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abstract

REC EXT STAR BIRTH AND STARBURST ACTIVITY
IX NEARBY GALAXIES

FEBRUARY 1990

WILLIAM HOWARD WALLER, B.S., UNIVERSITY OF ARIZONA
M.S., WORCESTER POLYTECHNIC INSTITUTE

Ph.D., I NIYERSITY OF MASSACHUSETTS

Directed by: Professor Stephen E. Strom

The ionizing starbirth activity in MlOl. M82, and NGC 1569 has been
investigated via CCD imagery at Ha, R. T and [Sill] bands. The three galaxies
are compared with one another and with M51. M83, and the Milky Way in terms
of their starbirth intensities, starbirth efficiencies, and possible starbirth histories
The globally-averaged starbirth intensities that are inferred from the extinction-
corrected Ha surface brightnesses vary by -3 orders of magnitude, with MlOl
and the Milky Way defining the low end and with M82 defining the high-intensity
regime. The annular-averaged starbirth intensities correlate strongly with the
H 2 surface densities and with the total gas surface densities, where near-linear

relationships are obtained. Unusually high starbirth efficiencies and eruptive
gaseous morphologies are evident in M82. NGC 1569. and NGC 5461 - one of

the supergiant HII region complexes in MlOl. Crude indices of the galaxies'

starbirth histories indicate temporally declining starbirth intensities in MlOl and
the Milky Way but currently “bursting” starbirth intensities in M82 and NGC
1569.

In MlOl, annular-averaged photometry of the Ha emission yields a much
flatter galactocentric profile of surface brightness than that of the red-continuum

starlight. The corresponding e-folding scalelengths are 9 and 3.3 kpc. respec-

tively, thus implying significant differences between the galactocentric distributions

of current -epoch massive star formation and past-averaged star formation. More-

over, the giant HII regions in MlOl show significant variations in Ha equivalent

vii



;

“ a fUnC ' i0n ° f b0,h salact 0cen,ric radius and Ha luminosity. Thesevariations can be attributed to changes in the upper stellar mass .units of the“g dUSterS - M,UPP"» -ter galaxy, where the brighterHI reglo„s are n,ore numerous. The galactocentric variation in Ha equivalentvud ths appears more closely related to the galaxy’s radial profile of differentia.
ton than to its monotonic grad.ent in 0/H abundances. The ionizing stellar

of these results.

' and starburst ga.ax,es are discussed in terms

viii
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CHAPTER l

INTRODUCTION

In the following chapters, , examine and compare various luminous tracers

trace
"
Vd

°™mS aCtlVlty
’ as observed in 3 nearby galaxies. The primary

rs lie u e t e optical Hq emission from the galaxian H1I regions (gas cloudston, zed by underlying populations of ho, OB-type stars), the red continuum
emission rom the young .omzing stellar populations, and the radio CO and HIemission from the star forming molecular and atomic gas clouds.

The observed galaxies, in order of decreasing mass, include a grand-
design Sc spiral (MIDI), a “starburst” Irr II/Amorphous galaxy (M82). and a
-pos.eruptive- Irr I galaxy (NGC ,569). These galaxies were chosen with an aim
to better quantify the differences between the starbirth activity that characterizes
most la, e-type galaxies and the more intense “starbursf behavior which is
relatively rare today but may have been commonplace during earlier epochs of
galaxian history. Key questions to be addressed are...

1- What is the typical relationship between the star formation rate and the
available H 2 and HI gas content.

Does the ‘’starburst’ phenomenon represent an actual enhancement in the
efficiency or ’’yield" of star formation per unit mass of available gas? and
3. Do massive stars form preferentially in certain environments (i.e. Which
environmental factors, if any, affect the high-mass end of the initial mass function
IMF!?).

Scientific motivation for these questions is presented in a brief overview of

galaxy birth and evolution (Chapter 2). Here, I emphasize the concept that

galaxy evolution is driven by the transformation of gas into and out of stars.

Therefore, the types of stars that are created (the IMF) and the vigor of the

process (the starbirth efficiency) are crucial influences on the evolutionary histories

of galaxies.

The starbirth vs. gas dependence is investigated in the chapter on M101
(Chapter 3) and pursued further in the Summation chapter (Chapter 6). Com-
parisons between the annular-averaged Ha, HI, and CO surface brightnesses in



2

' ‘ * °'™m md ‘Ca,e ,ha ' the hi *h-— “ar formation intensity correlates

"
; ,

P°Wer ° f H2 SUtfa« densi,y “d with the 0.9 power of the total

rontMm M83

y

\,-

C

r
,b,

r
n

h

»rightn«„ data
‘ ' M83

’ M0l
> “ d ,he Milk >' Way again produces strona correlationsetween the starbirth intensity and the H 2 and total gas surface d/nsities. Hereboth re, a, tons are best fit by neardinear power laws. The supergian, HI, re-ion

’

complex. NGC 5461, is shown to be truly exceptional, rivaling the -starbjr
nucleus of M83 in both starbirth intensity and efficiency.

The question of the IMF is addressed the most in the chapter on M101
P er 3), where the Ha luminosities and equivalent widths of 385 HII regions

are used to trace changes in the high-mass IMF. An increase in the mean
equ, valent width is noted between the inner and outer galaxy. This galactocentnc
vanatton ts a, tr,buted to the presence of higher-mass stars in the clusters .ha, are
located beyond 5 kpc of the nucleus. The form of the galactocentric variation
resembles that of the differential rotation more than that of the 0 H abundance
gradient.

A correlation between the Ha equivalent widths and Ha luminosities is

also evident, suggesting that the brighter HII regions contain the hotter, more
massive stars. Such behavior bears upon the question of starbirth efficiencies
as well as that of the IMF, because all computations of starbirth rates and
efficiencies depend critically upon the IMF that is adopted. If intense "starburst"
regions are. in fact, biased towards making the most massive stars, one may
be significantly overestimating the starbirth efficiencies and underestimating
the gas depletion times by adopting a “normal” IMF appropriate to the solar

neighborhood.

Chapter 4 presents the classic starburst M82 as imaged in the light of Ha.
near-infrared [Sill], red continuum, and near-infrared continuum emission. From
these images, I have constructed a map of the

:
Sill /Ha flux ratio which, in turn,

has been interpreted in terms of the visual extinction. The resulting images

and maps indicate pronounced obscuration along the major axis on opposite sides

of the starburst nucleus. The circumnuclear obscuration is demonstrated to

be coincident with sites of enhanced molecular hydrogen and CO emission. I



3

! ,

Ut

,

e SUC a COnfig"ation of d “ st “d 8« «0 Mm -dusty chimney” that wasuse byMend ts now coll, mating the central eruption. The resulting dereddened

hi

‘

Ca,eS ' m0fe eX 'ended m0rph0l0g >' °f" gastmtlar to ,he morpholog.es seen at 10 micron and radio continuum wavelengthsThe surface denstty and efficiency of star format.on in M82’s nucleus, as derivedrom my extmct.on-corrected Ha fluxes and existing CO and HI data, are the
highest seen in this study. Alterations of the IMF or the starbirth history wouldhave to be especially severe in order to maintain gas depletion times longer than a

_
'5 dealS Wi,h ,he ‘mall«* “d metal-poor galaxy in the sample

c lo69. As in M82, the observed starburst activity in NGC 1569 is of
g o a proportions, affecting the galaxy at-large. The strongest recent activity
is concentrated at one end of the galaxy's “bar”. The HII region complex there
is equ, valent tn Ha luminosity to NGC 5461 - the supergian. HII reg.on that
dominates MlOl's much larger population of star forming regions. New-found
evidence for Ha emitting “arcs” of ionized gas - well beyond the galaxy’s main
body - suggests that previous episodes of starburst activity have wracked NGC
1569. Such inconstant behavior could prolong the star-forming lifetime of NGC
1569 and of other starburst systems.

A comparison of the three galaxies is presented in Chapter 6. Galactocentric
profiles of the surface densities and efficiencies of star formation are superposed
with those of M51. M83, and the Milky Way and discussed. In this context.
M82 appears as an intense but small “nuclear starburst,” whose mean starbirth

efficiency is 12 times higher than the mean efficiencies in M101 and the Milky Way.
NGC 1569 appears as a “post-eruptive” dwarf irregular, whose nucleus is no
longer bursting, but whose nuclear bar is still active with enough giant HII regions

to produce an elevated starbirth efficiency. Ml 01 most closely resembles the

sprawling low-level activity evident in the Milky Way, that is, if the supergiant

HII region complexes in the outer disk are ignored. Annular-averaged photometry
on all 6 galaxies reveals strong starbirth correlations involving the H: surface
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density (where a(SFR) oc <r( \
] -0±o. 2 \ _ , ,

cr(SFR) a a(gas) 11±0 - 2
)

n
" e ota §as surface density (where

and IT;!,.

’ By C°n,raSt - hUk - -,de„ t between

and ,

T

b

he eVid

T
Ce f0r IMF Variati0nS in M101 ’

S 10" izi "8 clusters is briefly reviewedan .he case for possible dynamical effects on the IMF ,s re-iterated. The 1 gPOPTr S m early ‘ type
’ Ute-‘^ “< “"bur., galaxies are discuTTterms of these results. Finally, global indrces of the current-epoch „ past

77
S

T
aC,iVhy “ 6 «alaXiM “ compared. Bursting behavior isear y evtden, tn MM and NGC «*, while M101 and the M„ky Way seem to eslowly declining tn the.r stellar productivity. Inconsistencies among the various

evolu,.tonary tndtces are discussed in terms of possible anomolies in the birthrate
histories and/or IMFs.

Appendix A is a tutorial on how one goes about computing star formation
rates from tnd.ces of ionizing luminosity (such as the Ha luminosity) The sensi
tivity of this computation to the particular IMF that is adopted is demonstrated.

Appendix B is a tutorial on deriving emission-line fluxes and equivalent widths
rom narrow and broad-band images. A technique for separating the continuum
emission from a broad-band image contaminated with spectral-line emission is

introduced and demonstrated using the Orion nebula as an example.
Each chapter is formatted like a semi-autonomous paper. References,

tables, and figures specific to each chapter appear at the end of that chapter. A
comprehensive bibliography appears at the end of the dissertation.



CHAPTER 2

OVERVIEW

2. 1 Abstract

nth,, chapter, I review galaxy evolution in terms of the star forming activitya drives the evolutionary process. I begin with galaxy birth by summarizing

'

-he case for a preferred epoch - 10 Gyr ago. The subsequent evolution of
el tpt.cal and spiral galaxies is then related to them respective star forming histories

I ^
,efly deSCnbed

' The evid™« current-epoch star formation in
sptral and trregular galaxies is presented, and questions regard, ng the stellar mass
spectra (, e . the initial mass functions (IMF.)) of the newborn populations are
posed. Possible variations in the IMF. the astrophysical processes that could
cause such moderation., and the evolutionary consequences of the “standard” and
mod, lied IMFs are discussed a. length. To illustrate the possible antecedents and
outcomes of the starbirth activity that is observed today in late-type galaxies two
simple evolutionary scenarios are considered - constant starbirth rate and constant
starbirth efficiency. A rundown of other possibly relevant starbirth “laws” is also
given. Finally, the starburst phenomenon is introduced and described in terms of
observed tracers, possible causes, and probable consequences. Uncertainties and
evolutionary implications regarding the IMFs in these intense regions are discussed.

2. 2 Galaxy Birth

The present overview and all subsequent discussions assume that galaxy birth

was a relatively coeval process occuring some 10 - 15 billion years ago. Although
this assumption is far from iron-clad, it enjoys strong theoretical and observational

support.

Theoretical support is provided by the physics of the standard Big Bang
cosmology (cf. Narlikar 1983). Within the first billion years after the Big Bang
- shortly after the decoupling of matter and radiation — the mean temperature

and density of the decompressing universe would have been suitable for galaxy-size

gravitational instabilities to grow. According to the classic Jeans criterion (Jeans



1928), gravitational instabilities grow,

exceed the opposing thermal pressures.

Jeans mass Mj, such that

when the gravitational forces begin to

This is satisfied for masses above the

*1-^3 a l > A[j 10
1] J”3/2

(2 - 1

- 1 gm cm 3
, which leads

At the epoch of decoupling, T ^ 4000A' and p ^ 10’

o Igal > 10 Me ,
thus placing a lower limit on the galaxy mass spectrum

Thereafter the cooling temperature and decreastng density would have favored ,h«format.on of much smaller objects. Because the Local Group and. presumably
other groups of galaxies seem to be dominated by the larger objects (selection

'

effects notwithstanding), the Jeans criterion imphes an early epoch for their
formation.

The actual moment of -turnaround” against universal expansion would have
depended on the mass and sire of the particular instability that was growing.
Therefore, the actual epoch of galaxy “birth” could have been smeared out over a
b.lhon or so years following the era of decoupling (see Narlikar (1983) and Bowers
and Deeming

( 1984) for further discussion). Subsequent evolution — including
the accretion of neighboring protogalaxies, the general initiation of star formation,
and the creation of bulge and disk components — would have depended on the
mass, size, angular momentum, and environment of the accreting collapsing
protogalaxy. In some instances, it could have taken as long as 10

10
years (B

and White 1987). thus accounting for quiescent gas-rich laggards such as the
recently discovered "protogalaxy” Malin-1 (Bothun et al. 1987).

aroi

Observational support for coeval galaxy birth is based primarily on the ages
of stars. Extremely ancient stars are observed in both the Milky Way and the

Magellanic Clouds. For example, the main-sequence turnoff ages of the oldest

globular clusters in these galaxies are estimated to be at least 10 billion years old

(c/. Mihalas and Binney 1981 and references therein; Hodge 1983; Hodge 1987a).

thus indicating even greater ages for the host galaxies. The fact that three

galaxies of such widely disparate masses could have such similar ages suggests that

the emergence of galaxies of all types was a relatively simultaneous phenomenon.

The composite spectra of elliptical galaxies and spiral bulges also show absorption



(

lines characteristic of old red stars (Gunn et al. 1981 ; O’Connell 1986, aga,„ugges.,„ g ancient birlhdates for the hos, galax.es. Drrect observational evidenceor against coeval galaxy birth at redsh.fts of .- = 3 - 5 re.na.ns elusive andprobab y require the advent of telescopes and instrumentation capable ofd -nog the actual birth pangsd The recent discoveries of Lyman-alpha emitting

bfi^rT
a‘ '' - 1 - 3

(DJ° r?°vski et al. 1987; McCarthy cl al. 1987)
r.ch fields of extremely fa.n. blue galaxies a, estimated redsh.fts of - = 2 - 3 (T v-
1*8:), and the galaxian counterparts to quasar absorption-line syst^s at - - S - 3Schwarzschild 198,

) suggest that such a capability may not be long in coming.

2.3 Galaxy Evolution

Galax, es evolve by cycling their primordial stores of gas into and out of stars
Ihe vigor of this cycling process (the starbirth efficiency) and the variety of stars
that are created (the initial mass function (IMF)) are the two critical parameters
that set the pace of galaxy evolution. They do this by fixing the rate of chemical
enrichment from exploding high-mass stars and by determining the mass lock-up
rate in the form of low-mass sta. and stellar remnants. The time-integrated
efficacy of the transformation process can be crudely gauged in terms of the stellar
mass fractions M./(M. - that are observed in galaxies at the current epoch.
This fraction has been found to vary from galaxy to galaxy in a manner that
approximately follows the Hubble sequence of morphological types. For example,
the ellipticals are overwhelmingly stellar + M

g ) > 0.99). the spirals are
about 80 - 90 percent stellar, and irregular galaxies are about 50 - 80 percent
stellar.

Because ellipticals are dominated by stars whose colors indicate M0 Gyr ages

(Gunn et al. 1981; O Connell 1986), these gas-poor systems can be regarded

as having efficiently formed the bulk of their stars shortly after having coelesced

as self-gravitating systems (see Figure 2-1). The higher central concentrations

of mass and lower rotation rates of these galaxies would be consistent with rapid

In a cosmology with Ha — 50 km s
1 Mpc 1 and q0 = 0.5, i.e. a flat universe, a redshift

range of z = 1-3-5 corresponds to lookback times of r = 8.4 - 1 1.4 - 12.2 Gyr respectively.

1
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evolution, especially if the stellar birthrate depends on some positive power ofthe gas density (Schmidt 1959; Larson 1987a) Additional -a
eccentrir stellar uu ,

’ - d lltlona-l considerations of the

Z"ZZl™Zl!!*Zoch mergers could have precip.tated the h.gher star formation rates needed toconsume the remaining gas in short order.

The spiral and irregular galaxies, having conserved 10 to 50 percent of theirprimordial gas. continue to be active sites of star formation. They therefore
provide precious opportunities to observe star formation - and hence galaxy
e\olution in progress (see Figure 2-1).

2.4 Current Epoch Starbirth

Irrefutable evidence for ongoing star formation has been found in a large
number of spirals and irregulars. First, from mm-wave observations of the CO
trace molecule, we now know that many late-type galaxies harbor large quantities
of molecular gas (Young and Scoville 1982; Young et d. 1985). In our Galaxy
this gas is in the form of cold (T * 10 A') dense ( n„2 > 10* cm" 3

)
clouds (Scoville

€t al 198 ' ] Which are su PP°rted against immediate collapse by dispersive velocity
fields (Ai 3 - 10 km s

1

)
and, perhaps, by magnetic pressure (Heyer et d.

198 1 )' Nevertheless, collapse does occur, as evidenced in the Milky Way by the
embedded, dust-enshrouded protostars that have been detected in great abundance
at infrared wavelengths (Beichman 1987 and references therein). In HII regions,

where the molecular material has been ionized by newborn OB-type stars, optical

hydrogen-line and radio Brehmsstrahlung emission are readily observed. And.
if the molecular material becomes sufficiently disrupted by the UV radiation and
strong winds from the newborn hot stars, the stars become exposed and hence

optically identifiable. In summary, the birth of stars leaves many traces, the

most readily detected being the molecular gas clouds, the warmed dust, the

ionized gas, and the naked newborn stars themselves.
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2-5 Newborn SMIar Populations and the InitM Mzss Function

Although we are confident that ongoing starbirth characterizes many late>pe galaxies, our knowledge of the stellar birth processes in external galax.ess suongly limited by our ability to observe only the high-mass stars and theirluminous consequences. Whether low-mass stars are forming along with the highmass stars in proportions remotely resembling those seen the solar neighborhood

zt:;Zu
q

T
st

;r

of cruc,ai ,,nportan"' -Lirnd the IMF s virtually untraceable save for its bulk gravitational effects Theermediate and high-mass portions, however, have observeable effects on thecontmua of the newborn clusters and - if , he continua are sufficiently ho, - onthe emission-line spectra of the surrounding HII regions.

Variations in the high-mass IMF have been inferred from collective spectro-
scop.c stu dies Of giant HII regions in spiral, irregular, and HII galaxies (Viallefond
1980, Terlevich and Melmck 1985; Campbell el al . 1987; Campbell 1988) In
these regions, the variation is observed to correlate with the metal abundance in
t e sense that the highest mass stars tend to form in the most metal-poor systems
Such behavior has been attributed to several physical mechanisms, the mos't often'
cited being

• The accretion of gas onto a growing protostar and the dependence of the
accretion process on the dust content (and by inference, the dust-to-gas ratio and
thus the metallicity) of the infalling material: In dust-poor clouds, the opacity of
the infalling material is greatly reduced, so that the radiation pressure exerted by
the luminous protostar is also diminished. This leads to unimpeded accretion and
thus a higher protostellar mass limit (Kahn 1974; Shields and Tinsley 1976); and

• The fragmentation of clouds into protostars and the dependence of the
fragmenting masses on the cloud temperature (Jeans 1928; Spitzer 1978; Larson
1985; Silk 1986): In metal-poor clouds, radiative coolants such as CO and dust
grains are relatively absent thus leading to higher cloud temperatures and higher
values of the minimum fragmenting mass.

The observed correlation between IMF and metal abundance, however, can
be re-interpreted in terms of an IMF-dynamics connection. For example, the

most metal-poor galaxies tend to be the least massive (Pagel 1986: A. Campbell,
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P' C
,°
mmUnlCat,0n) and characterized by the weakest tidal forcinga d the lowest amounts of velocity d.spersion and differentia, shear. The relativesence of dynamical dtsrnption in these systems could therefore encourage the

quiescent growth of large clouds (Larson 1987a; Larson ,988) and the preferential
creation of mass.ve stars ms.de the giant clouds - as is observed in the lar*e
clouds of the Milky Way (Larson 1982; Waller rf al. 1987; Scoville t, a,. \mi
lnnlarly, the regions of low metal abundance and exceptionally high-mass

star formation in large spiral galaxies tend to be well outside the tidally and
kinematically stressed inner regions. These regions are associated with large «as
complexes which are often part of spiral arms.

In M101. for example, the Ha equivalent widths (u. the line-to-continuum
ux ratios) of individual HII regions are seen to vary with galactocentric radius

(see C hapter 3). This finding can be interpreted as a radial variation in the
upper stellar mass limit of the clusters underlying the HII regions. Therefore,
the high-mass end ot the IMF does seem to vary with position in the galaxy — an
effect which seems more closely related to the galaxy's radial profile of differential
rotation than to its O H abundance gradient, contrary to previous suggestions
(Shields and Tinsley 1976; Viallefond et al. 1982). A similar investigation of
the HII regions in NGC 2403 has revealed steep O/H and N/H radial abundance
gradients but no corresponding variations in the Ha or H (3 equivalent widths
(Fierro et al. 1986). The observed invariance in these tracers of the high-mass
IMF is again more consistent with the galaxy’s radial profile of differential rotation

than with its metallicity gradient.

Therefore, the observed variations in the high-mass IMF could be simply

reflecting variations in the ability to assemble large clouds and cloud complexes.

According to this picture, the giant spirals are able to make big stars by

assembling giant clouds within the potential wells associated with their spiral

density-wave crests. The largest clouds and most massive stellar offspring arise,

where the tidal and kinematic stresses are lowest (preferentially in the slower-

rotating later-type galaxies and away from their central bulges Hodge 1987b] ).

The irregulars and HII galaxies achieve the same results by simply waiting for large

instabilities to inexorably grow. The largest instabilities and highest -mass stars
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develop inside those gas-rich galax.es hav.ng the lowest velocity dispersions (andhence the lowest masses).

The observed variations in the high-mass end of the IMF, as discussed above
m.ght also indicate that certain environments are conducive to forming high mass
s ars a the of low mass stars> as advocated by Larson (1#g7c)^^m act, the low-mass star formation is suppressed in some regions of high-mass
s ar formation, then the usual extrapolations from high-mass observables to total
star formation rates may be in serious error (see Appendix A). Furthermore if
the low mass end of the IMF is poorly represented, then most of the gas consumed
by the star forming process will eventually be returned to the interstellar medium
Such enhanced cycling of the gas into and out of stars means that the gas depletion
times are prolonged. Several studies of star formation rates in normal spirals
have concluded that the IMF must be biased as outlined above. Otherwise, the
predicted gas depletion timescales become disconcertingly short (r

; ,
in'-

1

years)
compared to the cosmological lifetimes of the galaxies (Jensen c t al 1981; Gusten
and Mezger 1982; Larson 1986; Sandage 1986).

2.6 Evolutionary Scenarios

Still, the evidence for "biased'’ or "bimodal” IMFs is relatively weak (see

Scalo 1986) and so it is worth considering the implications of stellar birth via a

solar-neighborhood “Salpeter-type” IMF (see Appendix A). Two evolutionary

scenarios can be most readily envisioned: Either a galaxy’s starbirth activity

proceeds at a constant rate equal to that extrapolated from the observed rate

of massive starbirth, or starbirth proceeds at a constant efficiency equal to the

extrapolated birthrate divided by the mass of available gas. In the first scenario,

one obtains a straightforward gas depletion timescale by dividing the available

gas mass Mg by the mass lockup rate MLR For a Salpeter IMF, the MLR is 2/3

the total birthrate . This leads to typical gas depletion times of a few 10
9
years

(Kennicutt 1983; Thronson et al. 1987) or to appeals for abberant IMFs in order

to extend the gas depletion times and so explain the relative rarity of gas- poor

(“anemic
)
spirals that is evident outside of crowded galaxy cluster (van den

Bergh 1976).
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In the second scenario, ,he constant efficiency insures that the gas supply
"7 °Ut -

11 JUS
* with an e-folding tune equal toe gas depletion time of the constant SFR scenario Tn • , ,.

?“1“-— « « -onentia,Z-b^Z^T£rnple scenarto enables one to extrapolate backwards in time front cult, values

shortlyXT I'" M
and efHdenCy and S° *““« birthrate

'

e galaxy s formation (cj. Talbot 1980). For the Milky Wav tlcurrent b.rthrate of 3 M&/yr (Gusten and Merger 1982, would tmply a

?

atarbirth rate of MOO Me/y, Evidence for such intense activity has been found

withTth ‘f

'
' galaX ’ eS '

"' h0Se Ly° and 011 lumin°sities are consistent
birthrates exceed, ng 100 Me/yr (McCarthy et at. 1987). Comparisons ofurrent-epoch starbirth rates (calculated from Ha luminosities) with pas, -averaged

es (calculated front blue luminosities and from the ratio of dynamical mass
cosmological age: (SFR = A/Wvi) also lead to the conclusion that "normal"
spiral galaxies began their lives vigorously forming stars and have since become less
productive (Gallagher 1984: see also Figure 2-1). Some irregular galaxies
however, appear to be mcrcasmg in stellar productivity as time goes on. Such
behavior ,s clearly inconsistent with the constant-efficiency scenario, unless some
sort of gas infall process is also invoked.

2. 7 "Laws of Star Formation

Whether constant rates or efficiencies best describe the current-epoch star
formation evident in late-type galaxies has yet to be worked out. Indeed, a
multitude of "essential laws" governing star formation have been proposed to
explain the data at hand. This may not represent a failure on our part, however
The star formation rates within individual molecular clouds, molecular cloud
complexes, spiral arm fragments, galaxian nuclei, and interacting galaxies may
depend on complex blends of many different influences. Because the dominant
factors have yet to be isolated with much satisfaction, it is important to consider

all the possibilities. The following dependencies, being the most simplistic, are

the most often invoked.



13

• The starbirth rate is constant with resoect to -i , ,

evolutionary time This imnl' -

ai ^ ) t gas content and
^ implies an increasing efficiency (defined as SFR/lbr \wi ime and a gas depletion time proportional to the reciprocal of th ffi

* *

(™> fou

:,

d that neariv— ***»4,
0

, .

rePr0dUCe th

;
^lobal UBV colors and Ha equivalent widths

'

ine rom a sample of 1 ,0 nearby late-type galaxies. The resulting gaspletion tunes ranged between 10» and 10’° years with a median timescale of 4"'

T

S

:
gnifiCant,y l0Wer ,ha" < h ° cosmological lifetimes.

density L ™ «>° ^variable gas mass, surfacedensity or volume density. For example.

<r(SFR) = K cr(gas),
(2-2

where a(gas) is the surface density of gas rr($m\‘ r
r

, r .

nsny ot gas, cr(bFR) is the surface density of star
f rmatton. and h rs the starbirth efficiency. This implies a cons,an, tffeincyof star formation. an exponentially depleting gas content, and an exponentially

,

”
‘"'"I

,Ut
.

' r,h “** W“ h reSpefl ,0 ,im °- Such behavior has been inferred
rom HR and C O measurements of giant molecular clouds in the Milky Way

( engarajan 1984); radial profiles of blue starlight and CO luminosity in spiral
galax.es (Young and Scoville 1982 and references therein); radial profiles of Ha,
t O. and HI fluxes m Sc spirals (DeGoia- Eastwood el al. 1984; Lord 1987;
Waller el al. 1988); and global measurements of FIR and CO fluxes in late-type
galaxies (Young et al. 1985; Rengarajan and Verma 1986).

• The starbirth rate depends quadraltcally on the available gas content, e.g.

<r(SFR) oc a{gas) 2
. 9 _ 3)

This implies an efficiency that decreases as 1/r and a starbirth rate that decreases
1 /

°

as 1 r Such non-linear behavior can result, for instance, if cloud-cloud
collisions lead to cloud growth and enhanced birthrates. The cloud-cloud

collisions, in turn, can arise from the orbit crowding in spiral density waves or
from the tidal mixing induced by galaxy-galaxy interactions. First proposed by
Schmidt (1959), the quadratic dependence continues to be championed as the

exclusive outcome of a variety of cloud-growth scenarios (Larson 1988). Evidence
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for quadratic or higher-exponent dependencies has been inferred from0 t e ionized and molecular components in the Milky Way (Waller 1984- 'sT'T

1 :r
c,emen$ in —— -wd

’ e supergiant star forming regions of M101 (see Chapter 3) ]•

tv-t «
... Ll:r:;

-
• e starb.rth rate depends both on the available gas content and on itspressurization by the underlying stellar gravitational potential.

n) x cr(gas) a(*'
(2-4)

* S X> ‘ SUr,aCe denslty 0f «as folh^ 'hat of its stars, the dependence
reduces the quadrat.c '‘Schmidt” law.) According to such behavior, large starortning regions could create especially high pressurizations thereby amplifying the
rigtnal birth activity a feedback-type fashion. Using this “auto-catalytic"
atv, Dopita

( 1985) successfully modeled the HI and UV fluxes of la.e-tvpe
galaxies measured by Donas and Deharveng (1984). In a CO, HI. and Ho
study of Mol and M83. however. Lord (1987) was unable to match the radial
proh es of starb.rth rate with Dopita's model. A similar mismatch is also seen in

ere fr(SFR) depends more closely upon a(gas) than upon the product
olpas) erf.) - the exception being near the supergian. HII regions (see Chapter 3).

• The starbirth rate depends on the degree of compression in encounters of
disk gas with spiral density waves, c.g.

rr{SFR) X <7(s<is)[(fi(0a5) - Q
p )R], 2-5)

or with other non-axisymmetric gravitational potentials. This scenario may again
relate to the quadratic law, in that the dynamical effects may lead to enhanced
cloud growth and thus star formation rates that vary as some non-linear power of
the local gas surface density.

Again, the evidence for all these dependencies concerns only the high-mass
star forming component . Therefore, the nonlinear effects that have been claimed
may actually reflect variations in the IMF rather than true enhancements in the

overall star forming efficiency.
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2. 8 Star burst Behavior

AS outlined in Section 2.6, the early evolution of nrany large galaxies_have been characterized by intense “starburs,” activity. Ltunatel e ,on the fringes of the observable universe are no, the only arenas whe« s arburstactivity can be found and studied.
^arburst

The starburs, phenomenon - where the conversion of gas into stars proceedsunusually prodtgtous rates - has been observed on scales ranging front a few

'

parsecs
(
t .y. the Orton nebula) to several kpc

(
e.g. M82, NGC 253 NGC

• 0), Hallmarks of such activity include high infrared luminosities, strong radioonttnuunr enttsston. dazzling hydrogen recontbina, ion-line intensities, and warmCO antenna temperatures (see the excellent dtscussion by Soifer el at. 1987 ,

h,rVT°;iTrS ^ maSSi ' e $,ar f°rmati0n ha'" been USed ,0 unusuallv
g starbtrth efficiencies (Rteke el al. 1980: Young et al. 1986b: Lo el al.

198b. VVaHer tt al. 1988; and the present thesis) which would imply gas depletion
- ' an IMF appropriate to the solar neighborhood is

adopted ). For those galaxies that are completely involved with such starburs,
act.vttv, the pace of evolution is hastened drastically, challenging one to explain
t e.historic origins of their present tumult and to predict the imminent futures of
their gaseous reserves.

In Figure 2-2, starburs, activity appears in the form of high infrared
luminosities and high L,r/L CO luminosity ratios. The luminosity ratios (and
by inference, the starbirth efficiencies) of the well-known starburs, systems M82
and NGC 253 are elevated above those of “normal” spirals by a factor of -a.
Even higher luminosity ratios are evident in the “ultraluminous infrared galaxies”
exemplified by Arp 220 and Mrk 231. However, physical processes other than
efficient starbirth may be contributing to the high L IR /LC0 ratios seen in these
disturbed systems. Sanders el al. (1988) suggest that active galactic nuclei

(AGNs) are contributing to the ultraluminous FIR emission, and that such

Such regions include the giant extragalactic HII regions (GEHRs) and the “Violent Star-
Forming Regions" (VSFRs) coined by Terlevich and Melnick

(
1981 ).
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exotic activity and perhaps the Seyfert and quasar phenomena as well - are the
evolutionary byproducts of previous nuclear starbursts (see also Norman 1987)

Evidence for galaxy-galaxy interactions triggering starburst activity continues
to accrue (Condon 1982: Keel el al. 1985; Bushouse 1986; Young el al 1986a-
Kennicutt el al. 1987). Correlations between starburst activity and the presence
of a central bar are also being found (Hawarden el al. 1986; Devereux 1987).
These connections give strong credence to the concept of tidal influences driving
the aggregation of massive and dense clouds, in which starbursts can occur (Larson
1987a).

Intense episodes of star formation may entail more than just large accumu-
lations of gas, however. Timing may also play a crucial role. Theoretical
considerations oi the relative timescales for cloud growth, starbirth ignition, and
resulting cloud destruction have shown that an intriguing variety of starbirth
behavior can ensue (Scalo and Struck-Marcell 1986). When the cloud destruction
time is much shorter than the cloud formation time, the system is rapidly damped.
”self-regulated." and hence extremely stable. However, as the cloud destruction
time begins to exceed the formation time, the system exhibits limit cycles and
eventually a transition to chaotic behavior - in both cases accompanied by bursts
of star formation. If. for example, the cloud destruction time is set equal to the

typical lifetime of ionizing stars (r ^ 3 Myr), then bursting conditions would
require cloud growth times of only -10 6

yrs. To assemble a bursting system such

as M82 in such a short time would require high gas inflow rates at radial velocities

exceeding 50 km/s (Larson 1987a). Numerical N-body simulations of galaxies

ha\e demonstrated that central bars and tidal interactions between galaxies can

induce sufficient redistributions of angular momentum for such radial inflows to

occur (Larson 1987a and references therein).

Once initiated, the starburst exerts tremendous changes upon its environment.

The high radiative and mechanical luminosities of the massive stars and — later

of the resulting supernovae can produce large-scale outflows of ionized gas (see

Chapters 4 and 5) and wholesale reorganization of whatever gas that isn't blown

away. A possible scenario for the evolution of a starburst and its host galaxy

has been outlined by Rieke et al. (1988). By comparing near-infrared tracers of
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the photo-ionized H+ gas, the shocked H 2 gas, and the recently evolved star-
•

O ow the lmtlal b„„, The sequence is charactet]zed a r ;

f -
htgh-n, ass stars tn the galaxy's nucleus ,NGC 5253 and NGC 253). fo.Wed hyshocking o the c.rcumnuclear gas and windy outflows (M82), and ending with aan

If no expelling or disrupting the host galaxy's gas (Larson 1987a: see also
apter 5), starburst eruptions might autocatalyse further starburst activity
is can be modeled terms of the excess pressurization (Dopita 1985) and

compression (Rieke el al. 1988: Sofue c t al 1986: see also Chapter 4) , ha,
starbursts create. Another possible “secondary” effect of starburst energetics is amo i cation o the IMF governing all subsequent star formation. If. for example
segmentation and gravitational instability play dominant roles in determining the
u (.mate masses of stars, then the higher temperatures in starburst regions may
present fragmentation below a few solar masses (Larson 1987c) thereby skewing the
starbirth process toward higher masses.

Rieke ct al. (1980) came to such a conclusion for NGC 253 and M82. based
on infrared spectroscopy and photometry of the ionized and stellar components
along with dynamical constraints on the total mass. Comparison of these
observations with models of evolving stellar populations led to an IMF lackin«
in stars below 3 ,l/9 and above 30 ,U0 . However, their analysis suffered from
significant ambiguities in correcting the 2 micron continuum for extinction by
dust and in interpreting the resulting fluxes in terms of main-sequence, giant,

and supergiant populations. Different corrections of the 2-micron fluxes and/or
different mixes oi dwarfs, giants, and supergiants could have yielded a much wider
range of masses.

Similar modeling of the optical, infrared and radio emission from NGC 3690

(Gehrz, Sramek. and Weedman 1983) also yielded an IMF that was confined to a

mass range of 6 - 25 d/e . Here, the interpretations of the non-t hernial radio

emission in terms oi a supernova rate and, by inference, a massive star formation

rate are highly ambiguous. I nfortunately, there are too many free parameters
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and too few unambiguous spectral discriminators of the highest and lowest-massregnnes to do much better with spatially integrated data (see. for example 7modeling of LV spectra by Sekiguchi and Anderson (1987))

’ '

in theVici"T StarbUrS ' SyStem "'hOSe S,MS C“ ^ reS°' Ved ,3° Doradu s”

15o t v,
';

,aSSeS Ians,ng fr0m the detec,ion ^ MS up
0 ’3 haVe been lden" fied 19*5). Moreover, the distribution ofmasses appears to follow a Salpeter-type power law, thus suggesting a -‘norma,"

- F excep for the extended upper mass limit. Indtrec, evidence for "top-heavy"

ZlZc h

W1

x

S,a

;

b ' r,h ' n,enSi,y h”" fo“nd - ‘ha HU regions of

.

aP er -)- this behavior can be applied to the nuclear starbursts
( Ixennicutt 1984; see also Chapter 6). then extremely massive stars may, in factbe driving much of the violent activity seen in starburst nuclei.

The evolutionary aftermath of such “top-heavy" starbursts would be a
P ethora of dark solar-mass remnants. Larson (1987c) has suggested that these
starburst "ashes could account for the “missing mass” that is evident today in
spiral galaxies. Indeed, rampant starburst activity during the early universe
could have manufactured much of the dark matter that dominates the dynamics
of the present epoch. To test this provocative scenario, much better spectra of
extremely faint high-redshift galaxies will need to be obtained and analysed in
terms of starburst cs. other activity. The 8-meter and larger-class telescopes
that are currently under development will play important roles in this regard.

In the following chapters, three nearby galaxies are studied in terms of their
relative starbirth activity. Because the observed tracers of star formation are
mostly sensitive to the high-mass activity, they can only address the relative

degrees of starburst activity in the host galaxies, ,.e. the relative rates and
efficiencies of massive star formation. Nevertheless, overall rates and efficiencies

have been extrapolated from tracers of the high-mass activity according to a

Salpeter-type IMF. This was done more to facilitate comparisons with similar

studies (especially that of Kennicutt [19831), then to claim a common brand of

starbirth for the entire sample. All starbirth efficiencies and gas depletion times

that have been computed from the observations are presented with this caveat in

mind.
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Figures

Figure 2-1

Star forming histories.

a. Time averaged star formation rates based on three different indices of

activity. The Ha luminosities of HII regions sample the short-lived OB star

population and hence the most recent star formation (r < 10* yrs). The blue

luminosities are produced mostly by stars that last less than 6 Gyr. Finally, the

dynamical mass of a galaxy approximates the mass of stars that have formed over

the galaxy's lifetime (r < 15 Gyr). Note the rapidly declining SFR s of the Sb

galaxy NGC 2841 that is obtained from these three time samples. By contrast,

the lower-mass irregular galaxies appear to have increased in starbirth activity.

Adapted from Gallagher et al. (1984).
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Figure 2-1 (cont.)

b. Schematic star forming histories as a function of morphological type.

Taken from Sandage (1986). who bases the scheme on the trends found by

Gallagher et al. (1984) and on observed variations of surface brightness, color,

and bulge-to-disk ratio with Hubble type.
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Figure 2-2

Luminosities and molecular masses of galaxies.

