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Abstract

The Chemical and Physical Structure of Giant Molecular Cloud

Cores

September 1995

Edwin A. Bergin, B.S., Villanova University

Ph.D., University of Massachusetts Amherst

Directed by: Professors Paul F. Goldsmith

k Ronald L. Snell

We present the results of a study of the emission from 33 molecular transitions

in the CMC cores Orion A, M17, and Cepheus A. We have mapped the emission

over a 4' X 12' area in Orion, and a 4' x 5' area in M17 and Cepheus A. We have

used these observations to probe the physical and chemical structure within each

core.

To derive the temperature we have used the J = 6 —>• 5 (K = 0,1,2) transitions

of CH3C2H and the J = 1 —>• 0 transition of ^^CO. A comparison of temperatures

obtained from the two thermometers in Orion and M17 show significant differences,

which we propose are the result of a line of sight temperature gradient. Densities

were determined through a multitransitional study of HC3N. The density structure

within each core is similar, showing no evidence of large scale variations, with values

typically n(H2) ~ 10^ cm^^

The temperatures and densities determined directly from CH3C2H and HC3N

were used to derive abundances for 12 species in six positions in Orion A, and two

positions in M17 and Cepheus A. Although abundance differences exist, in general,

chemical abundances are found to be similar both within and among CMC cores.

We have constructed a chemical model of CMC cores, accounting for variations with

Av, to compare with measured abundances. This model was found to be unable
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to reproduce the abundances of many molecules for any particular time. Both the

inclusion of clumps and variations in the gas-phase C/0 ratio within the model were

examined to obtain between agreement with observations.

We found that the inclusion of clumps into the chemical model can reproduce

the observed abundances of C+ and C. However, due to the greater weight placed

on the photon dominated region in smaller clumps, clumps have a detrimental effect

on reproducing the abundances of other species. Models with a range of C/0 ratios

were also compared to the abundances measured in each cloud. Good agreement

between model and observations was found for early times (t ~ 10^ yr) and for

C/0 ~ 0.8.
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Chapter 1

Introduction

Giant molecular cloud (GMC) cores are regions of high density and column

density, located within more diffuse extended clouds, that are often associated

with massive star formation. Current evidence indicates that these cores are

composed of numerous small dense condensations of gas and dust or "clumps"

(Mundy et al 1986; Stutzki & Gusten 1990; Tauber and Goldsmith 1993). The

study of the chemical and physical conditions in the dense cores therefore probes

the chemistry and physics of the clumps and provides important clues to the

beginnings of star formation. While the links between the physical state (density

and temperature) of molecular cores and star formation is the subject of many

ongoing studies, the relationship between chemical processes and star formation is

less often examined. An example of a possible link between chemistry and the

formation of stars is through the processes of ambi-polar diffusion which depends

on the ionization fraction in the cloud (McKee 1989).

In addition to understanding the formation of stars, the knowledge of chemical

processes is also necessary in order to physically interpret molecular observations

of the ISM. Such basic quantities as the masses of clouds and densities, which are

determined from observations of molecular emission lines, often require apriori

knowledge of molecular abundances. The link between chemical abundances and

the physical state of molecular clouds is complex; for example, a drop in the gas

phase abundances of an important coolant, such as H2O (Goldsmith k Langer

1978) will alter the thermal balance of the cloud, raising the gas temperature, and

possibly affecting the formation of cores and stars. Thus the physical evolution of

molecular clouds is closely intertwined with their chemical evolution.
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Dense cores in molecular clouds are diverse environments, and the chemical

processes occurring within these regions are dependent on many variables in

addition to strictly chemical interactions. Variations in such parameters as density,

temperature, degree of ionization, or even the actual age of the cloud can drive

molecular compositions in different directions. Of particular interest is the effect of

star formation on the chemistry of the surrounding material. High temperatures

induced by the radiation from the newly formed stars can open up new reaction

pathways as well as warming up grain mantles possibly releasing molecules frozen

on the grain surfaces. Systematic studies of the chemistry in star-forming regions

are lacking. Chemical analyses of a large number of species have been limited to a

single position in a few sources such as OMC-1 or TMC-1. To what extent these

regions are representative of other molecular clouds or even other positions within

the same cloud is an open question (van Dishoeck et a/., 1991). Indeed, studies of

star-forming regions with a small set of different molecular tracers show significant

abundance gradients and morphological differences within one source. Examples

are L134N (Swade, 1989 a,b; Swade and Schloerb 1992); NGC 2071 (Zhou et o/.,

1990; Goldsmith et al, 1992); and Sgr B2 (Vogel et a/., 1987; Goldsmith et ai,

1987). An understanding of the chemical and physical processes that underly the

observed abundance gradients and morphological differences is critical since the

inferred cloud structure may be quite different depending on which tracer is being

used (Goldsmith, 1991).

Previous studies of star forming regions have been limited to either analyzing a

small number of molecules over a large spatial extent in a source (such as the

study of NGC 2071 by Goldsmith et al 1992) or unbiased searched of the

millimeter wave spectrum in typically one or two positions in a source (such as the

70-150 GHz survey of Sgr B2 by Cummins et al 1986 and the surveys of Orion KL

by Blake et al 1987 and Sutton et al 1995). Thus even though abundances are
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predicted by chemical models to vary depending on numerous factors little

observational data are available to test these models.

In this thesis we extend and improve upon previous efforts by presenting a

combined study of the chemical and physical structure of three dense giant cloud

cores: Orion A, M 17, and Cepheus A. We present observations of 26 different

molecular transitions (13 molecules and 7 isotopic variants) in these sources using

the Five College Radio Astronomy Observatory (FCRAO) 14m telescope equipped

with a 15-element focal plane array. The sources in Orion, M 17, and Cepheus are

all dense cores in close proximity to newly formed stars. The maps of the 26

transitions cover large regions in each source and consist of hundreds of individual

spectra; the maps extend over both the known star forming sites as well as more

quiescent material. By examining the abundance gradients and variations in each

source in a large number of species we are able to examine the effects of star

formation on the surrounding material as well as the evolution of regions which are

relatively unaffected by forming stars. In addition to studying possible abundance

variations the determination of abundances for a large number of molecules will

allow for greater constraints to be placed on chemical models.

In the following sections we introduce the various aspects of the thesis, which

also includes the development and use of a theoretical chemical model. In Section

1.1 we present and discuss the molecular transitions observed for this study and

their importance in limiting chemical processes and physical conditions. In Section

1.2 we briefly introduce each source, discussing the principle star forming sites and

any previous chemical results. Section 1.3 introduces the theoretical chemical

model, which includes >300 species coupled through >3000 reactions. Section 1.4

outlines the overall method and goals.
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1.1 Chemical Survey of CMC Cores

1.1.1 Molecular Transitions

Table 1.1 lists the molecular transitions observed for this survey, the table

includes the frequency, upper state energy, and an estimate of the critical density

for each transition. This lists includes some of the traditional tracers of column

density (C^^O), density (C^^S), and temperature (^^CO) as well as key molecules

that can be used as diagnostics of chemical processes. In modeling the gas phase

chemistry of molecular clouds, observations of ions are important, since dominant

reactions are thought to involve ions and neutral molecules. We have observed two

molecular ions HCO+ and N2H+ and will use these species to constrain the

abundance of ions. The simple radicals CN and C2H react without barriers with

some neutral species as well as with ions and hence play an active role in the gas

phase chemistry. Observations of the abundances of the simple carbon- and

nitrogen-bearing species HON and HNC are also important for gas phase chemical

models and the ratio of these species is correlated with the kinetic temperature

(Goldsmith et al., 1986).

The sulfur bearing molecules SO, and SO2 have enhanced abundances near

high mass star-forming regions where high temperature chemistry or grain mantle

evaporation are thought to be important processes (Prasad et al., 1987). Solid

methanol (CH3OH) has been identified on grain mantles (Grim et al., 1991;

Allamandola et al 1992), and the abundant gas-phase methanol observed near the

embedded sources in Orion could arise from evaporation of grain mantles (Blake et

al 1987). Therefore CH3OH may prove to be important in delimiting grain

processes.

To determine molecular abundances the observed molecular line intensities

must be converted into column densities, which enables a comparison with

theoretical predictions. Therefore we must determine if the molecular emission we
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Table 1.1. Molecular Line Parameters for GMC Survey
Transition / T T \(GHz) E« (K) ncr (cm ^)

\-J\J J — i —f yj 115.271203 5.53
K

1 X 10^

7 — 1—40 1 1 n om 0*7^iiU.zUlo7U 5.29 1 X 10^

Vy V 7 7 — 1 ^ nU — i T U 1 nn TO0 1 00iU9. (qZIoZ 5.27 1 X 10^
f\'7 do 1 A 1 197.981011 7.05 3 X 10^

J = 2 -> 1 96.412962 6.94 3 X 10^

HCO+ / — 1 —V n CO 1 QQt^OQ /I OQ 0 X 10

/ — 1 —^ nU — 1 T U oo. I o4ozy /I 14.10 0 X 10
7 — 1 s n

F = 1 -> 1 93.17195 4.47 2 X 10^

F — 9 —^ 1X 7 1 Ql 1 7*^7^ A 474.4 <

p — n \ 1r — U —T i yo.i / Doi /I /I "7
4.4/

CN A,r — 1 V n
iV — 1 r U

T — "i/O ^ 1/9

F — 1/9 -A^ 1/9 119 /IQQI Ad 0.40 1 n5—

6

iU
— c;/9 v Q/o— 0/ Z r 0/ Z 0.40

/V — 1 —V 0iV — 1 7 u

7 — 1 /9 —V 1 /9

F — 1 —V 11/ — i 7 1 87 4090040 ( .'lUZUU'l 4 904.ZU

87 4071 fi^ 4 904.ZU

-JK — 02 ^ QQ 9QQ87C;yy.zyyo 1

0

Q 90y .zu 1 0^iU

Tt^ 9n —V 1 r>•JK — ^3 ^ ^2 1 0Q 9f^91 "^4iuy .zoz i o'i 91 1z 1 .

1

JK — ^5 ^ ^4 1 00 09Qfi97iuu.uzyuz (
^8 fi00.

u

34qn T^r^ — "^o —^ 9,•JK — 02 ^ ^1 Q7 71 ^3Q0y 1 . / 1 ooyu Q 90 10^X \J

7 — 1—^00 — 1 7 u 88 631 847 4 9^ 2 X 10^

7 — 1-40 86 340184 4.14 2 X 10^

7 — 1 ^ n 4 3^1 2 X 10^

7—1—^0J — i 7 u 0 1 .\Jij\JOO X 4 181 . X 0 2 X 10^

7„ — 2 1 —> 1 1

E

<^7C — ^ — 1 i — I-'-' 96 73939 11.6 7 X 10^

^7113 vyll 7i^ — 2n —^ lnA + 96 74142 6.97

v^l 13 11 96 74458 19.15

CH3OH J/^ = 2i -> liE 96.75551 27.07

C3H2 Jk+,k- = 2i,2 -> lo,i 85.33890 4.1

HC3N J = 10 ^ 9 90.979023 24.0 7 X 10^

HC3N J = 12 -> 11 109.173634 34.1 1 X 10^

CH3C2H Jk = 5o 102.547983 17.2 2 X 10^

CH3C2H = 61 ^ 5i 102.546023 24.2

CH3C2H -^/c = 62 -> 52 102.540143 45.2

SO2 104.02942 8
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are observing is tracing the entire column density along the line of sight, i.e.

whether the emission is optically thin. In practice this involves observing rare

isotopes of the same species or using hyperfine line ratios to obtain estimates of the

line optical depth. Table 1.1 shows that for many species we have observed isotopic

variants and for other species (eg. CN, C2H, N2H+) we can use the hyperfine

structure to estimate the opacity. Thus for 10 of the species observed we believe

the emission is optically thin or can readily correct for the effects of optical depth.

Another important factor in comparing molecular abundances is whether each

molecule is tracing the same component along the line of sight. To minimize this

concern we have observed only transitions with similar critical densities, n^ ^ 10"*

cm~^, and upper state energies, 4 < < 30 K. The only transitions in Table 1.1

that do not fulfill this requirement are CO and its isotopic variants, and the

highest excited transitions of CH3C2H and SO. We discuss in Chapter 3 whether

the C^^O emission is from the same dense layer as other molecules or is possibly

arising from a lower density component as well, while the higher transitions of

CH3C2H are primarily used to determine the temperature. For the transitions

meeting these excitation conditions it is likely that emission from each is probing

the same region along the line of sight.

1.1.2 Temperature and Density

The observed column densities reflect the population in the upper state of the

transition in question, one must therefore make assumptions about the molecular

excitation in order to compute the total column density of a species from the

observations. Since it is collisions with molecular hydrogen (H2) that excite the

molecular transitions this requires knowledge of density as well as the kinetic

temperature. We can determine these parameters using the emission from the

symmetric top molecule CH3C2H to estimate the gas temperature and the

emission from the linear molecule HC3N to estimate densities.
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We derive values, for both density and temperature, in as many positions in

each core as is possible. In this fashion we will produce maps of the physical

conditions for each cloud. This enables us to examine the physical structure, the

dependence of density and temperature with position, in each core. These

estimates will then be used to derive accurate molecular abundances and

determine whether the emission variations are the result of abundance gradients or

solely due to variations in the density or temperature. The temperatures derived

from CH3C2H are also compared to the temperature determined using CO,

allowing a direct determination of whether a single temperature characterizes the

lines of sight in these clouds.

1.2 Sources

The three CMC cores studied are each in regions of high mass star formation.

In fact, the dense cloud cores are in close proximity to newly formed stars and are

receiving UV flux that is a factor of 10'* — 10^ higher than the solar neighborhood

radiation field. The enhanced flux will have the effect of dissociating and ionizing

molecules as well as warming dust grains. The UV flux also may be keeping some

fraction of carbon in atomic form and enhancing ionization of certain species.

Regions with these characteristics are called photon dominated regions (PDRs).

Below we provide a brief description of each source.

1.2.1 Orion A

The Orion molecular cloud, located at a distance of 480 pc, is the nearest

massive star forming region (Genzel et al 1981). The strongest emission in the

cloud is in the direction of the Orion A H II region (M42) and is often labeled as

the Orion A cloud or OMC-1 core. In the direction of the 11 II region is a complex

of embedded sources (Orion KL/BN) that are significantly influencing the local

molecular environment through both high velocity and low velocity outflows. The
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strongest infrared source in this region is IRc2, which is presumably the source of

the high velocity flows (Genzel and Stutzki 1989). The Orion A H II region,

powered by several OB stars (in particular the 06 star O^C Ori), is located in front

of the cloud on the plane of the sky (Zuckerman 1973).

The lines of sight toward the IRc2 exhibits several velocity components that

trace at least three physically distinct regions. The separate components can be

distinguished by the characteristics of their velocity profiles, and arc denoted the

"plateau" , "hot core" , and the "quiescent ridge" . These disparate regions have

been shown to have considerable chemical complexity with species such as

CH3OH, HON, and HC3N having enhanced abundances in the hot core, while

other molecules such as SO are enhanced in the plateau, still other species, C2H,

CN, HNC are observed only in the quiescent ridge component (Blake et al 1987).

The ridge feature is associated with the extended quiescent cloud, which

extends ~5' north and south of KL/BN, and is relatively unaffected by the star

formation in the KL/BN region. Significant differences among the distribution of

molecules along the Orion ridge have been known for many years (Turner and

Thaddeus 1977; Goldsmith et al 1986a). In particular the molecular ion N2H"^ and

radicals, CN and C2H, peak ~3'N of KL/BN. C2H and N2H+ actually have an

emission minimum at the star forming sites in sharp contrast to other species such

as C^^O or CS. The emission variations for the CN and C2H radicals has been

suggested by Greaves et al (1992) to be due to lower temperatures at the

"radical-ion" peak, which is 3'N (~ 0.4 pc) of the heating sources (Orion A,

KL/BN). The area observed for this study is a 4' x 12' region centered on the

KL/BN star forming core. We are primarily interested in the chemistry in the

extended quiescent ridge component and will examine abundance gradients along

the ridge proceeding away from the star forming sites.
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1.2.2 M17

The dense core in M17 is located to the southwest of the optical M17 H II

region. Since the H II region/molecular cloud interface is seen nearly edge on

(Gatley et al 1979; Icke et al 1980) an examination of the effects of an H II region

on the structure and evolution of a dense molecular cloud can be readily

undertaken. Observations of FIR continuum, atomic fine structure lines (Meixner

et al 1992; Stutzki et al 1988), and high-J CO and CS lines (Harris et al 1987;

Stutzki et al 1988) have suggested that UV photons penetrate deep into the

molecular cloud. These observations provide some of the strongest evidence for

clumpy cloud structure.

Although this source has a greater column density than Orion (Goldsmith,

Bergin, &; Lis 1995), there exists little information on chemical abundances. The

area we have mapped in all transitions is a 4'x 5' (120 positions) region that

includes the H II region/molecular cloud interface. Although, the M 17 core (d ~

2.2 kpc) is more distant than Orion, providing much lower spatial resolution, the

edge-on geometry should provide an important gauge on the effects of distance

from the ionizing source on chemistry. The structure of this source may provide

clues to possible chemical differences that could exist along the line of sight in

Orion, which has a face-on geometry.

1.2.3 Cepheus A

Cepheus A is a dense condensation in a much larger molecular complex

directly to the south of the Cepheus 0B3 stellar association (Sargent 1977). Maps

of CO emission at high and low resolution (Hayashi, Hasegawa, & Kaifu 1988;

Rodriguez, Ho, k Moran 1980) reveal an energetic bipolar outflow which is

oriented east-west. At the centroid of the outflow a cluster of deeply embedded

ultracompact H II regions has been found (Beichmann, Becklin, k Wynn-Williams
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1979; Simon & Joyce 1983; Hughes & Wouterlout 1984). These sources, labeled as

HW 1-7 (Hughes k Wouterlout 1984), form a Y with one chain of H H regions

extending northeast-southwest, and the other pointing east-southwest (Staude k

Elsasser 1993).

Little chemical information exists for the Cepheus A core. HCN (Weliachew et

al 1985), NH3 (Ho et al 1982; Gusten, Chini, k Neckel 1984, Torrelles et al 1986),

and CS (Hayashi, Kaifu, k Hasegawa 1986; Moriarty-Schieven et al 1991) have

been observed, but these observations have tended to be directed to studying the

relationship between the dense gas and the outflow evident in the CO emission.

The outflow does not appear to have directly altered the abundances of NH3, CS,

and HCN and these molecules are suggested to be probing pre-existing

condensations of gas surrounding the high-velocity flow (Staude k Elsasser 1993).

The region we have mapped is a 4' x 5' region centered on the compact radio

continuum source HW-2. Given the characteristics of this source we will examine

whether the outflow, which is extended over several arc-minutes at low velocities

(Hayashi et al 1988), affects the chemistry of the core. In addition the comparison

of the physical conditions and chemical abundances of this core with Orion and

M 17 allows for a direct examination of the similarities and differences in the

processes that are ongoing in GMC cores.

1.3 Chemical Model

In order to make the maximum use of this data set we have developed a time

dependent chemical model. The chemical reaction network for gas-phase reactions

consists of the major formation pathways for carbon-, oxygen-, nitrogen-, and

sulfur-bearing molecules, encompassing all the species in the survey. Because the

chemical model is applied to dense cores that are exposed to enhanced UV flux the

model treats the effects of cloud depth on the chemistry accounting for the
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photodissociation and photoionization of atomic and molecular species, including a

treatment of CO self-shielding.

We will also be able to use the densities and temperatures derived from the

observations as inputs for the chemical models. This direct coupling of

observations and theory has not been attempted previously and may provide

further information on the chemical processes that are prevalent in CMC cores.

1.4 Goals of Thesis

We have discussed the importance of understanding chemical and physical

evolution in star forming regions. We have outlined a project that will use

observations in conjunction with models of the physical and chemical properties of

molecular clouds to further our understanding of the evolution occurring in these

dense regions. Below we outline the goals of this thesis:

1. GMC Survey - Observations of 26 molecular transitions of 14 species

and isotopic variants are presented for 3 giant molecular cloud cores in

Orion A, M 17, and Cepheus A. By mapping a large number of molecules

over a large spatial region in each source we will be able to improve

constraints on the chemistry and examine variations in abundance from

near star forming sites to more quiescent material. To date there has been

no systematic chemical survey of cores that includes both the extended

quiescent regions as well as the regions near the star-forming sites.

2. Physical Structure

We use the symmetric top molecule CH3C2H to determine the

temperature of the dense gas and the high-dipole moment molecule HC3N

to derive the density of molecular hydrogen. These observations enable a

detailed examination to be made of the physical state of these clouds and

provide critical information on the conditions for molecular excitation.



12

3. Chemical Structure

We utilize the temperature and density determinations to estimate total

column densities, which are converted to relative abundances. The

determination of abundances for many positions in each cloud allows for

a comparison to be made of abundances both within a given cloud and

among the three cores. Thus we will be able to examine whether each

core (and possibly each position) is chemically unique or whether the

cores are chemically homogeneous.

4. Combination of Theory and Data

The final aspect of this work is a comparison of the relative abundances

to the results of a theoretical chemical model. The modeling will attempt

to address two key questions. First, we will examine whether a pure

gas-phase model is able to reproduce the observed abundances. Second

we examine whether the abundance variations are related to changes in

the physical conditions, such as density, temperature, or strength of the

ultraviolet radiation. If the gas-phase chemistry provides an inadequate

match to the data, then we will examine whether grain surface reactions

could play an active or supporting role in the chemical interactions.



Chapter 2

Temperature Structure in CMC Cores

2.1 Introduction

As mentioned earlier, knowledge of the gas temperature is required in order to

determine accurate molecular abundances. In this chapter we will examine two

different methods of measuring the temperature in molecular clouds and ask the

following question: which is more appropriate for the dense gas containing most of

the molecules included in our study?

One common method to determine gas temperatures in molecular clouds is

observation of the emission from ^^CO. The carbon monoxide molecule is very

abundant and, due to its low dipole moment, readily excited. These factors

underly the widespread use of this molecular species to map molecular clouds. The

low lying rotational transitions of CO are expected to be optically thick and with

the effects of radiative trapping, the excitation temperature is expected to be close

to the gas temperature, even at densities as low as 10^~^ cm~^. Thus, if the CO

emission is assumed to be in local thermodynamic equilibrium (LTE) and optically

thick, the observed antenna temperature can be directly used to estimate the gas

temperature. However, since the lines are optically thick, there has always been a

concern whether the CO emission is indicative of the gas temperature for the

entire volume of the cloud or only at its surface (e.g. Castets et al. 1990).

It is not surprising that molecular clouds may not be characterized by a single

temperature along a given line of sight. It is, after all, a balance of the heating and

cooling processes that determines the gas temperature, and these processes

certainly vary as function of position or depth into a cloud. Observations of CO
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self-absorption in low-J transitions provide direct evidence of line of sight

excitation gradients and possible temperature gradients (Phillips et al. 1981).

Other observations of ^^CO line ratios in Orion by Tauber and Goldsmith (1990)

attribute the increasing intensity of CO lines with increasing J to temperature

gradients within the source. Another way to look for these effects is to use two

separate molecules as thermometers, preferably molecules that require quite

different excitation conditions and whose emission arises from different regions

along a single line of sight. We examine this question by using the symmetric top

molecule methyl acetylene (CH3C2H) as a thermometer in the dense regions of

molecular cloud cores and compare these results with the traditional method

employing the CO J = 1 -)• 0 antenna temperature as a temperature probe, which

plausibly traces the temperature in the lower density regimes.

The symmetric top molecules CH3C2H, NH3, and CH3CN have been used as

probes of kinetic temperature in molecular clouds because it is possible to separate

the effects of density and temperature in their excitation (Ho & Townes 1983;

Walmsley & Ungerechts 1983; Batrla et al. 1983; Cummins et al. 1983; Loren k.

Mundy 1984; Sutton et al. 1986; Churchwell k Hollis 1984; Askne et al. 1984;

Kuiper et al. 1984). For these symmetric top molecules the line frequencies are

nearly the same for transitions having different values of J but which are in

different K ladders. Therefore lines which arise from widely different energy levels

have nearly the same frequency and thus can be observed simultaneously, reducing

uncertainties due to telescope calibration. The molecules are effective

thermometers because the separate K ladders are connected only through

collisions, and the total population in each K ladder is a function only of the

kinetic temperature of the gas. Although the populations of a given J-level within

a K ladder will depend on the density, the relative populations of the K ladders

should be a fairly direct measure of the kinetic temperature.
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Askne et al. (1984) examined the use of CH3C2H to determine temperatures in

molecular clouds via a statistical equilibrium analysis. They have shown that (due

to the low dipole moment of methyl acetylene: /i = 0.78 D) a thermal population

distribution should exist under conditions present in the dense cores of molecular

clouds. If the CH3C2H emission is optically thin, a simple rotation diagram

analysis plotting line intensity as a function of the energy of the level above the

ground state will give an estimate of the kinetic temperature for uh^ > lO'* cm^^

In this chapter we re-examine the use of CH3C2H as a temperature probe

extending upon previous studies in several fashions. We first present the results of

a statistical equilibrium analysis using more accurate collision rates computed by

Green (1986). We then use these results to analyze the temperature of the dense

gas in three dense cloud cores: Orion, M17, and Cepheus A. We have mapped the

J = 6 5 (K = 0, 1, 2) transitions of CH3C2H in each of the sources using the

FCRAO 14 m telescope. These observations represent the first attempt to map the

distribution of CH3C2H emission over a large extent in several sources. In addition

we have also mapped the same sources at FCRAO in the CO J = 1 —)• 0 transition.

A comparison of these two tracers allows a direct determination of whether a

single temperature characterizes a given line of sight in these clouds, or to what

extent each tracer probes a different region, having a different kinetic temperature.

2.2 Observations

The CH3C2H and CO observations were carried out during the 1991 and 1992

observing seasons using the 15-element QUARRY focal plane array (Erickson et al.

1992) mounted at the Cassegrain focus of the 14 m Five College Radio Astronomy

Observatory (FCRAO) telescope. The two spectrometers used were 32 channel

filterbanks with resolutions of 250 kHz and 1 MHz, thus providing velocity

resolutions of 0.73 km s"^ and 2.9 km s~\ respectively for methyl acetylene and

0.65 km s~^ and 2.6 km s~^ for carbon monoxide. The observed lines and



16

— Table 2.1. Observed Molecular Line Parameters
bpecies Transition u (GHz) (K) Beam Size {")

CO 1^ 0 115.271 5.5 45
CH3C2H 6-^5{K = 0) 102.547 17.2 50
CH3C2H 6^5 [K = 1) 102.546 24.2 50
CH3C2H 6 5 (/C = 2) 102.540 45.1 50

frequencies are listed in Table 2.1. A single reference position was used for each

source. The reference positions were examined separately and found to be free of

emission. The standard chopper wheel method used for calibrations places all

observations on the TX scale. The main beam efficiency t]mb then relates to the

radiation temperature Tr of a uniform source which fills only the main beam of

the antenna (Kutner & Ulich 1981). The methyl acetylene observations are

uncorrected for antenna efficiency and are presented on the scale; since all

analysis is done with line ratios the absolute calibration is not important. For the

CO observations the strongest emission for all of the sources is confined to a small

area <C 30'. There are also velocity gradients which limit the size of the region

contributing at any specific velocity. Hence we believe the correction by the main

beam efficiency is more appropriate for these observations than the forward

scattering and spillover efficiency. The CO observations are therefore presented on

the Tr [Tr — TX/timb) scale using a main beam efficiency of 0.45. Since the total

bandwidth of the 250 kHz filter banks is only 8 MHz only the CH3C2H K = 0 and

K = 1 lines appear within a given spectra. Observations of the weaker K = 2

component were alternated with those of K — 0, I and then combined to form a

single 64 channel spectrum. The beamwidth of the antenna at the observed

frequencies are shown in Table 2.1. All of the maps were sampled on a 25" grid.

2.2.1 Orion

The Orion Molecular Cloud, the nearest massive star forming region, is located

at a distance of 480 pc (Genzel et al. 1981). The region covered by this survey is
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the central portion of the southern cloud associated with Orion A (M42) and the

BN/KL cluster. The region mapped is 4.5' x 12' in extent centered on the

embedded Orion BN/KL complex at a(1950) = 5'*32"'46.8^ 5(1950) = -5°24'28".

Figure 2.1a-d show the CH3C2H and CO data in the form of contour maps.

Figures 2.1a-c present the integrated intensity for each of the CH3C2H J = 6 5

i^:-components observed and Figure 2. Id shows the CO peak Tr map for

comparison. The distribution of methyl acetylene emission shown in Figure 2.1a

clearly defines the dense molecular ridge. The strongest emission is found slightly

northward of the BN/KL region and a secondary peak is found at the position of

the southern star forming region: Orion S (Ziurys et al. 1981; Keene, Hildebrand,

k Whitcomb 1982). The K = 1 and K ^ 2 maps show similar morphology,

although the emission becomes progressively weaker. The velocity gradient present

around BN/KL results in peak velocities that vary from ~ 8 km s~^ south of the

source to ~ 10 km s~^ north of the source (Genzel k Stutzki 1989) is evident in

the CH3C2H emission. The CH3C2H linewidths near BN/KL and Orion S are

3 — 4 km s~^, however further north and south along the ridge the linewidths

decrease to ~ 2 km s~\ a value that is characteristic of the quiescent ridge. Both

the velocity gradient and the linewidth variations are similar to the observations of

the J = 5 —> 4 transition by Wang, Wouterloot, k Wilson (1993). In general the

largest linewidths are associated with the known regions of star formation.

We are primarily interested in using CH3C2H as a tracer of the temperature

structure in dense regions. Since this represents one of the first efforts to map the

distribution of methyl acetylene emission it is worthwhile to compare its extent

with that of more standard tracers of the dense gas. A simple comparison between

the morphology of the methyl acetylene emission with that of other species may

provide an insight into possible chemical differences. Ungerechts et al. (1992)

present these data along with the maps of other species including the optically
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Figure 2.1. (a-c) Distribution of the CH3C2H J = 6 ^ 5 (/C = 0, 1, 2) integrated

intensity in Orion. The lowest contour and the spacing are 0.2 K km s"^ for all

maps. The filled triangle indicates the position of the embedded BN/KL cluster

and the filled square denotes the position of 9^C Ori. (d) Map of the CO peak Tr,

the highest contour is 90 K and the spacing is 5 K. CH3C2H integrated intensities

are presented on the scale while the CO temperatures are on the Tn scale.
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thin isotopes of CO and CS (in particular C^«0 and C^^S). They show that the

morphology of the CH3C2H emission is similar to that of the standard tracers of

column density and space density. While this simplistic analysis does not

discriminate between differing excitation conditions and possible abundance

variations, it does provide some evidence that CH3C2H does not have a peculiar

chemistry and can be used in a general sense as a probe of the dense material.

A discussion of the subtleties in the CO emission seen in Figure 2. Id is beyond

the scope of this study; several studies have been done on the large scale

distribution of this ubiquitous tracer (see Schloerb, Goldsmith, k Scoville 1982;

Genzel k Stutzki 1989; Heyer et al. 1992 and references therein). It should be

noted that the CO map shown here has a local minimum in the emission towards

Orion KL; this is due to the limitations of the 32 channel 250 kHz filterbanks

which have insufficient bandwidth to include the broad line wings observed in the

CO emission towards KL. Only the few positions near BN/KL that contain the

high velocity emission are affected and the other features seen in the map are in

agreement with previous studies. It does appear, however, that there is no local

maximum of radiation temperature in ^^CO at the position of BN/KL.

2.2.2 M17

We have mapped the central 4' x 5' of the M17 giant molecular cloud

including the H II region/molecular cloud interface. Figure 2.2a-c presents the

contour maps of the methyl acetylene J = 6 —> 5 (A' = 0, 1, 2) integrated intensity

and Figure 2. 2d the CO J = 1 ^ 0 peak Tr.

Radio continuum observations by Felli, Churchwell, & Massi (1984) show that

the extended H II region is located in the northeast corner of the contour maps

where the CH3C2H and CO emission sharply decreases. The emission is strongly

peaked near the H II region/molecular cloud interface in all 3 /('-components of

CH3C2H. To the south and west the K = 0 and K = 1 components show weak,
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CHgCgH (J = 6^ -
5k)

12^0 (J = 1 _ 0)

K = 0 K=l K = 2

1B^17™36' 32" 28" 24"

a (1950)

Figure 2.2. (a-c) Distribution of the CH3C2H J = 6 5 (A' = 0, 1,2) integrated

intensity in Ml 7. The lowest contour and the spacing are 0.4 K km s~' for all maps.

The filled triangle indicates the position of the ultracompact source UCl and the

filled square denotes the position the embedded KW object, (d) Map of the CO
peak Til, the highest contour is GO K and the spacing is 5 K. CH3C2H integrated

intensities are presented on the scale while the CO temperatures are on the

scale.
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extended emission. TIk; niaxinnini iiit,(>f^rat,(«(l intensity is fonnd ~ :U)" away from

the position of the nltra-compaet H II region UCl (Felh, ( ^hnichwell, & Massi

1984) and is spatially coineidenl, with th(« "noii hern condensation" peak seen in

the emission of the ./ = 2 -> 1 ai.d (^^'S ./ = 3 2 lines observed by Stut/ki

k Glisten (1990). This is in contrast to the C'^O ./ 1 _> () a,id C>"'S ./ = 2 1

emission in which the maxima is observed further to the south away from the

interface (Ungerechts et al. 1993b). The emission lioni another symmetric to])

molecule, NIl.i (C;iist(;n k Kiebig 1988), correlates with th(> lower rotational

transitions of C;'"() and CS and not with the methyl acetylene emission. The

differences betw(!(ui the CH3C2H and NH3 emission may be due to chemical

difr(!r(uic(!S between these species across the interface; and into tlu; cloud. The

CTl.'jCJ^H linewidths do not show any systematic variation with position and are

typically ~ 3.r) km s~^

2.2.3 Ceplious A

We ha,v(; mapfXHl a A' x 5' area of the dense core region of Cepheus A in tlu;

('lliiCJl .1 - 6 > f) (A' = 0, I, 2) and (X) ./ = 1 0 transitions. Tin; center of

the map corresponds to the V\\\ contiiniuin jx^ak at rv(l9r,()) = 22''54"'Hr,

= 61°45'47" (M()riarty-Schiev(!n, Snell, k Hughes 1991). Figure 2.3a-d jncsents tli(«

contour maps of the Cll;t('2ll ./ = 6 —> 5 {K — 0, 1, 2) int(;grated intensity and

CO ./ = 1 -> 0 p(!ak Tu.

The. CH;jC2n K — 0 (;mission shown in I'^igure 2.3a has two jx'aks locaied on

opposite sides of the FIH. sourct;. The A' 1 coinijonent shows a slightly more

compact morphology, while the K 2 emission is very weak and only observed

near the embedded sources at the center of the dense core. The ty|)ical linewidth

of th(; methyl a,c(;tylene emission is ~ 'IJ) km s '. The distiibution of ammonia,

once again is significantly dilh-rent when compaicd to that of (
'll;i(;.^Il. Sinfje dish

ol)S(!rvations by Glisten, Ghini, Neckel (1981) show that the Nil,, eiriission is
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a (1950)

Figure 2.3. (a-c) Distribution of the CH3C2H J = 6 5 (K = 0, 1, 2) integrated

intensity in Cepheus A. The lowest contour and the spacing are 0.2 K km s~^ for all

maps. The filled triangle denotes the position of the FIR continuum peak, (d) Map
of the CO peak Tr, the highest contour is 26 K and the spacing is 2 K. CH3C2H
integrated intensities are presented on the scale while the CO temperatures are

on the Tn scale.

more extended to the northeast. There is no evidence of high velocity emission in

our CH3C2H data.

2.3 Analysis

2.3.1 CH3C2H

2.3.1.1 Molecular Theory

Two of the principal moments of inertia of a symmetric top molecule are equal.

As discussed in detail by Townes k Schawlow (1955), the molecular rotational

energy levels are described by two quantum numbers: J the total angular

momentum, and K the component of J along the axis of symmetry. The energy

levels are then grouped according to the K quantum number into separate ladders.
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Since is a component of J, the lowest energy level in each K ladder is that with

J = K.

As CH3C2H is a prolate symmetric top, the energy for each J level is shifted to

higher energy with increasing K. The frequencies for radiative transitions are

weakly dependent on K due to centrifugal distortion, and higher K transitions

occur at successively lower frequencies. An additional effect of the symmetry is

that there is no dipole moment perpendicular to the symmetry axis. As a

consequence, radiative transitions cannot change the angular momentum along the

symmetry axis. Hence there are no radiative transitions across K ladders; only

dipole transitions between adjacent J levels within a given K ladder are

permitted. Because of this selection rule the K ladders are connected only through

collisions and the population of one K ladder relative to another should reflect a

thermal distribution at the kinetic temperature.

The effects of nuclear spin divide the molecule into two distinct species

depending on the relative orientation of the spins of the hydrogen atoms (labeled

A and E symmetry states). Rotational levels with A' = 3n (n = 0, 1, 2...) belong

to the A species and levels with X = 3n + 1, 3n + 2 (n = 0, 1, 2...) belong to the

E species. This is similar to the ortho and para forms of H2 and NH3 with the A

species of methyl acetylene designated as ortho and the E species as para. The two

species are independent since both collisional and radiative transitions between

them are forbidden. The formation process is unlikely to discriminate between

these two species and therefore we assume equal abundances.

2.3.1.2 Rotation Diagram

With the assumption of optically thin emission the integrated intensity is

proportional to the column density in the upper state of the observed transition.

The excitation temperature is defined by the Boltzmann factor relating the

populations of the upper and the lower states:
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(2.1)

where N^, Ni, g^, and gi are the column densities and degeneracies of the upper

and lower states respectively, AE^i is the energy difference, and Te:, is the

excitation temperature. All pairs of levels by definition can be characterized by

eqn. 2.1 but in general will be different for different pairs of levels. However, if

the populations of all levels are in LTE, the total column density is related to a

single temperature via the following relation:

where S and z/ are the line strength and frequency of a transition, Eu the upper

state energy, fi is the dipole moment, Ntot is the total column density and Z the

partition function, / Ta6v is the integrated intensity for a given transition. For a

more complete derivation of equation 2.2 see e.g. Cummins et al. (1986).

When observing more than one transition the "rotation diagram" is formed by

taking the logarithm of eqn. 2.2 and plotting log{J TaSv/Su) against the energy of

the upper state of each transition. In general any transition can be included in this

plot. For this work we plot only same J transitions of the different K ladders.

Since the abscissa is proportional to the column density in the upper state if the K

ladders are excited similarly then the plot represents the relative populations of the

K ladders. Due to the molecular characteristics discussed in the previous section,

it is very easy to bring the relative populations of various K levels for a given J

into LTE. We then expect a straight line when the populations are plotted. The

slope in this case is proportional to the inverse of the "rotational temperature"

{Trot) of the /C-levels for a given J which should equal the gas kinetic temperature.

