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ABSTRACT

The fundamental observations which must be matched by any

theoretical model of Saturn's rings is the phase curve of the rings.

This phase curve has a very sharp surge in brightness near opposition

which is known as the opposition effect.

We assume that a plane-parallel and homogeneous ring layer con-

sists of many independent and randomly oriented spherical particles and

that these particles are large enough and their number density great

enough to cast shadows upon each other. We assume that the opposition

effect is produced by the mutual shadowing of the ring particles (the

shadowing mechanism), an idea originally proposed by Seeliger (i88t).

Under these assumptions we investigate models of Saturn's rings which

include this shadowing mechanism, realistic phase functions for the

individual ring particles, and the effects of multiple scattering and a

particle size dispersion.

In the shadowing mechanism we include the effects due to the finite

g
size of the sun, including the penumbra. The relation dn = Kp dp is

used for the size dispersion law of the ring particles, where dn is the

number of particles with radii between p and p + dp, p is the radius of

a particle, s is a parameter describing the shape of the size distri-

bution, and K is a constant. The parameters of this basic model are

limited by the requirement that the absolute brightness of the rings,

the variation of brightness with tilt angle (declination of the sun

with respect to the ring plane), and the spectra of the rings agree

with observation.



vi

The res\ilting models are considered in relation to the infrared

and radar data which are now becoming available. In the calculation

of the infrared temperature of the rings, the effect of mutual

heating among the ring particles is considered quantitatively for the

first time. We find that the effect of mutual heating among the ring

particles is stronger than that of the flux from Saturn's ball.

The basic conclusions are the following. Although the monodis-

perse model and the uniform size distribution model (s = O) work well

with the optical data, it seems difficult for them to satisfy the

observed high infrared temperature of the rings because of their high

optical albedo. The polydisperse s = 2 model seems to satisfy both

optical and IR data, but the situation could be much clarified if a

good phase curve for the rings were available in the red. The possible

reasons for the observed color dependence in the opposition effect are

discussed. The volume density for ring B is D 0.01. The ring

particle phase function seems to be moderately backward scattering.

The lower limits of the phase integral are found to be 1.0 and

l.h in the blue and visual, respectively. The lower limits of

the particle albedo are found to be a^ O.i+2 and a^ 0.72. The

particle Bond albedos cannot be much higher than those values. The

2
upper limit of a mean particle size is found to be <p > < h.^ m.

The lower limit on particle size and the mean particle size itself

remain uncertain. The lower limit of the optical thickness of ring B

is T . > 0.5.
min
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The upper limit of the mean particle size found in this model

agrees with both the models suggested by Pollack et al. (1973) and

Pettengill and Hagfors (197^+) to fit the microwave and radar data.

The high albedo for ring particles agree with the deduction from the

spectral data (Lebofsky et al. , 19TO) that the principal constituent

of at least the outer portions of the ring particles is ice, slightly

reddened by either the action of high energy radiation or the

presence of impurities.
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SECTION I

INTRODUCTION

The data provided by optical observations have traditionally been

the core material for attempts to understand the nature of Saturn's

rings. By optical in the present context we mean the extended visible

portion of the spectrum (roughly 0.3 - 1.0 microns) in which radiation

received at the Earth from Saturn's rings is reflected sunlight, and

hence does not include thermal emission by the ring particles. Al-

though critical observations are now becoming available in the infrared

and microwave regions of the spectrum, models of Saturn's rings must

continue to satisfy the constraints provided by the optical data.

Let us describe the basic information on Saturn's rings. Saturn's

ring system was first discovered by Huygens in l655- Its mean distance

from the earth is 9-5 AU. It is known that it consists of three

concentric portions, the outer ring A, the middle brightest ring B, and

the inner faintest ring C. The radial distance is l.h x 10^ km from

the center of Saturn to the outer edge of ring A. The corresponding

k
distance is '^^ 7 x 10 km from the center of Saturn to the inner edge of

ring C. Ring B is separated from ring A by a destinctive gap, the

Cassini division. The maximum and minimum radial distances of ring B

5 ^
from the center of Saturn are 1.2 x 10 km and 9 x 10 km, res-

pectively. The rings lie in the equatorial plane of Saturn and the

physical thickness of the rings is estimated to be a few km. The

doppler shift in the ring spectrum indicates that the revolution period

of the inner portion of the rings about Saturn is shorter than that of



the outer portion of the rings. This indicates that the rings have

differential rotation and the ring system is not a solid sheet, but

instead a svarm of orbiting particles. The above data are taken from

Bobrov's Saturn's rings survey (Bobrov, 1970 ).

Maxwell (l859) studied the stability condition for a ring of non-

colliding particles. His stability criterion is that the rings will

be stable if the density of the ring is less than one-three hundredth

of the density of Saturn. Since Maxwell neglected the ring's differ-

ential rotation, his upper limit of the ring density was greatly

underestimated. Cook and Franklin (l96i+, I966) rediscussed Maxwell's

study and found that the upper limit of the ring density must be raised

by more than a factor of 10. The effect of collisions among the ring

particles was discussed by Jeffreys (19^7). In the discussion, he

concluded that the rings should transform into a collisionless system

one particle thick because of the energy dissipation due to the partly

inelastic collisions. Since a ring system one particle thick makes it

difficult to explain the observed brightness surge near opposition, it

is necessary to find mechanisms of energy replenishment which are able

to prevent the full flattening of the rings during the lifetime of the

solar system. Since the differential rotation causes the transfer of

angular momentum along the rings, the above energy source may be the

differential rotation of the rings.

The nature of the ring particles is still a matter of considerable

controversey . Let us review briefly the histrical background on the

investigation of Saturn's rings bearing on this question. The obser-

vations of Miiller (1893) indicated for the first time an unusual
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increase in "brightness of the rings near opposition.

Seeliger (188?, l893) explained this effect (known as the opposi-

tion effect) by the mutual shadows cast among big particles in the rings.

The basis of this theory is discussed more fully in section II below.

Since Seeliger 's theory did not agree well with more accurate measure-

ments of the siirface brightness of the rings as a function of the phase

angle (the angle between the direction of the sun and that of the earth

as seen from the rings) obtained by Guthnick and Prager (1918), Hertz-

spriing (1919) and Schoenberg (1922), an alternative explanation was con-

sidered.

Schoenberg (1933) proposed that the opposition effect was due to

diffraction by very small ring particles. Since the best observations

at that time suggested ripples in the phase curve, and since the number

of ripples depends on the particle radius according to diffraction

theory, Schoenberg found a mean particle radius of l.Sy by comparing

the theory with observations. We may, thus, understand that the size of

a ring particle will be big relative to the wavelength according to

Seeliger 's theory, while it will be of the same order as the wavelength

from Schoenberg 's point of view.

Seeliger 's original theory was improved in a series of papers

(19^+0, 1956, 1961, 1970) by Bobrov. He included three factors which

were ignored by Seeliger: the effect of the finite size of the sun, the

multiple scattering contribution to the brightness, and the size

dispersion of the ring particles. In 196I Bobrov also showed that the

high surface brightness of the ring B could not be explained by

diffraction, as Schoenberg had proposed. The particle albedo a^ In



the visible for ring B was estimated to be about 0.5 0.6 by Bobrov.

A wavelength dependence of the opposition effect was reported by

Franklin and Cook (1965) and more recently by Irvine and Lane (19T3).

Franklin and Cook (1965) considered the possibility that either the

glory in the backward scattering by the individual ring particles or the

diffraction by small ring particles into their shadows was responsible

for the wavelength dependence of the opposition effect. The later

possibility is not allowed, because it leads to a ring thickness of 10

cm, which seems too thin, as compared with observed ring thickness of

2 km (Kiladze I969; Focas and Dollfus I969). In a reworking of their

previous paper Cook et al. (1973) obtained a^ > 0.6.

After studying the measurements of the ring's surface brightness as

a function of the declination angles of the sun and the earth with res-

pect to the ring plane, Lumme (19T0) and Price (1973) concluded that the

effect of multiple scattering in the ring system should be quite large,

and the particle albedo, therefore, should be O.9 in the visual.

Concerning the particle albedo, the infrared temperature measure-

ments will provide us important information. Allen and Murdock (l97l)

obtained an infrared temperature of the ring B which was 83°K. More

recent infrared observations by Murphy (1973) and Morrison (1973) sug-

gest even higher ring temperatures in the infrared, about 90°K. These

results indicate that the ring brightness temperature in the infrared

is much higher than previously thought, and impose a corresponding

constraint on the values of the visible albedo.

The attempts to identify the possible ring constituents have been

made by comparing infrared spectral data in the laboratory with that of
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the rings. The recent infrared spectra of the rings by Kuiper et al.

(1970) show strong absorption bands near 1.66, 2.0, and 3.0

microns. Pilcher et al. (19T0) show that H^O frost, originally proposed

as a ring constituent by Kuiper (19^9), is in better agreement with the

new ring spectrum than is NH^ frost (proposed by Kuiper et al., 1970).

In addition to infrared observations, recent radar observations at

A = 12.6 cm by Goldstein and Morris (1973) for the first time detected

radar echos from the rings. The signal was surprisingly high.

Goldstein and Morris suggest meter size particles in the ring system

from their interpretation of the radar results. According to this

interpretation, the observed high radar reflectivity is simply due to

strong backward scattering by large (compared to the wavelength), rough

ring particles. Since this "meter size" model leads to a much higher

brightness temperature in the microwave region than the observed upper

bound brightness temperatiire of the rings. Pollack et al. (1973) propose

that the high radar reflectivity is the result of multiple scattering

by ring particles having a high single scattering albedo at the wave-

length of observation. From this "bright cloud" model the latter

authors obtained a mean particle radius ^ 2 cm. Pettengill and Hagfors

(197U) proposed a model which does not conflict with either high radar

return or low observed brightness temperature in the microwave region.

They consider the ring particles to be nearly transparent spheres.

Since such particles absorb very little solar energy, they are con-

sequently poor radiators of thermal energy. The high radar return is

explained by the fact that backscattering from nearly transparent

spheres can show considerable gain over the simple external reflection
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from spheres having a large dielectric constant, such as the rough

particles proposed by Goldstein and Morris. They shoved that any such

sphere in the size range 8<p<200 cm (p is the particle radius) has much

larger backscatter cross section than that required for the radar

observation.

