNP 2 and AuNP 1 is denoted 
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by Y. Ytotal represents the molar ratio of the total amounts of AuNP 2 to AuNP 1. With 

equation (1), the absolute amount of total AuNP 2 with cells can be calculated.  

Equation (2) describes the absolute amount of AuNP 2 on the cell surface. Ysurface 

represents the molar ratio of cell surface-bound AuNP 2 to AuNP 1. By subtracting AuNP 

2 on cell surface from total amount of AuNP 2 in equation (3), absolute amount for 

internalization can be determined. 

�
𝑿𝑿 (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑿𝑿 − 𝑿𝑿 (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏)

𝑿𝑿 (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑿𝑿 (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏)

= 𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
(1) 

𝑿𝑿(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒔𝒔𝑨𝑨𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔 = 𝒀𝒀𝒔𝒔𝑨𝑨𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔
𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

 × 𝑿𝑿(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 (2) 

𝑿𝑿(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒊𝒊𝒊𝒊𝒕𝒕𝒔𝒔𝒔𝒔𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊 = 𝑿𝑿(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 − 𝑿𝑿(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐)𝒔𝒔𝑨𝑨𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔 (3) 
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CHAPTER 2  

NANOPARTICLE PROBES FOR QUANTIFYING BIOSURFACE 

AFFINITY 

2.1 Introduction 

Understanding and engineering the interactions of synthetic and biomolecular 

systems with biosurfaces is an important issue in health and personal care. Adhesion to 

skin is a key feature for drug delivery systems, 1 , 2 , 3 , 4 , 5 , 6  wound healing, 7 , 8  and 

cosmetics.9,10,11,12,13 Likewise, adhesion of molecular systems to hair is key to their unique 

properties in hearing and mechanical systems such as gecko feet,14 and is essential in the 

hair care field.15 In all of these systems, controlled of supramolecular interactions are 

required to tune both the strength and reversibility of adhesion. 

Unravelling the complex interrelationship between size, shape, charge, and 

structure of materials at biosurfaces is a challenging task. The supramolecularly 

competitive aqueous environment in which these surfaces function makes multivalent 

interactions a prerequisite.  For this reason, polymers have been used as platforms to study 

adhesion to hair and skin.16,17 For example, it has been found that Polyquaternium-24 

polymer adsorbs more strongly to skin membranes than Polyquaternium-10 or chitosan.18 

However, polymers are inherently flexible with accessible backbone functionality, making 

direct assessment of specific interactions difficult. On the other hand, monolayer-protected 

nanoparticles provide an excellent scaffold to study supramolecular interactions. 

Through proper engineering of monolayer structure, nanoparticle systems provide 

a non-interactive “tabula rasa” that can be decorated with specific chemical 

functionalities.19 These particles have been used to quantitatively probe the multivalent 

interactions of “simple” chemical motifs such as carboxylates and ammonium ions with 

proteins,20 nucleic acids,21 and cells.22  

In this chapter I report the use of these gold nanoparticles (AuNPs) as scaffolds to 

probe role of specific supramolecular interactions on adhesion to hair, a model biosurface. 

These AuNP probes combine their inherent multivalent presentation of functionality with 

the ability to directly quantify their amount using inductively-coupled plasma mass 
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spectrometry (ICP-MS). Through this strategy we determined that electrostatics were the 

strongest driver of adhesion, with cationic particles binding much more strongly than their 

anionic or neutral counterparts. Surprisingly, it was found that electron-rich aromatic 

moieties strongly enhanced adhesion, suggesting that cation-π interactions are a potential 

tool for controlling adhesion.   

Figure 2.1 Detection of AuNP adsorption on human hair surface using inductively-coupled 

plasma mass spectrometry (ICP-MS). Three hair strands were immobilized on pipette tips 

and incubated in different nanoparticle (NP) solutions. Incubated hair strands were cut and 

digested with Aqua Regia before ICP-MS analysis. 