(2.2)
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2.3.1.3 Statistical Equilibrium Calculations

Statistical equilibrium models of the excitation of CH3C2H J = 6 ^ 5 (i^ = 0,

1, 2) transitions were calculated to verify that the "rotational temperature"

discussed in the previous section is a measure of the kinetic temperature. We used

the large velocity gradient(LVG) approximation in our calculations to include the

effects of trapping; however, since the emission from CH3C2H is optically thin

(Wang et al. 1993), trapping is not very important and our results are insensitive

to the details of our assumptions about the gas velocity field. Three parameters

were varied in the calculation: density (n//J, kinetic temperature {Tk), and total

CH3C2H column density per unit line width {Na^e/^v) where Na+e = A^a + Ne-

The column density parameter was therefore fixed at a value that ensured the

optical depth for each transition was small. The value chosen was

Na+e/^v = 1.0 X 10^^ cm-2 / km s"^ (with Na/Ne = 1). The background

temperature was fixed at a value of 2.7 K. We have used theoretical collisional

rates calculated by Green (1986) for CH3CN-H2 (further discussion presented by

Sutton et al. 1986). These collision rates are different than those used by Askne et

al (1984) since the rates coupling the separate K ladders- (i.e. collisional

transitions with AK ^ 0) are smaller. For rates used, typical values for AK — 0

are ~ 10~^° cm^ s~^ and for AK ^ 0 are ~ 10~^^ cm"^ s~^ Molecular constants

were taken from Bauer et al. (1979).

We have used these models to predict the intensities of the J = 6 —> 5, /•(' = 0,

1, and 2 transitions as a function of Tk and n/Zj. These theoretical results were

then used to form a rotational diagram to deduce the gas kinetic temperature.

Figure 2.4a shows theoretical rotation diagrams for various values of the molecular

hydrogen density and T^- = 30 K. The derived rotational temperature and the

excitation temperatures (as defined by equation 1) for each transition are shown in

Figure 2.4b. These figures demonstrate the unique ability of symmetric tops: to
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separate the effects of density and temperature on excitation. While the excitation

temperature for any single transition is thermalized only for n^^ > 10^ cm-^, the

derived rotational temperature provides good measure, to within 10%, of Tk for all

values ofuH,. Figure 2.5 shows Trot as a function of both density and temperature.

For < 50 K the rotational temperature closely approximates the kinetic

temperature and is fairly insensitive to the molecular hydrogen density. For

temperatures greater than 50 K using the J = 6 -> 5 (/^ = 0, 1, 2) transitions will

somewhat underestimate Tk for most values of uh^

The above analysis was limited to = 0, 1, and 2 since our data include only

these lines. Ideally one would like to observe all K components of a single J

transition in order to increase the range in energy above the ground state and

therefore increase the sensitivity to higher temperatures. Therefore we have

examined the use of rotation diagrams for the full range of K transitions.

Figure 2.6 shows the rotational temperature as a function of density for T/^: = 30 K

with all the components of the J = 6 —> 5 transition included. The behavior of Tj-ot

becomes somewhat more sensitive to density than in the previous case and Trot

overestimates the true temperature for densities below 10'* cm~^. At low densities

a particular J-level is overpopulated in the high K levels because the higher

ladders have fewer rotational levels over which the population is distributed. Thus,

at low density, the gas temperature is better estimated by fitting only the first

three K transitions. However for values oi > 10^ cm"^ the rotational

temperature using all K transitions for a given J of CH3C2H yields a good

estimate of the kinetic temperature.

2.3.1.4 Temperature Determinations

To determine rotational temperatures from the observations of methyl

acetylene, we fit the spectra using a multi-component Gaussian fit that fixes the

separation between each component to determine the integrated intensities and
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Figure 2.4. (a) Theoretical rotation diagrams for various values of Ufj^ at = 30 K.

The lines shown in the rotation diagram are the best fit straight lines, (b) CH3C2H

J = 6 5 {K = 0,1,2) excitation temperatures {Tex) and rotational temperature

{Trot) from statistical equilibrium calculations are shown as a function of n//^ for

Tk = 30 K. The K = 1 and K = 2 excitation temperatures are equal to the K = 0

for all values of n/^j
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Figure 2.5. CH3C2H ,7 = 6-^5 {K = 0, 1,2) rotational temperature as a function

of temperature and density.
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Figure 2.6. (a) Theoretical rotation diagrams for various values of 71h2
~ 30

K. The lines shown in the rotation diagram are the best fit straight lines, (b)

CH3C2H J = 6 -> 5 (A' = 0, 1, 2, 3, 4, 5) excitation temperatures [T^x] and rotational

temperature {Trot) from statistical equilibrium calculations are shown as a function

of n//2 for Tk = 30 K.
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associated errors for each K component. The five fitted parameters ar(> then i\w

line width, line center velocity, and the intensity of each of the three

/^-components. Implicit in this method is the assumption that all three lines

originate from the same volume. The rotational temperature is determined by

fitting the exponential in eqn 2.2. In order to determine reliable temperatures we

calculate rotational temperatures only for positions in which the K = 0 and I< = I

components have computed integrated intensities t.hat are at least 5a. This

procedure has been carried out for all 3 sources. As an additional constraint, we

exclude from discussion all positions in which the uncertainty in the rotational

temperature exceeded 15 K in Orion, and 10 K in M17 and Cepheus A.

2.3.2 CO

The CO molecule has a low dipole moment and therefore is easily excited. For

the J = 1 —) 0 transition the critical density is only ricnt ~ 10"^ cm"-^. Due to the

high abundance the lowest transitions are expected to be optically thick and the

effects of radiative trapping will then drive the excitation temperature towards the

kinetic temperature of the gas. It is well known (c.f. Snell, 1981) that, due to

radiative trapping in the lines of CO which have r » 1, the ,7 — 1 —> 0 transition

will b(^ thermali'/ed [T^x — T^) at densities < Ucnt- Thus, as long as r?,//,^ > lO'^

cm~"^ the excitation temperature of the J = 1 —> 0 transition is approximately

equal to the kinetic temperature. In the following paragraj)!! we (hn ive th(>

expression relating the CO excitation temperature; to the observed radiation

temperature.

The result of position switched or frecjuency switched observations is an

observed excess intensity which can be expressed as

(2.3)
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where B,{T) is the Planck function at the temperature T, T5, is the temperature

of the background radiation, and is the optical depth of the transition. The

radiation temperature is defined as

Tr ^ Yk^h {2A)

where A is the observed wavelength. Combining equations (3) and (4), the

radiation temperature can also be given by

Tr = ^[BATe.) - B.(T,,)](1 - exp{-T,)). (2.5)

If we assume r^, > 1 and T^^ = 2.77 K the observed excitation temperature, which

for the CO J = 1 0 transition is expected to be equal to the kinetic

temperature, can be easily solved for, and is

T, = . . (2.6)
In (

5-54 ^ , 1

2.4 Results

2.4.1 Temperature Structure in Orion

The contour map of the CO (J = 1 —)• 0) Tr, shown in Figure 2. Id, can

essentially be considered a temperature map and therefore should follow the

distribution of the heating sources. The temperatures are much higher, with values

typically near 80-90 K, near the possible heating sources, BN/KL and the

Trapezium stars and decreasing to ~ 60 K away from these luminous sources. The

most prominent feature in this temperature map is the U shaped feature in the

contour map that surrounds the 06 star 9^C Ori. This feature is even more

pronounced in the [C II] 158 fi m map of the same region by Stacey et al. (1993).

This correspondence between the intensity distribution of [C II] and CO indicates

that the CO and ionized carbon emission originate in the same gas layer (Stacey et
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al. 1993). Since the [C II] arises from the photodissociated gas at the interface

between the H II region and the molecular cloud, this is suggestive of the

lYapezium stars dominating the heating seen in the CO emission as proposed by

Schloerb, Goldsmith, & Scoville (1982) and Padman et al (1985).

Figure 2.7 shows four examples of CH3C2H spectra in Orion and the

associated rotational diagrams. One of the key assumptions when using the

rotational diagram to determine Trot for CH3C2H is that the optical depths in each

transition are small, otherwise a more detailed excitation analysis would be

required. At this point it is worthwhile to examine the validity of this assumption.

Density determinations from both CS and HC3N show that densities > 10^ cm^^

are present for most positions along the Orion ridge (Goldsmith et al. 1980;

Vanden Bout et al. 1983; Rodriguez-Franco et al. 1991). Since the global

distribution of emission of CH3C2H and that of CS and HC3N are similar

(Ungerechts et al. 1992), it is likely that the methyl acetylene emission is tracing

the same dense layers as CS and HC3N, and thus the CH3C2H transitions are

likely to be close to thermalization. All of the spectra in Orion have weak emission

with TX < 0.5 K in all three components, thus, unless the filling factor is extremely

low, the opacity of these lines must be <^ 1. Examining the top three spectra in

Figure 2.7, we see that data from positions near the northern ion-radical peak,

Orion KL, and Orion S are fit well by a single rotational temperature. The last

spectra exhibits weak emission and the fit is somewhat poorer, although the

temperature is well determined.

As argued in Section 2.3.1.3 the rotational temperature from the J = 6 —> 5

= 0,1, and 2) transitions is an excellent probe of the kinetic temperature. A

map of the gas temperatures in Orion is presented in Figure 2.8 where the

rotational temperatures are shown overlaid on the J = G -> 5 (/\ = 0) integrated

intensity map. To a first approximation the gas temperature has a maximum near



33

I 1 . . , J . , I . .1 ,0 I . 1 . 1 ' 1

0 10 20 30 40 0 20 40 SO

Vi^R km s-' E„ (K)

Figuro 2.7. Sample CH3C2H spectra in Orion shown with rotation diagrams and

rotational tomporaturos. Errorbars for the data points aro inclndod, hut in many

cases they are smaller than the scpiare which den()t(>s the data point.
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BN/KL and O'C of 40 - 60 K and gradually decreases with distance from these

objects. Temperatures as low as ~ 15 - 25 K are found far to the south and north

of the embedded sources and the Trapezium stars.

Previous determinations of the CH3C2H rotational temperature in Orion by

Churchwell k Hollis (1984), Goldsmith et al. (1986) and Wang, Wouterloot, k

Wilson (1993) show similar gradients in temperature. Our value of the

temperature toward Orion KL of 60 ± 13 K is in good agreement with the other

temperatures derived from CH3C2H. However the improved sensitivity of this

study combined with a more extensive map provides the most detailed view to

date of the temperature structure in the cloud.

2.4.2 Temperature Structure in M17

The steep gradient in emission seen in the northeast corner of the CO Tr map

in Figure 2.2d delineates the H II region/molecular cloud interface. Tr rapidly

rises from ~ 15 K near the ultracompact source where the radio continuum

emission coincides with the molecular emission to ~ 60 K less than an arc minute

away. Away from the interface the temperature slowly falls off. The embedded IR

source (Kleinmann k Wright 1973) does not appear as a temperature maximum in

this map suggesting that the embedded star does not play a large role in the

energetics of the gas sampled by CO.

Figure 2.9 presents two of the CH3C2H spectra observed toward M17, one near

the HII region/molecular cloud interface region and the other in the quiescent

cloud, and their rotational diagrams. Both spectra, from near the interface region

and in the center of the cloud show no deviations from a single rotational

temperature within the uncertainties. Density determinations also exist for M17

from Snell et al. (1986). This study examined the density distribution using

several CS transitions and covered a region slightly smaller than the one mapped

here. For all positions examined the densities were > 10^ cm~^ Given these high
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Figure 2.8. A map of the rotational temperatures in Orion. The temperatures are

overlaid on the CH3C2H J = 60 ^ 5o integrated intensity contours of 0.2, 0.8, and

1.4 K km s~^ which are intended as a guide to the morphology of the CH3C2H

emission.
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densities and the observed weak emission seen in Figure 2.9 and Figures 2.2a-c we

expect that the CH3C2H emission is optically thin.

The gas temperature map in M17 is shown in Figure 2.10 overlaid on the K =

0 integrated intensity map. The gas temperature is highest near the H II

region/molecular cloud interface and then smoothly decrease with distance. The

positions where the gas temperatures are highest correspond to the positions

where the radio continuum emission from the H II region is coincident with the

molecular emission. The observed CH3C2H rotational temperatures decrease away

from the ionization front, and are in good agreement with the temperature

determinations using NH^ by Glisten & Fiebig (1988).

2.4.3 Temperature Structure in Cepheus A

The CO peak Tr map in Figure 2.3d shows a relatively featureless morphology,

with Tr ranging from 15 K at the edge of the map rising to a broad peak in the

south near 28 K. Using this map as a guide to the gas temperature is problematic

since the observed CO spectra exhibit obvious self-absorption features. The

presence of self absorption makes the determination of a peak temperature quite

difficult because the true line profile is unknown. We have used the peak

temperature taken directly from the observed spectra and make no corrections for

self absorption. Hence the observed temperatures are lower limits to the maximum

temperature along the line of sight (Phillips et al. 1981).

Also shown in Figure 2.9 are two CH3C2H spectra from Cepheus A. The

emission of methyl acetylene from Cepheus A is much weaker than the two

previous sources with < 0.2 K for most positions. The gas temperature

distribution in Cepheus A, presented in Figure 2.11, shows the highest gas

temperatures ~ 20 — 30 K near the center of the map and close to the embedded

young stellar objects. In general the outlying positions are much colder with values

typically < 20 K. This pattern suggests that the gas heating is dominated by the
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Figure 2.10. A map of the rotational temperatures in M17. The temperatures are

overlaid on the CH3C2H J = 60 ^ 5o integrated intensity contours of 0.4, 1.6, and
2.8 K km which are intended as a guide to the morphology of the CH3C2H
emission.

embedded young stars. A similar temperature distribution using ammonia

inversion transitions was observed by Giisten, Chini, k, Neckel (1984).

2.5 Discussion

2.5.1 Orion

A point by point comparison of the temperature estimates from CO and

CH3C2H for the Orion ridge is presented in Figure 2.12. In Orion, where we have

the greatest number of positions, the contrast between the temperatures inferred

from these two thermometers is striking: for all positions, the methyl acetylene

rotational temperatures are much less than the temperature from CO.

One obvious explanation for the observed differences is that we are using an

incorrect coupling efficiency when we convert the CO antenna temperatures to the
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Figure 2.11. Same as Fig. 2.8 for Cepheus A. The contour levels are 0.1 and 0.5 K

Tr scale. As stated in section 2 we have assumed the coupling efficiency of the

antenna is the main beam efficiency {timb = 45%). If there is significant emission

outside the main beam of the antenna then some of the power niay be coupled

through the error beam and sidelobes of the telescope. However, the error beam of

the telescope is large and the sidelobe levels are low. We do not expect this to be a

major source of error since the CO emission in Orion is relatively compact and

there are velocity gradients which limit the size of any region contributing at a

specific velocity.

A plausible explanation for this temperature discrepancy is that methyl

acetylene predominately traces a different region along the line of sight than does

CO. Given other considerations, this result may not be surprising. Observations

suggest a density gradient between the layers traced by the CO emission and the

layers probed by species with higher critical densities. Density determinations from

km s ^.
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Figure 2.12. Comparison of gas temperature determinations using CH3C2H and CO
in Orion. The solid line indicates equal temperatures obtained from the two tracers.

The units for both axes are K.

the optically thin isotope ^^CO (Goldsmith et al. 1982; Castets et al. 1990) exhibit

molecular hydrogen densities between 1000 and 6000 cm~^ much less then values

estimated by the high dipole moment molecules such as CS and HC3N (Goldsmith

et al. 1980; Vanden Bout et al. 1983; Rodriguez-Franco et al. 1991) suggesting

that the CO molecule is tracing only the outer low density envelopes of dense cores.

Methyl acetylene has a higher dipole moment than CO and therefore requires

higher densities for excitation. Examination of the CH3C2H J = 6 5 excitation

temperatures from Figure 2.1b shows that densities ^ 10^ cm~^ are required to

obtain appreciable emission from the J = 6 levels. The CH3C2H emission is also

optically thin, sampling the entire line of sight, including the dense cold regions far

removed from any heating source. Therefore the rotational temperature is a
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complicated weighting of the temperature along the line of sight presumably

dominated by gas with n^, > 10^ cm-^. These observations thus support a

temperature gradient in Orion between the relatively warmer low density gas,

traced by CO, and the cooler high density gas traced by CH3C2H.

CH3C2H has a higher dipole moment than CO, but CH3C2H is much easier to

excite than most of the molecules that are used to delineate the dense ridge in

Orion. The extended emission observed in Orion from the high dipole moment

molecules such as CS, HC3N, and HON require densities greater than 10^ cm-^. It

may be questioned whether the CH3C2H emission is sampling the same dense

regions as these molecules or is perhaps excited in gas of intermediate density. To

examine this issue we have compared the centroid of emission and linewidths of

methyl acetylene with observations of HC3N J = 10 ^ 9 in Orion observed at the

same positions as CH3C2H (Ungerechts et al. 1992). HC3N is an excellent choice

for comparison with CH3C2H, because both are complex carbon chain molecules

and the HC3N emission is also thought to be optically thin (Vanden Bout et al.

1983), which is not true for CS or HON. The critical density of the J = 10 ^ 9

transition of HC3N is > 10^ cm"-^, and the observed emission is presumably

dominated by high density material. If the observed velocity centroids and

linewidths of CH3C2H and HC3N agree then it is reasonable to assume that the

lines originate from the same volume of gas.

Figure 2.13 shows the CO and CH3C2H linewidths plotted against the HC3N

linewidth. In general, the observed CH3C2H and HC3N linewidths are in good

agreement, while the CO lines are almost a factor of 2 broader. In Figure 2.14 we

show a histogram of the differences in the line center velocities of CO J = 1 -> 0

and CH3C2H ,7 = 6 —> 5 (/i' = 0) transitions relative to the velocities of HC3N

J = 10 ^ 9. The unshaded histogram, which corresponds to V(CH3C2H) -

V(HC3N), is narrow and centered about zero implying that the velocities agree
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within the measured uncertainties (1 channel ~ 0.8 km s-^). The shaded part of

the histogram, which corresponds to V(CO) - V(HC3N), shows that the CO and

HC3N velocities have significant differences and that on average the HC3N

velocities are higher than the CO velocities. Given the differences in line width

and line center velocity of CO compared to HC3N it is unlikely the emission from

these two species arises from the same gas. Thus, we believe that the CO lines are

formed in the low density gas while the emission from CH3C2H and HC3N is

predominantly from the dense gas deeper in the cloud.

The temperature gradient from the low density to high density gas can be

accounted for by the CO emission originating on the surface of the clouds, excited

by the ultraviolet emission from the H II region. This assertion is also supported

by the correspondence in the intensity distribution of CO and ionized carbon (see

section 4.1). An additional study by Tauber k Goldsmith (1990) examined the CO

J = 3 ^2 and J = 1 0 line ratio in the Orion cloud. They found that the CO

line ratio implied the existence of a temperature gradient throughout the region.

These authors argue that given the current evidence for clumpy structure in Orion

(c.f. Mundy et al. 1986; Stacey et al. 1993) these gradients must exist within the

individual clumps. If the heating source were located at the center of the cloud the

portions of clumps along the line of sight which are heated would be hidden, since

the CO emission from an individual clump is optically thick. Only if the heating

source (Orion A) were located on the surface of the cloud would CO exhibit these

observed ratios over an extended area.

Due to self shielding, the CO molecule is more chemically robust than

CH3C2H. At moderate depths (A^ = 3.0), the timescale for photodestruction of

CO is a factor of 10^ greater than for methyl acetylene, using a typical CO

abundance of ~ 8 x 10~^ (Irvine, Goldsmith & Hjalmarson 1986) and the

photodissociation rates given by van Dishoeck &; Black 1988 for CO and Roberge
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Figure 2.13. Comparison of CO and CH3C2H linewidths with those of the high

density tracer HC3N. The solid line denotes linewidths equal to that of HC3N.
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Figure 2.14. Histogram of the line center velocity difference. The vertical axis is

the number of positions where a given velocity difference is observed. The shaded

region represents V(CO) - V(HC3N) while the unshaded histogram is V(CH3C2H)
- V(HC3N).
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et al. 1991 for CH3C2H. This difference is independent of the radiation field

enhancement since increasing the radiation field will decrease the CO and CH3C2H

photodissociation timescales in a similar fashion. With such a large difference in

destruction timescales and the large enhancement of the UV radiation field in

Orion (Tielens & Hollenbach 1985) it is possible that the emission region for the

CO J = 1 ^ 0 line may actually be chemically distinct from the CH3C2H emission

zone. Since the CO molecule is strongly self shielding, it is able to survive in a

zone with a rich photo-chemistry, while CH3C2H requires a reduced radiation field

to survive.

The dominant heating mechanism for the gas in these dense regions is expected

to be collisional coupling of the gas to dust grains that absorb the radiation from

the stars. The dust color temperature observed from the 50/im/lOO/im flux ratio

shows a peak around BN/KL and the Trapezium stars with values ~ 90 K,

decreasing to 40-50 K away from the heating sources. The temperature as traced

by CH3C2H has a similar distribution ranging from 60 K near BN/KL to 20 K

several arc-minutes away. Using the heating and cooling expressions at n//2 = 10^

cm~^ from Goldsmith and Langer (1978) a dust temperature of 90 K will heat the

gas to a temperature of 60 K. Given the high densities along the ridge and the

similarities between the gas and dust temperature distributions, the gas and dust

in this region appear to be thermally coupled.

However, at low densities where the CO line presumably originates, the density

is not high enough to collisionally couple the molecules to the dust grains. To

further emphasize this point, a CO excitation temperature of 80 K is observed

toward the BN/KL position. Again using the expressions from Goldsmith and

Langer (1978) at n//2 = 10^ cm~^ the gas temperature, from gas dust coupling,

would be 31 K, significantly below the observed value. Therefore the observed

excitation temperatures cannot be accounted for even if the CO lines were
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originating from a high density layer with warm dust. If the CO lines originate in

a low density region a mechanism to directly heat the gas is required.

Heating mechanisms such as the photoelectric effect, and H2 photodissociation

can directly couple the gas to the FUV radiation field from the M42 H II region.

The thermal balance of both high density and low density photodissociation

regions has been examined by Burton, HoUenbach, & Tielens (1990), Hollenbach,

Takahashi, k Tielens (1991), and Meixner and Tielens (1993). These models can

reproduce the observed gas temperatures with photoelectric heating as the

dominant mechanism, provided the low-J CO emission arises from regions at the

cloud surface (where the temperatures range from 50 K to 100 K), as our

observations suggest, rather than the colder interior. Another possible heating

mechanism, UV pumping of H2 molecules, will be relatively unimportant at low

densities (~ 10^ cm~^) because the collisional de-excitation, which transfers

internal energy to kinetic energy, has a rate which depends on the square of the

density (Hollenbach, Takahashi, & Tielens 1991).

2.5.2 M17

The CO and CH3C2H temperature comparison for M17 is shown in

Figure 2.15. In a majority of the positions Tex(CO) > Trot(CH3C2H) in agreement

with our observations in Orion. The picture is complicated by five positions where

the temperature derived from methyl acetylene is equal to or greater than the

temperature derived from CO. These positions are located in the northeastern

corner of the map where the H II region overlaps the molecular material. These

include the four positions where Tro«(CH3C2H) is between 37 and 52 K, in addition

to one position where Trot = 29 K on the eastern edge of the map. The rest of the

molecular cloud, away from the interface, shows Tro<(CH3C2H) < Tea:(CO).

However, high angular resolution observations of CO J = 2 —> 1 by Stutzki and

Giisten (1990) find strong self absorption in many positions including the positions
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Figure 2.15. Same as Fig. 2.12 for M17.

where we find Trot{C}i3C2ll) ~ Tea;(CO). Correcting for this self absorption will

lead to higher CO temperatures and the M17 observations are thus similar to

those of Orion with temperatures derived with methyl acetylene being below the

temperatures derived from CO.

The similarities and differences between the Orion cloud and M17 are notable.

The heating in Ml 7, for both high density and low density tracers, is dominated by

the Ml 7 OB stellar cluster, as is evidenced by the regular decline in temperature

away from the interface region seen in both tracers (see Section 2.4.2). In Orion,

the temperatures derived from CH3C2H decline with distance from the heating

sources but the CO emission exhibits a more complex morphology that is similar

to the ionized emission (Stacey et al. 1992). However, the geometry of these

sources is quite different, in M17 the ionization front/molecular cloud interface is
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perpendicular to the plane of the sky, as compared to in Orion where the H II

region appears in front of the molecular cloud. Therefore, it is plausible to expect

that the CO emission in M17 will not exhibit all of the complexities seen in Orion

but will decrease in a relatively simple fashion with distance from the heating

source. Observations of M17 show a similar intensity distribution for the extended

[C II] emission and the CO J = 1 -> 0 transition (Stutzki et al. 1988). Similar to

Orion the majority of positions in M17 exhibit T,oi(CH3C2H) < Te:,(CO). Since

both of these sources have luminous external heating sources, a plausible

explanation for these observations is again that the CO and CH3C2H emission are

tracing different components along the line of sight and that the CO emission

arises from surfaces heated by the external H II region.

These observations also require two heating mechanisms for the different

density regimes. Temperatures inferred from CO are typically ~ 50 K throughout

the Ml 7 cloud core. Provided the dust and gas are thermally coupled this would

require dust temperatures in excess of 70 K using the expressions from Goldsmith

k Langer (1978) for n//^ = 10'^ cm~-\ The dust color temperature (inferred from

the 50/im/lOO/im ratio) of ~ 50 K near the interface is too low to heat the gas to

the observed temperature. Thus we suggest that the low density gas traced by the

CO J = 1 0 transition is directly heated via the photoelectric effect and H2

photodissociation, as suggested in section 5.1 for Orion. While the colder high

density regime traced by methyl acetylene the dust and gas are presumably

thermally coupled.

2.5.3 Cepheus A

The temperature comparison in Cepheus A is presented in Table 2.2. Given

the geometry of this source compared to Orion or M17 one might expect t.hc dense

gas, which is closer to the heating source, to be warm(;r than th(^ low density

material. However, whereas the previous sources show dramatic differences
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between the two thermometers, in Cephens A the two trac(us appc.u- to he in good

agreement. This result is conipheated by s(>lf absorption features seen in the CO
spectra. If we correct for the self absorption it is i^ossibU- that T,, (CO)

> T,o«(CH3C2H), but the magnitude of the correction is highly uncertain. The

average rotational temperature in Ceplums A is - 22 K conipartul to tlu; average

CO excitation temi)erature of - 24 K. A 50% increase; in th(; CO excitation

temperature would be required to obtain results similar to tin; difference's observed

between CO and CH3C2H in M17. Thus, if the correction for self absorption is <

50% the temp(!rature estimates in Cepheus A would still l)(> in better agreement

than either Orion or M17.

Th(> temperature distribution observed from the CH3C2H rotational

temperatures and the self-reversals in tlu; CO profiles suggest that tlu; embeddcHi

sources are resi)()nsible for the observed emission from the various species.

Moriarty-Schieven, Snell, Hughes (1991) determined an average dust temperature

for the core of 30 - 40 K which, with the high densities > 10^' cm"''

(Moriarty-Schieven, Snell, k Hughes 1991), is high enough to couple the gas to the

dust.

2.6 Summary

We have presented statistical equilibrium calculations for the symmetric top

molecule CH.jC^H. These models show that, this molecular species is an excc^Uent

tracer of kinetic temperature in molecular clouds. Due to its low dii)()le moment

and low opacity CH3C2H should b(! a powerful tool in probing the temperature's of

dense clouds.

We have presented observations of two different molecules used as temperature

probes: the CO ./ = 1 -> 0 transition and the CH;,C2H ./ = G ^ 5 (A' = 0, 1, 2)

transitions in Orion, M17, and Cepheus A. The observations offer a detailed view

of the gas temperature in all three sources.
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Table 2.2. Temperature Estimates in Cepheus A
_Aa_n AS {') Trot (K) CO T,. (K)

0. 42 1.24 15.8±4.6 21.6±0.27
1. 66 0.83 12.5±5.5 23.1±0.37
0.,42 0.83 24.0±3.9 22.4±0.33

-0. GO 0.83 22.6±2.9 21.9±0.02
0.79 0.80 25.1±6.9 23.9±0.18
0,,42 0.42 48.7±8.5 24.4±0.30
0.,00 0.42 28.1±4.0 22.1±0.22
0,,79 0.35 21.2±3.6 23.9±0.01

-0.,91 0.35 18.8±4.3 21.5±0.18

0..00 0.00 26.1±2.9 22.6±0.34

1,.21 -0.07 14.7±3.1 23.1±0.12
-0,.50 -0.07 18.2±3.3 19.9±0.31
-0,.91 -0.07 18.5±5.2 20.2±0.50

0 .00 -0.42 28.4±4.6 24.0±0.22

0 .79 -0.48 16.9±4.4 25.4±0.02
-0 .50 -0.48 34.1±6.6 20.7±0.03

0 .00 -0.84 17.5±4.9 24.3±0.17

0 .79 -0.90 20.0±7.8 25.2±0.01

0 .42 -1.24 22.2±6.0 26.5±0.16

In Orion the temperature distribution peaks near the BN/KL nebula and the

Trapezium and smoothly decreases with distance from these sources. The

comparison of the two thermometers shows significant differences, with CO

excitation temperatures much larger than those inferred from methyl acetylene.

Along the Orion ridge, the CH3C2H emission is shown to be tracing the same high

density layer as the emission from the high dipole moment molecule, HC3N. The

observed temperature difference between CO and CH3C2H reflects differences in

the emission regions along the line of sight. The CO lines are formed in the

warmer low density foreground gas while the methyl acetylene emission arises from

cooler dense gas deeper in the clouds. Observations of another high density

thermometer such as CH3CN would be useful in confirming this trend of

temperature decreasing with increasing density.
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A similar picture emerges in M17, where temperatures peak near the H II

region and fall off with increasing distance. The temperature comparison shows

the same pattern as Orion where T,,(CO) > T,„,(CH3C2H). These observations

support the picture that in Orion and M17, the CO emission arises from surface

heating by the luminous external sources. The temperature disparity between low

density and high density regions also suggests that different heating mechanisms

are required for the two regimes. A direct gas heating mechanism is suggested for

the low density medium while the gas in high density regions is indirectly heated

by collisions with dust grains.

The temperature distribution in Cepheus A shows a peak near the embedded

sources and then a smooth decrease away from the sources. The CO excitation

temperatures are close to the CH3C2H rotational temperatures, although the

comparison is complicated by the self-absorbed CO line profiles that are observed.



Chapter 3

Density Structure in CMC Cores

3.1 Introduction

Several studies of the density structure in molecular clouds have been

performed with reasonable success (Snell et al 1984, Snell et al 1986; Mundy ct al

1987, Wang et al 1993). The technique used involves observing several (at least

two) transitions of a single molecule, such as CS or H2CO. These molecular species

have high dipole moments and therefore are excited only in the densest regions of

molecular clouds. The observations are then interpreted using a non-LTE model,

which includes the eflects of radiative trapping. The line intensities are fit for the

best density and column density assuming a gas temperature.

A less often utilized density probe of CMC cores is the linear molecule

cyanoacetylene (HC3N), although this molecule has several characteristics that

make it ideal for this purpose. HC3N (/i = 3.6 D) has a higher (lij)61c moment

than either CS or H2CO. With a large dipole moment cyanoacetylene is only

excited in the densest regions of molecular clouds, typically with n//2 > lO"* cm^'^.

In addition, HC3N is a heavy linear molecule with a small molecular rotational

constant (Bq ~ 4.5 GHz) providing rmmerous lines, sampling different levels of

excitation, scattered throughout the millimeter and sub-millimeter spectrum. The

low cyanoacetylene abundance suggests that the emission should be optically thin

in most cloud cores. This is in contrast to the other common high-density probes,

CS and H2CO, which are more abundant and often suffer from high opacities and

thus complicate the excitation analysis, which mak(!s the radiative transfer effects

more important. Morris et al (1976), Morris, Snell, k Vanden Bout (1977),
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Vanden Bout et al (1983), and Schloerb et al (1983) examined the use of HC3N as

a density probe and found that HC3N is an excellent tracer of the molecular

hydrogen density.

CS, H2CO, and HC3N have been used in multitransition studies to derive

densities in various molecular cloud cores, including Orion and M 17, and have

yielded similar results (Snell et al 1984, Snell et al 1986; Mundy et al 1987,

Rodriguez-Franco et al 1993, Wang et al 1993). In general, the densities derived

are > 10^ cm"^ and there is no evidence of large scale systematic variations. This

featureless morphology is observed in spite of the fact that the observed column

density in some cases varies by an order of magnitude over the region studied

(Snell et al 1984). The lack of correlation between the volume density and the

column density can be explained if the emission arises from dense clumps that are

smaller than the spatial resolution of the observations, with the filling factor of

dense clumps increasing towards the regions of higher column density. Although

most of the previous work has been undertaken with moderate resolution of ~ 1', a

recent multitransition examination of CS excitation in M 17 by Wang et al (1993)

at high resolution (~ 20") obtained virtually the same flat density structure as

previous studies.

In this chapter we present a study of the density structure in molecular cloud

cores using observations of 4 transitions of HC3N. As noted earlier, the HC3N

emission is believed to be optically thin, which permits a simpler excitation

analysis requiring no assumptions about radiative effects. Hence a re-examination

of the density in these regions with greater signal to noise, over many positions,

and with a more robust optically thin tracer is warranted. Previous studies

assumed a constant temperature for the cloud as a whole usually based on CO

observations, while noting that gradients in temperature could exist. In Chapter 2

we have shown that the temperature structure in these same cloud cores is indeed
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Table 3.1. Observed HC3N Molecular Line Parameters
Transition v (GHz) E„ (K) Telescope Beam Size ('Q
4 -^^3 36.392 l37 Haystack(37m) 60
10-^ 9 90.979 19.7 FCRA0(14m) 57
12^ 11 109.173 28.8 FCRA0(14m) 48
16 ^ 15 145.560 52.4 NRA0(12m) 45

complex since temperature gradients were found both across the face of the cloud

and along the line-of-sight. Knowledge of the temperature of the dense gas is

required for density determinations because the effects of density and temperature

on excitation are similar and as such it is hard to differentiate between them.

Using the temperatures for the dense gas derived in Chapter 2 we are able to

derive more accurately the average density along each line of sight.

3.2 Observations

Maps of Orion, M 17, and Cepheus A were obtained on the same grid of

positions for each source at three separate observatories in the J = 16 15

(NRAO), J = 12 -> 11, J = 10 ^ 9 (FCRAO), and J = 4 ^ 3 (Haystack)

transitions of HC3N. A summary of the observation parameters is provided in

Table 3.1. All observations were obtained using position switching with a single

reference position for each source. The reference positions were examined and

found to be free of emission. A common problem in multitransitional studies is

that the observations at separate frequencies leads to differing resolutions at each

frequency making direct comparisons difficult to interpret. The combination of

telescopes and transitions listed in Table 3.1 provides similar beam sizes for the

entire data set allowing direct comparisons to be made.

The calibration of the telescope for each transition puts the data on the T*^

scale. These data were corrected for the main beam efficiency (77^5), which

assumes that the source fills the main beam of the antenna but not the error

pattern. This places all observations on the T/j (T/^ = TX/timb) scale of Kutner
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and Ulich (1981). We believe that the correction for the main beam efficiency is

appropriate for these observations because the size of the emitting region in each

source, while exceeding the beam width of the main beam is still relatively limited

(< 10' ). In the following sections we discuss the velocity resolutions and

efficiencies for the individual transitions.

3.2.1 HC3N J = 16 ^ 15

The HC3N J = 16 ^ 15 data were obtained at the National Radio Astronomy

Observatory 12m telescope in October 1993. The dual channel 2mm SiS receiver

was utilized and typical system temperatures were between 200 and 250 K. A

combination of backends was used with the 100 and 500 kHz filterbanks combined

with the hybrid correlator operating with 37.5 MHz bandwidth and 97.7 kHz

channel spacing. The 100 kHz data is presented here and was used in the analysis.

This provided a velocity resolution of 0.2 km s~^ for these data. The main beam

efficiency was estimated to heijMB ~ 0.72 from NRAO measurements.

3.2.2 HC3N J = 12 ^ 11 and J = 10 ^ 9

The 3mm observations were carried out during the 1991 and 1992 observing

seasons using the 15-element focal plane array (Erickson et al 1992) mounted at

the Cassegrain focus of the 14 m Five College Radio Astronomy Observatory

(FCRAO) telescope. The two spectrometers used contained 32 channels per array

element with resolutions of 250 kHz and 1 MHz. We have utilized the 250 kHz

data for most of the analysis except for the 9 positions surrounding Orion KL

where the 32 channels in the 250 kHz filterbanks did not provide enough

bandwidth to establish a good baseline. For these 9 positions the 1 MHz data were

substituted for the 250 kHz data. The corresponding velocity resolutions were 0.82

(250 kHz) and 3.82 (1 MHz) km s'^ at 90.9 GHz and 0.69 and 2.76 km s-^ at
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109.2 GHz. The main beam efficiency at FCRAO during the 1991 and 1992

observing seasons was estimated to be t^mb ~ 0.45 at both frequencies.

3.2.3 HC3N J = 4 ^ 3

The J = 4 3 observations of HC3N were obtained in November 1993 using

the Haystack 37m antenna. An autocorrelator was used for these observations

with a bandwidth of 17.8 MHz providing a resolution of 15 kHz or 0.04 km s'K To

increase the signal to noise in the spectra, and allow for ease in comparison with

the other transitions, the J = 4 ^ 3 data were smoothed to a resolution of 0.6 km

The hyperfine splitting in the J = 4 -> 3 transition is the largest of the four

transitions, however, because of the 2 - 5 km s'^ linewidths associated with giant

cloud cores the hyperfine structure for this transition is unresolved. The main

beam efficiency was estimated using observations of Mars and Jupiter and was

found to be tjmb ~ 0.33. This is in agreement with independent measurements at

the same frequency by Fuller and Myers (1993).

3.3 Results

3.3.1 Orion A

The region observed in Orion is a 4' x 12' (360 positions) region centered on

the Orion KL/BN star forming core at a(1950) = 5''32"*46.8' and

(5(1950) = -5°24'28". The map size and spacing are the same as the CH3C2H

observations presented in the previous chapter.

Figure 3.1 shows the HC3N integrated intensity of each transition in the form

of contour maps. The J = 10 —)• 9 and J = 12 ^ 11 transitions, in the middle two

panels, clearly show the extended quiescent ridge, with the strongest emission

appearing near the Orion KL/BN star forming core. HC3N is known to have

strong emission in both the hot core and plateau, two features which are

associated with star formation activity near KL/BN (Masson k Mundy 1988).
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The line profiles observed exhibit evidence of the hot core feature (Goldsmith et al

1982), but as the beam size of the FCRAO observations (~ 50") is much larger

than the size of the hot core (~ 10", Masson & Mundy 1988, Mangum et al 1990)

the emission from the hot core is severely beam diluted.

Although the morphology of the HC3N J = 4 ^ 3 emission is similar to that of

other transitions, the emission peaks are located north and south of KL/BN, while

the other 3 transitions peak directly at the star forming core. Emission from the J

= 4-^3 transition is important because it has the lowest critical density,

ricr ~ W cm"\ and is therefore the most sensitive to low density material along

the line of sight. The emission from this transition is weaker than the higher

transitions. However, the extent of the observed J = 4 3 emission is similar to

that of higher transitions (with higher critical densities), therefore it is likely that

the different transitions are probing the same dense layer and the weak emission

can be explained simply as an effect of the excitation.