Previous analyses of the optical observations have suffered from

limitations which are no longer necessary in view of improved computa-

tional and theoretical methods. We have accordingly endeavored to apply

the best procedures currently available in an effort to see what

limitations the optical data impose upon the physical parameters of the

ring system and the particles which it contains. The procedure which we

shall use (Section III) is a refinement of that originally proposed by

Seeliger (188T) and subsequently employed in the fundamentally important

work of Bobrov (e.g., 1970) and Franklin and Cook (1965). We shall com-

pare the theoretical model with the optical observations (Sections IV

and V). The resulting model will then be considered in relation to the

new infrared and radar data (Section VI).
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SECTION II

AVAILABLE PHOTOMETRIC OBSERVATIONS AND OUTLINE OF THE PROCEDURE

Since the most complete and reliable photometric data are available

only for the bright ring B, ve shall concentrate our attention on this

ring. The fundamental observation which must be matched by any theoreti-

cal model is the phase curve of the rings; that is, the surface bright-

ness normalized at phase angle 0 versus phase angle a. This curve is

normally plotted in stellar magnitudes per square arc-second of the

rings, and has the following three characteristic features:

1. A very sharp surge in brightness near a = 0° which is known as

the opposition effect;

2. A linearly decreasing brightness as a increases for a>2°

:

3. A dependence upon wavelength.

The most reliable photometric phase curves appear to be those of Franklin

and Cook (1965) which were obtained in the B and V wavelength bands

(effective wavelengths X = O.i+USy, and A = 0.%k\i, respectively). These

data are illustrated in Figure 1. Since Saturn did not reach exact

opposition (a = 0°) during their observations and the extrapolation to

a = 0° is somewhat arbitrary, we have normalized all data at the minimum

phase angle observed (a = 0.09^°).

Another observation of critical importance to the understanding of

the rings is the absolute surface brightness as a function of wavelength.

Data for B and V were obtained by Franklin and Cook (1965). Corres-

ponding data for other wavelengths may be obtained from the relative

spectral photometry of Lebofsky et al. (1970), Irvine and Lane (l97i).



8

gure 1: Phase curves (surface brightness versus phase angle a)

for ring B at two wavelengths normalized at a = 0.09i|°

(from Franklin and Cook, I965).
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isure
and Kharitonova and Teifel (l9T3), although care must be taken to in.

that observations made under corresponding conditions are compared.

This is important because the brightness of the rings may depend upon a

number of geometric factors, including a and declination of the sun and

earth relative to the ring plane, and possibly on the distance of Saturn

from the sun or the position of the ring particles relative to their

eclipse by Saturn. Complete phase curves of the rings at wavelengths in

the red and near latraviolet would be most desirable in the future.

Additional photometric observations of potential importance are

the variation in ring brightness with declination of the sun and earth.

Observations have been made by Camichel (I958) and Price (l9T3).

The principal diagnostic characteristic of the phase curve is the

opposition effect. We shall procede on the assumption that this effect

is produced by the mutual shadowing of the ring particles, an idea

originally proposed by Seeliger (i88T). In more detail, we assume that

the rings consist of a plane layer containing many independent parti-

cles which are illuminated by the sun and observed from the earth.

Those particles nearer the sun cast shadows upon the particles behind.

At exact opposition an observer on earth will see only sunlit particles

and so will observe a maximum surface brightness. As the phase angle

increases, the shadowed particles which were formerly shielded from

view by the sunlit particles may now be observed from the earth, so

that the surface brightness falls off. This initial decrease in

brightness takes place very rapidly as a function of phase angle.
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Observations of stellar occultations by Saturn's rings indicate

that the optical thickness of ring B is near unity. Because of the

relatively high albedo of the ring particles (cf. Luirnne, 1970; Price,

1973; Cook et al., 1973), it then follows that multiple scattering will

play an important role in determining the photometric properties of the

ring system. In previous computations of the shadowing mechanism

multiple scattering has been included in only an approximate manner, by

assuming that higher order scattering will be isotropic. We treat

rigorously the multiple scattering problem for more realistic, aniso-

tropic particle phase functions, including wavelength dependence.

The close relationship between the shadowing mechanism described

above and the usual multiple scattering theory of radiative transfer

has been discussed by Irvine (1966). Radiative transfer theory can be

applied when the interparticle distance in the layer is sufficiently

large that each particle is effectively in the far field for scattering

by the other particles, so that shadows may be neglected. When the

particles are large enough and their number density is great enough,

they will cast shadows upon each other, and the usual multiple scatter-

ing theory must be modified to include the effect of shadowing.

Fortunately, this can be done in a straight-forward manner.
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SECTION III

THEORETICAL PROCEDURE FOR ANALYZING

THE PHOTOMETRIC OBSERVATIONS

We shall assume in our model that the rings are plane-parallel and

homogeneous with respect to optical depth. We thus neglect the possi-

bility that such properties as mean particle size or composition depend

on altitude with respect to the center of the ring plane. We shall

furthermore ass\:ime for the present that the ring particles may be

characterized by a single effective radius p and for the purposes of the

shadowing computation may be treated as spheres. We shall return in

Section V below to the possibility of a distribution of particle sizes,

2 3which introduces into the theory such quantities as <p > and <p >

in addition to the mean radius <p>. The assumption of sphericity will

not significantly effect the applicability of our results, since it can

be shown that the magnitude of the shadowing effect at opposition is

independent of the particle shape (Seeliger, l895), and we do not

require that the individual particle phase function be given by Mie

theory.

Following the procedure of Irvine (1966), we may express the

specific intensity I of the radiation reflected by the rings as a sum

of successive orders of scattering:

I = T ^ + I 1 a" (1)

1 n=2
^

where I^ is the contribution from once-scattered radiation including

the necessary shadowing correction, and a"" I^ is the contribution from
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radiation scattered n times (a is the single scattering albedo of the

ring particles, and is the n-th order scattering intensity for

a = 1.0. See equation (3) belov). Fortunately, the effect of mutual

shadowing is important only in the calculation of the primary scattered

intensity and may be neglected in the computation of I for n > 2
n — •

A:—Shadowing Mechanism. Let us discuss first the computation of
g

I^. If the wavelength of light X is such that

X « p^/A

where A is the lesser of the mean free path of a photon in the layer and

the thickness of the layer, a shadow will be formed behind each particle

which will be described by geometric optics (van de Hulst, 1957). Let

us introduce coordinates such that 0 = arccos y is the polar angle with

respect to the outward normal to the ring layer and (j) is the corres-

ponding azimuthal angle measured from the plane of incidence. We shall

use the notation Q, = {Q,(^) to specify a particular direction, and shall

initially assume that solar radiation is incident only in the direction

Q, = (9 ,(}) ). For convenience we take u =. |cos6 1. Let the physical000 o ' o '

^

thickness of the ring layer be t, and let the fraction of the ring volume

occupied by particles be D, so that

D = |iT p^n (2)

where n is the nmber density of particles in the rings.

The physical mechanism operative in the shadowing effect can be

understood by referring to Figure 2, which shows a particle of radius p
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Figure 2: Geometry of the shadowing effect. Direction toward the

sun in = iQ^Aj, towards the earth is ^ = (e,(})).

Thickness of the ring layer is t, depth of particle of

radius p from the ring surface is h.
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at a depth h within the ring layer. The volumes and are (except

for a small correction near the surface) cylinders of base area Tip^ and

height h/y^ and h/y, respectively. A small element e of the projected

area of the particle will be both sunlit and observable from the earth

provided that the centers of all other particles in the ring layer are

outside of the volumes and V^. If, as implied by our postulate of

homogeneity, the ring particles are randomly distributed through the

ring volume, the probability of the above situation occuring may be

easily computed given the assumption that the fractional volume occu-

pied by particles is sufficiently small (8D « l). This probabilistic

approach yields the familiar exponential attenuation for both the

average radiation field at a depth h in the layer and for the primary

scattered radiation emerging from the layer, provided that the volumes

and do not significantly overlap. If they do so overlap, an

anomalously high intensity is produced because the probability for

photon escape from a depth h becomes highly correlated with the proba-

bility of photon penetration to the same point. This is the shadowing

effect.

The analysis shows that, if the incident solar flux through the

upper surface is ttF' , the single-scattered intensity at an optical

2
depth C = niTp h traveling in a direction U is given by

• r/y T
s ^ a ^{^,^0) F e r

f_ (

-1
^ ^-1) ^ (3)

1 4y i o
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where n is the number density of particles, C is the overlap volume

shown in Figure 2, a is the single-scattering alhedo of the ring parti-

cles, T is the optical thickness of the ring layer given by equation

(U), the particle phase function is and the polar angles of incident

and scattered light arccos and arccos y are measured from the out-

ward normal. The phase f\mction $(y) defines the probability that a

scattered photon will be deviated by an angle y (see equations (22) and

(23)). When C = 0, is the primary scattering obtained from the

usual multiple scattering theory. Since we have assumed that the

particles are large and diffraction may be ncf^.l ected (tha,r i:;, Llu-

efficiency factor for extinction is unity), the optical thickneijs of

the rings is related to the parameters previously introduced by

2
T = niTp t [h)

The quantity nC has the form (Irvine, I966)

(C' - C <, a # 0)

nC = - E (C' - C <, a # 0) (5)

^ (C' - C)/Uq (a = 0)

where
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V = cosg) D
1 TTsina

3(cose + cose ) D 3o
p cos lil

UTTsina cose cose cosv " — " ^^/^ - ij;) sinij;]

cosa = cose cose + sine sine cos((b - d) )o o ^ ^o

cos6 = (cose^ - cose cosa)/ (sine sina)

tanv = sine sin6 sina/(cose + cose
o

siniD = - - ^) sing cosv
^'''^

3 (cose + cose ) D

^ (cose + cose )

i_ o_
k sina cosv

When C = 0 (i.e., at the siirface of the rings), we find the reflected

intensity as

= I^(C =0) (m > 0) . (6)

The above approach is essentially that used by Seeliger (1887).

Because of the geometry in Figure 2, it is referred to as the

cylinder-cylinder model. Bobrov (cf. 1970) has pointed out the

important effect introduced by the finite angular diameter of the sun

at the distance of Saturn. Because the shape of the shadow volume



will be a cone for light coming from an extended source, he modified

the previous theory by replacing the volume in Figure 2 by a coni-

cal volume, producing a "cone-cylinder model". This procedure, how-

ever, ignores the penumbra of the shadows cast.

Franklin and Cook (1965) observed that the opposition effect

appears to be wavelength dependent, and proposed a model in which this

dependence was produced by the wavelength variation of diffraction

into the shadow zone. They treated this situation by using a "cone-

cone" model for the shadowed volumes, with the dimensions of the

"diffraction cone" being wavelength dependent. This model led to an

unreasonably small physical thickness of the ring, however, and it is

desirable to search for an alternative mechanism for producing the

wavelength dependence. Franklin and Cook also considered the por-si-

bility that the wavelength effect might be due to differences in the

glory produced by small Mie-scattering spheres forming a surface

structure on larger particles. For spherical particles there is a

contribution to the scattering in the nearly backward direction from

edge rays, apparently connected with surface waves generated on the

sphere. This enhanced scattering in the backward direction is known

as glory (Liou and Hansen, 1971)- The glory is observed in nature

for water drops. (For example, when we see a bright ring around an

airplane shadow projected upon clouds.) This explanation seems

extremely unlikely, however, because of the high degree of symmetry

of the scattering centers needed to produce the glory phenomenon.
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In the present model ve propose to take into account the effect
of the sun's finite size by performing a numerical average of the

intensity obtained under the assumption of a point (infinitely distant)

sun. This will rigorously include the effect of the penumbra and also

any influence of solar limb darkening. The computation can be carried

out quite rigorously, because the necessary arithmetic in equations

(3) and (5) is efficiently and rapidly performed on an electronic

computer. The resulting model will have a reduced opposition effect

relative to the point sun model, because there is no longer an exact

opposition for the total solar flux.