2.2 Result and discussion 

AuNPs used in this study featured 2 nm core size and were stabilized by 

surface monolayers with three functional sections. From the interior to the surface 

of AuNP, these are alkane thiol, tetra-ethylene glycol and terminal functional 

groups. These functional sections serve to stabilize AuNP from disassembly, to 

prevent irreversible interaction between AuNPs and biological surfaces, and to 

interact with the surrounding environment respectively. When these structural 

parameters remain unchanged, terminal groups can be varied to explore the effect of 

chemical functionality with a structurally unified and stable scaffold.21
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Figure 2.2 (a) Structures of gold nanoparticles (AuNPs) used in this study, the calculated 

log P of the terminal groups are shown in brackets. (b) The effect of charge on hair 

adsorption, cationic NP shows the highest adsorption on hair surface compared to neutral, 

zwiterionic and anionic NPs. 

In our initial study, we investigated the effect of NP charge types including 

cationic, neutral, zwitterionic and anionic AuNPs (Figure 2a). Hair is composed 

mainly of keratin and has an isoelectric point of 3.7.23 The keratin fibres on hair 

surface are covalently coated with 18-methyl eicosanoic acid.24 This lipid layer 

provides protection and concomitant hydrophobic hair surface. To determine the 

adsorption level of AuNPs on hair after incubation, the gold amount adsorbed on 

hair was measured by ICP-MS (Figure 1). Comparing to other charge types of 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CDsQFjAG&url=https%3A%2F%2Fwww.truthinaging.com%2Freview%2Fwhat-is-it-18-mea-methyl-eicosanoic-acid&ei=og64VPSqB5WTsQS7_YDYCQ&usg=AFQjCNE35rQJ9zhgQ21I5l5eqZtLwIC0FQ&bvm=bv.83640239,d.cWc
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AuNPs, cationic AuNPs adsorbed much more efficiently to the hair (Figure 2b). This 

observation is consistent with other study where hair has strong interaction with 

cationic polymers used as conditioning agents.25 Also, the hair surface was found to 

have high adhesion force to amine decorated tips in AFM.26 Due to the negatively 

charged hair surface, cationic AuNPs can bind strongly to hair via electrostatic 

interaction. These ionic bonds in addition to the multivalence of the particles are 

strong enough to hold the particles on the hair surface even when it is being rinsed 

off extensively. Since positive charge is necessary for hair adsorption, we took a 

further step in designing a library of cationic AuNPs by modifying the terminal R 

groups on cationic ligand of AuNP to understand the effect of chemical functionality 

on hair adsorption (Figure 2a). 

As mentioned before, hair surface is expected to be hydrophobic. Thus, we 

hypothesized that terminal groups with higher hydrophobicity should exhibit 

enhanced adsorption.  To test the hypothesis, R group on cationic AuNPs was 

modified to present a variety of chemical functionalities with an increased in 

hydrophobicity represented by calcuated log P (See bracketed numbers in Figure 

2a). When Au amount in hair was plotted against log P of terminal groups, we 

surprisingly found that hydrophobicity did not determine AuNP absorption level, 

indicated by the scattered sample points and a very poor R-squared value (Figure 

3a). A clear trend was shown only when the hydrophobicity of the AuNP was varied 

by the length of the alkyl chain (TTMA, C2, C4, C6, C10) (Figure 3b). 

However, the hair adsorption trend of the increased alkyl chain on the AuNP 

was not in agreement with our hypothesis, in which the higher the hydrophobicity 

of the AuNP, the lower the adsorption of the particles on hair. The reason for this 

observation is probably due to steric effect provided by longer alkyl chain.27 This 

phenomenon was demonstrated in previous study. Hydrogen-deuterium exchange of 

the amine groups was hindered if they were buried deeper along the alkyl ligand on 

AuNPs. 28  In our case, alkyl chains shield the electrostatic interaction between 

quaternary amonium on AuNPs and negatively charged hair surface. Therefore, the 

overall decrease of hair adsorption as the hydrophobicity of the R groups increases 
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can be explained by the blockage of electrostatic interaction, which was not fully 

compensated by increased hydrophobic effect. 

 

Figure 2.3 Screening of cationic AuNPs library. (a) Hydrophobicity of terminal groups 

does not determine the level of adsorption. (b) Effect of hydrophobicity determined by 

alkyl chains and aromatic rings. The AuNP adsorption was normalized to that of TEGOH 

AuNP. 

An interesting and unexpected discovery was found with aromatic terminated 

AuNPs. Unlike alkyl functional groups, the adsorption of aromatic AuNPs is largely 

dependent on substitutes on aromatic ring rather than hydrophobic variation. 