The J = 16 -> 15 emission shows structure similar to that observed in the J =

10 ^ 9 and J = 12 -> 11 transitions. The main difference observed is that the J =

16 15 integrated intensity is stronger than any other transition at the KL/BN

position and at the southern star forming site (~ 1.5' S). This is probably due to a

combination of two eflFects. First, the beam size of the J = 16 ^ 15 transition is

the smallest of our sample of HC3N transitions and is therefore the least sensitive

to effects of beam dilution. Second, the hot core is warmer {Tpc > 250 K; Wilner,

Wright, Sz Plambeck 1994) compared to the quiescent ridge {Tj^ ~ 60 K; Chapter

2) which will increase the populations in the higher energy states {Ej=ie/k = 52

K).
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a (1950)

Figure 3.1. Distribution of the HC3N integrated intensities for four transitions in

Orion. For the J = 4 —> 3 transition the lowest contour and the spacing are 0.5 K
km s~^ For the other transitions the lowest two contours are 1 and 2 K km s~^ and

the subsequent spacing is 2 K km s~'. The filled triangle indicates the position of

the embedded BN/KL cluster and the filled square denotes the position of 6^C Ori.
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Since our combinations of telescope and frequencies have slightly varied

responses to the KL/BN line of sight, we have fit the spectra of all transitions in

the nine positions surrounding KL/BN with multiple gaussian components and

have only included the quiescent ridge component in our analysis. Thus, this paper

will concentrate solely on the density structure within the extended quiescent

ridge. Away from the star forming sites and along the extended ridge the J = 10

-> 9 and J = 12 -> 11 integrated intensities are typically greater than observed in

the J = 16 ^ 15 and the J = 4 ^ 3 transitions suggesting that with this choice of

transitions we have, for the most part, determined the distribution of molecular

excitation and will be able to make accurate determinations of the density.

3.3.2 M 17

We have mapped a 4' x 5' (120 positions) region covering the same grid as the

CH3C2H observations in Chapter 2. Figures 3.2 present the contour maps of the

HC3N integrated intensity. There are some apparent differences in morphology of

emission between the four transitions. The three higher rotational transitions

observed exhibit similar morphologies with emission strongest to the northeast

adjacent H II region region. However, the J = 4 ^ 3 transition, shown in

Figure 3.2, has two emission peaks, with the northern peak displaced somewhat

from the emission peaks seen in the higher rotational transitions. The strong

emission in the northeastern corner of the map is quite prominent in the high

resolution C^^O and CS study of Stutzki k Gusten (1990) and has been labeled as

the "northern condensation".

These morphological differences are similar to the variations in CS emission

observed in the multitransition study of CS performed by Wang et al (1993). In

that study, the 3 = 1^0 emission is intense towards the central part of tiu^ core,

while the higher transitions (J > 2) have structure similar to that observed in tiie

HC3N J > 10 transitions. Wang et al suggested that a i)()rtion of the morphological
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Figure 3.2. Distribution of the HC3N integrated intensities for four transitions in
M 17. For the J = 4 3 transition the lowest contour and the spacing are 1.0 K
km s~^ For the other transitions the lowest contour and the spacing is 2 K km s~\

differences was due to optical depth, while some of the differences were inferred to

be the result of excitation. If the emission from HC3N is optically thin, these

differences could be the result of variations in excitation. The temperature in the

northern condensation {Tk ~ 50 K), as inferred by CH3C2H in Chapter 2, is

higher than in the central regions of the cloud [Tk ~ 30 K) confirming that the

excitation does vary and may account for the HC3N morphological differences.

3.3.3 Cepheus A

We have mapped a 4' x 5' region (120 positions) centered on the FIR

continuum peak (Moriarty-Schieven et al 1991) and including the compact H II

regions. Figure ?? presents the integrated intensity maps for all four transitions of

HC3N observed in Cepheus A. As observed in M 17, the transitions with J > 10

have similar patterns in their emission, with the strongest emission at the dust
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Figure 3.3. Distribution of the HC3N integrated intensities for four transitions in

Cepheus A. For the J = 4 3 transition the lowest contour and the spacing are 0.5
K km For the other transitions the lowest contour and the spacing is 1 K km

continuum peak. The J = 10 ^ 9 transition has the highest intensity and the

most extended emission, while the higher-J transitions have intensities that are

decreasing and exhibit successively more compact emission morphologies. In

contrast, the J = 4 3 transition peaks to the south and north of the FIR

continuum peak.

These differences in the emission may be due to changes in the temperature of

the cloud which is highest near the map center (T^ ~ 50 K) and decrease sharply

away from the central position to lower temperatures (T/<- ~ 20 K; Chapter 2).

This kind of temperature structure will favor the lines with low excitation, such as

the J = 4 —) 3, which are relatively more intense at low temperatures. The

higher-J lines will be preferentially populated at higher temperatures and therefore

should have the strongest emission near the regions traced by the warm dust. A

density that decreases from the center to the edge could also result in a similar
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morphology for the emission. These questions will be examined in the following

sections.

3.4 Density Determinations

3.4.1 Model Fitting

We have used a non-LTE model to fit the observed lines of HC3N. The

statistical equilibrium calculations include radiative trapping, which is computed

using the large velocity gradient approximation (LVG). Since the HC3N optical

depths are small the effects of radiative trapping is also small. We have used the

collision rates computed by Green and Chapman (1978) for HC3N with helium.

The resulting integrated intensities from our model depend on four

parameters: the density of molecular hydrogen, uh^, the kinetic temperature, T^^,

the column density of HC3N and the line width. For the linewidth we have used

an average of the J 10 ^ 9 and J = 12 ^ 11 linewidths and for the temperature

we used the temperatures derived from CH3C2H in Chapter 2. The gas

temperature for all 3 cloud cores has large variations with position in each cloud,

with the temperatures of the dense gas typically higher near the star forming sites.

While including these temperature variations across the face of the cloud should

be a better approximation to density determinations, there is one concern, which is

whether the temperatures derived from methyl acetylene are appropriate for the

region being probed by HC3N. The dipole moment of CH3C2H is only ^ = 0.78

Debye, much smaller than the dipole moment of HC3N. Therefore the emission

from these two molecules may not be probing the same gas. To examine this

question we compared the line widths and line center velocities of the HC3N J =

10 -)• 9 transition to those of the CH3C2H J = 6 ^ 5 (K = 0) in Orion (see

Figures 2.13 and 2.14). These figures show that the line widths and centroids of

emission of these two species are in agreement and suggest that it is reasonable to
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assume that the lines originate in the same volume of gas. Thus two of the four

free parameters, temperature and Hue width, can be fixed.

The four HC3N integrated intensities were fitted to a grid of LVG models

which minimized by varying the column density of HC3N and the density of

molecular hydrogen. In order to obtain reliable estimates of the density we only

included those positions that have J = 10 ^ 9 and J = 12 11 integrated

intensities that were at least 5a. Temperature estimates for these positions were

taken from Chapter 2. Several positions lacked a value for the temperature. For

these positions we used temperatures interpolated from the closest neighbors.

Each transition was weighted by the quadratic sum of the errors in calibration and

the statistical error as determined via a baseline fit to each spectrum. The

uncertainty in the calibration was assumed to be 20% for each transition.

Since the HC3N lines are likely to be optically thin (see following section), the

column density and density determinations are nearly decoupled. The column

density of HC3N is determined primarily by the integrated line intensities, while

the density is constrained by the intensity ratios. Thus for density determinations,

the J = 4 ^ 3 and J = 16 -> 15 transitions are particularly important because

these two transitions anchor the upper and lower bound of the excitation curve. It

can also be expected that each line of sight may not be ascribed a single density

and that instead a range of densities may exist. Since the emission from HC3N is

optically thin it samples the entire line of sight, with the majority of the emission

presumably weighted towards the highest densities. Therefore the density derived

from HC3N (like the temperature; see Chapter 2) is an average value for the line of

sight weighted towards the denser regions (Snell et al 1984).

3.4.2 Results

The results of the fits: density, column density of IIC3N, and the reduced

{x^/u\ where the number of degrees of freedom u — 2) arc presented in Table 3.2
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for Orion, Table 3.3 for M 17, and Table 3.4 for Ccpheus A. In order to remove

bad fits to the HC3N intensities from the data sample we have used several cutoffs

to insure the quality of the results. As a first constraint we present here only those

fits that had values of reduced < 5. The reduced is a measure of the quality

of the fit and a value of < 5 is equivalent to better than a 1.5a fit on average

to each data point. Since a large fraction of positions fit these criteria we conclude

that the simple statistical equilibrium fit to the intensities provides an adequate

model of the data.

A sample of the model fits to the HC3N data along three lines of sight in Orion

is presented in Figure 3.4. The data shown in this figure exemplify the types of fits

we found in our multitransition survey. In these positions, as observed for most

positions studied, the J - 4 ^ 3 and J = 16 15 transitions are weaker than the

two intermediate-J transitions, so the shape of the excitation curve is well defined.

Although all 3 positions have reduced x^ < 0.6, the curves giving the variation of

X^ with density are quite different. In Figure 3.5 we have plotted for each position

the reduced x^ as a function of density. For each density the column density was

the only free parameter, thus v = 3.

For the first position (Aa = -0.84, A(5 = 1.68) a symmetric minimum in x^ is

found centered at n//, = 2 xlO^ cm^^ For the second position {Aa = 0.0,

AS = 2.5) a shallow asymmetric minimum in reduced x^ is observed, and the

reduced x^ increases much more slowly on the high density side. The final position

(Aa = 0.0, A(5 = 1.26) does not even have a minimum in reduced x^- Instead a

sharp drop in x^ is seen as the density increases, followed by an asymptotic
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Table 3.2 Orion Ridge Densities

ii ( )
(K) (cm-^) (cm-^) ^^̂ )__lcrn~^ (r.^-'^)

0.42 5.04 21.9 >5.7
0.42 5.04 21.9 >5.7
0.84 5.04 (21.4) 5.8 -0.4 +0 9
0.00 4.62 22.2 >5.9

0.42 4.62 21.9 6.1 -0.5 +0.1
0.84 4.62 21.4 5.8 -0.4 +0 7

1.26 4.62 (21.4) >5.8
-0.84 4.62 (22.2) >6.1

0.00 4.20 20.8 6.0 -0.4 +0.1
0.42 4.20 17.0 >6.0

0.84 4.20 18.7 >6.2

1.26 4.20 (17.5) >6.2

1.68 4.20 (23.4) >6.1

-0.42 4.20 19.1 6.1 -0.4 +0.1
-0.84 4.20 (19.1) >5.7

-1.26 4.20 (19.1) >6.0

-1.68 4.20 (19.1) 6.1 -0.6 +0.1

0.00 3.78 40.1 5.2 -0.3 +0.3

0.42 3.78 39.7 5.4 -0.3 +0.4

0.84 3.78 50.8 5.4 -0.3 +0.4

1.26 3.78 16.5 >6.3

1.68 3.78 23.4 >6.0

-0.42 3.78 (21.8) >6.1

-1.26 3.78 (21.8) 5.9 -0.4 +0.1

-1.68 3.78 (21.8) 5.7 -0.3 +0.4

0.00 3.36 21.1 >6.2

0.42 3.36 22.9 >6.0

0.84 3.36 (25.8) 6.2 -0.6 +0.1

1.26 3.36 (16.5) >6.2

1.68 3.36 (23.4) >5.9

-0.42 3.36 20.4 6.1 -0.6 +0.1

12.9 0.06 3.5

12.9 0.06 3.5

12.9 0.06 0.02

13.3 0.04 0.1

13.3 0.05 1.8

13.2 0.05 0.5

13.2 0.04 1.6

12.7 0.06 1.3

13.5 0.05 0.9

13.6 0.04 1.4

13.6 0.04 1.6

13.5 0.04 3.2

13.2 0.04 0.4

13.1 0.06 1.7

12.9 0.06 0.8

13.0 0.05 0.6

12.9 0.07 0.5

13.5 0.05 1.6

13.6 0.05 2.2

13.5 0.05 2.1

13.5 0.04 4.1

13.0 0.05 2.4

13.1 0.04 1.1

13.0 0.06 0.7

12.9 0.07 1.6

13.5 0:04 1.4

13.6 0.04 0.8

13.6 0.05 2.3

13.4 0.04 4.4

12.9 0.04 0.1

13.1 0.05 1.1
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Table 3.2 (cont.)

Aa A6 log(n//2) log( loefrrCN'l'l X 1^
(') (') (K) (cm--^)

\ * / vein
j (cm~''^)

0.00 2.94 43.3 5.3 -0.4 +0 3 1 ^ u.uo 2.7
0.42 2.94 30.4 5.9 -0.4 -1-0 1 iO.O U.UO 1.0
0.84 2.94 43.7 5.4 -0.5 +0 4 1 '\kO.O u.uo 4.9
1.26 2.94 (33.5) 5.9 -0.4 +0 1 1 3 1 u.uo O 9l.i

-0.42 2.94 21.5 >5.8 13 2 U.U1 u.o
-0.84 2.94 (22.0) 5.6 -0.3 +0.3 13 2 u.uo U.J
-1.26 2.94 (15.7) >5.9 13.2 u.uo U. I

-1.68 2.94 (15.7) >6.3 13.0 U.VJO A Q

-2.10 2.94 (15.7) >6.1 12.9 u.uo A A

0.00 2.52 34.5 6.1 -0.4 +0.1 13.5 u.uo 1 1
i . i

0.42 2.52 23.6 >6.1 13.6 1 1i.i
0.84 2.52 28.8 >5.8 13.4 0 04 l.U
1.26 2.52 28.4 >6.0 13.2 0 04 1 ^

-0.42 2.52 (27.1) 5.9 -0.4 +0.8 13.2 0 05 U.I
-0.84 2.52 22.9 5.8 -0.3 +0.4 13.2 0 05 n 7u. /

-1.26 2.52 15.7 >6.3 13.4 0.04 9 8Z..O

-1.68 2.52 (15.7) >6.2 13.3 0.04 3 2

0.42 2.10 34.4 >6.1 13.7 0.04 2 1

0.84 2.10 30.2 >6.0 13.6 0.04 0.8

1.26 2.10 (29.9) 6.0 -0.6 +0.1 13.4 0.05 3.9

1.68 2.10 (29.9) >5.8 13.0 0.04 1.6

-0.42 2.10 41.3 5.5 -0.2 +0.3 13.3 0.04 0.1

-0.84 2.10 31.7 6.3 -0.5 +0.1 13.2 0.05 1.9

-1.26 2.10 16.9 >6.2 13.5 0.04 1.4

-1.68 2.10 (18.3) >6.2 13.1 0.05 3.0

-2.10 2.10 31.0 5.3 -0.2 +0.2 13.0 0-.06 1.3

0.00 1.68 33.4 >6.0 13.6 0.04 1.4



Table 3.2 (cont.)
Aa AS Tk log(n//2) log( logfN) X 1^
(') (') (K) (cm"-^) (cm"'*) fcm""*) f PTTl

~'^\
\(.ni

) (cm"'^)
0.42 1.68 35.1 >6.0

1 7 O.D
0.84 1.68 23.7 >6.1

1 fiA-O.yj ZA
1.26 1.68 (23.7) >6.2 13 3

-0.42 1.68 33.8 5.7 -0.3 +0.4 13.4 yj.KJO U.i
-0.84 1.68 42.9 5.3 -0.2 +0.2 13.4 u.uu n 1U.o
-1.26 1.68 21.1 >6.2 13 4 n rizi A 14.1
-1.68 1.68 (24.8) 5.6 -0.3 +0.3 13 3 u.uo U.4
0.00 1.26 34.2 >5.9 13 fi U.UTb U.o
0.42 1.26 33.8 >6.1 13.7 1

0.84 1.26 43.6 6.1 -0.6 +0.1 13.5 u.uo n 7U. (

1.26 1.26 (43.6) >5.8 13.1 0 04 9 1

1.68 1.26 (43.2) 5.7 -0.4 +0.8 12.7
-0.42 1.26 (35.7) 5.6 -0.3 +0.3 13.5 U.Ui
-0.84 1.26 (36.6) 5.8 -0.3 +0.5 13.4 0.05 0 7
-1.26 1.26 31.2 5.7 -0.2 +0.3 13.5 0.05 n 4
-1.68 1.26 32.2 5.5 -0.2 +0.2 13.4 0.05 0 3

-2.10 1.26 (34.4) 5.9 -0.4 +0.1 13.2 0.05 0 4
0.00 0.84 37.0 >5.7 13.8 0.04 2 6

0.42 0.84 51.3 >5.6 13.7 0.04 2.2

0.84 0.84 46.6 >5.7 13.3 0.05 3.1

-0.42 0.84 40.2 5.8 -0.5 +0.1 13.6 0.05 2.4

-0.84 0.84 40.2 5.7 -0.3 +0.6 13.5 0.05 1.0

-1.26 0.84 34.1 5.7 -0.3 +0.6 13.5 0.05 1.0

-1.68 0.84 (25.0) 6.2 -0.5 +0.1 13.4 0.05 1.2

0.00 0.42 36.0 >6.1 13.8 0.04 2.8

-0.42 0.42 34.0 >5.7 13.7 0-.04 2.0

-1.26 0.42 33.7 6.3 -0.6 +0.1 13.4 0.05 0.5

-1.68 0.42 22.5 6.1 -0.6 +0.1 13.4 0.05 2.5

-2.10 0.42 (22.5) 5.8 -0.3 +0.6 13.2 0.05 1.4

0.00 0.00 59.9 >5.6 13.9 0.04 0.9

1.26 0.00 (46.0) >5.8 13.0 0.04 0.6

-0.42 0.00 51.0 >5.5 13.8 0.04 2.1

-0.84 0.00 34.8 6.4 -0.7 +0.1 13.5 0.05 1.9
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A6 Tk log(n//2) log(
•^"H, ) Ior(N)

(') (') (K) (cm~'^) (cm~'^) (cm""*") (cm~^\
-1.68 0.00 (18.9) >6.1 13.4 0 o
-2.10 0.00 22.4 >5.7 13.3 A A4.4
0.00 -0.42 30.3 >5.8 13.8 0 0^ A A4.4

-0.42 -0.42 29.6 >6.2 13.7 0 04 11.0
-0.84 -0.42 25.2 >6.0 13.5 0 04 0 Q
-1.26 -0.42 (25.2) >5.9 13.4 0 04
-1.68 -0.42 (21.1) >5.9 13.3 0.04 4 1
-2.10 -0.42 21.1 >5.8 13.4 0 04 9 9
0.00 -0.84 (32.0) >5.9 13.7 0.04 1 fi

-0.42 -0.84 44.7 >5.8 13.6 0.04
-0.84 -0.84 36.5 >6.0 13.3 0.04 1 0
-1.26 -0.84 (36.5) 5.8 -0.6 +0.1 13.1 0.05 1 3
-1.68 -0.84 (21.1) >6.1 13.1 0.04 2 3
-2.10 -0.84 (21.1) 5.9 -0.6 +0.1 13.2 0.05 4.0
0.00 -1.26 (33.6) >6.0 13.6 0.04 3.3

-0.42 -1.26 45.5 >5.8 13.7 0.04 1.0
-0.84 -1.26 31.7 >6.0 13.3 0.04 0.5
-1.68 -1.26 (31.7) 5.9 -0.4 +0.8 13.0 0.05 2.0

0.00 -1.68 29.2 >6.1 13.8 0.04 2.1

-0.42 -1.68 28.3 >6.2 13.8 0.04 1.9

-0.84 -1.68 (28.3) >6.2 13.2 0.04 1.6

-1.68 -1.68 (28.3) 5.6 -0.3 +0.3 13.0 0.05 1.1

0.00 -2.10 30.0 >6.1 13.5 0.04 2.5

-1.26 -2.10 (29.8) >5.7 12.7 0.05 2.1

0.00 -2.52 (30.0) 6.0 -0.5 +0.6 13.0 0.05 4.2

0.42 -2.52 (30.0) 6.1 -0.6 +0.1 12.8 -0.05 1.2

0.84 -2.52 (30.0) >5.6 12.5 0.06 2.3

-0.42 -2.52 (29.0) >5.9 12.9 0.05 3.2

-0.84 -2.52 (29.0) 6.0 -0.4 +0.1 13.0 0.05 0.2

0.00 -2.94 (29.8) >5.8 13.0 0.04 1.5

0.42 -2.94 (29.8) >6.2 12.9 0.05 3.6

0.84 -2.94 (29.8) 5.8 -0.4 +0.7 12.7 0.05 0.2

0.00 -3.36 29.8 >5.7 13.1 0.04 2.2
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Table 3.2 (cont.)

ad log(n//,)
log (IN) iOg(CT(N))

'1

1

X 1^
(') (') (K) (cm~'^) ^cm

) ^cm
)

(cm '')

0.42 -3.36 (29.8) >5.8 13.0 0.04 0.2
-0.42 -3.36 29.8 6.0 -0 5 i-u. 1 12.9 0.05 4.6
0.00 -3.78 (29.8) 5.9 -0.5 -i-fi 1 10.

1

0.05 4.9
0.42 -3.78 (29.8) 5.6 -0.4 io.U 0.05 3.2
0.00 -4.20 (15.0) >6.1 1 '} /I 0.04 3.0
0.42 -4.20 15.0 >5.9 1 1 nio.U 0.05 0.8
0.00 -4.62 20.7 6.1 —0 fi 4-0 1 11/1 r\ r\r-

0.05 3.1
0.42 -4.62 (20.7) 6.0 -0 5 ioniz.y 0.05 0.2

-0.42 -4.62 24.4 5.9 -0.4 4-1 0 11/1 U.U5 2.1
-0.84 -4.62 32.4 5.4 -0 3 4-0 '\ 110 U.U5 3.6
0.00 -5.04 (23.1) 5.7 -0 5 110 U.Uo 4.2
0.42 -5.04 (23.1) 5.1 -0.3 +0.4 13.1 0.05 1.9
0.42 -5.04 (23.1) 5.1 -0.3 +0.4 13.1 0.05 1.9

-0.42 -5.04 26.7 5.6 -0.4 +0.4 13.4 0.05 3.0
-0.84 -6.30 (24.3) >5.4 12.8 0.05 4.8
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Table 3.3. Ml7 Densities"
Aa AS Tk Iog(n//2) l0g(CT"H, ) log(N) log(cr(N))
(') (') (K) (cm~^) (cm"-*) (cm~^) (cm-'^) (cm-'')

-0.84 1.26 (38.5) 5.9 -0.4 +0.1 12.9 0.06 1 2X .Ail

-1.26 1.26 42.4 5.6 -0.3 +0.4 13.3 0.05
-1.68 1.26 48.7 5.9 -0.4 +0.1 13.1 0.06 3.0
-2.10 1.26 (31.0) 5.8 -0.3 +0.6 13.2 0.05 1.2
-2.52 1.26 24.9 >6.0 13.1 0.05 1.0
-2.94 1.26 (24.9) 6.0 -0.4 +0.1 13.2 0.05 1.8
-3.36 1.26 (24.9) >5.9 13.0 0.05 1.7
-0.42 0.84 (37.3) 5.8 -0.3 +0.8 12.9 0.06 1.6
-0.84 0.84 37.3 >5.7 13.5 0.04 0.1
-1.26 0.84 51.7 5.8 -0.4 +0.1 13.6 0.05 0.1
-1.68 0.84 (46.8) 5.7 -0.3 +0.7 13.4 0.05 0.5
-2.52 0.84 26.0 >5.9 13.3 0.04 0.7
-2.94 0.84 (26.0) 6.2 -0.5 +0.1 13.2 0.05 0.7
-3.36 0.84 (26.0) 6.2 -0.7 +0.1 13.0 0.05 1.5

-1.26 0.42 37.2 >5.8 13.8 0.04 0.8
-1.68 0.42 (36.1) 6.4 -0.7 +0.1 13.5 0.05 0.6

-1.68 0.42 (36.1) >5.7 13.5 0.04 0.6

-2.10 0.42 (27.9) >5.9 13.4 0.04 0.1

-2.52 0.42 30.2 6.1 -0.5 +0.1 13.3 0.05 1.0

-2.94 0.42 (30.2) >5.8 13.0 0.05 2.1

-3.36 0.42 (30.2) 6.0 -0.4 +0.1 13.0 0.06 1.0

-0.84 0.00 (32.0) >6.1 13.5 0.04 1.9

-1.26 0.00 33.9 >6.0 13.7 0.04 1.1

-1.68 0.00 32.0 5.9 -0.4 +0.1 13.7 0.05 0.4

-2.10 0.00 26.5 6.0 -0.3 +0.8 13.6 0.05 0.1

-2.52 0.00 29.2 5.7 -0.3 +0.3 13.4 0.05 0.1

-3.36 0.00 (29.2) 5.9 -0.4 +0.6 13.0 0.05 0.2

-0.42 -0.42 28.6 5.9 -0.3 +0.8 12.9 0.06 1.6

-1.26 -0.42 34.6 >5.8 13.6 0.04 1.2

-2.10 -0.42 (27.4) 6.2 -0.6 +0.1 13.7 0.05 2.4

-2.52 -0.42 28.4 5.9 -0.4 +0.8 13.5 0.05 1.1
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Tabk! 3.3
( (X)nt.)

AS T/< log(n//2) cr„
"\

log ^ IN J X 1^0 (') (K) (cm-'h {cm
)

-'2\
(cm

)-2.94 -0.42 (28.4) 5.6 -0.4 4-0 A 1 1 A U.Uo 3.0
-3.36 -0.42 (28.4) 5.8 -0.4 4-0 fi

1 w.u 1 '1 1
\)A)b 1.9

-0.42 -0.84 (28.6) 6.1 -0.5 -1-0 1 lo.U U.Ob 3.6
-0.84 -0.84 (29.9) >5.8 ^'x Aio.4 U.U4 0.5
-1.26 -0.84 37.3 >5.8 1 1 A

1.2
-1.68 -0.84 (33.1) 6.0 -0.5 -1-0 1— W. 1 iO.O U.U.J 1.7
-2.10 -0.84 29.9 6.1 -0.5 -1-0 1— U. 1 io.u U.Uo 2.1
-3.36 -0.84 (29.9) 5.7 -0.5 4-0 6 1 1 1 U.Uo 3.8
-0.84 -1.26 (30.0) >6.0 lo.o L.l
-1.26 -1.26 (37.3) 6.0 -0.5 -4-0 1 1

'\lO.O U.Uo 1.1
-1.68 -1.26 (30.0) >5.8 1 ^ '\ n n/i 1 n

1 .9
-2.10 -1.26 (30.0) 5.8 -0.4 -1-0 7 iO.O U.Uo J.U
-2.52 -1.26 (30.0) 5.7 -0.5 +0.6 1 3 3 '\ oo.U
-3.36 -1.26 (30.0) 6.0 -0.6 +0.1 12.9 0 Of; 0.0
0.00 -1.68 (30.0) >5.8 12.8 0 0^»U.UO 1 7

-0.42 -1.68 (30.0) >5.8 13 1 0 0"^ 4 (J

-0.84 -1.68 (30.0) >5.9 13 31~0 'O 0 04 4 "t4.0

-1.68 -1.68 (30.0) 5.5 -0.4 +0.3 13.5 0 Of"i o.u
-2.10 -1.68 (30.0) 5.5 -0.3 +0.3 13 6 0 0^ 1

'\

-2.52 -1.68 (30.0) 5.5 -0.4 +0.3 13.4 0 (Vi 7t). /

-2.94 -1.68 (30.0) 5.0 -0.4 +0.5 13.3 0 05
-0.42 -2.10 (30.0) >6.0 13.0 0 0^ 4 9

-1.26 -2.10 (30.0) 5.7 -0.4 +0.4 13.4 0.05 1.9

-1.68 -2.10 (30.0) 5.6 -0.5 +0.4 13.6 0.05 4.8

-1.68 -2.10 (30.0) 5.6 -0.5 +0.4 13.6 0.05 4.8

"offsets relative to a(1950) = 18'' 17"' 34.5"; (5(1950) = -16°13'24".
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Table 3.4. Cepheus A Dpn<;itipc''

Aa log(nf7,)
10g(or(N)) 2 1

(') (') (K) (cm~'^) frm~"^^ (nrr>~'^\ t^r^—2\\y.in
) ycm

) [cm.
) (cm ^)

0.42 1.26 15.8 5.4 n _i_n Q ion^^•<j -TV.6 io.O 0.09 4.7
0.00 1.26 (20.7) 5.6 —n -Lfl A ionu.o -hU.4 iZ.y 0.07 1.8
0.42 0.84 24.0 5.9 —n -l_n 7 1 9 O

0.05 0.3
0.00 0.84 22.6 6.0 —n A -1-0 1 19 1

0.06 1.1
0.42 0.42 48.7 5.5 —0 3 -1-0 ^'^ 1 U.Uo 0.4
0.00 0.42 28.1 6.0 —0 3 4-10 1"•O T-i.U io.O U.Oo 0.5

-0.42 0.42 (21.3) >5.8 1 9 Q U.Uo 2.1
0.00 0.00 26.1 >6.3 io.4 U.U4 2.4

-0.42 0.00 18.2 >6.2 io.O U.U4 2.9
0.42 -0.42 (22.4) >6.1 io.O U.U4 3.5
0.00 -0.42 28.4 >6 1 1 9 Qio.O U.U4 3.0

-0.42 -0.42 34.1 >6.0 13.0 0 05 4 4
0.84 -0.84 20.0 5.9 -0.4 +0.8 13.0 0.06 2.7
0.42 -0.84 (19.5) 6.0 -0.4 +0.1 13.1 0.05 0.6
0.42 -0.84 (19.5) 6.0 -0.4 +0.1 13.1 0.05 0.6

''offsets relative to q(1950) = 22''54'"19*; (5(1950) = 61°45'47".
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convergence to = 0.34. The behavior of with density suggests that for this

particular line of sight only a lower limit to the density can be obtained.

The x" behavior in the case of the last position shown in Figure 3.5 is a result

of the choice of transitions we have used to model the excitation of HC3N. The

sensitivity to high densities in our study is set by the highest transition observed,

the J = 16 ^ 15 transition. Our calculations show that this transition (and also

the lower transitions) is thermalized at n^, > 5 x 10« cm-^. Hence at densities

approaching 5 x 10« cm'^, the ratios of the line intensity are determined primarily

by temperature and not by density and therefore we lose sensitivity to the

hydrogen density. For the lines of sight that have this asymptotic dependence of

with density only a lower limit to the density can be set. In these cases

observations of higher-J transitions are needed to bound the density.

The determination of errors from multi-dimensional fitting usually utilizes a

parabolic fit to the hypersurface. The errors on the parameters are then

determined by varying the free parameters separately about the minima measuring

the increase in reduced x^ with the value of each parameter. An increase in the

reduced x^ by one from its value at the minimum thus gives the range of

acceptable values for the free parameters (Bevington and Robinson 1992). One

assumption implicit in this method is that the parameters of the fit are

independent of the other, which is valid in the case of optically thin emission. The

maximum opacity determined as part of the intensity fits is 0.2, but values are

typically < 0.1 for all 4 transitions. However, considering the possibility of beam

filling factors less than unity, these opacities could be larger.

The method of estimating the errors also assumes that the x^ hypersurface is

symmetric about the minimum, which in the case of a shallow asymmetric

minimum is not valid. In order to determine valid errors on the data we have set

the lower and upper limit to the error on the density determination for all fits, by
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Figure 3.4. The observed integrated intensities as a function of J^pper of the
transition along with the model fits are shown for three separate positions in Orion.
The coordinate offset positions (relative to the central position listed in section 3.1)

are listed in the top right hand corner of each panel.
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Figure 3.5. The variation of with density for the three positions in Orion shown
in Figure 4.
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decreasing and then increasing the density until increases by one in each

direction. As an additional constraint we have only presented values with errors on
the density, log[a{nH,)] < 1.

In order to make an estimate of the lower limit to the densities for lines of

sight without a minimum we have used the high density asymptotic value of

and lowered the density until the value of increases by one. For example, for

the position shown in the bottom panel of Figure 3.4 and in Figure 3.5, the high

density limit x' = 0.34 and the corresponding lower limit to the density is

determined at = 1.34 which corresponds to uh, > 8 xlO^ cm'^.

3.4.3 Systematic Uncertainties

3.4.3.1 Effect of Temperature Model on the Analysis

The CH3C2H temperatures used here are typically lower than those adopted in

the previous density studies. For example, the studies of M 17 by Snell et al

(1984), Snell et al (1986), and Wang et al (1993) all adopt a single temperature of

T/f = 50 K for the entire core. This value is greater than any of CH3C2H derived

temperatures for M 17. The often-used temperature obtained from CO possibly

applies only to the heated front surfaces of these cloud cores and not the

temperature deep within the core (Chapter 2; Padman et al 1985). Thus we feel

that the CH3C2H derived temperatures are more relevant for the dense gas,

although they do have some uncertainty.

Because of this uncertainty, and to better compare with previous work, we

have examined the effect of increasing the temperature on the x^ fits. The

interdependence of temperature and density is shown in Figure 3.6. The

temperature value of 34 K was used for the fit for the (0.0, 1.26) position

presented in Table 3.2. As the temperature is increased the best fit density

gradually shifts to lower densities. This is a feature consistently seen in the

calculations which reflects the fact that higher temperatures require lower densities
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Figure 3.6. The variation of as a function of density and temperature illustrating
the interdependence of these two parameters when minimizing ^.

to populate the higher-J states. We have examined this dependence with several

other positions and have found that increasing the temperature by a factor of two

can lead to a reduction in the density by a factor of 5.

3.4.3.2 Line of Sight Density Gradients

A more significant complication that can arise in multitransitional studies is

the possible presence of density gradients along the line of sight. Due to an
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increase in the radiative decay rates with increasing J, higher densit.es are required
to populate successively h.gher-J transitions. In the presence of a density gradient
each transition may therefore be excited in different density regimes along the line

of sight. This is particularly important given the evidence for a clumpy structure

in GMC cores (Goldsmith 1995). If the clump to interclump density ratio is low,

the lower rotational transitions may be produced in the interclump media while

the emission from higher rotational transitions will come entirely from the dense

clumps. Indeed this structure has been suggested to account for differences in the

excitation of the CO molecule, with the lower-J transitions probing the interclump

media and the higher-J transitions probing the hot clump edges (Meixner and

Tielens 1993). Using high dipole moment molecules such as H2CO, CS, or HC3N
certainly helps to alleviate this complexity by preferentially sampling only the

densest regions along a given line of sight.

In this study we have fitted only a single density for each line of sight and, in

general, the single density provides an adequate description of the observed line

strengths (see section 3.4). Observations of the highest transition, the J = 16 ^
15, suggests that densities for most lines of sight are comparable to the critical

density for this transition, n^, - 2.8 x 10^ cm-^. However, this analysis does not

preclude the presence of low density material.

To determine the effect of low density material on our fit to the data, we have

constructed a simple two component model by adding a column of lower density

material to the solutions presented in Tables 3.2-3.4 and examined whether this

added component produces a a better or worse fit to the data. For this purpose we

have added a column of material at = 10"* cm'^. Since the emission from

HC3N is optically thin, adding low density material will increase the strength of the

J = 4 -> 3 transition (n^r 4 x 10'^ cm"^) relative to the other 3 transitions. Our

analysis reveals that adding a column of molecular material N(HC3N)~ 5 x 10^^
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cm-3 at n^, 10^ cm-3 to the existing high density solution with N(HC3N) = 3
X 10- cm- does not appreciably change the fit to the data. However, if we add a
column of low density gas with N(HC3N) = 1 x 10- cm-, then we no longer can
obtain an acceptable fit to the J = 4 3 datn noint<= .^-^6 aata points. The temperature of the low
density component is not critical because at these densities (n^,, = 10^ cm-) the

emission from HC3N is largely independent of the temperature.

The general result from our analysis is that while the observations of HC3N
imply that for all three sources the density is > 3 x 10^ cm-, they do not rule out

the existence of low density material of moderate column density. In fact, almost

any reasonable column density, with density substantially below 10^ cm-, can be

added without affecting the fit to our data.

3.5 Density Structure

3.5.1 Orion A

Reliable density determinations were made for 133 out of the 360 positions

observed. These densities are superposed upon a map of the C^O J = 1 0

integrated intensity from Ungerechts et al (1992) in Figure 3.7. The values in bold

face are actual density determinations, while other values are lower limits. We
again stress that the known hot core HC3N emission was subtracted from the 9

positions surrounding IRc2. Thus, this density map represents the gas density of

the quiescent ridge.

Along the ridge, the gas density, in general, is > 3 x 10^ cm-^. Density

determinations are confined, for the most part, to regions of strong C^O
integrated intensity and therefore high column density. Many of the densities in

Figure 3.7 arc lower limits, and higher rotational transitions are needed in order to

constrain the density. Rodriguez-Franco et al (1993) have mapped the J = 24

23 transition of HC3N in Orion, but their maj) is substantially smaller than ours.

There is no evidence of HC3N emission towards the molecular counterpart of the
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Figure 3.7. A map of the density of molecular hydrogen in Orion as determined
from our model fits. The density values in bold face are actual determinations, while
the other values are lower limits. The densities are overlaid on a C^^O integrated
intensity map from Ungerechts et al 1992 with contours at 2, 4, 6, and 8 K-km/s.
The integrated intensities are corrected for beam efficiency.
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bright optical bar in Onon (see Figure 3.1), which was suggested by

Rodriguez-Franco et al (1993) to be due to a drop in the HC3N abundance.
One goal of this research is to examine whether the almost featureless density

structure observed in several cloud cores by Snell et al (1984) and Mundy et al

(1986) is also obtained when using an optically thin tracer and incorporatmg a

temperature model for the dense gas in cores. An exammation of the density

structure, compared with the distributions of the total column density, shows that

the peaks in column density do not appear as maxima in the gas density in

agreement with the results of Snell et al (1984). It appears that the positions

where our model fits could not determine an upper limit to the density cluster

predominantly in the central portion of the ridge, suggesting that there may be a

density enhancement there. However, the presence of many actual determinations

scattered throughout the core, with both high and low column density, tends to

argue against a density variation across the core. Thus, the density structure

observed in the Orion A core, using an optically thin tracer with an improved

temperature model for the source, shows no evidence of large scale variations in

the density.

3.5.2 M 17

Figure 3.8 presents a map of the density in M 17. Like Orion these data show

no evidence of large systematic variations in density. Densities in M 17 are

typically ~ 10^ cm"^ and are quite similar to the values derived by Wang et al

(1993) using CS. The corresponding column densities, which are listed in Table

3.3, span an order of magnitude with the greatest column densities towards the

northern condensation where the HC3N emission peaks. The fact that the highest

densities do not occur at positions of peak column density is underscored by the

fact that the density at the northern condensation is n,i^ - 8 x 10^ cm~^, a value

similar to that found at the lowest column density regions.
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Figure 3.8. Same as in Figure 3.7 for M 17. The densities are overlaid on a C^^O
integrated intensity map from Goldsmith, Bergin, & Lis (1995) with contours at 4
8 12, 16, and 20 K-km/s. The C^^O integrated intensities are corrected for beam
efficiencies.

The positions where we have only lower limits to the density cluster

predominantly on the eastern edge of the map near the column density maximum,

while the lowest densities observed in M 17 appear in the northwestern corner of

the map where the column density is lowest. This structure suggests that material

near the interface with the H II region may be slightly denser than deeper in the

core. However, this cannot be confirmed on this basis of these data since the

density determinations near the interface are primarily lower limits. The higher

resolution study by Wang et al (1993) found no evidence of these effects, although

this study used only two transitions of CS to derive densities and assumed a

uniform temperature for the core of T^ = 50 K.