If the angular diameter of the sun at Saturn's distance is g

(about three minutes of arc), and the sun is assumed symmetric about

the angular direction = (9^^, O) of its midpoint, the average

reflected intensity in the direction (e,(j)) will be

6/2 2Tr

/ ae'/ dr sine' w(cose') R^[Q,<t>; e iQ^),<^ (^^')]cos0 (q')

<H^9,*)> -= —
I d0'/ d(j)' sinS' W(cose') cosS {U'

)

o o °

(7)

where the solar limb darkening

W(ij') = + b^M' + c^[l - y'lnd + (y')"^)]

y' = cos6'

is taken from Pierce and Waddell (1961), who give measured values for
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the three empirical constant a^, b^, and c^. The primed coordinates

are measured with respect to the direction as the polar axis. The

relevant angles may he obtained from spherical trigonometry as

cose = cosS' cose - sine' sine cos(t)'oo oo

sincj) = sine-
o sine

o

The integrations were carried out by a Gaussian procedure using as many

as Ik points in both B and The results are quite insensitive to the

particular limb darkening law chosen.

One measure of the theoretical amplitude of the mutual shadowing

effect which provides some insight into the differences between the

present model and previous ones is the difference 6m(d) in stellar

magnitudes between the primary scattered reflection at a = o° (where

the shadowing effect is maximum) and at a = 6° (where its effect is

small )

:

6M(D) = - 2.5 log — . (8)

[Rj(a = 0°)]

We have written 6M(D), because the volume density D is the principal

parameter determining the strength of the shadowing effect. Figure 3

presents results of computations for 6m(D) for the case T = 1,

9=9^= 6^° (which approximates the Saturnocentric declination of

the sun and earth during the observations of Franklin and Cook), and

<E> = 1. The notation "point 0" refers to results based on the cylinder-
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Figure 3: Magnitude of the shadowing effect 6M(D) for primary

scattering as a function of volume density D (fractional

volume occupied by the ring particles) for three different

models (see text), ring geometry appropriate to Franklin

and Cook (1965) data, and optical thickness T = 1.0. See

equation (8).



(oO=>o/o9=>>)WS
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cylinder model described above; "finite 0" represents the refined

cylindrical model which we shall employ and which is described by

Equation (T); and "Bobrov" refers to the cone-cylinder model of that

author (see Bobrov, I970).

For both the point © and the finite 0 models the shadowing effect

(neglecting multiple scattering) decreases for large volume densities

because the surface of the rings appears to become smoother (uniformly

filled). Because of certain simplifying assumptions in the mathe-

matics, the Bobrov model does not exhibit this behavior. For very

small values of D, the point 0 model approaches an asymptotic value

for 6M; this behavior is a result of the infinite extent of the

cylindrical shadows, and the fact that for a given optical depth T, as

D decreases, the thickness of the layer t must increase (see equation

(h)). In contrast, both the finite 0 and Bobrov models produce

shadows of finite length, so that for sufficiently small D (suffici-

ently large inter-particle distance) the shadowing effect vanishes.

The Bobrov model produces a smaller shadowing effect for small D

because of inaccuracies in its treatment of the penumbra.

A more detailed view of the relation between 6M and D may be

obtained by considering the entire phase curve M^(a) as a function of

D. Sample phase curves for various D computed from our shadowing

theory are shown in Figure h for the same parameters used in Figure 3.

We note the following points:

1. The smaller the volume density D, the steeper the initial

decrease in brightness with increasing phase angle (that is, the more



Figure k: Theoretical phase curves for primary scattering with

T = 1, e = = 6i+°. Curves labeled with the density

parameter D.
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peaked is the opposition effect).

2. For D < 0.01, the total shadowing effect 6M over the phase

angle range 0-6° increases as D increases.

3. For D > 0.01, the opposition effect has become so broad that

6M begins to decrease although the phase curve is still falling off at

6°. We should point out that the values of 6M in Figure I4 differ from

those in Figure 3 for the same D because in the former case they have

been normalized at a = 0.09^° for comparison with the data of Franklin

and Cook, while in the latter case the normalization was at exact

opposition (a = 0°).

In fact none of the curves presented in Figure h agrees with the

data (cf. Figure l). If the theoretical curves are sufficiently

steep for small phase angles, they are too flat for a > 2°. We there-

fore must consider the additional effects of the particle phase

function $ and of higher order scattering (next section). Note,

however, that since the sharp opposition peak is primarily the result

of the shadowing mechanism and not these other effects, we may say

from a comparison of Figures 1 and k that D < 0.02 if we are to produce

a sufficiently sharp peak.

B. Multiple Scattering . It seems to us reasonable to suppose

that the wavelength dependence of the phase curve may be due largely to

variation of the single-scattering albedo a of the particles. The

spectra obtained by Lebofsky et al. (1970) show that the ring re-

flectivity varies significantly between the ultraviolet and the infra-

red. Increasing the value of a will significantly change the multiply
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scattered contribution to the reflected intensity, with a resulting

dilution of the opposition effect and change in shape of the phase

curve. Let us compute the magnitude of this effect.

Apart from the shadowing effect, the intensity reflected by

Saturn's rings will satisfy the equation of radiative transfer

^ dC
" " ^ / (9)

Where a and $ have been defined above. Since the optical thickness

of the rings is not large, it is convenient to express the solution to

equation (9) as the svm. of successive orders of scattering (van de

Hulst, I9I18; van de Hulst and Irvine, I963; Irvine, I96I+), so that

liQ^K) = a" I^(J^,C) (10)

where I^ is the n-th order scattering intensity for a = 1.0. Since we

take the optical thickness of the rings as known in the computation of a

particular model, equation (lO) provides an efficient means for deter-

mining the effect of a change in particle albedo. The desired ring

reflectivity including the shadowing effect is thus, from equations

(1), (6), and (10),

R(fi) = R^(fi) + 1(^^,0) - al^(i^,0) (m > 0) . (11)

The ring reflectivity will be a function of the parameters a, T,

and D, as well as direction and the properties of the phase function



25

The successive terms in equation (lO) are found, for incident flux

7T through the horizontal upper boundary of the rings, from the

relations

TTF' 6(y - u) 6(4) -
(J) ) e"^/^o

, 27r 1

(12)

i;;(^^,C) = / dC' (- ^) e-^^' - ^^/^ B^(fi,C')

I^(e = tt/2, (j), C) = B^(e = 7T/2, (j), C)

vhere B is the so-called source function for nth order scattering,
n ^'

6(x) is the Dirac delta function, and the superscripts + and - refer

to the cases 6 < 7t/2 and 6 > 7T/2, respectively. As has been

emphasized in the above references, the ratio of successive term

I /I , approaches a constant value as n increases, so that the series
n n-1

(lO) may be truncated and the remainder replaced by a geometric series,

The double integrations over 9 and (j) in the above equations may

be eliminated by expanding the phase function in a cosine series in

((}) - <^^) (e.g., Hansen, 19^9 ) . Setting
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<^{\i, (|); y, (f)^) = Z $"^(y,u ) cos m((!) -
(}> ) (13)

m=0 ° °

we have

B^(y, (}), C; y^, (|)^) = E B (y, ^; y ) cos m((}) - (})^)

m=0 " o u

I^(y, (j), ^; y^, (f)^) =2 1^ (y, C; y^) cos m((t) -
(j) ) (lU)

m=0 °

I^(y, (j), C; y^, = E (y, C; y^) cos m(4) - (J)^)

m=0

where

\ = W^ °^ (y,y^)
o

o,m -1

(15)

Since the ring particle phase function is not known a priori ,
we

shall choose a simple analytic expression which may be parameterized

to conveniently describe a wide variety of phase functions. Such a
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function, which is also easily expressed in the form of equation (13),

is the Henyey-Greenstein function

where

(1 + g - 2g cosyr^'^

-L

1

g = - / dy y $„p(y)2 K -hqvkv (17)

and Y is the scattering angle. The parameter g, called the asymmetry

factor of the phase function, satisfies - 1 £ g 1 1 and characterizes

the elongation of the phase function in a polar diagram. For g = 0,

the scattering is isotropic; for g > 0, photons are scattered

primarily in the forward direction; and for g < 0, photons are

scattered primarily in the backward direction.

¥e note that

KJy^s) = S (2n + 1) g"" P^(cos y) (18)

n=0

where

;os Y = y U + / 1 - /1 - cos((}) -
<t> )

and P and p"^ are the Legendre and the associate Legendre polynomial:;,
n n

respectively. Using the addition theorem we thus obtain
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<^'TTp(Y>g) = 1 + E (2n+l)g'^[p (u)P (u )+? T iHzml^- ^/ \r.^, x

(19)

which may be written

<fHC.(Y,g) = E $^ (y, y g) cos <((})-(}))
K=0 u n (20)

vhere

^HG^^' ^' g) = 1 + ^ (2n + 1) P (y) P (y )

n=l n n o

(21)
00

j^— 1^ \ ii ' / • ii no

In our models for this paper we shall use the phase function

Hy) = b \Qiy,&^) + (1 - b) $HQ(T,g2) (22)

which is normalized such that

1- / dy siny $(y) = 1 (23)
o

Equation (22) allows us to investigate particle phase functions which

are isotropic, principally forward directed, principally backward

directed, or which contain both a forward and backward peak. The

parameter b satisfies 0 < b < 1.
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SECTION IV

COMPARISON WITH THE OBSERVATIONS

Using the results of the previous section ve may write for the

theoretically predicted phase curve M(a) in stellar magnitudes

M(a) = - 2.5 lo£

1
<R-, (a)> + Z R (a) ^

n=2

,
<R-, (0)> + Z R (0)1 _ n

n=2

(2l|)

where we write R^ = a"^ I^(C = 0) and the angular brackets denote an

integration of the incident radiation over the disk of the sun. In

order to illustrate more clearly the role of the parameters involved,

we may use equation (3) to rewrite equation (2U) as

f^a $ - a) <S(a)> + Z R (a)
'

M(a) = - 2.5 lo^
n=2

a $ (it) <S(0)> + Z R (0)

n=2
^

(25)

where

<S(a)> E < . / dC exp[- ^'(^ + ^ ) + nC(a)]>
^ '-^o o ^ ^o

(26:

is the primary scattered intensity including the shadowing effect for

the case of conservative (a = l.O), isotropic scattering.