Particles with electron donating substitutes such as methoxyl and tert-butyl groups 

show a significant enhancement of adsorption compared to particles with no 
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substitute or electron withdrawing groups (Figure 3b). This interesting finding might 

be due to cation-π interaction. The exposed charged residues on α-helical keratin 

fibers carry net negative charge; however, there are discernible positively-charged 

domains rich in lysine and arginine.29 These domains can provide interacting sites 

for electron rich aromatic ring via cation-π interaction.30 Therefore, the adsorption 

prompted by electron donating substitutes on AuNPs suggests similar interaction 

occurs in the nanoparticle keratin fiber interface.  

 

Figure 2.4 Disruption of interaction between AuNPs and hair surfaces with 1 M NaCl, 1 

M urea and 1 % Tween-20 (w/v %). The binding of AuNPs after disruption is normalized 

to that of no disruption of corresponding AuNPs. 

Since the working environments for hair adhesive materials usually are not 

in deionized water. To demonstrate that our findings can also be applicable in 

complex mixture, we tried the interaction with the presence of three representative 

disrupting agents, sodium chloride, urea and tween-20. Two nanoparticles, TTMA 

and Bz-tBu with high adsorption level but different driving forces were chosen. 

Under these three conditions, no significant decrease of gold adsorption was 

observed, showing that the interactions between selected AuNPs and hair surface 

were not disrupted by any of these interfering agents (Figure 4). This strong 

interaction demonstrates a favourable binding due to the multivalency of AuNPs to 



24 
 

a large and rigid hair surface. This could be the reason why even when entropy is 

unfavourable upon their binding, the selected AuNPs can still enhance the binding 

affinity to the biological substrates, which is not seen in typical small molecules.   

2.3 Experimental section 

Synthesis and characterization of AuNPs. The Brust-Schiffrin two-phase 

synthesis method was used for synthesis of AuNPs with core diameters around 2 

nm. 31  After that, the Murray place-exchange method was used to obtain 

functionalized AuNPs. 32  The octanol-water partition coefficients (LogP) of the 

terminal groups of AuNP surface ligands were calculated using ChemDraw Ultra 

8.0. 

Interaction between hair and AuNPs. Three individual strands of non-treated 

human hair were immobilized in 10 μL pipet tips with hot glue, 0.6 cm of each hair 

strand was exposed from the pipette tip to make miniature “hair brushes”. The hair 

brushes were then assembled in a pipette tip rack to form an array of hair brushes. 

Then the hair brush array was placed upon 48-well plates to interact with 300 uL 

100 nM AuNPs solution for 5 minutes at room temperature. The incubation was 

followed by 3 cycles of rinsing in 300 uL deionized water, 2 minutes for each cycle.  

ICP-MS measurement and sample preparation. After incubation, the exposed 

hair strands were cut and collected in 15 mL conical tubes. Samples were furthered 

digested by 1mL of aqua regia (70%/30% HCl/HNO3) (highly corrosive, operate 

with cautions). After 2 hours of digestion, the samples were diluted to 4mL with 

deionized water. A series of gold standard solutions (20, 10, 5, 2, 1, 0.5, 0.2, 0 ppb) 

was prepared for each experiment, and these standard solutions also contained 1 mL 

of aqua regia. The ICP-MS analyses were performed on a Perkin-Elmer NexION 

300X ICP-MS. 197 Au was measured under standard mode. Nebulizer flow rate: 

0.91-1 L/min; rf power: 1600 W; plasma Ar flow rate: 18 L/min; dwelling time: 50 

ms. 

2.4 Conclusion 

In summary, we have used surface engineered AuNPs to understand the 

chemical functionalities contributed to adsorption on human hair. Human hair 
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surface was known to be negatively charged and hydrophobic due to the presence of 

sulfonate and 18-MEA. Our findings suggests that even though cation is necessary, 

there are no correlation between nanoparticle hydrophobicity and adsorption. Other 

factors including structural hindrance and cation-pi interaction are new aspects to be 

considered when designing new adhesive nanomaterials to hair surface. Our findings 

are not only applicable in water but also with the presence of chaotropic reagents. 

The strategy to use AuNPs scaffold coupled with sensitive ICP-MS detection is 

beneficial in eliminating biological noise, enabling application to a variety of 

biological surfaces in future studies. 
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