We have investigated the effects on our density determinations of assuming a

uniform temperature of 50 K, as adopted by both Snell et al (1984) and Wang et
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al (1993). We find that using a constant temperature induces an artificial density

gradient in the cloud, with densities being greater near the interface and

decreasing with distance away from the H II region. This effect is simply

understood by examining the temperature structure presented in Chapter 2. The
gas temperature peaks near the interface where temperatures are -50 K and

decreases into the cloud to temperatures near 30 K. A uniform temperature of 50

K underestimates the densities in the central portion of the cloud (see section

3.4.3.2) while the density determinations near the interface, where the temperature

is near 50 K, are unaffected. Therefore including an improved temperature model

for M 17 lowers the density variation throughout the source.

3.5.3 Cepheus A

The density structure of Cepheus A is presented in Figure 3.9. Because of the

weak HC3N emission in Cepheus A we were able to derive densities in much fewer

positions than in the other two sources. The density in Cepheus A ranges from

n//2 = 10^ '* cm-3 to values > 10^ cm-^ Over this range the column density

changes only by a factor of 3. In Cepheus A, as in Orion and M 17, the regions

with the highest column density have only lower limits to the density. This

systematic result, which has not been observed in previous density studies, is

probably due to the fact that the temperatures from methyl acetylene are lower

than the temperatures used in prior work (for Orion and M 17), requiring densities

near the critical density of the highest transition we have observed to reproduce

the observed emission.

The molecular emission morphology in Cepheus A has a very centrally

condensed structure (see Figure 3.3), with the compact H II regions located close

to the peak emission. With such a simple structure it is compelling to suggest that

there may exist a simple density gradient increasing from the edge of the dense

core to the center. Studies of dust emission (Colome and Harvey 1993) have
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Figure 3.9. Same as in Figure 3.7 for Cepheus A. The densities are overlaid on a
C O integrated intensity map from Goldsmith, Bergin, & Lis (1995) with contours
at 2, 4, 6, and 8 K-km/s. The C^^O integrated intensities are corrected for beam
efficiencies.

suggested such a centrally peaked density structure. However all of the HC3N data

are reasonably well fitted by a single density and these results show no evidence

for a centrally peaked density structure. Observations of higher-J transitions of

HC3N would help in clarifying the issue of a density gradient.

3.6 Discussion

The results presented in the previous sections showed that for the three GMC

cores studied the density does not change appreciably over the cloud core. Indeed,

within the 3a errors, the density determinations for all three clouds at almost any

position can be considered the same. The lack of large scale structure in the

density persists despite the use of an improved temperature model for each source

and the use of an optically thin tracer. These results support the conclusions of
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other studies (Snell et al 1984; Mundy et al 1986; Snell et al 1986; Wang et al

1993) that Httle density vanat.on ex.ts across GMC cores, .n spite of the fact that
the column density vanes by over an order of magnitude over the same areas.

The lack of density variations led Snell et al (1984) to postulate that the cloud
cores are composed of numerous small high density clumps that have a volume
filling factor much less than unity, but each antenna beam encompasses many
clumps. The volume filling factor decreases from the center of the cloud to the

edge producmg the observed variation in column density. This assertion has been

supported by numerous other observations (cf. Goldsmith 1995).

Additional evidence for a clumpy structure can be obtamed by examming the

total gas column density. Table 3.5 presents the density of molecular hydrogen,

and the column densities of HC3N and C^^O (taken from Goldsmith, Bergin, & Lis

1995) for a representative position in each cloud core. We also give estimates of

the depth of each cloud, assuming that the depth of the cloud is equivalent to the

half power width seen in the C^^O emission. Using the C^«0 column density in

Orion from Table 3.5 and the C^^O abundance calculated by Frerking, Langer, and

Wilson (1982) of X(Ci«0) = 1.7 x 10-^ the column density is N{U,)

= 5 X 1022 cm-3. If we assume that this column to be filled by material at

nn, = 10^-9 cm-3, the depth of the cloud is only 0.02 pc. Since the high density

ridge has a width of -0.4 pc, the region would have to be extremely flattened

along the line of sight, with a width to depth ratio of 20 to 1. Since the C^^O

column densities, densities, and size scales listed in Table 3.5 are quite similar for

all three cores, M 17 and Cepheus A would also need to have very flattened

geometries. The only plausible resolution of this dilemma is that the dense gas is

filling only a small percentage of the cloud volume.

There have been several studies of the degree of clumping in molecular clouds.

Many of these utilize observations of M 17 (Martin, Sanders, & Hull 1984; Greaves,
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White, & Williams 1992; Hobson, Jenness, Padman, & Scott 1994; Stutzki &
Gusten 1990) although others have targeted other clouds (Perault, Falgarone, &
Puget 1985; Falgarone, Puget, and Perault 1992). These studies have examined
both the spatial and velocity structure inherent in the molecular emission maps in

order to empirically identify clumps of emission. The study of Stutzki & Gusten

(1990) found > 100 clumps within the M 17 core, over a similar region to the maps
shown in Figures 3.2 and 3.8, with a volume filling factor of 13% for the dense gas.

We can estimate the volume filling fraction from the data in Table 3.5 by

assuming that the C^«0 column density is tracing the same dense component as

HC3N. Assuming that the total column density is dominated by the clumps then,

^f^^ = X^ = ^cLfc, '
(3.1)

where N^^ is the column density of C^«0, X^^ the fractional abundance of C^^O, n^

is the density in the clumps, L is the line of sight depth of the cloud, and is the

clump volume filling fraction. We have used this expression with the C^*0

abundance of Frerking, Langer, & Wilson (1982) and the density and cloud depths

given in Table 3.5 to estimate the volume filling factor for each cloud. These

estimates are also listed in Table 3.5. The filling factors for each cloud are quite

similar and suggest that the dense gas is filling only ~5% of the cloud volume,

which is consistent with the results of Stutzki & Gusten (1990).

If the clumps, with n„^ ~ 10^ cm-^ fill only a small percentage of the volume

then the density of the interclump medium must be below ~ 10'* cm~^, as densities
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much higher than this are inconsistent with the fits to the HC3N intensities (see

Section 4.3.2). Similar results were found by Mundy et al (1986) in their

multitransition study of C-S. Thus, the HC3N and C«S data in.ply a largo clump
to interclump density ratio of ^ 100. This large ratio is consistent with models to

explain the observed emission which require a low density interclump medium
(Stutzki & Gusten 1990; Howe et al 1991; Burton, Hollenbach, & Ticlens 1990).

The above analysis assumes that the C'«0 emission is arising solely from the

dense gas. Because of the low excitation requirements of C'»0, the interclump

medium may, in fact, contribute to the CO emission. We can use the above

information to constrain the contribution of the interclump gas to the C'«0

emission. Assuming that the total column density of C'«0 is the sum of the

column densities in the two components, the column density ofCO in the

clumps, Nl", and the column density of C"0 from the interclump medium, N.'«,

N{C"0) = ;v>» + JV.'/.
(3.2)

This can also be expressed as:

iV(C^«0) = n^LXl'f, + n,.LXl!{l -
(3.3)

where n, and Xj^ are the density and C^^O fractional abundance in the clumps,

and riic and X\l are the density and fractional abundance of C^^O in the

interclump medium. If we assume equal abundances of C^^O in clumps and in the

interclump medium and use the derived limit on the clump to interclump ratio

then Eqn (3) shows that the emission from C^^O is dominated by clumps unless

fc < 0.01. Therefore, it is unlikely that the interclump medium is contributing

substantially to the emission, provided the estimated volume filling fractions

are reasonably well determined. This result is consistent with the the good

agreement between C'«0 and C^'^S clumping in M 17 (Stutzki k Gusten 1990).
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This conclusion is strengthened, requiring even smaller clump filling factors, if

the abundance of C^«0 in the interclump medium is lower than the C^«0

abundance in the dense clumps. There is some evidence that the C^«0 abundance

may indeed be lower in the interclump material. Models of the clumpy

photodissociation regions have shown that the interclump material is the limiting

factor in determining the UV penetration (Meixner & Tielens 1993). The

interclump gas will have enhanced photodissociation rates, possibly destroying the

C'O. The high density clumps, on the other hand, will absorb the UV radiation

in the outer layers, allowing C^^O to survive in the interior. Photodestruction of

C^«0 is a more complicated process than for other molecules, such as HC3N,

because C^^O (and CO) photodissociation is dominated by a line rather than a

continuum process. Therefore these species are able to efficiently self-shield, which

enables CO and its isotopes to survive in a region with a stronger radiation field

than for other molecules. Since the efficiency of the self-shielding process is

dependent on the abundance, it is possible for ^^CO, and its other isotope ^^CO, to

exist in regions with little C^^O.

Some evidence for this stratification can be found by examining ^^CO J = 2

1 and C^«0 J - 2 -> 1 emission in M 17 (Lada 1991; Stutzki & Gusten 1990).

Comparison of the emission morphology reveals a region near the northern

condensation devoid of C^^O emission but characterized by strong CO emission

(Meixner et al 1992). Meixner et al (1992) suggest that warm molecular material,

traced by CO, is filling the material between clumps evident in the C^*0 emission.

Other evidence can be found in the double isotope ratio, ^^CO/C^^O, found in

CMC cores. Taylor & Dickman (1989) demonstrated that in CMC cores this ratio

exhibits a strong dependence on column density, with ratios much larger than the

solar value towards lines of sight with small C^^O column densities. Taylor and

Dickman (1989) found that these variations could only be accounted for in a
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clumped gas with fractionation and isotopic selective photodestruction raising the

^^CO/C^«0 ratio. Fractionation will increase the abundance of ^^CO, while

isotopic selective photodestruction lowers the C^«0 abundance. However, given the
warm temperature of GMC cores, isotopic selective photodissociation will

dominate over fractionation (Taylor 1989), thereby resulting in a lower C^^O
abundance on the edges of dense clumps and in the interclump medium.

3.7 Summary

We have observed the J = 4 3, J = 10 ^ 9, J = 12 11, and J = 16 15

transitions of HC3N in the Orion A, M 17, and Cepheus A cloud cores. We have

utilized the results of a previous study of the temperature structure of the dense

gas in the same cloud cores with these data in order to obtain reliable

measurements of the density of molecular hydrogen in giant molecular cloud cores.

By using temperatures determined for the dense gas for each source, this study

examined the density structure of molecular clouds in a more systematic and

detailed fashion than in previous studies.

The multitransitional data were fit with a non-LTE model to derive the

density of molecular hydrogen and the HC3N column density. Densities were

determined for 133 positions over a 4' x 12' region in Orion, 55 positions over a

4' X 5' area in M 17, and 14 positions within a 4' x 5' region in Cepheus A. In spite

of differences between the three clouds the density range for each core was found

to be very similar, with densities between u//^ ^ 3 x 10^ and 5 xlO*^ cm'^ We

find that in numerous instances, because of our choice of transitions, we were

unable to determine the density, but instead were only able to establish lower

limits to the density for these lines of sight.

The primary goal of this research is to examine whether the results of previous

studies of the density structure of molecular cloud cores is reproduced by using

both an optically thin tracer and incorporating a better temperature model for the
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source. Our results, based on data that cover hundreds of positions within each

core, are that changes in the density do not correlate with changes in total cohunn
density and that there is no evidence for a large scale variation in the hydrogen

density of niolecular cloud cores. These data therefore support the results of

previous studies which have utilized other tracers and used a single temperature

for the entire core. We have examined the effect on the density determinations by

including a different model of the temperature structure of the core and found that

variations in the temperature reduces the variation in density strengthening the

conclusion that the density does not follow changes in column density.

Our data agree with a model in which molecular cloud cores are composed of

numerous dense clumps which are smaller than the beam and fill a fraction of the

cloud volume. An examination of the filling factors implied by an assumed cloud

depth suggests that the dense gas is filling only ~5% of the volume. The HC3N

emission is dominated by the dense, u//, ~ 10^' cm-^ clumps and to achieve

consistency with the fits to the HC3N data the density of the gas in the interclump

medium must be <10'' cm^^. This indicates that the clump to interclump density

ratio is > 100. An examination of the implications of a high clump to interclump

density contrast suggests that the emission from the low dipole moment molecule

C"^0 is also dominated by the dense gas.



Chapter 4

Chemical Structure in the Orion A
Molecular Core

4.1 Introduction

In this chapter we will discuss the chemical structure in the Orion A core. In

particular we will present observations of the CMC chemical survey in Orion

previously introduced in Section 1.1. These observations present the most detailed

view of the chemical structure in any cloud core, over the largest area, to date. A
brief discussion of the differences in the emission morphologies will lead into a

presentation of the principal component analysis that was performed on these data

(Ungerechts et al 1992). The principal component analysis is used to delineate

areas where possible chemical differences may exist. Relative column densities are

then determined for these separate positions to examine whether the differences

are related to abundance gradients across the cloud or whether they are related to

changes in the physical conditions which were discussed in the two previous

chapters.

4.2 Observations

The Orion observations of the molecular transitions listed in Table 1.1 were

carried out during the 1991 and 1992 observing seasons using the 15-element

QUARRY focal plane array (Erickson et al 1992) mounted at the Cassegrain focus

of the 14m FCRAO telescope. The two spectrometers used were both 32 channel

filtcrbanks with resolutions of 250 kHz and 1 MHz. The corresponding velocity

resolutions will vary with molecule (depending on the transition) and ranges from
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0.65 - 0.88 km s- (250 kHz) and 2.6 - 3.5 km s- (1 MHz). All of the maps were

placed on the same grid of 4.5' x 12' (360 positions with 25" sampling) centered on

the embedded Orion BN/KL complex at a(1950) = 5'^32'"46 8"

5(1950) =3 -5°24'28". The observations were taken in single sideband mode and

utilized position switching with the following reference position:

a(1950) = 5^^27-00^ and 5(1950) = -5°20'00". This position was examined and

found to be free of ^^CO emission. The standard chopper wheel calibration

method was used, placing all observations on the T^ scale.

The main beam efficiency then corrects for the coupling of a source which fills

only the main beam of the antenna (Kutner and Ulich 1981). For a discussion of

the applicability of the main beam efficiency for these observations see Section 2.2.

Since most of the chemical analysis will be done with line ratios the absolute value

of the calibration is unimportant.

The primary filterbank used in this study was one with 250 kHz resolution.

However, due to the energetic events at and surrounding the Orion KL/BN

position, the observed linewidths for some species are often greater than the total

bandwidth of the 250 kHz filterbank (~ 25 km s"^). For the following species: CO,

^^CO, SO, ^-^SO, SO2, and HC3N the data from the 1 MHz filterbanks was used to

replace the 250 kHz data for several (at least 9 positions) surrounding the central

KL/BN position. This will provide more accurate integrated intensities for these

species and therefore will lead to greater accuracy in determining column densities.

The resolution of the 14m telescope (45" - 60") is insufficient to resolve the

hot core component which gives rise to some of the observed large linewidths. The

size of the hot core measured from HC3N is ~ 11" x 7" (Masson k Mundy 1988),

which is in close agreement with the H2CO observations of Mangum et al (1993) of

~ 11" X 9". With a small source size our observations of the hot core will suffer

from the effects of beam dilution. This will only be a problem for those species



93

observed here which are present m abundance in the hot core, plateau, and
compact ridge sources (-CO, SO, -SO, SO., and HC3N). For a discussion of the
chemical stratification between these separate components see Blake et al (1987)
Because of this effect we will concentrate solely on total mtegrated intensities for

this position without separating out each component observed in the velocity

profile as is commonly done. Any abundance determinations for the species

mentioned above in the hot core or plateau will be lower limits. It is important to

note that the line profiles for most molecules suggest that their emission is tracing

only the ndge component and therefore this survey is primarily concerned with

changes m abundance m the "quiescent" molecular ridge.

4.3 Morphological DifFerences

Figures 4.1 - 4.6 present the integrated intensity maps for all species listed in

Table 1.1. The contour levels for each molecule and transition are listed in

Table 4.1. These maps show that no single "morphology" or structure is applicable

for the Orion A core. Some species, CO, SO, SO2, CH3OH, and HCO+, show

strong emission near the two star forming sites (KL/BN and 1.5'S), while other

molecules, such as C.H and N2H+, exhibit emission maxima at the radical-ion

peak 3' north of BN/KL. Still other species show almost flat morphologies (e.g.

CN). These differences underscore the point presented by Goldsmith (1991) that

our view of cloud structure can appear quite diff'erent depending on which tracer is

being used. Whether the various morphologies observed in Figures 4.1 - 4.6 are

related to true abundance variations remains to be seen and will be examined in

Section 4.4.

4.3.1 Principal Component Analysis

In order to better quantify the morphological differences present in the maps a

principal component (PC) analysis was performed on this data set by H.



Table 4.1. Contour levels for Figures 4 1-46
Species Transition" Levels (K kl^TFT"

50 to 550 by 25
pO 5 to 55 by 5

^^^O 0.4 to 4.4 by 0.4

5 to 50 by 5
^^^S 0.5 to 5.0 by 5

5 to 90 by 5

H^^0+ 0.3 to 2.4 by 0.3
N2H+ 0.5 to 8.5 by 0.5
CN F = 3/2 -> 1/2 1 to 5 by 1

F = 5/2 3/2 1 to 15 by 1

C2H 0.5 to 4.5 by 0.5

SO Jf^ = 3^^2i 1 to 4 by 1; 10 to 120 by 10

Jk = 23^12 1 to 4 by 1; 10 to 120 by 10
= 45 44 1 to 19 by 2

^^SO 1 to 4 by 0.5

HCN 10 to 80 by 10; 100 to 300 by 25
H^'CN 1, 2 to 26 by 2

HNC 2 to 20 by 2

HN^^C 0.2 to 0.8 by 0.2

CH3OH 0.5 to 7.5 by 0.5

C3H2 0.2 to 1.2 by 0.2

HC3N 0.5 to 5.0 by 0.5

CH3C2H 0.2 to 1.4 by 0.2

SO2 0.5, 1.0, 5 to 55 by 10
" Transitions are only listed where necessary.
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Figure 4.1. Integrated intensity distributions of CO, ^^CO, C^^O, CS, C^^S, and
HCO+ in Orion. The triangle denotes the position of BN/KL and the square is the
position of the southern star forming site, Orion 1.5'S. The transitions are hsted in

Table 1.1 and the contour levels and spacing are listed in Table 4.1.
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Figure 4.2. Integrated intensity distributions of U^^CO+, CN F = 5/2 3/2
F = 3/2 1/2, C2H F = 1 -> 1, F = 0 ^ 1, and N2H+ F = 1 1 in Orion!
The triangle d(niot(!s the position of BN/KL and the square is the position of the
southern star forming site, Orion 1.5'S. The transitions are listed in Table 1.1 and
the contour levels and spacing are listed in Table 4.1.
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Figure 4.3. Integrated intensity distributions of N2H+ F = 2-^1,F = 0-^1
HCN, Ri^CN, HNC, and HN^^C. in Orion. The triangle denotes the position of
BN/KL and the square is the position of the southern star forming site, Orion 1.5'S.

The transitions are listed in Table 1.1 and the contour levels and spacing are listed

in Table 4.1.
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Figure 4.4. Integrated intensity distributions of SO J = 82 ^ 2i, J = 23 ^ I2

^ - 45 -> 44, CH3OH J - 2o -> I0A+, and CH3OH J = 2_, in
Orion. The triangle denotes the position of BN/KL and the square is the position
of the southern star forming site, Orion 1.5'S. The transitions are hsted in Table 1.1

and the contour levels and spacing are listed in Table 4.1.
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Figure 4.5. Integrated intensity distributions of CH3OH J = 2q ^ \qE, CH3OH
J = 2i -> li^, HC3N J = 12 ^ 11, J = 10 ^ 9, and CH3C2H J = 6 -> b{K = 0, 1)
in Orion. The triangle denotes the position of BN/KL and the square is the position
of the southern star forming site, Orion 1.5'S. The contour levels and spacing are
listed in Table 4.1.
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Figure 4.6. Integrated intensity distributions of CH3C2H J = 6^ 5{K = 2), C3H2,
and SO2 in Orion. The triangle denotes the position of BN/KL and the square is

the position of the southern star forming site, Orion 1.5'S. The transitions are listed

in Table 1.1 and the contour levels and spacing are listed in Table 4.1.
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Ungerechts. For an excellent discussion of principal component analysis the reader
IS referred to Mittaz, Penston, & Sn.jders (1990). Here we provide only a brief

outhne of the method so that the reader will understand the uses of the technique
a. presented here. The main use of the analysis will be to .dentify a few positions

that are representative of the morphologies that are seen in the various molecules
for abundance determinations.

Principal component (PC) analysis is a useful technique for multivariable

analyses, such as our survey, which involve maps of 33 transitions for 360 positions

or essentially a space of 33 x 360 dimensions. The objective of the technique is to

reduce the number of independent variables, or to ask whether we can explain all

the variations observed in our data with fewer than 33 dimensions. Are the

variations observed in Figures 4.1 - 4.6 unique in the sense that they have nothing

in common or do some common factors exist, such that each observations (i.e.

each molecular transition map) can be reconstructed by a linear combination of a

small number of variables. The best example of this in astronomy is the HR
diagram. While this diagram was not constructed with this technique, the fact

that millions of stars show up on the main sequence, when their luminosities are

plotted against their temperature, shows that each star has something in common

and that the sample is not composed of millions of unique objects.

Common features exist in our data set and are easily observed in Figures 4.1 -

4.6. The observations of all 3 SO transitions show the same morphology. Molecules

with optically thick emission: CO, HCO+, and HCN also have similar distributions

in their emission. Thus these data can certainly be reconstructed by fewer than 33

dimensions. The actual technique of PC analysis involves deconstructing the

multivariate data set into a number of principal components. The first principal

component (PCI) contains the most variance in the data. The second principal

component (PC2) contains the most variance when the first component is removed
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from the data. The remaining components are constructed in a similar manner. A
more detailed discussion of this technique as applied to this survey is presented in

Ungerechts et al (1992).

Each map of molecular emission can be reconstructed by a linear combination

of the principal components, with each transition receivmg different contributions

in the reconstruction process from the separate components. This is best

exemplified by examining the maps of the principal components that were created

from the emission maps shown in Figures 4.1 - 4.6. The distribution of the

principal components in Orion A is presented in Figure 4.7. Examining PCl, the

distribution is similar to almost any of the molecules we have observed: a peak is

seen near KL, Orion 1.5'S, and additional peaks are observed at the radical-ion

position and the column density peak southwest of the Bar. This map has no

negative contours because all molecules receive a positive contribution from PCL
PC2 has a negative feature at KL/BN and positive contours to the north and

south. Thus this component is delimiting some of the differences seen in the data,

where some molecules have peaks at the radical-ion position (e.g. N2H+), while

others have strong emission only at BN/KL (e.g. SO, CH30H). PCS further

differentiates the structure seen in the maps, and points out variations between the

material far north (radical-ion peak) and south of BN/KL (the Bar).

The panels at the top show the amount of variance included in each

component: PCl contains 60% of the variance while PC2 has about 15% of the

variance. Higher components >5 are all in the noise of the data. One conclusion

from this analysis is that these data can be reconstructed from < 33 components

(Ungerechts et al 1992). Another conclusion from Figure 4.7 is that, since every

molecule receives a positive contribution, although varying in magnitude, from

PCI, it is contributions of PC2 and PC3 that contain most of the variations
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observed in the data. The first component therefore accounts for what all

molecules have in common.

The mapping of the principal components back to the data is easy to

understand by examining Figure 4.7. To consider this we will take CH3OH and
N,H+ as examples. The CH3OH emission in Figure 4.5 exhibits a strong peak at

BN/KL and weak emission north and south. The reconstruction of this

distribution from the prmcipal components can be obtamed by subtractmg some
multiple of PC2 (and PC3) from PCl. This enhances the BN/KL peak while

de-emphasizing the northern and southern peaks. The opposite is required for

N2H+, N2H+ has a strong positive contribution from PC2 that removes the central

peak and enhances the emission at the radical-ion position.

The principal components have therefore determined regions which may have

different emission properties. These are: BN/KL which shows up strongly in all

components and the southern star forming site (1.5'S) which is observed in PCI.

The southern site also seems to be different from BN/KL in PC3. Other

interesting features are the radical-ion peak and the peak observed 4' due south of

BN/KL. The characteristics of these positions are strongly contrasted to to the

emission observed towards BN/KL in PC2, The last region of significance is the

molecular Bar which is differentiated from the northern half of the ridge in PC3.

The importance of the PC analysis to this particular work is that the above

discussion has suggested that each molecular map is not composed of 33 x 360

independent points. Instead they are all composed of a smaller number of

components that are spatially represented in the maps of the principal components

in Figure 4.7. Therefore we can use the PC analysis to isolate specific regions that

are possibly physically and/or chemically different. This technique allows a further

economization of the chemical analysis by allowing the computation of chemical

properties for a small number of positions while still being able to examine all of
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Figure 4.7. Principal components of the distribution of molecules in Orion A. Top
panels: percentage contributed by each principal component to the total variance
in the data (filled squares); cumulative percentage (open squares). Bottom panel:
distribution of the first three principal components. The numbers in the brackets
give the contour spacing and the dashed contours denote negative values (taken
from Ungerechts et al 1992).
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the variations observed m the data. For th.s purpose we have chosen 6 positions,

these positions are listed in Table 4.2 along with the nomenclature that will be
used to refer to each in the text. In the next section we wUl briefly discuss some of

the previously known information on each region selected by the PC analysis.

4.3.2 Selected Representative Positions

Table 4.2 lists the positions that were selected on the basis of the PC analysis

as being representative of the emission in the Orion A core. The first position,

labeled RIP (for radical-ion peak) is ~ 3' N of the star forming cores (and ^^C).

The RIP is characterized by sharp peaks in the emission of the ions N2H+ and

H13C0+; and the radicals CN and C2H. Because the radiation field towards the

RIP is believed to be lower than the other 5 positions, the RIP may be least

affected by photodissociation of any of the positions examined. The next position

is only 1.2'N of the Orion KL/BN core and is labeled as the Ridge. This point is

closer to the star forming cores and is useful to examine trends between the RIP

and KL/BN. There is also a neutral carbon clump observed by White and Sandell

(1995) that is spatially coincident with this position.

The third point is the well studied Orion KL/BN star forming core'. This

position has several velocity components along the line of sight that are typically

distinguished by the characteristics of the velocity profile. Because the our poor

velocity resolution (32 channels per pixel with resolution of 0.65-0.85 km s~^ per

channel) and bandwidth (21 - 27 km s"^) we have not attempted to separate

them. Instead we treat emission as a single component. The sole exception is

HC3N. The HC3N emission from the quiescent ridge component was isolated for

the density study and we have used these results (see Chapter 3).

The next position, Orion 1.5'S, is the southern star forming site. This position

is prominent in the maps of the dust continuum emission (Keene et al 1982). The

star forming site is less luminous than Orion KL/BN but does show signs of star



IOC

AqQ A6{') Label

+0.42 +3.36 RIP
+0.42 +1.26 Ridge

0.00 0.00 Orion KL
0.00 -1.26 Orion-1.5'S

-0.42 -4.62 Orion-4'S

+1.26 -2.97 Bar

formation activity (see McMullin et al 1992). Orion 4'S is a strong peak seen in

the emission of several molecules, C'«0 for one, and has been isolated by the

principal component analysis as having different emission characteristics than the

two star forming regions.

The last position is the molecular counterpart to the bright optical Bar. This

position is quite weak or non-existent in the emission of many molecules but shows

up prominently in the emission of ON and CO. The Bar is illuminated by the hot

O star (9^C, and to a lesser extent ^^A, which provide a local enhancement of the

radiation field.

4.4 Determination of Total Column Densities

An objective of this study is to derive accurate relative column densities for all

molecular species observed at several positions in Orion. In order to reduce

complications due to radiative trapping we will only determine column densities

for those species which we believe are optically thin. Although, as noted in

Chapter 3, when clumps are taken into account even optically thin species may

have moderate opacities. Table 4.3 lists the species which are nominally optically

thin. The question of opacity for these species will be discussed later in the

section. Computing abundances involves not only determining the column

densities, but also attempting to understand whether the emission from the

different molecules is probing the same layers of the cloud. We will examine this

question first before discussing the method used to derive column densities.
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Table 4.3. Thin Species

CN
C2H
N2H+
HCO+

SO
CH3OH
CH3C2H
HC3N

4.4.1 Averaging Spectra to Determine Principal Moments

One method to examine whether molecules are probing the same layer is to

compare the principal moments (line center velocity and velocity linewidth)

observed in the emission spectra for each molecule. If the line center velocity and

the linewidth for each species are in agreement then it is reasonable to assume that

the different molecules are probing the same layer of gas. We should note that

while this is a reasonable assumption, it does not answer this question definitively.

To determine the line center velocity and linewidths for the 6 positions listed

in Table 4.2 we have averaged several spectra surrounding each position. This will

increase the signal to noise in each spectra, aiding in the fitting process, and will

be particularly helpful for those species with weak emission (for example HN^^C).

For every position, except for the Bar, spectra from the four nearest neighbors

were averaged to the central position. This corresponds to a "cross" around the

chosen point. Since the sampling interval was 25", and the beam size is typically

50", these positions are not independent of the other. Because the Bar was weak in

many species we have decided to average 7 spectra along the Bar oriented in a NE

to SW fashion. The positions used in the Bar average are listed in Table 4.4.



108

A6{')

0.42 -3.36

0.84 -3.36

0.84 -3.78

1.26 -2.94

1.26 -3.36

1.68 -2.94

2.10 -2.52

Figures 4.8 - 4.13 present the average spectra for the optically thin species at

each of the six positions. Excluding Orion KL/BN, the emission profiles for each

species, in general, look quite similar. The most notable difference is observed

towards the Bar where HC3N has weak emission centered ~ 7 - 8 km s'^ while

other species such as CN and C^^O have emission near 9-10 km s-^ This is the

first, and strongest (again excluding Orion KL/BN) indication line of sight

stratification in the data. The molecules with emission centered near 10 km s"^

are probing the Bar itself while the other species are emitting from the background

ridge cloud (see Tauber et al 1994). This difference will be taken into account

when we compare molecular abundances at the Bar.

The spectra presented in Figures 4.8 - 4.13 are a simple way to look for

differences in the emission profile. We have also looked for differences in the

profiles in a more systematic and objective manner via the following procedure.

The 360 spectra for each molecule were fitted with a gaussian to determine the line

center velocity (V,,^) and the full-width at half-maximum or linewidth {Av). In

the cases where more than one frequency component were observed (i.e. molecules

with hyperfine structure and others) the spectra were fit with multicomponent

gaussians with fixed separation and a single linewidth, which is the same, for each

of the components.
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Figure 4.8. Spectra for the optically thin species towards the Radical-Ioii peak.



Figure 4.9. Spectra for the optically thin species towards the Ridge position.
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Figure 4.10. Spectra for the optically thin species towards the BN/KL core.
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Figure 4.11. Spectra for the optically thin species towards Orion 1.5'S.
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Figure 4.13. Spectra for the optically thin si)ecies towards Orion Bar.
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Each line of sight is then deseribed by a single average velocity and linewidth

computed by averaging the velocities and linewidths of the optically thin

molecules. These are defined as:

ENmol T r

' Nmol (4-1)

and

ENmol A

/\7, — t=l ^^ij
' ~ "IW"- (4-2)

Where the z subscript denotes the different molecules and j denotes the fact that

each position possesses a separate average velocity, Nmol is the number of

optically thin species which are listed in Table 4.3. The Isr subscript on the

velocity has been dropped. This average is used to compute between the

velocity of a given molecule and the average (over different lines of sight) in the

following fashion:

'

'* —
and

X i^vh = T~y^ (4.4)

where a{V) and a{Av) are the errors for the linewidths and velocities from the

gaussian fits. The computed in this fashion thus represents a measure of the

total difference between the velocities and linewidths of a given molecule and all of

the other molecules. Table 4.5 presents the for each molecule. There is one

additional factor that was utilized in this calculation. Typically the emission from

each molecule is not detectable at all of the 360 positions over the map. For the

positions with little or no emission, the gaussian fitting process typically fails to
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"CN 88l m
C2H 15.2 3 1

C'^S 45.3 13.1

C3H2 17.1 13.1

CH3C2H 10.4 13.2

CH3OH 18.4 22 7

H^'CN 5.7 18.0WC 14.0 3.0

SO 22.2 95.4

C^'O 39.2 14.1

HC3N 34.9 6.4

N2H+ 183.7 18.8

4.9 4.4

assign a fit to the spectrum. In order to take this into account was not

computed over all 360 positions, but only for those positions where the intensity of

C^^S was > 2.0 K. This will isolate only the densest part of the ridge. We
examined using other species to set this "cutoff" and the results do not change

appreciably.

We can immediately see from this table that the species that are present in the

Orion hot core or plateau (with their larger linewidths) have the largest x"s in the

linewidth column. These are SO, CH3OH, and H^^CN. The other obvious result is

the CN and N2H+ velocities have large deviations from the average. For these

species this could be the result of several factors. Foremost among these is an

incorrect frequency for the line. An examination of the difference between the CN
velocity and the average velocity showed that the line center velocity for CN is

typically greater than the average by a factor of ~0.5 km s'K The line center

frequency used for the CN N = 1 ^ 0; J = 3/2 -> 1/2; F = 5/2 3/2 transition

was u = 115.49115 GHz. The source for this frequency was from observational

results by Turner and Gammon (1975). More recent laboratory measurements by

Skatrud et al (1983) list the frequency as = 115.490943 GHz which provides a
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velocity correction of 0.547 km s-. Th. accounts for the observed differences

between the CN velocities and the average.

The situation for N,H+ is more complicated. The frequency used for this

transition was from the most recent laboratory results of Cazzoli et al (1985). The
N,H- ion has 7 hyperfine components in the J = 1 0 transition. The laboratory

reference resolved all of these components. We are centered on the strongest

transition: the F, 2 1, F 3 ^ 2 component. In our study with the coarse

velocity resolution and large linewidths associated with GMC cores we have

resolved these 7 components into 3 components. The central component, seen in

Figures 4.8 - 4.13, is a combination of three hyperfine components. Of these three

components the frequency was centered on the middle component. An

examination of the profiles in each of the figures reveals that the line centroid of

emission for the central component of N2H+ appears to be at slightly higher

velocities than other species.

This structure, with a slightly higher central velocity for the N2H+ line, could

be observed if the emission from N2H+ is slightly optically thick. In this case of

the central unresolved three hyperfine components, the component on the low

frequency side will increase in intensity relative to the middle component, bringing

the line to an "apparent" higher velocity (LTE ratio - 5:7:3, listed in order of

increasing frequency). The difference in velocity between the low frequency

component and the middle component is ~0.9 km s^^ which is quite close to the

observed shift. Thus we believe that the N2H+ velocity diff"erence could be an

effect of high optical depth and not due to any intrmsic difference in the velocity

centroid. Higher resolution observations should be able to resolve the peaks of the

different components and would be able to answer this question.

Outside of these glaring results, the ^ values in Table 4.5 show no apparent

velocity differences. One molecule which might be expected to exhibit some
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disagreement is C-O. The -CO to HC3N velocity comparison seen in Figure 2 14
shows that there exists a ,arge difference between the CO velocities and the high
d.pole moment molecule HC3N. However, the less abundant isotope of CO does
not show such discrepancies in Table 4.5. The value of for C-O, for both
velocities and linewidths, is a bit on the high side, but other species, such as C-S
and HC3N, have high values as well. Thus the result from this analysis is that
there are no apparent differences between the velocities and Hnewidths between
the different molecules, outside of the known variations near Orion KL/BN.

4.4.2 Method to Derive Relative Column Densities

With the assumption of optically thin emission and T„ » T,„ the column
density in the upper state is directly related to the integrated intensity in

K km s~' via the following formula:

= (^-") (4.5)

Where u is the frequency and A^i is the spontaneous emission coefficient. The

total column density is then simply related to the upper state column density by

the faction in the upper state, To determine the fractional population

assumptions must be made about the excitation. The typical assumption is that

the molecular emission is in LTE at the local kinetic temperature. This raises the

question as to what are the relevant temperatures for these lines of sight. We have

decided to use the CH3C2H temperatures, presented in Chapter 2, for this purpose.

Ideally the average spectra in Figures 4.8 - 4.13 would be used to determine

column densities. However each of the 5 positions that were used to create the

average spectra had a separate (and independent) determinations of the kinetic

temperature. Figure 2.8 shows the distribution of observed gas kinetic temperature

in Orion. In this figure the 4 nearest neighbors to Orion KL/BN (Aa = 0.0, l\5 =
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0.0; T,.. _ 60 K) have a large spread in terr^peratures. We performed a weighted
average of the terr^peratures around Orion KL/BN, us.ng the lo errors from the
determination and the "average" temperature would be 36 K. This .s much lower
than the temperature of 60 K observed towards this position. Usmg the average
spectra will also not account for the changes in emission strength and central

velocity which are quite sharp m some species towards the KL/BN position.

Because of these questions, and to account for possible changes in abundances
from point to point, we have used the followmg method to determme column
densities for each molecule. We once again use the central positions and its four

nearest neighbors, but instead of averaging the emission we average the column
density computed for each. Using the integrated intensities the column density in

the upper state can be determine for each position on the cross. The only

exception to this method is the Bar position which, because of its special

characteristics, is dealt with in a separate fashion (see section 4.4.2.3 ).

The next step is to assume an excitation model and determine the total

column density for each molecule (see discussion in the following section). The

positions making the cross are then placed relative to a tracer of the total column

density by dividing each position by the column density of C^^O. The relative

column densities are averaged to form a single relative column density which is

centered on the positions listed in Table 4.2. This method enables an examination

to be made of the molecular column densities at each step in the process. If there

exists significant point to point variations in abundances surrounding the central

position this technique will enable a closer examination to be performed prior to

forming an average relative column density.

One goal of this study is to determine reliable relative column densities. Since

we have performed the study using a single telescope we have removed one of the

largest contributions to the error that arises in comparisons between separate
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molecular measurements: the telescopes' efficienrv A« . ,^ ^mciency. As a matter of consistency and
to minimize the risk of other errors being introduced we wHl examme the validity
of some of the assumptions that are typically made in chemical studies The
primary method to determine abundances in chemical studies is to assume LTE to
derive the total column density. This column density is divided by the column
density of molecule that is a tracer of the H, column density, or normally C^O.
Before making these assumptions we will examine whether LTE is appropriate for

the temperatures and densities observed in this study and examine the use of C^«0
as a tracer of the molecular hydrogen column density in dense regions.