Equation (25) may be further transformed to simplify the
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comparison with the observations. Because the higher order scattering

component of the intensity does not change rapidly with angle and

because the maximum phase angle observable for Saturn is 6°, „e will

have to

E R^(0) % Z R (a)
n=2 ^ n=2

^ (27)

In fact, for the cases investigated below, equation (2?) holds to

better than one percent. It is then convenient to rewrite equation

(25) as

where

M(a) = - 2.5 lo^

'
(j)(TT - g) <S(a)>
cj)(Tr) <S(0)>

^

1 + X

X =

E R (0)

n=2
"

a $(7t) <S(0)>

(28)

(29)

is the ratio of the reflected intensity due to higher order

scattering to the reflected intensity due to primary scattering in-

cluding the shadowing correction, while the other ratio in the

numerator of equation (28) is the intensity ratio which appeared in

the definition of 6M(D) according to equation (8). We thus see that

the shape of the phase curve will depend on the quantities x, the

phase function $, and the optical thickness T and volume density D

through <S>. The single scattering albedo a enters indirectly through

X. It is these parameters D, t, a, and the quantities characterizing

the phase function which we wish to determine. From them, we may hope



to further deduce the nature of the ring particles.

In addition to the phase curve, the absolute surface brightness
of ring B at opposition is a critical measurement for defining the

ring parameters. Noting that the Incident flux on the rings vill be

WF M^, Where W is the solar flux at the distance of Saturn through an

area normal to the direction to the sun, „e may related the observed

absolute brightness at opposition to that intensity R° = R{a = 0)

calculated from equation (11) by the normalization factor Fu to
o

obtain

o _ !_^R _ 1 h Id/^F
R =

(30)

R° = ^ p i
^o
^

where is the mean specific intensity averaged over Saturn's disk,

1^ is the mean specific intensity of the ring B, and is the geomet-

ric albedo of Saturn's disk. The geometric albedo is the ratio of the

mean brightness of the planetary disk at full phase to the brightness

of an intrinsically vhite screen of the same diameter as the planet,

located at the same point perpendicular to the sunlight. If the

brightness of the surface is the same in all directions, this requires

energy reflected in a given direction 9 by any surface element to be

proportional to cos6. This is known as Lambert's cosine law. A

reflective surface which obeys this law is called a Lambert surface.

If such a STorface reflects all the incident light it is said to be an
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intrinsically white surface. Using the data of Cook, Franklin,

Palluconi (1973) for I^/I^ and the value = 0.U29 for V from Irvi:

and Lane (l9T3), ve find a value in the visual of . 1.2. Because

the disk was partly shielded by the rings during the Franklin and Cook

observations, this value of R° is based on an which will be biased

towards Saturn's equatorial regions.

We may obtain an independent estimate of the brightness of ring

B by multiplying the corresponding data of Price (1973), which apply

to the total ring system, by a factor of 1.2, which is the correction

determined from Franklin and Cook necessary to transform to ring B

alone. The corrected Price data give R^=l.l+0.1ata ring in-

clination of 6k°, which is appropriate to the present discussion.

The wavelength dependence of the surface brightness is of critical

importance in determining the ring parameters. The principal data

relevant to this problem are the observations in B and V of Franklin

and Cook (1965), the relative spectral reflectivity measurements of

ring B by Lebofsky et al . (l970), the similar data from Irvine and Lane

(1973) which were deduced from observations of the combined light of

the Saturn system, and some recent spectral scans by Kharitonova and

Teifel (1973). The data are in reasonable agreement for A _< 0.6y if

we bear in mind the color dependence of the opposition effect as

reported by Franklin and Cook and Irvine and Lane. At longer wave-

lengths, however, there are some serious disagreements. The ring

reflectivity for A > O.61J increases slowly with increasing A in the

results of Lebofsky et al., while Irvine and Lane's results indicate
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:or

that the reflectivity has a peak in the wavelength range from 0.6y to

0.8y and declines sharply with increasing A from 0.8y to l.ly. (See

Figure 5.

)

Since these reflectivity observations were made at different

declination angles of the sun relative to the ring plane, this facte

was examined. We calculated the brightness of the ring in the red R
R

and the brightness in the visual R^ at three different declination

angles (6U°, 72°, and 83°) from equation (lO). We assumed = l.O,

= 0.9 and a wavelength-independent particle phase function similar

to the phase function (h) which is defined later in this section and is

shown in Figure 8. We found that the ratio of R^/R„ at all three
R V

different angles is 1.2 and is insensitive to the change of angle.

The possibility that the difference in the declination angle of the sun

causes the different observational results is, therefore, unlikely.

The big disagreement among the spectral data for X > 0.6y might

reflect the uncertainty in separating ring and disk brightness in the

Irvine and Lane observations, or actual temporal variations due perhaps

to differences in the insolation (changing distance of Saturn from the

sun), or differences in the brightness of the rings on the East and

West side, as has been reported consistently back through the litera-

ture. Although the recent spectral data by Kharitonova and Teifel

(0.35lJ < A < 0.8)j) indicate high reflectivity in the red similar to

the results of Irvine and Lane, further homogeneous data on this sub-

ject are necessary to solve this mystery.

We shall limit ourselves for the present to the observations by
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Figure 5: Spectral reflectivity of Saturn's rings normalized to

unity at the visual wavelength (A = 0.%hu) and excluding

the opposition effect. Connected points from Lebofsky

et al. (1970). Broad (open circles) and narrow band

(closed circles) data with error bars from Irvine and

Lane (l9T3).
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Lebofsky et al. as the most direct and completely reported results at

this time. Using their data to scale the visual reflectivity, we obtain

in the B band R° 0.83 and a maximum value near 1 micron of R° a, 1.3.
R

These data do not include a differential opposition effect. Since the

differential opposition effect between the blue and the visual is

approximately 3% (Franklin and Cook, 1965; Irvine and Lane, 1973), we

shall take R° 0.8?. We shall for the present neglect any differ-

ential opposition effect between the visual and the red, in spite of

the indication for such an effect from Irvine and Lane. We return to

these questions in Section VI below.

We wish our theoretical model to match both the absolute bright-

ness measurements and the shape of the phase curves in B and V. We

may facilitate this comparison by considering the diagram in Figure 6.

The vertical axis represents the primary scattered radiation, in-

cluding the shadowing effect, computed at a = 0.09^°. This will be

given theoretically by a ^(tt - 0.09^+°) < S(a = 0.09U°)>, where we

recall that this value of a is the minimum obtained during the obser-

vations of Franklin and Cook. The horizontal axis in Figure 6

represents the sxim of the higher order scattering, which according to

n

the model is Z R . The dashed curves designated R, V and B are the

loci of points which satisfy the observed absolute brightness in the

red, visual, and blue, respectively. For agreement with the model the

absolute brightness must be

R(a = 0.09k°) = a $(7T - 0.09^°) <S(a = 0.09h°)> + Z R (a,$) (31)

n=2
^
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Figure 6: Diagram for comparison of observation and theory.

Vertical axis gives primary scattering contribution to

total brightness, horizontal axis gives multiple

scattering contribution. Dashed lines are loci of points

with observed total brightness for the red (R), visual

(V), and blue (B), respectively. Dash-dot lines are loci

of points with correct ratio x of primary to higher order

scattering to match shape of phase curve in V(x^) and

B(Xg), respectively. Solid lines are theoretical com-

putations of total brightness for the phase functions (l),

(2), (3) and {h) shown in Figure 8. The particle albedo

IS a.



HIGHER ORDER SCATTERING
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where the indicated arguments drav attention to the dependence of the

quantities on phase angle a and phase function We have plotted as

an example the lover observational limits of the absolute surface

brightness = l.o and R° = 1.2 in V and R, respectively, and have

shown an uncertainty of + 0.05 for B as an example of the possible

uncertainty in these measurements. In fact, these lower limits on the

observed brightness allow the largest possible range of particle

albedo a in the comparison with theory, and also lead to a lower limit

on the volume density D.

For given D and t, the shape of the phase curve M(a) for l°<a<2°

and for a > 2° depends principally upon the parameter of multiple

scattering x and upon the phase function <I>, respectively. By experi-

menting with a wide choice of values for these parameters and also for

the phase function we find that the sharp peak in the opposition

effect (a <_ 1°) depends primarily upon the value of D, and that the

observations restrict D to a narrow range around the value 0.01. Let

us for the present take t = 1 on the basis of the observations of

stellar occultations by the ring discussed by Cook, Franklin, and

Palluconi (1973). Since from equation (28) only the relative shape of

the phase function near l80° is important in producing the linear

increasing portion of the phase curve, we may use $„^(7r - a,g)/$„^(TT,g)

instead of $(Tr - a)/$(7T). By doing that, g will be the dummy parameter

which represents the effect of the phase function in the calculation

of the theoretical phase curve. The real phase function <I'(b,g^,g2)

will be found after the analysis of the absolute brightness data. For

example, for D = 0.01, the appropriate value of g is about - 0.6t and
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those of X are 0.29 and 0.17 in V and B, respectively. We then list

in Table I values of x and g for several choices of D which produce

theoretical phase curves which agree with the observations in B and V.

The dash-dot curves plotted in Figure 6 are now the loci of points

for which the fraction of multiple scattering is x = O.17 andB

= 0.29, respectively. The corresponding phase curves are shown in

Figure 7. '

We may now use Figure 6 to determine the single scattering albedo

a and properties of the phase function for the ring particles if we

assume that the differences in brightness and phase curve for B and V

result only from a change in particle albedo a. In other words, we

assume that as the albedo of the particles changes with wavelength,

the relative angular distribution of scattered light remains unchanged.

This is a reasonable approximation for large, bright particles (which

are necessary to produce the shadowing effect and the observed high

ring brightness) for which geometrical optics is valid. Our whole

approach to the shadowing effect through geometrical optics also

requires that t be independent of wavelength. If we now call the inter-

section between the curves V and x^ in Figure 6 a point P, and the

intersection between the middle of the range B and the curve x

a point P' , then the theoretically computed brightness curve for the

rings which passes through both the points P and P' will match the

observed absolute brightness and also the observed phase curves. We

have plotted in Figure 6 such theoretical brightness curves for four

different phase functions obtained from equation (22). We have taken

the center of the sun and earth in directions corresponding to the
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Table I: Allowable range of parameters such as volume density D,

multiple scattering contribution x, asyrmnetry factor g

of Henyey - Greenstein phase function, ring particle

albedo a for t = 1 is shown.