The ratio of total far-infrared luminosity and total H2 mass in molecular

clouds vs. LfjR for “normal” and bright IRAS galaxies. The straight solid lines

represent an Lrir/M{H^ )
value of 4 I© A/©, typical of the mean value found for

molecular gas-rich spirals, and an L rjr i

M

(
Ho

)
value of 20 X©/A/©, characteristic

of the nearby starburst galaxies M82 and NGC 253. The large circles represent

“ultraluminous infrared galaxies which may be powered by both starburst and

AGN-type activity. Taken from Sanders et al. (1988).
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CHAPTER 3

Ml 01

3. 1 Abstract

CCD images of M101 a, Ha. R, and I-bands have been obtained andanalyzed with the aim nf „i • ,

ana

.he disk F ,

ng ,he CUrrent -eP°ch star formation»k. From annular- averaged photometry of the Ha and R-band imagerv

flltter7w",r Tn"
Pr0fi ' eS a" deriVed ' The Pr°file °f H° ™ission » much

s.arhlh, r ,

SC ‘™g,h °f 9 kpC> ' han *h“ ° f '"« -d-continuum
ght (with an e-fold, ng scalelength of 3.3 kpc). thus .mplving significant

differences between the galactocentric d.stributions of current-'epoch mass“ starorma ton and past-averaged star formation. The annular-averaged Ha surface

4 m,“rien,

d

are

b

onver,ed in, ° surb,r,h ,n,ens,,ies ,using a

densitie' Th

C°mPi>re corresponding measures of the H 2 and HI surface

he H f

COmPam°nS reVea ' S,r°ng $,ar f0rma, ‘° n involving
he H, surface density (where a(SFR) x <r( //,)».«, as well as the total *as surfacedensity (where <r{SFR) x <r( pus

)

0,9
). The sunerziant HIT

‘

o 61. has a starbirth intensity that is 16 times higher than the mean in the diskand a starbirth efficiency that is 10 times higher than the mean.
From synthetic-aperture photometry of the CCD images, the positions,

sizes. Ha fluxes, and Ha equivalent widths of .385 HII regions are reported
The resulting Ha luminosity functions for the inner and outer galaxv reveal
proportionately fewer high-luminosity HII regions within 5 kpc of the nucleus
compared to the outer arms. The Ha equivalent widths (line-to-continuum ratios)
of the inner galaxy HII regions are also lower, on average, by a factor of 1.5
compared to those of the outer galaxy. Selection, obscuration, and evolution
effects seem unable to account for this behavior. The lower equivalent widths
are more likely due to a significant decrease in the initial upper mass limits of
the ionizing clusters. A simple model yields EW(Ha) x an d thus
a corresponding decrease in \IU by a factor of 1.3 to 1.7. The galactocentric
variation in the Ha equivalent widths appears more closely related to the galaxy’s
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stars. This “temperature I

•
• ,

° contain the hotter, more massive
temperature-luminosity relation is modeled in terms of » „ ,,mass spectrum with a constant “slope" of a = 2.9 = 0 :! K , .,7

mass limit.
’ U a vanable upper

3.2 Introduction

MfOUNGC
01

^-!
faCe'°n

,

S ° ' Sal8Xy Vi$ible fr°m hemisphere,

spira
'

’ eXemP ' ,fieS ' he a-h? *.'-Pal “giant spiral." Its prominent
P

7
a

7
SUP"g,am 0B/HI1 associations have motivated several studiesconcerned w„h the orchestration of spiral structure and concurrent star formationsca es errcee ,„g several kpc « c/. Sandage 1961; Schweizer 1976; Jenson „

984 Tf
1982: EWreen and Elmegreen 1984; Hill ef ul

,, .

ese studles r^eal an asymmetric spiral pattern that can be traced allhe way into the nucleus (Sandage 1961); arm amplitudes a, bine and ultraviolet
wavelengths that are 40% - 200% higher than the underlying dish and -0.59 mag
bluer at (U - B) (Schweizer 1976; Hill et al 19841- hr ) 1

g

- , ,. .
’ nmetaL broader lower amplitude arms

red and infrared wavelengths that have been attributed to density waves in the
underlying stellar disk (Schweizer 1976; Elmegreen and Elmegreen 1984; also see
counterargument in Hill et al. [1984]); and elongated OB/HII/HI associations
that may represent transient (r < 10

8
yr) responses to the dynamical sweeping of

gas ,n the presence of density waves and shearing flows (Viallefond et al. 1982).
Although the relationship between spiral structure and massive star formationm M101 has been intensively studied, the more general relationships between the

recent massive star formation, the past-averaged record of star formation, and
the available gas content have yet to be adequately addressed. Recent global
and resolved studies of other late-type galaxies indicate significant correlations
between various tracers of the massive star formation rate and tracers of the HI
and H, gas (Lord 1987; Kennicutt 1989; Young et al. 1989). Evidence for an
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---
also see Chapter 2,

" ^ *“ “ -ales (Dopita 198.5;

disrH^^rre^^ieTo^ir.r ^ii^ieairH
t

3

h

6)

;:

e - i

7
tocentric

zz;:^:i:rr':::::r
** * ,o

90S COntnL The clrrent'-eplch"ZrttiZ'

^caliWc
'

and measuring the distribntion of Ho surface brightness front CCD ,„,ages

?

e

:

nner d,Sk

;
nd °Ut* r <““«»> anns. The Ho entisston is a direct Leer of>e tontztng photons that are being produced by young hot stars

,
T < , 0 Myr,

' therefore provtdes an observable index of the current-epoch high-ntass star
,hat

;
n

;

ore d,reciiy ,h“ ^ “«* *jl. or

et al. 198^7 "ihe"
7^ ^ PreV1 °US StUdieS (SdlWeizer 1976; Kennicutt

, ,

.'
e Pas -averaged record of star formation is traced by measuring

L
f

;

0

.

n 'm“Um™" “ ** At R-ba„d the ,ight front the dtsk is

“

onnnated by la.eOype g.ants (70%) with ages exceeding 1 Gyr (Renztni and
Bttzzon, ,986,. The avatlable gas content is traced via the 21 cn, H, spectra, ,ineemtsston mapped by Allen and Goss

( 1979) and via the 2.6 mm “CO spectral lineemission mapped by Solomon et al. (1983).

Galactocen.ric distributions of the annular-averaged Ho intensities red-
continuum tntensities, and Ho equivalent widths are compared in terms of
e-fold,ng scalelengths (Section 3.5). These reveal stgnifican, differences between

e current-epoch and past-averaged distributions of star formation. The Ho
..densities are then converted into equivalent star formation intensities, using
Kenn,cult’s (1983) initial mass function (IMF) to characterize the newborn stellar
populations, and compared with similarly derived starbirth intensities in M83.
M51, and the Milky Way (Section 3.6.1). The efficiency of star formation is

determined by comparing Gaussian-smoothed annular averages of the starbirth
intensity with similarly resolved annular averages of the H, and HI surface densities
(Section 3.6.2). These comparisons reveal a near-constant starbirth efficiency
with radius, if both the molecular and atomic components are considered.
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«•* - ... .......

findings of Kennicut, ,1989) and YoungTT “£l“n 177^
^ ““

r 7
es,.ga„on of young stellar populates. This is because M101 'containshundreds of readily detectable HII regions spanntng nrore than 3 decades inuminost y ron, HII regions as bright as the Orion nebula to HII region

t7
rebri“iant *“ Magellanic Cloud! To date.

,

e m0S ’ 1UmmOUS S,ar f0rmi^ r^ons have been studied in terms of theirhular properties and underlying stellar populat.ons. These have revealed a -1lex radta gradient in the 0/H abundance ratio and possible indications (from Hi
q ualem widths) for hotter stellar populations .oniz.ng the metal-poor HII regionsin the outer galaxy.

regions

In the remainder of this Chapter (Section 3.7). an enlarged sample of 385HII regions is examined in terms of their Ha luminosities and Ha equivalent
w.dths. The primary aim here is to test previous claims for a galaclocentnc
lanation in the effective temperatures of the ionizing stellar populations, and

,

f

ZT’
l° Whe,h(r ^ l

’ana,Wn >S Correlated unth the observed gradient

Z
danCCS

' aS Piously Proposed. Much of the analysis is based on the
utility of the Ha equivalent width as a tracer of effective temperature. Being a
lme-to-contmuum ratio, the Ha equivalent width of an tsolated HII region traces
the relative balance between the ionizing and non-ionizing flux from the underlying
stellar population. It is therefore a crude but effective probe of the tomzing
cluster s effective temperature and, by inference, of the cluster's high-mass IMF.

A brief discussion of previous studies concerned with giant HII regions in M101
and other late-type galaxies is first presented (Section 3.7.1). The sample of 385
HII regions is then described (Section 3.7.2), and problems associated with the HII
region photometry are discussed (Sections 3.7.3 and 3.7.4). These include the
treatment of the diffuse Ha emission, the effects of blending in crowded regions,
and the isolation of the young cluster continuum from the light of the ambient disk.
The resulting fluxes from the individual HII regions are tabulated and plotted in
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r
P between the inner and outer galaw i

functions is noted and o a t; cf 1 *

galaxy Ha luminosity,ed
> “ d •»«**> *«.*» are made which validate the dtfference

eqU1Valent W,dths of ,hf 102 ionizing clusters with high signal ,ootse continuum fluxes are presented as a function of galactocent^rZ
' Houmtnos.ty. and red-continuum luminosity (Sections 3.7.6 - 3 7 10) P0 -'blselection, obscuration, and aging effects on the Ho ,

extensively addressed (Section! 3 7 7 and 7 b .T'd
for the observed galactocentric variation in i AN H T

‘° ' llade'1Ua,d >' a«°a "<

l
4 .

,

' variation in rLYV(Ha). To minimize the effects ofobscuration, the sanmle of 1 09 tru •

"

. . .
'

„
P 0f 102 Hn reS10ns is reduced to those 41 clusters which

,

lnc uc ln? spectroscopic measurements of HII
regions eyond the imaged fields) is compared with galactocentric profiles of theO H abundance ratto, the differential rotation dn/d*, the shear rate A, and the

1 J
(Section 3.7.9). The poor relationship between 0/H and EW(Ha)s contrasted with an apparent anti-correlation between the vartous dynamical

quantities and E\\(Ha). The latter relations are discussed in terms of a possibledynamical constraint on the high-mass IMF.

"Temperature-Luminosity" diagrams, where the Ho equivalent width is

P °1 ted against the Ho luminosity, are used to better characterize the ionizing
stellar populations (Section 3.7.10). A robust correlation between the two plotted
quantities (for luminosities below 10^ erg s" 1

)
is noted and modeled in terms of

an IMF with a constant slope of a * 2.9 ± 0.3 but with an upper mass limit that
canes be Further relations between the upper mass limit and the ionizing
cluster’s total mass and lower mass limit are also modeled and discussed (Section
3.7.11 ).

Results from the annular-averaged starbirth study and the Hll/stellar
population study are summarized at the end of the Chapter (Section 3.8).

3. 3 Adopted Properties

Table 3-1 lists the properties of M101 that have been adopted. The position
angle of the major axis and inclination are based on the kinematic symmetries and



aspect ratio of the HI emission
( Bosnia. Goss, and Allen 1981 ) ,, , ,

reg,

r
using ,he— e-r

-* - v: r

-

of

,h' lite

:r?
^

nnes (< 5/0) in the computed galactocentric radii
More problematic is the distance determination. As a crucial run* inh cosmological distance ladder. MIDI has been the subject of many distancee ermmations. I nfortunately. the dispersion of results is approximately a,

i; z'xn •

A
:

,he h,gh end are sandage and t— (1974, whothe HII regions ,he neighboring irregular galaxy NGC' 5477 to derive adista of U Mpc. This has been supported by HI observations of MfOf and

and , r

f< 1978) "'Wch SW 3 ph
'
V- al “"action between MIDI

width'

Ca 1

,

rat ° r ‘ A

|

the l0W end is de ^ auc°uleU rs (1979) who used the velocity

f

‘
d ' a '’,e,er relaUon for the HI < «P»n, in M101 to derive a distance

‘

Of 4.2 Mpc. More recently, two C'epheids have been identified whose sparsely
sampled periods and R-ba„d magnitudes indicate a “preliminary’' distance range
o ,.o Mpc down to 5.7 Mpc, depending on the obscuration of the Cepheids and
the adopted distance to the LMC (Cook e, al. 1986). I have decided to adopt
t e e, en closer value of Humphreys and Aaronson (1987) who compared optical
an p otometry of the brightest red supergiants in M101 with theoretical
cal, bra, ions of these standard candles ( My * -8) thus obtaining a distance of 4.8

pc. The effect of using this distance is to reduce the size of the galaxy and the
lum, nosit.es of the brightest stars and HII regions to less anomolous levels than
would otherwise exist

( cf. Humphreys and Aaronson 1987). For the sake of
consistency, I have also chosen “conservatively” low distances for the other galaxies
in this dissertation.

Figure 3-1 depicts the kinematic properties of MlOl’s disk that can be derived
from the HI data of Bosnia et al. (1981) — assuming a distance of 4.8 Mpc.
These are shown as galactocentric profiles of the rotational velocity Vrot , the
angular velocity the difference between the angular and epicyclic frequencies

the spiral-arm crossing velocity Vrel ,
the differential rotation dQ/dR. the
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coefficient of rotational shear , „ n *>

acceleration T.
^ s constant A, and the coefficient of tidal

Of Particular m.erest is the strong enhancement in the amplitude of thedtfferent.a, rota, ton m/iR) at galactocentric radti between , and 4 kp Th'enhancement could bean artifact of tfw. ht u •

pC ' Thls

sn,oo,hmg produ~

—
nucleus and hence erroneous values of the differential rotation. However a

"i,ruSncer ; 'r
R[- w *-—-

-

and INI

high-resolution Fabry-Pero, observations at Ha. iS IIIand M, were used to determine the rotation velocities of 302 H1I regtons (see

"

-he,r Figure 6). The observed enhancement in differential rotation leads',! L,ar

;rTtr
th,? S

,

eanng fl°W and ,ldal acceleration at the small galactocentric

, 9 81 H R

r

Vnam

r
Var,a ’ i0nS hSVe been Pr"'i0USly n°,ed b -'- S"* Blitz

Hd M10O
“ SSS°ld ,1982) <m ,he COn,fXt °f the Milk>- Wa-V- ’he LMC,

the h

FiT !lf
ePiC,S thf SpeC,r°SC°P ic Pr°Pe«ies (culled from the literature) ofhe brtgh e st HI regions as a function of galactocentric rad, us. These include

-he [OIU1/H.3, .OIIU/[On, ([OHIHOIID/HA and [NIIJ/Ha line ratios, the
inferred O H abundance ratio; and the HH equivalent width. References to these
properties will be made throughout the Chapter.

^ Obser\ ations and Reductions

A summary of the CCD imagery obtained for this study is provided in Table
3-2. The Ha, R, and I-band images were obtained at the Cassegrain focus of
the McGraw-Hill Observatory 1.3 m telescope on Kit, Peak during clear, moonlit
sky conditions.' The imaging device was the -‘MASCOT” CCD camera developed
at MIT (Meyer and Ricker 1980), a dual-chip system which enables a variety of
simultaneous observing modes. I did no, take advantage of this versatility and

1 The McGraw-Hill Observatory is operated by Dartmouth College, Massachusetts Institute of
Technology, and the University of Michigan, with partial support from the National Science
Foundation, the Alfred P. Sloan Foundation, and McGraw-Hill, Inc.
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simply imaged on one of the chips — a TT 4 S4 Q • + ,

1987) which had replaced the
P "" CCD (Luppi"°

253 (see Waller et al '1988
) Tlth^ 'b tf?

the obsetvations °< NGC
only 476 x 390 worth teas saved after \

^^ X 390 Pixds
’

approximately 15 percent was vignettedTv th7b

"

‘"T
1”8 ' ° f ani°Unt

’

camera Th • .
•

8 b> ,h <- beam splitter ,n the MASCOT

sskst-:— --— .

—

pent source response function within the unvignetted field

?

FWHM of — o"
~ C 1S estlmated to have a

images.

“ '”eaSU ^ «*«. in the galaxy

Imaging a. Ha was conducted using an interference filter (#1276 \6563)

“t
K

;;

p'*‘ The

NII1 ;
< 6 . n

* 36 A fil,er ‘° pass H«(3 0 6563) with 0.74 transmissivity,

Th
'

" with O.lo transmissivity, and [NII](A06548) with 0.68 transmissivity
e net contamination ,n the Ha images due to [Nil] emission is expected to

'

e 10 ± 5 percent depending on position in the galaxy: Within 170" (4 kpc

,

o ae nucleus, where /([*//])/,(*„) * 0.5, the [Nil] contamination is about

,

“ e''°" d 340 (8 kpc) irom lhe nucleus, where f({NII]/f(Ha
)

== 0 15
the contamination is about 5% (see Figure 3-2). Imaging of the red and far-red
continua was conducted using the resident “R-band" and “I-band" filters at
- Hill Observatory. Their wavelengths of peak transmissivity and FWHM
bandpasses are similar to those of the Mould system R and I filters commonly used
at Kitt Peak.

Images centered on the galaxy's nucleus and displaced 4.3' to the east
of the nucleus were obtained through all filters (see Figures 3-3 and 3-4).
Shortly thereafter, images of the subdwarf flux standard stars BD + 17“4708 and
BD+ 26»2606 (Oke and Gunn 1983) were obtained. Domeflat images were taken
at the beginning of each night.

Initial processing of the CCD imagery was accomplished using the Mountain
Photometry Code package at Kitt Peak headquarters. Bias averaging and
subtraction as well as Hatfield division were performed automatically using
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processing, including im

'“
H!r

d ‘0

^ “T"*"*
Furth-

aperinre photometry. was conducted * the ^^
Kasssssr
IFCAIALI ,„d. ,A, a!Z,S‘ min",created at Kitt Peak Y a t;nn i nu

‘ aaJlt> (IRAF) software

Pror T nd Observatory -long with the Astronomical Wessmg
. v stem (AIPS) software created at the National Rad' a

O bservatory (NRAO).
Astronomy

All measured fluxes were corrected n* , .eCted for atmosphenc extinction, min- theadmass at the time of observation and Beer's Law:

R0 = R io
OAh'\stc

(3 - 1

'' ^ ° den°"'5 ' he COrrec,ed rou"< ™»e per pixel (in ADUs^), is the zenithdistance. A(A6563) = 0.1. and A'(A8380) = 0.06 as estimated from CCD
observations of Landol, standards taken at Kitt Peak during 1986 (Bushouse
private communication). Synthetic aperture photometry on the images of the
sdF-type standard stars BD+ 17»4708 and BD+26°2606 yielded the following
conversions between flux and count rate (after bias subtraction, flatfield division,
and atmospheric extinction correction):

fx(Rband)(erg cm-* s~' A-') = (4.1 ±0.2) x 10
_IT R0(R band)(ADU s

-1
).

where the flux density calibration is for a central wavelength of 6563 A.

f\{I band)(erg cm 2
s

1 A -1
) = (3.1 ±0.1) x 10'

‘ 17 R 0 (I band)(ADC s" 1

),

(
3 - 3

)

where the flux density calibration is for a central wavelength of 8380 A. and

fx(Haband)(ergcm - 2
s
- 1

A-') = (1.0±0.04) x lO
^ 17 R 0 (Ha band){ADU s ~' ),

(3-4)
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so that

f(Ha band)(erg cm~ 2
s
~

]

) 3.6 ± 0.1 x 10 R0 {Hq band)(ADC s
-1

)

3 - 5)for an Ha filter bandwidth of 36 A (FWHM)

d,Pli k r
,c aperture ph~- ° f -

surface brightness and ,h

reg'°nS^ '°«

R V L

s are nlOS, stron« 1y affected by the sky brightness
. comparing t he measured surface brightness in th •

' §

. .

Aigfiincss in these regions with th^

r^rrry of ^ -- --trde k, determinations and subtractions), satisfactory fits to the skybackground levels in the dispaced images were determined. The sky backroun esels in the centered images were determined and eliminated by taktn*vantage of the 10 overlap between the centered and displaced images andbv equalizing the surface brightness levels within this common region
" The-pension ,n the subtracted sky background across each image is believed

U, be the primary source of no.se in the derived Ho and continuum fluxes
ts - estimated to be Sh{ R W) * L4 x 10 -i. „g cm -z

A
, cl\[l band

) ^ 1 ] y in- 18 -> _i 0 = .1,1 X 10 "y cm s
1

arcsec' 2 A~\ andol[na band) ^ 7 6 * in -1
" -> -i ->

nhot . r . ,

' 3 S arcsec respectively, based on
P onietry of the low-surface-brightness regions in the displaced images. These
dispersions represent 2.6. 2.0. and 2.5 percent of the respective sky backgrounds
that wrere subtracted.

To obtain Ho images that are free from contamination by the stellar and
neaular contmua. it was necessary to subtract a shifted and scaled version of
t e calibrated R-band image from the original calibrated Ha-band image. The
shifting in x and y was determined by comparing the centroid positions of 7
oreground stars in the 2 respective fields of view and was implemented via a linear
interpolation scheme in the IRAF data reduction package. Determination of
the scaling factor 5 was based on photometry of the standard stars and on the
condition that

/( Ha) — f(Ha band) — Sf\(R band
)
= 0 (3-6)
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for continuum sources (see also Appendix B I a-

calibrations (eqs. 3-2 to 3 5 , th

' ^ ‘° ‘ he

(FWHM). To obtain

' "* faC,0r ‘‘ ,he bandwidth

** -
/j(A6563) * /l( * - /»<*« band)bw{

H

q band)!bW(R band) (3 - 71

(see Appendix B for further discusdmM mi ,

rnnt . a
discussion). All subsequent Ha and A6563 red-continuum fluxes refer to the decontaminated values.

As a consistency check on the decontaminated Ha and red-continuum imageryhave compared the Ha equivalent widths line-to-continuum ratios, thaftere obtained front synthetic aperture photometry of the processed imagery against

FigTre H, iT
P

d

h0t°lne,ry °f °nglnal HQ ' band a "d R - ba " d^ (see
S 3- )

-

,

The der,Vatl°n of from the -raw- Ha-band and R-bandimages « based on considerat.ons similar to those presented in Appendix B I,assumes that the flux through the R-band filter can be approximated bv

/( R band) ^ f,\[EW(Ha) + bw{R band)],
(3

where bw(R band) corresponds to the FWHM bandwidth of the R filter. Simi
larly. the flux through the Ha-band filter can be approximated by

f{Ha band
) % fx [EW{Ha) + bw(Ha band)].

(3 _

These approximations are valid only if the continuum flux density fx is relatively
constant across the respective bandwidths. The flux ratio is then

f(Ha band)
= [EWjHa) + bu>(Ha band)]

f(Rband) ~[E\V(Ha) + bw(R band)]
'

which leads to the following solution for EW(Ha)...

EW(Ha) =
bw{Ha band

)
~ bw

(
R band)

f

(Ha band)/f(R band)

f(Ha band)/f(R band) - 1
]

(
3 - 11

)
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Figure 3 5 shows that the equivalent widths EVV „ th j • , ,

photometry of the -raw” Ha-band and R ha d
'

’

,

fr0m

equivalent widths EW bar 'mageS
’ ^ match »h'

red-continuum images

'

'/he ^ °
( » ha d” Ha and

peteent. More s/Lny
“ d>“—s agree to within 5

EWp(Ha)/EWR (Ha)) = 1 .

with a standard error in the mean of 0.002. A least
the two quantities gives

016 ± 0.046. (3 _ ^

)

squares linear regression on

EUp(Ha) _
( 0.78 ± 0.85) + (1.020 ± 0.005)£Wfl (

Ha
; :-3- 13

Such close correspondence indicates that the “processed” and “raw” fluxes aremutua ly consistent with one another, and that nothing unexpected has resultedfrom the image manipulations.

-he fewti^/n
5 °" HU “d red -COntiMUm ™a^ were made by examining

ig regtons, whose line and continuum fluxes have been measured
spectroscopically (Searle 19,1: Torres- Peimbert et ol 1989). By tailoring
synthetic apertures to match the 12.4" x 3.8" slit of Torres- Peimbert et a l (1989)and the 14 diameter circular entrance aperture of Searle (1971). photometric
comparisons could be made for 5 HII regions. The spectroscopic and imaged
fluxes agreed, on average, to within 10 percent. More specifically.

(3- 14

(3-151

\/(Ffa) apect /f[Ha)image )
= 1.00 ± 0.25

with a standard error in the mean of ±0.09. and

(/A(6563) spcct //^(6563) image )
= 1.03 ±0.34

with a standard error of ±0.13. The relatively high dispersions about the mean
are noteworthy and may indicate the actual uncertainties in the flux measurements
as determined from photometry of the processed Ha-band and R-band imagery.
However, the spectroscopic determinations are uncertain by 20 - 30 percent as well,
thus contributing to the high dispersion that is evident in the comparison.
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extinction correction ^T^u"7
‘° P°,en<ial in th' Spheric

variations in the [Nil] contaminatl ^^ <± 7%>;

calibration conversions
( ± 5% ); difference. tZTmlT ']7

’U"dard-’»* t

;

,a

;;

in

7
slop- ° f^ acr0SS ,he R a „ d , ba„d;i1 77c

ard

,faulty isolation of the Hr> an rl ,
passes (± b/0 ), and

uncertainty of ± 209; P
em ' 5$i°n (± 15%

> »" rms systemic

subtracted7-t 7 of errors due to noise in the
} ackgrounds gives uncertainties for a tvnical HIT

a« Ha and (± 2%) in the continuum. The total J " (± 4%)

approximately 20 to 25 percent for the 1

uncertainties are then

,

J percent tor the line and continuum fluxesThe photometric uncertainties become more severe, of course, i„ regtonsof low surface brightness In ,

R
° In the outer galaxy where the lowest levelscontinuum emission are - 10"« erg ,-l cm-! ,-i

arcsec
-2 A _, _

‘

sky-subtraction uncertainty becomes especially important, resulting in a ne,

a7ra7d7
' C°nU

^
Um m ' ensi,ies of = This affects the annular-

7
g

H :7
d ‘S,nbU,10n °f ™n,in “Um «‘™*ie, such that the

e-fold,ng scalelength becomes uncertain by =20% (see next Section)
In the following Sections, a mean photometric uncertainty of ±259? isassumed. Additional uncertainties. (,g. standard deviations about mean valuess ndard errors in the mean values, errors in HII region fluxes due to blendina

uncertainties m the cluster continuum fluxes due to uncertain background
subtractions, etc.) are noted, tabulated, and plotted where they apply

3.o Surface Brightness Distributions

3.5. 1 Emission Morphology

Figures 3-3 and 3-4 show the resulting Ha and red continuum emission from
wo imaged fields. A casual inspection of the Ha images will reveal that the

inner disk of M101 is riddled with numerous “small" HII regions, whereas the
outer arms are dominated by huge HII complexes. One can also see that in the
emission-hne images, the contrast between the HII regions and the res, of the
disk is u-ell-pronounced. By comparison, the underlying young star clusters in
the continuum images are much less noticeable. This relatively poor showing
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of the young stellar component will be discussed in th
measurements (Section 3 . 7 . 3

)

e section on HII region flux

Contour diagrams of the Ho an.l

fields are presented in F.gure 3-6 Th
em ' SSi°n^ th*

vignetted portions front ,h ,

"" by ““”“8 the

-heir respective offsets£ ^ *
calibrated surface brightnesses spatiall G ' ^ the ‘^rithm of the

pix x 8 P ix (6 5" x 6V, bo
'

S ",0°,hlng ,he l0gari * h "'k with a 8

values. These diagrl
" " a" d **“ ^rithmic

-- is

sp,ra
'~ - *-

spiral arms, however. are smoole .tTl ^
the Ha arms.

" C0I" ms < ™mpared to

-bo. 2 A Possible Slarburst Outflow?

Figure 3-7 shows the supergiant HII regions NGC 5461 and NGC 5469at htgher magnification. Each of these complexes is of similar size and Hormnosity as the Large Magellanic Cloud! Closer inspection reveals that themorpholog.es of the two giant complexes d.ffer,

an H

N

f
5462 COnSiS,S °f 2 S ' r0ngly emi ' ting H" regi°ns - ,he bvishtes. havingn Ha luminosity equ, valent to 70 Orion Nebulae (L(Ha) = 9.4 x 10

38
era

efore deredden.ng) — along with many other less luminous regions. The entirecomplex has a luminosity of 9.8 x 10 89
erg s~> before dereddening. Close

mspect.on of the Ha image reveals a total of 34 HII peaks in the NGC 5462 chain.

,‘ S gUfe
'!

Very Slmilar ,0 ,he 32 'peak tallF counted by Hodge and Kennicutt
(iyyb) irom inspection of an image-tube plate.

NGC o461 is dominated by a single unresolved HII region with an Ha
luminosity equivalent to 710 Orion Nebulae (L(Ha) = 9.6 x 10

39
erg s

~
1

before
dereddening). The total complex has a luminosity of 1.8 x 10

40
erg s~ l

before
dereddening, rivaling that of the starburst irregular galaxy NGC 1569 (see Chapter

Figure 3—
7( b )

shows 3 plume-like features of diffuse ionized gas diverging
from the brilliant core toward the South. Southeast, and Southwest. Detailed
examination of corresponding continuum images (cf. Sandage 1989 and the
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:;::;?
oniy ,h
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sou,hern

Seen in projection ^ ' ***“
Ho, stars,

with a resolution of 30” (700
/“ r°UgMy 28 " <65° PC) ' An HI maP

(“plume”) side of NGC 546, V 71 * Pr°n°UnCe<l bulgi ”g 0“ ,ha

Of the HI emission (using the VLAuT 0

Higher resolu,1°” mapping

•He diffuse Ho emil “7*^ -»*. of

spectroscopy) would greatly aid in th
3

er°m<’' r '' °r dense-pack multifiber

candidate.
'

Kinemalic ev de

COrFeC ’ m,erPre,a"°" °f * his Possible outflow

in other “starb

^ ™erget,C OUtflow ^tivity has been found

Chapter 5).

* ,nClUding M§2 <*" C1“P‘" a"d NGC 1569 (see

3. 5. 3 Annular-Averaged Photometry

To obtain galactocentric profiles of the Ha and red-con, inuun, emission
annular-averaged photometry was conducted on the combined images. Th; annul,uere elliptical with the position angle of their major axes equal to that of the
galaxy, and with b,a = cos , The width of each annulus corresponded to 30”

e p ane o t e ga axy. In the case of the Ha emission, the annular-averaged
p otometn was conducted on both the unsmoothed image and on one that had
been convolved with a 60” (FWHM) Gaussian “beam.” The latter smoothing
was done to facilitate comparisons with CO observations of similar resolution (see
ection 3.6.2). The resulting annular-averaged Ha surface brightnesses, their

standard deviations, and standard errors are tabulated in Table 3-3.

Figure 3—8 (a) shows the galactocentric surface brightness profiles of the Ha
and red continuum emission. Here, the unsmoothed Ha emission is plotted
One can immediately see that the dispersions in the Ha emission are much
greater than the dispersions in the red-continuum emission. This reflects the
discrete, high-contrast, nature of the Ha emission. The standard errors in the
annular-averaged values are very small, however, barely rivaling the sizes of the
plotted points for both the Ha and red-continuum distributions. Also evident in
Figure 3—8(a) are enhancements in the Ha surface brightness at the annuli which
contain (he supergiant HII region complexes NGC 5461 and NGC 5462. These
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annuli at these
^ ‘° ““ Und"san'P'i*g of the

ZZZ1; Z7rTnlt7Z
h

Z
the gaiac,ocen,ric

squares regression that is weighted bv the tad M
COntinUUm

' A

smoothed Ha intensities

" ' s,andard Matrons gives for t he

l°9 IiHa)} = (
- 15 '50 ± 0.03) - (1.12 ± 0.14) x

(3 _ 16)

where I(Ha) is in erg cm~ 2 s~ 1

arcsec~ 2 R ; c • ,

are statistical and th ,
.

’ CSec ' ,he quoted uncertainties
1CaI - and the correlat,on coefficient. r, is -0 02 vieU;

significance level which exceeds 0 999 T1

°-93 yielding a correlation

H r -. .. . „

0.999. The corresponding 1/e scalelength of theHa distribution is 388" - 49" (Q n - i i b n ^
' 8

fees, fit fiv
' ‘ * L1 kpc!) - B

-v fomras '- red-continuum IS

%{/\(6563.4)) = (-16.69 0.06) - (3.10 ± 0.44) x 1CT 3
/?. (3 - 17)

Zl'l ^
= _0

' 98 ' The corresP°nding e-folding scalelength here is 140" = 19 g"
(• - - 0.5 kpc) which compares favorably with Schweizer’s value of 151". based
n p otometrj of an O-band (A o6440) photographic plate (1976). Taking themo e instead of the mean within each annulus gives an even steeper radial profilem e re continuum with an e-folding scalelength of 126” ± 16" (2.9 ± 0.4 kpc)

This again compares favorably with Schweizer. who obtains for the disk alone (, e
a' mg mlna‘ed ,he Spiral arm component

) a scalelength of 117", A much better
correspondence between the Ha emission and the starlight can be achieved by
considering only the spiral arm components of the B-band continuum, (see Figure
.(a) in Schweizer (1976) which indicates an e-folding scalelength of about 312").
This ,s not surprising: since Ha emission is a primary tracer of spiral structure
“ ,S ‘° be eXpeCted tha ' i,s galactocentric distribution would resemble that of the
blue starlight from the spiral arms.

The different galactocentric profiles of surface brightness can be further
investigated by examining the galactocentric distribution of Ha equivalent widths.
Being a lme-to-continuum ratio, the annular-averaged Ha equivalent width traces
the relative proportions of current-epoch massive star formation to past-averaged
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star formation in the disk. Figure M i i TT® ^ ^(t») shows the Ha equivalent widthincreasing with galactocentric radius A i p;,, t

standard deviations gives

'

' “S™*® lighted by the

logEW(Ha) = ( 1.11 ± 0.24) + (1.84 ± 0.89) x
(:j _ lg)

W here r‘ = °' 93 "'lth a correlation significance level exceeding 0.995. Thecorresponding e-folding scaleleneth for th^ r A • n* elength lor the radially increasing EVVs is 236" ± 114"

or rMio' b

° r indiCa,eS tha ’ » he current -ePoch massive star

heT
n

T
,nCr

;
aSmg m°re in g^axy compared toh pas, -averaged star formation. This is no, a universal situation among disk

galaxies. For example, both M31 and the Milky Way have their massive starrmat. concentrated in a ring about their centers
, c/. Walterbos and Kennicutt

1 1 y o / ; , Uusten and Mezger 1982).

3.6 Star Formation Rates and Efficiencies

3. 6. 1 Starbirth Rates

To convert the Ha intensities into starb.rth intensities (e.g. star formation
rates per umt area ,n the plane of the galaxy), it is necessary to adopt some sort of
tnitia mass function (IMF) that will connect the ionizing photon luminosity to the
overall star formation rate. In Appendix A, a variety of IMFs are considered and
the resulting conversions tabulated. In the present section, however, a single
•universal" IMF will be assumed, so that comparisons can be made between the
derived starbirth parameters in M101 and similarly derived starb.rth parameters in
other galaxies (Kennicutt 1983; Lord 1987; Waller ct al. 1988). The IMF "of
choice is the extended Miller-Scalo IMF" formulated by Kennicutt

( 1983), where

N(M)dM x M-'-USt (0.1 < M < 1.0 A/s,
) (3-19)

N(M)iM x .\r 2
'
J

ilM (1.0 < M < 100 M@ ). (3-20)

This IMF leads to the following conversion between star formation rate and
ionizing photon luminosity.

SFR(Mq yr~ y
) 1.2 x 10

33
N{ (photons s

-]
(3-21
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with the ionizing luminosity depending on the Hq luminos
.

ty acco to

i [photons s
1

)
— 74 X 10" L(Ha

) (erg s
-1

(3 - 22

if case B recombination a. an electron temperature of m< K •

terbrock 19741 r ,

ot 10 A 1S assumed
( Os-

1979) th f

‘ he fegUlar Mi "er - S^10 IMF (Miller and Scalo

(see Append^”)
p'

0"^ 111 ' COI’ serral ‘'ely low starbirth rates and efficiencies

sections of this Chap,

" $ Vana‘i0nS ““ “F ba^ later

of theiT t*
5

I

0" 5 galaC, °CemriC Pr°file of sfachirth intensities in the plane
.

" x : T';:T
ged ph“ty °f ,ha g—

of the
" Ce °f any Spatiall >' "“Ived measurementsthe vrsua extmctton; a correction factor of 1.61 (corresponding to a global'

' 7
10n °

" °" 2 mag) has beei> applied. This value is based onspec roscoptc measurements of the f(Ha)/f(H3) flux ratio in several bright HIIregions (Smith 19/5; Rayo et al. 1982; McCall et al. 1985). Because no
e lac ocentric variations in .4, are evident from these data (see Section 3.7 5, aglobal extinction seems justifiable. Higher extinctions (.4,. * 2) have been found

e rig test regions from measurements of the 5(6 cm)/f(Ha) flux ratio
(Israel and Reunion,, 1980). Therefore, the extinction correction applied to
Figure 3-9 could be too low by a factor of ~2. No correction has been made for

e a sorption of l V photons by dust within the HII regions. This absorption
reduces the amount of ionized gas and so affects the radio continuum and hydrogenme emission equally. Another factor of -2 could be hiding because of this
internal effect (Gusten and Merger 1982; see also Section 3.7.7).

Galactocentric profiles of the starbirth intensities in M83, M51. and the
Milky Way are also plotted. The M83 and Mol intensities are based on the
extinction-corrected Ha intensities tabulated by Lord (1987), where the same
<T(SFR)/I0(Ha) conversion has been used. The Milky Way starbirth rates are
based on radio continuum measurements of the Galactic plane (Gusten and Merger
1982), where the same SFR/N, conversion has been used.

Two main conclusions can be inferred from the galactocentric profiles. The
first is that the distribution of starbirth activity in M101 is spread over a large
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— - :E::zz’::::::„i*r-— *
significantly less than those in M83 and Mil h t

•" MW1

Way. Being area-averaged quantities, the star birth IT'

'

“y '

h°Se ^ ' he Mi ‘ky

on distance (although their galactocentrtc
dePenden ‘

similarities in amplitude between the -1 t
•

’ ^ dlfferences and

consideration From ,h V «
alaotocen,nc profiles are worth further

, . ,

• trom 'hese profiles, the starbirth intensities in Mint k
l/i those in M83. 1 3 those in Mai „ , k

ale ab °U '

MiikvVV.v Tk
•'

11056 ,n M51
- a"d between 1/3 and 3 times those in the•Milky Way. The integrated starbirth rate within R - in k

3.4 U 7/yt—
l 4 ,

mn H ~ 10 kpc is estimated to be
z, •> or cibout the S3,mp as 1

*as the corresponding rate in the Milky Way.
3. 6. 2 Starbirth Efficiencies

To compare the starbirth activity u-itti tin-

gas I have nlotted tk i

" h the corresponding amounts of available

f ; ,

Pl°tted act°centric profiles of atomic and molecular hydros
r ace denstt.es (see F.gure 3-10(a)). The atomic profile is based on a 24» x 45"

The

U

7 777
^ ' he 21 °m HI SPeC,ral Hne emis5ion ( A11™ “d Goss 1979)

' ^ st; aT 1

Pr
°7

iS bMed ^ reS°,Uti0° of the 2.6 mm
P 1 line emission ( Solomon et al 1983 ). A constant a(H, )//( CO )conversion was applied to the CO data corresponding to

^h2 ! I[CO]

or equivalently

)/I(CO) = 6.42 (cos i) Mq pc
~ 2

/K[Tft)
km s' 1

.

as determined by Bloeman rf al. (1986) from gamma-ray studies of the molecular
and atomic hydrogen gas in the Milky Way. If this “constant" conversion is.
instead, inversely proportional to the C/H and O/H abundance ratios (Maloney
and BJack 1988; Cohen et al. 1988). then the strong O/H abundance gradient in
M101 could end up flattening the plotted profile of molecular gas.

The star forming “efficiency" is here defined as the ratio of the starbirth rate
per solar mass of available gas, t.e.