4.4.2.1 The Validity of LTE

An examination of the LTE approximation for the determination of

abundances is appropriate for this study because we have independent

temperature and density information. Figure 2.8 presented a temperature map of

the Orion ridge. In Figure 3.7 we present a map of the density of molecular

hydrogen derived from 4 transitions of HC3N. Figure 3.7 shows that the density for

the Orion ridge (excluding the hot core which was removed from this data) is

typically greater than 10^ cm'^. There is also no evidence for large-scale,

systematic variations in the density. The lack of systematic variations throughout

the cloud is believed to relate to unobserved structures within the beam which

have a volume filling factor that is much less than unity. This situation is complex

but, for the purpose of analysis, we can state that the density of the dense

material is quite high, with a value that is typically ~3 x 10^ cm-^

To examine the validity of LTE approximation we used statistical equilibrium

calculations to model the excitation of all of our molecules. As an example we will

present the results for CS. The OS molecule has a high dipole moment (/i = 2.0 D)

with a critical density for the J = 2 -> 1 transition of Ucrtt ~ 5 x 10'^ cm-^ which

is similar (or less than) the critical density of many of the molecules listed in
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Table 1.1. With this cntical density and the densities typically observed towards
the ridge it might seem reasonable to assume LTE. Figure 4.14 presents a

comparison between the LTE results and statistical e,uiHl>rmm calc:ulations. This
figure shows that for CS the assumption of LTE is not truly valid until densities >
10^ cm-3. Below this, even at the typical densities observed along the ridge (n(H,)

= 3 X 10« cm-3), LTE will underestimate the population by as much as a factor of

1.6 for 50 K. LTE assumes that all levels, including the high-J levels, which have

rapid radiative decay rates, are populated by a Boltzmann distribution. However,

if the densities are not high enough to compete with the fast decay rates, the

higher states will not be appreciably populated. Therefore the lower states will

contain a greater fractional population than when in LTE.

LTE will thus underestimate the population for most of the species observed in

our study. The amount of error introduced will vary between species, with larger

values at higher temperatures. The only exceptions to this arc C^^O, CH3C2H,

and HC3N. C^^O has a low dipole moment and is actually predicted to be in LTE

at the observed densities. While the emission from both CH3C2H {Ej=e,^ = 17 K)

and HC3N (Ej=io = 24 K) come from energy levels that are not at the bottom of

the ladder (which is typical for most of the species in this study).

We have therefore used statistical equilibrium (SE) calculations to determine

total column densities. We have assumed, based on the results of Chapter 3, that

the density does not vary across the ridge and is typically, n(H2) = 3 x 10^ cm'^.

For each molecule we have therefore run a grid of SE models at n(H.2) = 3 x

10^ cm-3 ^j^^ Ta: = 5 to 60 K by 5 K and recorded the fraction population for the

level in question. Table 4.6 lists the references for the cross-sections. We make no

corrections for the difference between He and H2 excitation. For the determination

of the total column density we used the CH3C2H rotational temperature. A spline

fit was used to interpolate between values within the temperature grid. The error
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Figure 4.14. CS LTE (solid line) and non-LTE (dashed line) predictions for the

population in the J - 2 state shown as a function of density and temperature.
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CO CO-par^HrTjW;n^]l988y

H'3rN unMu
Groon& Chapman (1978)

H^'^NC ™ Green &Tl.adc..ns(H)74

PN ' Green &TlKul,leus (1974)
CO-paraII.2 Flower (1988)

C2H HCN-He Green & Thaddeus (1974)N2H+ N^H+.He Green (1975)
HCO+ N^H+.He Green (1975)
HC3N HCaN-He Green & Chapman (1978)SO SO-H2 Green (1994)
GH3OM see Menten et al (1985)
C^^aC^H Green (1986)

introduced by using a spline int(.p(,lation was found to be minimal.

4.4.2.2 Normalizing with the C'«0 Column Density

A good correlation has been fourul between C'«0 column densities and visual

extinction (Frerking, Langer, and Wilson 1982; Lada et al 1994). Thus C'«0 is

possibly on(, of the Ix.st tracers of 11,. Although C:'«() and A;, comparisons have

not been made for GMCs like those studied here, nevertheless we will normalize

th(> column d(>nsities by the C'«0 column density. The abundance relative to C'«0

can be converted to an abundance relative; to H, by nniltiplying by the C'«0

fractional abundance of X(C'"0) ~ 1.7 xlQ-^

The chemistry of CO also h(«lp,s in this regard. Of all molecules observed in

interstellar space, including H-,, the; formation of CO is ptuhaps th(> best

understood. Witli many formation pathways, coupled with a low photodissociation

rate (hw. to self-shielding, tiu; abundance of CO is not predicted to vary as a

function of time (for t > lO"' yr) or visual extinction. When abundances are

deliiKHl relative to CO it can b(> reasonably a.ssunie(l that any variations observ(>d

will be not be due to a, change in l.lie abundance of CO.
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However, there is one complication that arises fro.n
, unusually low dipolo

moment of CO. The dipole moment of CO is only , . o.ll D, whic:h is a factor of

~ 10-50 below that of other moh.ules observed. The low dipole .non.ent, translates
to an extren.ely low critical density for excitation, n., . 1000 cm'^ Therefore
CO will be much more sensitive to all material along a line of sight, at both low
and high densities. Whereas the emission from n.ost of the other n.oleculcs in this

study is expected arise predorrunantly from the high density component. In

Chapter 3 we examined this question and suggest the C^«0 is dominated by the

dense gas. Therefore for eons^stency all our column densUres are eornputcd relaUve

to C^^O. We define tins term as the relative abundance. We will discuss the

consequences of this assumption in Chapter 6.

4.4.2.3 The Bar

As mentioned in Section 4.4.1, the Bar position was treated separately from

the other 5 positions in determining the r(>lative abundances. This was done for

two reasons. First, many of the molecuh's show little or no emission towards the

Bar. Examination of the spectra in Figure 4.13 shows the even averaging 7

positions along the Bar itself (see Table 4.4) does not reduce the noise enough to

detect species such as CHaC,!!, HC3N, and IIN'''C. The second reason follows

from Wxv first: because we did not observe any CH3C2H emission towards the Bar

we do not have temperature information.

For the Bar position we have used the integratcul intensiti(!s derived from the

average sjjectra presented in Figure 4.13. The line center velocity from th(>

emission profiles can W. uschI to determine which species are actually arising from

the Bar itself (~ 9-10 km s"') as opposed to the background cloud (~ 7-8 km s ').

To estimate; the temperatur(> we have used tJi(> (>stimate of Tjt = 30 K by Taub(>r ei

al (1994). This value; was derived from '''CO assuming that the emission was

optically thick and is in agreement with models of tJi(> t(>mi)(uature structure in
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dense photodissociation regions (Tanber at al 1994). For consistency with the
other positions we will assnme a density of „(H,) = 3 x 10» cm-. This valne is

consistent with other measurements in the literature (Hogorheijde et al 1995;
Tauber et al 1994).

4.4.3 Relative Abundances for the Orion Ridge

Hereafter when we use the term relative abundance it refers to column

densities relative to C^«0 and divided by the ratio of ^^0^0 500. Table 4.7

presents the relative abundances for the Orion molecular ridge. The relative

abundances of H^^CO\ H^^CN^ HN^^C have been scaled by a factor of ^^C^C =
90, while C^^S has been multiplied by 325/343 = 22.9. We have also presented an

average temperature and column density that can be ascribed to each position.

Also listed in Table 4.7 are the relative abundances for these species in TMC-1
(Ohishi et al 1992) and the relative abundances for the extended ridge from Blake

et al (1986). One of the more interesting points in this table is that the

abundances at the RIP are somewhat similar to that observed in TMC-1. The

abundances of HCO+, HON, N2H+, CH3C2H, CN, and C^H are all within a factor

of three to the observed TMC-1 abundances. However, the relative abundance of

HC3N is two orders of magnitude smaller than in TMC-1. Among the 6 positions

in which relative abundances were computed the agreement with the TMC-1

relative abundances is certainly best for the RIP and the Ridge position.

Thus the earlier statement that the RIP is the closest to quiescent chemistry

observed in Orion appears reasonably correct. Comparisons with the Blake et a)

(1987) study shows excellent agreement for almost any position. The only species

with large differences are CN and CH3C2II for which Blake ct al used

temperatures much higher then presented here.
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Species RIP

28

N(CO)-'^ 4.4(18)

CS l(-4)

CN l(-4)

C2H 4(-4)

HCO+ 7(-5)

N2H+ l(-5)

CH3C2H 4(-5)

6(-6)

SO l(-5)

CH30H 9(-5)

HCN 2(-4)

HNC 6(-5)

1.5'S

l(-4)

l(-4)

3(-4)

5(-5)

4(-6)

6(-5)

6(-6)

l(-5)

8(-5)

2(-4)

2(-5)

'Numbers are written in the form a(b) = a x 10*.

" from Blake et al (1987) - Extended Ridge
from Ohishi et al 1992

* Average temperature in K.

^ Average CO column density computed from C^^O assuming '^0^0 = 500. Units are in cm'^.

4.4.4 Error Analysis

Before examining what abundance variations exist along the Orion molecular

ridge we will first determine what level of variation may be considered significant.

Irvine, Goldsmith, and Hjalmarson (1987) presented molecular abundances for

several cloud cores, including Orion and TMC-1. In their comparison of

abundances they state that the abundances presented are only accurate to within

an order of magnitude. This large error is the result of many factors but is

predominantly due to questions of telescope eflficiencies, molecular excitation, and

opacity eff-ects. This study has sought to minimize all of these various factors. We

examine each separate factor in the following paragraphs.
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4.4.4.1 Molecular Excitation: Density and Temperature

We will first examme the error introduced by assuming a constant density of
n(H.) .3x10^ cm-3 for each position. Examining the CS exdtation seen in

Figure 4.14
,
and assuming that it is typical of the other spec.es, it can be seen

that the fractional population .s not changmg appreciably at higher densities when
the excitation is nearing LTE. Thus we will be introducing a larger error if the

density along the line of sight is below n(H,) = 3 x 10« cm-. If the density is

higher than the error will typically be lower. Allowing for a factor of 3 error on the

density, the error introduced for CS will be ~ 20-30%, if the density a factor of 3

below n(H,) = 3 x 10« cm-. The error will be ~20% if the density is a factor of

three greater. This difference is important since it is likely that the density for

these positions is > 3x 10^ cm-, because for numerous positions in the cores we
were only able to set a lower limit (see Chapter 3). Therefore the magnitude of the

error introduced on the total column densities by the uncertainty in the density is

typically < 20-30%.

The statistical errors on the CH3C2H temperature measurements were quite

small, since we presented only those values with errors less than 15 K. However,

examination of the temperature structure in Figure 2.8 shows that there is

significant variations in the temperature, even for neighboring positions. By using

the averaging process outlined in Section 4 we certainly have minimized any

contribution to the total error from the temperature. Assuming that the point to

point variations in the temperature are representative of the error introduced by

the temperature, we have computed the standard deviation of the mean when

averaging the 5 "cross" positions. This was done and the error in the mean is

~10%.

These conclusions rest on the assumption of a constant density and constant

temperature cloud model. The errors will be greater in the presence of a density
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and/or temperature grad.ent. The fact that „,ost of the HC3N emiss.on and
CHsCH emission (by the correspondence of l,ne center velocity and line widths)
appear to be dominated by the high densitv m.. •

i f .y nign density material further suggests that these
effects are not overly large (Chapter 3).

4.4.4.2 Antenna Efficiency

By using a single telescope we have minimized questions of efficiency This
eaves a residual question about the variation of the telescope efficiency across the
3mm band (86-115 GHz). Efficiency measurements by N. Pate, during the 1992
observing season (which overlaps our measurements) g.ve a beam efficiency of

-47% at 105 GHz and ~ 54% at both 95 and 86 GHz. Thus the variations m
efficiency will introduce only small variations in the relative abundances.

Another systematic effect that could influence in the these calculations is

differences in gain among the pixels. There is no guarantee that in choosing our

positions that we are averaging over the same 5 pixels (with the same gain) each

time. However this effect is quite small and we have also reduced any possible

error by creating a final map for each species w,th an average of many smaller

maps. These maps could have been taken with the dewar at the normal position of

90 degrees or possibly rotated 180 degrees, which will expose a different set of

pixels to each position. While this error is truly hard to quantify, it is probably

smaller than the other possible sources.

4.4.4.3 Random Errors

The previous paragraphs dealt primarily with systematic effects, which still

leaves an examination of the random errors. This analysis is quantifiable by simply

propagating the errors through from the la error from the baseline. This error is

very small, and will vary between each map. We will adopt a general error of

-10% which encompasses the actual error, even in cases of low signal to noise.
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Thus the errors will be dominated mostlv h^r fv,^mostly by the assumptions about the excitation,
calibration, and opacity.

4.4.4.4 Optical Depth

To address questions of opacity we have examined only species that are

thought to be optically thin. Of these, we assume that the emission from CH3C.H
HC3N, C-S, HN-C, H-CO^ IS optically thm. This assumption is strengthened

'

because the spectra for these species (except HC3N; T^, < 3.0 K) typically have

T*A<1.0 K, which is below the temperatures measured in Chapter 2 (typically

-30 K). Therefore, provided that filling factors are not extremely small, it is likely

that the opacity from these lines is < 1.

For the other species, which have hyperfine structure or observations of a lesser

abundant isotope, we can estimate the opacity. These are CN, C2H, N2H+,

H^^CN, CH3OH, and SO. To estimate the opacity for the species with hyperfine

structure (CN, C^H, N,H\ and H^3cn) we have utilized the the routines from the

CLASS package on the average spectra shown in Figures 4.8 - 4.13.

Table 4.8 presents the expected thin ratio for each species assuming the

hyperfine components are in LTE, the observed ratio, and the optical depth in the

main component. If the listed opacity is 0.1 it signifies that the line is optically

thin; were an optical depth to be determined the true opacity is probably < 0.1.

For C2H derived optical depths are small except near KL where a moderate

opacity of ~ 1 is observed. However an examination of the la errors on the

hyperfine ratios, when compared to the expected thin ratio, shows that the C2H

emission at KL/BN is consistent with optically thin emission. An examination of

the hyperfine ratios for N2H+, CN, and H^^CN also demonstrates that the

emission from these species is consistent with the optically thin ratio. Thus this

table suggests that these species do not sufl'er from large opacities, although the
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Hf

Ratio

RIP

Ridge

KL/BN
1.5'S

4'S

Bar

C2H
2.5

2.1±0.2

2.4±0.1

2.1±0.1

3.0±0.2

1.8±0.1

1.5±0.1

Hf

Ratio

Position

RIP

Ridge

KL/BN
1.5'S

4'S

Bar

CN
2.7

0.4

0.1

1.3

0.2

0.6

3.6

0.2:1.0:0.6

0.2±0.1

0.2±0.1

0.4±0.5

0.2±0.2

0.3±0.2

0.5±0.1

Ratio

2.5±0.2

2.8±0.3

2.6±0.3

2.5±0.2

2.5±0.2

2.7±0.2

0.6

0.1

0.2

0.3

0.3

0.1

1.0:0.5±0.1

1.0:0.5±0.1

1.0:0.6±0.5

1.0:0.7±0.2

1.0:0.8±0.1

1.0:1.0±0.1

NoH+

0.1

0.1

0.6

0.6

1.0

1.1

0.2:1.0:0.6

Ratio

0.3±0.1

0.2±0.1

O.liO.l

0.2±0.1

0.3±0.1

1.0:0.7±0.1

1.0:0.7±0.1

1.0:0.7±0.1

1.0:0.7±0.1

1.0:0.7±0.1

1.5

0.7

0.3

0.3

0.4

earlier comparison of N^H^ line center velocities with the average line of sight

velocity has suggested that its emission may indeed be slightly optically thick.

Other molecules, SO and CH3OH, may have optically thick emission at the

KL/BN position. The study of methanol emission in Orion by Menten et al (1988)

included observations of the isotopic variant i^CHgOH. An isotopic ratio of -20 is

measured towards the KL/BN position, which implies that the CH3OH emission is

moderately optically thick. This may also be true for SO, where the abundance

enhancements in the plateau may drive up the optical depth of the lines. However,

as noted earlier, we are not properly resolving the hot core or the plateau, hence

our abundance measurements for the species that have shown evidence of emission

from any component outside of the ridge are already lower limits (see Blake et al

1987). It is likely, however, that the emission from both SO and CH3OH in

positions other than KL/BN is optically thin.
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If the molecular emitting region is beam diluted (due to a low filling factor)
then the opacities for SO and CH3OH will only be lower limits. This would also
effect other species, such as CH3C.H or C-S, that we list as optically thin One
piece of evidence that the emission from these molecules may not be thick is the

CS/C"S ratio. If the C'^S emission .s optically thick then the ratio would be close

to one, which is not the case. CS/C-S at the radical-ion peak ,s -.8, compared to

the expected value in molecular clouds of C^'S/C^-'S ~ 15. This analysis is only

valid if both CS and C'^S are tracing the same region with the same volume filling

factor.

4.4.4.5 Estimated Error

In conclusion we estimate that the contribution from the many possible

sources of error is between 40-50%, where the maximum contribution arises from

the assumptions about the density. Therefore we believe that abundance

variations less than a factor of two are marginal results. Especially considering this

model of the cloud is one of uniform density and temperature, which the results

presented in Chapters 2 and 3 do not support. The presence of clumps with

separate filling factors between the gas traced by C^^O and the high density

tracers would also alter the relative abundances as discussed in Section 4.4.2.2, but

this will affect all of the molecules abundances equally. Unless, of course, the filling

factor of the dense gas varies significantly along the dense parts of the ridge.

However the abundances determined with this study are certainly accurate to

below an order of magnitude and probably to within factors of 2 - 4.

4.4.5 Abundance Variations

To examine whether the observed emission changes are reflective of true

abundance variations across the ridge we present in Table 4.9 the relative

abundances of each species normalized to the abundance at the RIP. One trend in
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these data is the the decline of the relative abundances in the radicals and
between the RIP and any other position. Although, as argued in the previous
section, a change at or below a factor of two is not by itself a significant result

But the fact that the two highly reactive species, CN and C,H show relative

abundances declining from the colder regions to the warmer star forming cores

suggestive that the trend could be significant. The one species that stands out i

this table is N,H-. The relative abundance of this ion decreases by an order of

magnitude from the RIP to BN/KL. This large variation is certainly significant.

Because the decline in abundance for CN and C^H is only a factor of 2, our

results are in agreement with those of Greaves et al (1991) that the radical-ion

peak is mostly a region that has enhanced emission characteristics due to

excitation. The radical-ion peak may be more aptly named the N^H^ peak since

this molecule shows the strongest evidence for abundance enhancements at the

RIR

Another trend seen in the data is the molecules that have large relative

abundances at KL/BN as compared to the more quiescent RIR These molecules

are HCN, SO, and CH3OH. Since these enhancements are well known it is perhaps

more interesting to note that these species also have mild enhancements towards

the southern star forming site 1.5'S.

The 4'S south position, which is a column density peak observed in many

species has abundances that are are suppressed relative to the other positions.

Since this position has a similar total column density and temperature as the RIP

(see Table 4.7), it is somewhat surprising that this position stands out with lower

relative column densities. This may suggest that another physical property of 4'S

is different from the RIP, with the chief possibility being the radiation field. In

addition, the molecular Bar has slightly lower relative abundances for many



133

species. C.H, N.H^ CH3C.H, HC3N, CH3OH, and HCN. However the Bar does
contain large amounts of both SO and HCO+.

In conclusion, the Orion molecular ridge does not show much evidence for

significant abundance variations. The radical-ion peak does stand out as having
sLghtly greater abundances but to within a factor of 3 nearly all abundances are
the same. This is excluding BN/KL and the Bar which both have very special
properties. We note the abundance of the one species for which the hot core

emission was removed, HC3N. does not change at all. Therefore the ridge, in

general, exhibits a fairly constant chemistry with most of the differences observed
in molecular emission due to variations in excitation, primarily due to declining

temperatures away from the star forming sites. However, it is important to state

that some of the small abundance variations may indeed be real effects. In

particular the 4'S position stands out a. being possibly different in some fashion

than the RIP and the Ridge. The large decline in N,H+ abundance also is

intriguing. Observations of higher transitions of this molecular ion would be useful

in examining whether this trend is indeed real.

One possible method to examine whether these trends are significant is to

examine whether theoretical models that incorporate the changes in physical

conditions along the ridge (e.g. temperature, radiation field) can account for the

observed abundance variations. Current models, to the first order, can account for

the effects of changing physical conditions. Whether the models can reproduce the

observed abundances and variations will be discussed in Chapter 7.
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Table 4.9. Abundanrps Relativp tn fhp T^yp
Species Kidge KL/BN T5^S~^
cs 1.1 1.4 1.1 1.4 0.8
CN 1.0 0.6 0.6 0.6 1.0
C2H 0.8 0.6 0.4 0.6 0.5
HCO+ 0.7 0.7 0.7 0.2 1.0
N2H+ 0.4 0.1 0.2 0.3 0.1
CH3C2H 1.5 1.5 1.0 0.5 <0.2
HC3N 1.0 0.9 1.0 1.4 <0.2
SO 1.0 >7.7 2.8 1.2 0.8
CH3OH 0.9 >3.9 1.7 1.0 <0.2
HCN 1.2 >2.4 1.7 0.4 0.5
HNC 0.4 0.4 0.2 0.4 <0.3



Chapter 5

Chemical Structure in the M 17 and
Cepheus a Cloud Cores

5.1 Introduction

In this chapter we discuss the chemical structure in the M 17 and Cepheus A
cloud cores. For each core we first examine the principal differences in the emission

between the various molecules. This will lead into an examination of whether the

variations in emission are due to variations in abundance. The method used to

derive column densities and relative abundances follows closely that for Orion

discussed in the previous chapter. However, because the M 17 and Cepheus A
maps are much smaller, we have not performed a principal component analysis as

we did for Orion.

5.2 M17

5.2.1 Observations

The M 17 observations of tlie transitions listed in Table 1.1 (except for SO2)

were carried out during the 1991 and 1992 observing seasons using QUARRY. The

details of the spectrometers used and corresponding velocity resolutions are given

in section 4.2. For M 17 we have used only the data with a resolution of 250 kHz.

The molecular emission maps all have the same grid of 120 points (10 x 12 spaced

by 25") centered at a(1950) - 18'*17'"34.5^ J(1950) = -16°13'24" and all

observations were obtained by position switching to a reference position, free of

^^CO emission, at: q;(1950) = 18'*17^19^ 5(1950) = -16°30'00".

The chopper wheel calibrated antenna temperatures (T^j), were converted to

radiation temperatures assuming a main beam efficiency of tjmb = 0.45 (see
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Table 5.1. Contour levpls for Figure 5.1
Species Levels (K km s~M

~C0 20 to 200 by 20
'^CO 5 to 80 by 5.0

C''0 1 to 10 by 1.0

CS 4 to 40 by 4.0

C^^S 0.5 to 7.0 by 0.5

SO 1 to 10 by 1

CH3OH 0.7 to 7.0 by 0.7

C2H 0.5 to 6 by 0.5

CN 2 to 20 by 2.0

HCN 5 to 45 by 5.0

H'-'^CN 0.5 to 5.0 by 0.5

HCO+ 5 to 45 by 5

H'30+ 0.25 to 4.75 by 0.5

N2H+ 1 to 11 by 1.0

HNC 4 to 24 by 4.0

HN'^C 0.2 to 1.6 by 0.2

HC3N 0.7 to 6.3 by 0.7

CH3C2H 0.7 to 7.0 by 0.7

C3H2 0.5 to 2.5 by 0.25

section 4.2). As stated earlier, since the total column densities are placed relative

to the C'O column density, the absolute value of the efficiency is unimportant for

determining relative molecular abundances.

5.2.2 Morphological Differences

Figure 5.1 presents the maps of the integrated intensity for all molecular

species included in the survey of M 17. The contour levels for each map are listed

in Table 5.1. The emission from all of tlu; molecules has a similar spatial extent,

even in transitions arising from quite different energy states, such as HC3N

(Ej.i2/k = 34 K) and H'^CN {Ej^Jk = 4.1 K). In addition, the emission in all

molecular species sharply cuts off in the northeast corner of tin; map where the H

II region/molecular cloud interface is located.

There is one principal difference in the emission morphologies of the various

molecular species. The emission of HC3N and CH3C2H an; strongly peaked at tin;
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Figure 5.1. Integrated intensity maps for all of the survey molecules in M17. The
transitions are listed in Table 1.1 and the contour levels and spacing are listed in

Table 5.1.
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position of the northern condensation, while most other molecules (eg. C^O
C-S, C.H) peak further south. Some species, such as N.H^ have a second weaker
emission peak even further to the south. These emission differences could s,mply
be the result of a variation m temperature. The temperature of the dense gas in

M 17, shown in Figure 2.11, reaches a maximum near the northern condensation
and decreases south and west proceeding away from the H II region. The higher

temperatures at the northern condensation wUl favor lines w,th greater excitation,

such as CH3C.H and HC3N, which are relatively more populated at higher

temperatures. We will examine these questions in the following sections.

The M 17 maps exhibit considerably less structure than the Orion maps.

However M 17 is more distant than Orion by a factor of four which will dilute any

variations. For M 17 we have therefore chosen to derive abundances only for two

positions: the northern condensation (-1.26,+0.84), labeled as NC, and the central

condensation (-2.10, -0.84), denoted as CC. By determining abundances for these

two positions we explore the main emission differences in M 17 and can use the

edge-on geometry to examine possible abundance variations induced by the UV
field.

5.2.3 Total Column Density Determinations

As in Orion we determine abundances for the nominally optically thin species

listed in Table 4.3. However, because M 17 (2.2 kpc) is much more distant than

Orion (450 kpc), spectra for different positions have not been averaged together.

Instead, to compute total column densities, we use the integrated intensities

derived from the spectra for the two positions. The signal to noise in the M 17

spectra is higher for most molecular transitions than those in Orion which aids this

choice. Figures 5.2 - 5.3 show the spectra for the optically thin species and the

principal moments derived from the profiles are listed in Tabic 5.2.
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10 15 20 25 30

Velocity (km/s)

Figure 5.2. Spectra for the optically thin species towards the Northern Condensa-
tion. The intensities for HN^^C, CH3OH, and HN^^C have been multiplied by a
factor of three.
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Velocity (km/s)

Figure 5.3. Spectra for the optically thin species towards the Central Condensation
The intensities for HN^^C, CH3OH, and HN^^^ have been multiplied by a factor of
two.
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Species

CN
C2H

N2H+
CH3C2H
HC3N
SO''

CH3OH

Hi^NC

Average*^

VIsr

19.8± 0.1

19.7± 0.1

19.9± 0.1

20.1± 0.1

20.0± 0.1

19.7± 0.8

19.3± 0.1

19.7± 0.1

19.9± 0.2

19.7± 0.7

18.9± 0.3

19.7± 0.1

19.8

Av
2.9± 0.1

4.0± 0.4

3.7± 0.1

3.2± 0.2

4.2± 0.3

3.9± 0.8

3.2± 0.2

3.2± 0.1

3.1± 0.2

5.4± 0.5

4.3± 0.5

4.5± 0.3

3.4

CC

19.7± 0.1

19.5± 0.1

20.0± 0.1

20.0± 0.1

20.2± 0.1

19.9± 0.1

19.6± 0.2

19.6± 0.1

19.6± 0.1

20.0± 0.1

18.9± 0.1

20. 1± 0.2

19.7

Av
4.7± 0.2

4.8± 0.1

4.8± 0.2

5.1± 0.2

5.0± 0.3

5.3± 0.2

4.5± 0.2

4.7± 0.1

4.7± 0.2

4.8± 0.1

3.8± 0.3

4.7± 0.2

4.8
"Velocities and linewidths are listed in km s^^
''Profile for the NC contained more than one component
''Weighted average computed from all molecules.

The spectra and the kinematic information listed in Table 5.2 can be used to

examine whether the emission from each molecule is probing the same layer of gas

in a manner similar to the analysis performed for the principal moments in Orion.

The Ci«0 and C^^S profiles at the NC (see Figure 5.2) contain more than one

velocity component; for these molecules we have tabulated values the velocity and

line width of the stronger component. This component constitutes more than 75%

of the total emission for these species. The line profiles for the CC are well fit by a

single component. It is likely that there is substantial unresolved spatial and

velocity structure in M 17 (eg. Stutzki and Gusten 1990), we will therefore only

consider the total integrated intensity in both the NC and CC positions.

The velocities and linewidths of most molecules are constant, with the

exception of CH3C2H and H'^CN. The CH3C2H emission deviates slightly from

the average velocity at the northern condensation and the line center velocity of

H^^CN for both the NC and CC is also quite far from the average. However, the
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—fable 5.3. Optical Depths frnrr. HPS Rntin
C2H
2.5

Hi^CN

0.2:1.0:0.6

HPS Ratio HFS Ratio Tm
JNCJ 4.1±0.2

2.3±0.1

0.1

0.1

0.2±0.1:1.0:0.6±0.1

_0;3±0J^L0^0^8^^
0.3

1.4
CN
2.7

N2H+
0.2:1.0:0.6

HFS Ratio tm HFS Ratio tm
NC
CC

2.5±0.1

2.1±0.2

0.1

1.4

0.3±0.1:1.0:0.6±0.1

0.1±0.1:1.0:0.7±0.1

0.7

0.1

H^3CN emission is very weak and the blending of the hyperfine components has

made it difficult to make an accurate determination of the principal moments.

The above information suggests that most molecules are probing the same

region along the line of sight. Another possibility that may separate molecular

emission along the line of sight and effect velocities and velocity widths is if the

emission is optically thick. To examine this question we have utilized the hyperfine

structure of N2H+, CN, C2H, and H^^CN to estimate the opacity. Table 5.3 lists

the opacities determined from the HFS ratio using the routines from the CLASS

package. This table, at first glance, suggests that the some molecules have

moderate optical depths. However, an examination of the la errors on the

hyperfine ratios, when compared to the expected thin ratio, demonstrates that the

ratios of C2H, N2H+, and H^^CN are consistent with optically thin emission. The

sole exception is the 3a result for CN at the central condensation which is

consistent with a moderate opacity (r ~ 1.4). Thus for Ml 7 we find no evidence

for large opacities.
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We therefore assume that the molecular emission is optically thin and use
Equation 4.5 to derive upper state column densities. We have adopted T. = 50 K
for the northern condensation and T, . 30 K for the CC, based on the

temperatures derived for the dense gas m Chapter 2. The density m M 17 does not
vary appreciably with position (F.gure 3.8) therefore, we adopt a single value of
n(H.) . 3 X 10^ cm-3. W.th these physical conditions and the excitation models
outlmed m Section 4.4.2, total column densities can be determined for each
molecular species. Smce the CN emission at the central condensation was
determined to have moderate opacity, we corrected the optically thin column
density using the following expression (Snell et al 1984),

where N,,,„ is the optically thin column density and r is the opacity derived from

the hyperfine structure in Table 5.3. The relative abundances are then derived by

dividing by the C^^O column density relative to CO, and then converted to a CO
column density using an isotopic ratio. The column densities for isotopic species

were scaled to the main isotope using the isotopic ratios listed in section 4.4.3.

5.2.4 Abundances Gradients in Ml

7

Table 5.4 presents the relative abundances for the northern and central

condensations, along with the temperatures and CO column densities. The first

conclusion to be drawn from Table 5.4 is that, while the relative abundances at the

two positions are quite similar, there is a general trend for lower relative

abundances near the HII region interface (NC) and larger values farther away

(CC). The sole exception to this trend is CH3C2H, which has a larger abundance

at the northern condensation. CH3C2H also has the greatest abundance variation

observed in M 17. It is somewhat surprising that the abundance of HC3N does not
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Table 5.4. Relative AhiinHances in M 17".''

Species NC CC

N(CO)'' 2.0(19) 1.4(19)

7(15) 9(35)

CN 3(-5) 7(-5)

C2H l(-4) 2(-4)

HCO+ 4(-5) 4(-5)
N2H+ 2(-6) 4(-6)

CH3C2H 5(-5) 2(-5)

HC3N 2(-6) 3(-6)

SO l(-5) 2(-5)

CH3OH 2(-5) 4(-5)

HCN 5(-5) 1(.4)

HNC 2(-5) 2f-5j

"Abundances are relative to CO
''a(-b) = a X 10-^

Temperature in K.
d CO column density from C^^O in cm^^.

follow the trend observed for methyl acetylene, because the emission from HC3N
also strongly peaks at the NC.

Since the maximum change in relative abundances between the NC and the

central condensation is a factor of 2.5 for CH3C2H, the principal conclusion from

these observations is that there are no significant abundance variations in M 17.

Indeed, within the estimated error of -50% (section 4.4.3), the abundances do not

vary at all. There is one general trend in the abundances which may be real; that

all of the abundances in the CC (except CH3C2H), which is located further from

the H II region, are typically greater than observed for the NC. For any single

species this variation can not be considered significant, however that all species,

except CH3C2H, follow the same variation argues that this trend is probably real

and may indicate that the UV field is influencing the chemistry. Although this

variation, with abundances greater at the CC than the NC, could be a result of a

systematic error, such as a change in the density between these two positions.
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5.3 Cepheus A

The Cepheus A observations were carried out during the 1991 and 1992
observing seasons usmg QUARRY. We have observed all transitions listed in Table
1.1, except for SC.. The details of the spectrometers used and corresponding

velocity resolutions are listed in section 4.2. Because of the moderate linewidths
A. ^ 2 km S-, we have used only the 250 kHz data. The maps are placed on the
same grid of 120 points (10 x 12) spaced by 25" centered on the FIR continuum
peak (Moriarty-Schieven et al 1991) and the ultracompact H II region HW 2 at

.(1950) = 22^54-^19^ and ^(1950) = 62°45'47". All observations utilized position

switching to a reference position at a(1950) = 22^^52-03^ and c5(1950) = 62°37'05"

which is free of ^^CQ emission.

The observations are placed on the T;, scale, which was then scaled to the

radiation temperature using a main beam efficiency of ry^B = 0.45 (see section

4.2). As stated earlier, since the total column densities are placed relative to the

C^«0 column density, the absolute value of this calibration is unimportant. Some
of the maps that are presented in the following section have low signal to noise, in

particular these are the transitions of C^^S, HN^^C, and perhaps C3H2. In spite of

the poor quality of the data we will still use these maps in the analysis.

5.3.1 Morphological Differences

The integrated intensity maps for all survey molecules are shown in Figure 5.4,

and the contour levels are listed in Table 5.5. The various emission morphologies

in Cepheus A do not exhibit the complicated structure observed in Orion. All

molecules show strong emission near the center of the map at the location of the

embedded ultracompact H II region HW 2. A few molecules, such as SO and

CH3OH, deviate slightly from this structure having emission extended to the

northeast and southwest. Other molecules (H'^CN and C^'*S) api)oar to have some
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Table 5.5. Contour levels for Fionr^ 54
Species Levels (K km s^^)

"CO 20 to 100"b7To
^^CO 5 to 35 by 2.5

C^^O 0.5 to 5.5 by 0.5

CS 2 to 12 by 1.0

C^^S 0.4 to 1.6 by 0.2

SO 0.4 to 4.4 by 0.4

CH3OH 0.4 to 4.4 by 0.4

C2H 0.4 to 3.2 by 0.4

CN 0.5 to 4.0 by 0.5

HON 1 to 12 by 1.0

H^^CN 0.2 to 1.8 by 0.2

HCO+ 1 to 11 by 1.0

H^3o+ 0.25 to 2.5 by 0.25

N2H+ 0.5 to 4.5 by 0.5

HNC 1 to 14 by 1.0

W^C 0.5 to 1.3 by 0.2

HC3N 0.4 to 3.2 by 0.4

CH3C2H 0.1 to 0.7 by 0.1

C3H2 0.3 to 0.1 by 0.2

additional structure but this may be due to the lower signal to noise in these

maps. The N2H+ and CN integrated intensity maps are also quite similar to the

NH3 map of Gusten, Chini, k Neckel (1984) with fairly compact emission oriented

in a NE-SW direction. However other nitrogen-bearing molecules, such as HC3N,

does not show a similar morphology, suggesting some differences in the nitrogen

chemistry in the core.

The high-velocity outflow in Cepheus A is extended over nearly ~ 1' and

oriented in an east-west direction centered on HW 2 (Rodriguez et al 1980;

Hayashi et al 1988). Since the SO and CH3OH emission morphology is elongated

in a northeast-southwest direction it is unlikely the emission from these species is

related to the high-velocity flow. However, the low velocity flow in Cepheus A is

much more extended, over > 3', and oriented in a northeast-southwest fashion

(Hayashi et al 1988). The low velocity outflow is believed to be a remnant outflow
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Aa [']

Figure 5.4. Integrated intensity maps for all of ili(> survey inolcrulcs in Cei)li(Mis A.
The transitions are listed in Table 1.1 and the contour levels and spacing are listed

in Table 5.5.
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that has lost its structure during Us interaction with the surrounding quiescent
gas, traced by HCN, NH3, and CS (Staude & Elsasser 1993; Philips & Mampaso
1991). It is therefore possible that the morphology of the SO and CH3OH emission
indicates that these species are tracing the older flow, while other molecules
(N.H^ H-CO^ C.H, CN) are probing the quiescent gas. To properly examme
this question the velocity structure in the various maps should be analyzed in

detail, however this is beyond the scope of this study.

We can examine whether the outflow has altered the chemical evolution of the
quiescent matenal in Cepheus A by comparing relative abundances northeast and
south of the central peak. For this purpose we have chosen to compute relative

abundances for Aa = 0.42, AS = 0.42, which we label Ceph-A N, and Aa = 0.0,

= -1.26, which we refer to as Ceph-A S. While these positions do not directly

correspond to emission maxima, they do enable an examination of possible

abundance gradients induced by the large outflows in Cepheus A.

5.3.2 Total Column Density Determinations

To derive total column densities in Cepheus A we have utilized the method

outlined in section 4.4 for Orion. We determine relative abundances only for

optically thin species, listed in Table 4.3. We will examine the question of opacity

in the following paragraphs. To determine the line center velocities and linewidths

for these two positions we have averaged spectra in a 5 point "cross" pattern

centered on each position (see section 4.4). These spectra are shown in Figures 5.5

- 5.6 and the kinematic information derived from the average spectra are listed in

Table 5.6.

The spectra for Cepheus A, at both Ceph-A N and Ceph-A S, exhibit weaker

emission than observed in either Orion or M 17. Although Ceph-A N is generally

characterized by stronger emission than Ceph-A S. The velocities observed for

these two positions indicates a systematic trend, with higher velocities evident



149

'—'—'—I—I—I—I—I
—

I

I I I
' I I .

I I

-20 -15 -10 -5

Velocity (km/s)

Figure 5.5. Spectra for the optically thin species towards the Ceph-A N (0 42 0 42)
position. The intensities for HN^^C, CH3C2H, CH3OH, O^^S, and HN'^C have been
multiplied by a factor of three.
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Velocity (km/s)

Figure 5.6. Spectra for the optically thin species towards the Ccph-A S (0.00 -1 26)
position. The intensities for HN''^C, CHaCaH.CHjOH, II'^CO+, C'^S, and 'hN^'^C
have been multiplied by a factor of three.
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Species

CN
C2H

N2H+
CH3C2H
HC3N
SO
CH3OH

Average'

VIsr

-10.9± 0.1

-10.9± 0.1

-11.2± 0.1

-10.9± 0.1

-11.0± 0.1

-10.6± 0.1

-11.0± 0.1

-10.4± 0.1

-9.9± 0.1

-10.9± 0.1

-10.7± 0.1

-11.0± 0.2

10.8

3.5± 0.1

3.8± 0.5

3.4± 0.1

3.0± 0.1

3.3± 0.1

2.9± 0.1

3.3± 0.1

3.0± 0.1

3.2± 0.1

3.2± 0.1

3.1± 0.1

2.5± 0.2

3.2

""^g^sioT

-io.7± 0.1

-10.2± 0.1

-9.8± 0.2

-10.0± 0.1

-10.9± 0.1

-10.0± 0.2

-10.5± 0.1

-10.1± 0.2

-9.7± 0.2

Av

-10.3

3.3± 0.1

4.9± 0.1

2.7± 0.4

2.9± 0.3

2.9± 0.1

3.1± 0.1

2.7± 0.2

3.8± 0.1

5.6± 0.1

5.0± 0.4

3.9
"Velocities and linewidths are listed in km s-\
'C^'S and HN13C emission too weak to determine moments of 1 5'S
"^Weighted average computed from all species listed

north of HW 2 and slightly lower velocities south of the compact H II regions. The
total shift is not large, with the average velocity for Ceph-A N given by

< V;,, >= -10.8 km s-\ compared to < V^,, >= -10.3 km s-^ for Ceph-A S. The
NH3 study by Gusten et al (1984) found a systematic velocity shift of over 2 km

along the major axis of the NH3 emission (oriented similar to the N2H+

integrated intensity in Figure 5.5). The average velocity shift derived from other

molecules is in the same direction as the gradient evident in the NH3 observations.