TABLE I

Multiple Scattering Contribution x and

Phase Function Asymmetry g for t = 1

Volume density, D Multiple scatteri

D = 0.012

B 0.1k + 0.02 -0.6h + 0.02

V 0.26 + 0.02

D = 0.010

B 0.17 + 0.02 -0.6? + 0.02

V 0.29 + 0.02

D = 0.008

B 0.22 + 0.02 -0.72 + 0.01

V 0.3h + 0.02

Allowable Range of Parameters

Monodisperse Case for x = 1

0.008 1 D < 0.012

0-65 1 ag < 0.75

0.82 < a,, < 0.9
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Figure 7: Theoretical phase curves for ring optical thickness

T = 1.0 which match the observations of Franklin and Cook

(1965). Parameters of multiple scattering are X and x
B V

in B and V, respectively. Asymmetry factor of Henyey -

Greenstein phase function is g. Volume density is D.
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Franklin and Cook observations. The solid lines represent such

brightness curves for the phase functions (l) b = 0, = o,

g2 = - 0.7 (a very strong backward peak with no forward scattering);

(2) b = 1, g^ = 0, g^ = 0 (isotropic scattering); (3) b = O.988,

g-L
= 0.7, gg = - 0.805 (a very strong forward peak with a small back-

ward peak, reminiscent of the phase function for terrestrial clouds);

ih) b = 0.995,
g-L

= - O.lU, g2 = - 0.81+ (a more slowly varying back-

ward scattering phase function with a slight peak near l80°). These

phase functions are illustrated in Figure 8. All of them except (2),

isotropic scattering, have a similar slope near l80° which produces a

roughly satisfactory shape to the phase curve in the linearly varying

region. The albedo a is the only variable unspecified in the theo-

retical brightness curves in Figure 6, and it thus serves as a

parameter whose variation along the curves is indicated.

The power of this procedure is illustrated by the Jarp/^ (]in\>r-

ences between the curves {l-h) in Figure 6. The requirement that the

model match both the shape of the phase curve and the absolute bright-

ness clearly puts significant restrictions on the form of the phase

function. In particular, it is quite evident that neither the phase

function with a very strong backward peak nor that with a very strong

forward peak can match the observations. Some degree of back-

scattering is required to match the phase curve, so that the phase

curve must be similar in shape to the curve (h) . Although the shape

of the phase curve (apart from the opposition peak) depends prin-

cipally on the values of $ near l80° (corresponding to ttie small phase
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angles observable for Saturn), an appropriate phase function cannot

be very different from the curve (1.). if it decreased much more

sharply with decreasing 9 = tt - a, it will not satisfy the normaliza-

tion condition. The addition of a shallow forward peak to the phase

function would be possible and would require a lower backward peak;

that is, the phase function would become more isotropic.

We may now determine the single scattering albedo from the

position of the points P and P' on the curve {h) in Figure 6. We find

a^ = 0.8? and a^ = 0.70. By normalizing the phase function {h) to

unity at a = l80° and integrating, we may obtain the phase integral q

for the ring particles as q = 2.1. The resulting geometric albedos

in the visual and blue for the ring particles are then p^ = a^/q = 0.)4l

and Pg = 0.33.
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Figure 8: Four sample phase functions $ (see equation 22) used for

the calculations illustrated in Figure 6.

(1) b = 0, g^ = 0, = - O.T (a very strong backward

peak with no forward scattering).

(2) b = 1, g^ = 0, g^ = 0 (isotropic scattering).

(3) b = 0.988, g^ = O.T, g^ = - 0.805 (a very strong

forward peak with a small backward peak, reminiscent

of the phase function for terrestrial cloud).

(1+) b = 0.995,
gi

= - O.lh, = - O.8I4 (a more slowly

varying backward scattering phase function with a

slight peak near l80° )

.
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SECTION V

ALLOWABLE RANGE OF PARAMETERS

As a result, ve may say that a satisfactory model of the B ring

which matches the observed phase curves in B and V and also the

corresponding absolute brightnesses has optical thickness x = 1, a

volume density D = 0.010, and ring particles with a phase function

given by (U) in Figure 8 and Bond albedos of a^ = 0.8? and a^ = O.TO.

We can also estimate the albedos in UV and R by scaling the reflec-

tivity measurements of Lebofsky et al. (19T0). We find this vay

= 0.1+5 and a^^ = O.96.

It is of course important to see how much each of these para-

meters can be varied without disrupting the fit of the model to the

data. Because the parameters cannot be varied independently if the

model is going to continue to match the observations, the problem is

difficult. Some possible directions in vhlch changes may occur are

sketched below.

If the optical thickness t of the layer is kept constant at a

value of unity, the value of D can be reduced only slightly from that

discussed above. When D = O.OO8, computations (whose results are shown

in Table I) indicate that the multiple scattering contributions x

needed to match the phase curves are x„ = 0.22 in B and x„ = 0.3^+ in V.
D V

Since from Figure 6, all the theoretical brightness curves are quite

similar in shape, the appropriate theoretical brightness curve for the

present case will be quite similar to the brightness curve {h) except

that it will pass through the new points p' and p for the case D = O.OO8.
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Such a curve is shown as the broken line b in Figure 9. The corres-

ponding phase function in this case will be slightly less backward

scattering than the phase function {k) . As is seen from Figure 9, the

broken line b crosses the dashed curve R when the particle albedo in

the red a^^ 1.0. In other words, lowering of D must be compensated by

an increase in multiple scattering which requires an increase in the

particle albedo in V and B, and a resulting increase in the particle

albedo for R also. But a^^ < 1 on physical grounds, so that the bright-

ness of the rings in the red could not be matched by the model if

D < 0.008. It might be expected from Figure 3 that reduction of D to

a value less than 0.005 would begin to reduce the shadowing effect.

This is in fact true, but the resulting shape of the phase curve near

a = 0 is too steep to agree with the observations.

As has been pointed out in a previous section, if the value of D

is too large, the opposition peak will be too broad. For the present

choice of the other parameters the upper limit on D is approximately

0.012. With this value we obtain multiple scattering contributions x

of 0.26 in V and O.lk in B. The corresponding values of albedo

parameterizing the theoretical brightness curve are - 0.82 and

a^ - 0.65 from the broken line C (drawn in a manner of analogous to

the broken line b described above) in Figure 9- The phase function

in this case will be slightly more backward scattering than the phase

function {h)

.

The above results for T = 1 and the minimum surface brightness

allowed by the observations are summarized in Table I, including the
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Figure 9: Diagram for comparison of observation and theory for

T=landR^=1.0 showing the allowable range of albedos,

Same notation as Figure 6. The broken lines b and c are

described in text.



Rv = 1.0, T=1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HIGHER ORDER SCATTERING
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admissible range of the particle albedos in B and V.

We have also examined the case x = 0.7 as an estimate of the

effects of this J)ossible lover limit for ring B. We find that a some-

what smaller value of B ^ O.OO6 is required to match the shape of the

opposition peak. The magnitude of the shadowing effect due to single

scattering decreases with decreasing t, but this may be compensated by

decreasing the dilution of the shadowing effect due to multiple

scattering. In the present case we find it necessary to take approxi-

mately x^ - 0.21 and Xg =^ 0.10, as illustrated in Figure 10. Con-

structing Figure 11 analogous to Figure 6 for the present case we find

that a somewhat more backscattering phase function is required, although

in general its shape will be similar to that for the case x = 1. In

constructing Figure 11, we have not carried out the complete numerical

computation for the theoretical brightness curve passing through the

points p' and p for x = 0.1. The broken line in Figure 11 is drawn such

that it has a similar shape of the theoretical brightness curve for the

isotropic phase function (solid line in Figure 11 ) and also passes the

new points p' and p for the case x = 0.7 and D = O.OO6.

The appropriate theoretical brightness curve in this case will be

quite similar to the broken line in Figure 11. This argioment can be

justified when we go back to Figure 9- In Figure 9 the theoretical

brightness curve (U) has a quite similar shape of the theoretical

brightness curve (2) for the isotropic phase function in the flattened

part of the curve. The corresponding albedo range is estimated to be

0.6 < a^ < O.T and O.85 < a, < 0.9 from comparison of Figures 9 and 11,
Oi B 'V a- V ^

which are not drastically different from their values for x = 1. In



Figure 10: Theoretical phase curves for x = o.T which match the

observations. Same notation as Figure 7- Compare vith

Figure 7, for T = 1.



r—
cvj' OJ

••

o 0
4.1

— 0 cvi
•

1

1

1

1

1

1

CO >X X

CDO
O
II

*

Oo
il II

o o

1^

CO
LU
LU
or
CD
LU
Q



h9

Figure 11: Diagram for comparison of observation and theory for

T = 0.7 and = 1.0. Sajiie notation as Figure 6.

Theoretical brightness curve is for an isotropic phase

function (solid line). The broken line is described in

text.



HIGHER ORDER SCATTERING
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the ease of x = 0.5. an appropriate .alue of D to .atch the shape of
the opposition pea. Is . O.OOl.. The multiple contrlhutlons needed to
match the phase curves are x,, = o.lO and x - n nT ™^

'^B
- 0-0 as shown in Figure

12. Since the largest opposition effect will he ohtalned vhen
X = 0.0, it Is not possible to produce the even larger opposition

effect Observed in the UY and R (cf. Figure 19) in the case of T < 0.5.

The lower limit of t will, therefore, be t > o S
mln

To investigate the effects of choosing a larger optical thickness,

ve have also carried out computations for x = 2. In this case, ve find

D 'x^ 0.013 and multiple scattering contributions of = O.Uo and x =

0.28 from Figure 13. The larger fractions of multiple scattering are

necessary to dilute the larger shadowing effect produced hy primary

scattering as t increases. The broken line in Figure 13 is drawn from

the same reasoning discussed in the case x = O.T. The appropriate

theoretical brightness curve, therefore, will be quite similar to the

broken line in Figure 13. The corresponding albedo range is estimated

to be 0.7 < < 0.8 and O.85 < a^ < 0.9 from comparison of Figures 9

and 13. Summarized results for x 7^ 1 are given in Table II.

In addition to the lower limit for the absolute surface bright-

ness R^, we must investigate the effect on the model of choosing the

apparent mean observational value 1.1. The range of D and x

which match the phase curves remains unchanged, since the phase curves

measure only relative brightness. The particle albedos are increased,

but the requirement that £ 1 in the red provides also an upper

limit on a^ and a lower limit on D (through interaction with x).
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Figure 12: Theoretical phase curves for x = 0.5 which match the

observations. Same notation as Figure T. Compare with

Figures 7 and 10.
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Figure 13: Theoretical phase curves for t = 2.0 which match the

observations. Same notation as Figure ?. Compare with

Figures 7, 10 and 12.
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Figure Ih: Diagram for comparison of observation and theory for

T = 2.0 and R° = 1.0. Same notation as Figure 11.



10.0

5.0

o 1,0

Xb = 0.28

Xv = 0.40

R

B

,01

rS = 1.0, r-2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HIGHER ORDER SCATTERING



Table II: Summarized results are shown for ring optical depth

T # 1.