SFE = SFR/Mga, =

2.8 x 10
20

( cos i) cm 2
/ A'[T*1 km 5

“
]

. 3 - 23

(3-24)

v(SFR)/a{gas) (3-25)
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and is expressed in units of Gur* 1
t

care wa c

^ • In computing the starbirth efficiencies,

intensity and”*^717^ * the 8t“birth

:r - 'k - *--,rsrsr-
- :r“v- - :r
l,;;: r

d

°v
he annuiar ' averaged Hn and c° bvM ent

;
, 5
f"

,//(ffQ) and <r,//2)//(ro
»— *>-n used. ine efficiencies for the Milkv Wav ^ u i

measurements of Gusten and Meaner (1982) wh tjT

°" ? radl °‘COn,inuum

i
, ,

z°er where the same SFR Y, conversion

198 r
n

wh

U

,r
d th

;
C0 meaSUremen,S ° f $“d"S - Solomon, and ScovtUewhere the same cr( Ht) / II CD) • , ,- ’ 1

'
1

’ conversion has been used.
C ons, derat,on ot the molecular gas alone leads to starbirth efficiencies in M101. increase from 0.65 Gyr- near the nucleus to 1.92 Gyr- the outer d,sk.

, n.lar ehavtor ts seen ,n M51 (where the mean efficiency is 2 times lower, but

beh

m
*

tV" ti ll

M,lky Where ,he efficiencies ^ow radially decreasing
av.or e . I, Iky Way seems most discrepant, with -2 higher efficiencies

J P ° °f,he "UdeUS - but with - 2 loaer efficiencies between 6 and 10 kpc
The flattest geocentric profile results from considering both the molecular

and atomic gas components as contributors to the starbirth process The
starbirth efficiency in the disk of M101 then varies between 0.47 and 0.67 Gyr~'.
With the highest value coinciding with the annuli containing the supergiant
HII region complexes NGC 5461 and NGC 5462. The relatively constant
effidencies found in VllOl are roughly 1.7 times higher than the radially falling and
rising efficiencies in M51 and 1.3 times lower than the radially rising and falling
efficiencies in M83. Compared to the Milky Way, the starbirth efficiencies in"
M101 are 2.8 times lower within 5 kpc of the nucleus and nearly equal between 6
and 10 kpc.

The radially invariant starbirth efficiencies that are found in M101 are based
on the assumption of an invariant IMF and N(H2 )/I(CO

)

ratio across the disk
of M101. If, instead, the high mass IMF is suppressed inside of R = 5 kpc
(as the results in Section .3.7 seem to indicate), then the computed starbirth
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ra, ‘°' ,He aC ' Ual Surfa" densit.es of molecular hydrogen could be“ " a‘ ' f srar“dard conversion would otherwise yield. The lower H,su^ce d t,eS ld „ ^ ac(uai starbirth efficiencie$_
, V ]

' ‘ P °- °PP0Si,e effeCt Could occurring. Overall, the .0 6ex radial gradient ,n 0 H abundances within R = 10 kpc could be producing

‘

b :: T;;
m
c

:

T,
I(C0) convers,on ° f^ -»-* ^Black 1988, Cohen et „/. 1988). Therefore, the relatively constant and low

efficiencies evident in figure 3-11 could be distorted misrepresentations of a more
teePl> declining efficiency that varies by - 0.8 dex.

If the near-constant efficiencies are accepted a. face value, however, and
. a Salpeter-type IMF (such as Kennicutt’s formulation) is adopted, then the
e- folding gas depletion timescale is t(HI + ff, + He) =e 16/?f£ - 07 r
.ee A Ppe dix A and Section ,6 of the Overview,. Any^^
A;

),I{Ha) ra,l ° {e S- adopting higher extinctions or more “bottom-heavy”
- S such as the standard Miller-Scalo formulation) would most likely decrease the

depletion timescale even further. Similarly “imminent” depletion timescales hate
een determined for the Milky Way (Gusten and Mezger 1982: Knapp 1987) and

for other late-type spirals (Kennicutt 1983). Whether these galaxies are actually
about to “hit the wall” in terms of their star forming activity remains highly
uncertain (see Chapter 2 ).

3.6.3 A Near-Linear Schmidt Law

To investigate the relationship between gas content and star formation rates
the annular- averaged starbirth “intensities’' have been plotted as a function of
H 2 ,

HI, and H 2 + HI - He surface densities (see Figure 3-12). Corresponding
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quantities for M51, M83 anrl tl A/r n m
will reveal strong cordons between n'T '

nSPeC,i0n

v(SFR) and r(HI + H-, + He) Bv ,

’’ “ “ betW<?en

between »(Sffl) and aW) , n M101
“ ‘ n<*'" r"'a ' ,

'

0n " "' d™'

behavior. In general the -, f

'

-

* * “ ““ “mP'e show, such

very poorly correlated.'

“°n ' n ' enSi,ieS “d <*«“«« «
Least-squares regressions on the M101 data give

log tr(SFR) = (1.58 ± 0.06) - (0.90 ± 0.10)% a(HI),

w,th re = -.97 yielding a correlation significance level of 0.999,

(3-26

log a(SFR) = (0.49 ± 0.16) - (0.55 ± 0.08)% <r( H,). (3 _ 27

with rc = 0.96 yielding a correlation significance level of 0.999. and

tog er(SFR) = (-0.10 x 0.17) -e (0.87 ± 0.14)% %<%, (3-281

rc - 0.96. The intercepts, slopes, and standard deviations of these
eas.-squares fits are all based on having run the regress,ons in both d, sections

Inclusion of the M51 and M83 data destroys the SFR-HI correlatton while
making both the SFR-H, and SFR-gas relations near-linear in form. Leas,-
squares regressions give

log a[SFR) = (0.03 ± 0.05) + (0.88 ±0.03)% <r(H2 ), (3 - 29)

with rc = 0.98 yielding a correlation significance level exceeding 0.999. and

tog <r{SFR) — (-0.10 — 0.17) -e (0.87 ± 0.14 )Iog o(gas), (3 — 30)

With rc = 0.99. Inclusion of the Milky Way data gives similarly near-linear
relations.

These results agree with the conclusions of Young and Scoville ( 1982) and
Young et at. (1989) which are based on total far-infrared luminos,!,,

.

and gas
masses. Such studies have been criticized as being subject to scaling artifacts

(such that bigger galaxies have more of everything) and to distance errors. To



eliminate these effects, Kennicutt MQSQt k

::
~

a

"
!

C°"elat ‘0n be,We™ *{SFfi
' *»«• «M) as well as between «SFB,* «« «,t power-law exponents of 1.4 ± 0.2 for both dependences butsurprisingly, no correlation between cr(SFR) and a( H ) TV, ,

’

results presented here are thereto
'

( 2) ' The annular-averaged

results Ken 'hi ^ lnC°nS1Stent vvith Kennicutt’s globally-based

arb.rth .ntens.t.es were determined from annular-averaged numier dens:,us ofegrons instead ol extinction-corrected Ho surface brightnesses. Nevertheless

Ha

e5

suTfa

Pr

°b

y reaSOnaWe aPPrOXima,i°nS
< Withi" « f^'or of 2-5) to the actual'

n„ tnesses. He again obtains a correlation between a{SFR) and3aS>

'l

a P°"'er - |a"' eXP°nen ' L3 ± 0-3- Although Kennicutt does not
report the H 2 dependence, i, is probably similar to that of the total gas content

hese denser. Hj-dominated regions. Therefore, the annular-averaged results
o enmcutt agree with those reported here except in the value of the power-law
exponent - hts being 0.4 higher than the 0.9 ± 0.1 value that 1 find. Other
possible star formation dependences are reviewed in Chapter 2.

3. 6. 4 XGC 5461 s High Starbirth Efficiency

In Section 3.5. the Ha emission from the supergiant HII region complex
was described. Comparable in size and Ha luminosity to the starburst irregular
galax> NGC 1569, this region also shows morphological evidence for an energetic
outflow of diffuse, ionized gas. To estimate the starbirth efficiency in this region,
the Ha emission from a 60" diameter circular region centered on the emission
centroid was measured and compared with CO and HI observations of similar
resolution (Blitz et al 1981). The 60" (FWHM) Gaussian-smoothed Ha image
was used for this comparison. The resulting mean Ha surface brightness is

10 erg cm s ait sec
,
which after dereddening for .4,. ^ 1 mag

(Smith 1975), converts into a starbirth intensity of 208 Mq Gyr~ l

pc
~ 2

. The
corresponding surface densities of gas are 8.1 M@ pc

~ 2
in H 2 , 14.4 M. pc

~ 2

m HI, and 6.3 Me pc -
in HII gas (assuming a mean ion density of 25 cm -3
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ft
0"’ 1984]) ' MUl“ Plying

surface density bv 1 33 ,for the presence of Helium gives a total gas surface density of 3g 3 ,
A0™'

starbirth efficiency of this excentinnal •

,

5 ol 38.3 \I3 pc The
,

J exceptional region is then ^ a i

the mean efficiency in the disk of Mini n
V *

’
°r rou§ hl >' 10 times

“*- -
igure 3 12(c) shows this region rivaling the starburst nucleus of 3183n starbirth intensity, bu, exceeding it in starbirth efficiency

,fit through this one point would have v{SFR) = ,1s"
' '

cr(SFR) ^ a(aas) 0 - 9 A i ,

^a,s) compared to the

P otom try s
’.

f°Und fr°m “-1—eragedpnotometry. Similar “nonlinear behavior has
Mol and M83 (Lord 1987; Vogel c , at 1988- ' , C” SP ' raJ^ ° f

8 r see also Chapter 2).

3. 7 Individual HII Regions and their Ionizing Stellar Populations

3- i . 1 Previous Studies of Individual HII Regions

As noted in the Introduction Mini ,. *

HII regions of m p , ,

’ ontams a wealth of readily detectableHIIregmns of which only the -10 most luminous have been studied in terms
e.r underlying stellar populations. Topping the range of luminosities arehe kpc-size "superassociations” of star clusters and HII regions that dominate

outer spiral arms. These have been noted since Herschel first beanexammmg Messier s nebular objects with his 19" reflector (Hoskins 1903; Burnham
• esignated .\GC numbers of their own, they are (in order of increasing

ga actocentnc distance, NGC' 5461. NGC 5462. NGC -5455. NGC 5447. and

\

54
' \

B°th NGC 5461 and NGC 5471 are optically bright enough to
rival -starburst regions such as 30 Doradus in the LMC' and the nucleus of
M83 (Kennicut, 1984; also see Chapter 6). How these colossal star forming
regions formed so far away from the galaxy’s central gravitational field remains an
intriguing property of MlOl’s disk (c/. Elmegreen 1979; Viallefond et at. 1982)

Spectroscopic observations of the outer superassociations and the brightest
HII regions of the inner galaxy have revealed a pronounced radial gradient in the
“excitation” of the HII regions (Searle 1971; Smith 1975). The sense of this
gradient is that the spectraldine intensity of [OIII]( A A4959, 5007 ) relative to that
of H/3(A4861

) increases with radius by 2 orders of magnitude (see Figure 3-2).
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.

effeCt KaS a,,ribu,fd
in the 0/H abundance ratio S bobservations by McCall et al. (1985) have confirmed that ,h ,

q”ent

15 “ leas ‘ P“»ly an abundance effect, such tha, the

calibrations based „„ L ^^ abundan.calibrations based on high S/Nontical .

en>P.r,cal abundance

mi - *? mi "**•
obtained strong 0/H abundance gradients in MIDI (Ravo ct ,T ^Tc n7ai 19 *'5t Evans 1986; Torres-Peimbert et al j 9L

’

.
C

e

'

interpretations (Searle 1971; Smith 1975) The -

‘

c T
““

the 0/H abundance dccccoscs with a ,

? ^ 8ridien ' ' hat

across the measured dis^C^ '^ ^ “-

7
abundancc gtadient does not completely explain the observed

in 'the O , 7,,7
"
"T 15 C°nSiderably “<*«• Observed gradientshe OUT on line ratio and the H/J line-,.o-continuum ratio (r.e. ~,heHJequivalent width, could be indicating that the ionizing radiation field of the

'

underlying star Ousters is changing along with the abundance. Shields and
Tinsley (19/6), noting that Searle's HJ equivalent widths increase with radius
!" erpreted this behavior in terms of an increase in the upper mass limit of the
ionizing c usters. Citing Kahn's (1974) theory of dust-inhibited protostellar
accretion, they proposed that the upper mass limit is highest in regions of lowme al abundance, because the relative absence of dust grains reduces the opacity

e ,n a ing material, thus encouraging unimpeded accretion and higher-mass
protostars. Abundance-sensitive IMFs have since become commonplace in
discussions of extragalactic HII regions and HII galaxies (Viallefond ct 1982-
.allefond 1985; Terlevich and Melnick 1985; Campbell ef al. 1987- Campbell

1988; V ilchez and Pagel 1988). However, in MlOl. the correlation between
abundance and IMF variations is still based on only -10 points (see Figure 3-2).
and so merits a more detailed re-evaluation.
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3.7.2 The HII Reglon Sample

Identification of HII regions from the •

usmg a video display and cursor-controlled

intensity levels were rli.nl,,- a u •

Different contrast and

intensity levels In this way

’ * the high end and working to lower

....a i» R d i Pi;;
“• »

- -*-;•* - “„regions were identified in this manner •,

-A total ot 389 HII

„ .

’ because identifications were made "bv

resulting Ha luminori^ H °WeVer
;

the

luminosity levels corresponding to ^3 Orion nebulae (L ^T(ffa^>lO^T ^
7/'— *-- - .Ho, ob,abed for Z:M , ,. .

1 *' {cf' Smi,h and Kenmcu tt 1989) but about 1 dex higher.ban the limits ob.a.ned in the LMC and SMC
, cf. Kenn.cu,, and Hodge M).

,

and 3-16 sho "' ,he suiting identifications plotted in thePlane of the sky. and Table 3-4 gives the listing of HII region positions.

3. 7. 3 HII Region Flux Measurements

To measure the fluxes of the HII regions and their underlying stellar dusters
synthetic apertures were tailored to each HII regton according to its centroid
post. ton and size. In the absence of blend.ng (see next section for further
iscussion ). the tatlored radius is background limited and thus is approximately

equivalent to an isophotal radius, where the limiting Ho surface bnghtness is

'

h,m {Ha) - (6.4 ± 5.5) X 10-*' erg cm -*
For the “typical" HII region

this background contributes about 25 percent to the total flux: for bright HII
regions such as S3 and S4. the background contributes about .5 percent’. The
high dispersion about the background mean is caused by the spatial variations in
the diffuse ionized component across the galaxy. Since the level of the diffuse
component increases near HII region complexes, the ionization of the gas must be
at least partially related to the hot stars in the HII regions. Therefore. I
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have decided to include the “rliff » L ,

measured Ho flux from each HII rlgiorT

gr°Und COnlP0^1en, “ part of ,h' ‘°‘al

on bo,h ,he H ° and red '

contamination from the older disk sia I hi
*1°™* S ' ellar clusters without

determined and subtracted from eaciTcLer Zf"Th'

'eVe ‘ S

different techniques...
' ' TH W&S done Vla three

• By measuring the mode of the surface ,
•

each annulus being 10 pixels (8 ar 1
•

§ nes " ln concentric annulli -

Pixels (4 arcsect. The resuitm!

" ' ^ ^ ^ »«* ^ *

then used for the background subt^Ir' Th^T
brigh ' neSS *“

enhancements as we.Us the cluster Ught/, this
• B\ smoothing' the red-rnntim,

16" x 16" Hi
' •

Um ima§e Wlth a median filter whose

rs:r,= ::=r tr:;r
dust lanes responsible for obscuring many of the clusters. Such' ^ea!i„^aldeastly reproducble results have made the median filtration approach my -techniqueof choice for isolating all but the largest clusters.

' q

and every

^ diSU ' hU"°n °f C°ntinuum ^face brightness for eachever, HII reg.on (see F.gure 3-13), by setting the continuum background level

2oT \
eaCh rad ‘ al Pl0t ' and by SUbtraCl,ng ,hiS^ from the total

er flux. Any creeping subjective bias in the determination of the background
esel was nulhfied by alternately plotting inner and outer-galaxy HII regions

e advantage of th.s technique is that it is individualised, thereby handling

^

e tggest regions better than the median filtration technique does. Its big
^advantage ,s that it involves some subjectivity in setting the background level

and is therefore not reproducible.

Of the 389 HII regions originally studied. 385 were sufficiently unvigne.ted to
have them fluxes measured. Of them, only 102 had red-continuum flux densities
that were more than 5-sigma above the dispersion in the ambient con.,1 1 n u um

.



Inspection of the residual continuum image revealed that A'
cl°uds are responsible for obscuring man, of the other cJTj^^
3.7.4 The Effects of Blending

Of the 385 measured HII regions 9*? * , ,

neighboring HII regions S ,
, ,

' rC<>n are ™ded at some level with

HII region -h i

"
u

inro1"* overlapping of

discrete “core

$

In

“ ^ ^^ “ d

. ».«!.
o,

*

and so deduce the total integrated fluxes Instead Ih t,

S‘°nS

rr ric aper,ures ,o thf

i^iT::: t;;i;;rz;:r
ffec,s of blendin? but—*- -

Table 3-4 lists the total (background-limited) and unblended radii that Imeasure from radial plots of the Ha em.ssion from each HII regron. Figure 3-17shows the frequency distribution of HII region sizes for both the “total" and
unblende cases. The “total" size distr.but.on can be fit by an exponential

Vtt a sea e engt of about 2.0 arcsec, corresponding to 60 pc at a distance of
4.8 Mpc or about 93 , H./50)- pc (for v. = 372 km s"> ,. Thts latter value is
consistent w.th the scaleleng.hs obtained in a sample of Sc galaxies, where the
radt, were similarly background-limited, and where the d, stances were based on the
galaxies recession velocities and = 50 km s"> Mpc~> (Hodge 1987).

Figure 3-1 1 also shows a relative underabundance of large HII regions in the
"unblended" distribution. This is due to the greater truncations suffered by the
larger HII regions in order to avoid blending. The mean truncation for the entire
sample of 38o HII regions is (runb/rtot ) = 0.9 ± 0.2, whereas the mean truncation
for the large HII regtons (rto , > 5") is (r.rt/r«) = 0.8 ± 0.2. The greatest
truncation exists for the large HII regions in the outer galaxy (R > 5 kpc). where
(’unt/rtot ) - 0.7 X 0.3 compared to 0.8 ± 0.2 for the large inner-galaxy HII regions.
No galactocent ric variation in truncation is evident for the small HII regions.
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These truncations yield underestimated Ha fluxes and Ho •
,~r 7

*

fr°m

intensities tor d ^
because they span the range of intensities - aid Z“sijnlZZlZl^-

t: 3- is™ -
flux densiu

‘
‘ he Ha flUX

’ background-subtracted red-continuum
- ns„j and Ha equivalent width. These curves indicate that a meantruncation of v/rn = 09 vielrU h . in
,

° 95leids Hq fluxes and Ha equivalent widths that areunderestimated by approximately 5 - 15 percent n 1,' t
n v t

L I lit ^ ^ ie ^gher truncations sufferedb> he larger and bnghter HI, regtons of the outer galaxy produce 10 - 20 percentnclerest, .nations in the Ha fluxes and Custer equivalent width,. Therefore the

the hT
me,nC reSUl,S ShOUM ^ aCCUra ' e '° 'Vi,hln 30 P"-' (i-cluding

t Pho ometrtc uncertainties described in Section 3.4, and mutually consistent towit run 15 percent.

•3.7.5 Ha and Red-C'ontinuum Luminosities

The photometric properties of all 385 H1I regions are listed in Table 3-5
where the Ha flux, total Ha equivalent width, cluster Ha equivalent width
and corresponding signal-to-noise ratios are tabulated. Figure 3-19 shows the
frequency distribution of Ha luminosities for the inner and outer HII regions of
M101. The binned counts are also listed in Table 3-6. The highest bin in the
outer regions is represented by the core of the NGC 5461 complex. Unresolved
at 1 -2 resolution, this supergiant HII region is as bright at Ha as -700 Orion
nebulae before correcting for extinction. Even if one ignores this exceptional
region, one can still discern differences between the outer and inner luminosity
functions. In particular, the slope at high luminosities appears to be flatter for
the outer-galaxy HII regions. This difference is shown more clearly in Figure
3-20

,
where the cumulative luminosity functions are compared.

To test the apparent differences in the inner and outer luminosity functions,
a chi-square test was performed on the binned counts beyond L(Ha) = 10

37 25

erg s . After the outer-galaxy distribution was normalized to that of the inner
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galaxy (according to the ratio of 1 , ,

i-
ratio of total counts beyond L( Ha) - in 37 -25 -u ,ch.-square test gave a reduced chi-square of v = 2 9 ,

'

0 !

"g * >’ the

hence a probability of 0 003 that the t a- \
egrees of freedom and

-he sante parent distribuZ Ch
C°U,d *»»

functions gave less than a 0.001 problilTy forThe^ ‘Umin°Si,y

from the same parent distribution. Therefore the’
'

'

‘ 1°“ ^ dra"’n

functions arc sigmficantly different at high lulol
" “ 'Umm°Si,y

the high-luminosity distributions wh , .

^ east ' squares fits to

statistical uncertainty u

" ^ —ding to itsuncertai nty, give a change in slope of 0 4 * n 1 tu
a greater proportion of high-luminosity HII regions in the' ,

' ‘°^
intuitively obvious upon v.sua, examination ^region co,np ws are all located beyond 5 kpc from the nucleus. However ‘theluminosity functions plotted here are not based on photometry of th i

. pholomrlrj ZZluminosity functions continue to differ in cV, a • v
'

h th

» »• •/- m ^
...2 V i-i... a. ,.„„w «,

_
6 ! “L T1>c h.gh-lummosity HII reg.ons (L(Ha) > 10^

VU) x o:

C0

:
bmed fieWS ^ d 'S,nbu,ed ‘o a powef law of

" er correction for the logarithmic binning). This is similar
power laws determined in NGC 628 (Kennicutt and Hodge 1980) M83Rums, ay and Kaufman 198.3), and the Magellanic Clouds (Kennicutt and Hodge

galaxy M8 ’,7' f ! T'"
^ ^ ~rl,er-tyPegalaxy M81 (Kaufman rt al. 1987), where a slope of -3.0 was obtained.

tgure 3-22 shows the galactocentric distribution of Ha and red continuum
ummosities (without any extinction correction) for the 102 HII regions with
detectable red continua (S/N > 5.0). The Ha luminosities of this smaller sample
are higher, on average, beyond 5 kpc of the nucleus - the ratio of the outer and
inner-galaxy mean luminosities yielding

(
LHa{R > 5kpc))

(£*«(*< 511-pc))
= 3 '25 * L87

’

where the uncertainty in the ratio is based on a propagation of the standard

(3-31
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errors in the respective averages r i

systematic variation with galactocentric rach“ng'
' UmmOSitieS Sh °W 'eSS ° f *

L\(R > 5 kpc))

TuUiTv^J)

)

= !- 78 ± 1.2-4.
(3 - 32)

Because the red continuum flux of ionizing clusters mostlv t„
stars of tvne R P i- i

^ 3-ees main sequence

goests that the mam sequences of the ionizing clusters are populated with ,
amounts of intermediate-mass stars but have upper-mass limits th t

“
position in the galaxv This in ,

mass limits that are sensitive totiegalax,. This will be pursued further in the next section.

3.(.6 Ha Equivalent Widths

in Film rr? betWen ' he H“ and red -COn,inUUm luminosities is shown
gure 3-23. As anticipated, the two luminosities are correlated, though the

pTer° at ?
m<>re C°mP ‘iCated th“ ^ «* * a simple linear or

I
over law. This correlation can be further explored by investigating the line-to-continuun, ratio <„. the Ho equivalent width, and the potential influences upon

,

The

,

eqU,Valen ' '' id ' h " “ «P«i»Uy -eful quantity, because i, provides a
crude index of the ionizing cluster’s effective temperature and hence of the cluster's
main-sequence population at the high mass end.

F.gure 3-24 shows the galactocentric distribution of Ha equivalent widths
t at results, when the total red-continuum flux density is used. i.e. without
prior subtraction of the ambient disk light. Gradients in such distributions have
een cited as evidence for IMF variations (Kennicutt, Keel, and Blaha 1989).

Although a strong gradient is evident here, it probably has very little to do with
variations in the ionizing stellar populations. Instead, it demonstrates the strong
radial increase in the ratio of current-epoch massive star formation to past-averaged
star formation that is present in disk galaxies. This was previously - and more
convincingly - demonstrated in Figure 3-8(b), where annuiar-averaged Ho and
red-continuum fluxes were used for the equivalent width calculations.

Figure 3-25 shows the galactocentric distributions of Ho equivalent widths
that result after applying the 3 different techniques for isolating the cluster
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continuum emission. Althonak

between 10 and 1000 Angstroms the ,•

- dex dynamic range

mostly to a 1 ,1 T
vanat.ons m EW(Ho) are now confined

•' *° » 1 range between 100 and 1000 Angstroms TO 0 n ,-rage, these values are .till lower than the range of 2000 to 4000 ^•bat ZAMS cluster models predict in the absence of dus, nr
, ,

T™*
communication). As developed in the next section th

"
f

dust could be responsible for producing the lower EWs.
The best isolation of the cluster emission was obtained from the medianration and individual plotting techniques. The resulting 2 galactocen, r,c

- ” 7
s b0,b 5h °W Pr0p0rti0nately higher equivalent widths beyond the inner

„

PC ' brom the median filtration method, I find that inside of R = .5 kpc themean equivalent width is 640 4 wit 6 a c+ i , ,
.

1 < ne

error of 34 A; outside of 5 k

^ a standard deviation of 29!l A and standard

4 1

'
P c - the '»ean equivalent width is higher at 941A w,.h a standard deviation of 366 A and a standard error of 73 A. In otherwore s. I e radial variation in equivalent widths is roughly of similar magnitude as^propagated standard deviations and about 3.4 times the propagated standard

E\V( R > 5 kpc))

(3-32)(£H r

(fl < 5 kpc))
~ L47±(U4

>

Where the standard errors have been used to calculate the uncertainty.

3. / . 7 Selection and Obscuration Effects

In the previous section,
1 presented evidence for a decrease in the mean Hq

equ,valent width for those HII regions within 5 kpc of the nucleus. Several effects
aside from changes in the ionizing stellar populations - could be responsible

lor reducing the Ho equivalent widths in the inner galaxy. Selection effects,
m particular, could be biasing the data as observed. Because the plotted
samples have been selected according to the signal-to-noise ratio of the red cluster
emission, it is possible that higher luminosity clusters were selected in the brighter
inner galaxy, where the cluster vs. disk contrast would be lower. Figure 3-22
shows that this is not the case, however. The galactocentric distribution of red
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Q

primary selectiorcnTeln'toe7no,

PreVi°US SeCti°n) ' Therefore
' ‘he

and (heir galactocentric di Stribu"ion.

aPPear ' nflUenCe H“ equivalent ^dths

jr
could a,so be— * H

nlllrl '^he l.r t°
Uld ,hen be

^
‘0 t

e

he°sa^e degree! rf

nUU“

1 ' ine-to-continuum ratio (i.e the •
. , .

remain unaffected. In the present situaff h

qunaent Wldth
) should

present sit licit ion, howpvpr fh„ _ i .

.

are based on images taken through an R-band filter h

mUUm fluX«
523 A shortward of the Ho filter", PeaJ The I

,ranSmiSSivi‘^

r-r
-*• --^ssssrsssrextmctron. the extinction coefficients are related by

A'( A6563 )/Ar( A6040
)
^ 0.92.

(3 - .34

and the equivalent widths are altered according to

EW(Hol)

E\Y0{Ha
10i0.31.4t.

(3-35

For .4,. < 3. this amounts to < 19 percent changes in the EWs. If the dust-to *as
ra,1° Ml0i foll°"' S galactocentric profile of O/H (V.allefond c, ,W
one might expect the inner galaxy to be dustier, and therefore the equivalent
«tt ths to be enhanced. The opposite effect is observed, however'.

In the second .dealiration, the stars are clustered at the backside of the nebula
(as in the -champagne'’ model of HI1 regions [Tenorio-Tagle 1982;). In this more
segregated scenario, the starlight is attenuated by the foreground nebular dust

according to

/( 36563)
__ _ r

/.,( A6563 i
’ (3-36)

where the optical depth r of dust at 6563 A is proportional to the column density
Nfl// of foreground gas and to the dust-to-gas ratio V By contrast, the Ho
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emission from the nebula of ionized hydrogen
according to

and entrained dust is attenuated

f(Ha) _ (1 _ e
~ r

)

•id.": *» ---JZ
f'Hffa) (1 _ e-

j

'

re' (3 - 38)

This dependence has been plotted in Figure 3-26 wb; u n
enhancement in the EW(Ha) as r increases If th

•

5 °'vs a non-linear

the outer galaxy one wo M
« the inner galaxy is dustier than

therefore the equivalent widths to be ell!!™
011

rf
" galaXy- and

observed'.
d ' The °Pposlte eff(ct « once again

frac,

A
" IT"

16 P°5Sibility ^ ‘hat ,he en,rainfd d^< » absorbing a significantfraction of the ionizing photons (A <r Qio k\ +l ,

°

and hence the Ho I
L,

h reduci"S ionization rate

observed Ha •

“mi"°S1 y ' his could also explain the fact that the highest

of )he ,i H

ab°Ut 1500 A
’ wh«*“ theoretical models

lo 4 to 40 oT tTT
emiSSi°n fr°m dUS, ‘fW H " P-fiC values of

, ,

'' am Pheli, private communication). By reducing the

re ui:
S,r0

r
gren

,
S

T
ereS ’” dUS,ler "abU,ae inner galaxy could beu ng the equivalent widths as observed. Following the treatment of Spitzer

- <8) a mean gas density of n H „ 25 «-• (Kennicutt 1984) and a standard
gas-to-dust ratio of 200 will yield a reduct,on in the Stromgren sphere radius bv

b T(tftn + nn°'°3

5 and
.'

hUS a reduction in th<! total amount of ionized hydrogen

,

y
,

“ ' 51 I: 0 ' 5 1 °'L The Ha iuminosity and equivalent width would
be reduced by approximately the same factor. Using this to correct the observed

s would yield values in the range predicted by the theoretical models. Here
an enhancement in the dust-to-gas ratio in the inner galaxy would lead to lower

’

CeVYs, as is observed.

To explore the possible effects of dust on the line and continuum fluxes, I
ave plotted the galactocentric distributions of the nebular extinction (culled from

the literature) and the cluster color (A6563 - A8380) (see Figure 3-27). Here. I
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,

d°

t

minated ^ ' he reddening effects of

o f zams Md evol,d i;nizing:jr:x at
:2-

t thi
p

:rr
,ome,nc

valid for those clusters redder than (A6563 - A8380
)
- O n

is

Terlevich and Melnick 1985) Fo ,

’ (Jacoby et al. 1984;

Melnick's models has a of "“T
^ ****-

, ,,
6 ° -V1 > r

’ an IMF slope of q = 3 n if, -muand AL. = 40 AJ^ °' u ’ A1
i
~ 0-1 M&.

®' ^ese parameters give a V - K color of n w ,

t,

•• “.™rg star. Jacoby et al.
( 1984) have used their stellar ,-v

rrit
thTtlU

T,

" 3 10 Myi -OW^ --er.ScamM^d

'’Oo a. giv: ^ ***»*- ^ -»*»< P« t

, .
,

aootsu) _ 0.38, or the equivalent of a G8V star f„iredder than 0.5 would correspond to even older clusters which no longe/contain"’

.. ‘

,

S ' arS °aPable °f ,0ni2inS a dv'ectable HII region. Therefore the— r„,.

Neither the color nor the nebular extinction in Ftgure 3-27 show any“ K 83 aCt °Centric behaVi0r
' *he large scatter and poor samplingould be masking something. If the dust/gas ratio follows the O/H ratio, thinhe nebular ext, net,on should increase toward the inner galaxy - where the

us, gas ratio should be enhanced - and the color should redden accordingly
either of these effects are apparent from the plots, however, thus indicating
a the O/H ratio, the nebular extinction, and the reddening are by-and-large

uncorrelated. 6

I have also plotted the color against the Ho equivalent width (see Figure
-28). The lack of any correlation between these two variables further indicates

that the equivalent widths are no. very sensitive to the degree of reddenin.
Lastly, I have used the colors to sort the data into “reddened" and “unreddened”
bins. Ignoring all regions with colors redder than ( A6563 - A8380) = 0.5. 1 have
replotted the galactocentric distribution of Ha equivalent widths. Figure 3-29
shows that the “unreddened” sample of 41 clusters continues to show depressed
equivalent widths in the inner galaxy: Within 5 kpc (EW(Ha)) = 650 A ± 51
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an

A(s.d. error), whereas beyond 5 kpc (EW( Ha)) = 102 I ± 90 A Th fthe observed radial variation in RWlHo ,

A ' Therefor '?
>

without large amounts of reddening.

' aPPearS ‘° "^^ « i5tS with «
Finally, the depressed Ha equivalent widths inside of R - 5 htracing enhancements in the absorpt.on of TV oho, K t,

^ "
the hot stars themselves If r m i

•

photons bX the atmospheres of
elves. If line-blanketing effects at a

912 A are greater in th* * ,

* uavelen?th s shortward of
6 r in the atmospheres of metal ric-i-. + .1

counterparts then the H '
1

•

s ars t lan in their metal-poorP , men the Ha equivalent widths will naturallv he 1

metal-rich regions TTF 1 ™ naturally be lower m the

<->- -wn ,ha, the::::s;z^::^“;nd Melnick

10 M@ is independent (±10%) of its metallicitv at 1

th '

stars (Z/Zq = 1) show - 2 f
^ the ™tal-nch

, )shov 2 times lower ionizing luminosities than their metal nonequivalents (Z/Ze = 0 02) Since the pit •

metal-poor

primarily- bv the V h

' H regl°nS COnsidered here are ionizedP anly by the htgher-mass stars (.,/ > 30 A/e) ,
, he 50% change in mean Hoqu, talent wtdths cannot be attributed to stellar atmospheres of varving me, albeit,o summartze, several selection and obscuration effects on the Ha equivalent'w; hs ave been considered. On, one of these can account for the de^d

co„ rr
nucleus - The absorp,ion °f ioni2ins pho,°-

*

conceivably be greater in the tnner galaxy, where the dust-to-gas ratio isxpecte to be higher. The resulting shrinkage of the -Stromgren spheres" wouldeny.e ower Ha luminosities and equivalent widths. However, the observedac of any radtal vanation in nebular extinction or cluster reddening, plus the
lack of any correlation between the cluster redden,ng and the Ha equivalent width
indicate that the observed variations in EW(Ha) are not produced by dust.

3. 7. 8 IMF vs. Aging Effects on the Ha Equivalent Widths

In the previous section, possible selection and obscuration effects on the Ha
equivalent widths were considered. None seemed able to account for the observed
ecrease in EVV(Ha) within 5 kpc of the nucleus. In this section, I develop a

simple relation between the Ha equivalent width and the upper mass limit of the
ionizing stellar population. According to this relation, the radial variation in
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EVV(Ha) indicates that significant differences in the ,

•he galaxy. IMF aging effects on th

P" 'mit eXis ' aCrOSS

The most simplifying assumption is to Ie7,7e77i '"’“l'

*" ,hen di5CUSSed
'

zero- age main-sequence stars. The effects of I
,•

? "

“‘'l*
C°nS ' Sl S°lely of

the upper mass limit of the main sequence. Th7 '77
reS,r ’ Cted '° ' rUncatin«

contribution of superaiant and WR , . ,

mp ' cal,on neglects the-
r

••

contribute 15 - 25 D e- .n t tn ti, ui .

} net 1988 )« can

and Buzzoni 1986, T
" °f tha '•»«*« (Renzini

dustersZ h

'

h

Sm,phfiCat ' 0" is nrost relevant to those

radius (,.e the lei!, “Zh
^^ a" d Sal«‘°centric

1 Ine least evolved clusters
. Usine the 7 a\tc

model the emerging Ha luminosity from an ionizing cluster as177777,7summation of the .oniz.ng luminosities from the individual ZAMS stars7
'

•Mu
Lffa tC,) x N• (-V'(^)> X A-. f“ dM

JM,
here A ts the number of stars in the cluster. A’, is the ionizing luminosity inPhotons, sec V, and .V. are the lower and upper stellar mass limits, and a ispower oi the mthal mass spectrum (a = 2.35 for a Salpeter IMF) For starsmoremass've than 3C the mass-ionizing luminosity relattonsh.p goes as
' * ^ 10 M

( see Appendix A), thus leading to

3 - 39)

LhZcI) oc Mu
4 9~ a - Mi

. (3-40’
The red-continuum luminosity from the cluster involves a similar IMF-

weighted summation, where

rMu

I \r\\ rv \T I H T-Ct r , , „ .

(3-41)

4.9 — a

Lr(cI) = a; (l r{M)) x a;
Mi

M a LR(M)dM.

I sing stellar masses and absolute visual magnitudes corresponding to the
standard main sequence (Allen 1973) plus their corresponding V — R colors
(Johnson 1966), one can readily derive a mass-red luminosity relationship of
Lr(M) 2= 1.7 x 10

30
A/ 2 - 3

(where M > 1 M )
• * . ,

.

.

1 nere m l Mq). 1 he integrated red-continuum
luminosity from the cluster is then of the form

/i t 3.3—

a

M
i (3-42;

Lr{cI) oc M 3.3 —

a

u
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For IMF. with a < 3.3 and A/, « A/„, the ;

approximated by
ntegrated luminosities can be

and

so that

L Ha (d) X M4 '9-a

(3-43)
U 1

L r(cI) oc Mzz ~ a

(3-44)
U 5

E\\\(Ha) x M 1 - 6

(3-45)
' U. 1

According to this relation. the observed decrease

decrease by 1.3 in the mean un r
^ ^ re§1 °ns vvoulcl imply a

j me mean upper mass limit.

C V-absorbing nebular dust will dtange
^

E\Y(Ha)~ l = 3E\YJHa)~ l + F\Y L (' ^’*neb\YlCX)
, (3 — 46

where EW‘^7 1
Ph°'°nS **“' “ "* «* ">e dust, and

For , ,

Ihe line-to-continuum ratio that refers to the nebular continuumFor e ectron temperatures near 10« K. EWntb(Ha) * 5.500 A(see Appendix Bi

'

And for mean gas densities of l 0 -> cm’* and gas-to-dust ratios of 200. 3 , 0.5see ecfon 3.,., ), The resulting relationship between the Ho equivalent widthnd the upper stellar mass limit can be approximated by

EW(Ha)*M l

u
1±0 \

(
3_ 4

The observed decrease in mean equ, valent width should therefore correspond
to a decrease by 1.3 to 1.7 in the mean upper mass limit. A more thorough
treatment of the population and dust-dependent Hq equivalent widths is plotted
‘n F ' g"e 3‘3 °- ,hf EW*<^) -rve is based on the results of A. Campbell
(private communication) which were derived from the population synthesis

rtruT
deS"ibed in TerleVkh and Zelnick (1985). Similar dependences betweenK (Ha) and M u are obtained from this more sophisticated treatment.
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.he
mass i,mit- ** *- «»*-

,

The former possibility will be d' T
' gheS ' ^ ^ ““ main ^quence.

-e effects of
™ ^——

60 *• * *. - « m0 s,ar$ w„r:zrrn r;
for

d9. u Myr respectively (Map^r * i at ’ 5-U
’ an<3

* j 1 -Viaeder and Aleynet IQtf&'i TV,^ r r

of evolution can significantly truncate'a clus 1
'

*
'VearS

be quantified using Maeder and Mevn f ,

UPPer mam This can

age.
e>ne‘ $ P0W"-Uw formulation for the turn-off

log t = -0.86 log M/Mq + 8. 06
, (3

which gives

Mu = (1.15 x 10
8
/r) 116

.