However, our velocity determinations are not over exactly the same region as the

cut utilized by Gusten et al, nor is the gradient of a similar magnitude suggesting

that these results are not probing the same material as NH3.

Whether all molecules are probing the same layer is of considerable importance

for our analysis of the chemistry. At Ceph-A N most molecules have velocities

within 3a of the mean, although SO, CN, and HC3N deviate by 4a or greater. The

velocities for Ceph-A S show considerably more scatter, which may in part be due
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to weak emission and low velocity resolution (0.6 - 0.8 km s-). Indeed at
Ceph-A S, the emission for C^S and HN^C was too weak to obtam a useful fit to
the spectrum. The linewidths for both positions are quite similar, although the
southern position has slightly larger line widths.

One intriguing observation is that line center velocity for SO seems to be
significantly below the average velocity at Ceph-A N, and shifts to a velocity

slightly above the mean to the south. This can be seen in the spectra presented in

Figures 5.5 and 5.6 where the SO profile peaks at higher velocities than C-Q at

Ceph-A N, the peak velocity shifts to lower velocities at Ceph-A S. This gradient

is interesting because the low velocity blueshifted component is centered near the

Ceph-A N position, while the red shifted gas is ~1'S from our map center (Hayashi

et al 1988). Therefore we conclude that the SO emission could be tracing the low

velocity bipolar flow. None of the other species, including CH3OH which has a

similar emission morphology to SO, exhibits similar velocity structure. Again a

detailed examination of the velocity structure of these data is warranted.

The result from the kinematic analysis is that most molecules seem to be

tracing the same quiescent gas towards Ceph-A N. While for the southern position

the results are more ambiguous. SO is the only molecule which may be tracing

diff-erent material, and this molecule may be probing the low velocity outflow.

We must also examine, as best as we can, whether the emission from the

diff-erent species is optically thin. Table 5.7 lists the optical depths derived from

the hyperfine ratios of CN, C2H, N2H+, and H^^cn. As in M 17, the ratios for

C2H, N2H+, and H^^CN are, within the errors, consistent with optically thin

emission. However, the ratios determined for cyanogen (CN) diverge significantly

{>3a) from the thin ratio and is possibly optically thick.
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0.2:1.0:0.6

Ceph-A N
Ceph-A S

HFS Ratio

2.5±0.3

2.6±0.9

HFS Ratio

1.8±0.1

1.8±0.2

1.6

1.5

HFS Ratio

0.3±0.1:1.0:0.7±0.1

0.2±0.1:1.0:0.6±0.1

N2H+
0.2:1.0:0.6

"HFSR^tb~
0.2±0.2:1.0:0.7±0.1

0.2±0.1:1.0:0.6±0.1

0.4

0.1

To determine upper state column densities we have used Eqn. 4.5, which

assumes optically thin emission. Since Cepheus A is not as distant as M 17 (d ~
720 PC), we use the averaging method presented in section 4.4.2 for Orion to derive

relative abundances. We have adopted the kinetic temperatures determined by

CH3C2H and a density of nCH^) equal to 3 x 10« cm-^ for both positions, based

on the HC3N measurements in Chapter 3. Because of the lower intensity of the

CH3C2H emission in Cepheus A, we have fewer temperature determinations that

for Orion or M 17. In cases where a position lacked a temperature determination

we have used a weighted average of the temperature from the nearest neighbors.

For CN we have corrected the total column densities for the effects of opacity

using Eqn. 5.1 and the optical depths listed in Table 5.7. The correction to the

total column density for optically thick emission, with an opacity r -1.5, is only a

factor of 2.

5.3.3 Abundance Gradients in Cepheus A

The relative abundances in Cepheus A, along with an average temperature and

CO column density for each position, are presented in Table 5.8. The main

conclusion from this table is that there are no significant abundance variations

within the Cepheus A cloud core. Although the estimated error is near a factor of

two, we may be able to identify some possible small trends. These variations are
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Table 5.8. Relative Abundances in Ceph eiis A"-^
Species I'N 1.5's

N(CO)^ 8.0(18) 3.4(18)
~cs 3(:5) 2(:5)

CN 2(-5) 4(-5)
C2H l(-4) 7(.5)
HCO+ 4(-5) 2(-5
N2H+ 3(-6) 3(.6)
CH3C2H 2(-5) 2(-5)
HC3N 2(-6) i(-6)

SO l(-5) 2(-5)
CH3OH 5(-5) i(-4)

HCN 5(-5) 9(-5)

_HNC___2(^5)_____^^
"Abundances are relative to CO
''a(-b) = a X 10-^

Temperature in K.

CO column density from C^^O in cm"

not significant for a single species but may be significant if several species follow

the same variation in abundance. The first trend is in SO, which has a different

kinematic signature from other molecules, and has a small abundance variation.

The abundance variation observed for SO, with a slightly greater abundance to the

south, is mirrored by CH3OH, H^^cn, and CN. Since the kinematic information

for SO hints that this molecule is tracing the low velocity outflow this abundance

gradient may be related in some fashion to the outflow. This is supported by the

observations in Orion where each of these species, SO, CH3OH, and HCN (except

CN) is associated with the energetic events at Orion KL/BN. None of the other

species that are observed only in the quiescent ridge in Orion (eg. CH3C2H, C2H),

except CN, follow the variation observed for SO in Cepheus A.

Other species show an opposing gradient, with greater abundances towards

Ceph-A N (C2H, HCO+, HC3N), while and the abundances of CH3C2H, N2H+,

and HNC do not vary appreciably. Therefore one scenario for Cepheus A is that
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the gradient observed for these SDerip., wUV. i ,nese species, with larger abundances at Ceph-A N is
fonow., ,He evoluuon of the ,.esee„. Co.. THe aBu„aa„ee of SO, CH3OH, a.,

abundance gradient.

5.3.4 Chemical Abundances in CMC Cores

An examination of the chemistry in each core enables a few general statements
to be made about the chemical evolution in GMC cores.

1) Outside of KL/BN in Orion, chemical abundances in GMC cores typ.cally
only vary by factors of a few.

2) Within each core, some of the emission variations for the quiescent gas do
trace variations in abundance (eg. N^H^ in Orion, CH3C2H in M 17, SO m
Cepheus A). However, some of the abundance gradients are the result of variations

in the physical conditions, such as HC3N in M 17. Therefore careful accounting of

the physical conditions is necessary when computing chemical abundances.

3) The largest abundance variation observed is for N^H^ in Orion which shows

an order of magnitude difference between the RIP and KL/BN positions.

4) The most significant abundance variation within a single cloud is observed

in Orion between the northern radical-ion peak relative to both 4'S and the Bar.

5) M 17 and Cepheus A do exhibit some abundance variations which may be

related to physical features (eg. UV field in M 17
; outflows in Cepheus A). These

variations are not large and are within the estimated error of 50%.

iin a
These conclusions are limited to examining abundance variations withi

single cloud. We can also compare abundances among GMC cores a this is

presented in Table 5.9. In this table, for consistency with the comparison in Orion,

we have divided all relative abundances by the relative abundances observed for

the RIP. One conclusion that can drawn from this table is that the relative
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abundances in M 17 and Cepheus A are ,uite similar. Because of the complexities
of the chemistry along the Orion ridge (eg. KL/BN and the Bar) this comparison
IS not as easily extended to include Orion. If we exclude KL/BN and the Bar due
to their special characteristics, the abundances in Orion are also similar to M 17
and Cepheus A, although the Orion abundances are typically greater. The relative

abundances of CS, HCO^ CH3C.H, and HNC are the same (to within a factor of

4) for any position in Orion, M 17, or Cepheus A. These molecules may therefore

be marked as the tracers of quiescent material in CMC cores. However some
molecules exhibit large differences, in particular CS and C.H, which are a seven to

ten times more abundant in Orion than in Cepheus A or M 17.

These differences are outweighed by the general agreement. The position in

Orion that is has the greatest agreement with the other cores is the quiescent

Ridge position. At this position, 8 out of 12 molecules have relative abundances

that are within a factor of three of the M 17 and Cepheus A abundances. Other

positions in Orion come close to this agreement, such as the 4'S peak, where 9

molecules are within a factor of 4 of the M 17 and Cepheus A abundances. This

points to a general conclusion that the chemical evolution of CMC cores is not

markedly different. There are positions that stand out with specific characteristics,

such as the Bar or KL/BN, but these positions are remarkable in many other

observations. This does not mean that the chemistry in each core is exactly the

same. The relative abundances observed in Orion, at the RIP for example, are

typically greater than in either M 17 or Cepheus A. Rather, the general agreement

of relative abundances, to within factors of 3-4, argues that the chemistry active in

each core is not unique and that the chemical processes occurring in the different

CMC cores are relatively similar.
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Tab

Species

CS
CN
C2H
HCO+
N2H+
CH3C2H
HC3N
SO
CH30H
HON
HNC

e 5.9. Ahiindances in QMC CorPs rp

Orion A
Ridge KL/BN 1.5'S 4'S Bar

1.1

1.0

0.8

0.7

0.4

1.5

1.0

1.0

0.9

1.2

0.4

1.4

0.6

0.6

0.7

0.1

1.5

0.9

>7.7

>3.9

>2.4

0.4

1.1

0.6

0.4

0.7

0.2

1.0

1.0

2.8

1.7

1.7

0.2

1.4

0.6

0.6

0.2

0.3

0.5

1.4

1.2

1.0

0.4

0.4

0.8

1.0

0.5

1.0

0.1

<0.2

<0.2

0.8

<0.2

0.5

<0.3

ative to thp RTP
M 17

NC CC
0.7

0.3

0.3

0.6

0.2

1.2

0.3

1.0

0.2

0.3

0.3

0.9

0.7

0.5

0.6

0.4

0.5

0.5

2.0

0.4

0.5

0.3

Ceph-A

N
"03"

0.2

0.3

0.6

0.3

0.5

0.3

1.0

0.6

0.3

0.3

0.2

0.4

0.2

0.4

0.3

0.5

0.2

2.0

1.1

0.5

0.3



Chapter 6

Theoretical Models of Chemistry Applied to
THE Radical-Ion Peak

6.1 Introduction

Theoretical models of the chemical evolution of molecular clouds have been

fairly successful in predicting the observed abundances of many species (cf. Prasad

& Huntress 1980a,b; Graedel, Langer, k Frerking 1982; Leung, Herbst, & Huebner

1984; Millar and Freeman 1984; Brown & Rice 1986a,b; Herbst & Leung 1989;

Langer & Graedel 1989). These models range in complexity from modeling only

the "steady state" or equilibrium abundances, to others solving the so-called

"pseudo-time dependent" chemistry, to even more involved approaches. The

various models have also examined different aspects of chemical interactions. For

example, Tielens and Hollenbach (1985) examined the chemistry of a small set of

simple species in photon dominated regions, while Leung, Herbst, and Huebner

(1985) examined the formation of complex molecules in dense well shielded regions.

One common factor in all gas-phase models is the dominance of ion-molecule

reactions in controlling the chemical formation and destruction pathways.

Although the importance of certain classes of neutral-neutral reactions has

increased in recent years, due to low temperature laboratory measurements (Sim

et al 1992; 1993; 1994a,b), ion-molecule reactions are still believed to dominate the

formation paths of most molecular species (Bettens, Lee, & Herbst 1995).

These models have built upon advances in both theoretical and experimental

determinations of reaction rates, as well as on improved understanding of i)hysical

processes occurring in molecular clouds, such as shocks. One problem inherent in
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comparing such models with observations is that not only are the models uncertain
m some respects, due to unknown reaction rates, but the abundances are uncertan.
as well. As mentioned in section 4.4.4 chemical abundances are often uncertam by
up to an order of magnitude. We believe the relative abundances computed for

Orion, M 17, and Cepheus A presented in Chapters 4 and 5 are accurate to a

factor of ~2 and thus this investigation will place better constraints upon chemical

models. Perhaps more importantly this study has made independent estimates of

the density and temperature in molecular clouds which can be used as inputs for

the chemical models. These parameters are required for chemical modeling

because the density and temperature respectively govern the frequency and rate of

reactions. A detailed coupling between observations and theoretical modeling has

not been attempted previously since modeling efforts normally have been

undertaken independent of observational work.

Besides the gas-phase chemistry, another prominent area of current chemical

research is modeling the interactions of molecules with grain surfaces, sometimes

including reactions on the grain mantles. The inclusion of grain processes into

chemical networks is important because at typical cloud densities, n(H2) > 10^

cm-3, the timescale for molecular depletion is comparable, or less than, expected

cloud ages (cf. Iglesias 1977). This suggests that an efficient mechanism must exist

to return species back into the gas-phase. However, the desorption mechanism,

and the reactivity of interstellar grain mantles, are subjects matter of current

debate (Williams 1993). The present work will adopt the approach of comparing

the observations solely to a gas-phase chemical network. If gas-phase reactions are

unable to reproduce the observations then we will examine whether grains could

provide an active or supporting role in the chemical interactions. To examine this,

we can make use of the literature and an examination of gas-phase chemistry

including grain surface molecular depletion and desorption published in Borgin,
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Langer, & Goldsmith 1995. This work, treated in Appendix B, used a restricted

network which enables an examination of the general principles but does not allow
for a direct comparison with these observations.

Two separate approaches will be used to model the chemistry. First, we will

model the chemistry only in the dense well shielded interior of the cloud. Thi

the normal method in which chemical models are calculated and compared

observations. This will present the model in a clear fashion and will allow it to be

compared directly to previous modeling efforts. However, a well shielded chemical

model may not be applicable to these cores because of the proximity of

star formation sites. As mentioned earlier in Chapter 2, and discussed in detail

Chapter 3, current observational evidence suggests that giant molecular cloud

cores have a clumpy structure. This structure allows greater penetration of the

ultraviolet (UV) photons from the newly formed massive stars.

The general picture of giant molecular clouds that is emerging is one numerous

dense clumps embedded in a tenuous interclump medium (cf. Goldsmith 1995).

The irregular structure allows for greater penetration of UV photons, such that the

edge of each of clump is in itself a dense photodissociation region. To better

account for possible chemical changes induced by an enhanced UV field we have

constructed a one-dimensional (1-D) model, which includes an enhanced UV field.

In this model we integrate the contribution of the molecular abundances as a

function of cloud depth to produce a total column density that can be compared

directly with the observations. In such a 1-D cloud model the depth is fixed by the

observed C^^O column density. This model does not directly address the clumpy

structure of clouds but instead allows for an examination of the effects of the UV

field on chemical abundances as a function of depth. We will also examine the

effects of varying the cloud depth and thereby can approximate the eflfects of

having small clumps that allow greater UV penetration. A common practice in
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chemical studies of molecular Couds is to place a,, column densities relative to the
abundance of H. For this study we have divided all column dens.ties by the CO
column density. We will refer to all column densities relative to CO as "relative
abundances". In some instances when we are presenting general results we will
present abundances relative to H„ these will be referred to as "abundances".

6.2 The Chemical Model

We have used the reaction network compiled by by Millar et al (1991) This
network mcludes the formation of complex molecules, photodissociation of

molecules, and the enhanced reactions rates of ions with high dipole moment
molecules. The gas-phase reaction network consists of the major formation and
destruction pathways for carbon-, oxygen-, nitrogen-, and sulfur-bearing species,

including all of the molecules encompassed by this study. The entire reaction set

links 389 species through a network of more than 3000 reactions. Below we outline

some of the basic aspects of the chemical reaction network.

Since we are modeling regions that are exposed to enhanced ultraviolet (UV)

radiation fields, the chemical reaction scheme accounts for the photodissociation

and photoionization of molecules. We have used rates for CO photodissociation

presented in van Dishoeck k Black (1988) which include an approximation for CO
self-shielding. The transition from atomic to molecular form for most molecular

species occurs much deeper in the cloud than that for H to H2. Therefore we have

not included the effects of self-shielding. In our model the molecular hydrogen

density remains constant in time. The main destruction process for H2 is cosmic

ray ionization and the main formation path is immediate H2 formation when a

hydrogen atom sticks to a grain. It should be kept in mind, however, that for very

small values of visual extinction (< 0.25 - 0.5 mag) the amount of H2 will be

overestimated.
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^ 4.28(-5)
O

.
3.52(-4)

^ 4.0(-8)

4.0(-8)

6.0(-9)

6.0(-9)
Na+

4.0(-9)

6.0(-9)

"Numbers are written in the form a(-b) = a x lO"''.

The coupled differential equations governing the gas-grain chemical evolution

are solved using a variant of the Gear (1971) algorithm, the code used is called

LSODE (Hindmarsh 1980). This code, which is a linear impHcit multistep method,
utilizes variable time step and error control techniques to preserve numerical

accuracy during the integration. The adjustable variables for a given calculation

are the space density of molecular hydrogen, n{H,), the factor by which the

external UV radiation is enhanced above the normal interstellar radiation field

(ISRF), X, the gas temperature, T,,„ and the visual extinction to the center of the

cloud, A,. TV is the visual extinction proceeding from edge to center such that

= Av .

For the initial conditions, presented in Table 6.1, we use depleted elemental

abundances based for the most part on observations in the diffuse cloud towards C

Ophiuchi (Savage, Cardelli, and Sofia 1992, see also Graedel et al 1982). The

abundance of the helium ion was fixed by balancing the major formation and

destruction paths at t = 0 (see Graedel, Langer, & Frerking 1982). The carbon,

sulfur, silicon, and iron are assumed to be initially all in ionized form while oxygen

and nitrogen are neutral.

This type of time dependent chemical model, with these initial conditions, is

often labeled a "pseudo-time dependent" calculation. The assumption is that the
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initial cloud starts out in a diffuse state, with all the atoms singly ionized

(provded the ionization potential is < 13.6 eV) and then undergoes instantaneous
collapse, at t = 0. to higher density. The chemical clock .s started at t = 0 and the
molecular abundances evolve under fixed physical conditions. In th.s fashion the
model assumes a sudden "collapse", but does not model the dynamics of the event
itself. This approximation may seem, at first glance, to be rather unphysical, but
the timescale of chemical interactions is governed primarily by the densitv.

Therefore, the chemical evolution in the diffuse state will occur at a much slower

rate then in the dense state. Thus, the term "time" in pseudo-time dependent

model becomes more realistic.

In general, times in chemical models have been broken up into three separate

timescales: early times, 10^ < t < 10^ yrs, intermediate times, 10« < t < 10^ yr,

and steady state, t > 10^ yrs. These models have shown that complex moleculel

actually peak at early times, t ~ 10^ yr, when the atomic carbon abundance is

higher, and decline before the onset of equilibrium (Herbst 1983). Since our study

has included several complex species in our observations, such as CH3C2H, the

inclusion of time dependence in the chemical calculations is critical. Moreover, the

sources observed for this project are regions of high mass star formation with

associated outflows, such as the plateau region in Orion or the high velocity flows

in Cepheus A. These dynamical events may inhibit the attainment of chemical

equilibrium and require an examination of the time dependence involved in the

chemical evolution.

6.3 Chemical Model for the RIP

ion
We will first apply the chemical model to the radical-ion peak (RIP) in Ori

because this position has been shown (see Section 4.4.3) to be the closest to

quiescent chemical evolution by comparison to dark cloud cores. For the physical

conditions we have adopted n(H2) = 10^ cm-^ and T^ = 25 K. The density and



164

temperatures were chosen based on the results of Chapters 2 and 3. We have
computed abundances for a depth of 20.0 mag. At this cloud depth the rates

for photodissociation are negligible, even for the enhanced radiation fields observed
in Orion.

The time evolution of the abundances for all molecules surveyed and other

important species is presented in Figures 6.1 - Figures 6.3. The general features of

the evolution is in agreement with previous theoretical models (Leung, Herbst, &
Huebner 1985; Herbst & Leung 1989; Langer & Graedel 1989). The ionized carbon

recombines quickly, in ^1000 yrs, to form C. The neutral carbon takes slightly

longer to be processed into CO, with this species becoming the dominant carbon

reservoir by t = 10^ yr. The abundance of neutral carbon shows a sharp declme at

t ~ lO'* yr, which is related to, but not entirely dominated by, the formation of O2,

a major destroyer of C through the reaction C + O2 ^ CO + O. It is at these

early times, where the neutral carbon abundance reaches a maximum, that the

peak abundances are seen for many of the species included in our study. These are

CN, HCN, HNC, C2H, HC3N, CH3OH, CH3C2H, and also CS. Only SO, HCO+,

and N2H+ have abundances that are greater at equilibrium than at this early time.

The results of this model and a comparison to the relative abundances

measured in the RIP are presented in Table 6.2. We have also included a

measurement relative atomic C abundance from White & Sandell (1995). This

ratio is important as a measure of the amount of carbon available in the gas-phase.

It should be stressed that the observed C/CO ratio listed in this table may be

tracing only the interclump medium. The interclump medium is expected to have

more neutral carbon than in dense clumps because of enhanced photodestruction

of CO (Meixner and Tielens 1993). Therefore this ratio should be viewed as an

upper limit.



Figure 6.1. Time evolution for the major carbon reservoirs and trace species at
= 20.0 mag.
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time (yrs)

Figure 6.2. Time evolution for selected trace species at Ty = 20.0



Figure 6.3. Time evolution for selected trace species at = 20.0 rnag.
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Table.6.2._Relative AhiindanceCalculakd^rJ^
Calculated

Species

CS
CN
C2H
HCO+
N2H+
CH3C2H
HC3N
SO
CH30H
HCN
HNC
C

^Shielded Qpn^pj^^q.ft

= 10^ yr t = 10^ yr

2(-4) 2(-5)

8(-6) 3(-7)

4(-3) 4(-6)

l(-6) 2(-6)

2(-9) 4(-9)

3(-7) 6(-8)

5(-4) 2(-5)

8(-8) 7(-5)

6(-4) l(-5)

6(-4) 5(-6)

3(-4) 2(-6)

8(-3) 2f-6)

''Numbers are written in the form a(-b) = a x lO"*.

Abundances are relative to CO
''from White & Sandell 1995

The most striking conclusion from the table is that at only at very early times

t ~ 10^ yrs are the abundances even close to the observed values. An this time CS,

HCO+, and HCN are in reasonable agreement, however the model produces an

order of magnitude more C2H and nearly two orders of magnitude more HC3N.

The theoretical model also underproduces, by two orders of magnitude, the

relative abundances of CN, CH3C2H, and N2H+, and SO. Therefore model of well

shielded regions with physical conditions directly determined from observations

can only match the abundances of 3 out of 12 species, at extremely short times,

which suggests that something is drastically wrong with the model.

We examine the effect of density on the chemical evolution in Table 6.3. The

relative abundances are presented at 10^ yr because the abundances for most

species are greatest at early times suggesting that short timescales are more

appropriate. One trend observed in this table is that the molecules, HCN, HNC,

CH3OH, HC3N, CH3C2H, and C2H all have relative abundances that are more

than an order of magnitude higher at n(H2) = 10' cm~^ than at n(H2) = 10^
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cS:SiS^""^ " ^^'^"'-'^ S'-Med Dense

Species

CS
CN
C2H
HCO+
N2H+
CH3C2H
HC3N
SO
CH3OH
HCN
HNC
C

This Work
Calculated

-3

9(-5)

3(-4)

2(-3)

6(-5)

2(-7)

9(-6)

2(-4)

3(-7)

3(-3)

3(-4)

2(-4)

0.45

1x10^ cm-3

4(-5)

9(-6)

5(-5)

l(-5)

3(-8)

2(-6)

5(-5)

l(-5)

3(-4)

2(-5)

9(-6)

5(-4)

1x10^ cm-3 lxlO^cm-3
2(-5) l(-4)

3 (-7) l(-3)

4(-6) 9(-4)

2(-6) 6(-5)

4(-9) 2(-8)

6(-8) 6(-6)

2(-5) 6(-5)

7(-5) 2(-5)

l(-5) 3(-5)

5(-6) 2(-3)

2(-6) l(-3)

2(-6) 0.67

Observed

RIP

l(-4)

l(-4)

4(-4)

7(-5)

l(-5)

4(-5)

6(-6)

l(-5)

9(-5)

2(-4)

6(-5)

O.OS'^

Abundances are relative to CO and presented at 10^ yr
'^Herbst & Leung 1989; T/^ = 10 K
''from White & Sandell 1995

cm~\ The relative abundances of the molecular ions HCO+ and N2H+ show the

same trend but with somewhat smaller increases. Comparing these relative

abundances with the observations it appears that a density of n(H2) = 10^ cm^^,

and early times, provides the best match to the observations. However, this

density is certainly inappropriate for the Orion ridge, or for that matter, M17 or

Cepheus A. All evidence from multitransitional studies of high dipole moment

molecules, such as that presented in Chapter 3, suggests the dense regions in GMC
cores have H2 densities at least > 10^ cm-^.

The dependence of molecular abundances with density is due to two related

factors. First, molecular complexity is governed by the abundance of the H3+ ion

(Graedel, Langer, & Frerking 1982). For example, hydrocarbons and other

complex species are initiated through the C + -> CH+ + H2 reaction (Hcrbst

and Leung 1989). The abundance of also has a weak inverse power law
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dependence on the density. A large abundanrp r>f t(,=J 141 ge dDunaance at the precursor ion will therefore
lead to higher abundances for the dependent species, such as HCO+.

The changing density also has an effect on chemical timescales since the
reactions will be more frequent at higher densities. This is illustrated in Figure 6 4
where we show the time dependence of C+, C and CO. The C+ and CO time

dependence are shown only at a density of n(H,) = 10^ cm-, „hile the evolution
of the neutral carbon abundance is presented for three densities n(H,) = lO^ 10^,

and 10^ cm~^.

In this figure the sharp decline in the carbon abundance occurs at progressively

earlier times as the density is increased. The Ume drfference ^s qmte ^mportant

since most eomplex molecules form when the C/CO ratio is close to one (Leung,

Herbst, k Huebner 1984). Although the actual peak of the complex molecule

'

abundances occurs slightly later in time. Thus, the decline in relative abundance

with density of CH3C.H, HC3N, C.H, HCN, and HNC is partially due to the peak

abundances of these species occurring at times prior to t = 10^ yr. Instead,

examining Figures 6.1 - Figures 6.3, at n(H2) = 10« cm-^ the peak complex

molecule abundances will occur at a few thousand years and not at 10^ yr.

Thus knowledge of the density is necessary to set the timescales for chemical

interactions. Because of this dependence whenever we refer to a time in the text

we will also list the density used in the calculation. This is the first and a

significant result of the comparison between theory and observations. Using the

densities directly determined though observations and comparing the chemical

theory with observations finds the greatest agreement at extremely early times and

indicates that chemical timescales determined for the RIP are very short, t < 10'*

yrs. This conclusion will be examined more closely in the following sections.

However, this model may be inappropriate for GMC cores because we have not

accounted for the enhanced radiation field due to newly formed stars.
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Time (years)

Figure 6.4. Time evolution of C+, C, and CO abundances (abundances are relative
to H2) at TV = 20.0 mag. The numbers in parenthesis are log[n(H2)], the density of
the model.
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6.3.1 Comparison with Previous Theoretical Models

Before introducing the more compUcated one dimensional model, we will first

compare our theoretical and observational results with previous modeling efforts

This comparison is shown in Table 6.3. For this purpose we have chosen the work
of Herbst, & Leung (1989; hereafter HL). HL was chosen because their model
includes all of the molecules observed and is from a different reaction network. HL
only present their results at n(H.) . 1 x 10^ cm-. This discussion is complicated

due to differing assumptions on initial conditions and reactions, but the

comparison is useful to examine these results in light of previous work.

The relative abundances of CS, HCO+,CH3C2H, CN, and C,H are different by

no more than a factor of three, while the relative abundances of HCN, HNC, and

N2H+ agree to within an order of magnitude. But our model produces two orders

of magnitude more CH3OH, while HL predicts two orders of magnitude more SO.

It is worth noting that these differences occur in spite of the fact that the

ionization fraction and the relative abundance of the key H3+ ion are virtually

identical between the two models.

The agreement between the relative abundance of electrons and H3+ suggests

that the disparity between the two networks is not due to any difference in the

initial conditions or the cosmic ray ionization rate, since the metal ions control the

ionization fraction and cosmic rays control the abundance of H^ Instead, these

differences are probably the result of different pathways for the formation and

destruction of the various molecular species. Millar, Leung, and Herbst (1987)

have made a detailed comparison between the networks compiled by Millar and

co-workers and that compiled by Herbst and Leung. This study found that the

differences between the two networks was due to a philosophical disagreement on

which reactions are more likely to proceed under interstellar conditions. It is likely

the differences have narrowed in recent years as more reactions have been
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measured in the lab and the theory .mproved. That order of magnitude differences

still exist emphasizes the fact that chemical modeling, mostly for complex species,

is still a very fluid field subject to continuous change and revision wh.ch can result

in large changes in predicted abundances. We will address the consequences of this

in the following sections.

In spite of these uncertainties one facet of the complex molecular chemistry

that is unlikely to change is the requirement that neutral carbon exist in

abundance to form these species. Chemical reactions, for simple molecules such as

CO where the chemistry is well determined, consistently lead to the formation of

extremely stable species that are "end points" in the chemical evolution. For

gas-phase chemistry these are CO (carbon and oxygen), O2 (oxygen), N and

N2 (nitrogen). Because these species are so stable at equilibrium they will be the

major reservoirs of reactive atomic species and leave only trace amounts to form

other molecules. Therefore either some mechanism must be found to continuously

destroy these species or early times prior to the formation of stable molecule must

be invoked.

6.4 Chemical Model Including Enhanced Radiation Field

6.4.1 One-Dimensional Model

To account for possible line of sight differences in the chemistry we have

constructed a one dimensional cloud model by running a pseudo-time dependent

calculation to times up to 10^ yr with fixed physical conditions for a given visual

extinction, defining a "zone". The visual extinction was then incremented from the

cloud edge {tv = 0.0 mag) up to some maximum value, normally Ay ~ 15 - 20

mag, defining a set of zones. A typical run had 40 zones between Ty ~ 0.0 - 20.0

mag. Each zone was independent of other zones except for the calculation of total

CO and H2 column densities required for the CO self-shielding photoratc. In this

fashion the physical conditions, density and temperature, can vary with depth or
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be held constant for a ..uniform" Coud mode,. For this work the physical

enables an examination of the the effects nf i\rr.^ a ^ ,tne enects of time and depth on the chemistry
explicitly and simultaneously.

The chemical abundances are computed by integrating the contribution from
each molecule in each zone up to some depth Hmit (assuming N(H.) = 10-A

)

This creates a computed column densHy for each speces. We have fixed the cloud
depth by using the column density of C-0, converted to the CO column density
using an isotopic ratio of -0/.»0 = 500. The predicted column density for each

molecule is then divided by the CO column dens.ty enabling a direct comparison
to be made with the observations.

One further modification was performed. Real molecular clouds have two sides,

for example in Orion the H II region is on the front of the cloud, therefore one side

of the cloud is receiving an enhanced photon flux {x > 1), while the other side of

the cloud, the back side, is only impinged by the ISRF {x ~ 1). In order to

account for this we have divided the CO column density by two and computed two

separate models: one with an enhanced ultra-violet field (x > 1) and the other

with the IRSF ix = 1). The predicted column densities for each molecule from the

separate models were added together to produce a single set of total column

densities. The column densities are divided by the total CO column density to

create a model with an enhanced UV field only on one side of the cloud.

6.4.2 Comparison with Observations

We will once again compare our results first to the RIP in Orion. The physical

conditions used for this model are n(H2) = 10^ cm-^, T^ = 25 K, and N(CO) =

4.4 X 10^» cm-\

For simplicity in modeling, we have lowered the density by a factor of ten.

This brings the timescales for complex molecule formation in line with the
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previous chemical work (^0^ Ho.ever, as outUned the prev^ous secUon
the chermcal a,e can ,e lowered ty atout an order of magmtude to tr^ng then, ^n
Hue .Uh the results at n(H.) = ,^-3

^^^^^^^^
evolut^on ^s a non-Hnear process tMs does not mean that the abundances at tMs
lower densUy mil be equ^valent to the results at n(H,) = 1(P cm-\ Ho^never, the

differences are not large enough to change our results.

It is also necessary to make an estimate of the UV field enhancement towards

the radical-ion peak. Theoretical models of dense clumpy photodissociation

regions have shown the that flux from ionized carbon can be related to the UV
field enhancement factor (Burton, Hollenbach, k Tielens 1991). We have

estimated an enhancement factor of x = 10^ from the intensity of the C+ emission

at the RIP taken from the C+ map of Stacey et al (1993) and the theoretical

models of Burton, Hollenbach, and Tielens (1991). This estimate is uncertain but

should provide some measure of the ultraviolet field which is certainly lower at the

radical-ion peak than further south near the ionized bar, where the enhancement

factor has been estimated to be x ~10^
( Tielens & Hollenbach 1985b).

To emphasize why the 1-D model is more appropriate for dense regions exposed

to an enhanced UV field, Figures 6.5 and 6.6 present the abundance profiles for

the survey species at t = 10^ yr for both sides of the cloud, one impinged by an

enhanced flux of UV photons (Figures 6.5) and the other bathed by the ISRF

(Figure 6.6). These profiles were created using the physical conditions for the RIR

Comparing the abundance profiles the most notable feature is the

enhancement of the primary carbon species: C+, C, and CO at the cloud edge.

With a large UV field significant amounts of ionized and neutral carbon are

observed deep into the cloud due to CO photodissociation. For example, the

fractional abundance of neutral carbon is above ~10~^ until Ty > 6 mag in the

model with x = 10^ but, for x 1 the abundance of C falls below ^10"^ at ty ~



176

3 mag. The inclusion of clumps i„,,„ u„. n,odel shown here will further increase the
abundances of C+ and C.

These figures illustrate the importance of integrating the cloud model, and
including the cloud surfaces, when comparing model results with data from giant

molecular cloud cores. The significance of this structure on the edges of dense

clumps was recognized several years ago as providing a possible solution for the

high abundance of neutral carbon in interstellar clouds (Tielens and Hollenbach

1985a). While the import of cloud structure for neutral carbon has been

recognized, the depth dependence for the chemistry of other species has rarely been

examined. Vialla (1986) computed abundances as a function of cloud depth, but

this was for an equilibrium chemical model which does not include complex species.

Upon examination, the abundance profiles, in general, show similar structure.

For most molecules the abundances are suppressed at low ry, due to

photodcstruction, and increase as the radiation field is attenuated; the abundances

are suppressed to higher ry on the x = 10^ side (Figure 6.5), than the side with

X = 1 (Figure 6.6). The two notable exceptions to this trend are C2H and CN.

The abundance of C2H is greater at very low extinctions in spite of the high

photodcstruction rates. The CN radical, on the other hand, has a dependence that

is fairly constant with depth. A small peak in the CN abundance is observed at Ty

= 1.5 mag where the abundances of most other species is suppressed due to

photodcstruction for the x = 10^ side. CN and C2H are present at low Ty because

they have formation pathways linked to ionized and atomic carbon. For a

discussion of the formation pathways at low extinction for these species see

Appendix B3 in Bergin, Langor, and Goldsmith (1995).

A comparison between the 1-D model of the RIP at difforont times and the

observations is presented in Table 6.4. Reasonable agreement is found for CS, SO,

and CH3OH, and early time 1-D models. However, in spite of the reasonable



177

Figure 6.5. Profile of gas-phase abundances (abundances relative to H2) against
depth for all of the observed molecules. The physical conditions are for the
radical-ion peak model: n(H2) - 10^ cm-^ = 25 K, and x = lOl The profiles

are presented for t = 10^ yr.
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correspondence between theory and observations for a few molecules, the

theoretical predictions for many more species do not match the relative

abundances determined towards the RIP at any time. The early time relative

abundances of HCN and HNC m the 1-D model are both a factor of ^10 below the

observations, while CH3C.H, CN, and N,H- have abundances m the 1-D model
that are more than an order of magnitude below the observations.

These differences are highlighted by the extremely low C/CO ratio predicted

by the theory. At all times the C/CO ratio is smaller than observed by a factor of

-25. The 1-D model, however, is more successful than the single zone model at ry

= 20 mag, where the discrepancy is a factor of 100. As mentioned in Section 6.3,

the neutral carbon observations may not be probing directly the amount of carbon

in the dense gas. However, a factor of 25-100 is a significant difference and

indicates problems or limitations of the model. The more complicated 1-D model,

including line of sight variations in abundances, still cannot account for the

relative abundances derived for the radical-ion peak in Orion. An additional

mechanism is required to provide the extra neutral carbon to form both complex

species and some simple species, such as HCN and HNC. Thus, these observations

support the well documented "carbon problem" in dense molecular clouds (Philips

& Huggins 1981; Graedel, Langer, & Frerking 1982; Herbst 1983; Leung, Herbst, &
Huebner 1985; Langer k Graedel 1989).

6.4.3 Effect of Clumps

One possible solution for the carbon problem is that the clumpy structure of

the cloud could increase the surface to volume ratio, and thus effectively enhance

dissociation of CO to provide the required neutral carbon. This has been

suggested as the solution to the large abundance of atomic C deep in CMC cores

(Tielens k Hollenbach 1985). While it is likely that this mechanism can produce

enough atomic carbon to match observations, the effect on more complex
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Table 6.4.

One-Dimensional MoHpI

Species

CS
CN
C2H
HCO+
N2H+
CH3C2H
HC3N
SO
CH3OH
HON
HNC
C

Relative Abundance (relative to rn\ r • r

ilModel^'''
lieiative to CO) Comparison for the

one t=lxlO^

4(-5j 4(-5)

9(-6j 8(-6)

5(-5) l(-4)

l(-5) l(-5)

3(-8)

2(-6) l(-6)

5(-5) 3(-5)

l(-5) 9(-6)

3(-4) 2(-4)

2(-5) 2(-5)

9(-6) 6(-6)

5(-4) 3(-3)

1-D Model

t=3xlOVr

2(-6)

2(-5)

l(-5)

3(-8)

3(-7)

2(-6)

l(-4)

l(-5)

3(-6)

2(-6)

2(-3)

"t^IxlOVr'

(-5)

(-6)

(-6)

(-5)

(-7)

(-8)

(-7)

(-4)

(-6)

(-6)

(-6)

(-3)

t=3xl0>r

(-5)

(-6)

(-6)

(-5)

(-7)

(-8)

(-8)

(-4)

(-6)

(-6)

(-6)

(-3)

Observed

RIP

l(-4)

l(-4)

4(-4)

7(-5)

l(-5)

4(-5)

6(-6)

l(-5)

9(-5)

2(-4)

6(-5)

0.05''
"Numbers are written in the form a(-b) = a x lO"*.