TABLE II

Summarized Res\ilts for t ?^ 1

1. The lower limit of the optical depth is t > n S
min *

2. The albedos in V are rather insensitive to t

3. The larger the optical thickness, the less backward scattering the

phase function

^. The smaller the optical thickness, the smaller the volume density

Allowable Range of Parameters

Monodisperse Cases for x = O.T and T = 2.0

T = 0.7 T = 2.0

0.005 < D < 0.00? 0.011 < D < O.Olli

0.6 < a < 0.7 0.7 < < 0.8

0.85 < a^ < 0.9 0.85 < a,^ < 0.9
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Figure 15: Diagram for comparison of observation and theory for

T = 1.0 and R° = 1.1. The solid line (2) is the

theoretical brightness curve for an isotropic phase

function. The broken lines are described in text.

Other notation is the same as Figure 6. This shows

the allowable range of albedos for t = 1 and R° = l.i.

I

I
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As a result, the allowable ra^ge of particles albedo is reduced rela-

tive to that for a lover absolute surface brightness. We find

0.85 < < 0.90, 0.66 < a^ 0.72, and 0.01 < D < 0.012 for x = 1 fro.

Figure 15. The broken lines in Figure 15 are obtained from the sa^e

procedure as described in drawing the broken lines b, and c in Figure

9. The corresponding phase function has approximately a 10^ larger

backward peak than in the previous case, so that the phase integral

becomes q 'x. I.95 instead of 2.1.

A. Distribution of Particle Up to this point we have

assumed that the ring particles can be characterized by a single

effective radius p. Within the framework of this assumption we can

determine that size if we know the geometric thickness of the rings t.

From the definitions of the optical depth x = irp^nt and the fractional

volume D = {h / 3)1^9 n we find that

3 D
P = ^7 t . (32)

The ring thickness has been meas\ired by Kiladze (1969) and Focas and

Dollfus (1969) to be approximately 2 kilometers. Taking x = 1,

D = 0.01 and t = 2 kilometers, we find that p = 15 meters. This size

is consistent with the recent radar results obtained by Goldstein and

Morris (1973).

The above result is quite deceptive, however. To see this we

must investigate the possible influence on our results of aliowin;^ for

a distribution in particle sizes. Let us assume that the number of

particles with radii between p and p + dp is given by
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dn = f(p) dp

per unit volume. If we assume that the volume density D remains small

enough so that the small element of area e on a test particle in Figure

2 shielded from the sun and earth by a particle in the range p - p + dp

is independent of the probability that it is shielded by a particle of

any other radius, we may rewrite equation (6) for the first order re-

flected intensity including the shadowing effect and obtain

P2

1

(33)
^

1 ^2 P2

/ exp[- h'(^+i-) (tt / f(p) p2 dp) + / f(p) C(p, h') dp] dh'
o ° Pi Pi

where the upper and lower limits on particle size have been labeled

and p^. The rest of the theory remains the same.

The choice of possible forms for the particle distribution func-

tion is of course infinite. Bobrov has investigated the relation

f(p) = Kp"^ (3M

where K is a constant and s is a parameter describing the shape of

the distribution. This distribution law is common in meteor astronomy,

and of coTirse can lead to a predominant number of quite small

particles

.

We have investigated the effect of a uniformly used particle

distribution (s = O) and also the cases s = 2 and 3. We take



= 0.2 cm as the lover limit of the size distribution (cf. Bobrov,

1970). Diffraction does not shorten significantly the shadow of a

particle when the radius of a particle is larger than 0.2 cm. If the

radius of a particle is less than 0.2 cm, its shadow tends to decrease

due to diffraction. Such small particles will not contribute to the

shadowing effect which is the physical basis of the present ring model.

For s = 0 the results are quite similar to the monodisperse case.

If we fix the optical thickness x = 1.0 and the geometric thickness

t = 2 km, the value of D depends primarily on the upper limit of

the size distribution. To obtain the necessary range of D ( 0.008 <

D < 0.012), we must have l6 m < <. 2l| m. The mean particle size is

then <p> % 10 m. The parameters D and <p> are essentially independent

of p^ if <_ 1 m.

The corresponding upper limit of the particle size distribution

when s = 2 is 20 m < p^ < iiO m. The range of permissible values for

the volume density D is slightly increased ( 0.007 £ D <^ 0.013). The

corresponding range of permissible values for the multiple scattering

contribution x is also increased, so that 0.l6 5. £ 0.23 and

0.05 < < 0.11. The case of p_ = i+0 m and p^ =0.2 cm is shown in
D d 1

Figure l6. Although the mean particle size in this case is

2 1/2
<p > = 2 cm, we find that the results are quite insensitive to the

lower limit
p.^^

of the particle size distribution provided that p^ <_ 50

cm but do remain quite dependent upon the value of D. This shows that

the shadowing effect in the case s = 2 continues to determine the

volume density D quite precisely, but that the mean particle size
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remains uncertain provided that it is large enough to produce the

required geometric optics shadowing. But we can set the upper

limit of the mean particle size from the corresponding limits

P^ = kOm and < 50 cm. We obtain the values of the mean particl

1/2
^

2 „ 1/3
size <p> < 2.2 m, <p > < l|.5mand<p3> <j,kra. The most

important one ajnong them is probably <p'^> '

< k.^ m, because the

geometric cross section of a particle is proportional to square of

a particle radius.

We apply essentially the same method to estimate the albedo and

the phase function in the case s = 2 as in the monodisperse case,

except introducing a wavelength dependence in the particle phase

function. We will discuss this method in detail in Section VI in

relation to the discussion of the infrared brightness temperature of

the rings. According to the analysis given in that section, we obtain

the lower limit of the particle albedos a^ 0.1+2 and a,, '^^ 0.72 for
B V

the case of s = 2, = 0.05 and x^ = O.I6. A slightly more backward

phase function for the blue than the phase function for the visible is

required for this case. The corresponding lower limits of the phase

integral for these phase functions are 1,0 and q„ l.U. If we
B V

use the same method for the case s = 2, = 0.11, and x^ = 0.23 as

described in Section VI, we obtain the upper limit of the particle

albedos to be a 0.6 and a 0.82. The corresponding upper limits
B V

of the phase integral are q_, l.h and q.. 1.9- The allowable range
B V

for the particle albedos and the phase integrals are, therefore,

< ag < 0.6, 0.72 < a^ < 0.82, 1.0 < q^ < 1.^, and l.h < q^ < 1.9,
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Figure 16: Theoretical phase curves for t = 1 in the polydisperse

cases of s = 2 and s = 3 (see equation OM) points

from the observations of Franklin and Cook (1965). For

s = 2, we use D = 0.013 and g = - 0.62. For s = 3,

we use D = 0.07 and g = - O.67.
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when s = 2.

On the other hand, the size distribution cannot be too sharply

varying. When the para^neter s = 3 in equation {3h) , it is not possible

to obtain agreement with observations. As is seen from Figure l6, the

opposition effect is too small when ve take a vide range of particle

size (p^ = 100 m and Pj_ = 1 cm). The reason why the curve x = Q for

the case s = 3 is presented in Figure l6 is that we have a maximum

opposition effect in the case x = 0 (no multiple scattering contri-

bution) and the increasing of the value of x makes the situation worse.

If < 1 cm, then the opposition effect tends to be still smaller.

The only way to make the opposition effect comparable to the observed

data is to increase the value of p^ up to the order of a meter. By

narrowing the particle size range, we will have essentially the same

situation as the monodisperse case, since the number of particles whose

size p^ is dominant in the case of s = 3.

The shape of the particle phase functions are compared to those

for the Moon and for a Lambert sphere in Figure IT. A Lambert sphere

is a sphere whose surface at energy point has the characteristics of a

Lambert surface as described before in Section IV. The curve I in

Figure 17 is the phase function {h) given in Section IV and this |)hase

function gives the best fit for Ring B in the monodisperse case. The

curve II in Figure 17 is the phase function with the parameters

b = 0.991, g^ = - 0.26, and g^ = - 0.82, which gives the particle

albedo close to the lowest visual albedo in the case of s = 2. The

phase integral for this is given by '^^ l.U. The shape of these phase
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Figure 17: Ring particle phase curves . a)/$(u) for both the

monodisperse case (curve I) and the polydisperse case

of s = 2 (curve II) compared with lunar phase curve

from Rougier {l93k) and with phase curve for Lambert

sphere

.
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functions is quite similar to the Moon near a = o°, but the ring
particle brightness (based on either the curve I or the curve n) falls
Off less rapidly „lth Increasing a than does that of the Moon. This Is
in agreement with the results of Veverka (1973) for snow covered ob-
jects.

We may compare the results for the monodlsperse and the poly-

disperse cases in Table III.

B. Tilt effect
. We may test the validity of the type of model

chosen here by comparison with other types of observations. Parti-

cularly important are the data on the surface brightness as a function

of solar illumination angle 8^ (tilt angle). Observations over a

limited range of 0^ have been made by Camichel (1958) and Focas and

Dollfus (1969). More accurate and homogeneous measurements have been

published by Price (1973), although this data includes both rings

together. At 0^ = 6U°, the mean surface brightness of ring B is 20/.

greater than the mean of ring A and ring B (Franklin and Cook, 1965;

Camichel, 1958). As a first approximation towards removing the effect

of ring A from Price data, we may assume that this ratio applies also

at other 0^. Price's data so corrected are plotted in Figure I8, to-

gether with Camichel 's results scaled to agree with Price at 0 = 6h°

.

o

The corresponding theoretical curves were computed for the cases (A)

and (B), as follows. Case (A); a^ = 0.9 and the phase function (22)

with b = 0.995, §1 = - 0.16, and = - 0-85. This form of $ gives the

highest visual albedo in the monodisperse case and fits the observed

phase curves and the mean absolute surface brightness = 1.1.



Case (B);
- 0.75, and the phase function with b = O.991, g = . 0.26,

and
= - 0.82. This form of $ gives a particle albedo closl to the

lower limit in the cases ve have investigated (cf. Table III).

The agreement between theory and observation is quite good for the

case (A). For the case (b) the results are within the error range.

These results clearly illustrate the importance of multiple scattering

in the rings, since the surface brightness for primary scattering alone

would decrease with increasing 0^, in opposition to the multiple

scattering model. Note that the reflection angle as viewed from the

earth 0 (see Figure 2) is approximately equal to 0^, because of the

plane nature of the solar system, except when 0 '\j 0.
o
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Table III: Comparison between monodisperse particle size case

and polydisperse cases is given.



TABLE III

Summarized results for x = i and t = 2 km

1. monodisperse case

mean particle size 15 m

D % 0.01

1 ag < 0.75 and 0.82 £ £ 0.9

= \ 2.0

^•^^
^ Pb ^ and 0.1| < p^ < 0.1^3

2. polydisperse cases (see equation (3I+))

a. s = 0 (uniform distribution)

the results are quite similar to the monodisperse case

b. s = 2

mean particle size < U.5 m

D 0.01
I

O.i+2 1 a^ < 0.6 and 0.72 £ a^ f 0.82

0.1i2 1 Pg 1 0.h3 and 0.i^3 1 Py 1 0.51

c. s = 3

no agreement with the data
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Figure 18: Surface brightness I/F = R(a = 6°) for ring B

versus = cos 0^ where 6^ is the solar illumination

for the angle V wavelength band. Observational points

from Price (1973) and Camichel (1958), corrected as

described in text. Theoretical curves computed from

equation (ll) for two choices of parameters (see text).