The time-evolution of the equivalent width is then

E\V(Ha)IEW'(Ha) = M~ 10 / L15 x 10*
Uq

(3-49)

l .]6

(3 — 50)

For ./„ = 100 -l/s ,
the EW will decline to 0.7 of its initial value in 3 Mvr and

0. of its initial value 5 My, From this simple analysis, one can see thatnations ,n cluster age can significantly modify the Ha equivalent widths
ere are two basic reasons for thinking that the radial variation in Haequnalen, widths is not an evolutionary effect. First, a significant number

the HII regions in the observed sample are probably un-evolved. Given aminimum turnoff age of 1.5 Myr (corresponding to a 120 Ms star, and a maximum
turnoff age of ,on,zing significance of 5 Myr (corresponding to a 25 M .- star,, theminimum fraction of un-evolved dusters would be 0.3. For the “unreddened”
sample of 41 clusters, this minimum fraction represents 9 HII regions within 5 kpc
o t e nucleus and 4 HII regions between 5 and 10 kpc from the nucleus - which is
barely enough to trace the upper envelope of the galactocentric distribution The
downturn in the upper-envelope EW. at low galactocentric radii is therefore worth
noting (see Figure 3-29).

The second reason against an age-based radial variation in Ha equivalent
widths is the difficulty in devising a scheme for coherently sequencing the cluster
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ages as a function of galactocentric radius If l *

then the inner galaxy would h •

c us er age was the dominant factor,

Such a small ye J J2 ^
‘°

7
ntam ‘ P»P0*» of older Custers.

m the disk of a galaxy such as M101 because the I

' 3
"'

) 15 d,fficult ,0 ^ate

formation
( e.g. density wav

' beCSUSe the Levant timescales for star

are ali much longer (r
Hfetime, etc.)

inner-galaxy clusters by a few Myr would T “7
u

““ ^ °f ,he

in the Pacific Northwestto begtn 2 hours

hoc quj;
of ,,n ‘evoived m<i ^ ^

decrease in the tuner 2alaxv e ,

_ afgUe agams ' an ««e-bued

reductions in th
'

q “' "'' d ' hs “ d f° r a d«™«* that followsauctions in the initial upper mass limit.

•3. 7. 9 Galactocentric C'omparisons

0 ""r'
1 ln

,'

he In,rodUCti0n
' SeVeral investi«a‘ors have found a strong

h/e! ;; :r
sr

;

ia the disk of miol ^^
linked to similar variations in the HJ equivalent width and other spectral

indices of ‘he high-mass IMF (e.g. (OIIII, HH and !0I1I]/[0II] line ratios). Tour e investigate and test these relations. 1 have expanded my ga.actocent.ric

^
nbut.on of Ha equivalent widths to include spectroscopic measurements of
regions beyond 10 kpc of the nucleus (see Figure 3-31 ). This "composite”

distribution covers a greater range of galactocentric distances and hence can be
etter compared with the wide-ranging distributions of the O/H abundance (see
tgure 3-2) and of the various kinematic and dynamical properties

( e.g. shear
rate and tidal stress) that have been plotted (see Figure 3-1). 1, should be noted
that the spectroscopic measurements of EVV(Ha) involve entrance apertures of
differing sizes and shapes. The work of Searle (1971) used an aperture most
similar to that of the present study and thus should be the best matched Also
Searle made some effort to estimate and subtract background continuum levels
from the measured cluster flux densities, as has been done in the present study.
The resulting galactocentric distribution of equivalent widths is notable for its

relative flatness between 5 and 20 kpc from the nucleus and for its decline at smaller
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galactocentric radii. This sort nfu • .

that shown by the O'H ab I

aV '° r ‘ S <|uallta,ivel
5' different from

distribution the JJh ab H j

““ * * « a‘ *«>«*•«* ric

hpc. Therefore, tie J'bT "T"
by M da* 2 to ,7

equivalent, width, is simply nit iel
’MF ' “ *— *

-- .......

Valle, e^ 1 S’; Scoville „ 1987) . Because shear flows and tidal

'

BZ7m
n

Brt tn
nna,i°n °f maSSiVe C,OUdS Stark and

T

8
‘.

Bhtz a"d C’'-sgold 1982; Elmegreen 1979; Larson 1987; and Binneyd Tremaine 1987). they can reduce the numbers of high-mass stars that would
Oil, erw.se be created inside the large clouds. The present data leaves open the
possibility Of an IMF that is sensitive to the dynamics in the disk. However.
more stringent tests will have to be conducted, before such a sensitivity can be
verified.

•i. t. 10 A Possible Starbirth Intensity - IMF Connection?

Another way to explore the high-mass IMFs of the ionizing clusters is to
construct temperature-luminosity” diagrams, where the Ha equivalent width
ts used as an index of the cluster's “effective temperature.” Figure .3-32 shows
such diagrams for the sample of 102 HII regions with detectable red continua.
The £11 L{ Ha) diagram, in particular, shows a strong correlation over 1

dex in L(Ha). Elimination of all 'reddened” clusters from the sample has a
neglible effect on this correlation (see Figure 3-33), thus demonstrating that dust
is not responsible for the trend. For Ha luminosities below 10

38 ' 6
erg s~\ the
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correlation can be approximated by the following power law

l09LiHa) = ^3-10 ± 1 .44
) -F ( 1.80 ± 0 .05

) logEW(Ha),
(3 _ 51)

where the correlation coefficient of 0.79 yields for the gfi .

signtficance level which exceeds 0.999.
'

By contras, ,7°?
‘ C°rre,a,,°n

is weakly correlated with EW(Ha) The «t

" red continuum luminosity

can be understood in terms I t

~ ‘^-‘--luminosity” diagrams

m, .
intensity-dependent IMF such that ,h k uHU regions contain the hotter, more massive stars (Larson fog-,

'

,

®

this interpretation, the correlation seen in the EW( Ha) LfH I

’ "g ’°

to a sequence of ever huffier , „

( Ha )-L( Ha
) plane corresponds

w.
a.

“t;,rr“* “•* “•«*“
tra .,

,

q
.

‘ A altern &tive viewpoint is that the sequence

evolves

? ™° Va stars from the main sequence as each cluster

to re k dot
Sity ° f 10"6 ^ correlation appears

wel ,

' " maXImUm C ‘ US,er *->P“s have been reached. Thew 11- orrelated points below this cutoff provide a constrain, on the high-mass IMF

r r b'7d

:
M “ falling from Sectiont"L Ha(cl) x M . and EW( Ha ) x Mll ~03 ...» f ,1 >

x AI v i
we can formulate

LHa{cl) x EW[Hcx)d-*-«)/^ i±0.3)

(3-52:

The observed correlation between L(Ho) and EW(Hq) implies an IMF

M'll

°'3 ’ ,h“ S reSemblin8 the high-mass regime of the standard
. er-Scalo IMF (Miller and Scalo 1979). Similar results are obtained from

examinations of the observed L A (6563 A)-L(Ha) and the weaker L.
x (6563 A)EW( Ha) correlations. According to Eq. 3-51, the observed one-dex range inHa lum,nos,ties corresponds to a factor of 3.6 variation in the upper mass limit.

is variation includes possible evolutionary effects, however, and should no,
be confused with the factor of 1.3 to 1.7 variation in the .ml.al upper mass limit
inferred from the radial variation in the mean EWs.

3.7.11 Discussion

Although the effects of extinction and age cannot be completely discounted,
changes in the initial upper mass limit of the ionizing clusters seem to best explain



the observed galactocentric variation in H,
. •

dllon m ha equivalent widths • ,this is so, one can imagine the „nn. r
™ Assumm

§ that
8 ne upper-mass limit of the T IV T TT u •

•
,

-~ * -
Reddish (1978) has shown that due to low n n

of the IMF, the highest stellar ,

" Stat,stlcs a > «>e top endugnest stellar mass in a cluster ran ,

mass. His treatment - 11

proportional to the cluster

--- -*
“r “••— »-- -—h .«

.

Mmax = M l-a 1/(1 —a)

[3-51

strif

iS <he "al,Zeable S,ellar maSS limi ‘ <the P^ab.Htv of having a smgUof »h,s mass or greater being equal to unity), Mu is the theoretical upper mas“ a Ca

\
' aCHieVed bef°re radiation pressure and pulsational instabilitiese™me overwhelming, .U, is the lower mass hmit. Mcl is the total mass of ,hcluster, and a ,s the IMF slope. Different combinations of these parameters

are listed in Table 3-7. where the theoretical upper limit for a quas, -stable star
,S Se‘ at

^ ^ “0 Aaronson 1987). For example, by settinga = 2.5 and letting .1/, = 0.1. a 10* M@ cluster would have \Im - 22 y
"

while a 10
6 Me cluster would have Mm - 197 y s ,

' /
®’

result in even lower realisable masses. Such a dependence of the upper main
sequence on cluster mass would imply that even the larges, star forming regions

,

C ' 9 '

'.
°radU> and N&C 5461

> could be constrained by small number statistics
o forming stars below a certain mass threshold. A comparison of the resolved

stellar populations in .30 Doradus and the Orion nebula would seem to support this
scenario: the 30 Doradus cluster has a total mass of ~10 5

A/e (Kenn.cutt and
U 1988) with an upper mass limit exceeding 120 A/0 (Melnick 1985). whereas

the Orion cluster has a total mass of -lO' 3-' A/s with an upper mass limit of 40
Me (

cf Larson 1982).
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Keeping the cluster mass constant and decreasing- th 1

produce a similar lowering of the realirp h]

§ ? ^ maSS lmit can

the observed Ha equivalent width The l"

UPP<"
r maSS ilmit

’ ‘ h"eby reducin«

main sequence either. Beca ,„ev 7 ”* b' »
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Rather, thetr importance is in the mass
sequence. Based on these exercise- ;
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SeemS P°SSlb 'e ‘° ^P'* 1 " ““ °b^ed Ha

to their initial mass e^a b .‘h"
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3.8 Conclusions

A photometric analysis of the Ha and rprl ™ f
led to the following key results:

' r^°nt.nuum emtsston from Midi has

flat
*7:

h ' n 10 kpc 01 ,h<? nucleus
’ ,he annular-averaged Ha emission shows agalactocentric profile, its e-folding scalelength of 9 kpc exceeding that of 'theH-conttnuum starlight by a factor of 2.7. Thl s comparison indical a sign L,fference between the galactocentric distributions of current-epoch massive starmation and past-averaged star formation in MlOl

. The star birth intensity in the disk, as inferred from annular averages ofa sur ace rightness, is strongly correlated with both the H, and total gassur ace densities, yet is an.icorrelated with the HI surface density. Least-squares
fits give cr(SFB) -V rr( H t0.6 /Crm , nQ

J squares
S <r

{ sr H) x<r(H2 ) , a(SFR) x a(gas)os
,
and a(SFR) oc a(HI)~™

• The supergian, HII region complex. NGC 5461, has a starbirth intensity
t at is 16 times the mean intensity in the disk and a starbirth efficiency that is

t.mes the mean efficiency in the disk, thus suggesting that some non-linear
dependence is at work a(SFR) x .(gas)™) or that the IMF is biased
towards the production of massive stars. The Ha image shows 3 plume-like
features of diffuse ionized gas diverging from the dominant HII region towards the
South, Southeast, and East.
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• From synthetic-aperture photometry of mtt
distribution of Ho luminosities that can b

’• reS ‘°nS
’ 1 obtain a frequency

luminosity function is similar ,1 ""T U ~ ‘°
375 ^ This

galaxies, but is significantly flatter than ^7
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1 f° r °"' er Sc and later-‘ype

galaxies (see Kaufman c, J I98
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difference, though small, parallels the more striking fact ,h a h T
region comply are all located beyond the inner 5 kpc.

SUPerg ‘an '

on average Ihe

, ''*len ' 'd ' l' S ^ i<>ni2ing ClUS ' CrS siSnificantl -V lower.

(Ew
( R

<’
5 hc) 'zr7 r

mp
r

d ,o ,hose beyond 5 kpc ° f ,he nudeUS:

Cl- P W1 * 34 A. whereas (EW(R > 5 kpc)) = 941 _ 73 t

: \
bscur

;

,ion
-.

and "** «*«

—

t. accoU „, (0; ,u ;

can alter ther ‘,

n ,m ' ,al UPP" S,dl“ of the ionizing clustersn the Ha equtvalent wtdths as observed. A simple model of the Hod red; c°nttnuum emission from an ionizmg stellar populate gives EWtHo) «
* HenCe PredicU a radial - *he mean Mu by a factor of 1.3 ,0

theolTT “ EW<Ha) Seem reS,I 'Cted *° ' ha ^ kpc, whereas
/ abundance ratio decreases linearly by -1 dex from 2 to 17 kpc The

d.ssnmlanty m form between these two galactocentric distributions weakens
previous arguments for abundance-sensitive IMFs. Closer similarities in form can
be found between the galactocentric distribution of the equivalent widths and the
galactocentric profiles of the differential rotation, shear rate, and tidal acceleration
in

,

e 1S ' The sense is to have lower equivalent widths, where the shear flow
and tidal stress are higher.

Temperature-Luminosity" diagrams reveal a well-defined relationship
between the Ha equivalent width (which traces the cluster's effective temperature)
and the Ha luminosity. The sense is for the brighter HII regions to contain the
hotter, more massive stars. This rela.ionshtp can be modeled in terms of a stellar
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Table 3-1

Adopted Properties of MlOl

Type 0

Sc(s) I

R.A. (1950)°
14 6

01'17
28 s

Declination (1950)° 54° 35' 36"

Radial velocity (heliocentric) 6
242 km s

-1

Position angle of major axis 6
39°

Inclination 6

18°

Distance0

4.8 Mpc

Holmberg radius^
14 (20 kpc)

Sandage and Tammann 1981
6
Bosnia et al. 1981

Humphreys and Aaronson 1987
d
de Vaucouleurs et al. 1976



Table 3-2

Observing Log

Telescope

Pixel size

Field of view

MHO 1.3

0.81”

o' x 6'

m @//13.5

6/19/86

Filter “r “I”

^0 8380A 55

FWHM 2050A n

To 88% 55

Integration time 373 s 303s
Region central 4.3' E

6/20/86

Filter Ha Ha Ha ‘•R”
^0 6563A ” M

FWHM 36A 55

6040 A

1504 AT0 75% 55

77°%
Integration time 2403s 2403s 503s 281s
Region central 4.3' E 4.3’ E central
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Table 3-3

Annular-Averaged Ha Surface Brightness

R ”

( 1
)

(
I

( Ha ))

( 2 )

<H
( Ha )

( 3 )

*( I ( Ha )>

( 4 )

0-30 4.66 5.81 0.18
30-60 2.30 1.64 0.03

60-90 1.98 2.14 0.03

90-120 1.62 2.91 0.03
120-150 1.54 2.54 0.03

150-180 1.71 5.35 0.06

180-210 2.15 3.21 0.05

210-240 1.74 1.38 0.02

240-270 1.45 1.79 0.03

270-300 4.61 13.19 0.21

300-330 0.82 0.71 0.01

330-360 0.84 1.53 0.02

360-390 2.56 3.96 0.06

390-420 1.27 1.13 0.02

420-450 1.33 0.31 0.01

< Ha » fl„( Ha ) ,

( 5 ) (
6

)

5 {

I

( Ha
)

}

( 7 )

Notes

( 8 )

3.29 0.22 0.01

2.50 0.36 0.01

1.95 0.36 0.01

1.68 0.46 0.01

1.46 0.72 0.01

1.18 0.91 0.01 a

1.06 0.84 0.01

1.23 0.67 0.01

2.03 1.22 0.02

2.36 1.73 0.03 b

1.49 1.10 0.02

1.18 0.74 0.01

1.41 0.86 0.01 c

1.23 0.57 0.01

1.07 0.14 0.00



Explanation of Columns for Table 3-3

' 1
’ ^ galaf,OCen,r,f lad1 ' “~d in the piane of the galaxy(m arcseconds).

( *- ) Annular-averacred u • 1,° Urlace tightness in 10~ 16
era cnr 2

s -l
, r\-

& cm s arcsec
(3) Dispersion (standard deviation, in the Ha surface brightness
(ln 10 16 erg cm~ 2

s' 1

arcsec- 2
).

(4) Uncertainty (standard error) in the mean H r , .

< T/ „ __
mean Hq surface brightness, base,

1 <Hq » = «(Ha)/v^V
p„ (in 10-I«

erg cm -2
s~* arcsec^).

,5 ’ Same “ <2) ’ eX°eP ’ ' ha ' * h ' Hq has been convolved with a 60”
(FWHM) Gaussian ‘•beam/’

(6, Same as (3). except for the Gaussian smoothing.

(7) Same as ,4) ' exceP' for ’he Gaussian smoothing

( 8 )

(a) Largest fully sampled annulus.

(b) Annulus includes NGC 5461.

(c) Annulus includes NGC 5462.



Table 3-4

Positions and Sizes of HII Regions

1

2

3

4

5

6

i

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1.40

1.19

1.55

1.29

1.35

2.07

2.06

1.19

1.06

0.71

0.58

0.21
- 0.06
- 0.32
- 0.41
- 0.51
- 0.78
- 0.95
- 0.79
- 0.22
- 0.19

0.14

0.55

0.60

1.16

1.44

1.68

1.86

1.76

1.05

0.93
- 0.62
- 0.32

0.02

0.77

2.78

2.72

2.99

3.00

2.96

2.83

2.82

2.72

3.01

2.84

2.76

2.82

2.75

2.69

2.81

2.76

2.69

2.69

1.95

1.99

2.27

1.92

1.91

2.16

1.95

2.15

1.95

1.69

1.45

1.41

1.42

1.30

1.30

1.25

1.27

187.10

178.58

202.39

196.69

195.94

210.32

209.55

178.58

192.35

177.41

170.92

172.48

168.53

166.89

175.26

173.43

173.85

177.39

130.87

123.13

140.06

117.42

120.00

135.84

136.02

155.38

154.38

151.10

137.39

105.59

102.14

90.16

83.03

76.64

88.95

7.13

6.40

5.75

6.07

3.16

4.05

4.62

6.16

9.40

4.62

3.32

4.45

6.89

4.05

4.05

3.81

5.67

2.75

4.21

4.45

3.16

7.61

4.94

4.94

4.45

5.02

3.32

3.56

4.94

3 . 7.3

3.48

3.81

5.02

3.48

4.37

7.13

6.40

5.75

6.07

3.16

7.86

4.62

6.16

9.40

4.62

3.32

4.45

6.89

9.64 2 . 2 ;

4.05

3.81

5.67

2.75

4.21

4.45

9.80

7.61

4.94

4.94

4.45

5.02

3.32

3.56

4.94

3.73

3.48

3.81

5.02

3.48

4.37

(cont .. next page)



No.

All

36

37

38
39

40

41

42
43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

85

Table 3-4 (cont.)

-AX

(21

0.93

1.74

1.54

1.90

1.54

1.26

1.00

0.86

0.48

0.33

0.01
- 0.10
- 0.15
- 0.48
- 0.57
- 0.68
- 0.89
- 0.93
- 0.81
- 0.51

0.86

0.98

1.29

1.46

1.66

1.82

1.90

2.02

2.10

1.65

0.72
- 0.06
- 0.33

1.29

1.21

1.22

1.08

0.95

0.96

0.95

0.90

0.87

1.00

1.01

1.10

0.90

1.14

1.07

0.91

0.99

0.76

0.68

0.74

0.72

0.71

0.69

0.72

0.64

0.73

0.63

0.73

0.53

0.32

0.20

0.13

0.01

127.67

118.10

131.86

109.44

95.26

82.67

75.09

59.79

63.58

61.67

68.00

56.21

77.14

75.74

71.36

84.04

75.59

66.93

56.68

67.09

72.59

88.47

98.67

108.15

118.84

121.60

131.04

132.28

102.88

45.83

8.96

20.71

3.64

2.11

2.67

2.03

5.51

5.02

5.18

2.59

7.37

7.21

4.78

5.18

5.18

4.05

3.32

3.64

4.13

5.67

5.10

5.83

4.45

3.73

4.70

5.26

5.59

4.70

4.94

4.62

3.08

6.48

5.18

2.51

9.64

3.64

4.29

2.67

2.03

5.51

5.02

5.18

2.59

7.37

7.21

4.78

5.18

5.18

4.05

3.32

3.64

4.13

5.67

5.10

5.83

4.45

3.73

4.70

5.26

5.59

4.70

4.94

4.62

5.43

6.48

5.18

2.51

9 . 64 / 2.35

Id

Si . Hi 05

(cont.. next page)



No.

-ILL
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
88

89

90

91

92

93

94

95

96

97

98

99

00

01
no

86

Table 3-4 (cont.)

-0.81

-0.98
-0.05

0.15
50.26

61.46
-1.02 0.30 66.76
-1.09 0.00 67.32
-0.81

0.00
-0.05

-0.06
50.26

3.61
0.17 -0.07 11.67
2.00 0.01 123.65
1 .69 -0.09 105.23
1 .44 -0.12 89.71
1.15 -0.10 71.51
0.68

0.60
-0.28

-0.25
46.47

40.94
0.55 -0.38 42.04
0.41 -0.07 25.96
-0.83 -0.22 52.59
-1.08 -0.39 69.69
-1.06 -0.51 71.48
-1.03 -0.64 73.43
-0.49 -0.63 4 / .97
-0.44 -0.77 53.11
0.19 -0.81 51.44
0.35 -0.53 40.00
0.75

0.82
-0.43

-0.59
54.22

63.64
0.75 -0.64 62.00
0.69 -0.76 64.70
1.08 -0.71 81.40
1.31 -0.58 90.39
1.26 -0.45 83.65
1.16 -0.39 76.79
1.09 -0.30 70.49
1.03 -0.22 65.99
0.91 -0.18 57.72

r(unb) r(tot) Tf,-M («) (7)
5

-

02 5.02
4 -62 5.67
5.10 5.io
6

-

97 6.97
4.86 4.86

o q- near nucleus
0.9/ 7.29
6-32 6.32
4-54 4.54

4-

45 4.45

5-

35 5.35

3-

08 3.08
4

-

05 4.05
4 -54 4.54
•3.40 3.40
4.94 4.94
4.54 4.54
4.94 4.94
3.81 3.81

3-73 3.73
4.05 4.05

3-

64 3.64
•5-26 5.26

4-

62 4.62
3-89 3.89
3.24 4.62
3-64 3.64
4.05 4.05
4.37 4.37
3-48 3.48
4.37 4.37
3.81 3.81

3-

56 3.56

4-

29 4.29

(cont .. next page)



Table 3-4 (cont.)

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

1.37

1.59

1.99

1.76

1.68

1.51

0.94

0.49

0.37
- 0.02
- 0.42
- 0.86
- 0.28
- 0.08

0.17

0.20

0.54

0.78

0.92

1.23

1.31

1.32

1.23

1.36

1.63

1.72

1.81

1.87

1.93

2.00

1.99

2.08

1.90

1.95

AY
11

- 0.30
- 0.35
- 0.20
- 0.64
- 0.88
- 0.98
- 0.85
- 0.86
- 0.92
- 0.90
- 1.05
- 0.84
- 1.50
- 1.21
- 1.13
- 1.25
- 1.59
- 1.29
- 1.12
- 1.28
- 1.59
- 1.46
- 1.28
- 1.26
- 1.54
- 1.12
- 1.22
- 0.94
- 1.06
- 1.12
- 1.05
- 1.10
- 1.89
• 1.87

H(gal)

14

J

87.36

102.02

124.50

117.36

119.33

113.44

79.86

62.27

62.06

54.97

68.06

72.19

92.71

73.90

70.52

77.97

104.26

94.33

91.40

111.91

129.93

124.08

111.91

117.03

141.44

129.11

137.81

132.12

138.62

144.10

141.79

148.07

168.87

170.01

4.05

4.70

3.81

5.10

3.16

4.62

4.94

6.24

4.54

5.02

4.45

5.18

4.05

4.05

4.70

4.62

4.86

4.29

4.94

3.56

3.64

4.45

3.24

5.18

4.70

4.05

4.86

3.81

2.92

2.11

2.11

3.97

2.51

2.19

r(tot)

m_
6.72

7.70

6.24

5.10

3.16

4.62

4.94

6.24

4.54

7.05

4.45

5.18

5.67

4.05

4.70

5.67

4.86

4.29

4.94

5.10

3.64

4.45

5.10

5.18

5.43

4.05

6.56

3.81

7.05

7.53

2.11

7.13

4.29

2.19

(cont., next page)
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-11 )

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

88

Table 3-4 (cont.)

1.41

0.85

0.67

0.67

0.48

0.37

0.19

0.08

-0.05

-0.50

-0.75

-0.79

-1.19

-0.78

-1.05

-0.62

-0.70

-0.13

0.06

0.28

0.41

0.49

0.05

0.72

0.83

0.95

1.33

1.44

1.54

1.59

1.81

-1.30

-0.96

1.99

-1.91

-1.83

-1.96

-1.97

-1.93

-1.94

-1.82

-1.96

-1.99

-1.81
- 2.02

-1.89

-1.65

-1.65

-1.73

-2.34

-2.55

-2.67

-2.62

-2.73

-2.84

-2.97

-3.17

-2.94

-2.29

-2.27

-2.24

-2.16

-2.25

-2.47

-2.28
- 2.21
- 2.00

-1.61

149.37

126.32

129.19

129.79

123.18

122.03

112.37

120.47

121.66

113.68

3.81

5.10

4.21

4.21

3.48

3.16

3.32

5.67

4.45

4.54
130.21 5.75
123.21 4.05
122.10 4.86
110.20 5.26
121.73 7.29
146.79 4.29
159.89 6.64
163.39 6.07
160.75 3.56
168.88 4.78
177.28 5.83
185.86 4.37
194.30 2.92
187.67 3.24
151.57 3.64
153.69 3.00
163.54 3.97
163.43 2.51
171.22 3.73
184.40 4.62
183.40 2.92
154.04 5.67
133.58 4.29
154.00 3.73

5.10

4.21

4.21

6.24

11.66/2.51

3.32

5.67

5.99

4.54

5.75

4.05

4.86

5.26

12.47 2.59

4.29

6.64

8.51

3.56

4.78

5.83

4.37

4.05

3.24

5.35

3.00

3.97

2.51

3.73

4.62

2.92

5.67

4.29

3.73

S2. H108

(cont., next page)



No.

-ill
171

172

173

174

1 75

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

89

Table 3-4 (cont.)

- 1.91
- 1.99
- 1.53
- 1.47
- 1 .45
- 1.36
- 1.37
- 1.26
- 1.36
- 1.42
- 1.54
- 1.68
- 1.99
- 1.52
- 1.52
- 1.42
- 1.56
- 1.50
- 1.44
- 1.29
- 1.17
- 1.29
- 1.30
- 1.23
- 1.76
- 1.76
- 1.91
- 1.80
- 1.53
- 1.33
- 1.19
- 1.74
- 1.62
- 1.25

- 1.52
- 1.30
- 1.42
- 1.37
- 1.22
- 1.13
- 1.11
- 1.05
- 0.90
- 0.99
- 1.08
- 1.16
- 0.97
- 0.89
- 0.75
- 0.74
- 0.58
- 0.62
- 0.63
- 0.67
- 0.57
- 0.53
- 0.40
- 0.24
- 0.26

0.00

0.12

0.15

0.09
- 0.12

0.16

0.40

0.46

0.45

146.99

143.41

125.39

120.49

113.87

106.26

105.90

98.99

98.15

103.95

113.62

122.89

134.27

106.73

102.58

96.98

101.04

98.85

95.61

87.81

78.70

84.75

82.99

76.63

109.04

108.73

118.85

112.20

95.19

82.22

74.81

111.34

105.67

83.23

3.81

4.86

2.51

4.21

4.45

3.97

2.19

4.29

5.18

3.32

3.81

5.18

4.70

3.08

3.81

4.05

3.73

2.11

3.40

3.81

3.56

4.29

3.97

3.89

3.64

3.56

2.92

5.99

3.32

4.54

2.92

5.59

2.92

4.62

3.81

4.86

4.21

4.21

4.45

3.97

4.86

4.29

5.18

3 .32 / 1.09

3.81

5.18

4.70

3.08

3.81

4.05

3.73

2.11

3.40

3.81

3.56

4.29

3.97

3.89

3.64

5.83

2.92

5.99

6.07

4.54

2.92

7.53

2.92

7 .53 / 2.19

Hill

(cont.. next page)



Table 3-4 (cont.)

No. AX
—Hi (12
205 -1.89

206 -0.51

207 -1.82

208 -2.58

209 -2.55

210 -1.55

211 -2.06

212 -2.26

213 -2.23

214 -1.81

215 -1.55

216 -1.40

217 -1.33

218 -1.15

219 -1.05

220 -0.98

221 -1.49

222 -1.61

223 -2.48

224 -2.39

225 -2.31

226 -2.15

227 -2.00

228 -1.99

229 -1.61

230 -1.64

231 -1.57

232 -1.33

233 -1.27

234 -1.17

235 -1.12

236 -0.95

237 -1.01

238 4.09

X RM)—131 (4)

0-

56 123.49
1 -00 70.13

1-

09 133.56
1-50 187.79

1-36 182.15
1-62 141.19
1-80 172.76

1-

80 182.56
2.05 190.74

2-

07 173.17
2.02 160.47
1-96 151.62
1.93 147.51
1-92 140.41

1-

78 129.45
2.22 151.51
2.29 171.42

2-

17 169.59
2.54 223.90
2-63 223.74
2.66 222.06
2.56 210.39
2.57 205.0.3

2-75 213.20
2.61 192.35
2.69 197.96
2.89 206.24
3.01 205.59
2.89 197.15
2.94 197.53
2.72 183.70
2.69 177.39
2.72 180.96
3.36 318.49

r
( unM r(tot)

3.81 3.81
2.43 2.43
2.51 2.51
7.70 7.70/2.84

2.27 4.70
4.45 4.45
3.48 3.48
5.18 5.18
5.75 5.75
3.16 3.16
3.81 3.81
3.24 4.05
3.32 3.32
3.81 3.81
2.92 2.92
3.40 3.40
5.43 5.43
4.21 4.21
4.78 4.78
3.48 3.48
3.48 4.78
3.48 3.48
6.24 7.53/1.86
3.73 3.73
2.27 4.21
3.08 6.32
3.73 3.73
4.78 4.78
3.32 6.40
3.81 4.62
3.97 3.97
3.81 3.81
2.59 3.81

4.13 4.13

Id

m

S5, Hi 24. H125
(vignetted)

(cont.. next page)



No.

-ill
239

240

241

242

243

244

245

246
247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

91

Table 3-4 (cont.)

3.70

3.07

2.45

2.25

2.29

2.45

2.40

2.08

2.00

2.97

2.68

2.58

2.17

2.09

2.07

2.70

2.70

1.75

1.85

1.77

2.78

2.95

2.48

2.42

2.26

2.32

3.46

3.41

3.15

2.85

2.65

2.39

AY
ii

3.41

3.26

3.35

3.38

3.21

3.05

2.97

2.83

3.12

2.91

2.34

2.34

2.59

2.13

2.22

2.22

2.21

2.31

1.69

1.46

1.97

1.89

1.82

1.59

1.46

1.34

1.46

1.28

1.63

1.60

1.78

1.82

R(gal)

14
302.18

268.94

249.01

243.81

236.83

234.73

229.14

210.46

222.17

249.71

213.58

209.19

202.97

179.29

182.45

210.04

209.80

174.09

150.86

137.73

205.01

210.96

185.07

174.79

162.26

161.70

227.81

221.67

214.86

197.30

192.50

180.76

r( unb)

3.56

4.21

4.21

6.16

5.02

3.24

3.73

8.10

7.70

3.00

3.48

3.97

3.40

3.81

3.24

3.24

3.24

5.26

4.13

4.29

4.86

3.32

3.73

4.62

4.13

2.92

3.40

3.56

3.89

4.29

3.97

2.75

3.56

4.21

4.21

6.16/1.94

5.02

4.05

3.73

8.10

'•70/2.51

3.00

3.48

3.97

3.40

3.81

3.24

4.54

3.24

5.26

4.13

4.29

4.86

3.32

3.73

4.62

4.13

5.75

3.40

3.56

75/1.86

15/2.03

9.40

5.02

(cont.. next page)



Table 3-4 (cont.)

271

272

273
27-1

275

276

277

278
279

280

281

282

283

284

285
286

287

288

289
290
291

292

293

294

295

296

297

298

299

300
301

302

303

304

2.37

3.04

3.05

2.93

2.74

2.59

2.23

1.89

1.85

1.81

1.90

2.03

2.09

2.12

2.21

2.53

2.66

2.84

3.24

3.12

3.15

3.26

2.29

2.12

2.08

3.14

2.28

1.99

1.98

2.15

2.26

2.38

2.92

2.59

AY
(31

1.90

1.17

1.04

0.93

1.05

0.87

1.02

1.08

0.87

0.72

0.63

0.74

0.53

0.50

0.78

0.42

0.49

0.58

0.53

0.46

0.35

0.27

0.41

0.50

0.54
- 0.03

0.20

0.01
- 0.19
- 0.23
- 0.30

0.17

0.66

0.99

R(gal)

(4

1

182.57

198.27

196.27

187.51

178.12

166.09

148. 72

131.65

124.22

118.19

121.82

131.48

131.62

133.26

143.01

157.46

165.76

177.40

201.31

193.84

194.79

201.88

142.71

133.26

131.46

194.33

140.83

123.40

123.92

134.45

141.75

148.10

187.01

174.03

r(unb)

(AL
3.64

3.32

4.13

5.10

3.48

5.43

4.70

3.24

3.16

3.64

3.81

4.94

5.83

5.02

7.21

2.51

9.48

4.05

4.45

3.48

4.45

4.94

6.56

4.78

5.91

5.10

4.13

5.10

4.37

3.73

11.50

4.13

11.91

6.48

8 . 5 .

r(tot)

161
7.86

8.75

4.13

5.10

3.48

5.43

6.07

3.24

3.16

3.64

3.81

4.94

5.83

5.02

. 51 / 2.35

4.05

9 .48 / 2.35

4.05

4.45

3.48

4.45

4.94

6.56

4.78

5.91

5.10

4.94

6.89

4.37

3.73

11.50

4.13

11 . 91 / 2.43

6.48

Id

S 3 . H 40

S 4

(cont.. next page)



Table 3-4 (cont.)

No.

ill
305

306

307
308

309

310

311

312
313

314

315

316

317
318

319

320

321

322

323
324

325

326

327

328
329

330

331

332

333
334

335

336

337
338

2.68 -0.92 177.56
2.34 -0.99 159.80
2.17 -1.00 150.50
2.41 -1.09 166.68
2.78 -1.85 210.31
2.93 -1.80 216.80
3.08 -1.96 230.39
3.43 -1.53 236.25
3.57 -1.00 232.46
3.89 -1.04 251.80
4. i (j -0.36 296.64
4. / 2 -0.66 296.65
4.82 -1.01 307.77
4.67 -0.93 297.44
4.65 -0.99 296.71
4.61 -1.12 296.70
4.41 -1.41 290.35
4.29 -1.41 283.06
4.19 -1.79 286.46

3.98

3.95

4.14

3.88

3.76

4.01

4.04

3.88

3.56

3.38

3.17

3.13

4.87

5.74

-1.85

-1.95

-1.87

-2.17

-2.09

-2.08

-2.34

-2.49

-2.76

-2.57

-2.23

-2.35

-2.29

-2.76

-1.98

282.18

278.65

274.76

294.66

277.29

270.48

292.59

299.26

300.00

277.14

255.23

248.76

244.42

352.49

380.69

3.81

5.26

4.45

3.32

3.64

4.29

3.32

6.89

2.11

4.70

3.56

3.48

4.29

6.07

2.75

4.86

6.80

4.29

9.23

2.84

4.37

1.86

5.91

4.37

4.21

4.78

3.89

5.35

3.73

3.00

6.89

1.62

3.73

3.40

r(tot)

[61

3.81

5.26 2.35

8.02

3.32

3.64

4.29

3.32

6.89

2.11

4.70

3.56

3.48

4.29

6.07

6.24

7.05

6.80

4.29

9.23/2.35

11.18

9.23/2.43

6.32

5.91

6.24

7.78/2.03

4.78

3.89

5.35

3.73

3.00

6.89/1.10

5.02

3.7.3

3.40

NGC 5461 (core). S

(cont., next page)
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Table 3-4 (cont.)

No.

—Hi
339
340
341

342
343

344

345
346

347

348

349

350

351

352

353

354

355

356

357
358

359
360

361

362

363

364

365

366

367
368

369

370

371

5.20

5.12

4.97

5.83

5.86

5.89

4.90

4.95

6.44

6.51

6.30

6.50

6.29

6.20

6.07

6.13

5.97

6.05

6.14

6.24

6.02

5.83

5.55

5.55

5.62

5.71

5.71

5.64

5.72

5.83

5.47

5.58

5.65

- 1.20

-0.75

-0.80

3.27

3.10

2.49

1.53

1.30

3.03

2.97

2.60

2.48

2.04

2.07

2.05

1.95

2.01

1.77

1.71

1.45

1.40

1.39

1.22

1.35

1.38

1.44

1.51

1.56

1.61

1.70

1.02

0.85

0.87

H(gal)

1£_
3.33.31

322.18

313.67

403.90

401.38

387.87

312.89

312.90

431.39

433.70

414.18

422.92

403.02

398.13

390.22

391.84

383.83

384.38

388.90

391.89

377.90

366.60

347.68

349.36

353.64

359.85

360.73

357.40

362.98

370.50

341.33

347.00

351.07

r(unb)

'Ji)

4.94

3.32

3.48

3.56

2.59

4.13

4.62

3.40

4.70

3.40

6.32

3.16

4.37

2.51

2.27

2.84

4.54

3.00

2.51

6.89

4.21

3.00

3.40

2.67

1.94

2.92

2.27

2.59

4.70

4.37

5.83

3.16

2.35

r(tot)

4.94

3.32

3.48

3.56

2.59

4.13

4.62

3.40

4.70

3.40

6.32

3.16

11.26/2.19

5.02

4.21

4.45

4.54

4.45

3.56

6.89

4.21

5.43

4.78

12.80/2.19

5.02/2.61

9.64/1.10

5.67

5.35

11.99/2.27

10.69/2.43

7.45

5.02

5.51

NGC 5462 (brightest)

(cont.. next page)



Table 3-4 (cont.)

i\o.

—LLL_
AX
(2)

372 5.65
373 5.77
374 5.73
375 6.05
376 6.17
377 6.24
378 5.84
379 5.81
380 5.71
381 5.71
382 5.42
383 5.51
384 5.52
385 5.34
386 5.89
387 6.30
388 6.50
389 6.44

AY
&

0.95

1.02

1.10

1.10

1.38

1.45

0.85

0.72

0.73

0.61

0.65

0.52

0.41

0.46

2.49

2.60

2.48

3.03

^4

351.63

359.46

357.82

376.93

387.15

391.89

362.74

360.38

354.07

353.67

335.58

340.88

341.54

330.17

387.87

414.18

423.00

431.39

4.54

4.37

4.13

3.73

4.62

4.13

6.16

4.94

4.54

4.45

4.78

4.13

7.21

3.56

8.42

r( tot

C
3.64

5.59

5.26

4.54

6.16

6.89

3.73

4.62

4.13

6.16 1.54

4.94

4.54

4.45

4.78

4.13

7.21

3.56

8.42

Explanation of Columns for Table 3-4

m The HII region number as mapped in Figures 3-7 and 3-8.

(2) Offset in Right Ascension from the nucleus, measured in arcminu,

in the detector plane (not on the celestial sphere).

(3) Offset in Declination from the nucleus, measured in arcminu.es

in the detector plane.

(4) Galactocen.ric radius tn the plane of the galaxy (in arcseconds).

(5) l nblended radius of HII region (in arcseconds).

(6) Total radius of HII region (in arcseconds). For 27 of the

brightest HII regions, the HWHM radius is also given.



(
' ) Cross-referenced ident

information exists (see Ev

S refers to Searle
( 1971

)

ification of HII region, for which

ans 1986 and references therein).

’’ H refers to Hodge
( 1969 ).

spectroscopi
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Table 3-5

Photometric Properties of HII Regions

No.