''n(H2)= 10^ cm-3; T,=25 K; x = 1000; A,=31
^Well shielded single zone model where photoprocesses are negligible
from White & Sandell 1995

molecules has not been studied. We have used the one-dimensional uniform

density and temperature model presented in the previous section to investigate

this effect. In the one-dimensional model the depth of the cloud is fixed by the

C^^O column density. In a clumpy cloud model this column density is the result of

the superposition of numerous clumps, with N,,,^p (column density of a clump) «
N total, along the line of sight. Therefore, by progressively lowering the cloud depth

and computing column densities, we can mirror the effects of progressively smaller

clumps. If the abundances of any molecule is enhanced at low r^, because of the

high abundance of neutral carbon, then the abundance relative to CO will get

larger since self-shielding will maintain the a fairly constant abundance of CO with

depth. Of course, for very small cloud depths and large radiation fields, the

abundance of CO is also reduced but, for these depths the photodestruction rates

are high enough to suppress the formation of most molecules.
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The clump model wa. constructed using the 1-D model of the previous section
and the dependence of abundance with clump s.e is shown in F.gure 6.7. The
relative abundances of each species were normalized to its abundance at A. = 15
where the photo-rates are negligible. We dehne th.s term as the abundance ratio

A value of log(abundance ratio) = 0 implies the abundance of the given molecule
or atom is the same as for ry = 15 mag, while if log(abundance ratio) > 0, then
the abundance for that species is enhanced above the value in the well shielded

interior of the clump.

The observed distribution of abundance ratio with clump size is rather

complicated, but we can isolate 3 different types of behavior. The first is the

species which have large abundance enhancements when the 1-D depth is small,

these are C+and C. This behavior is simply understood as the direct result of CO
photodissociation, which will have a preferentially larger effect for smaller clump

sizes. A different dependence is observed for HCN, CS, HC3N, and HCO+. The

abundances of these species are greatly reduced for small clumps and then

gradually increase to their well shielded value as the radiation field is attenuated.

The other survey species are not shown in this figure, but have a similar

dependence as HCN, CS, HCO+, and HC3N.

The final behavior is exhibited by CN and C2H. The CN abundance remains

close to the value in the cloud interior, almost independent of the clump size, while

the C2H abundance is enhanced by a factor of ~1.5 for moderate sized clumps

with Av^ = 8-10. Since these species can form nearly directly from C+ and C they

are enhanced in the photodestruction region.

This difference suggests that these species may be good tracers of the UV field

in dense regions. Fuente et al (1993) suggested that the CN/HCN ratio would be a

good tracer of UV fields. Figure 6.7 illustrates that this ratio is indeed dependent

on the UV field. For regions with greater penetration the HCN abundance is
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Clump Size (Ay)

Figure 6.7. Plot of the logarithm of the relative abundance for a clump of variable
size divided by the relative abundance from a clump with a depth of Ay = 15 mag.
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greatly reduced, while the abundance of CN stays almost constant. Fuente et al

(1993) also hypothesized that C.H may be a good tracer of the UV field as well
This is in agreement with our results because C,H is the only molecule that
actually has an abundance enhancement, albeit a small one, in less shielded

regions. These effects should be greater for larger UV fields. However, if the

temperatures are much higher at the edges of clumps where the UV field is

unattenuated then the rates for the neutral-neutral destruction reactions could

begm to compete with the enhanced production rates and decrease these effects.

Detailed modeling including a temperature gradient would be useful in this regard

Outside of CN and C,H, the chemistry of most molecules is still dominated by

photodissociation. It is not until the UV field has been significantly attenuated

that other species, such as HCN and CS form in abundance, and at these depths

the abundance of carbon is not high enough to make a diflference in their

production rates. Therefore, although the clumpy model can produce the observed

amounts of atomic and ionized carbon, clumps cannot explain the large

abundances of most molecules, in fact a clumpy model makes it more difficult for

the theory to be reconciled with the observations. A method must be found to raise

the amount of neutral carbon to produce other species deep inside the clumps.

6.4.4 Effect of C/O Ratio on Chemical Evolution

Over the past decade chemical models have used the carbon to oxygen ratio,

measured along lines-of-sight towards diffuse clouds, of C/O ~ 0.4. With this

constraint, chemical studies have been unable to reproduce the observed amount of

neutral carbon and complex molecules in giant molecular clouds cores (Leung,

Herbst, k Huebner 1985).

The cosmic C/O ratio of 0.4 is unable to produce complex carbon bearing

species because it allows most of the carbon to bo locked up into the stable CO

molecule by 3 x 10^ yr at n(H2) = 10^ cm'^ With a large fraction of the carbon



184

locked up into molecular form th.s leaves a significant reservoir of atomic oxygen
available to react in the gas phase. The excess oxygen will qu.ckly form simple
molecules (OH, H,0, O.) and deplete the remaining atomic and ion.ed carbon
through reactions of carbon with these species, such as

C+ + OH ^ HCO\
(g J)

C+ + H^0 ~i HCO+ + H
(g 2)

and,

C + 02^C0 + 0.
3)

These few reactions are illustrative of the difficulty in maintaining atomic (and

ionized) carbon at times > 10^ yr, because significant amounts of oxygen in the

gas phase will result in the production of O2, OH, and H2O at these times.

A plausible solution to increase the amount of carbon in the gas-phase is to

raise the C/0 ratio, which will lower the depletion paths from atomic and ionized

carbon and allow for both C and CO to co-exist over a wide range of densities (cf

Langer et al 1984). Indeed the 1.3mm survey of Orion KL/BN by Blake et al

(1987; hereafter BSGP) found that in order to match the theory with the

abundances observed for the quiescent ridge in Orion a C/0 ratio > 0.4 was

necessary. A greater C/0 ratio has also been suggested as the reason for the

non-detection of the '''O'^O isotope in TMC2, L134N, and B335 (Fuente et al

1993). Some evidence for a C/0 ratio ~ 0.8 has been found from the atomic

oxygen abundances derived from spectral lines of stars in the Orion association by

Cuhna and Lambert (1992).

To achieve these ratios either the initial abundance of either carbon or oxygen

must be non-cosmic, as inferred by Cuhna and Lambert (1992) or some mechanism
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gas Phase relative to

t e ca.,o„. o„e poss.U.U,, p.. ..waM BSGP, Swa.e (.89), and Fuente et a,
(1993), was for carbon and oxygen ato^s to st.ck to grain snrfaces with aqua,

atoms to the saturated form (H.O, and CH,). H.O wU, be strongly bound to the
gram mantles whUe the polar CH, molecule will rapidly desorb from the surface
Plactng the carbon back into the ga. phase. There exists some recent observafona.
evidence that the C/0 ratio may be altered by some selective depletion

mechanism. Current observations of the absorption profile of CO ice suggests that
the surface CO is embedded in mantles of two distinct compositions. One
component exhibits a weak, broad spectral feature (Sandford et al 1988)- this is

presumed to be CO embedded in a mantle dominated by polar molecules, probably
H.O. The other spectral feature is a narrow, stronger component superposed on
the broad feature. The origin of this component is inferred to be CO ice in a

matrix dominated by nonpolar species, possibly N^, 0^, and CO2 (Tielens et al

1991). The two grain mantle components could reflect differences in the grain

mantle constituents along the line of sight, or gas-phase abundance differences at

the time of mantle formation.

In Appendix B we present a model of the gas-phase chemistry in dense

interstellar clouds including grain surface molecular depletion and desorption. This

study found that the binding in the non-polar mantle could be considerably less

than in the H^O dominated mantle. Therefore the non-polar mantle could be in

constant equilibrium with the gas phase, putting CO, and possibly COj and CH4,

back into the gas phase, while the water remains locked on the grain surface.

Whittet (1993) finds and abundance (relative to H2) of water frozen on grain

surfaces from observations along lines of sight towards field stars in Taurus to be

~8.6 X 10-^ which is a significant fraction of the available oxygen. If the HjO
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formed on the grain surface dur.ng the collapse of a diffuse region to a dense core
then this would lower the initial oxygen abundance dur.ng the crucial period pHor
to steady state. If we assume that the observed abundance of water ice reduces the
mitial oxygen abundance then the C/0 ratio would be ^0.6. Depletion is also

strongly dependent on the density suggesting that the C/0 ratio could be even
higher than 0.6 given the fact that CMC cores are at least an order of magnitude
denser than their dark cloud counterparts (Schloerb et al 1983; Chapter 3).

Motivated by these observations we have examined the effect of different C/0
ratios on the chemistry of the RIP. For these models we have used the 1-D zone

model with the same initial conditions as in the previous two sections. Figures 6.8

- Figures 6.10 present these results. We have modeled the effects of three different

initial C/0 ratios, the cosmic ratio of 0.4, and two depleted oxygen values of C/0
= 0.6 and C/0 - 1.0. The relative abundances of all the molecular species are

shown in these figures as a function of time and the initial C/0 ratio. The solid

lines in the figures is the relative abundance measured at the radical-ion peak. The

dashed lines are a factor of three above and below the measurement and represent

the range in which reasonable agreement is made between the theory and the

observations.

These figures illustrate the results outlined in Section 6.4.4
, that for a C/0

ratio of 0.4, even early times, when the atomic carbon abundance is greater,

cannot reproduce the observations. Raising the C/0 ratio to 0.6 does alleviate

some of the differences, but a large disparity between theory and observations still

exists for CH3C2H, N2H+, and C, and to a lesser extent for HCO+, HON, and

HNC. It is clear that a C/0 ratio of 1.0 provides the most reasonable match to the

observations. A C/0 ratio of 1.0 brings 9 out of 12 species into agreement with the

RIP relative abundances. This ratio also allows the abundances for these species

to be reproduced at later times ~ 10^ yr for n(H2) = 10^ cm-^ The agreement at



187

time (yrs)
Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 6.8. Panels showing the relative abundances of CH3OH, C, CH3C2H, and
HCN as a function of time and the initial gas-phase C/0 ratio for the l-D RIP
model. The solid line denotes the observed relative abundance observed towards the
RIP, while the dashed lines are a factor of three above and below the observations
denoting a reasonable estimate of the error. The arrows below the solid line in the
neutral carbon panel suggest that the observed value is an upper limit.
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time (yrs)
Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 - 0.6

Triangles: gas-phase C/0 = 1.0

Figure 6.9. Panels showing the relative abundances of the radicals and ions, CN,
C2H, HCO+, and N2H+ as a function of time and the initial gas-phase C/o'ratio
for the 1-D RIP model. The solid line denotes the obsorvod relative abundance
observed towards the RIP, while the dashed lines are a factor of three above and
below the observations denoting a reasonable estimate of the error.
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time (yrs)
Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 6.10. Panels showing the relative abundances of HC3N, HNC, SO, and CS as
a function of time and the initial gas-phase C/0 ratio for the 1-D RIP model. The
solid line denotes the observed relative abundance observed towards the RIP, while
the dashed lines are a factor of three above and below the observations denoting a
reasonable estimate of the error.
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5ac.<,n e.S). The only species that are not in agreement for C/0 = 1 are
N,H+, HC3N, and SO.

Of these the sharp drop in the relative abundance of SO with the C/0 rafo is

mCecule, CS, which shows almost no dependence with tinre or C/0 ratio The
d.sparate behav.or of the two nrajor sulfur-bearing molecules suggests that the
CS/SO rat,o may be a good probe of the C/0 ratio in molecular clouds Indeed
th>s ratio has been used before by Swade (1989) to provide an estimate of the
amount of oxygen in L134N. Figure 6.11 presents the dependence of this ratio as a
function of time and the initial carbon to oxygen ratio. The observed dependence
is quite striking, the CS/SO ratio is extremely sensitive to amount of carbon and
oxygen, but for a given C/O ratio two solutions exist, for early times (t = 10* yr)

and at times t ; 3 x 10' yr. The dichotomy between the early time results and
later times suggests that other observations, of a molecule sensitive to time

evolution, are required to discriminate between the two possible solutions. This

sensitivity of the CS/SO ratio to both time and to the higher C/0 ratios is

primarily due to a drop in the formation rate of SO, through a reaction of atomic

sulfur with OH. For high C/0 ratios, the excess carbon rapidly destroys OH
(forming CO) and therefore produces less SO. We outline the mechanisms for this

dependence in greater detail in the Appendix.

We can examine Figures 6.8 - 6.10 to see which C/0 ratio is most appropriate

for these observations. The observed CS/SO ratio of 10 has two possible solutions,

C/0 ~ 0.5 at 10* yr, and C/O ~ 0.8 at later times. Of these two the best fit to

the other molecules occurs for C/O ~ 0.8 and -10'' yrs, because the lower C/0
ratio of 0.6 clearly cannot reproduce the observed relative abundances for most

other molecules. A C/0 ratio of 0.8 will also bring the abundance of HC3N into
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agreement with the observations AC/n .

^^^ghtly less than unity will decrease
the agreement with other species, such as CH C H V . .' ^HaCsH, which does not agree well at
later times, but it represents a reasonable tradP off

. •

.
, ,

to increasing agreement with a
simple sulfur-bearing molecule snrh ..c Qn u

, .

'
™* ^hose chemistry .s better understood

The re,at.ve abundance of N.H^ presents the largest d.screpancy between the
theory and observatrons, and .s not extremely sensitive to the C/0 ratio. Prev.ous
examinations of chemistry .n the Or.on ridge have found sim.iar problems in
creating N2H+ (cf. Brown k Rice n^ Kice 1986a). It is possible that, because the nitrogen
chemistry is not as understood as the carbon 5,nH ^u ds tne carbon and oxygen chemistry (McGonagle
1995), there are unknown activation barriers or formation pathways for this

molecule, perhaps linking its chemistry to NH3.

6.5 Conclusion

In this Chapter we constructed two different chemical models for the

radical-ion peak in Orion. The first model, for a dense well shielded core, was
unable to reproduce the observed relative abundances for most species. This

disagreement occurred in spite of the fact that the density and temperature used
for the model were taken directly from the observations presented in Chapters 2

and 3. Indeed, using a density of n{}i,) = 10^ the timescale implied by the

chemistry is incredibly short, t < 10^ yr.

A more complicated 1-D model that integrated the abundances of the different

molecules as a function of cloud depth in the presence of an external enhanced

radiation field, thereby incorporating line-of-sight effects into the chemistry. This

model demonstrated that the inclusion of line of sight effects will not reconcile the

theory with observations, a greater amount of neutral carbon is required in the

cloud interior.

Two mechanisms to raise the amount of neutral carbon in the chemistry were

discussed. The first invokes the presence of a clumpy medium, in which each
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Initial Gas-Phase C/O Ratio

Figure 6.11. Predicted N(CS)/N(SO) ratio at a function of the initial C/O ratio
The solid line denotes the observed value towards the Orion radical-ion peak while
the dashed lines are a factor of 3 above and below denoting a reasonable error limit.
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clump is itself a dense PDR. Th. mechan.., wh.h explains the observed extent
of and C em.s.on, was found to lower the abundances of most other molecules
making it more difficult for the theory to match the observations. Th.s model does
not rule out the existence of clumps and only suggests that a more consistent

model of GMC cores must be constructed that mcludes the various observations

The second model examined C/0 ratios larger than measured in diffuse clouds
(C/0 = 0.4). These models showed a C/0 ~ 0.8 provides a good fit between the
theory and the observations. Not only does this model reproduce the observed

abundances but it also allows for agreement to occur at later times, t ~ 10« yr (for

n{H,) = 10' cm-3). This is important since chemical timescales are dependent on

the density and for the measured density (Chapter 3) of n(H2) ~ lO*^ cm-^ the

chemical age is t ~ 10^ yr. Two possible solutions to lower the abundance of

oxygen were suggested. The first that the Orion region has a greater intrinsic C/0
ratio, which is greater than the cosmic value. The second mechanism, first

suggested by Blake et al (1987) involves selective depletion of oxygen relative to

the carbon when the dense gas is forming from diffuse material. In the next

chapter we will examine whether these conclusions are unique to the radical-ion

peak or whether they represent a general property of the chemistry in GMC cores.

We will also discuss other possible mechanisms to alter the C/0 ratio and the

relevance of grain chemistry on these results.



Chapter 7

The Chemical Evolution of GMC Cores

In the previous chapter we examined the chemistry of the Orion radical-ion

peak (RIP) position and found that the chemical evolution there could be
explained by a combination of (1) choosing a characteristic early time and (2)

raising the initial C/0 ratio. In this section we will examine whether these

conclusions are specific to the RIP or whether they represent a general property of

the chemistry in giant molecular cloud cores. First we will examine whether the

conclusions apply to other positions in Orion, and then we will apply models of

chemical evolution to M 17 and Cepheus A.
7.1 Orion

In addition to the RIP we have determined abundances for several other

positions in Orion. Instead of examining the chemistry in detail for each point, we

will compare the model to those positions with the most extreme physical

properties in comparison to the radical-ion peak. For this purpose we have chosen

Orion KL/BN and 4'S,

We will first examine the chemistry observed towards KL/BN. Given the

impact of the star formation on the abundances of SO, CH3OH, HCN, and HC3N

(Blake et al 1987), it is certain that the chemical evolution towards this position is

different from that at the RIP. However we note the other species in our survey are

not as greatly affected by the star formation (see Table 4.7). Outside of the

chemical abundances other differences are worth noting. First the temperature of

the quiescent gas is greater at KL/BN (T^ ~ 45 K) than at the RIP (T^: ~ 28 K)

and, given the close proximity of the Trapezium stars to KL/BN line of sight, the
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we

star foxing core ,s certainly exposed to a larger UV field. With these two facts
wdl examine whether the different physical properties observed at KL/BN will

change the chemical evolution.

We have created a 1-D model for the Or.on KL/BN Une-of-sight which ha.
n(H,) . 10^ cm-3, T. = 50 K, ^ . 10^ on the front side of the cloud, x = 1 on the
back side of the cloud, and N(CO) = 8.5 x 10- cm-. Figures 7.1 - 7.3 present
the relative abundances for the KL/BN model compared with the observations.

These figures show that the same general conclusion obtained for the RIP
applies to KL/BN. The relative abundances of simple carbon-bearmg species C.H,
CN, and HNC, which are only present in the quiescent ridge component and not

'

the hot core or plateau (BSGP), require both t ~ 10^ yrs and C/0 >0.4. As

observed for the RIP, the relative abundance of HC3N does not agree well with

observations when C/0 = 1. We cannot predict the possible C/0 ratio for this

position because of SO is tracing a different component (the plateau) than CS
(quiescent ridge) along this line of sight (see SO and C^^S spectra in Figure 4.10).

However, the agreement between the calculated abundances and the observed

abundances is certainly closest for C/0 ~ 0.6 - 1.0.

Thus, we see that modeling a position with more extreme conditions than the

radical ion peak still produces the same basic result. This suggests that the

chemical evolution along the Orion ndge may be relatively unchanged. In fact,

excluding the two star forming sites, the CS/SO ratio is a constant value of 10 for

every position, thus the C/0 ratio is not varying. At the star forming sites high

temperatures near the protostars may be evaporating species off of grain mantles

and/or overcoming energy barriers for some reactions which will produce

deviations from the CS/SO relationship presented in Figure 6.11. At these

positions it is also possible that water molecules are desorbing from dust mantles,

thereby replenishing the "lost" oxygen. However, these effects may not be
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

IcN f T t""^ abundances of CH3OH, C, CH3C2H, andHCN as a function of time and initial gas-phase C/0 ratio. The solid line denot s theobserved value at the Orion KL/BN position, while the dashed lines are a factor ofthree above and below the observations denoting a reasonable estimate of the errorThe arrows below the solid line in the neutral carbon panel mark the observed value
as an upper limit (see Chapter 4), while the arrows in the CH3OH and HCN panelsmark the abundances as lower limits.
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Key
time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.2. Panels showing the relative abundances of the radicals and ions, CN,
C2H, HCO+, and N2H+ as a function of time and initial gas-phase C/0 ratio.' The
solid line denotes the observed value at the Orion KL/BN position, while the dashed
lines are a factor of three above and below the observations denoting a reasonable
estimate of the error.
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.3. Panels showing the relative abundances of HC3N, HNC, SO and CS
as a function of time and initial gas-phase C/0 ratio. The solid line denotes the
observed value at the Orion KL/BN position, while the dashed lines are a factor of
three above and below the observations denoting a reasonable estimate of the error
The arrows in the panel for SO marks the abundance as a lower limit.
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apparent for the extended ridge matpri;,] Kn. •age material because the impact of the star formation
IS not as extreme as it is closer to the embedded protostars.

The other two positions that may be chemically distmct from other positions
along the ndge are 4'S and the Bar. The relative abundances for these positions
listed in Table 4.7, are typically lower than observed for the more quiescent RIp'
In particular, the relative abundances of the molecular ions HCO- and N,H-
towards 4'S and the Bar are both factors of 3-10 lower than seen for the RIP while
CH3C.H, HC3N, CH3OH, and HNC are not observed at all towards the Bar

The differences between 4'S and the RIP are particularly intriguing since both
have similar C^O column densities and kinetic temperatures (see Table 4.7). The
principal difference between the two positions is a larger radiation field observed

along the Bar. The radiation field enhancement presumably extends at some level

to the 4'S position, which is located on the southeastern edge of the bar. The
radiation field for the Bar has been estimated to be enhanced by a factor of 10^

above the ISRF (Tielens and Hollenbach 1985b). We will assume that this value

also applies to 4'S. Therefore the radiation field for 4'S is two orders of magnitude

greater than the radiation field estimated for the RIP. It is possible that the

relative abundance differences between the RIP and 4'S are due to the larger

radiation field. However, the KL/BN 1-D model presented in the preceding

paragraphs included a radiation field of x = and the enhanced radiation field

of this model does not reduce the relative abundances of species such as HCO+ or

HCN. For example at early times the relative abundance of HCO+ (using C/0 -

0.6) for the RIP model {x = 10') is N(HCO+)/N(CO) = 1 x 10-^ while the 1-D

model for KL/BN, with x = 10^ predicts the abundance should increase to

N(HCO+)/N(CO) = 3 X 10-^ This increase is in the opposite direction from the

abundance gradient that is observed for HCO+ (Table 4.7). A variation in the

C/0 ratio is also ruled out because the CS/SO ratio = 10 for the RIP, 4'S (and



the Bar). A more UMy solution is a greater penetration depth for UV photons
due to a lower filling factor for the dense gas.

Recently there has been a series of high resolution observations of CI CO
and other species towards the Bar. sometimes including the 4'S position (TanJer
ot al 1995; Hogerheijde. Jansen. & van Dishoeck 1995). A comparison of C I

intensities and -CO intensities by Tauber et al (1995) showed that for the Bar
(i..dud,ng 4'S) the carbon and -CO .tensities are linearly correlated. However
the extended ridge material observed north of the Bar near 1.5'S shows a different

dependence. At Orion 1 5'S thp r T/i3pn r.^*-on i.o b tne C 1/ CO ratio is typical of that observed in dense
regions (Keene 1994).

The linear correlation of C I and -CO observed towards the Bar and 4'S

suggests that these regions are being penetrated by a greater amount of UV flux,

which dissociates CO and creates the atomic carbon deep within the PDR. Since

total column densities for 4'S and the RIP are similar, a plausible solution for the

relative abundance differences between the RIP and 4'S is that the filling factor of

the dense gas is smaller towards 4'S. This reduction will have two effects. First, it

will lower the computed abundances of most species, because of lower beam filling

factors. Second, based on the theoretical calculations presented in Figure 6.7, it

will allow greater penetration of UV photons, thereby increasing the

photodestruction rate and lowering molecular abundances. The additional UV
photons will also photo-ionize molecules and atoms, leading to increased

abundances of electrons that can reduce the abundances of HCO+ and N2H+.

However, these conclusions should be tested with a more realistic model and

observations at higher angular resolution than presented here.

Excluding the Bar and the associated southern column density peak, the

relative abundances and physical conditions for the other positions in Orion are

similar. Therefore, we conclude that the chemical evolution for the extended ridge
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is best described bv t yr (tor n(H2) = 10^ cm-^) and C/0 -0.8. We will
examine the abundance variatinnQ ^r. n.- , ,variations m Onon and their relation to physical variables
in section 7.5.

7.2 M 17

For M 17 we have chemical information for only two positions, the northern
condensation (NC), which ha. greater temperatures and a high UV field makmg
th,s position comparable to BN/KL, and the central condensation (CC), which has
physical properties more similar to the radical-ion peak in Orion. We have chosen
to model the northern condensation using the model introduced for BN/KL in the
previous section. Although the geometry of M 17 is different than that of Orion,

this model should be appropriate for the NC because the emission from the H U
region overlaps the molecular material near the northern condensation.

The results of this model, shown in Figures 7.4 - 7.6, demonstrate that C/0 ~
0.8 and times between 3 x 10= and 10« yrs provides the best agreement. Therefore

the evolution observed in M 17 is similar to that observed in Orion. The relative

abundances for the NC are quite similar to that of the CC, suggesting that the

chemistry at these two positions is not appreciably different. Direct comparison

between the theory and the relative abundances observed for the central

condensation shows similar results. The CS/SO ratio for the CC is slightly lower

than the NC, -4.5 instead of 7, but examining Figure 6.11 this will not change the

predicted C/0 ratio by a large amount. Therefore the chemical evolution observed

in M 17 is similar to that found for the quiescent ridge in Orion.

7.3 Cepheus A

In Cepheus A we have determined abundances in two positions, Ceph-A N and

Ceph-A S. The physical conditions for the two positions are quite similar, with the

temperature of the Ceph-A N position (T* - 30 K) only slightly greater than that
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time (yrs)

10° 10" 10'

Key
Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.4. Panels showing the relative abundances of CH3OH, C, CH3C2H, and
HCN as a function of time and initial C/0 ratio. The solid line denotes the observed
value at the M 17 NC position, while the dashed lines are a factor of three above
and below the observations denoting a reasonable estimate of the error. The arrows
below the solid line in the neutral carbon panel suggest that the observed value is

an upper limit.
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Key
time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.5. Panels showing the relative abundances of the radicals and ions, CN,
C2H, HCO+, and N2H+ as a function of time and initial C/0 ratio. The solid line
denotes the observed value at the M 17 NC position, while the dashed lines are a
factor of three above and below the observations denoting a reasonable estimate of
the error.
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.6. Panels showing the relative abundances of HC3N, HNC, SO, and CS as
a function of time and initial C/0 ratio. The solid line denotes the observed value
at the M 17 NO position, while the dashed lines are a factor of three above and
below the observations denoting a reasonable estimate of the error.
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observed for Ceph-A S (T. . 20 K). We have chosen to model the Ceph-A S
position usmg the model introduced for the RIP in Chapter 6, because this

position (Ceph-A S) has a s.mUar temperature and CO column density as the RIP
Figures 7.7 - 7.9 presents the 1-D model compared to the Cepheus A observations
at the Ceph-A S position. There are no published measurements of the C/CO
ratio in Cepheus A, so we are therefore unable to present a comparison for this key
ratio and the theory. Smce the relative abundances and physical conditions for

Ceph-A S and Ceph-A N are similar to within a factor of two, the comparison

between theoretical abundances and observed abundances for Ceph-A S is

applicable to the Ceph-A N position as well.

In general, the relative abundances of species observed towards Ceph-A S are

lower than observed towards the Orion RIP. Thus better agreement is found with

theory, since in general, the model was under-producing most carbon-bearing

molecules. Despite the improved agreement with theory the abundances of HCN,
CN, HNC, and CH3C2H are still inadequate for a C/0 ratio of 0.4. For these

species, a C/0 ratio between 0.5 and 0.6 provides the best agreement, although for

CH3OH and HC3N agreement is best for the normal C/0 ratio. The CS/SO ratio

in Cepheus A is much smaller than Orion, varying from 1 - 3 between the two

positions (Table 5.9) predicting a lower C/0 ratio of ~ 0.6. This is consistent with

the earlier statement for HCN, CN, HNC, and CH3C2H and provides additional

evidence that the CS/SO ratio may a useful tracer of the carbon and oxygen

content of clouds. The abundances in Cepheus A also appear to be in agreement

for times between 3 xlO^ and 10^ yrs, which is in agreement with the Orion and

M 17 results.

In spite of the differences between Cepheus A, Orion, and M 17 one general

conclusion can be drawn. The best agreement between theory and observations is

fort^ Kfi yr (for n(H2) = lO"" cm'^) and C/0 > O.4. We have used a density of
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n(H.) = 1^ ™-3 ,or tH. cWc, r.o,els, Ms .alue ,s an or,er of
Oelo. tne ,ensmes measure, .n these cores of n(H.) . ,^ ,„-3.

^
foun, that at M.ker iens^es. n(H.) = ,„-3,

^^^^^^^
and ./.e.e/„.e */.e ™p.e. cAe.,ca( a^es are

the chermstry of CMC
cores appears to the faMy cons.sten, .Uh the common feature for ail cores ,e,ny
the under-abuniance of neutral carhon, an, carbon bearing spec.es. for models
using the cosmic carbon to oxygen ratio.

7.4 Grain Chemistry and Other PossibiHties

7.4.1 Grain Chemistry

For the RIP model and for the models presented m previous sections grain

depletion was invoked a a possible mechanism to lower the mitial oxygen relative

to the carbon in the gas phase. The depletion mechanism may only be active

during the collapse of the diffuse cloud to a denser state. This mechanism is

supported by the observations of two grain mantle components, provided the

components are the result of the temporal evolution of the grain mantle, with the

polar mantle accreting earlier and the non-polar mantle, possibly dominated by

CO, accreting at a later time. Therefore during the early stages of core evolution

the C/0 ratio will be altered by the formation of H2O in the polar mantle.

However, the presence of another major reservoir of carbon existing on grain

mantles, such as CO2, cannot be ruled out at present and confirmation awaits

observations by the Infrared Space Observatory.

To examine the influence of grains on the chemistry we have modeled

gas-phase chemical evolution including the eff"ects of grain depletion and

desorption in regions exposed to enhanced UV flux (Bergin, Langer, k Goldsmith

1995). This work, treated in Appendix B, used a restricted network which enables

an examination of the general principles but does not allow for a direct comparison

with these observations. As shown in the appendix depletion is highly sensitive to
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0,6

Triangles: gas-phase C/0 = 1.0

Figure 7.7. Panels showing the relative abundances of CH3OH, C, CH3C2H andHCN as a function of time and initial C/0 ratio. The solid line denotes the observed
value at the Cepheus A S position, while the dashed lines are a factor of three above
and below the observations denoting a reasonable estimate of the error.
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

Figure 7.8. Panels showing the relative abundances of the radicals and ions, CN,
C2H, HCO+, and N2H+ as a function of time and initial C/0 ratio. The solid line
denotes the observed value at Cepheus A S position, while the dashed lines are a
factor of three above and below the observations denoting a reasonable estimate of
the error.
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time (yrs) Squares: gas-phase C/0 = 0.4

Circles: gas-phase C/0 = 0.6

Triangles: gas-phase C/0 = 1.0

as
Figure 7.9. Panels showing the relative abundances of HC3N, HNC, SO and CS
a function of time and initial C/0 ratio. The solid line denotes the observed value
at the Cepheus A S position, while the dashed lines are a factor of three above and
below the observations denoting a reasonable estimate of the error.



numerous factors includine the Het,=it„ t„ng the density, temperature, and the evolutionary state
This study found that for n(H.) = 10^ cm- significant amounts of simple species
such a. CO, CN, HCN, can be maintained in the gas phase, even at times much

'

greater than the depletion timescale . lo^ yrs). However, at the densities
typical of CMC cores, n(H,) ~ in^ rm-3 ih^ j i

.

in^; tu cm
,

the depletion timescale is shorter, r^.^ ~
10' yrs, and most molecules observed in this study (eg. HCN, CN, CO) are

predicted to reside on grain surfaces and should not be present at all in the gas
phase. For example in Figure B.3 we have presented depletion as a function of

density and found that at n(H.) = 10= cm- the abundances of CO, CN, and HCN
in the gas phase would be significantly reduced.

The mechanisms to remove species from grain surfaces are a matter of debate

(Williams 1993), in our work we suggest two possible solutions to remove species

from the mantles and allow for an active gas phase chemistry. First, depletion is

highly sensitive to the dust temperature, if dust temperatures in GMC cores are >
30 K thermal evaporation could be sufficient to remove all molecules except for the

most tightly bound (eg. H^O). Another important possibility, given the evidence

for CO ice (Whittet 1993), is that if interstellar grains consisted of an outer layer

of CO ice, then the binding energies for many species to the grain mantles would

be reduced, and a significant portion of material may be maintained in the gas

phase, possibly through cosmic ray desorption. This mechanism could be very

efficient, even at high densities, because the timescale for CO to deplete on a grain

mantle is small, and therefore the grains could be coated with a layer of CO ice

within a short amount of time.

Another possibility that should be considered is that molecules in the grain

mantle are being processed into more complex species through reactions on the

grain surfaces. In our examination of gas-phase chemistry including grain surface

molecular depletion and desorption we found that gas-phase chemistry could not
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account for the observed amnnnt . •

°f O" S™" ^rfaces along lines of sight

- eM stars ,n Taurus. Th.s result is in agreement with the assertions of .ones .W.lhams (1984) who argue that the water ,ce observed ,„ Taurus ,s the result of

0 formaUon on ,ra,n surface. Therefore gra.n surface reactions are forming at
lea^t two (H.0 and H,) spec.es on grain surfaces (HoUenbach & Saipeter 1970-
Jones & Waiiams 1984). Grain surface reactions also appear to play a role in

'

Orion, where the large abundances of methanol and other more complex molecules
m the hot core are believed to be the result of relatively recent evaporation of
these species which were formed on grain surfaces (BSGP; Brown, Charnley, &
Millar 1988; Millar, Herbst, & Charnley 1991).

There is some evidence that in quiescent regions grains surface reactions are

not playing a dominant role in the formation of some species. Recent observations,

using proto-stars to provide background continuum (Grim et al 1991; AUamandola
et al 1992), have confirmed the existence of solid methanol on grain surfaces.

Searches for CH3OH ice along lines of sight towards background sources in Taurus
have found no evidence for methanol ice features (Smith, Sellgren, & Brooke 1994;

Chiar et al 1994). These results suggest that the production of methanol may not'

occur at all times on grain surfaces. Instead, its production may occur only in

conjunction with energetic events such as UV processing of water ice on grain

mantles close to the protostars, or when methanol is released from heated water

ice in a phase transition to a clathrate structure (Sandford & AUamandola 1993).

Thus grains may not be as active in quiescent gas as has been previously thought

(cf. Hasagawa, Herbst, & Leung 1991).

However, we cannot rule out grain surface reactions in the formation of most

species. The mere observation of CO, H,0, H^CO, and CH3OH ices demonstrates

that the effects of grains on chemical evolution should not be ignored. But the

mechanism that can consistently remove molecules from grain mantles, especially
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in dense .„o„s, . outHned eaHie. is stiU a„ „f .ebate (Ber„„, Langer, .
GoMs.ith 1995; WiUacy & WU.ia^s 1994. SchuUe & Greenberg 1991) and since
tl,e abundances in all three douds can be reproduced via a pure ga.-phase
mechanise, albeit with a .creased C/0 ratio, these results suggest that the grain
chemistry may not dominate the production of all species. For example it ,s

thought that the CO molecule is not produced at all on grain surfaces and but
rather is produced in the gas-phase and frosts onto the grain mantles (Whittet
1993).

7.4.2 Other Possibilities

A relatively recent development in astrochemistry is the demonstration that

two steady state solutions, or bistabihty, can exist depending on the local cosmic
ray rate, the density of molecular hydrogen, and the depletion of heavy elements

(Le Bourlot et al 1993). These solutions are characterized by two separate degrees

of ionization, with one solution, the high ionization phase (HIP) producing large

amount of neutral carbon and carbon-bearing radicals, while the other solution,

the low ionization phase (LIP) provides larger abundances of saturated molecules

and molecular ions.

The large amounts of neutral carbon present in the HIP naturally provides an

alternate solution for the large C/CO ratios measured in molecular clouds (Flower

et al 1994). However, it is not clear whether a bistable steady state solution would

apply to the chemistry observed in dense cores. For instance the characteristic

chemical age implied by our observations is far from equilibrium, t ~ 10^ years for

n(H2) = 10^ cm-3. In addition, these models have typically only been applied to

dark clouds, since the bistable solutions, for typical cosmic ray rates and elemental

depletions, occur near n(H2) ~ 10^ cm-^, the density generally ascribed to dark

cloud cores. Therefore it is difficult to apply these models to GMC cores where

densities are > lO'^ cm-^ and it is unlikely that bistability applies to the density
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regimes covered in our survey. B.table solutions could be relevant to low density
envelopes of clumps or in the interclump medmm, hence bistab.Hty may provide
an alternate solution to the extent of neutral carbon emission.

The chemical ages inferred for the high densities observed in this studv (t

- 10^ yr for n(H.) . 10« cm-; Chapter 6) strongly suggest that a dynamical
solution may be required to provide an explanation for the neutral carbon problem
m the dense interior of cloud cores. The solution proposed earlier, one of selective

depletion onto grain surfaces, includes a dynamical link because it invokes the

depletion of oxygen onto gram surfaces during the collapse of a diffuse component
(when the abundance of atomic H is greater) to a denser state. This type of

dynamical model, allowing the density and temperature to vary according to the

equations of motion and energy balance has been examined by several authors,

examples are Gerola and Glassgold (1978), Tarafdar et al (1985), and Chieze,

Pineau des Forets, k Herbst (1991). One key parameter in these approaches is the

time necessary for the density to increase by a factor of 10. Prasad, Tarafdar,

Villere, & Huntress (1987) addressed this question and found that the lifetime of

the cores decreases as the core density is increased. For instance the time required

to change the central density from n(H2) = 10^ to 10^ cm'^ is ~ 10^ yr (Prasad et

al 1987). Thus clouds will spend most of their lifetime in a diffuse state and pass

through the dense states in a short timescale. The timescale to increase the

density from 10^ to 10« cm-^ is somewhat similar to the timescale observed for the

chemical interactions in Orion, M 17, and Cepheus A. At these times (t ~ 10^ yr)

a large amount of the atomic carbon co-exists with CO, and thus collapse models

prove to be a rich source of complex species (Prasad et al 1987; Chieze et al 1991).

Therefore the correspondence of timescales and the increased abundances of

complex species may indicate that CMC cores are dynamically evolving objects.

These results are certainly intriguing and may apply to processes ongoing in CMC



cores, however, g.ven the complexity of the problem, these models should be taken
as a guide to effeets that may occur i„ the linldng between dynamics and
chemistry.

Another approach is to model the effects of turbulent diffusion on the
chemistry (Xie, Allen, & Langer 1995). With the large Hne widths observed for
these cores (Av . 3 - 5 km s-) turbulent d.ffus.on . significant and must
influence chemical interactions at some level. The model of Xie et al (1995) is able
to reproduce the observed amount of carbon and produces significant amounts of
neutral carbon in the cloud interior, which may lead to the formation of complex
species. One important question in addressing the relevance of this work to the

chemical evolution of CMC cores is whether the dense clumps are turbulent. If

clumps are structures with thermal linewidths moving around in a turbulent

velocity field then turbulence will only effect the outer layers of the clumps that

are interacting with the turbulent interclump medium and the dense interiors will

remain unaffected. A direct comparison between the Xie et al (1995) model and

our observations is impossible because the maximum density in their model is only

n(H2) = 3 X 10^ cm-\ We will discuss below a method that may help in

discriminating the eff-ects of turbulent chemistry in dense clumps.