I
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SECTION VI

INFRARED BRIGHTNESS TEMPERATURE

Since the infrared (IR
) brightness temperature, T^^, is related

to the albedo a in the visible and since also the observational data

indicate that there exists a change in the IR brightness temperature

with tilt angle (Murphy, 1973; Allen and Murdock, I97I; Low, 1966),

it is important to see if the IR results are compatible with our basic

model. In order to calculate the IR brightness temperature of the

rings, we have to consider three different heating sources: the solar

flux, the flux from Saturn's ball and the heating due to neighboring

particles within the ring layer.

A. Procedure
. The basic procedure in treating this problem is

the following. We need first to solve the multiple scattering problem

at visual wavelengths as a function of tilt angle. If we know the

particle albedos at given wavelengths, we can then calculate t,ho tota]

solar energy absorbed by the rings and consequently the IR br
i
KhLnenr,

temperature of the rings due to the solar heating of the particle;;.

But each particle is also heated by thermal radiation from neif^hboring

particles. Using the above results and the condition of radiative

equilibrium, we can iterate the IR brightness temperature distri-

bution to include this mutual heating among the ring particles.

Finally the effect of Saturn's ball can be included.

The condition of radiative equilibrium is expressed by equuLion

(35) which relates the mean intensity of radiation J to the source

function S.
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/dX = /dX /^^ in s
(35)

^x = h (36)

'X
= aj B,(T)

(37)

B,(T) = 1

X
5 hc/kT (38)

e ' - 1

where the integrations are over the sphere ( see the definition of

coordinates in Figure 2),

= total extinction coefficient (absorption plus scattering)

h = Planck's constant (= 6.63 x lO"^''' erg sec)

c = velocity of light (= 3 x 10^° cm/sec)

k = Boltzman's constant (= 1.38 x 10~"^^ erg/deg)

T = temperature

and we have indicated explicitly the dependence on wavelength X of the

intensity and the albedo a^. Equation (35) expresses the physical

requirement that in radiative equilibrium all the radiant energy

which interacts with the ring particles (left side of the equation)

must be either scattered or re-emitted thermally (right side of the

equation). Since scattering returns as much energy lo the beam as it

removes (e.g., Mihalas 1970) and since at expected ring temperatures

the thermal emission is confined to the IR, equation (35) can be
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rewritten as

%V ^IR^Ir] = /u/f^ K^j,(l-a^^)B^^(T) (39)

where k is the absorption coefficient and the notations "OP" and "IR"

refer to the optical portion of the spectrum (0.3y - l.ly) and the

infrared portion of the spectrum, respectively. Since our model

assumes large particles in the rings to produce shadowing and thus

geometric optics (K^ = const), we may divide both sides of equation

(39) hy and obtain

where we recall that the albedo a is the ratio of the scattering to the

total extinction so that k/K = 1 - a.

We define E (C,]J^)*K^ as the amount of solar energy absorbed by

the rings per unit area, unit time, and unit optical depth at the solar

illumination angle 0^ = arccosy^ and optical depth C- We can, there-

fore, set the left side of equation {ho) equal to E®(C,y^) if we

ignore thermal radiation by the rings and Saturn's ball. We assume

a = 0 for simplicity (i.e., unit emissinity) . After taking into
IK

account the difference (by E-^^ ^q^'^^ between the absolute solar flux

and our flux definition and using equations (lO) and (SM, the left

side of equation {hO) becomes
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(!4l)

where the solar energy flux E Is given hy Allen (1955) and 1 is the
n

nth order scattered intensity obtained from equation (12). Since the

solar flux for either X < 0.3y or A > U.Oy is negligibly small,

we integrate over the finite wavelength range (0.3y < A < h.O\i).

Initially we ignore the mutual heating among the ring particles.

Since the right side of equation (ko) is just T^, the IR tempera-

ture distribution due to the absorbed solar flux is found from

equation {U2)

:

T^^^CUJ = /E®(c,y )/ho

where 6 = 5-67 x lO"^ erg. s.cm"^. sec """.deg"^ (Stefan - Bolt

{h2)

zman

constant). The resulting temperature distribution is shown by the

curve T® in Figure 2k below.

We may then include the effects of mutual heating among the

ring particles. Using the formal solution of the transfer equation

i(c,y) = /'s(t) e-^^ - ^^/^^ (oiyiD
(U3)

= . /^s(t) e^^ - ^^/^ ^ (-l<y<0)
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and equation (37) with t'^ gi«n by equation (^2), „e can recite
equation (36) as

where E^(X) is the first order exponential integral and i s given by

°° -Xz
E^(X) = /V 4- (V

-j-pj
we use

Equation (hh) is known as Milne's equation. To compute J^"^^

the numerical method given by Mihalas (196T). The condition of

radiative equilibrium (equation {ko)) becomes

By solving equation (i+6), we can find a new IR temperature distribution

T^^^CCPq). Substituting T^^^ into equation (hh) in place of T^"'"^

(2) (3)we get Jjj^ and then T is found from equation {h6) , and so on.

About 6 iterations are enough to give the final temperature distri-

(f

)

bution T for a given value of y^. We have assumed isotropic

scattering in the IR. There exists a possibility of anisotropic

scattering or emission from only one side of a particle, but we will

discuss this point later.

(f

)

B. Albedo spectrum . In order to actually compute T , we

must now estimate the particle albedo at different wavelengths. We

have found that for the particle size distribution given by equation
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(3M, ve can obtain the lower limit of the albedo in the optical range

when s = 2. We will investigate this s = 2 case. Since there are

many uncertainties in determining the albedo in the red (cf . Section

IV), we will consider two extreme cases.

Cas^: This is the case which ignores the observed opposition effect

in the red (Irvine and Lane, see Figure 19) and thus gives high

values for the albedo in the red and near infrared. (For a given

measured brightness at a =^ 0, the greater the opposition effect, t,ho

smaller the particle albedo.) We can estimate the albedos throur.hc.ut,

the optical range from the results in the previous section for a and
B

a^ and by scaling the reflectivity measurements of Lebofsky et al.

(1970). Since only relative spectra for X > l.ly are now available,

it is very difficult to estimate the albedo for these wavelengths.

We should stress the desirability of reflectivity observations on an

absolute scale beyond 1 micron. We shall assume that in the IR range

beyond 1 micron the albedo may be obtained by using Debye's asymptotic

form of the Mie equations for a particle whose size is much larger

than the wavelen^-ith (Irvine, I965). If we use the rorractivc Indc^x

data for ice particles at X l.ly (Irvine and Pollack, I968), the

resulting albedo in this range is found to be about O.O6. The albedo

spectrum, obtained from the above method, is shown by the curve A in

Figure 20.

Case B : Irvine and Lane's observations (l973) indicate that the

amplitude of the opposition effect shows a maximum towards the

ultraviolet (UV) and also towards the red (R) and shows a minimum in
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Figure 19: Magnitude of the opposition effect for Saturn's rings,

Closed circles are narrow band residts, open circles

are UBV data. Data from Irvine and Lane (1973).
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the V (Pi^e 19). „e coula lower the al.e.o in t.e rea ,r „e incl.ae
such a large ajnount of opposition effect in the R.

Let us consider the case s = 2 in detail. The lover li.it of
multiple scattering contribution is found to be = 0.05 and = 0.16
in the Bands B and V, respectively (Figure 16). If we apply th! same

method in determining the albedo as described in section IV, the inter-

secting point P' between the curve x = 0.05 and the curve B in Figure

21 gives a^ ^ 0.1.2. The point P give a^ . 0.72. Although ve need

only one phase function for the blue and visual in the monodisperse

case, ve need a slightly more backward phase function for the blue

than the phase function for the visible vhen s = 2. Since the appro-

priate theoretical absolute brightness curves for the B and V are

similar to the theoretical brightness curves (3) and (2) shown in

Figure 21, the corresponding phase functions for the B and V are

similar to the curves (3) and (2) in Figure 22, respectively. We find

that the phase integrals for the B and V are '^^ 1 . 0 and 'x. 1 .
1+

,

respectively.

According to the reflectivity data of Irvine and Lane, the

brightness intensity at A 0.72y is stronger than in the visible by

l.h if we include the opposition effect, which increases the bright-

ness by 'v. Q%. Since the amount of the observed opposition effect at

A 'x^ O.72IJ is roughly the same as in the blue, the intersecting point

Q (in Figure 21) between the curve x = 0.05 and the observed bright-

ness curve A 'v 0.72y gives the albedo at A 'x^ 0.72ij and this value is

found to be 0.5 from Figure 21. The appropriate phase function at
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Figure 21: Diagram for comparison of observation and theory. Sa^e

notation as Figure 6. Polydisperse case of s = 2 (see

equation OM), x = 1, D = 0.013. Theoretical brightness

curves for four different phase functions (shown in

Figure 22).



HIGHER ORDER SCATTERING
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Figure 22: Four sample phase functions $ (see equation (22)) used

for the calculations illustrated in Figure 21.

(1) b = 0.995, = - O.U, = - 0.8U

(2) b = 0.991, g-^ = - 0.26, g^ = - 0.82

(3) h = 0.985, g^ = - 0.35, gg = - 0.81

ih) b = 0.0 , g^ = 0.0 , g = - 0.7





78

X ^ 0.72y is more backward scattering than the phase function (3). If

ve use the reflectivity data of Lebofsky et al. instead, the bright-

ness intensity at A % 0.72y becomes 1.2 times that in the visible.

This leads to an albedo at A % O.T2y of O.Ut. In both cases we thus

obtain an albedo at A 'v. 0.72y of about 0.5 assuming that the shape of

the phase curve at A % 0.72y is similar to that of the phase curve in

the blue. When A % ly, x must be close to zero to satisfy the ob-

served pronounced opposition effect. If x % 0, it is difficult to

estimate the albedo from Figure 21. Since we know the albedo at

A l.ly (a^p = 0.06), we may obtain the albedo spectrum B (shown in

Figure 20) by extrapolation. The appropriate phase function at

A ^ l.Oy should be very strongly backward scattering, very similar to

the phase function (1+) in Figure 22, to satisfy the observed high

reflectivity data.

The important question is whether it is possible to have such a

big change in the phase function towards longer wavelengths. The large

particles which produce shadowing are expected to have phase functions

nearly independent of wavelength. Let us consider that there exist

lots of very fine particles which are not responsible for the shadow-

ing mechanism but play a significant role in the scattering process.