Ill
1

2

3f

4f
5

6

9f
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

R
21

187.1

178.6

202.4

196.7

195.9

210.3

209.6

178.6

192.4

177.4

170.9

172.5

168.5

166.9

175.3

173.4

173.9

177.4

130.9

123.1

140.1

117.4

120.0

135.8

136.0

155.4

154.4

151.1

137.4

105.6

102.1

90.2

83.0

76.6

88.9

log f(Ha) ^og f( Hq
)

(4)

EW <ot— S/N

-13.092

-13.601
0.004

0.011
94.6

37.2
57.8

33.5

-13.989

-13.346

-13.347

-13.601

0.011

0.004

0.004

0.011

86.3

132.4

120.5

37.2

20.8

39.2

42.3

33.5

-13.630

-13.828

-13.938

-13.261

-13.096

-13.515

-13.549

-13.201

-14.005

-13.753

-13.846

-14.180

-13.468

-13.637

-13.708

-13.946

-13.806

-13.993

-14.130

-13.670

-14.067

-14.036

-14.050

-13.530

-14.043

-13.922

0.008

0.010

0.017

0.006

0.002

0.006

0.005

0.004

0.012

0.011

0.014

0.017

0.010

0.010

0.012

0.017

0.015

0.015

0.021

0.011

0.018

0.017

0.017

0.008

0.017

0.016

63.4

55.6

36.1

55.5

155.2

65.2

83.4

63.4

53.0

49.8

36.1

44.3

24.0

36.9

34.5

26.2

25.7

38.1

28.7

30.1

30.0

31.0

30.8

37.7

23.9

21.5

34.7

29.6

21.8

54.8

60.7

44.6

44.1

66.8

26.9

29.6

26.9

19.4

39.1

36.1

31.3

23.0

26.7

23.6

18.5

35.3

21.2

22.6

21.9

45.9

23.4

25.1

EW
cl

H
1291.2

1096.5

553.4

679.2

507.0

1096.5

695.0

552.1

1778.3

1066.6

883.1

677.6

496.6

631.0

275.4

851.1

441.6

666.8

993.1

924.7

1074.0

734.5

5807.6

2691 .5

418.8

1288.2

2606.2

1267.7

3.8

8.3

11.0

2.0

4.2

4.2

0.8

4.0

11.3

5.6

8.8

8.9

7.3

2.1

3.1

3.5

2.4

2.2

1.3

2.2

0.3

0.4

5.3

1.0

1.2

1.2
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Table 3-5 (cont.)

No.

II
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

95.6

127.7

118.1

131.9

109.4

95.3

82.7

75.1

59.8

63.6

61.7

68.0

56.2

77.1

75.7

71.4

84.0

75.6

66.9

56.7

67.1

72.6

88.5

98.7

108.1

118.8

121.6

131.0

132.3

102.9

45.8

9.0

20.7

50.3

61.5

log f( Ha)

ill
- 14.224
- 14.665
- 14.278
- 14.572
- 13.703
- 13.785
- 13.575
- 14.149
- 13.348
- 13.516
- 13.865
- 13.704
- 13.861
- 13.786
- 13.920
- 13.804
- 13.644
- 13.321
- 13.388
- 13.433
- 13.918
- 13.994
- 13.854
- 13.730
- 13.276
- 13.758
- 13.520
- 13.384
- 13.560
- 13.410
- 13.569
- 13.685
- 12.796
- 13.466
- 13.404

flog f(Ha)

II
0.026

0.036

0.022

0.029

0.012

0.014

0.009

0.016

0.008

0.010

0.014

0.012

0.017

0.012

0.013

0.010

0.009

0.006

0.006

0.007

0.016

0.015

0.014

0.012

0.004

0.011

0.008

0.005

0.004

0.008

0.009

0.006

0.003

0.007

0.005

S/N
( 6 )

EW

19.8

28.5

34.8

27.9

31.3

25.2

35.4

32.3

20.4

18.1

19.6

22.3

13.8

30.7

33.1

42.0

36.3

41.6

50.0

28.1

22.6

29.1

27.8

24.7

71.3

34.1

39.9

77.3

123.0

28.1

21.1

27.2

26.2

25.9

59.8

15.8

10.6

16.8

13.2

32.5

28.1

42.2

23.0

52.8

40.9

28.9

34.5

25.1

32.2

29.1

35.3

42.7

61.5

57.2

53.0

25.1

25.3

28.1

32.0

61.2

33.4

46.1

54.2

42.5

49.0

47.4

69.6

148.4

58.2

60.3

29376.5

212.3

2766.9

1321.3

384.6

6950.3

4677.4

549.5

6516.3

353.2

881.1

1153.5

1798.9

2243.9

288.4

1145.5

3758.4

8810.5

818.5

8491.8

699.8

317.0

1465.5

322.1

0.0

3.7

0.6

2.1

3.8

0.4

0.5

2.6

0.3

7.9

4.8

2.9

0.9

0.8

6.6

4.8

0.8

0.6

7.0

0.4

4.0

13.4

6.2

10.9
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Table 3-5 (cont.)

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

66.8

67.3

50.3

3.6

11.7

123.6

105.2

89.7

71.5

46.5

40.9

42.0

26.0

52.6

69.7

71.5

73.4

48.0

53.1

51.4

40.0

54.2

63.6

62.0

64.7

81.4

90.4

83.7

76.8

70.5

66.0

57.7

87.4

102.0

124.5

log f(Hrt)

( 31
- 13.364
- 13.221
- 13.466
- 12.469
- 13.229
- 13.108
- 13.830
- 13.857
- 13.471
- 13.784
- 13.318
- 13.460
- 13.862
- 13.620
- 13.837
- 13.788
- 14.157
- 13.944
- 13.860
- 14.006
- 13.707
- 13.765
- 13.888
- 13.774
- 13.776
- 13.459
- 13.375
- 13.676
- 13.476
- 13.644
- 13.763
- 13.745
- 13.509
- 13.533
- 13.698

* log f( Ha

)

- 111
0.005

0.005

0.007

0.001

0.003

0.003

0.013

0.014

0.007

0.007

0.004

0.006

0.011

0.010

0.013

0.014

0.022

0.014

0.014

0.016

0.012

0.011

0.012

0.009

0.009

0.006

0.005

0.007

0.006

0.007

0.009

0.011

0.006

0.007

0.008

42.6

34.4

25.9

28.1

51.4

86.9

29.4

23.6

36.1

58.5

52.7

43.3

20.7

21.0

22.6

18.7

18.2

22.0

20.6

23.2

18.2

26.7

28.1

36.9

41.3

52.6

74.3

54.8

53.9

50.8

37.2

26.6

55.6

58.6

65.0

S/N
16

64.5

72.1

58.2

379.6

122.0

67.6

29.4

28.8

53.3

42.5

1 8.4

61.5

36.3

42.2

30.3

29.0

18.6

29.8

29.1

25.6

35.1

34.8

32.5

39.5

37.9

56.7

56.8

42.3

53.9

47.2

40.4

36.5

49.2

45.3

36.7

EW
_C(

(
7

)

S/N
( 8 )

1261.8 3.6

322.1 10.9
81.5 239.6

1247.4 7.4
1559.6 4.5
635.3 2.9
375.0 4.6

2786.1 1.3

1177.6 2.9
765.6 7.8

1432.2 3.0

555.9 4.5

442.6 4.1

4613.2 0.4
2079.7 0.5

290.4 6.0

8394.6 0.2

447.7 4.5

412.1 6.3

613.8 7.0

1349.0 3.9

2722.7 1.2

903.7 3.9

472.1 5.7

2290.9 1.0

2660.7 1.4

5 1 7.6 6.0

(cont.. next page)
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Table 3-5 (cont.)

No .

(
1

)

R

12L_

log f
( Hcv )

( 3 )

106 117.4 - 13.852
10 / 119.3 - 14.210
108 113.4 - 13.921
109 79.9 - 13.680
110 62.3 - 13.249
111 62.1 - 13.632
112 55.0 - 13.261
113 68.1 - 14.124
114 72.2 - 13.847
115 92.7 - 13.614
116 73.9 - 13.974
117 70.5 - 13.707
118 78.0 - 13.680
119 104.3 - 14.129
120 94.3 - 13.860
121 91.4 - 13.746
122 111.9 - 14.178
123 129.9 - 14.098
124 124.1 - 13.929
125 111.9 - 14.178
126 117.0 - 14.068
127 141.4 - 14.104

* log f(H a)

HI

129

130

131

132

133

134

135

136

137

138

139

140

129.1

137.8

132.1

138.6

144.1

141.8

148.1

168.9

170.0

149.4

126.3

129.2

129.8

- 13.564
- 13.159
- 13.768
- 13.463
- 13.843
- 13.859
- 13.185
- 14.323
- 14.656
- 13.911
- 13.263
- 13.647
- 13.555

0.016

0.019

0.016

0.011

0.005

0.008

0.004

0.026

0.016

0.008

0.018

0.010

0.009

0.031

0.014

0.013

0.023

0.019

0.016

0.023

0.027

0.025

0.007

0.003

0.009

0.003

0.005

0.006

0.002

0.024

0.036

0.013

0.004

0.009

0.007

EW(oi

HI
26.1

37.4

31.0

24.6

42.9

35.4

53.8

14.5

18.2

60.9

22.7

33.3

46.0

14.9

30.5

29.0

29.1

36.2

37.6

29.1

17.9

22.5

54.3

101.4

51.5

145.9

113.0

108.4

152.8

42.9

47.0

40.8

89.1

53.2

63.4

S/N

H)
23.9

19.2

23.5

35.9

71.8

44.2

74.0

16.4

25.4

36.8

22.1

37.9

36.2

13.5

27.2

29.9

16.6

18.8

21.9

16.6

15.3

16.4

43.9

62.6

35.2

46.0

35.0

34.9

62.9

14.1

9.3

27.9

54.3

36.6

41.3

645.7

762.1

1150.8

1954.3

496.6

333.4

2600.2

693.4

418.8

14825.2

693.4

1757.9

1150.8

2558.6

899.5

1023.3

402.7

389.0

703.1

1828.1

253.5

597.0

1119.4

1064.1

2.0

2.9

4.4

1.5

5.8

4.9

5.1

0.7

1.5

2.9

0.1

1.5

0.6

3.0

2.8

3.0

7.0

10.8

10.8

14.5

0.5

7.4

9.5

2.5

3.3

(cont.. next page)
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Table 3-5 (cont.)

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

123.2

122.0

112.4

120.5

121.7

113.7

130.2

123.2

122.1

110.2

121.7

146.8

159.9

163.4

160.8

168.9

177.3

185.9

194.3

187.7

151.6

153.7

163.5

163.4

171.2

184.4

183.4

154.0

133.6

154.0

147.0

143.4

125.4

120.5

113.9

- 13.438
- 13.305
- 13.805
- 13.417
- 13.777
- 13.901
- 13.665
- 13.826
- 13.248
- 13.500
- 12.531
- 13.621
- 13.416
- 13.340
- 14.127
- 13.713
- 13.168
- 13.536
- 14.018
- 14.049
- 14.399
- 14.723
- 15.284
- 14.843
- 14.261
- 13.961
- 15.249
- 13.890
- 13.978
- 13.812
- 13.909
- 13.821
- 13.929
- 13.344
- 13.375

<*> log f(Ha)

(il

EW,

0.004

0.002

0.010

0.007

0.012

0.015

0.012

0.013

0.004

0.007

0.001

0.008

0.008

0.006

0.021

0.010

0.004

0.007

0.012

0.017

0.039

0.061

0.296

0.081

0.028

0.018

0.205

0.021

0.018

0.010

0.012

0.015

0.010

0.004

0.005

105.4

219.3

58.9

49.2

36.6

25.7

22.4

27.9

70.3

39.4

138.7

55.2

40.5

59.8

34.0

52.5

94.0

90.6

66.7

43.4

15.7

13.7

2.4

10.6

26.1

41.7

6.0

19.6

23.1

56.8

45.6

30.3

65.2

73.3

62.4

S/N

47.9

45.7

30.3

46.1

31.4

25.6

32.3

30.0

65.8

48.5

137.2

38.2

43.8

50.0

17.9

31.6

55.6

34.2

23.1

19.8

10.8

6.9

EW c /

(J_

626.6

751.6

753.4

15488.2

399.0

436.5

673.0

2421.0

1678.8

489.8

845.3

743.0

553.4

714.5

3069.0

948.4

1104.1

629.5

373.3

1538.2

S/N

9.1

13.7

3.2

0.2

5.2

3.6

2.9

0.8

3.5

6.7

24.2

4.0

5.4

5.7

0.8

6.4

3.3

3.2

3.7

0.4

1.5

5.3 363.1 0.8
14.0 1188.5 0.7
19.7

2.1

19.5 8609.9 0.1
21.8

30.4 1757.9 1.4
26.8 494.3 3.9
24.9

28.7

61.5 5199.9 1.1
63.1

(cont.. next page)
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Table 3-5 (cont.)

176

177

178

179

180

181

182

183

184

185

186

187

188

189

106.3

105.9

99.0

98.2

103.9

113.6

122.9

134.3

106.7

102.6

97.0

101.0

98.8

95.6
190 87.8
191 78.7
192 84 . i

193 83.0
194 76.6
195 109.0
196 108.7
197 118.8
198 112.2
199 95.2
200 82.2
201 74.8

202 111.3
203 105.7
204 83.2
205 123.5
206 70.1

207 133.6
'08 f 187.8
209 182.2
210 141.2

0

log f(Hrt)

L3)
- 13.548
- 13.994
- 13.701
- 13.260
- 13.701
- 13.794
- 13.41
- 13.645
- 14.179
- 13.800
- 13.610
- 13.827
- 14.326
- 13.869
- 13.873
- 14.084
- 13.709
- 13.999
- 14.148
- 14.054
- 13.777
- 14.216
- 13.440
- 13.963
- 13.955
- 13.962
- 13.500
- 14.246
- 12.964
- 14.267
- 14.308
- 14.107
- 12.506
- 13.963
- 13.694

^ log f( Ha)

ill
0.005

0.008

0.010

0.004

0.008

0.010

0.007

0.009

0.017

0.010

0.008

0.010

0.017

0.011

0.012

0.019

0.010

0.015

0.022

0.017

0.009

0.019

0.007

0.014

0.017

0.011

0.007

0.020

0.002

0.028

0.023

0.015

0.001

0.007

0.010

EW tot

_

5
J

62.1

63.4

34.6

53.1

35.0

37.3

47.6

65.8

31.9

41.3

37.6

38.8

44.9

31.3

35.4

20.8

30.8

25.5

18.2

38.5

65.9

35.3

39.1

34.8

17.2

38.5

50.0

33.7

164.8

25.8

38.3

56.0

151.4

139.6

57.5

S/N

ill
53.2

36.9

38.0

74.7

47.4

37.6

48.3

32.9

21.6

35.8

45.7

34.4

20.3

33.2

31.8

21.7

38.4

25.7

19.0

20.4

30.3

19.3

47.8

26.0

23.8

33.7

44.2

18.2

78.0

13.8

15.2

20.7

134.6

22.2

31.6

EWcZ S/N
ill [

8
]_

873.0 5.1

236.6 12.8

511.7 11.2
223.9 13.5
520.0 4.8

1276.4 2.8
1981.5 1.4

2254.2 0.6

1918.7 1.3

1224.6 2.5

909.9 2.6

826.0 1.7

865.0 2.4

1081.4 1.2

'

8886.0 0.0

196.8 6.2

505.8 6.4

1037.5 1.6

909.9 1.5

613.8 3.7

550.8 6.0

334.2 3.5

816.6 16.6

325.8

341.2

557.2

1174.9

1909.9

3.1

4.7

38.8

2.8

1.3

(cont.. next page)
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Table 3-5 (cont.)

No.

-in
211

212
213
214

215
216

217
218
219

220
221

222

223
224

225

226

227

228

229
230

231

232 f

233

234

235

236

237

238
239
240

241

242

243

244

245

R
[21

172.8

182.6

190.7

173.2

160.5

151.6

147.5

140.4

129.4

151.5

171.4

169.6

223.9

223.7

222.1

210.4

205.0

213.2

192.4

198.0

206.2

205.6

197.1

197.5

183.7

177.4

180.9

318.5

302.2

268.9

249.0

243.8

236.8

234.7

229.1

log f(Ho)

Hi
- 13.968
- 13.708
- 13.545
- 14.274
- 14.006
- 13.931
- 13.725
- 13.869
- 14.869
- 14.368
- 13.460
- 13.940
- 13.400
- 13.991
- 13.879
- 13.761
- 12.816
- 14.261
- 14.513
- 13.962
- 14.427

- 13.384
- 13.606
- 14.054
- 13.835
- 14.093
- 13.510
- 13.857
- 13.781
- 13.749
- 13.047
- 13.560
- 13.768
- 13.787

* log f( Ha

)

i)
0.014

0.012

0.009

0.022

0.016

0.013

0.008

0.011

0.086

0.036

0.007

0.017

0.005

0.015

0.012

0.009

0.002

0.028

0.026

0.011

0.041

0.004

0.006

0.017

0.011

0.014

0.006

0.011

0.012

0.011

0.003

0.008

0.009

0.009

0.6

4.7

3.7

2.9

1.7

5.2

0.8

8.2

1.9

6.5

2.4

4.7

15.4

0.9

4.5

7.9

7.0

6.8

2.6

3.6

2.0

2.7

4.9

6.0

0.9

5.5

0.5

(cont., next page)
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Table 3-5 (cont.)

f( Ha)
13

- 12.913
- 12.621
- 14.003
- 13.875
- 13.833
- 14.090
- 14.066
- 14.293
- 13.940
- 13.916
- 13.873
- 13.941
- 13.619
- 13.475
- 13.813
- 13.730
- 13.833
- 13.885
- 14.141
- 14.123
- 14.137
- 13.114
- 12.968
- 13.180
- 13.654
- 13.363
- 13.541
- 13.792
- 13.770
- 13.983
- 13.460
- 13.366
- 14.125
- 14.240
- 13.830

^ log f( Ha

)

4

1

0.003

0.001

0.012

0.012

0.010

0.019

0.018

0.030

0.013

0.013

0.017

0.017

0.008

0.007

0.010

0.008

0.013

0.015

0.016

0.020

0.021

0.002

0.002

0.002

0.005

0.004

0.005

0.012

0.014

0.015

0.007

0.004

0.021

0.020

0.010

AA
94.4

182.0

129.7

54.5

76.7

51.2

46.1

29.0

64.9

61.2

32.7

29.0

47.9

78.5

106.9

95.3

48.2

36.4

47.8

97.1

91.2

396.3

246.6

192.3

153.8

162.9

161.4

72.8

49.4

55.3

67.6

105.4

22.9

32.7

43.1

69.9

87.5

14.7

26.8

24.3

16.8

18.6

12.7

21.0

23.0

21.7

22.8

41.0

36.4

20.0

26.4

24.9

24.5

20.6

10.5

10.7

30.1

53.2

51.6

28.3

39.4

26.4

22.0

23.8

20.8

41.4

45.1

19.5

18.6

32.9

EWd—HL S/N
( 8 )

931.1 8.2
1028.0 16.2
701.5 2.9
185.8 10.8
606.7 3.8

1219.0 1.1

1412.5 0.6
12647.4 0.1

875.0 2.2

2404.4 0.6

461.3 6.5
1078.9 3.2
2824.9 0.9

3706.8 0.8

1148.2 1.3

719.4 1.6

2904.0 0.4

990.8 12.1

883.1 15.2

493.2 20.8
613.8 7.5

591.6 11.4

778.0 5.8

1049.5 1.9

877.0 2.0

1790.6 2.0

847.2 1.4

1023.3 2.3

(cont.. next page)
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Table 3-5 (cont.)

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

121.8

131.5

131.6

133.3

143.0

157.5

165.8

1 77.4

201.3

193.8

194.8

201.9

142.7

133.3

131.5

194.3

140.8

123.4

123.9

134.5

141.8

148.1

187.0

174.0

177.6

159.8

150.5

166.7

210.3

216.8

230.4

236.3

232.5

251.8

296.6

log f( Ha
13

- 13.723
- 13.245
- 13.069
- 13.160
- 12.658
- 13.602
- 12.083
- 13.765
- 13.882
- 13.997
- 13.589
- 13.181
- 12.912
- 13.268
- 13.069
- 13.748
- 13.687
- 13.107
- 13.544
- 13.647
- 12.610
- 13.623
- 12.351
- 13.199
- 13.848
- 13.622
- 13.025
- 14.114
- 14.182
- 13.868
- 14.089
- 13.587
- 14.835
- 13.912
- 14.233

& log f( Ha

)

iil

0.008

0.004

0.003

0.003

0.001

0.005

0.001

0.011

0.015

0.015

0.007

0.004

0.003

0.004

0.003

0.013

0.009

0.003

0.007

0.007

0.002

0.008

0.001

0.005

0.011

0.010

0.002

0.020

0.014

0.019

0.012

0.054

0.016

0.026

53.0

73.8

75.7

82.2

137.4

173.0

345.1

73.3

90.2

86.1

115.1

151.0

100.2

89.9

75.7

86.9

54.2

116.1

60.8

80.5

68.9

54.6

209.9

93.1

86.9

52.5

161.8

48.0

46.2

69.3

66.1

72.8

107.9

134.6

218.3

S/N
6

)

38.6

64.3

81.2

72.8

116.3

28.7

134.6

23.3

15.5

15.4

25.2

42.8

83.8

63.7

81.2

18.1

33.1

63.4

43.3

36.1

124.1

38.2

91.8

45.7

21.5

32.6

68.9

16.4

14.2

19.1

14.8

22.2

3.7

10.5

4.1

1233.1

13740.4

1166.8

905.7

704.7

2317.4

1180.3

2760.6

875.0

550.8

374.1

863.0

849.2

1 166.8

2152.8

1330.5

547.0

758.6

1318.3

1233.1

1044.7

2404.4

9749.9

19952.6

1078.9

714.5

5662.4

765.6

S/N

1§1
2.4

0.4

6.5

8.0

24.4

2.2

39.8

0.6

1.8

5.8

18.2

11.1

7.9

6.5

0.9

6.1

6.5

14.4

2.3

16.1

4.7

0.9

0.3

12.7

0.1

1.6

1.8

0.4

2.0

(cont.. next page)
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Table 3-5 (cont.)

316

317

318
319

320

321

322

323

324

325

326

327

328
329

330

331

332

333

334
335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

296.6

307.8

297.4

296.7

296.7

290.4

283.1

286.5

282.2

278.7

274.8

294.7

277.3

270.5

292.6

299.3

300.0

277.1

255.2

248.8

244.4

352.5

380.7

322.2

313.7

403.9

401.4

387.9

312.9

312.9

431.4

433.7

414.2

422.9

- 14.158
- 13.876
- 13.253
- 13.775
- 13.136
- 12.868
- 13.380
- 11.460
- 12.952
- 12.467
- 13.739
- 13.246
- 13.034
- 12.772
- 13.877
- 14.080
- 13.839
- 14.281
- 14.302
- 12.617
- 13.989
- 14.168
- 14.030
- 13.927
- 13.841
- 13.971
- 13.856
- 14.302
- 14.085
- 13.884
- 14.090
- 13.503
- 13.988
- 13.321
- 14.330

0.022

0.015

0.005

0.007

0.003

0.002

0.005

0.000

0.001

0.001

0.004

0.005

0.002

0.001

0.015

0.019

0.016

0.029

0.023

0.001

0.008

0.017

0.020

0.011

0.014

0.011

0.023

0.023

0.015

0.019

0.006

0.015

0.006

0.025

192.3

132.4

258.8

330.4

386.4

279.9

289.1

701.5

405.5

497.7

309.7

156.3

324.3

435.5

87.7

72.8

816.6

100.0

82.4

338.8

188.8

606.7

91.8

152.1

162.6

420.7

266.1

139.6

378.4

234.4

258.2

161.8

334.2

369.8

5.4

11.6

18.9

10.5

19.6

37.2

17.7

280.7

56.9

85.1

17.8

30.6

35.1

48.1

16.0

14.2

1.8

7.2

10.5

55.2

16.0

1.7

11.5

13.9

9.7

5.1

3.8

6.8

4.3

5.3

14.9

9.4

12.6

2.6

2118.4

1318.3

1432.2

121 .3.4

2060.6

1386.8

5781.0

847.5

1402.8

1066.6

1345.9

1342.8

1584.9

955.0

1534.6

327.3

3243.4

1129.8

527.2

7128.5

478.6

296.5

1081.4

3564.5

765.6

394.5

418/ .9

659.2

751.6

950.6

1717.9

3890.5

0.3

16.7

5.9

0.1

2.6

7.5

1.5

0.6

1.4

2.6

0.4

1.9

5.2

1.7

2.5

0.3

( cont . . next page

)
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Table 3-5 (cont.)

No .

(
1

)

R

(
21

351 403.0
352 398.1
353 390.2
354 391.8
355 383.8
356 384.4
357 388.9
358 391.9
359 377.9
360 366.6
361 347.7
362 349.4
363 353.6
364 359.9
365 360.7
366 357.4
367 363.0
368 370.5
369 341.3
370 347.0
371 351.1
372 351.6
373 359.5
374 357.8
375 376.9
376 387.2
377 391.9
378 362.7
379 360.4
380 354.1
381 353.7
382 335.6
383 340.9
384 341.5
385 330.2

log f( Hq

111
- 12.995
- 13.503
- 14.308
- 13.834
- 13.899
- 13.803
- 14.038
- 13.169
- 13.413
- 13.605
- 13.343
- 13.023
- 13.436
- 13.079
- 13.456
- 13.378
- 12.470
- 12.455
- 13.234
- 13.814
- 14.172
- 13.743
- 13.310
- 13.904
- 13.704
- 13.528
- 13.445
- 13.861
- 13.485
- 13.633
- 13.173
- 13.699
- 13.829
- 13.949
- 14.019

log f
( Ha

;

0.002

0.004

0.016

0.008

0.015

0.007

0.013

0.005

0.005

0.005

0.003

0.001

0.002

0.001

0.002

0.003

0.001

0.001

0.005

0.008

0.012

0.009

0.005

0.009

0.010

0.007

0.005

0.011

0.006

0.008

0.004

0.012

0.013

0.017

0.020

15]

638.3

357.3

258.2

263.6

217.8

263.6

260.6

384.6

296.5

337.3

179.5

477.5

580.8

380.2

354.0

528.4

578.1

582.1

191.9

243.8

203.7

141.9

155.9

167.1

227.0

246.6

463.4

285.8

363.1

232.8

289.1

170.2

372.4

192.3

170.6

19.7

18.1

5.7

11.3

7.0

12.2

7.2

13.7

16.0

15.1

37.8

41.1

19.3

45.2

30.0

16.4

72.9

74.9

26.1

12.8

9.8

18.6

30.9

14.8

10.6

14.7

9.6

7.4

11.1

12.2

20.4

11.7

4.9

7.0

6.7

6

1614.4

841.4

1158.8

979.5

787.0

2666.9

1663.4

1496.2

2890.7

613.8

984.0

6137

875.0

963.8

4830.6

1241.7

961.6

1013.9

1172.2

762.1

4149.5

855.1

1025.7

538.3

1584.9

15452.5

1261.8

1896.7

1853.5

4797.3

7.8

7.8

1.3

3.1

4.2

0.7

3.2

3.2

1.8

11.5

20.1

1.8

19.9

11.1

1.8

34.0

45.5

5.1

0.7

6.0

2.4

6.8

2.8

0.3

4.8

1.1

0.8

0.2

(cont.. next page)
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Table 3-5 (cont.)

Explanation of Columns for Table 3-5

H I The HII region number as mapped in Figures 3-7 and 3-8

' 2) Ga ' aCt0Cen,nC - «>' of the galaxy (,„ arcminutes).
(3) Logarithm of Hq flux (er9 cm" 2

4
-i).

(4) l ncertainty in log f( Hn ) jS K baW °n n°lse ln subtracted sky brightness
(5) Hq equivalent width fin k

’

A), where the ambient disk light is included as
part of the red continum.

lb, Signal-, o-noise ratio pertaining to EW1o( , based on combined
uncertainties in the Ha and red-continuum emission.

(7) Hq equivalent width tin A \ + k • • •

( A) 0f ,he 10nlzmS cluster, where the ambient disk
light has been subtracted.

(8) Signal-to-noise ratio pertaining to EWci , based on combined

uncertainties in the Ha emission of the HII region and the

red-continuum emission of the isolated cluster.

t \ ignetted in image(s).



Table 3-6
na Luminosity Distribut.ions

log L(Hq
5 kP c < R < 10 kp C

;

36.00

36.25

36.50

36.75 -

37.00 -

37.25 -

37.50 -

37.75 -

38.00 -

38.25 -

38.50 -

38.75 -

39.00 -

39.25 -

39.50 -

> 39

- 36.25
- 36.50
- 36.75
- 37.00

37.25

37.50

37.75

38.00

38.25

38.50

38.75

39.00

39.25

39.50

39.75

.75

2

0

3

4

17

55

87

60

35

16

4

5

1

1

0

0

0

0

1

0

6

20

27

11

12

10

2

5

0

0

0

1

Explanation of Columns for Table 3-6

U ) Range of Ho Iuminosit.es, where the assumed distance to M101 is 4.8 Mp

w 7 '°:
I
1 eX,inC,i°n h“ A mean extinction of A.. = 1

. ..

S ' ' b>' °' 29 lo« L
< Hn )' The extinction uncertainty is ofsimilar magnitude. y 01

(21 Number of HII regions that are located within a galactocentric radius of 5
P The total number of such HII regions is 290.

(3) Number of HII regions that are located between R = 5 kpc and R = 10
Pc. e total number obtained from the observed fields is 95. However

7 Under ‘ repreSentS number between R = 5 kpc and R = 10 kpc by
a factor of roughly 6 (based on the fraction of the annulus that was actually

'

imaged). 17
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Table 3-7

Maximum Ltkely Stellar Masses in Finite Clusters

l where the theoretical upper mass limit is 200 M0 )

I

a = 2.0
a = 2.5 n — n

Mi

Md

10 3

0,
1

:— 1.0 3.0 0.1 1.0 3.0 0.1 1.0

|

79 97 109 22 47 66
1 20

10 4
174 181 184 85 136 158 22 67

10 5
197 198 198 172 191 195 67 149

10 6

1
200 200 200 197 200 200 149 192

3.0
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Figures

Figure 3-1

Kinematic properties of MlOl's disk. All quantities are based on the HI

rotation curve of Bosnia et al. (1981), which was derived from the synthesis

mapping of Allen and Goss (1979). The corresponding spatial resolution is 45"

(1.05 kpc at 4.8 Mpc distance).

a. The HI rotation curve of Bosnia et al. (1981). The last 3 points (not

plotted by Bosnia et al.) were taken from their kinematic map. The increasing

uncertainties at larger galactocentric radii are caused by the increasing asymmetry

in the distribution and kinematics of the HI at these radii.

b. The angular velocity Q and the difference between the angular velocity

and the epicyclic frequency k divided by the number of spiral arms. According

to the density wave theory of spiral structure, the regime of spiral structure

is confined by these two profiles. For example, a spiral wave with a pattern

speed of Q
p — 20 km s

-1
kpc~ l would be able to operate between inner Lindblad

resonance at R ^ 2 kpc and corotation at R ^ 10 kpc. The spiral structure in

M101, however, is observed to go all the way into the nucleus (Sandage 1961),

thus complicating the simple picture outlined by the density wave theory.
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Figure 3-1 (cont.)

c. The relative velocity between the gas in the disk and the spiral wave for

3 different values of the pattern speed. If star formation depends on gas- wave

interactions.
(
i.e . a(SFR) oc a(gas)R(Q - Q p )), then it should show a strong

decline beyond 6 kpc radii. See. however. Figure 3-9.

d. The differential rotation, dQ./dR. in the disk. Solid-body rotation

corresponds to dQ/ dR — 0.



I

2

(dfi/dR)

(km

sec"

kpc"

)

Relative

Velocity

(km/sec)
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Figure 3-1 (cont.)

e. The coefficient of rotational shear, otherwise known as Oort's constant A,

in units of km s
_1

kpc
-1

. where the shear flow is AV = —2AAR.

f. The coefficient of tidal acceleration, in units of km s
-2

kpc
-2

. where the

acceleration is in the radial direction. From the formulation of Stark and Blitz

(1978) (see also Blitz and Glassgold 1982 ).
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Figure 3-2

Spectroscopic properties of bright HII regions in M101. The spectroscopic

line ratios and equivalent widths have been culled from Searle (1971). Smith

(1975), Shields and Searle (1978), Rayo et al. (1982) . McCall et al. (1985).

and Davidson et al. (1985). Galactocentric radii have been computed using

d( A/101) = 4.8 Mpc. The ratios deal with relative fluxes or relative abundances

(rather than the logarithm of these quantities) and are plotted on a logarithmic

scale.

a. The ratio of the OIII ( AA4959, 5007) flux relative to the HJ(A4861) flux.

This is also known as the "excitation" of the HII region. It is sensitive to both

changes in the 0 H abundance ratio and in the hardness of the UV radiation field

from the exciting stars.

b. The ratio of the OIII flux relative to the OII( A3727) flux. It is sensitive

to the hardness of the stellar UV radiation field, the geometry of the HII region,

and the degree of reddening.
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Figure 3-2 (cont.)

c. The ratio of the Oil -f OIII fluxes relative to the H 3 flux. This ratio

is highly sensitive to the 0/H abundance ratio except at the metal-rich end. where

the calibration is less certain.

d. The 0/H abundance ratio as determined from the semi-empirical

calibration of the Oil] + OIII / H/3 ratio by McCall el al. (1985). The

straight line is the fit obtained by Evans (1986) using a similar database but

a slightly different calibration. The connected triangles represent especially

bright HII regions, whose faint OIII A 4 36 3 auroral emission has been measured

spectroscopically, thus enabling a more precise computation of the 0 H abundance

( Torres-Peimbert et al. 1989). In all three representations, the 0 H abundance

ratio exhibits a smooth (i.e. monotonic) decrease with galactocentic radius.

Solar abundance is indicated by the 0 symbol.
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Figure 3-2 (cont.)

e. The ratio of the Nil ( AA6548
, 6584) flux relative to the Ha(A6563) flux.

f. The H (3 line- to- continuum ratio or “equivalent width” of the ionizing

clusters. The squares denote the original 6 HII regions observed by Searle (1971

and interpreted by Shields and Tinsley (1976). Some attempt has been made
to subtract off the ambient starlight of the disk from the measured continua. so

that the equivalent widths better trace the radiation fields of the ionizing clusters.

The circles are from McCall et at. (1985), and the triangles are from Rayo et al.

(1982), where the equivalent widths include the starlight of the ambient disk.
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Figure 3-3

Reel continuum and Ha imagery (inner galaxy).

Images of the red continuum and Ha emission from the inner disk of M101.
North is up and East is to the left. The total field of view is about o' x 6'.

However, vignetting at the margins of the field reduces the relevant field to about
o'.

a. Red continuum emission, based on an R-band image whose Ha emission

within the bandpass has been removed (see Appendix B).

b. Ha emission, based on a 36 A bandwidth Ha image whose continuum
emission within the bandpass has been removed (see Appendix Bi.
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Figure 3-4

Red continuum and Ho imagery (eastern arms).

Min!"" Tl

0f ' he ^ C°ntmUUm Ha emi$Si0n fr°m ' hf— spiral arms of
• • ese .mages are d.splaced eastward about 4.3’ with respect to those of

e mr,er galaxy. The same angular dimensions as in the inner galaxy images

;

0S ‘ Pr°mmen ' are "superassociations” NGC 5462 to the North and NGC 5461to the South.

a. Red continuum emission, based on an R-band image whose Ha emissionw m the bandpass has been removed (see Appendix B).

b. Ha emission, based on a 36 A bandwidth Ha image whose cont.nuum
emission within the bandpass has been removed (see Appendix B).
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Figure 3-5

Comparison of raw and processed photometry.

Comparison of equivalent width E\Y p. based on photometry of raw R

band and Ha band images, with EWp, based on photometry of processed red-

continuum and Ha emission-line images. The straight line denotes EWp = EWp
Derivations from this line are less than 5 percent.



128



129

Figure 3-6

Contour diagrams of the red continuum and Ha emission from M101. The

imaged fields have been combined with the vignetted regions removed. The

combined field has been demagnified by 1/2, such that 10 “pixels" represents 16”

in the plane of the sky. The total field of view is 10.3' x 3.1’. A 4 x 4 pix

boxcar smoothing function has been applied in the contouring.

a. Red continuum emission. The surface brightness is contoured logarith-

mically with contour intervals of 0.1 dex beginning at 10
-18

erg cm~~ s~ l arcsec~

A 1 and peaking in the nucleus at 10
-161

erg cm~~ arcsec~~ A -1
.

b. Ha emission. The surface brightness is contoured logarithmically with

contour intervals of 0.25 dex beginning at 10
-16

erg cm
~ 2 s~ l arcsec~ 2

.



Ml 01 Red Conti 130nuue (log scale!



131

Figure 3-7

Contour diagrams of Ha emission from the “supergiant HII region complexes"

NGC 5462 and NGC' 5461. The field of view is 1.43' x 1.43' (2 kpc x 2 kpc) for

both diagrams. The surface brightness is contoured in logarithmic intervals of

0.25 starting at 1.0 x 10
-16

erg s
-1 cm~ 2 arcsec~ 2

.

a. The NGC 5462 complex shows two especially bright HII regions plus an

extended region containing several other weaker HII regions.

b. The NGC 5461 complex is dominated by a single brilliant HII region.