The final dynamical model that may be applicable to GMC cores is one in

which the interclump gas periodically collapses to produce clumps. The clumps

live for ~10^ yr, after which they are destroyed by stellar winds, thereby

preventing the chemistry from reaching steady state (Charnley et al 1988a,b). One

interesting facet of these models is that a chemistry attains a limit after several

clump/wind cycles. For these models to be applicable to dense GMC cores a

significant fraction of the volume must be dominated by wind blown bubbles.

Given the evidence for arc and shell structures in the large scale maps of Orion by

Heyer et al (1992) and Gem OBI (Carpenter et al 1995) some long term linking
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between stellar winds and cloud material Is not unreasonable. Indeed the che.ical
timescale of M0= yr is ,ulte close to the observed lifetimes of molecular outflows
of 2 X 10^ ,r (Snell 1984), which could i.pl, that n,any outflows are interacting
w.th the cloud material and "re-starting" the chemical clock. While the

application of these models to GMC cores cannot be ruled out, we note that the
arc and ring structures observed by Carpenter et al (1995) in Gem OBI are rather
extended, with a diameter of ~ 9 pc which is /p^c/ o f . r m ,^ P^, wnicn IS at least a factor of 10 larger than the
size scales probed in this work.

The amount of carbon that is produced is not satisfactory to discriminate

between these models, because each model produces C/CO ratios close to the

observed values. Instead we may consider examining the abundances of

oxygen-bearing molecules, such as H^O, O^, SO, and CH3OH. When atomic

carbon is cycled into the gas phase through any mechanism, the abundances of

oxygen containing molecules are lowered, mainly by reactions of species such as

OH, O2, and SO with atomic carbon. The sharp drop in the abundance of SO
when the C/0 ratio is increased demonstrates how dramatic these effects can be

(see Figure 6.11). Therefore a crucial test for these models is whether they can

both raise the amount of carbon to produce complex molecules and still provide

enough oxygen-bearing molecules to match observations. The species that will be

particularly useful are SO, CH3OH, as well as O2 and H2O which should be

observed by SWAS. As an example of these effects, for the bistability models in

the HIP, which has a large C/CO ratio, the abundance of SO is incredibly small.

Xie, Allen, & Langer (1995) also predict that O2 and H2O will be anticorrelated

with the strength of turbulence.

7.5 The Relation of Physical Conditions and Abundance Variations

One critical question is whether any of the abundance variations observed in

Orion, M 17, or Cepheus A can bo related to changes in physical variables, such as



dens,ty, temperature, or ultraviolet field intensit. The fact that within a si„„e
cloud (excluding KL/BN and the Bar In Or.on) abundances are not changed by
n^ore than factors of a few suggests that variat.ons .n the phys.cal properties in the
quiescent gas in each cloud are not a dominant factor. However, there still may be
some correlation between physical and chemical variations, for example the drop in
temperature between the NC and the CC in M 17 may change the abundances of
some species.

To examme tkese questions we have chosen to compare the relative abundance
changes between the RIP and KL/BN in Orion, and the NC and CC in M 17.

These positions were chosen because the RIP in Orion and the CC in M 17 are

similar in that both positions are exposed to reduced UV fields and have colder

temperatures (T, ~ 30 K). In contrast KL/BN and the NC exemplify more active

regions exposed to large UV fields with hotter temperatures (T, ~ 50 K).

Therefore this comparison between "active" (KL/BN, NC) and "inactive" regions

(RIP, CC) is more likely to emphasize any abundance differences due to changing

physical conditions. Table 7.1 presents the ratio of relative abundances for the

KL/BN/RIP and NC/CC or active/inactive.

One trend is that the abundances of radicals in both Orion and M 17 are

greater in inactive regions. The trend is also observed for molecular ions which are

typically more abundant in inactive cores. A diff-erent gradient is observed for

CH3C2H which tends to be more abundant in active regions. The strength of this

analysis is that these trends are observed in both cores. This is important because

as discussed in Chapter 4 an abundance change of a factor of two is only a

marginal result. However, the abundance of C2H and CN is found to decline in

both Orion and M 17, with higher abundances in regions with colder temperatures

and lower UV fields, argues that this trend is probably real.
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To examine whether the chemical models with physical variations taken into

account can reproduce these observations, we have divided the "active" 1-D model
for KL/BN with the predicted relative abundances for the "inactive" model for the
RIP. These ratios are presented in Table 7.1 for C/0 ~ 1.0. If we examine the

trends which agree with the theory first, the decline of the radicals is reproduced

for both CN and C,H. This drop in abundance is not due to the radiation field,

but rather to a decrease in temperature, since the neutral-neutral destruction

reactions for these species are high at larger temperatures. For HNC and CH3C2H,
the models also adequately reproduce the observed gradient, although the

abundance gradient for CH3C2H in M 17 is greater than predicted.

However the theory predicts a gradient for HCO+, and N2H+ that is in the

opposite direction of the observations. The theory predicts a trend in which

molecular ions are more abundant in "active" regions, which is primarily due to

the inverse temperature dependence of recombination reactions. The UV field in

the 1-D models does not have much of an eflFect because the shielded regions give

the largest contribution to the computed column densities. The only way the 1-D

model can produce an abundance gradient in the same direction as the

observations is to have very small clumps, such that the radiation field creates

electrons where there are more UV photons (eg. KL/BN, NC), and these electrons

then destroy the ions. However, as demonstrated in Chapter 6, smaller clumps will

have a detrimental effect on the abundances of neutral molecules. Obviously the

situation is very complex and the solution to these puzzling trends probably lies in

some dynamical or turbulent linking between the physical structure and the

chemical evolution that has not been included in these relatively simple models.

7.6 Summary

In this chapter we have examined the chemical evolution of GMC cores by

comparing theoretical chemical models with relative abundances measured in
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-rt.ctive/ Inactive" '

'

Species C/0 = 1.0 (Theory)

Orion M17

Obs^ryatW^

"Active: n(H2) = 10^ cm-^; ^ = 10^ = 50 K
"Inactive: n(H2) = 10^ cm-^; ^ ^ iq3. Tj^ = 25 K

Orion, M 17, and Cepheus A. We have found that the chemistry in CMC cores is

similar; with the greatest agreement for all clouds requiring a combination of early

times and C/0 > 0.4. In this chapter we have used a density of n(H2) = 10^ cm-^

for the theoretical chemical models. However the measured densities in these cores

is typically an order of magnitude greater or n(H2) = 10^ cm-^. in Chapter 6 we

demonstrated that chemical timescales are dependent on the density therefore for

the derived density of n(H2) ~ 10^ cm-^ the chemical age that is inferred for

CMC cores is t ~ 10^ yrs.

To raise the C/0 ratio we have invoked selective depletion of oxygen relative

to carbon on grains surfaces. This mechanism is consistent with current

observations of water ice features and with chemical theory. To examine the

possible influence of grains on the chemistry in these dense cores we utilized a

model of gas phase chemistry including grain surface depletion and desorption.

This model showed that the inclusion of grains into the chemistry typically lowers

molecular abundances and therefore an efficient desorption mechanism is required.
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To remove species from the mantle and allow for an active gas-phase we suggests
two possible solutions: simple thermal evaporation and lower binding energies to a
CO .ce dominated mantle. We have also examined the utility of other chemical
models, including processes such as turbulence or dynamics, to these observations
We find that some of these models (turbulence, incorporating dynamical evolution)

models could apply to the chemistry of GMC cores and suggest a poss.ble method
to discriminate between the different models.



Chapter 8

Conclusions

This thesis has presented a detailed examination of the physical and chem.cal
structure of three giant molecular cloud cores. In this section we will summarize
the results and examine the implications of this work on the chemical and physical
evolution of molecular cloud cores.

8.1 Summary

8.1.1 Temperature Structure

To determine the temperature of the cloud cores we have observed the J

-^^k{K = 0,1,2) transitions of the symmetric top molecule CH3C2H in Orion

A, M 17, and Cepheus A. To investigate the use of CH3C2H as a temperature

probe we have first examined the excitation of methyl acetylene through statistical

equilibrium calculations. The excitation models have shown that CH3C2H is an

excellent tracer of the temperature of the dense gas in molecular clouds. We have

utilized the theoretical analysis and the observations to derive kinetic temperature

for numerous positions in each core. The temperature structure is similar in all

three cores with higher temperatures found closest to the luminous young stars

and with a smooth temperature decrease away from these sources.

We have also compared the temperatures derived from two different

thermometers: CH3C2H and i^co. In two clouds, Orion A and M 17, the

comparison between the two thermometers shows significant diff-erences, with the

CO excitation temperatures much larger than those inferred from methyl

acetylene. This temperature diff-erence between CO and CH3C2H is suggested to be

the result of a line of sight temperature gradient and therefore reflects diff"erences
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in the emission regions along the line of .icrhf tv, r^r^ •

•ime ot sight. The CO emission probably arises

heating sources, while the .ethy, acetylene em.ss.on arises fron, cooler ga3 deeper
Within the clouds cores. In Cenhpucj A tu^ u•^epheus A the results are more ambiguous because of
the presence of self absorption features seen in the CO spectra.

8.1.2 Density Structure

We have observed the J = 4 3, J = lo ^ 9, ., = 12 ^ J = 16 ^ 15
transitions of HC3N in the Orion A, M 17, and Cepheus A cloud cores. We have
used these data with temperatures derived from CH3C3H and a non-LTE model
for the excitation of HC3N to obtain measurements of the density of molecular

hydrogen in GMC cores. Densities were determined for 133 positions over a

4' X 12' region in Orion, 55 positions over a 4' x 5' area in M 17, and 14 positions

within a 4' X 5' region in Cepheus A. The density found for each core is very

similar; within the errors the densities in each core are consistent with a constant

value of n//2 ~ 10^ cm~^

Despite of the use of an optically thin tracer and the inclusion of an improved

source temperature model, the density within each cloud core shows no evidence of

large scale variations. These observations are consistent with the results of

previous efforts which utilized other tracers of the dense gas and assumed a

constant temperature for the cloud. The lack of density variations provides one

piece of evidence that molecular clouds have a clumped structure, such that each

antenna beam encompasses numerous dense clumps. The clumps fill only a small

percentage of the total volume of the cloud, with the volume filling factor

decreasing from the center of the cloud to the edge producing the observed

variation in column density. Further evidence that clouds are clumpy comes from

an examination of the size scale of the cores implied by the inferred density and

the C^«0 column density. This analysis demonstrates that unless these cores have
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a strikingly (>10:1) flattened geometry, each with the short axis along the line of
s.ght, then the dense ga. must be clumped and .s filHng only a small fraction of
the volume (<5%).

8.1.3 Chemical Structure

The temperatures and densities determined directly from the CHAU and
HC3N observations were used to derive accurate relative abundances for 12 species

for two positions in M 17 and Cepheus A, and for six positions in Orion A.

Although abundance differences exist, in general, chemical abundances are found

to be fairly similar both within and among GMC cores. There are some exceptions

to the general agreement. The most significant trend in abundances within a smgle

cloud is observed in Orion between the RIP and both 4'S and the Bar. In 4'S and

the Bar the abundances of ions are decreased by factors of 3 to 10 from the

relative abundances observed in the RIP, while some species (CH3C2H, HC3N,

CH3OH, and HNC) are not observed at all in the Bar.

Some subtle abundance variations were also observed, in M 17 and Cepheus A
relative abundance gradients are observed that could be related to physical

features (e.g. UV field in M 17; outflows in Cepheus A). However these variations

are not large and are within the estimated error ~50%. In addition, the relative

abundances HCO+, CH3C2H, and HNC are the same, to within a factor of four,

for any position in Orion, M 17, or Cepheus A. Therefore these species appear to

be least affected by the varying physical properties of these GMC cores.

8.1.4 Comparisons with Chemical Theory

We have developed two diff"erent chemical models to compare with the

observations. These models were compared to the relative abundances measured at

the radical-ion peak in Orion and then applied to other positions in Orion, M 17,

and Cepheus A. The first chemical model computed abundances only in the dense



well shielded interiors of the cloud corP. Th.oua cores. The second more complicated model
mtegrated abundances of the diffprpnf •

^^"erent species as a function of depth in the
presence of an enhanced rarliafi^r, « u xiradiation field, thereby incorporating line of sight effects
on the chemistry. The .odel also attempted to .,„or real clouds by enhancing

away from the newly formed stars, is impinged by the normal ISRF
Neither model was able to reproduce the observed abundances of molecular

species at any time. While agreement can be found for single species at a
particular time, no single time gives a good fit to the data. In order to obtain a
better match between theory and observations the model abundances must be
increased. One method to increase abundances is to provide a greater amount of
free neutral carbon, which is the building block for most simple and complex
carbon-bearing species, in the gas-phase. Two possible solutions were examined:

1) clumps and 2) raising the initial gas-phase C/0 ratio above the value measured
towards diffuse clouds of C/0 ~0.4.

A number of arguments have been presented that imply that these cloud cores

have a clumpy structure. This study found that the inclusion of clumps into the

chemical model can reproduce the observed abundances of C+ and C. However this

model has a detrimental effect on the abundances of most other species. Because

the enhanced photodestruction rates destroy molecules present in small clumps, a

clumpy model presents a poorer match to the observations than a non-clumpy

model

Theoretical 1-D models with a range of C/0 ratios were compared to the

relative abundances measured towards the RIP and KL/BN in Orion, as well as

the northern condensation in M 17 and 1.5'S in Cepheus A. Good agreement

between model and observations was found for early times and C/0 ~ 0.8. Using

the measured density of n(H2) = 10^ cm'^ the chemical age inferred for the three
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GMC cores is t ~ 10^ years TV.P pq /q/^ • ,years, ihe CS/SO ratio is also suggested to be a useful
probe of the .mount of carbon to oxygen available in the gas-phase and this ratio
produces similar results to that inferred from the match between the theory and
observations with other species (eg. HCN, HNC, CN)

8,2 Implications

The primary goal of this thesis is to characterize the physical and chemical

state of giant molecular cloud cores. In the process we paint a very complex

picture of the physical and chemical structure of molecular clouds. Many of the

results of this work have built upon and extended the work of others. For instance

the "neutral carbon problem" is a well documented observational result and has

been a problem plaguing astrochemistry for several years. But this study observed

numerous species, placing greater constraints on chemical models, and found that

similar problems exist for the abundances of the observed molecules. This problem

can be alleviated by a combination of early time chemistry and a C/0 ratio

greater than 0.4. To raise the gas-phase C/0 ratio we invoked selective depletion

of oxygen relative to carbon from the gas-phase due to the formation of H2O on

grain surfaces, effectively raising the initial gas-phase C/0 ratio. Since a large

abundance of atomic hydrogen is required to react efficiently on grain surfaces

with oxygen and produce water ice, this mechanism will produce the H2O ice in

the early stages of the cores evolution prior to the conversion of all the atomic

hydrogen to molecular form (Tielens et al 1991). Thus chemistry on grain surfaces

may play an important role in the chemical evolution of GMC cores.

One unique contribution of this work to our fundamental understanding of the

physics and chemistry of GMC cores is the systematic incorporation of the analysis

of the physical structure into the examination of the chemical evolution. For

instance, none of the previous efforts in modeling the chemistry of the quiescent

ridge in Orion have used a density as high as n(H2) = 10*^ cm~^. Knowledge of the
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density is particularly important m studies of the chemical evolution of molecular

clouds because the density sets the timescales for chemical interactions and

therefore plays a crucial role in the chemical history of material in GMC cores.

The observed densities of n(H,) ^ 10« cm-3 were found to imply that the dense

gas in the cores is in a chemically young state, with a characteristic age of t ~ 10^

yr. One problem inherent in time dependent chemical studies is in ascribing this

"age" to the core, because in terms of the chemistry the t 0 state is set by some

event which occurred beforehand. Thus it is uncertam whether chemical timescales

are reflective of the age of the core itself, or possibly the chemical age is amount of

time that has elapsed since some dynamical event, such as an outflow, has reset

the chemical clock. Another possibility that must be considered is inaccuracies in

some key reactions in the theoretical models.

As we argued in Chapter 6, although certain parts of chemical reaction

networks may be incomplete or inaccurate, it is unlikely that one aspect of the

models will change; that certain stable species act as "endpoints" in the chemical

evolution. For the gas-phase these are CO (carbon and oxygen), O2 (oxygen), N

and N2 (nitrogen). The fact that CO is observed to be widely abundant, in diffuse

and dense clouds, suggests that CO is indeed a chemically stable molecule.

Therefore to provide enough carbon in the gas-phase either CO must be destroyed

or early timescales prior to the formation of stable species must be invoked.

This suggests two possible scenarios for the chemical and physical evolution of

GMC cores. In the former scenario the cores could have ages greater than inferred

from the chemistry because some process, such as shocks, would destroy the CO in

the dense gas and recycle the carbon. Thus the short characteristic age implies

that a fundamental part of the chemistry, such as grain chemistry, turbulence, or

dynamical cycling of material due to outflows (Norman and Silk 1980) is not

included in our model. In the second scenario the young chemical age could imply
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something fundamental about the structure and/or chemistry of molecular clouds,

such as GMC cores being intrinsically young objects.

It is certainly possible that the age of the dense cores is indeed 10^ yr. Dense
cores are believed to form by compression of expandmg H II regions and, since the

formation process itself could trigger more massive star formation, which would
quickly disperse the dense cores, cloud cores could be short lived objects

(Carpenter et al 1995). However the chemical age inferred for the cores is rather

short, and the timescale will only get smaller, and more unphysical (« 10^ yr), if

densities are slightly greater.

If the cores themselves are not short lived then another possibility is that the

cores, which are composed of both low density and and high density gas, are older

than the chemical interactions of the gas composing the core. The observations in

Chapter 3 suggest that the dense gas is segregated into small clumps. Since the

emission from all of the molecules observed in this study is believed to come from

the clumps then this would imply that the clumps are intrinsically young objects

with ages < 10^ yrs. This structure, with an older core composed of short lived

clumps, is possible if there is a continuous interchange between the interclump

medium, which is dominated by UV photons and therefore is a rich source of C+

and C, and the clumps. New clumps will therefore be created and destroyed in a

short timescale of ~ 10^ yrs, and the age of the entire core could be much older

than the clumps themselves. We note that in the dynamical models of Tarafdar et

al (1985) and Chieze, Pineau des Forets, & Herbst (1991) the compression of low

density material to a higher density is in itself a rich source of complex species (see

Chapter 7).

The destruction processes to return clump material to the interclump medium

could simply be the formation of star. Another possible destruction mechanism is

that some clumps are transient features and dissipate prior to the formation of a
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star. When the clumps form some may r,ot be gravitationally stable and instead
w,ll break up prior to the formation of a star. Some evidence of unbound dense
clumps is found in the high resolution study of TMCl by Langer at al (1995)
whether such features exist in GMC cores ,s an open question and one worth^ of
further investigation.

While the destruction processes are easier to determine a continuous formation
process for clumps from compression of the interclump medium is more

speculative. A recent study of sequential star formation in a turbulent medium by
Elmegreen, Kimura, and Tosa (1995) found that massive cores can form behind a

shock front induced by an expanding H II region. While this model is complex and
relies on star formation in a pre-existing turbulent medmm it does suggest that

dense cores are continuously growing by addition of new clumps. The new clumps

form from low density turbulent material behind the shock. The growth of the

core is then halted by the formation of an embedded cluster. This scenario is

highly speculative but, given the constraints placed on chemical interactions by the

formation of stable molecules, one possible solution that must be considered is

that the clumps are themselves young features.

8.2.1 Future Work

This work has pointed out several avenues that warrant further investigation.

One question is whether other observations will support the conclusion of high

C/0 ratios in GMC cores. This ratio has been shown to have a significant impact

on the abundances of simple oxygen molecules (eg. SO). However the simple

oxygen bearing species that this ratio will have the greatest effect on are O2 and

H2O, because these species are possibly the dominant reservoir of atomic oxygen.

In particular current chemical theory predicts that the O2 will be the dominant

reservoir of oxygen. The dependence of the O2 abundance on the C/0 ratio is

quite dramatic, for C/0 = 0.4, the abundance of O2 in equilibrium is X(02) = 9
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X10-, while for C/0 = 1.0 the abundance is only X(0.) = 1 xlO-. Therefore

O, (and H^O) is a potentially important probe of the amount of oxygen in

interstellar clouds. Both H,0 and O, are not currently observable from the

ground. However, through the observations of 0„ H,0, and atomic carbon in

Orion, M 17, and Cepheus A by the Submillimeter Wave Astronomy Satellite

(SWAS) we will be able to investigate this question in detail. Another method of

investigation of the C/0 ratio in molecular cores is to use the CS/SO ratio to

determme the C/0 ratio in molecular clouds. This project would examine the uses

of the C/0 ratio by observing CS and SO in many clouds, sampling a range of

conditions. These observations can be combined with the observations of key

oxygen and carbon species by SWAS. For instance a plot of CS/SO against

O2/CO, two ratios that are highly dependent on the amount of gas-phase carbon

and oxygen, would be a potentially powerful method to investigate the carbon and

oxygen content of CMC cores.

Other interesting efforts should be directed to extending these observations to

the highest resolution possible. For instance near the H II region/molecular cloud

interface in M 17 our observations imply that there are small scale abundance

variations. High resolution observations of several molecules at the interface will

enable an examination of possible effects on the chemistry induced by the changing

UV field. The inclusion of molecules, such as CN and C2H which appear to tracers

of the UV field, would be also be useful in examining the effects of radiation on the

chemistry. In addition, as more information of molecules frozen on grain surfaces

become available, through high resolution ground based or space based

observations (ISO), a careful accounting of the molecular abundances in the

gas-phase and solid state should be undertaken. In this regard we will propose to

observed several molecules along lines of sight where molecular depletions have



been measured. The aim ot this study will be to characterize the exteut of the

between chemistry occurring on grain surfaces and on the surfaces of grains.
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Appendix A

CS/SO Ratio as a Tracer of the C/0 Ratio

Figure 6.11 shows that the predicted CS/SO ratio has a strong depend,

the initial amount of carbon and oxygen allowed in the gas-phase. This figure

demonstrates that the CS/SO ratio is greater at early times and for a larger C/0
ratio. In this appendix we will outline the principal mechanisms for this

dependence. Since the abundance of CS exhibits no significant change with either

time or with C/0 ratio (see Figure 6.9) the principle culprit is the abundance of

SO which is lower both at early times and for high C/0 ratios.

SO is produced via neutral neutral reactions of sulfur with simple oxygen

bearing molecules,

S + OH-^SO + H, (A.l)

S + SO + 0, (A.2)

although a third path contributes at early times,

HS + O^SO + H. (A.3)

Of these paths, reaction A.l dominates the early time formation, while the

reaction with O2 will dominate at late times. These formation reactions give an

important clue to why the abundance of SO peaks at later times. Recent chemical

networks predict that O2 will be the primary reservoir for neutral oxygen, in fact,

the O2 abundance at equilibrium in these models is close to the abundance of CO,



231

X(0,) ^ 9 X 10-^ Therefore, the abundance of SO will closely follow the time

dependence of the molecule, which shows a steady rise with time.

The final link in this network is principal destruction path for SO at early

times, which is a reaction with neutral carbon to produce CS. A destruction path

linked to C will preferentially destroy SO at the early times leading to greater

amounts of CS at these times (see Figure 6.9). This path rapidly becomes

insignificant when the abundance of neutral carbon drops shortly after 10^ yr

creating the two separate solutions between 10^ yr and 3 x 10^ yr observed in

Figure 6.11.

This discussion illustrates why the CS/SO ratio is high at early times but, it

does not explain the dependence on the C/0 ratio. The dependence is a result of a

drop in the abundance of O2 and OH for greater C/0 ratios. For example the

abundance of O2 at equilibrium for C/0 = 1.0 is X(02) = 1 x 10"^ which is

significantly lower than the abundance for C/0 = 0.4 listed earlier. Therefore, the

higher CS/SO ratios for a larger C/0 ratio is due to a drop in the formation of SO

because the excess carbon is rapidly destroying the simple oxygen molecules at

early times to produce mostly CO.



Appendix B

Gas-Phase Chemistry in Dense Interstellar
Clouds including Grain Surface Molecular

Depletion and Desorption

B.l Introduction

In this appendix we present a brief discussion of gas phase chemistry including

the effects of grain depletion and desorption in regions exposed to enhanced

ultraviolet (UV) flux. This work has been presented in Bergin, Langer, k
Goldsmith (1995; hereafter BLG) and used a smaller chemical network which

enables an examination of the general effects of including gas-grain interactions on

the chemical evolution but does not allow for a direct comparison to be made. For

a more detailed discussion of the gas-grain model see BLG.

Many of the current theoretical efforts incorporating grains into chemical

models, including the work by Hasegawa & Herbst (1993) and Hasesgawa, Herbst,

k Leung (1992), have concentrated on studying eflfects of grain surface chemistry

on the chemical evolution of molecular clouds in dense well shielded regions. In

this appendix we extend the theoretical models to the exterior regions of molecular

clouds in addition to the dense well shielded interior. We model how molecular

grain mantles evolve as a result of the competition between the processes of

depletion and desorption, in order to examine the time history of molecular

abundances on the mantle as a function of cloud depth (visual extinction).

In our models we have initially taken the somewhat restrictive view of not

allowing reactions on the grain mantle, since the addition of surface reactions adds

additional complexity and uncertainty. The exclusion of surface reactions is

certainly an approximation, since reactions on the surfaces of grains are thought to
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for™ molecular hydrogen (HoUenbach & Salpeter 1970). However, the observations
of sohd CO embedded in a nonpolar matrix provides sonre evidence of molecules
that were directly deposited on the grains from the gas phase and not created by
surface processes (Tielens et al 1991; Whittet 1993).

B.2 Chemical Model

B.2.1 Gas Phase Chemistry

As mentioned earlier the chemical reaction network is smaller than the network
presented m Chapter 6. In particular the reaction network for gas phase reactions

consists of the major formation and destruction pathways for carbon-, oxygen-,

and nitrogen-bearing species. The reaction set links 82 species through a netwlrk

of 1072 reactions first compiled by Viala (1986) and later updated by Benayoun,

Nercessian, & Viala (1991). Since we are modeling both the edges of clouds and

interior regions the chemical reaction scheme includes the photodissociation and

photoionization of molecules. The transition from atomic to molecular form for

most molecular species occurs much deeper in the cloud than that for H to H2.

Therefore we have not included the effects of H2 self-shielding. In our model the

molecular hydrogen density remains constant in time. The main destruction

process for H2 is cosmic ray ionization (C = 2.0 x IQ-^^ s-^) and the main

formation path is immediate H2 formation when a hydrogen atom sticks to a grain.

B.2.2 Gas-Grain Interactions

B.2. 2.1 Depletion and Binding

The rate of deposition of a molecule in the gas phase onto a grain surface is

kdep = T^a^vSugr {s~^). (B.l)

where a is the grain radius, v is the mean thermal velocity, S is the sticking

coefficient, and Ugr the space density of grains. We have used "classical" grains of
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radius 1000 A and space density n„ = 1.3 x 10-"n{H,) cm-'. We have assumed
a sticking coeiiicient of 1.0 for all neutral atoms and molecules except atomic and
molecular hydrogen.

We have adopted the binding energy scheme of Hasegawa, Herbst & Leung

(1992) who assumed that all molecules are physisorbed onto the surfaces of grains.

The values chosen for binding energies are highly uncertain, since few have been

measured in the laboratory and the binding surface may change as grains evolve.

The choice of E, is critical since the desorption processes are highly dependent on

the binding energy.

B.2.2.2 Desorption

One of the more uncertain aspects of modeling gas-grain chemical interactions

is determining the dominant mechanism that removes species from the mantles.

Several studies have been performed, proposing many different desorption

mechanisms (c.f. Leger, Jura, k Omont 1985, and Schutte & Greenberg 1991). To

assess the effectiveness of different desorption mechanisms throughout the cloud,

we have included three potentially important desorption mechanisms: thermal

evaporation, cosmic ray induced heating, and direct photodesorption (see Section

2.2.2 in BLG).

B.2.3 One Dimensional Chemical Model

The coupled differential equations governing the gas-grain chemical evolution

were solved using a variant of the Gear (1971) algorithm: LSODE (Hindmarsh

1980). This code, which is a linear implicit multistep method, utilized variable

time step and error control techniques to preserve numerical accuracy during the

integration. The adjustable variables for a given calculation are the space density

of molecular hydrogen, n(H2), the factor by which the UV radiation is enhanced,

X, the gas temperature, Tgas, the dust temperature, Tdust, and the visual extinction
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to the center of the cloud, 4.. ,s the visual extinction proceeding from edge to

center such that r{?"^ =r Ay .

A one dimensional cloud model was constructed by runnmg a one dimensional

time dependent calculation up to 10^ yr with fixed physical conditions for a given

visual extinction (see discussion of 1-D model in Chapter 6). For the initial

conditions we use depleted elemental abundances based for the most part on

observations in the diffuse cloud towards C Ophiuchi (Savage, Cardelli, and Sofia

1992, see also Graedel et al 1982). These abundances (Table 1 in BLG) represent

moderate depletions (~ 0.2) for C, N, O, while the heavier metals are significantly

depleted.

The one dimensional model of gas phase chemistry including grain depletion

and desorption was run for a single cloud model, labeled the standard model,

where physical parameters were kept constant throughout the cloud. The physical

conditions of the standard model are n(H2) = lO'' cm"^, Tgas = 20 K, Tdust = 10 K

and X = 1-0. The calculations included all desorption processes discussed earlier

unless otherwise noted.

B.3 Time Dependence

To show the limiting case of total depletion we performed one calculation of

standard model without cosmic ray desorption, similar to the results presented by

Iglesias (1977) and Brown k Charnley (1990). This is presented in Figure B.l for

deep in the cloud {ry = 10.3 mag) where photoprocesses can be neglected.

Thermal evaporation is therefore the only relevant desorption mechanism. Since at

Tdust = 10 K the timescale for thermal evaporation is much greater than the

depletion timescales, all molecules are seen to disappear from the gas phase at the

characteristic depletion time of ~ 10^ years. These results remain essentially

unchanged for T^ust up to ~ 20 K. A characteristic of most ion-molecule models in

the gas phase is that O2 and N2 peak in the gas phase at much later times than
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Figure B.l. Time evolution of gas phase and grain surface abundances for major
reservoirs of carbon, oxygen, and nitrogen (abundances are relative to H2). The
physical conditions are for the standard model but thermal evaporation off of 10 K
dust grains is the only desorption process.

CO, which quickly locks up most of the carbon (Graedel et al 1982, Langer and

Graedel 1989). Thus, the mantle composition reflects the gas phase abundances at

earlier times and is dominated by atomic oxygen and CO. H2 0 remains a trace

species on the mantle where its fractional abundance remains below 10~^.

Our standard model includes all desorption processes and these modify the

time dependent evolution significantly. The results are shown in Figure B.2 for

species which represent the dominant reservoirs of carbon, oxygen, and nitrogen in

the interior {ry = 10.3 mag) and near the edge of the cloud {ry — 2.1 mag). The

most striking feature in Figure B.2 is that deep in the cloud (ry = 10.3 mag), the
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molecules, including highly polar H^O, remain m the gas phase despite the high

depletion rate
. This is in contrast to Figure B.l that indicated that all molecules

disappear from the gas phase after ~ 10^ yr. The persistence of molecules in the

gas phase at all times is due to cosmic ray desorption (discussed in section 2.2.2).

The grain surface composition has been highly modified by the cosmic rays, which

quickly remove the weakly bound atoms and allow formation of molecular oxygen

and nitrogen in the gas phase. These species subsequently deplete onto the grain

surface. Hence the composition of the molecular grain mantle is dominated by O2

and CO, in contrast to the case excluding cosmic ray desorption where O and CO

are the most abundant species present in the mantle.

We can examine these effects for various species more closely by comparing the

timescales for depletion and desorption listed in Table B.l. Since the timescales for

cosmic ray desorption are highly dependent on the binding energy, there exists a

wide range of values: the strongly bound water molecule shows the cosmic ray

desorption timescale, tcr > tdep, the depletion timescale. The intermediate binding

of CO exhibits tcr ~ tdep, while the weakly bound carbon atom has t^ < tdep- In

our model, the gas phase chemistry is strongly influenced by the desorption of

atoms from the surface. Since atoms have low binding energies, cosmic ray

desorption rapidly removes the atoms from the surface allowing an active gas phase

chemistry to continue for very long times. In the work by Hasegawa & Herbst

(1993) this effect is absent because the atoms are assumed to undergo rapid

catalytic reactions on the grain surfaces processing them to molecules which have

higher binding energies.

The lower panel in Figure B.2 shows the chemical evolution at Ty ~ 2 mag,

where photoprocesses play a more important role. However, even at low

extinctions, the process of cosmic ray desorption dominates over photodesorption.

As an example, for CO tcr — 2.2 xlO^ yr is less than the photodesorption
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Figure B.2. Time evolution of gas phase and grain surface abundances (abundances

are relative to H2) for major reservoirs of carbon, oxygen, and nitrogen for the

standard model at Ty = 10.3 mag (upper panel) and Ty = 2.1 mag (lower panel).
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7.8(5) 8.6(5) 6.9(5)
rph{A, = 2.0) 6.0(7) 6.0(7) 6.0(7)

'^•4(3) 2.2(6) 1.3(10)
^"Numbers are writtoThTThe form a(b) = a x 10".

"

Tdep and Tcr calculated at n(H2) = 10"* cm-^

timescale (at = 2.1 mag) of 6.0 x 10^ yr. The important mechanism at low
extinctions is not photodesorption but photodestruction, which keeps the oxygen
and nitrogen in atomic form. Cosm.c ray grain surface desorption then maintains
O and N in the gas phase, leaving the strongly self-shielded CO molecule and trace

amounts of O, and H2O on the grain mantles.

Thus, for molecular cores with densities near n{n,) ^ 10^ cm-3 cosmic ray

desorption can play a significant role in removing molecules from the grain mantles

both in the cloud interiors and in exterior regions. This examination therefore

supports the conclusions of Leger et al (1985) and Willacy and Williams (1993)

that cosmic-ray desorption allows an active chemistry, deep in the cloud, at times

greater than the depletion timescale.

B.4 The Dependence of Molecular Depletion on Physical Conditions

Depletion is highly dependent on the physical conditions of the parent cloud.

For example the depletion timescale presented in Table B.l is inversely dependent

on the density, as such, in CMC cores with n(H2) ~ 10« cm-^ the depletion

timescale is very short, r,,^ ~ 10^ yr. Therefore gas-grain interactions could play a

dominant role in the chemical evolution, unless some mechanism can be found to

remove molecules from the grain mantle. In this section we examine the

dependence of depletion on the density and apply these results to observed

molecular ice abundances. In the following paragraphs we will refer to depiction as

defined by the percentage of the total abundance of a species (gas phase + surface
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abundance) that is present on the grain surface. A molecule that shows a
depletion of 90% will have 90% of the total abundance of that speces on the grain
surface and would be considered significantly depleted from the gas phase.

Observations along Unes of sight towards field stars in Taurus by Whittet et al

(1989) have revealed depletions on the order of 5 - 40%. These results are towards

obscured stars that are presumably not associated with the cloud, it is likely that

they are probing quiescent material. Thus we assume that a dust temperature of

10 K may be representative for the observations towards the most obscured stars

which exhibit the highest depletions. With this assumption it is worthwhile to

examine at what density our model agrees with the observed CO depletions, and

whether at these densities millimeter observations may miss a significant fraction

of molecular material.

To illustrate this, we plot in Figure B.3 the depletion as a function of density to

examine at what density different molecules will be significantly depleted from the

gas phase. This figure shows that both CO and O2 are quickly depleted below a

level of 50% by n(H2) = 3000 cm-^, while the highly bound species CN, HCN, and

H2O all show significant amounts of gas phase depletion for all densities. Thus for

densities typical of CMC cores, n(H2) ~ 10^ cm-^, almost all of the CN and HCN
should reside solely on the grain surfaces. However, these results are uncertain,

since the depletion of a given species is a strong function of the binding energy, and

even a modest change in (which are mostly unknown) will have a large eff-ect.

Some binding energies have been measured in the laboratory for CO in an H2O

matrix (Sandford k Allamandola 1990) and CO in a pure CO matrix (Sandford &
Allamandola 1988). We have used these binding energies to examine the

interdependence of depletion and binding energy for the CO molecule. We present

these results in Figure B.4, showing depletion as function of density and binding

energy. The dashed line in the figure is the nominal depletion estimated by Whittet
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Figure B.3. Depletion from the gas phase for selected species as a function of density
at 10 yr for T,., = 10 K,x = 1.0, T,., = 20 K. n;,(,..,.,,)/n;.,,.,^,,,,_) is defined
as 1 = 100 percent depletion.

et al (1989) in Taurus. The most striking feature in this figure is that the CO

molecule is easily accreted and held on a water mantle. In fact, for all densities,

the depletions of CO in a water mantle are much larger than observed. Our model

thus suggests that the CO ice observed in molecular clouds must be binding in a

mantle with a binding energy less than 1740 K. This conclusion is consistent with

the observations of nonpolar and polar ice features, since CO is more abundant in

the nonpolar layer which is not dominated by H2O (Tielens et al 1991)

The binding of CO in the nonpolar mantle may also be inconsistent with the

binding energies used in this work, which are for Si02 mantles. At high densities,

even a binding energy for CO to an SiOa surface of ~ 1200 K produces high

depletion. It is somewhat hard to categorize the actual densities along these lines
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Figure B.4^ Depletion of CO from the gas phase at 10^ yr as a function of molecular
hydrogen density for three different binding surfaces: CO binding on a pure CO
surface, CO binding on a SiO^ surface, and CO binding onto a water ice surface.
^co{surface)/T^co{gas+surface) is defined as 1 = 100 pcrccut depletion.

of sight, since space densities are difficult to infer from extinction measurements.

However, various indications of the densities towards some of the field stars in

Taurus are in the literature. Two of the stars in the survey by Whittet et al

(1989), Elias 15 (A^. = 13.3 mag) and Elias 16 (A^ = 23.9 mag), are in portions of

the Heiles' Cloud 2 mapped by Cernicharo, Guelin, & Askne (1984) in the J = 1

^ 0 transition of HCO+ and its isotopic variant H'^CO+. Both of these field stars

are within the contours of the HCO+ emission (the beam size is ~ 5') and Elias 15

is coincident with a local maximum in the H'^CO^ map. These observations thus

suggest the densities are >10'* cm-^, since HCO+ and in particular W^CO+ would

be hard to excite at densities below this value.

If these densities are representative of the material where CO ice features are

observed, then pure CO ice seems to best reproduce observations. For CO-CO
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binding, depletions > 50% do not occur until n{ll,) > 5 x 10^ cm^^ which is not

unrealistic for lines-of-sight with large extinction. In fact, for two sources listed in

Table 4 the observations of the nonpolar component exhibit ice features consistent

with pure CO ice. // CO for 0^) is the dominant component of the nonpolar ice

then the binding energies for most species would be reduced to values that may

allow a significant portion to remain in the gas phase, even at the high densities

observed in GMC cores. Of course these results are dependent on the desorption

model and on the absence of competing reactions on the surface of the grain.
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