Deirmendjian (1962) computed the shape of phase function for a micron

size particle at different wavelengths. These Deirmendj ian-type

phase functions have in general a strong forward diffraction peak and

a small backward peak and both peaks tend to become less significant

with increasing wavelength. It is, therefore, unlikely for such very
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fine particles to Increase .aCward scattering as the wavelength
increases

.

In su:n.ary, the alhedo curve (b) in Figure 20 is one extreme case
Which fits the optical data, including a large opposition effect in

the red, if .e allow the phase function to change freely with A. The
alhedo curve (A) is another kind of extreme case which does not include
the observed opposition effect in the red, but otherwise fits the

optical data. A possible answer to satisfy both opposition effect

data and high reflectivity in the red is that the shape of the ring

phase curve in the red might be different from that in the visual and

the blue. For exainple, as is seen from Figure 23, we have the oppo-

sition effect of 0.28 mag/arcsec^ with x = 0.l6 if the slope of the

phase curve is less steep than in the visual. Since the amount of

the opposition effect (0.28 mag/arcsec^) in the blue is approximately

equal to that at A % 0.72y, the intersecting point between the dashed

curve A % 0.T2y and the dash dot curve x = 0.l6 from Figure 21 gives

an albedo of 0.8 at A % 0.T2M. The theoretical brightness curve in

this case will be between the brightness curves (3) and (2). The

corresponding particle phase function at A 'v 0.72u will be between the

curves (3) and (2) in Figure 22.

At A i.oy the observed opposition effect is about 0.3h mag/

arcsec^. We have an opposition effect of this amount with x = 0.05 if

the slope of the phase curve is less steep than in the blue. Since

the observed absolute brightness at A l.Oy is about equal to that in

the visual, the intersecting point between the dashed curve V and
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Figure 23: Diagrain which shows the change in the magnitude of the

opposition effect as the slope of the linearly increasing

portion of the phase curve changes. Thick solid curves

B and V are the theoretical phase curves which match the

observations of Franklin and Cook (1965). Thin solid

curves with flatter slope in the linearly increasing

portion indicate the increase in the magnitude of the

opposition effect. AV, AB and AR are the observed

magnitude of the opposition effect in V, B and R as deter-

mined by Irvine and Lane (19T3). Note that the shape of

the phase curve in R, and hence the slope of the linearly

increasing portion, has never been measured.
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the dash dot curve x = 0.05 from FieurP pi ^^^ irom figure 21 gives an albedo at A % l.Q
Of 0.U5. The corresponding phase function in this case will be
Slightly .ore backward scattering than the phase function (3) in Figure
22. These results are based on the observations of Irvine and Lane.
When ve use the reflectivity measurements of Lebofsky et al., .e obtain
in general the sa.e results except for slight changes in the albedo and

the phase function. The appropriate particle phase function for the

red would, therefore, be very similar to that for either the blue or

the visual except that it would be more slowly increasing near l80°.

We do not need a strong backward phase function such as the phase

function (i.). The appropriate particle albedos for the red would be

between the albedo spectrum curves A and B. Since the complete ring

phase curve in the red is not available yet, we will not go further

into this postulate, except to stress that the situation could be much

clarified if a good observational phase curve for the rings were

available at a wavelength X > O.Ty.

C. Results. In Figure 2i^, T^"""^ and T^^^ are shown by the curves

T® and T® ^, respectively. These results are based on the albedo

curve (A). The curve t®"^^"^^ in Figure 2i+ is the IR brightness temper-

ature distribution including the three different heating sources, the

Sun, Saturn's ball and the mutual heating within the ring layer. In

calculating T®"*"^"*"^ we assume that Saturn's infrared radiation alone is

sufficient to heat the rings isothermally to 50° K (Cuzzi and

Van Blerkora, 197^). We found that the mutual heating among the ring

particles has more effect on the IR brightness temperature of the rings
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than the Infrared radiation fro. Saturn's hall. The results of the
IR hrightness temperature distrihution based on the albedo curve B

are shown in Figure 25.

Since the measured brightness temperature is obtained by

equating the observed emergent flux from the rings and the theoretical

flux from an isothermal black body, the rings brightness temperature

T* is calculated from equation (1+7):

B^(T»)(l - e-''^o) = i- /V^/Mo B (T^^D^^C,
o o

A^^ (^,u )) dC (1,7)

where we continue to assume unit emissinity for the ring particles in

the IR. Low (1965, 1966) measured the infrared brightness temperature

of the ring B and set an upper limit to the brightness temperature of

^ 80°K at lOy when 9 % 8l° and T* < 60°K at 20y when 6 > 85°.

Allen and Murdock (1971) found T* 83 + 3°K at X 'x. 12y when 6 % 73°.

More recent observations by Murphy et al. (1972) and Murphy (1973)

found T* ^ 90° + 3°K and T* ^ 9^+ ± 2°K at A 20y when Q ^ 6k°

.

Morrison (197^+) measured T* % 90 + 3°K at lly and T* % 96 + 3°K at

20y when 9 61|°. Although these data indicate a change in the particle

emissivity with the wavelength, we ignore it for simplicity and compare

our theoretical brightness temperature with the data. Since the

measurements of the brightness temperature were made at different

distances from Saturn and the sun, we adjusted the above temperature

data to the mean distance 9.5 A.U. from the sun. We computed the

ring's isothermal black body temperature with three tilt angles
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(e = 6ko, and 83°) for .oth cases (a) and (b). The results are

shown in Figure 26. The upper and lover curves in Figure 26 are

based on the cases (B) and (A)
, respectively. As is seen in Figure

26, the theoretical results based on the shadowing model used in

this paper are compatible with the infrared brightness temperature

data.

The preceding arguments are based on the assumption that the

ring particles are uniformly heated and they emit thermal radiation

from their entire surface. Let us consider the case of thermal

emission from only one side of the ring particles. It is difficult

to solve the radiative transfer problem in this case. We, therefore,

consider only two heating sources, the solar heating and thermal

emission from Saturn's ball. Thus, the effect of mutual heating

among the ring particles is not included in the calculation of the

isothermal black body temperature for the rings in this case. Even

so, we find that the computed temperature in this case is about equal

to the brightness temperature including the effect of three different

heating sources in the case of uniformly heated ring particles. We,

therefore, expect to have higher IR brightness temperature if the

effect of mutual heating is included. This indicates that slightly

higher optical albedos for the ring particles are allowed in the case

of thermal emission from only one side of the ring particles. Such a

case would apply approximately if the ring particles were synchronous-

ly rotating. We can estimate the size of the ring particles required

to obtain synchronous rotation through the frictional disipation of
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of tides by Saturn vithin the age of the solar system (cf. Goldreich

and Soter, 1966). Ferrin (19TM has made such a computation and

obtained the lower limit of the size of the ring particles to be

^ ho m, in order for them to rotate synchronously at the present day.

This indicates that the ring particles whose size we have found in

P
1/2

the preceding argument (<p > < I1.5 m) must emit thermal radiation

from their entire surface and rotate rapidly.

In summary, we may match the IR data in the case that the rings

are polydisperse with a size distribution such as equation {3k) and

s = 2, even if there exists considerable uncertainty in the albedo in

the red. Although the monodisperse model works well with the optical

data, it seems difficult to satisfy the high infrared temperature

because of its higher optical albedo.



Figure 21.: Theoretical IR brightness temperature distribution

versus the optical depth in the ring layer.

T
.0

- temperature due to absorbed solar flux,

1 - temperature due to absorbed solar flux plus

the mutual heating among the ring particles,

„0+D+h _ ^
1 - temperature due to absorbed solar flux,

mutual heating, and the flux from Saturn's

ball.

These results are based on the case A for the ring

particle albedo (see Figure 20).
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Lon
Figure 25: Theoretical IR brightness temperature distrihutic

versus the optical depth in the ring layer. Same

notation as Figure 2k. These results are based on

the case B for the ring particle albedo (see Figure 20).
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Figure 26: IR brightness temperature for ring B versus y = cos 9
o o

Data taken from the compiled table of Murphy and ad-

justed to 9.5 AU. The curve A and B are based on the

cases A and B for the ring particle albedo (see Figure 20).
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SECTION VII

CONCLUSION

The basic models which were investigated in this thesis are

based on the assumption that the rings form a layer many particles

thick. More specifically, ve assumed that a plane-parallel and

homogeneous ring layer consists of many independent and randomly

oriented spherical particles and that these particles are large enough

and their number density is great enough to cast shadows upon each

other. Under these assumptions we investigated models of Saturn's

rings which include this shadowing mechanism, realistic phase functions

for the individual ring particles, and the effects of multiple scatter-

ing and a particle size dispersion. In the shadowing mechanism we

included the effects due to the finite size of the sun, including the

penumbra. In the calculation of the IR brightness temperature of the

rings, the effect of mutual heating among the ring particles was con-

sidered qualitatively for the first time.

The basic conclusions are the following. An appropriate model of

the rings which matches the observed data in both optical and infrared

regions of the spectrum seems to be the polydisperse case with the

particle size distribution given by equation (3^) and s = 2. The

monodisperse case fails to satisfy the infrared data. Of course, we

would expect on physical grounds that there would be a range of

particle size in the rings. The actual form of the particle size

distribution function can not be deduced from the measured data, but

the presence of the additional parameter describing the size distri-
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bution allows more flexibility in determining the albedo a so that

lover values of a where are necessary to match the IR observations

become possible. The size distribution cannot, however, be too flat

(for then we have essentially the monodisperse case) or too steep

(a predominance of very small particles does not produce sufficient

Shadowing effect). The lower limit of the optical thickness of ring

B is larger than 0.5 in the visual wavelength band. The volume

density D for ring B is close to 0.01. The ring particle phase

function is somewhat backscattering which explains the linearly

increasing part in the phase curve of the rings. Although the values

of the phase integral depend on the choice of the parameter of the

size distribution, their lower limits are 1.0 and % 1.1| in B

and V which agree with the results of Veverka (l9T3) for snow covered

o 1/2
objects. The upper limit of the mean particle size <p > is found

to be less than i|.5 m for the polydisperse s = 2 model. The lower

limit on particle size and the mean particle size remain uncertain.

The particle Bond albedos in the blue and the visible are close to

the lower limits of the particle albedo found in the polydisperse

case s = 2. They are found to be a^ 0.U2 and a^ 0.72, respectively.

The upper limit of the mean particle size found in this model

agrees with both the models suggested by Pollack et al. (1973) and

Pettengill and Hagfors (197^) to fit the microwave and radar data.

The high albedo for the ring particles agrees with the deduction from

the spectral data (Lebofsky et al.) that the principal constituent

of at least the outer portions of the ring particles is ice, slightly
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reddened by either the action of high energy radiation or the pre-

sence of impurities.

To clarify a lot of uncertainty in the red and near infrared

regions, and thus to significantly refine the precision with which

the ring paraineters may be deduced from our model, ve should stress

again the desirability of reflectivity observations on an absolute

scale beyond 1 micron and a good observational phase curve for the

rings at wavelengths X > O.Ty.
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