This region is 10 times more luminous than any other HII region measured in this

study. Low surface-brightness plumes of ionized gas are evident, diverging from

the brilliant core toward the South, Southeast, and East.
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Figure 3-8

Annular- averaged galactocentric profiles of the Ha intensity, red-continuum
ntensity. and Ha equivalent width. Each point represents a 30” annular bin in
the plane oi the galaxy. The error bars represent standard deviations about the
annular-averaged values. The standard errors in the mean values are also plotted
but are no larger than the plotted points.

a. Galactocentric profiles of the Ha intensity (in erg cm
~ 2 s' 1

aresec~ 2

) and
the red-continuum intensity (in erg cm~ 2

s
-1

arcsec~ 2 A -1
)

b. Galactocentric profile of the Ha equivalent width. The error bars are
based on a propagation of the standard deviations in the Ha and red-continuum
intensities.
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Figure 3-9

Galactocentric distribution of starbirth intensities. The star formation

intensities are plotted as surface densities in the plane of the galaxy. cr(SFR). A

visual extinction of 0.72 mag has been assumed in the computation of a{SFR
)

from the observed surface brightness I[Ha). The secondary peak in the profile

is coincident with the annuli containing the supergiant HII regions NGC 5461

and NGC 5462. Because only 1/6 of the total annulus at this radius has been

observed and measured, the measured effect of the supergiant HII regions could be

disproportionately high. For comparison, galactocentric profiles of the starbirth

intensities in M83. M51. and the Milky Way are also shown. The data for

M83 and M51 are from Lord (1987), and the data for the Milky Way are from

Gusten and Mezger (1982). All values of a(SFR) are based on the <r(5F R) .V,

conversion of Kennicutt (1983).

a. Starbirth intensities as a function of galactocentric distance in kpc. The

adopted distances to M101, M83, M51. and the center of the Milky Way are 4.8

Mpc, 3.7 Mpc, 7 Mpc. and 10 kpc respectively.

b. Starbirth intensities as a function of galactocentric distance normalized

to the “optical radius.'” R 25 . of each galaxy. The adopted optical radii of M101,

M83, M51, and the Milky Way are 845”, 486", 314", and 11.9 kpc respectively.
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Figure 3-10

Galactocentric profiles of the gas and corresponding starbirth efficiency in

M101.

a. Galactocentric profiles of the tG, HI, and H> -f HI -f He surface

densities. The H 2 and HI data are from Solomon et al. (1983). A constant

conversion between I(CO) and ^(Ho) has been applied, thus ignoring possible

variations in the conversion caused by the 0.6 dex variation in metallicity across

the measured disk. The He component assumes an He abundance of Y = 0.25

throughout

.

b. Galactocentric profiles of the starbirth efficiency with respect to the

Hi. HI, and total gas surface densities. C’onsiderations of the IMF and

extinction-dependent conversion between I(Ha) and cr(SFR), as well as the

uncertain conversion between I(C’O) and cr(H 2 )
indicate that the plotted SFEs are

absolutely certain to within a factor of about 3 (or ±0.5 dex as plotted here) and

self-consistent to within a factor of about 2 (or ±0.3 dex as plotted here).
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Figure 3-11

Galactocentric distributions of the starbirth efficiency in M101 and other disk

galaxies. The annular-averaged Ho and HI data for M83 and Mol. from which

the starbirth efficiencies are derived, are from Lord (1987); the Ho and HI data

for the Milky Way are from Sanders et al. (1984). Considerations of the IMF

and extinction-dependent conversion between I(Ha) and cr(SFR). as well as the

uncertain conversion between I(C’O) and <t(H 2 )
indicate that the plotted SFEs are

absolutely certain to within a factor of about 3 (or ±0.5 dex as plotted here) and

self-consistent to within a factor of about 2 (or ±0.3 dex as plotted here).

a. Galactocentric profiles of the starbirth efficiency with respect to the H 2

surface density alone.

b. Galactocentric profiles of the starbirth efficiency with respect to the total

gas surface density.
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Figure 3-12

Annular- averaged starbirlh intensities vs. H 2 . HI, and total gas surface
densities in 3VI101 and other disk galaxies.

a. Starbirth intensity vs. H2 surface density.

b. Starbirth intensity vs. HI surface density.
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Figure 3-12 (cont.)

c. Starbirth intensity vs. total gas surface density. The mean intensity
and surface density (within a circle of 30” radius) for the supergiant HII region
complex, NGC 5461, has been plotted along with the annular averages.
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Figure 3-13

Radial distributions of Ha and red-continuum emission from individual HII

regions. Each pixel corresponds to a radial displacement of 0.81 . The Ha

and red-continuum '‘counts refer to log I(Ha) (erg cm “ s
1 arcsec ") and log

I x( A6563 )
(erg cm -2

s
_1

arcsec-2 A) respectively. The sequence of 4 HII regions

spans the range of intensities and signal-to-noise ratios that is present m the

observed sample of 385 HII regions.

a. The radial distributions of Ha and A6563 emission from HII region —287

(also known as S3 and H40; see Tables 3-4 and 3-5).
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Figure 3-13 (cont.)

b. The radial distributions of Ha and A6563 emission from HII region #303

(also known as S4; see Tables 3-4 and 3-5).
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c. The radial

(see Tables 3-4 and

Figure 3-13 (cont.)

distributions of Ha and A 6 5 6 3 emission from HII region #24

3-5).
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Figure 3-13 (cont.)

d. The radial distributions of Ha and A 6 56 3 emission from HII region #259

(see Tables 3-4 and 3-5).
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Figure 3-14

Identifications and locations of HII regions in the inner galaxy.
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Figure 3-15

Identifications and locations of HII regions in the eastern arms. For clarity,

HII regions with red continuum surface brightnesses below the 1 a level in the

subtracted background (1.4 x lCT
18 erg cm~ 2 arcsec

~

2 A' 1

)
have been

excluded from the plot.
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Figure 3-16

Photograph of the combined fields and the locations of HII regions in the

combined fields. Every HII region is mapped. The circles are locations from the

inner galaxy image. The stars are locations from the eastern arms image. Some

redundancy in the overlapping fields is evident, thus confirming the registration

between the images.
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Figure 3-17

Frequency distributions of HII region radii. The top plot shows the statistics

for the “total” measured radius — whether blended or unblended. The bottom

plot shows the statistics for the “unblended” radii. The error bars are based on

Poisson counting statistics.
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Figure 3-18

Radial "curves of growth for the Ha and red-continuum emission from the
4 HII regions in Figure 3-13. “Curves of growth” for the Ha equivalent width
are also plotted. The red-continuum fluxes refer to the ionizing clusters, the

background starlight of the ambient galaxy having been subtracted.

a. "Curves of growth" for HII region #287.

b. “Curves of growth" for HII region #303.
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Figure 3-18 (cont.)

c. "C urves of growth for HII region #24.2.

d. “( urves of growth for HII region #2b9.



164

C A d

(°H)

*3/(

d

H)M

3

(»H)°il3/(»H)M3



165

Figure 3-19

Ha luminosity functions for inner and outer disk (differential format). The

binning is in logarithmic intervals of 0.25. The upper histogram shows the

luminosity function for the 290 HII regions within 5 kpc of the nucleus. The

lower histogram shows the luminosity function for the 95 HII regions between 5 and

10 kpc from the nucleus. The error bars are based on Poisson counting statistics.
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Figure 3-20

Ha luminosity functions for the inner and outer disk (cumulative format).

The cumulative luminosity function plots N(logL > log Lo)d(log L) in logarithmic

bins of 0.25. Each luminosity function has been normalized to the total number

of HII regions that is involved. The circles denote the statistics for the 95

HII regions between 5 and 10 kpc from the nucleus. The triangles denote the

statistics for the 290 HII regions within the 5 kpc radius. The error bars are

based on Poisson counting statistics.
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Figure 3-21

Ha luminosity functions (complete sample) in both differential and cumulative

form. All 385 HII regions with measurable Ha fluxes are included. Error bars

are based on Poisson counting statistics. The upper plot shows the differential

luminosity function N(logL)d(logL ), where the binning is in logarithmic

intervals of 0.25. The lower plot shows the cumulative luminosity function.

N(logL > logL 0 )d(logL).



cum

40



171

Figure 3-22

Galactocentric distribution of Ha and red continuum luminosities.

Galactocentric distribution of Ha and red continuum luminosities for the 10

HII regions which have detectable red-continuum emission
(
S/N > 5.0).

a. Galactocentric distribution of Ka luminosities.

b. Galactocentric distribution of red-continuum luminosity densities.
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Figure 3-23

Hq versus red-continuum luminosities. Includes all 102 HII regions with

red-continuum emission above the 5-sigma level of the ambient disk. Error bars

are based on noise in the subtracted sky and red-continuum backgrounds.
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Figure 3-24

Galactocentnc distribution of Ha equivalent widths (without prior elimination

of continuum emission from ambient disk). L\(total) includes light from the

ionizing cluster, any spiral arm enhancement, and the underlying disk. The
resulting equivalent width is especially sensitive to the ratio of current-epoch to

past-averaged star forming activity.
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Figure 3-25

Galactocentric distribution of Hq equivalent widths (after elimination of

continuum emission from ambient disk).

a. Galactocentric distribution of Ha equivalent widths, where L \ ( arm

)

includes light from the ionizing cluster and any spiral arm enhancement — the

underlying disk light having been modeled via annular-averaged photometry and

removed.
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Figure 3-25 (cont.)

b. Galactocentric distribution of Ha equivalent widths, where Z A (cluster)
includes light from the ionizing cluster only - the background disk and arms
having been removed by subtracting a median-smoothed image from the original
red-continuum image. All clusters with signal-to-noise ratios > 5 are shown.
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Figure 3-25 (cont.)

c. Galactocentric distribution of Ha equivalent widths, where Z,\(cluster)

includes light from the ionizing cluster only — the background continuum having

been determined individually for each and every HII region (from visual inspection

of radial surface-brightness plots) and subtracted. All clusters with S/N > 5 are

shown.
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Figure 3-26

Theoretical effects of dust on Ha and red-continuum fluxes. The dust is

assumed to be uniformly mixed with the ionized gas. while the continuum-emitting
stars are assumed to be segregated on the backside of the HII region. This sort

ol morphology is similar to that produced by a ‘‘champagne-flow’’ expansion of

ionized gas away from the ionizing star in the direction of least resistance. If the

stars, gas, and dust are all uniformly mixed, then the attenuation of the Ha flux

would be identical to that of the red-continuum flux, and the Ha equivalent width

would be constant with dust optical depth. By contrast, the “champagne-flow”

morphology (if viewed with the stars on the backside) results in a dust-dependent

differential in the observed line and continuum fluxes (as shown in a) and hence a

strong dependence of the Ha equivalent width on the dust optical depth (as shown

in b).
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Figure 3-27

Galactocentric distributions of cluster color and nebular extinction.

a * The galactocentric distribution of the ionizing clusters' ( A 65 6 3 - A8380
)

colors, where contamination from the old stellar disk has been removed. The
plotted sample includes those clusters with red continua greater than 5-sigma
above the dispersion in the old disk. The error bars represent the quadrature
sums of the standard errors at both wavelengths. The colors are plotted with

the bluer values towards the top. Colors redder than 0.5 are thought to be the

consequences of reddening by dust.

b. The galactocentric distribution of nebular extinctions as determined from

the observed ratio of Ha and Hi fluxes. The ratios were culled from a variety

of references (Searle 1971; Smith 1975; Shields and Searle 1978; McCall et al.

1982, Ra\o et al. 1982; Davidson et al. 1985). Although each ratio was

computed from observations with the same size aperture, the sample of ratios

involves observations with different size apertures.



-1
186

o
co
co
CO

CO
CO
LO
CO

a b t



187

Figure 3-28

Cluster colors versus Ha equivalent widths. The plotted sample includes

all clusters with red continua greater than 5-sigma above the dispersion in the

ambient disk. The format of this diagram follows that of traditional -Color-color'

diagrams, such that the EWs increase (become “hotter”) towards the left and the

(A6563 - A8380) color grows bluer towards the top. If both the color and the

EW were systematically affected by the presence of dust, there would be a strong

correlation between the two quantities. This is not evident.
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Figure 3-29

Galactocentric distribution of Ha equivalent widths of blue clusters.

Galactocentric distribution of Ha equivalent widths after having excluded all

clusters with (A6563 — A8380) colors redder than 0.5.



190

10000

8
o
S-,

4->

7)

1000

G

H ioo

w

EW L(Ha)/LA(cluster)

(Blue Clusters)

—• 1 1 1 L I L I I 1

^ ,
.5 10

Galactocentric Radius (kpc)

10



191

Figure 3-30

Modeled dependence between the Ha equivalent width and the upper stellar

mass limit. E\Y* refers to the line-to-continuum ratio when only the stellar

continuum is considered. The values plotted here are based on the results of

A. Campbell which were derived from the ZAMS population synthesis program

described in Terlevich and Melnick (1985). EW( 0 j refers to the line-to-continuum

ratio after the nebular continuum and the effects of nebular dust are incorporated.

The fraction of ionizing luminosity that is not absorbed by dust is represented by

3. The typical densities and gas-to-dust ratios found in giant extragalactic HII

regions suggest that
f

3

== 0.5 (Spitzer 1978).
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Figure 3-31

Galactocentric distribution of Ha equivalent widths (combined data sets).

The circles with error bars denote the equivalent widths that were obtained in the

present study after excluding all significantly reddened clusters
(
A 6 56 3 — A 83 8 0 >

0.5). The stars were derived from the spectroscopic data of Searle (1971),

where some attempt had been made to isolate the starlight of the ionizing cluster

from that of the ambient disk. The triangles are from the spectroscopy of

Torres-Peimbert et al. (1989).
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Figure 3-32

"Temperature-Luminosity" diagrams using EW(Ha) as an index of cluster

effective temperature. Increasing values of EW(Hq) go to the left, in accordance

with "traditional temperature-luminosity diagrams. The sample includes all

clusters with red continua greater than 5-sigma above the dispersion in the ambient

disk.

a. Ha luminosity versus Ha equivalent width.

b. Red-continuum luminosity density versus EW(Ha).
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Figure 3-33

“Temperature-Luminosity" diagram for blue clusters.

“Temperature-Luminosity diagram for clusters with (A6563 — A8380) colors

bluer than 0.5 and hence minimally reddened by dust. The Ha equivalent width

is used as a tracer of the cluster effective temperature and is plotted against the Hq

luminosity.
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CHAPTER 4

M82

4. 1 Abstract

Red Ha and R-band CCD images of the starburst galaxy MS? „
with corresponding near-infrared SI,I, and ,-band imager,

'

Enh'ancIZ^
con rnuum-sub,raced [SIIIJ/Ho flux ratio are evident along an arc thatrnc u es t e nuclear dust lanes" visible at Ha and two especially enhanced regions

of Ti°
S1 e

t
eS

,°
f ' he bUrS,i " g nUC ' eUS ' If in,erpre,ed ^ the consequences

obs

e

,

nmg
"a

1SI“ /H° indicate the presence of

1r "hT Ik'
""7 ,°

f Wh ' Ch iS d,S,nbuted bejxmd the nuclear
P The archie morphology of the obscuration as well as the strong peripheralex tnc ion can be explained by invoking a circumnuclear ring of dust that is

highly inclined to the line of sight. Comparisons with other tracers of dus, and
gas are made in an effort to test ,he proposed scenario. Although some of the
companions are ambiguous, most of them reinforce the picture of a circumnuclear
dusty chimney tha, has been shaped by the starburst and is now collimating the

subsequent eruptions.

4.2 Introduction

The classic “starburst” galaxy M82 (NGC 3034) has been a rich hunting
ground for many types of emissive phenomena. The central kpc of this Irr
II Amorphous- class system is renowned for its bright continuum emission at
far-infrared and radio wavelengths and for its powerful spectral-line emission at
red, infrared and millimeter wavelengths. Most of this luminous activity has
been attributed to a mega-burst of star formation that has recently occurred in the
galaxy s nucleus (see reviews by Telesco 19881 and Sofue 119881).

According to the “starburst” scenario, the radio continuum emission is

dominated by synchrotron processes arising from the acceleration of electrons
by the many supernovae that have detonated. The most recent detonations
appear as discrete knots on high-resolution VLA maps (Kronberg cl „/. 1985).



200

The FIR continuum represents the dust which has absorbed the 3 x 10*° Loutput from the newborn stars anrl u •
. .

U L®

temperature of 45 K (Tele I H

' C '' reradla,mg this luminosity at a

. ,

K ' relesco and Harper 1980; Joy el al 1987) Tb in
infrared continuum comes from hotter dust

( T * 150 K ) d' u"
stars (Rieke et al 1980) The • f

’
adjaCe "' ‘° ,he hoUes ‘

Br7 ) 'Nell 12 g
'

c„„
‘ emiSS1°n lineS of h

-vd-*™ (Bra and
1
S1»] 18.7 and 33.4 pm, [OIII] 52 and 88 „m, and Nil,

i pm trace the .10* of gas that has been ionized by the new-born ho , ,t

"

d wh-ch , now almost completely filling the volume of the nucleus (Simon c(R.eke el a . ,980; Beck el al. ,978; Houck el ul. 1984; and Duffy cl „/

'

9 - respecvely,. The ionized component is also evident in a recent mapping ofhe 3. mm cont.nuum (Car,strom ,988). where thermal Brehms, rah,ung processesbeheved to outshine the nonthennal synchrotron processes. Also a, mm
wavelengths, the hue emission from «CO, “CO, HCN, and HCO- delineate thed;s,nbut,o„ of .he remnant tnolecuiar gas a, successively increasing densities (Lo

P . .

1 aU ‘ *' ai 198 S,ark and Carlson 1982: Stark and Wolff 1979;Rickard et al. 1977; Carlstrom 1988).

Beyond the nucleus along the galaxy's minor axis, unusual Ha emitting
plumes (Lynds and Sandage 1963; Williams el al. 1984). diffuse soft X-ray
emission (Watson. Stanger, and Griffiths 1984; Kronberg el al. 1985). and
anomolous optical emission-line ratios (McCarthy el al. 1987) attest to the
presence of a hot (10' K) bipolar outflow which is shock heating the swept-up ISM
to temperatures of -10 4 K (Chevalier and Clegg 1985: McCarthy el al. 1987).
The non-circular velocity field of the ionized gas filaments along the minor axis also
seems to be consistent with some sort of outflow scenario (Williams el al. 1984;
Bland and Tully 1988).

Recent single-aperture observations of the 12CO 2.6 mm emission from M82
have revealed “spur-like structures” of molecular gas extending more than 0.5
kpc above and below the galaxy’s major axis on opposite sides of the kpc-size
central starburst (Nakai et al 1987). These investigators have modeled their
observations in terms of a molecular gas cylinder — seen edge-on — which
surrounds the mostly ionized starburst region. Their so-called “dusty chimney”
has been shaped by the energetic outflow of gas that is being driven by the windy
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S ars and shocking supernovae therein. Along the minor axes, the outflowing
gas has met comparatively little opposition thus creating the Ha plumes and
unusual gas k, nematics that are observed above and below the galaxy's highly
me tned disk. Along the major axis, however, the gas has encountered quiescent
gas in the dtsk thus leading to a cylindrical^ symmetric pile-up. This simple
picture has been supplemented by high-resolution observations of CO and 2 12 urn
H, m emission and of 21 cm HI in absorptton (Lo el al. 1987; Telesco 1988 and
references therein), which show bipolar enhancements - suggestive of a “ring” of
gas — interior to the ‘’walls” of the dusty chimney.

In this Chapter. e\idence for circumnuclear obscuration is presented. The
association of this obscuration with observed enhancements in the CO. HI. and
H 2 emission lends further credence to the idea of a "dusty chimney" having been
shaped by a ring-shaped starburst and which is now collimating the subsequent
eruptions. The obscuration is derived from a well-resolved comparison of
the galaxy s Ha emission with its corresponding near-infrared [Sill emission.

Enhancements in the longer wavelength [Sill] emission (9532 A) relative to the Ha
emission are attributed to the reddening effects of dust. Such an interpretation
has been found to be fairly reliable, as long as other effects influencing the
SHI A ux ratl° (

e -9- the met alii city and excitation) are taken into account
(see Figure 4-1). Previous comparisons of [Sill] and Ha emission from dust-rich

galaxies include an imaging study of NGC' 253 (Waller, Klemmann. and Ricker

1988) and an imaging survey of 5 other infrared-bright galaxies including M82
(Young, Kleinmann. and Allen 1988). Kennicutt and Pogge (1989) have re-

observed the latter 5 galaxies using a long-slit spectrograph and CCD detector in

an effort to verify the unusually high [SIII]/Ha intensity ratios reported by Young
et al. (1988). The present Chapter concentrates on M82 and. in particular,

on the circumnuclear distribution of obscuration that is traced by the observed

enhancements in the [Sill emission.

Table 4-1 lists the basic properties of M82 that will be adopted throughout the

remainder of this Chapter. The new observations are presented in the form of

images, contour diagrams, and major axis scans. The observed emission.
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the derived extinctions, and the de-reddened emission, are discussed in the
context of other available tracers of gas and dust.

4.3 Observations and Reductions

A summary of the CCD imagery obtained for this study is provided in Table
The Ha, [SIIIl, R and I-band images were obtained at the Cassegrain

focus of the McGraw-Hill Observatory 1.3-m telescope on Kitt Peak during clear
weather. The imaging device was the “MASCOT” CCD camera developed at
MIT (Meyer and Ricker 1980), a dual-chip system which enables a variety of
simultaneous observing modes. I did not take advantage of this versatility and
simply imaged on one of the chips - a TI 4849 virtual phase CCD (Luppino et

ol 198 < ) which had replaced the poorer quality chip used in similar observations
of NGC 253 (see Waller et d. [1988]). Although the full chip size is 584 x
390 pixels, only 476 x 390 worth was saved after recording and trimming. Of
this amount, approximately 15 percent was vignetted by the beam splitter in the
MASCOT camera. With the // 13.5 secondary in place, the resolution per pixel

is 0.81”, and the unvignetted field of view is approximately 5' x 5'. The following
sections will be concerned with the central 2' x 2' of the unvignetted field — where
M82 s starburst nucleus and high-latitude plumes are located.

Imaging at Ha was conducted using an interference filter (^1276, A 6 563

)

kindly loaned by Kitt Peak National Observatory. With a AA = 36 A bandpass,
this filter is sufficiently broad to accomodate the galaxy's systemic redshift of

4.8 A as well as the - 3 A shifting due to the galaxy’s disturbed velocity field

(O Connell and Mangano 1978; Williams et d. 1984). Near the nucleus (‘‘knot

A ’ of O'Connell and Mangano [1978]), the filter passes Ha(A c 6563) with 0.75

transmissivity, [Nil] (

A

0 6584 )
with 0.16 transmissivity, and Nil (

A

0 6548 )
with

0.67 transmissivity. From the emission-line velocities and [Nil] /Ha line ratios

measured by 0 Connell and Mangano (1978), I estimate the net contamination

The McGraw-Hill Observatory is operated by Dartmouth College, Massachusetts Institute of

Technology, and the 1 niversity of Michigan, with partial support from the National Science

Foundation, the Alfred P. Sloan Foundation, and McGraw-Hill, Inc.
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rom Nil, to be 41 ± 11 percent in emission and 25 ± 4 percent in tbHo .nrager, depending on position in the galax, Refeig toand Mangano s specific measurements, the estimated levels of defected Mlcontammatron are 26 percent in knot A, 28 percent in knot C ,12’' SW A, 35percent knot E (11- W of A), 21 percent in knot F ,30" VV of A) 7
the northern filaments (12” - 25” N of A) and 29 •

.-'percent in

U2” - 36" S of A)

A ’ d PerCe"‘ m ,he sou <hern filaments

U95^!vm ‘

SI

n' r
S °°ndUC,ed Wi ‘ h 3 Bafr AsS° Cla,eS in«-ence filter

A 0 46 1 ! "
n

^ Ge°rge Rifkw - Con‘amination bv the Pa8 line
46, w, h,„ the bandpass is expected to be negligible (Dennefeld and Stasinska

1982). The effect of tellur, c H 20 absorption on the variously Doppler-shifted

;

J
e"" SS10n °°Uld be S1*nifi«nt, but to first order it can be corrected bv referralto measurements of a similarly affected calibration star. Imaging of the red and

near-infrared continua was conducted using the resident -R-band” and "I-band”
' ra "- H ' 11 Observatory. Their wavelengths of peak transmissivity

an HM bandpasses are similar to those of the Mould system R and 1 filters
commonly used at Kit t Peak.

Images of the subdwarf standard star BD + 26°2606 (Oke and Gunn 1983)
were obta.ned immediately after imaging the galaxy. Like other subdwarfs of
spectral type sdF. this star has a relatively clean spectrum with few absorption
features a red wavelengths. Additional observations of the subdwarf standardBD + 17°4708 were also made thus providing a check on the calibration process.
Images of an illuminated screen inside the dome were taken through each filter at
the beginning of each night for the purpose of flattening the background variations
in the galaxy images.

Initial processing of the CCD imagery was accomplished using the Mountain
Photometry Code package at Kitt Peak headquarters. Bias averaging and
subtraction as well as Hatfield division were performed automatically using
the standard algorithm. Because of the relatively short exposure times that
were involved, darkframe subtraction was found to be unnecessary. Further
processing, including image arithmetic, median filtering, and synthetic aperture
photometry, was conducted at the Universities of Massachusetts and Washington
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using the Image Reduction and Analysis Facilitv hr \v\ r.

Peak National Observatory.
' ‘^ at Ki"

All measured fluxes were corrected for atmospheric extinction usinz theairmass at the time of observation and Beer's Law:

R0 = R 10
O 4A'A sec 2

(4 - 1
;

where /? c denotes the corrected mnnt nt •
1cted count rate per pixel as expressed in ADU

,S the zemth distance. *(46563, = 0 . 1 . and A'(A9.532) = 0.05 as estimated fmmO serrations of Landolt standards taken at Kitt Peak during 1986 (Bushouseprivate communication,. Synthetic aperture photometry on the images of the

’

sdF-tvpe standard star BD - 26=2606 yielded the following conversions betweenux and count rate (after bias subtract,on. Hatfield division, and atmospheric
extinction correction):

F

f(Ha)(erg cm~- s ~') = 4.0 x 10“ 14A 0 ( A6563, AA36)(.4DC s’ 1

). (4-21

/( [SIIl\ ){erg cm - s
1

)
= 4.1x 1 0

11 A 0 (A9532. AA43)(.4Df 14 -3)

A(A6563)(erS cm~ 2
s" 1

A~') = 4.2 x 10 RfiR band)(ADU s' 1

), (4 _ 4
-

/.\(A9532)(erp cm 2
s

1 A >) = 2.4 x 10- 17
fl3 (/ band)(ADU s

-1
(4 -.5)

Nearly identical conversions were obtained using BD + 17°4708 as the calibrator.
A final check on the calibrations was made from photometry of the star

.46A 3 - 690428 = BD~ 70°587 which appears in the images of M82 approximately
2 arcminutes to the southwest of M82’s nucleus. The [Sill] image was the
only one not to saturate on this star, and so I could only check on the Sill

calibration. The Catalogue of Stellar Identifications {mi) 2
lists this star as a

2 BaSfd Jata retrieved from SIMBAD, database of the Strasbourg. France, astronomical
Data Center.
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Go spectral type with magnitudes of B = 10 5 and V - Q 4 aTm
of = -0.016" yr -i and = _ 0 .0O0 " ,

-i

' ~ m°tl0nS

based on thp t
'

“ i/
r • he resulting Sill calibration,Dasea on the star s extrano atpd ckqo a a j .. _.rapolated 9532 A flux density (Johnson 1966; Kurusz 19791n Pho 0„,et,v o the [Silt] image. agrees with the subdwarf calibiat.on

‘ ’

10 Pe

;
e
;‘ W BD + ‘ -- sequence star)- The calibrationou,d exceed the subdwarf calibration by almost a factor of two. however, if

ThVbei iT
°U ' ‘° ^ * giam

' The Pr0P"~ °f ,his s.ur is consistent

it as be' Gn u

-

a" a
'
V ^ an abS°1U,e "'agni,U<ie °f 4 - 5 ’ " hid> w°uld designate“ bemg a &5VJV S,ar ' Th"'fo-. the calibrations appear to be in good

agreement. Spectrophotometric observations of BD + 70°587 at optical and
near-infrared wavelengths would be necessary to better calibrate the M82 data

Additional uncertainty in the derived fluxes stem from the noise in
the subtracted sky backgrounds. The resulting uncertainties are esti-
mated to be W(ffo) * 2.0 x lO^erp m -l ,-i

Sl^SUI]) *
4.5 x 10“ 16 erp cm~ 2 s~< arcsec~ Wj(A6563) % 4.0 x 10- I8

ers err,- 2 G" urcsec' 2

A- . and M.v(A 9532, * 3.0 x iO-gr, cm ~>
aresec- 2 A-. These uncer-

tainties correspond to approximately 10 percent of the subtracted sky values.

To obtain Ho images that are free from contamination by the stellar and
nebular continua. appropriately sky-subtracted, shifted and scaled R-band images
were subtracted from the original sky-subtracted Ha-band images (see Appendix
B). The scaling was determined from synthetic aperture photometry of foreground
stars in the field of M82 and from photometry of the standard stars. The two
methods gave scaling factors that agreed to within 10 percent. Similar processing
of the I-band and Sill] image was done to obtain a pure [SHI] emission-line image.
To obtain red-continuum images that are free from contamination by the Ho
emission line, subtraction of scaled Ha-band images from the R-band images was
performed, where the scaling was determined from the relative bandwidths of the
Hq and R-band filters (see Appendix B).

As a check on the image processing, I have compared the Ha flux from the

inner 1.5' x 1.5' of M82 with the flux obtained from the same region by McCarthy
et al

(
1987 )- After correcting the detected flux for a 20 percent contamination

by [Nil], I deri\ e an Ha flux of 4.5 x 10 erg cm~~ s agreeing with that
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measured by McCarthy et al. to within 5 percent t

found between the Ha equivalent widths that I measure in ZTentTal fa*" dthose measured spectroscopically by O’Connell and Mangano
, 1978) Las ,v" I

»' ““««» U «- P.<» K,„,„ “„„dPogge measured the [Sill) and Ha+ [NII] intensities in M82 along an E W i

1 180 * 4 ’5 in

f
*> that Was 10” North of the 2.2 pm .udeT

?

:,

P

:t Tf° +iNn! <* - *** co'espondsto

. T , .7

' - peak intensity ratio of 1.9 along the same E-W
e consistency betueen these measurements contrasts strongly with the

results of Young et ai
( 1988) who obtain „ [S I,r ,/I, Ha) * 6 along the same

E- cut. Kenn cut, and Pogge argue that insufficient continuum emission was
;u traced from the Ml A-bandwidth [Sill) imagery of Young et oh. thus leading
to their much higher measured SHI; intensities and SIIIJ/Ha intensity ratios.

4.4 Emission-Line Morphology

Figure 4-2 shows the Ho and [Sill images of M82 that were obtained after
aving subtracted off the contaminating continuum emission from the narrowband

'

.

lmageS ‘ FlgUre 4-3 shows the corresponding contour diagrams of Ha and
I

I; surface brightness. These diagrams are similar to those produced by Young
et al (1988) except for the 2 - 3 times lower Sill] surface brightnesses that I find
on opposite sides of the nucleus along the major axis (see previous Section).

The 3 most obvious distinctions between the Sill] and Ha images are:

• The Sill emission shows a lensdike distribution consistent with the
appearance of a highly inclined disk galaxy, whereas the Ha emission is not nearly
as extended along the major axis. This morphological difference extends beyond
the major axis to high latitudes, where the radiation is thought to arise from
scattering by dust grains (Mathis 1973; Visvanathan and Sandage 1974).
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or

"m
r‘

** w
J * n Duted. Even the two central bright spots in the STTT

•

are less prominent relative to their neighboring emission

Ho I!“ ^^ tW° [SmI 4- northwest ot the

o z - ,i'

—

and of t Op b
he distribution of this obscuration —and of the obscuring dust - is discussed in the following section.

4.5 Circunmuclear Obscuration

To investigate the structure of obscuration in the starbursting region of M82.

illustr t’d ^ f'

'

'T
‘mage b''' ,he H “ image

- Wdin« <** relationships
tra.ed in F.gure 4-1. reg.ons with htgher [Silt]/ Ha flux ratios should be

•racng larger amounts of reddening and hence obscuration. The resulting -flux
rat.o image and contour diagram are shown in Figures 4-4 and 4-5, a) respectively.

e Ullage format most clearly shows the striking correspondence between the lanes
neSS ln ima§e an<^ the ridges of enhanced Sill] in the Sill Ha

image.

^

If the dark lanes are, in fact, consequences of obscuration, then the Ha
nots uhich they outline are probably not discrete objects (cf. O'Connell and

Mangano 1978) but rather exposed portions of a much larger ionized region.
Both the image and the contour diagram show the strongest [Sill] enhance-

ments on opposite sides of the nucleus. These “circumnuclear” enhancements
are well within the 3-sigma boundary of the [Sill] emission and can therefore
be regarded as being real. The highest [SIII]/Ha flux ratios (1.5 - 2.0) are
approximately 5 times higher than the ratios that characterize most individual HII
regions (see Figure 4-1). 3

Together with the nuclear ridges, the circumnuclear
enhancements define a shallow arc which rises from the major axis roughly 50”

^ oung et at. (1988) obtain 2 - 3 times higher [SIII]/Ho flux ratios for the NE enhancement.
This difference is mostly due to the higher amounts of [Sill] surface brightness that they find
in this region. The SYV enhancement is also greater by a factor of 1.5 - 2.0 in their data, again
due to higher values of the Sill] surface brightness.
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(-90 pc) southwest of the nucleus, culminates about 10” (160 net , ,k
of the nucleus, and falls back to th • .

P o the northwest

- —s. Such an
^ ^ *

^at is highly inclined to the hue of i ‘CT T'
:;:r

,h

;

major

r ,mpi,es -— - ». jstr.r
,hert

-

,ha—
P niphes a toroidal geometry with anner ra tus o - 18 (230 pc) and an outer radius of -40” (630 pc). The lack

ionized

' ° W°UM be due *° ,he dust lying behind most of thetontzed gas. Alternatively. the arc of extinction could be tracing a half-shell ofgas an dus, which has been shaped by the central burs,. The southern halfhe she,, would then be absent, thus implying a major eruption having occurredtowards the South. This scenario ,

c TTT it n ,

‘ Ver
’ has tr°uble explaining whv the

S Il.
; Ha flux enhancements are greatest on opposite sides of the nuclear' reg,on

unless the shell ts especially weak along the minor axts. In its favor are recent

'

tg resolution maps of HI 21 cm emission which show arc-like lobes of atomic gas
° ,h

;.

n °r,heaSt and n0r,hweSt of starburst jus, beyond the obscurin.
arc (\un et al. 1988).

To translate the [SIIIj/Ha flux rattos into visual extinctions, it is necessary
to adopt a -nominal” .SIIIj/Ha flux ratio that is free of any redden.ng effects

'

Examination of Figure 4-5 shows that the lowest flux ratios appear to the South
and are in the range of 0.2 ± 0.1. These ratios also exist in the data of Young
ft al. (1988). even though a higher nominal ratio of 0.5 is adopted by them for
dereddening purposes. Such low ratios have also been found in HII regions of
the Large Magellanic Cloud (Dennefeld and Stasinska 1983). Examination of
Figure 4-1 indicates that these ratios are associated with low O/H abundance
ratios of about 2.0 x 10“ 4

which, in turn, imply (NIIJ/Hq flux ratios of 0.04 ±0.02
(McCall et al. 1985; see also Chapter 3). Spectroscopic observations of M82 by-

McCarthy et al. (1987) give much higher [NIIJ/Ha flux ratios of 0.5. however,
which are more typical of solar abundances (O/H 7.0 x 10~ 4

). Therefore
the near-solar abundances inferred from the [NII]/Ha flux ratios in M82
appear to be inconsistent with the “Magellanic-type” [Sill] /Ho flux ratios that
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are evident to the south of the nucleus ,

i .
- .

Llne emisslon due to processes otherthan photoionization by OB-type stars could k* • , .

P — her

low [SIII1/H> fl + • u

e C°n nbutinS to anomolouslvlo.
I
III]/Ha flux ratios that are observed (McCarthy et al. m7) Fafed

'

b .

PerP‘”mg S,,Ua,i0n ' 1 haw ohosen to derive ,he following extinctions

thill"

3 redd™m6 ' free SSII ')/HQ fl“ »«° equal to 0.2. My reasons for

.

°,Ce are ' a ' Ul * h ‘gher Value would 'ead to the derivation of negative.neons to the south of the nucleus, which would be unphysical, and (b) theextinction depends on the raUo of the observed flux ratio against the nominalux ra ,o and ,s therefore insensitive to the physical origin of the nominal fluxo and to systematic offsets in the two ratios due to possible calibration errorSpatial variations the nominal flux ratio are presumed to be negligible. Thispresumption could be in error however if 4 •or, now ever, it different ionization and excitation
processes are operating at different sites.

Visual extinctions were derived from the observed [SIII]/Ho flux ratios
according to

-4
t
. = ^^>{log{f{\Sl II])/ — l°9 {fo{{S11 1]) /fa(Ha)}], (4 _ 6)

Where /„([5///:)//0 ( ffa )
= 0.2, and where a reddening law similar to that found

in the solar ne.ghborhood has been adopted (,. t„ van der Huls. curve No. 15; cl
Johnson 1965). Figure 4-5(b) shows the resulting spatial distribution of visual
extinctions. The extinctions range between .4,. = 0 and ,4t. = 7, the highest
value corresponding to an optical depth of dust at 9532 A of 2.5. The regions of
greatest extinction are located beyond the central starburst, near the extremities
of the shallow “arc.'' Such peripheral enhancements in the obscuration are
consistent with the “limb darkening" effects that would be created by an inclined
annulus of dust.

It is interesting to compare the above-derived extinctions with the correspond-
ing continuum-band surface brightnesses at red and near-infrared wavelengths
(see Figure 4-6). Both continuum-band images show a band of darkening that
diagonals across the major axis approximately 20” NE of the nucleus. This
feature closely matches the region of highest extinctions as determined from the

[SHI] /Hex ratios. The (A6563 - A9532) color of this feature (see Figure 4-7)
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is between 1.0 and 1.2, or roughly 0.4 magnitudes redder than the res, of the
A953

^: :

h
:
——

i

isuaI—— *0 ,ha,7an

7 to,ai

r
tinction wouid be ab°ut 2 -s mag

-

™

s is »««%
a o L;

" r
the Peak ined f- -He [SHIJ/Ho fluxOS. Because the stars are distributed throughout the disk and the ionized gasIS more concentrated towards the center of the disk, a difference in the derived

extinctions is to be expected. An idealized geometry which has the obscuring
ust coextenstve wtth the stars (so that the attenuation of the starlight goes as

1 ~ 1M but foreground to the tonrzed gas (so that the emission-line attenuationgoes as e
) would lead to stellar and nebular extinctions that differ by a factor of

To the SVV of the nucleus, the continuum imagery show other less prominent
< us lanes, one of whtch is coincident with a peak in the nebular extinction.

ts region - 40" from the nucleus - is no, nearly as reddened as the NE dust
lane, its (A6563 - A9532) color being only about 0.9. The corresponding visual
extinction would be about 1.9 mag, or roughly 3 times lower than that derived
Iron, the nebular lines. The rest of the disk has (A6563 - A9532) 0.7 - 0 8 which
would correspond to an extinction of about 1.3 mag. This agrees to within 0 2
mag with previous estimates based on (B - V) colors (O'Connell and Mangano 1978
and references therein).

4.6 Nuclear Obscuration

Near the 2.2 /nn nucleus, the derived extinction is about 5 magnitudes. This
is somewhat higher than the extinctions of .4, * 3 that have been derived from
comparisons of the Ha and shorter- wavelength H(3 fluxes from the same region
(O Connell and Mangano 1978 and references therein; McCarthy et at. 1987) but
is considerably lower than the 14 - 25 mag. of extinction that have been obtained
from ratios of the longer-wavelength Bra and Br7 fluxes (Willner et at. 1977;

Simon et at. 1979; Rieke et at. 1980). Such wavelength-dependent extinctions

have also been found in the nucleus of NGC 253 (Waller et at. 1988). The
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':fZ= ~r:t - :Tr
• rr~fc ~

threshold optical depths that are observed (Mathis 1983,

^ " ""

the 'SHIl ItT
Ct

T
k

T
nUC ‘ear eX,inC,1°n Can be b>' sparing

f
II] °

h

M32/“ fluX fTOm th' ""'-I 25" with the corresponding (SI„: lg 7' UX

\
" H °UCk '' ^ <1984) - The ' heoretical A0.9532.-A18 7 ra„oof enussivities has been found to depend weakly on the electron density buto vary significantly with electron temperature. A, densities ofM 0 = m-

T
° “ bee" cakulat «l t° range from 0.97 a. T, = 7500A to 2 7 atA = lo.OOOA ( Htppelein and Goudis 1986). The observed ratio of fluxes

“ 7-
A 0f ,his ra,i° With theoretical values - assumingr(18.„m,M9^ m) = 0.6 (Herter et al 1981, and the near-infrared reddeningcurve of Rteke and Lebofsky

( 1985) - yields extinctions of 9.2. 14.0. and 16 9

'

mag. at electron temperatures of 7500 K, 10.000 K. and 15.000 K respectively
ese extinctions agree reasonably well with the extinction derived by Simon et
(19,9 > fr0m Bracket, -line observations. An even higher extinction of 20

77„
CM
U f

enVed fr°m 3 COmpariSOn 0f ,he mid-infrared 18.7 and 33.4 pm lines
of 1SIII; (Houck et al. 1984) (after setting the electron density equal to 210 m ~>

as determ,ned by Duffy e, al. [1987’ from observations of the density-sensitive
10111 52 " m/88 "m line These various measures of extinction further
corroborate the “skin-depth” effect of wavelength-limited penetrating powers, as i,

applies to the dusty nucleus of M82.

4. 7 Extinction Corrections

The derived extinctions at 656.3 A and 9532 A have been used to correct the
distributions of Sill and Ha emission according to

fo = f 10
0 . 4.4

(4 -

The resulting “extinction-free” distributions of line emission are shown as images
in Figure 4-8 and as contour diagrams in Figure 4-9. It should be noted that
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the innermost regions near tV^ o ,

these figures indicate. Thf Br
;'"‘eUS C°Uld be s'Snificantly brighter than

and Rieke e, a/.
, 1980 , suggest tW the" TTT’ ^^ ^ ^

is more like 5 x ltr 12
era cm~ 2 -> -s'"

0 ' 0I1 '‘ ree Hq surfaee brightness here

the contoured value The ^3
' ^^ *“«*« 'ban

(Carls, torn 1988) a,so sugge Tx^hT“^ ““"" 2°" * “»

* thermal Brehmstrahlu"
W

of the “extinction-corrected” H •

UP ermore
’ the major axis— »;“

. »rz-at^-r
"irn a,

Beyond the innermost regions the

tn a pronounced bar or disk-like configuratton whLTxtetds
out to a radius of almost 1 knr TV/ *

J -

, , ,

tmost I kpc. This contrasts strongly with the original Homorphology whose major axis extent is less than 0.5 kpc The total r , , „“ '<’ •' * r“ °< ™. t.

'* wi,iin^ » • » -
aiue. At an assumed distance of 3.25 Mpc the total 1

.. . .

TiTfn \ - -- ml]
P ’ tne total Ha luminosity is then

53

' " X €rg S
’ and the total ionizing luminosity is V, =

St
b rerombm

;

,,on at an^

—

.

’
1 y If ,he 10n,21ns radiation field is produced by

o OB-type stars, and ,f a Salpeter-type IMF is adopted (see Appendix A), the
resulting star formation rate would be SFR = 6.7 A/0 yr~\ Letting this activity
e rstnbuted in a disk of 1 kpc radius. I estimate the mean s.arbirth surface

NCrTtVV n

'SFR) = 2133 ^ G»r_1 ’ « ">««*>* •"« that measured in
' G

' a11" d al 1988
» and about .50 times higher than those inferred for

the nuclei of MIDI and the Milky Way (see Chapter 6). Addition of the heavily
obscured ionized gas detected a, Bro and .3.3 mm would approximately double
these figures. Further adjustments towards higher values would be necessary, if
the dust is absorbing a significant fraction of the ionizing photons (<•/. Smith et al.

1978 ).
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A complete re-evaluation of these stellar Ki +

[SOI] and Ha line emission arise from phvsi I

" d ^ re<iUired
’ if ' he

by OB-type stars (McCarthy et al i 987)

Ca pr° ce“ e -' other than photoionization

would create an unusually low value for the inf

h°Wem
’

lor the infrared excess (IRE) as defined by

IRE
bol - L boi/X,hv{Lya).

(4 - 8]

Adopting L bo i = 39 x into r (v>-

,
. • , •

,

" Z ® (R,ce ei al 1988) and .V, = 9 7 x in 53
(Which mcludes the heavily obscured component) I

‘

,

9.4. Similar IRFs b u
mponent ). I compute an IRE equal to

the Milky Way ,£ **“^ “*» -
•Ha, wind-driven shocks provi h 7^7^-^ ““ argU '"™'

1987). The fact that ,h F
10nl2atl0n McCarthy e, aline tact that the FIR emission is extended (Joy at al 19S 71 f a

Tzrzzz: ,he

::,er

onf

Of ionization and infrared luminosity. The unusual Z t T""*
rat, os tha, have been observed (McCarthy e 7

°
'

lr ***** -—i ou,

s,

z:rs

tadius. and thereby enlarging the regime of excited
naga. private communication).

f.8 Comparisons with Other Tracers of Gas and Dust

alon'^hTh'
10

',

aSCan ^ ,he Vi$Ual eX,inCti°n aCt0SS maj° r is P>»«ed
g high-resolu„on scans of the CO, Br7 , and H2 (2.12 pm) emission as

" e

.

as e - 1 <™ absorption. Several correspondences between the visual
extinction and the other tracers of gas and dust are evident. In particular the
two enhancements in molecular hydrogen emission seem to coincide with peaksm t e visual extinction. These two peaks (located 14” NE and 16” SW of the
nucleus) are also seen in the CO and HI distributions. However, there are other
peaks in the visual extinction that do not have any apparent counterparts. The
most notable of these is located 40” SW of the nucleus. It is possible that this
region was poorly sampled at the other wavelengths, however. The larger-scale



mappings of CO by Sutton et al (198*0 Ol ff , _

"• ,i984)
*

Youngf '

-Jr:i r“ ;;rrr;-rr-—1—
distributions

^ ^^ "* ‘wo

some of the most obscured reg.ons in the extinction map [ T ^
o'-

( 1987), these ridge lines delineate the -walls 0f h «. t

‘°^ f '

!" “ - -h noting that two more rid ^e 2

J

in the SE that intersects
S an ° e drawn — one^ nidi intersects the maior axis ID” NF r>f + n ,

the SW that intersects the heavily obscured region 40” SwTth^
^

latter ridge of CO emission is also evident inZJJ ,

^
—I of as

; :zzzrjr*t hw »^

—

displacement of 20* - 30* and a SW Ir^^ '

"fztTh r be assoc,ated wi,h ,he iimb - dark™ing--r:r
g. which the outer -walls* diverge. The 3-dimensional distributions

hoover

' ^ ' ’0t m0Ie C°mPliCated ,hM th ‘ S S™^ Piolme allows,

OO"

^ F
,;

gUre 4^ 12 ,he "extinction-corrected” Ha emission from the inner
15 Plotted to the same scale as the 3.3 mm, 10 pm, CO, HI, and 2 2

"m CorresPondences between the Ha and the other tracers of ionized
gas and warm dus, are evident. The Ha, 3.3 mm. and 10 pm emission are all
s tonges, 12 to the SW of the 2.2 pm nucleus. This site is also brightest at Bra
(Simon et al. 1979).

1 e ' era meS ° f eviden" are now pointing towards the presence of a small
two-lobed structure (R = 200 pc) in the center of M82. The lobes are made
up of molecular, neutral, and ionized gasses, as traced by the H,. CO HI
and HII emission that has been observed. The spatial relationships between
the various gas phases remain uncertain, however. The new interferometric
maps of CO emission have adequate spatial resolution for the comparison but
are ambiguous with regard to what the CO emission is really tracing. The HI
absorption-line map is more easily interpreted in this regard. The H, (2.12 pm).
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O o .

P y’ pmate communication). The well 1 i•3.3 mm continuum emission ,

well-resolved

synchrotron emission and thermal reralat

0"

°

f n0n,her-1—- emission ^^

t IraTers “!rr
COm

d

P°nentS ' The *“*' of this segregation Is^haT"

with he :
'°mZed g“ “ d dus * “* interior to the CO and HI lobes.

I d

2 emiSSIOn perhd P s delineating the transition zone (Telesco 1988)...proved observations of the neardnfrared tracers of ion, zed and molecularhcdrogen, conducted with the newly available infrared arrays (D. Depov privatecommunication), will no doubt help to untanele the •

' P ' P ‘ a*e

ISM near M82’s nucleus.
? °US C°mP0ne" tS °f th e

4.9 Discussion

mrZTZT “T" M82 ’

S "UCleUS iS SU?geS,iVe °f a r'"« (Nakai et

s

,

;

g

1

htly -WOUnd sp ' ral— < L° ef al. 1987) seen a, high inclination.
Similar nngd.ke structures of molecular, atomic, and ionized gas have been
observed around the nuclei of several face-on barred spirals (Combes 1988). One° the best observed examples of the “ringed barred” class of galaxies is NGC 1097

S

,::

S Ha h0t SP° ,S enclrcllng thc nucleus at a radius of 700 pc (Meaburn
e « . 1981 ). This circumnuclear ring is also evident in the radio continuum
(Wolstencroft et al. 1984), at 10 pm (Telesco and Gatley 1981). and CO
(Germ et al 1988; Combes 1988). Combes (1988) ascribes the r.ng to an inner
Lmdblad resonance (ILR) that has been set up inside the stellar bar. As the
bar perturbation transfers angular momentum outward via spiral density waves,
dissipative material falls inward and piles up at the ILR. Perhaps the gaseous

'

structures in M82’s nucleus are consequences of similar dynamics.
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0f *“hanCe<l V ‘SUa ' «*«*.

of enhanced CO emission. These two
" •°’ " “* m ' erSeC,ed b-'’ “ndgedines”

extremities of an obscuring arc 71Z ^
represent wind driven -‘walls" of molecular h ,

" ^
-he ring-hire intersection between the walls and the1^7*7“ 5r

,P°"d ‘°

pile- up of gas and dus, should be in the dish and hence in the r .evident from th#» rlictrik *• r .

me ring. 1 his is

map of the 21 cm Hf /V
recent high-resolutionF me zi cm til emission (\un. Ho andlniosot l- , ,=~rz:-7~~

. :::::::z zzz »
IS still intact to the Northwest u

^ourneast but
-Northwest. The obscurmg arc could therefore represent theinner porttons of such a shell remnant

.

Although these comparisons do no, lead to a well-defined morphologv, theyr unforce the p.cture of a circumnuclear pile-up of dus, and gas that has been

'

shaped by the starburs, and is now collimating the subsequent eruptions. They
therefore support the "dusty chimney” scenario - with the “chimney” possibly
e.ng more open to the southeast than to the northwest of the major axis. Theestimated mass of the pile-up. based on the distribution of extinctions and a

standard A*M. conversion, is roughly 4 x 10* AT0 ,
or about half of the dynamical

wi in t is region. This estimate most closely matches the H, mass that
ts obtatned from an “optically thick” interpretation of the CO flux measurements
(Wing and Scoville 1984). The energy spent in displacing the mass to a mean
rad, us of 500 pc is estimated a, -10 5 « ergs, or about the same as the thermal
energy of the x-ray emitting gas (Watson el al. 1984) and the kinetic energy of
-he Hq filaments (Bland and Tally 1988). Higher-resolution maps of the CO and
HI in the disk of M82 will be needed to better delineate the mass distribution and
energetics of this circumnuclear pile-up.
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Table 4-1

Adopted Properties of M82

Type0
’ 6

IrrII Amorphous

R. A.( 1950

)

c

09 6 51™ 43.

9

5

Declination( 1950
)

c

69° 55’ 01”

Radial velocity ( heliocentric)^
214 km s' 1

Position angle of major axis 6

65°

Inclination 6

81.5°

Distance-^

a C i .

3.25 Mpc

a
Sandage 1961

6
Sandage and Tammann 1981

d

he positlon of the 2.2 /mi infrared peak (Rieke et al. 1980
Olofsson and Rydbeck 1984; Sutton et al. 1983

e
Lynds and Sandage 1963

f Tammann and Sandage 1968



Table 4-2

Observing Log

Telescope

Pixel size

Field of view

MHO 1.3m

0.81”

o’ x 6’

Filter

A 0

FWHM
Integration time

6/19/86

[Sill]

9532 A

43 A

1633 s

“I”

8380 A

2050 A

(103 x 2)

6/21/86

Filter Ha *‘R”

A 0 6563 A 6040 A
FWHM 36 A 1504 A
Integration time 340s 20s



Figures

Figure 4-1

Sill /Hq flux ratios in galactic and extragalactic HII regions.

a. Observed correlation between the [SIIIj/Ha flux ratio and the visual

extinction. The plotted data are taken from McGregor et al. ’s (1984) observa-

tions of compact HII regions in the Milky Way. Their estimates of extinction are

based on the observed infrared colors of the individual HII regions. The circles

denote SUP / Ha flux ratios based on measurements of the blended emission from

[Sill] A9532 + Pa8A9546. The stars are based on measurements of the unblended

SIITA9069 emission which has been scaled up to the predicted 9532 A value by

multiplying by = 2-44. The "zero-point" (extinction-free) Sill Hq
flux ratio for compact HII regions appears to be lower than is observed in classical

and giant HII regions (see next panel).

b. Aleasured and modeled correlations between the dereddened Sill Ha
flux ratio and the 0/H abundance ratio. The plotted data are taken from

Dennefeld and Stasinska's (1983) observations of classical and giant HII regions

in the Milky Way and nearby galaxies. Corrections for extinction are based

on measurements of the Balmer decrement. The circles represent galactic HII

regions. The triangles and squares respectively denote HII regions of the Large

and Small Magellanic Clouds. The star represents the blue compact galaxy

Pox 4. The plotted curve is derived from the “theoretical sequence’' of giant

extragalactic HII regions as modeled by McCall et al. (1985). The offset

between the measured and modeled correlations may be due to an offset between

the model-dependent O H ratios derived by Dennefeld and Stasinska (1983) and

the corresponding 0/H ratios that are plugged into the “theoretical sequence" of

McCall et al. (1985). For reference, Dennefeld and Stasinska ascribe 0 H =

3.47 x 10~ 4
to the Orion nebula.
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Figure 4-2

C’CD images of M82 in the light of Ha and [Sill]. Each image is a logarithmic
representation of the surface brightness in the respective spectral line. The pixel

size is 0.81" and the total field of view is 1.7' x 1.7' (1.6 kpc x 1.6 kpc).

a. Continuum-subtracted Ha emission.

b. Continuum-subtracted Sill emission.





Figure 4-3

Contour diagrams of the Ha and [Sill emission from M82. The pixel size

is 0.81 and total field of view is 2' x 2' (1.9 kpc x 1.9 kpc). The filled triangle

denotes the position of the 2.2 pm stellar nucleus, where reference has been made
to the accurate positions of several optical “knots", as determined by Bettoni and
Galletta (1982). The Ha emission (a) is contoured logarithmically beginning

at 10- 15 erg cm~ 2 s~ ] arcsec~ 2 with contour intervals of 0.25 dex. The Sill

emission (b) is contoured beginning at 10
-15 5 erg cm

~ 2
s
-1

arcsec~ 2 with contour

intervals of 0.25 dex. A 3 x 3 pix boxcar smoothing function has been applied

in the contouring, except in the two lowest contours of the Sill image — where

cruder smoothing has been applied to increase the signal-to-noise.





Figure 4-4

Imagery of .he SHF Ho flux ratio compared with the Ho emission. FieldOV": U
;

L7 ,L6 ^ X 16 ^>- Enhancements in the (SIIH/Ho flux
rat.o ,b are depicted as regions of darkness. Note that many of these regions aredenial to the dark lanes that break up the Ho ,and red continuum) emission (a)nto an assemblage of -knots-

, of. O'Connell and Mang.no 1982 ,. Also note thedark regions on opposite sides of the Ho emitting nucleus.
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Figure 4-5

Contour diagrams of the [Sill] Ha flux ratio and the computed visual

extinction. Field of view is 2' x 2' (1.9 kpc x 1.9 kpc). Only those regions

having [Sill surface brightnesses higher than 1.3 x 10~ 15 erg cm
~ 2 s" 1 arcsec~ 2

( 3-sigma above the noise in the subtracted sky background) are plotted. The
Sill Ha diagram (a) is contoured from 0.0 to 2.0 in intervals of 0.2. The

diagram of \isual extinctions (b) is contoured from 1.0 to 7.0 mag. in intervals of

1.0 mag. The visual extinctions have been computed assuming an extinction-free

Sill: /Ha flux ratio of 0.2 (see text). The filled triangle designates the position of

the 2.2 gm stellar nucleus.
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Figure 4-6

Red and

( 1.9 kpc x l.{

are contoured

with contour i

near-infrared continuum emission from M82. Field of view is 2' x 2'

' kpc). The red (A6563) (a) and near-infrared (A9532) (b) continua
logarithmically beginning at 1(T 16 - 5

erg cm ~ 2
s
”

1

aresec~ 2 A
"

1

intervals of 0.1 dex.



N82 9532A Continuua (log scale)
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Figure 4-7

Continuum-band color across M82. Field of vriew is 2
'

x 2
'

(1.9 kpc x 1 9

kpc). The ( A6563 - A9532) color (a) is contoured from 0.6 to 1.3 mag. in

intervals of 0.1 mag. The corresponding color of Vega has been set equal to zero

Crowding of the contours near the periphery is an artifact of having apodized the

continuum images at the 3-sigma level. For comparison, the distribution of

nebular extinction is included (b).



"82 I6563A - 9532AI Color
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Figure 4-8

Extinction-corrected images of the Ha emission. Field of view is 1.7' x 1.7'

(1.6 kpc x 1.6 kpc). The emission is displayed at two different contrast levels,

the lowest (a) being logarithmically scaled and the highest (b) being linearly

scaled. These images show the straightforward application of the extinction

correction to the entire Ha image. No apodization at the 3-sigma level has been

applied. Therefore spurious enhancements are evident beyond the main body of

the galaxy.
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Figure 4-9

Extinction-corrected contour diagrams of the Hq and Sill emission. Field

of view is 2' x 2' (1.9 kpc x 1.9 kpc). Apodization of the Sill image at the

3-sigma le\el has been applied, so that there is no extinction correction beyond the

lowest [Sill contour. Note the identical morphologies of the Ha (a) and Sill;

(b) emission in the central 30" x 20". The surface brightness in both spectral lines

is contoured logarithmically in intervals of 0.25 dex. The filled triangle designates

the position oi the 2.2 //m stellar nucleus. Note that the "corrected” Ha emission

and the centroid of the 2.2 /an emission do not share the same major axis. This

may be due to underestimated extinctions having been applied near the nucleus.
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Figure 4-10

Major axis scans of the visual extinction along with other tracers of gas and
dust. The scan of visual extinction represents a 8” average across the minor axis.
The scans of C 0 and HI emission are taken from Lo et al. (1987) and references
therein, where similar minor-axis extents are involved. The scans of Bn emission
and of the H 2 S(l)j/Bn flux ratio are taken from Telesco (1988) and references

therein.
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Figure 4-11

The 12
C'0 emission and visual extinction compared to the same scale. The

12C0 map (a) is from Xakai et al. (1987), where the resolution is 16”. The

mildly curved long dashes trace the CO “ridges.*’ as noted by Nakai et al. The

short dashes and steeplv curved long dashes have been added by the present author

who sees evidence for more ridges. These various ridges intersect some of the

most obscured regions in the map of visual extinctions (b).
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Figure 4-12

The extinction-corrected Ha emission and other tracers of gas. dust, and
stars. Only the inner 60" x 30" of the Ha emission is shown. The surface

brightness is plotted logarithmically beginning at 10~ 13
erg cm ~ 2 s~ } arcsec~ 2

with contour intervals of 0.1 dex. The 3.3 mm continuum interferometric map is

taken from Carlstrom (1988). The 2.2 /mi and 10 //m continuum maps are from
Rieke et al. (1980). The 12CO emission is from the interferometric mapping by

Lo et al. (1987). The map of HI optical depth with positions of two OH masers

(crosses) is from Weliachew et al. (1984).
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CHAPTER 5

NGC 1569

5. 1 Abstract

Ha. R, and I-band CCD images of the “post -eruptive” irregular galaxy NGC
> • are presente

. The discovery of two arclike structures of diffuse Ha emissionoca ed more than a kpc beyond the star-forming bar is reported. These features

With oth

° eStimate an age f°r the near ' nuc^ar starburst that created them along

f
: .

her
.

filame”,ary “ d armlikf P-viously seen in Ha photographs
ons.derat.ons of likely outflow geometries and kinematics lead to an es, .mated age10- 30 Myr. agreeing with the age that Israel and de Bruyn (1988) derive basedon cons.derat.ons of synchrotron losses in the nonthermal radio spectrum.

The gravitational and kinetic energies associated with the Ha arcs are
estimated to be orders of magnitude higher than can be provided bv a single
supernova explosion. Coherent outbursts involving thousands of supernovae each
cou t explain the diffuse Ha features without exceeding the s.arbirth rate inferred
irom the total Ha luminosity of the galaxy.

Comparisons between the line and continuum imagery show the inner bar to
be populated with HII regions of high Ha equivalent width and blue color. These
regions are located on opposite sides of the brightest continuum emission which,
in turn, is offset from the dynamical nucleus as defined by the outer B and V
isophotes. A starburst history incorporating these observations is proposed and
discussed.

5.2 Introduction

NGC lo69 (\ II Z\v 16, Arp 210) is a Magellanic-tvpe irregular galaxy located
in a relatively nearby and uncrowded part of the M8l/IC342/Maffei grouping
of galaxies ( Tully and Fisher 1987). Its unusual Ha emitting morphology
prompted Zwicky (1971) to classify it as a “post-eruptive system similar to

M82. Since then. NGC 1569 has been the subject of many observational studies

involving photographic imagery of the Ha filaments (Hodge 1974), Fabry-Perot
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interferometry of the Ha velocity field (de Vaucouleurs ef al. 19-4 H V ,1981), aperture synthesis mapping of the raH- *•

’ ,4
' de ^^ouleurs

B, gnel, 1976: Condon 19,3: Israel and de

em ‘ SSi°n “ d

emission (Reakes 1980), 2.6 mm observations' of the »C0 e
^

1984) and T TV TR k
^ emission (^oung et al984). and I \ -IR photometry of the starlight (see literature review bv W van

'

idnel as presented by Israel togfl'i tl •

an

relatively nearby ,rr gZ
a

'

ri fi

““ ‘ ™«U,
.

, ,

'
' 8 galaxy

’ nch ln HI- poor in metallicity. extremely

recently u!d'

““^ ““ " br°adband C°'° rS
- ^ W mass, it hasrecently ndergone a strong burs, of star formation, whose repurcussions are

nr’r d TSh

r'
,he ele0,rOmagne,ic sPectrum. The burs, appears ,0 have

Lhlv r Td
"
l

°U ‘ flOK °f i0niZed 695 ’ hat " di—d P«Pendicular the
o .

nc ined d.sk ( de \ aucouleurs ef al. 1974). Such intense activity from a

.wImT

l

SyS,em man>' Wa>'

S mimiCS ,he gl0bal ^bursts that are

VI

.“S
...

° araC,enzed ,he beginnings of earlier-type galaxies such as the

;

‘

*
l

and

f
31 (Sandage 1986: see Chapter 2 ). Therefore, the abilityO study the NGC 1569 starburs, a, close range represents a valuable opportunityo better understand the early stages of galaxy evolution and perhaps to better

'

diagnose the 'primordial” galaxies that are jus, now becoming detectable at high

In this chapter I present further evidence for a major starburs, having erupted
tears ago from the nucleus of |GC 1569. The evidence is in the

form of Ha emitting arcs of ionized gas. whose displacement from the bursting
center are used ,0 estimate the burs, age. The most recent high-mass star

'

forma, ton ts explored by analyzing the Ha. R-band, and I-band imagery The
brightest Ha emission and blues, colors are found to be well-matched wit'h one
another bu, significantly displaced from the once-bursting nucleus. The relative
displacements, ages, and burst strengths are discussed in the context of the
galaxy’s recent history.

Table 5-1 lists the properties of NGC 1569 that are adopted in this chapter.
As usual, the most controversial property is the distance. The distance that
I have adopted is based on the observation of resolved blue stars in \GC 1569
that have B magnitudes of 20.2 (Abies 1971). By applying a calibration of
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.he absolute magnitude of the brightest blue stars as a function of M „f ,hparent galaxy, Arp and Sandage (1985) deriv
* fi f he

(m - \I)B = 29.0 = I n „ Y ",
d aPP«™t distance modulus of

[1974] who obtain similar results

^ ^ VaUCOuleurs «'•

of neighboring star BD^ 50. Z^l**°TT
j

, .

^raei (iy«8) derives a large foregroundreddentng to the star of E
{B-V) = 0.55 and to the galaxy of E

{ B -V) - 0 56e resulting extinction-corrected distance modulus is then (m - U) c = ,6 7 1 0 6M-hich corresponds to a distance of 2.2 ± 0.6 Mpc.
~ ° -6

a. this distance the mysterious central objects A and B (firs, noted by Abies

p
" ,e blue m

a

8nitudes of -13.3 and -12.5 mag respectivelyBy contrast. .30 Doradus has d/E * -10.3 mag. Therefore, the centra, objects
' er super-star clusters -a times more luminous than .30 Doradus

( Arpand Sandage 198o) or simply foreground blue stars (Abies 1971 ,. The spatialcoincidence between objects \ and R and tV, u +

- -
,

.

J A and B and the photometric nucleus (see Section
oo). along with the compost hot superg.ant spectral classifications for both
° JeC ' S 2 1 B° I) - a" d ,he similarities between the radial velocities of AB- and the HI centroid of NGC 1569 , Arp and Sandage 1985) provide additional
reasons for choosing the resident supercluster interpretation. Any larger distance

,

HUnter dai m2) "'0uld maka ‘ ha clusters even more luminous and
1 ™ '

'

!° explain ' High-resolution imaging and spectroscopy of A and B by the
Hubble Space Telescope will be helpful pinning down the true properties of these
intriguing objects, without confusion from the ambient galaxy light.

The adopted position angle of the major axis and inclination of the disk
are based on the outer B and V isophotes as mapped by Abies (1971). The
inclination appears as an important ingredient along with the distance when
computing the displacements and kinematic ages of the arcs.

5.3 Observations <\nd Reductions

A summary of the CCD imagery obtained for this study is provided in Table
The Ha, R, I, and SHIj-band images were obtained at the Cassegrain
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focus of the Km Peak #1 0.9-m telescope during dear weather 1

With th f
~

secondary ,n place, the resolution on the RCA-3 CCD chip is 0 86and the field of view is approximately 7.3’ x 4 5' C ar a ,

’

‘he •'‘‘“OP*. » ^at the nearby 10, h magnitude star BD^O 7/rJUS ‘ n°r,h * - »<* ^refore ou, of hjs w^
missing ou, on imaging the northerly extremities of NGC 1569 as well H

Zlb“,
e W ‘der - field^°‘0-P«c i-ges of Hodge ,1974) indues ,17’

n bular emission has been missed Thp fr>liluissea. Ine iollowing sections will b^

Imaging at Ho was conducted using an interference filter (#810. A6563,pcovtded by Kit, Peak. The transmission characteristics of this filter comLd
: X‘

A blUe$hift ° f NGC 1569 -* * transmission of Ho
j"

with 0./3 transmissivity. NII’l \ 6=184 1 w;*i, n *

with 0 46 1
••

(Ao 6-584) with 0.16 transmissivity, and NIIJ(A 0 6 .548
)‘h °' 46 tranSmiSS1V1,y

- Thf contamination from [Nil] is expected to be
percent ,n emission (Kenn.cut, and Kent 1983) and 4 percent in the present

imagery. All subsequent Ha fluxes are corrected for this effect.
Imaging at R and I bands was conducted with the Mould R and I filters thatare commonly used at Kit, Peak. An attempt was made to image a, [Sill! ( A9532

)

ustng a 144 A bandwidth filter centered on 9540 A. The resulting image suffered
rom strong fringing, however, with only the brightest HII region rising sufficiently
above the noise for further analysis.

To calibrate the galaxy imagery, images of the sdOp-type standard star
>8-4211 (Stone 1977) were obtained through all filters. Images of an

illuminated screen inside the dome were taken through each filter a,’the beginning
of the night for the purpose of flattening the background variations in the galaxy

'

images

Initial processing of the CCD images - including bias averaging and
subtraction, darkframe subtraction, and Hatfield averaging and division - was
earned out at Kit, Peak using the Mountain Photometry Code package. Further

1
Kill Peak National Observatory is operated by the Association of Universities for Research in
Astronomy, Inc., under contract with the National Science Foundation.
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processing including image arithmetic, median filterin
Photometry, and contouring - was conducted at the U

aper,U"
-mg the Image Reduction and Analysis Facility (IrajT”"

gt°n

Peak National Observatory Sv c
* ‘ F Software created at Kitt

standard star yielded the follow'

" ? ^ photometry on the images of the
, .

‘ a the knowing conversions between fl„v^ SUbtraCtl °n
* -d atmospheric eXtinctio^“

^
f(Ha)(erg cm 2

s
1

1,< x 10 H
^o(A6563, A\38)(ADU s~ 1

5- 1

f\( A6563)(er# cm 2
s~ l

,4
~

]

)
- i 4 x 10

11 RC (R band){ADV s 5 — 21

/( Sill )(erg cm -2 -1
= 4.2 10

14 #o (A9540, A\1U)(ADC s~ ]

15 - 3

f\( A9532 )( erg cm -2 -1
.4 1.3 x 1

0

—1

7

/20 ( / band)(ADU s' 1

).

Uncertainty in the derived fluxes primarily comes from the noise in the
subtracted shy backgrounds. The resulting uncertainties are estimated to be- ... - 0 erg cm - S

1

arcsec 2
, 6 I A ( A6563 )

=_- .3.9 x 10' 19

cm - s
]

arcsec 2 A -1
,

6 I( JSIII

«a(A9532) = 4.3 x IO-1 9
erg cm- s- arcsec’

,
“ me narrow- bandmages, the uncertainties correspond ,0 approximately 5 percent of the subtracted

v a ue; and for the broad-band images, the uncer,am, ies correspond ,0 about 1percent of the subtracted backgrounds.

To create an Ha image that is free from contamination by the stellar and
ne ular cont.nua, an appropriately sky-subtracted, shifted and scaled R-bandmage was subtracted from the original sky-subtracted Ha-band image (see
Appends B). The scal.ng was determined from synthetic aperture photometry
of foreground stars ,n the field of NGC 1569. Similar processing of the 1-band
and (Sill -band image was done to obtain a pure [Sill] emission-line image, weak

erg

4.1 x 10 16
erg cm 2

s
1

arcsec 2
, and

- J
ry

°
2A . For the narrow-band
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the Ha emission line.” I scdJd h!”

^

^ COntaminati<m by— — ,he seaim/r:,:::;:;;:: ::rr r,r
^

and R-band fibers (see Appendix B).
bandw.dihs of the Ha

As a check on the image nrocesdner T u

3' x 3' field surrounding NGC 1569 with , 7 ^ HQ «“*^ * h'

Kennicut, and Ken,
( 1983) th

*“ meaSUrad P h°‘-lec,rically by

correcting the detect! fl !

* ® diamrt" aP— . After

Ha flux of ,2.03 ± 0.12,
7“°" * ‘

NII
I> 1 a"

Kennicut, and Kent, ca.ue of(^L/x
uncertainties, the two values are in good agreement.

" '

0 .

4

Morphologies. Fluxes, and Colors

ob t ai ne^ after h

S "

°

W

5

t ^ ° f *00 1.569 that weretuned aft hav.ng subtracted off contaminating continuum emission from
< - and image and contaminating line emission from the R-band imagemmediatelv apparent is the enormous difference emission morphologies.

'

hile the red continuum emission is dominated by a central bar,ike feature
e Ha emission is lumpier, off-center with respect to the stellar “bar ” and

far more extended a, low surface brightness levels. Contour diagrams of the
s e ar continuum (Figure 5-2) and Ha emission (Figure 5-3) help to show these
aitterences with even greater clarity.

•5.4. 1 Diffuse Ha Emission

The extended Ha emission is particularly striking in its similarity to the Ha
P times and filaments that emanate from the more powerful M82 starburs, Both
systems of extended emission are currently though, to be the byproducts of recent
eruptions from the respective nuclei. The NGC 1569 system is characterized by
a bright arm-like feature to the West, filamentary structures radiating outwards
from the North and South, and two arc-like swatches of emission with large
southern displacements from the nucleus. All bu, the las, two features have been
previously noted (cf. Hodge 1974; de Vaucouleurs et al 1974). fnlike the
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classic H1I regions, the diffuse emission is not associated with
clusters. This is most clearly shown in the map o Ha 7 “ >,,“mg ““
line-to-continuum ratios) (Figure 5- 4 , w he h

^^ (
‘' £ '

up as dramatic enhancements in line emission^^T^77 T*™
Sh<>W

emission.
' e am ^lent continuum

The most prominent extended feature ; e *

arcm)n

St

^h^
^ ^ f° r * t0tal U

^

requirement ^7 " “d “ *"**«
L \ man continuum photons ner semnrl tu

rr; r, ,™t,J
. ^

°r

:
nergetiC C°Uisi0nS encounters between outflowing ho, gasnc coo er ambient gas. The twisted morphology that is evident in the presentHa imagery and ,n previous photographs (Hodge 1974), is reminiscent of the^corhscrew structure seen by Williams el a/. ,4984, in the northern p,ume of

7
t

° .

S ‘ ruc,ures ma-'- reP resent the limb- brightened “walls" that separate

1988)
°\

°“’ ngg“ from ’ hec°o1 neu ' ra l gas exterior to the outflow (c/. Sofue

.
,

'
d

ral hydr°gen °bserva,ions of NGC 1569 seem to corroborate this

IT' ; 77
“ ' aige arm ' Hke HI fea,Ure ' hat HeS «*""“> the Ho arm andHhich extends for more than 3 arcmin (Reakes 1980).

.

THe Vel°city fieW ° f the Arm is remarkably uniform, averaging -8x5 km s' 1

with respect to the systemic velocity of 77 km s ~'. If the Arm represents
gas flowing outwards from the bar in a direction perpendicular to the inclined
disk, then the measured radial velocity would correspond to a flow velocity of

This is less than one-tenth the flow velocity of M82’s “corkscrew”
as computed from similar considerations (Williams ei al. 1984). It is also
barely supersonic, thus constraining the energy available for shock heating.
Spectroscopic observations of collisionally-excited emission lines (e.g. the SII
UA6717, 67.31) doublet) from this feature will be necessary, before a reliable
discrimination of the ionizing source can be accomplished.

The ray-like filaments in the North and South can be traced back to a common
origin that includes objects A and B. This was first noted in a sketch by de
Vaucouleurs et al. (1974). based on the photographs of Hodge (1971). and is
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corroborated by the present CCD imagery a ,

the filamentary trajectories results
'

' S nCt ^^Shtd.ne backtracking of

2.5” Wes, of Object B, Z ill 21
** ^

Should no, be taken very seriously.

? " ° l>V10us,y curv<?d. so this

-*2:
e“:^;!

am

rr
y regions sh-

*—

—

respect to the systemic velocity (de VauToulursT^
b ' UeShif,et

'

Erected gradient is reported in de V l

’ H ^ °PP°sltelyP a in de \aucouleurs et al. 1974] ru* i

•

systemic velocity steadilv ric^c - + l •

* ^ le deviation from

ZZZZZttl'zr r,r
' i"";

of 132 km s' 1
Thi r •

P a maximum outflow velocity
nib dispersion is roughlv half that of TVT80 ’ m

(Williams et a/. 1984 ).

that of M82 s filamentary system

As in MS2. the velocity grad.en, along the minor axis of NGC 1569 c K
,o

:r
d gas ,n p°,ar ^ v^,:::;i

be

fi|

C '"° e ed lhe nio"or>s m terms of a hiconical outflow, whereby the Hfilaments are located on the suc/oces of the cones - the southern fila
- e larside of the southern cone, and the northern filaments

•i rrt The au,hors negiec,ed ,o n°te ,hat ,hf b“‘
with d ,

’ ° r the “*•« of the cones would have to increase
15 anCe ‘ n ° r er <0r ' he nlodel ,0 fit ,he observations (K. H. Bohm privatecommumcatron,. Either of these considerations are possible, and so theZL

ZZ22I2 I

far

h

fr°m d,SqUal,fied ' N°"' h"e iS * h“ - d-e for a decrease
lncreaslng distance from the nucleus. This observation

be used in dating the more distant “arcs.”

The faintest Ha features of a diffuse nature are the two arclike segments tothe south of the nucleus. Although the innermost arc is evident on a deep Ha
photograph by Hodge ,1974). no mention of it has yet to appear in the literature
lhe outermost arc seems to have eluded detection until now. The contour

- This situation would be reversed using the velocity Held of de Vaucouleurs (1981).



diagram in Figure 5-3 shows both arcs to Kp ™ u .

curvature consistent with a t

U§
5 concent nc, with radii ofn., stent with a common focus near objects A. and R TKarc

( Arc 1”) has nroiert^l m
J d T he innermost

an ionization budget equivalent t x ^O^Tym
‘

'

4

?

^ ^ *** ^
:*

* -- - *- j^~rriT:per

;router arc ("Arc 2”) is danifi r •

-tern Arm. The
“ Ms slSni ncantly fainter, appearing at the 1 9 , ,

.

present image. It is clearlv j *
• ,

° “ sigma level in the

and thus cannot be an artifact of the
'

lm age, however.

nc x 7U •

"" age processin
S- H is approximately 640Pc x 214 pc in projected size and is tomzed by the equivalent of 8 3 x 10« Lcontinuum photons per second Are on

10 Lyman

structure. I both artw^“T f
3 ^

**~ displacements would
Pe 'Pend,f U ' a - “ ^

biconical model of de Vaucouleurs c, „/ , j -j
'

u

Th'

of the ,

(19 ' 4) WOuld PIace them on the farside^the,southern cone with sligh„y ,arger displacements of 1.3 kpc and 1, kpc

°* 4 ' 2 HU Re9ions and their Ionizing Star Clusters

Visual inspection of the high surface-bnghtness por.tons of the H« imageShows the bar of NGC 1569 to be populated with a clutter of HII regions The

r;r:^r_
A

r
d B

:*
reiat,veiy de™ d °f-

jec s and especially to the West of them - discrete knots of Haemission are clearly evident. Several of these knots are no, round but appearmore like closely bunched ho, -dog buns. The silhouetting effects of dus, lanes
could be causing these distortions, by breaking up the light from a single HII
region into a small gathering of luminous “buns.” Some dust lanes are evidentm the continuum image, bu, none are coincident with the suspect dus, lanes in

e a image. B-band imagery may be more successful in bringing out these
anticipated features.

Table 5-3 lists the prominent HII regions in NGC 1569 along with their
positions, sizes, and cross-references. This list is far from complete (see Hodge
and Kenmcutt 1983) bu, represents only those HII regions, whose sizes and Ha
fluxes could be measured with some degree of reliability. Table 5-4 lists the
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‘T
°bjects - The Hq

or

ambient galaxy and thenTiding the Ha 2*7 f
““ COn‘inUUm l,gh, °f ,he

cluster equivalent width
'

UX y ,he remaimng cluster light. The

hence toU^^ ^ 7
* "*^ °f *^ »*•«*» «eld and

Widths measu 'Jd in NGC^,
“ ^ ^ ^««*

of 600 A S' ']
I

’ 569 oarage to about (950 ± 200) A with a dispersion600 A. Similar values have been found in the outer arms of M101 , see Chaoer
'

.

T^™P‘y >he presence of relatively h,gh-mass stars > 4 7,

?

•he ionizing clusters (A. Campbell, private communication). This inference

‘-I
SPeC,rOSCOPiC de,eC,ion of high-excitation species such as

it
,

.'

u
’ and [ArI,I1(A7136

) (Kennicutt and Ken, ,983)

A Listed a
77' ^^ ^ 90 P ° *° ,h' W«< <* object

sourcetA,

’ colnoides with the strongest radio continuum
- (Al mapped by Seaquis, and Bignell (1976). This HII region was thenil one bright enough to rise above the noise in the (SHI imaee Tf
SHI

,
Ha flux ratio ,s 0.10. which after correction for foreground reddening

amounts to /( SJ„ )//, Ha , = 0.06. or roughly 6 times lower than that
measure in the Orion nebula (Dennefeld and Stasinska 1983). Such a low ratio- consistent w„h a high-exctation, low-metallicity HII region similar those
0 serse in t e Small Magellanic Cloud (Dennefeld and Stasinska 1983- see also
r igure 4-1 ).

The Ha luminosity of the brightest HII region is 9 x 10
59

erg s
~

1

(after
C

f

r

66

C,i0

ini

r

T

GalaC,,C f°regrOUnd °bsCUration
>
wh>ch implies an ionizing luminosity

01 bh x 10 Lyman continuum photons per second, or the equivalent of 660
stars (Panagia 1973). By comparison. 30 Doradus in the LMC is almost

dent, cal ,n Ha luminosity (ignoring internal absorption), whereas NGC 5461 in
M101 is approximately 2 times more powerful (Kennicutt 1984; see also Chapter

Varying considerations of distance and internal absorption will juggle these
values by factors of 2-3. More important to note is that NGC 1569 is currently
experiencing high-mass star formation on a scale comparable with the supergiant
HII regions in M101.
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al HQ lummosl‘y NGC 1569 is 3.7 x 10» era wh . ,

corresponds to a Lyman continuum luminosity of 2 8 x 10-1 ,an extrapolated starbirth rate of 0 33 „ , 7
? '°nS 5 and

finssQi
' ^ y r (assuming the IMF of[1983

, see also Appendix A i c,, K n
nnicutt

measured in the N« t«l nd^ CT> ^ *h~
1982; see also Chapter 3) The fIT" £ '

x03t„ • ,L ,

> Thes *zc of NGC 1569’s active “bar” (u koc•3 kpc m the plane of the sky) is also strikingly similar to the d'the supergiant HII complexes in M101 T1
'

, ,

dimensions of

coincidental rr n
These resemblances could be merely

, . ,

’ Perhaps
' Profoundly natural consequences of some commonP .

steal process inherent to the starburst phenomenon. Further insist willz::;„

m

;;8

h

4

of s,arburs,mg—^ -- d--tnmcu,t 19°4, see also Chapter 6).

5.4.3 Continu urn Morphology and Colors

The red-continuum image shown in Figure 5-1 is character, red by a bright bar

BevoVdTT
S°meindiCati0nS ° f Silh0ue‘'mg dust in the northeast portion.

.

' ”
.

e ar, individual stars can be resolved. Photometry of these stars
ts margma y leas.ble with the present imagery, though 1 have not yet attempted

• maging at a smaller pixel resolut.on than 0.86“ would be preferable for thispurpose. A large enough sample of stars with measured fluxes and colors wouldnable a spectroscopic parallax to be determined for the galaxy. This would be aremendous improvement over the present distance determination which is based on
e magnitude of the brightest resolved stars and the assumption that they are red

The contour diagrams of the red and near-infrared surface brightness show a
concentration of emission centered on objects A and B. This same concentration
o surface brightness ,s also evident at 2.2 (Israel 1988). Abies (1971) points
out that the outer B and V contours are not centered on A and B but are, instead
centered on a fainter region 20” to the SE of object A. Therefore, the inner
concentration probably does not represent the dynamical center of the galaxy but
is, instead, a relatively young assemblage of stars in orbit around the dynamical
center.
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The spatial distribution of (A6563 - A9532) color in NGC 1569 is HF,g

7^ T "-°^ - clearly visible front this mapping T 7 ! b‘"excellent correspondence between the regions of bluest color and the HU
"

shown m Figure 5—“^ tv,
-

+ t

^ hill regions

mu, starfoZLL ,,

8 n$ ,he ‘ mPreSSi0n ,ha
' ^

4 and B The
7“™° ei' f™r ^ h objL

fro: ht-bar V
s ,he redd

r
ng of ,he co,or **

redder colors tn the outer galaxy are probably not tracing increasing c ,

'

densttres of dust. This would tntply increasing coluntn denrife rf HI w^h”"

(Tnddd
'^

eake " 19 'S0,
' Instead

’ the reclder colors are probably tracing redderO This age differential is consisifnf «'itli ihe out.r starlight beinE

5. 5 Dating the Hq Arcs

One way to estimate the age of the nuclear starburst in NGC 1569 is toeva uate the kinematic ages of the remnant ejecta. The two arcs are especially
use u or thts purpose, because their large angular displacements from the nucleus

Ahh' :r;
x

r
em W ' ,h " hlCh ,0 Calculate sP ati al displacements.

0Ug ' e mcmatlc h,stories °f the arcs are completely unknown, one canmake some educated guesses based on the radtal velocities that are observed alone
the minor axis.

The Ha velocity field of de Vaucouleurs (1981) shows a strong grad.ent across
e minor axis, with blueshifts in the South increasing to 40 km above the

systemic value at a displacement of 30” from the nucleus (The velocity field of
de Vaucouleurs e, al. (1974) shows the same gradient but of opposite sign.)
Because the radial velocities seem to plateau at larger displacements, a first order
approximation would be to keep the velocity of the arcs constant in time and
equal to the highest observed value interior to them. The absence of decelerating
motion and the possibility of further accelerations beyond 30” from the nucleus
suggests that the constant velocity approximation will tend to err on the side of
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the cu ff to a
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Sharp decrease ,n relativistic electron injection rates about 0 Mvr
.

e ' 53 " C ,r" ,r° n radlatl0n loss« at frequencies above 8 GHz Their“e W ,he ^ ° f "'<• ^-‘-injecting supernova outbursts is 10-20

0. 6 Energetics of the Arcs

(h 1 Ionization Requirements

In the absence of diagnostic spectra, it is virtually impossible to determine
source of ionization for the arcs. However, one can still estimate , he Lymancontinuum production rate that hot stars near the nucleus would need ,0 ,„n,zc

these distant regions. If i, is much higher than that currently measured in the
brightest HU regions, then ionization by shock-heating will begin ,0 look more
attractive.

or simplicity, I let the arcs be modeled as segments of spherical surfaces
that are centered on the nucleus. They intercept the ionizing radiation from the
nucleus according ,0 the fractional areas that they fill. Further simplifying, 1

areas of tin ar«s In- equal to the square of their longest dimension. The
a fluXes from Arc 1 aml Arc 2 imply ionization rates of 2.2 x 10

50
s

1 and
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~
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respective!,, tl
from a source near the nucleus ifThat'" T

C°nS ‘ S ' ent with Pbotoionization

of 6.9 x io- (t0 adeQ ;;;

" hat souw has *^ luniin0sity

measured in theLm „
^ ^ ^

to those that are ionizing the brightest *

u^l'T'
h0t^

coincides with objects A and B remains unclelr, though the spand bandage (1985) seem to be a little too “soft" to • .

‘P

P

luminosity.
to provide the required UV

5. 6. 2 Gravitational and lunette Energtes

SJZ ir° r

S1i "la,e

,

,he meChaniCal enersy d--8 the nuclear

ejected arcs

’ *'*'**'* “d «“«' ««*« assoc,a, ed with the

r

ThlS determining the masses of the arcs which inturn™e

,

n< T of ,he ionized gas—

*

’ rmm ' lhe eondition of equilibrium can be stated as

i
~ a B n H+ n e V,

:s-5)

where the ionization rate, .V, is determined from the Ho luminosity, the
recomb, nat, on coeffioent for hydrogen at T = 10< K is o B = 2.6 x 10-» cm’ s-

> erbrock 19,41, and the volume, V, refers to that which is completely filledby the , on,zed gas (rather than the total volume associated with the emitting
region). Th,s statement can be rewritten in terms of the mass and density ofionized hydrogen according to

yy. _ nH + gB

rrifj ’ (5 — 6)

as long as the density of free electrons is nearly equal to the density of free protons.
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The mass of ionized hydrogen is therefore

UH+ = —
,

n H+ aB ' (5 - 7)

emdltretTs ratl^th 'l
^ ^ *“ ^ Ho

emitting feaZI
“ de"S1,y

volume of the entire

avaiiltlrr°
nS

t,'

1" denSi ‘y ' SenSitiVe !SI,
1
0r i°’l double, transitions are

or the other flux doublet

“

"'ZbT'
fr0 '" ^ °f

in NGC' 1569 The I ,

observatlo^ «e lacking for the diffuse emission« 1569. The polar plumes in M82, however, have been observed a, SI1resulting tn densities tha, range between 30 and 100 cm- (McCarthy cl a, U)
eqUil,bnUm may— n the HI aid

’

arc r"
156 • 810,18 "'ith * h' °b—d HI “lumn densities near the

~ ' akeS m°
] reSU" in m-h densities of 0.1 to 0.5 m ->. These lowvalues cannot ye, be ruled out with the available data.

,

' es,mia,ed ra nge of possible densities ranging front 0.1 to 100 cm~ 3
the computed masses of ionized hydrogen in Arc 1 and Arc 2 are 7 2 x f 0 ( 3 -6l

If’“d 10,3 - 6, "•—1, the lowest exponents referring i 0 ^h,J

*

density (and lowest volume filling fraction,. The corresponding gravitational

^

en g.es are 1.7 x 10— erps and 5.2 x .0—1 erps respectively. An assumed

r, L
V

sl
0

5

C

m
y 88 km $“ yieldS kine,k “«*“ 0f 8-3 X 10— erps and

3,i x 1U ergs respectively.

he.e estimates of graritational and kinetic energy indicate that for
nH . - 100 cm- 3

,
a single supernova of energy 10 51

ergs would be barely
sufficient to eject one of the arc segments. However, lower densities would
require up to 1000 supernova explosions per arc segment. The ejection of the
western Arm along with Arc 1 as par, of a single coherent eruption would requ.re
even more energy. Inefficient coupling of the supernova energy to mechanical
motions of the gas is also likely, thus increasing the energy requirements even
further. Anticipated coupling efficiencies are in the 1 to 5 percent range (Spitzer
19/8), so the leas* amount of energy required to expel Arc 1 would lie equivalent
to about 50 supernova explosions.
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ionized ejecta

W^mUeS inherent to ost.mating the masses of the

indicate that 'eJaTZ
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actual number of detonatio

^” “ n'° r' ^ SUpernova eiPl^ion. The
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explos,ons is —

itS Smaller C”rent S,ar -te (one-tenth thaTlrrMrv^rp'r
^

7zz%%r Myr - The - -gnmcantly higher supernova rate than this Therefor* th
possibility of a coherent (At < 1 Myr) salvo of M0» supernovae from the nucleus^producing each of the observed arc segments is not so farfetched. Indeed s„n r
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gUmentS ^7 h"" USfd kpc-size “supershells- that are evident in

Heile" 7Z d f

'
V W
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a” d ^ deeP HQ ima?e5 °f tMC
< K“ andneiles 1988 and references therein).

From the nonthermal radio luminosity that they measure in NGC 1569
srae, and de Bruyn ,1988) estimate the non-, her,na, energy content to be about

'

(W7
9" ApPrOXima,e^ 5 * 105 su P ernova remnants could account for this

P 000

19?2) ' COrreSP°nding SUP"n°Va
about- per Myr (assuming a burst period of 20 Myr), or about 6 times the current

estimated rate. The starbirth rate would have been enhanced by the same factor
amounting to 2 Me yr~ l

.

5 . 7 Discussion

5. / .I A Starburst History

The data presented here and elsewhere seem to be converging on a common
scenario for the recent history of NGC 1569. Approximately 10 to 30 Myr ago.
the nucleus of this gas-rich dwarf experienced a sudden increase of high-mass star
formation. The starburst seems not to have been provoked by any encounters
with other galaxies. The nearest large galaxy, 1C 342. is more than 200 kpc
away from NGC 1569. and hence has been well beyond interaction range for more
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thfb
*

A,

The °UtflOW aPPearS 10 aCCelera,e w’th increasing distance from

,.

' terna" Vely
’ t}>e faster ejecta could have simply attained greater

displacements.

Farther out, the interaction of the outflow with ambient gas in the halo has
produced armlike bunch, ngs of Ha emitting ionized gas and 21-cm emitting neutral
gas that reach southwards from the western end of the bar. The Ha "Arm" along

' rC 1 IO ,he S°U,h appear *° be segments of a vast bubble that was blown
out by a coherent salvo of supernova detonations about 13 Myr ago. About 2
Myr earlier, another eruption of supernovae occurred producing the more distant

Hundreds to thousands of supernovae were probably responsible for
creating each of the observed bubble segments.
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High-mass star formation continues todav It < - M \

Ha emitting HII regions and their underlying blueTusterl ^ ^ ““
located in the bar on opposite sides of the once bursting nucleus

'
TL^T 7star-forming region, located to the West of objects A and B

’
’

1 ,

& '

region equivalent in H 1

J and includes an HII

starbirth activity t^^ria;

^

The ongoing

stellar population to that seen in the super^an^
^

and NGC 5462 in MlOl. Though still impressive
^61^ lower than that experienced during the beyd y o t Z^ D
7"

- - - in .thzzt:::r of ,he w umii ,he -

.nfen^ioimo^t ^ h*~~‘ 6 «.« in

starbirth rate of 2 1 j

bUI*‘ haVe be™ ^-acterized by a

Tip •

' yr ' a duration of 20 Myr, and a cycling time of 2 Gvr

*7 ,.^ b

— and stellar remnants ,see£££££ “ * ^ " ”* *“ *

5.7.2 l ncertainties and Future Directions

The scenario presented here is appealing in its self consistency. Howevermajor gaps exts, in the picture which, once exposed, may completely alter
our perception of wha, is going on. For starters, the intensity of the burs, is
poorly known, being based (in this Chapter) on the luminosity of the nonthermal
radiation from cooling supernova remnants. Using UV, optical, and near-m rare uxes plus the evolving models of Larson and Tinsley (1978), Israel
(1988) obtains a starbirth rate during the burs, of 0.3 ± 0.1 Me yr~K Similarly
°W blr ' bra,es can be derived from the galaxy’s bolometric luminosity (L iol *

;

10 £®) using standard conversions (cf. Telesco 1988). These birthrates
closely resemble the -current epoch’’ birthrate which I derive from the Ha
luminosity. Therefore, the “major burs,’’ ^10 7

yrs ago may have been less
titanic than I have painted and more like the activity of the last few million years.
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The cycling lime between bursts would then be more like 0 3 Gvr '

, l rGyr cycling ,ime impBed by the higher ^ 3 G> r »f the 2

though a bright* resolved

^ h°' ^
'T'’

^ *° ^ maf>Ped in X ‘ray*. e'en

JL hJ ..C. \ZZ7 ;

b> 'w «-*—» •-

“* v-..,
r" 11" "«•••

similar to those observed in NGC 253 and M82.

"" * ‘ 0",fl0W NGC 1569

The other gas phases are also in need of better observations The dff
, on, zed gas - including the Arm and the arcs - have veM 7 ,

^
troscopicallv W’hnh

yet to be observed spec-

unknown.
'

The radial e, v" fT " Sh° fk“1~ -mpletely

nation S b I ,

? a ‘ S° awaits *P«<roscopic determi-

a, , 0 r
SUrf

:

Ce ' brigh,neSS—nts, though difficult, couid bend ' n? " Sat,SfaCtory ^‘ion to the overall Ha velocity field Rig ht

geometry aTl ki^^ T ^ ^ * biP °lar ° Utfl°"' °f sui,abla

major axis.

e,” a “ ,5 ‘°ry ” W,nd,n*' °f
«aS in P»lar »«* about the

o.. tt i“ *- *-
, ,

g s near the bar remains unresolved. In the

h

an °' the outward Mowing winds and supernova eruptions shouldh- create p.le-ups of H, and H 2 gas on opposite s.des of the nucleus ,as
appears to be the case in M82 |see Chapter 4]). High resolution HI emissionand absorption-line mapping;, interferomptHr m • ,r 6» nxerierometric ( 0 mapping (at extremely highsenst.my ,o offset the low CO emissivitv [Young ef at. 1984]). and near-infraredimaging of the shock-excited H 2 emission would go far to better delineate the
various phases of the ISM near the bar.

Lastly, objects A and B remain enigmatic. High-resolution imaging and
spectroscopy of these compact nuclear sources should finally tell us whether they
are super-star clusters, forged from the gaseous implosion that brought on the

'

starburst, or simply foreground imposters. The Hubble Space Telescope will be
most helpful in this regard.
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Tables

Table 5-1

Adopted Properties of NGC 1569

Type 0
- 6

R- A. (1950)°

Declination
( 1950)°

Galactic longitude 0

Galactic latitude0

Radial velocity (heliocentric
)

0

Position angle of major axis 0
”

Inclination '6

E(B - V) e

(B - V
) 0

Ge

B 0
Te

Distance 6

Holmberg radius 6,6

L 0 (T V+opt .)
6

L(FIR) e

M(HI) c,e

AI(H
2 )

6 '/

M( dynamic
)

c,e

M,

SmIV/ IBm

04 6
26m 05 s

64° 44’ 24”

143.69°

11.24°

-77 km s' 1

116°

63°

0.56 mag.

0.23 mag.

9.64 mag.

2.2 Mpc

1.44 (925 pc)

1.2 x 10 9 L©

7 x 10
8 L©

11 x 10
7 M©

2 x 10
7 M.

33 x 10
7 M©

15 x 10
7 M©

Sandage and Tammann 1981 (RSA)
de Vaucouleurs et al. 1976 (RG2)

Reakes 1980

d
Abies 1971

Israel 1988 and references therein
f Young et al. 1984



Table 5-2

Observing Log

Telescope KPNO #1 0.9m @ fj 7 ,5

Detector RCA-3 CCD
Pixel size 0.86”

Field of view 7.3' x 4.5'

Date
10/22/85

Filter

Ac

FWHM
Integration time

Hq R

6563 A 6500 A

38 A 1283 A

2400 s 600 s

I SIII1

8290 A 9540 A

1947 A 144 A

600 s 2400 s
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Table 5-3

Positions and Sizes of HII Regions and Other Features

Name a(1950)

111 (21

A 4:26:03.7

H 1950) AX
l3

) (4)

64:44:29 0.0

B 4:26:04.5 64:44:23 5.2

1 4:25:59.9 64:44:45 -24.2

2 4:26:02.4 64:44:31 -8.2

3 4:26:03.5 64:44:26 -0.9

4 4:26:03.7 64:44:18 -0.1

5 4:26:04.8 64:44:35 6.8

6 4:26:06.0 64:44:16 14.5

7 4:26:07.6 64:44:19 24.8

8 4:26:09.6 64:44:00 37.7

9 4:26:10.8 64:44:10 45.5

10 4:26:10.9 64:43:55 46.3

11 4:26:12.0 64:44:00 53.2

12 4:26:14.5 64:43:52 69.6

Arm 4:25:58.2 64:44:31 -35.1

Arc 1 4:26:06.1 64:42:51 15.4

Arc 2 4:26:05.8 64:42:27 13.7

0.0 4. 4/1.1 Abies

6.0 4. 3/1.0

15.9 (2.9) HK(50)

1.8 (6.4)/3.2 SB(A), HK(45)
-3.0 (5.2) SB(c)

-10.7 (3.8) HK(43)

6.4 3.4 SB(E), HI\(36)

-12.5 (4.3) HK( 29)

-9.9 8.3 SB(F), HK23
-28.8 6.0 HK(ll)

-19.3 5.2 HK(7)

-34.0 3.4 HK(8)

-28.8 4.5 HK(4)

-37.4 5.6 HK(2)

1.9 (60x20) HK(50)

-97.6
( 70 x 25)

-121.7 (60x20)
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Table 5-3 (cont.

)

explanation of Columns for Table 5-3

(1) The object’s designation. A anrl r a . ,

sources near the nucleus of NGC 1569 TT
'

'

I

"g COn,inuura

regions as identified by the author. The
HH

Whh "° corresPonding enhancements in the clLuT
‘

class,

c

HII regions with underlying star clusters.

' " ' n°'

(2) R.gh, ascension based °n the offset. AX, from object A and the R A ofobject A determined by Abies ( 1971 ) ru ... r

K ‘ A * °f

brightest part.

The «f the arm refers to its

(3) Declination based on the offset \v r_ u-

object A determined by Abies (1971).

' °m ° ^ ‘ a " d ' he decllnation of

(d) Offset in R.gh, Ascension from object A, measured in arcseconds. i„ thedetector plane (not on the celestial sphere).

.01 Offset in Declination from object A. measured in arcseconds, in the detector

(6) Radius of object in arcseconds. For objects A and B, both the background-
1 e ra tus an alfcudth at half-maximum are given. For the HII regions

(except for the bnghtest one) only the background-Hmited radius is given. Value,m parentheses mdtca.e the presence of blending by neighboring sources. For the

'

Arm and arcs, approximate dimensions are given.

(7) Cross-referenced identification of the feature. Abies refers to the optical
continuum sources of Abies (1971). SB refers to the radio continuum sources of
Seaquist and Bignell (1976). There is an error in this latter reference with regard

°„
e posltlon SB ( A ) . Their map shows the correct declination to be 64° 44’
HK refers to the Ho sources identified by Hodge and Kennicutt (1983).



Table 5-4

Ha Fluxes and Equivalent Widths

Name

(1)

log f( Ha)

(2)

EW( tot

)

(3)

EW(cl)

(4)

log L 0 ( Ha)

(5)

log N;

(6)

1 -13.22 121 1225 38.05 49.92
/

3

-11.32 304 734 39.95 51.82
-11.69 103 283 39.58 51.45

4 -12.22 218 (1244) 39.05 50.92
5 -12.22 213 989 39.05 50.92
6 -12.37 80 203 38.90 50.77
7 -11.67 167 1835 39.60 51 .47
8 -12.42 191 608 38.85 50.72
9

10

-12.55 175 787 38.72 50.59
-12.88 258 2035 38.39 50.26

11 -12.76 222 (8443) 38.51 •50.38
12

Arm

-12.91

-12.10

269

98

859

(...)

38.36

39.17

50.23

51.04
Arc 1 -12.79 61 (...) 38.48 50.35
Arc 2 -13.22 3564 (...) 38.05 49.92
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Table 5-4 ( cont )

Explanation of Columns for Table 5-4

(1) The object's designation. See Table 5 ? flable 5 ' 3 ^ cross-references.

(“) Logarithm of the Ha fl ux a . ,
.nux. as measured in units of erg cm" 2

S“E
(3) The Ha equivalent width, i. e . the U *

in units of Angstroms. The red conf

ontlnuum flux ratio, as measured

- --*mrrr ,nc,udes “ ,he—
Angstroms. Vhe red cTntin

P"' ainin
- '° ' he '°ni2in« clus'cr. in units of

light. Values in parents al7 7' ^ ^
cluster and ambient continuum coTPM«t”.

“ '° d ' ffiCUl ‘ ,eS in ^t-ega. ing the

(•<) Logarithm of the extinction-corrected Ha l

uniform extinction of A„a = 1 24 mag h

°S“y’ ,n units of «g s' 1
. Ana mag. has been assumed.

(6) Lyman continuum photon production rate in units of photons



Table 5-5

Derived Properties of NGC 15569

f( Hq)

(EW(Ha))

(A6563 - A 9532

Fluxes and Colors

( observed)

2.04 x 10 ]]
erg cm' 2

s' 1

150 A

0.63 mag.

f0 (Ha

)

Lo(Hrt)

(A6563 - A 953 2 A

corrected)

6-43 x 10 13
erg cm' 2

s
2 „-l

3.73 x 10 40
erg s' 3

0.07 mag.

Birthrates and

Depletion Timescales

(lifetime averaged)

0.01 M0
r(gas)

18.0 Gyr

SFR 0

MLR°

rc(gas)

(currently measured)

0.33 M0

0.21 M0

0.85 Gyr

MLR refers to the mass lockup rate in low mass stars and stellar remnants. Fore ennjcutt F, it is 0.63 times the star formation rate (SFR). MLR) 15Grefers to the rate obtained from dividing a galaxy’s nongaseous mass (presumed"
to .n the form of stars and stellar remnants) by its lifetime (presumed to be 15



Figures

Figure 5-1

CCD imagery of the Ha and red continuum emission from NGC 1569 North
ts up and East is to the left. The total field of view in each image is 3' x 3' (1.9
pc ' 1.9 kpc).

^

Each image is a logarithmic representation of surface brightness.
'N,Gt CtfiJ in the light of Ha. Continuum emission within the Ha filter

bandpass has been eliminated by scaling and subtracting an R-band image from
the Ha-band image. Some continuum features persist however, including the two
incompletely subtracted stars to the South and one especially bright star to the
East. The western "Arm" and northern and southern filaments are evident here
but the southern "arcs" are too faint to show up in this representation.

b. The inner "bar" of NGC 1569 at red wavelengths. Contaminating
Ha emission within the R filter bandpass has been eliminated by scaling and
subtracting an Ha-band image from the R-band image (see Appendix B). The
sharp ray to the North is due to scattered light from the bright foreground star BD
-61 4o0 falling on the CCD chip. Individual stars are evident in the galaxy just
outside of the bright central region. A dust lane is also evident in the northeast
part of the bar.





Figure 5-2

C ontour diagrams of the red and near-infrared continuum emission from NGC'

1569. The pixel size is 0.86", and the total field of view is 3' x 3' (1.9 kpc x 1.9

kpc). The red (A6563) (a) and near-infrared (A9532) (b) continua are contoured

logarithmically beginning at the 3-sigma level of surface brightness (10
-18

erg cm -2

s~
] arcsec

-2 A -1
with contour intervals of 0.1 dex. The two star-like objects near

the nucleus have been labeled in accordance with Abies (1971). Scattered light

from the star BD —64 450 is evident to the north of object A.
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Figure 5-3

Contour diagrams of the Ha emission from NGC 1569. Same field of view as

before. The Ha emission is contoured logarithmically with contour intervals of

0.25 dex.

a. The data have been smoothed via a 4 pix x 4 pix “boxcar’ algorithm

before plotting. This is done to bring out the fainter emission to the South.

The contouring begins at the 1-sigma level (HT 165
erg cm" 2 s" 1

arcsec" 2
)
with

the major logarithmic values labeled.

b. The data have been plotted with minimal smoothing, so that greater

detail can be shown. The contouring begins at the 3-sigma level (10~ 16
erg cm -2

s arcsec The filled circle and triangle denote the positions of objects A and

B respectively. Some filamentary structure is evident to the north and south of

the brightly emitting bar.
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Figure 5-4

Representations of the Ha equivalent width in NGC 1569. Same field of
view as before. Being a line-to-continuum emission ratio, the Ha equivalent
width highlights regions where (1) the contrast between recent star formation and
past-averaged star formation is especially strong, and where (2) diffuse emission
with no stellar counterpart is evident. The filled circle and triangle denote the
positions of objects A and B respectively.

a. Image of the Ha equivalent width. HII regions in the bar, the diffuse

Arm to the West, and the diffuse arc segments to the South are especially

prominent.

b. Contour representation of the Ha equivalent width, showing enhance-

ments at the locations of the HII regions, the Arm. and Arc 1.



a A b
NCC1569 H-4lpK« Equ l *» I *n t Width
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Figure 5-5

Contour diagrams of the continuum color in NGC 1569. Same field of view

as before. The (A6563 — A9532) color is plotted with contour intervals of 0.05

mag.

a. The (A6563 — A9532) color within the 3-sigma boundary of the

corresponding red and near-infrared images. Color reddens from the inside out.

The colors near the 3-sigma boundary get as red as (A6563 — A9532) = 0.85 mag.

(after correction for foreground Galactic reddening of 0.56 mag.). The filled circle

and triangle denote objects A and B respectively. Note the contaminating effects

caused by the scattered light from BD +64 450 located just north of the field of

view.

b. The (A6563 — A9532) color of the star forming bar. Labeled contours

denote colors after correction for Galactic foreground reddening. The bluest

colors coincide with the brightest HII regions.
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CHAPTER 6

SUMMATION

6. 1 Abstract

e three galax.es are compared with one another and with 3 other nearby
galaxies m terms of their starb.rth intensities, their starbirth efficiencies their
ionizing stellar populations, and their possible starbirth histories. The annular-
areraged starbirth intensities are strongly correlated with the H- surface density
where oc and with the total gas surface density, where

' "

X *(gas)'-K The mean starbirth intensity in the starbnrst galaxy, M82.
IS • . times higher than the mean intensities in M101 and the Milky Way the
starbirth efficiency in M82 is 12 times higher than the mean efficiencies in M101
and the Milky Way. The giant HII regions in M101 show significant variations in
a equivalent width as a function of both galactocentric radius and Ha luminosity

These variations can be attributed to changes in the initial upper mass limits of
the ionizing clusters. The ionizing stellar populations in early-type, late-type,
and starburst galaxies are discussed in terms of these results. Crude indices of
the galaxies' starbirth histories indicate temporally declining starbirth intensities in
M101 and the Milky Way but currently “bursting" starbirth intensities in M82 and
NGC 1569.

6.2 Introduction

In the preceding three chapters, I have presented CCD imagery and
photometric results on three nearby late-type galaxies. The key aims have been

(1) to determine how the starbirth intensity (i.e. star formation rate per unit

area) and ambient gas surface density are typically related, (2) to determine
how the efficiency of star formation might vary as a function of environment,

and (3) to determine how ionizing stellar populations might vary in their content

as a function of environment. These 3 questions are intertwined, in that one
requires knowledge of the relevant Initial Mass Function (IMF) of the ionizing

stellar populations before being able to estimate starbirth rates and efficiencies
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from tracers of the hmh-ma^ f

the IMF „• •

star forming activity) e.g. Ha and FIR fluxes) IfIMF var.es ,n an uncertain way, comparisons of starbirth rates and effi
'

W,th,„ and between galaxies also become ambiguous Such a
case within VTim * i ,

§ • ouch appears to be the

Nevertheless h

^ aPI>ly ‘° th* °* h" » *he samp.e.

relative
7’ “* S ‘iU in "'ha ' us about theV,g0r 0f s>« formation as a function of environment. Thisshould be kept in mind, when examining the figures in this Chapter.

6.3 Starbirth Intensities

Starbirth rates computed from observed tracers of high-mass stars are criticallyependen, on the IMF that is adopted ,see Appendix A). They are also depend™on the distance that is adopted. Although the problem of the IMF cannot beavoided, ,t is poss.ble to get around the problem of uncertain distances Bv
using the surface dens,,, of the starbirth rate, the distance dependence drop's
out. call this surface density the “starbirth intensity.” Figure 6-1 shows the
ga actocentnc profiles of starbirth intensity for the three galaxies. All intensities
are ased on the Lyman continuum luminosities inferred from dereddened H-line
measurements and the “extended Miller-Scalo” IMF of Kennicutt (1983) (see
Appendix A). For comparison, the starbirth intensities in M51, M83 and the
Milky Way are also plotted. Although the starbirth intensity is independent of
distance, its galactocentric profile is not. That is because the radial distance
is distance dependent. Therefore, the individual profiles are subject to being
squeezed or stretched along the x-ax,s, depending on changes in the adopted
distances. The profiles for M82 and NGC 1569 are flat straight lines, because
all of the .onizing starbirth activity within these galaxies occurs inside the binning
radius of 1 kpc.

As Figure 6-1 shows, the starbirth intensity varies by almost 3 orders of
magnitude, with M101 and the Milky Way scudding along the bottom at -10
Mq Gyr~ l pc~\ and with M82 flying high at -4000 M0 Gyr~ l

pc
~ 2

. The
intensity of NGC 1569 is similar to those of the NGC 5461 and NGC 5462
supergiant HH-region complexes in M101 (see Chapter 2). The bump in MlOl’s
profile is due to the disproportionate contributions of these complexes to the
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annular-averaged intensities at R = 5 5 7 = w ,, .

only 1/6 of •
,

‘ ' kp (haVlng lmaSed and measuredon 3 1
, 6 of the entire annulus at these radii). The iota, starbirth rates of the fgalaxies are not nearly as disparate as the starbirth intensities A. ,he ddistances, they rnnge from 0.33 r- for NGC 1569 to U,

6.4 Starbirth Efficiencies

Like the starbirth intensities, the starbirth efficiencies do not depend on thea opted distance to a galaxy. Defined here as the ratio of the starbirth intensityand the ambient gas surface density, i.e.

SFE = <r(SFR)jcr(ga,s),
( 6

- 1
)

•his 'Star formation efficiency” is sometimes called the normalized or specific
s ar ormation rate and is expressed in units of Gyr-. I„ computing starbirth

.

C 'en

T
S ’ “ 1S ne°eSSary '° C°mpare iden,ically ^solved annular measures of the

s ar irth intensity and gas surface density. This is often done by smoothing the
a imagery with a Gaussian “beam” of equal size as the corresponding HI and CO
earns before conducting the photometry. Figure 6-2 shows the galactocentric

pro es of the starbirth efficiency for the four galaxies, after having performed the
necessary smoothing. For comparison, the resolution-matched annular-averaged
efficiencies in M51, M83, and the Milky Way are also plotted. Again the
x-extents of the profiles are subject to distant-dependent changes. Although the
starbirth intensities vary over a 2.6 dex range, the starbirth efficiencies vary by less
than 1.6 dex. Therefore 90 percent of the variations in the starbirth intensity can
be attributed to variations in the available gas content. The remaining variations
are either due to real fluctuations in stellar fecundity or to variations in the high-
mass IMF. For now. it is best to conclude that real variations in the high-mass
star forming efficiency exist between galaxies, with the high-intensity "starburst”
galaxies such as M82 comprising the high-efficiency regime.

The relationship between starbirth intensity and gas surface density can be
further explored in terms of both the annular-averaged measurements and the
globally-averaged measurements. Figure 6-3 shows the resolution-matched

annular-averaged starbirth intensities plotted against the H 2 ,
HI. and total gas
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ace densities. Annular-averaged measurements for M 51 M83 and th M'll,Way are also clotted r
and the Milky

a(SF , . „ .

' mspection reveals strong correlations between
" d aS Wel1 as between a(SFR) and <t(H2 + HI + He) Rcontrast, little correlation is evident between a(SFR) and a(Hl). Least-squaresregressions give

1 s 9uares

l°9 aiSFR) = ± 2'«) + (3.51 ± 5.33)/og .(///), (6 _ 2)

with a correlation coefficient r nf fi i
j-

i

only 0 J7
’

c ’ °‘ °' 23 Jleldln8 a correlatjon significance level of

log cr(SFR) = (0.04 ± 0.33) + (0.97 ± 0.24 )hg <r(ff,),
(6 _ 3)

0.78 fielding a correlation significance level exceeding 0.999. and

log a(SFR) = (-0.47 ± 0.36) + (1.13 ± 0.22)log .rfpus),
, 6 _ 4

w.th re = 0.82 again yielding a correlation significance level exceeding 0.999 The
intercepts, slopes, and standard deviations of these least-squares fits are all based
on having run the regressions in both direct, ons. The near-linear dependences
on Ho and total gas agree (to within the uncertainties) with the conclusions
Of Renmcutt ,1989) who obtained r(SFR) oc a( 9as)'^\ based on similar
annular-averaged measurements in 15 nearby galaxies.

Table 6 lists the globally-averaged properties of the 3 galaxies along with those
of the Milky Way. This table highlights the differences in starbirth intensity,
starbirth efficiency, and current-epoch ns. past-averaged starbirth activity that
exist between “normal'’ and “starbirth" galaxies. Least-squares regressions
between cr(SFR) and cr{gas) for this small sample yields

l°g cr(SFR) = (0.01 ± 0.74) + (1.48 ± 0.5 6)log a( H2 ). (6 - ,

where rc = 0.90 yielding a correlation significance level of 0.90, and

log cr(SFR) = (
— 1.05 ± 0.18) + (1.74 ± 0.10)log a(gas). (6-f

where rc = 0.997 yielding a correlation significance level of 0.998. Here, the non
linear dependences on H 2 and total gas surface density reflect the higher starbirth
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efficiencies of NGC 1569 and MS9 c- -i «—- - m51 „ d (Lord£ -r in thf

TmiTza

Nc

?
5461 <see chap,er 3> - » ,h' «-* »fNGc

F1R
'

m fger SamPle$ °f 'n°rm*r and “•‘"bur.t" galaxies, where the

vlgTZ
1

r;r
d

r
trace ,he s,ar - «»— - * »£

.... .

' °SS C ^P'anatrons for such non-linear enhancements m starbirthactivity are discussed in Chapter 2 (see “Laws' of Star Formation" Section 2.7:

6.5 Ionizing Stellar Populations

The most insight regarding the stellar populations that underly giant HII
regions was obtained from M101 (see Chapter 3), The Ha and red-continuum
Photometry of several hundred HII regions in this galaxy revealed subtle but
significant variations with galactocentric radius. Within 5 kpc of the nucleus, thea luminosity function shows proportionately fewer high-luminosity HII regions
than are evident in the outer arms. Moreover, the galactocentric distribution
o o equivalent widths appears depressed inside of R = 5 kpc. These effects
can be attributed to a “softening" of the stellar radiation fields that power the'
inner-galaxy HII regions. A simple model of the ionizing stellar populations leads
to consistent results for an IMF slope of 2.9 ±0.3 and initial upper mass limits that
vary by a factor of 1.3 to 1.7. Whatever the specific form of the IMF is, we are

left with fewer high-mass stars powering the inner galaxy HII regions. This
alone is enough to compromise (by factors of -2) computations of starbirth rates
and efficiencies based on tracers of high-mass star formation (e.g. Ho and FIR
luminosities).

Although previous studies of the HII regions in M101 have found changes in

spectral “excitation" (and. by inference, varying cluster IMFs) that appear cor-

related with the met alii city gradient (Viallefond ei d. 1982), the galactocentric
variations in the Ha equivalent width reported here show closer similarities with
the profiles of the differential rotation, shear rate, and tidal acceleration in the

disk. The sense is to have lower equivalent widths, where the shear flow and tidal

stress are higher. This opens up the possibility of dynamicd effects governing

the formation of clusters and of the stars therein. Although more comprehensive
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measurements will be ner««rv ,necessary to verify such a link in Mini

»».
"'

,™r r, r *“•' -• j ~*
in bright ionizing dusters of high effective teUpe^aturt '^cha' e’

^ ' aCl<inS

case in the disk of M31 (Hodge 1987) th t

c appears to he the

regard R , r

«e 1J8 ‘ >- th°ugh more work needs to be done in this
• y con Scd and irregular-type galaxies should be characterized

»>' extremely bright HII regions of htgh excitation. This again appears Z hete case, as demonstrated by the HI. regions the LMC. M33, and NGC 1569see apero). The Ha luminosities and equivalent widths of NGC 1569’s

Ind Tth”

5 afe re
"'? rkab1 '' S '"’' lar ,0 th°Se meaSUred the ou,cr arms of M101.

”
, .

en ‘lre ga ‘aXy C°uld be mistaken for one of MIOl’s supergiant HII regionnip exes
. pparently. the outer disk of M101 and the inner bar of NGC 1569are similarly conducive to the creation of high-mass, high-temperature clusters.'

The stellar populations that power the ionizing activity in M82 are confused
- he T “ ,he galaXy

'

S d™‘e indeed, the task of isolating theyoung cluster light from that of the galaxy’s nucleus and bulge was more than
<ou d be attempted with the present data. The dust that obscures so much in
this galaxy serves only to confound such efforts.

Considerations of the Brackett-line emission and near-infrared starlight from
the central (8 ) region of M82 have led to stellar population models that are
acting in both high and low-mass stars (Rieke el al. 1980). The uncertainties
associated with dereddening the continuum light and breaking it up into dwarf,
giant, and supergiant components, however, make the final conclusions dubious.
find myself impressed by the enormous ionizing and FIR luminosities from such

a small package (R < 1 kpc). Disregarding non-thermal “engines.” the most
economical way to supply this power is with bright clusters containing high-mass
Stars. The correlation between Ha luminosity and Ha equivalent width, as found
in M101, is worth noting in this regard. There, the brighter HII regions contain
the hotter, more massive stars. If the same correlation holds in starburst nuclei,
such as in \182, then extremely high-mass stars should be present. The likely

presence of a rigidly rotating bar in the center of M82 further implies relatively low
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g stresses and, perhaps, an accreting environment biased tenormous clusters with fully populated upper stellar mass limits,
clusters certainly seem to be there.

owards forming

The enormous

6.6 Star birth Histories

A simple way of gauging the starbirth history of a galaxy is to compare
• current-epoch starbirth rate with its lifetime-averaged starbirth rate. Thecurrent-epoch birthrate is usually based on a tracer of the massive star formationaC y

.

{e ' 9 ' ,he Ha °r FIR flux >- whik lifetime-averaged birthrate is basedon he integrated mass of stars along with an assumed age for the galaxy. The

fromthe dv

naSS ^ eS 'ima*ed * ,ub‘“rti»« «**** S-eous massn dynamical mass and then multiplying ,his difference by a factor (oforder
' 181 C°mpenSateS f° r the mass re,u«od to the ISM via stellar winds andsupernova explosions. To avoid problems associated with distance ambiguities I.ate used starbirth intensities (i.e. surface densities), thus deriving a(SFR) forthe current-epoch birthrate and M SFR)) n fo r lhe lifetime. averaged birthra , e

e ratio of these two birthrates for the Milky Way, M101, M82. and NGC 1569
IS listed in Table 6-1.

A common way to model the starbirth history of a disk galaxy is to assume
exponentially varying starbirth rates or intensities, such that

cr{SFR) = cr0(SFR) e
Mt-t0 )/ T

, _

where t - t0 is the star forming age of the galaxy, and r is the e-folding timescale
{rf. Gusten and Mezger 1982; Kennicutt 1983; Scalo 1986). For decaying
exponentials, r corresponds to the e-folding gas depletion timescale

r = (f SFE)~\
( 6

- 8
)

where SFE is the starbirth efficiency (which is constant in such a model) and f is

the fractional mass that stays locked up in low-mass stars and stellar remnants
(/ ^ 0.65 for a Salpeter-type IMF, see Appendix A). The near-linear relationship
between starbirth intensities and gas surface densities that is evident among the 6
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./. :r'T “
ni““ -

—

;-
din

;
" ««» «. „2Z’:n.L~rt“”r

srr ,i- -- -

«)

{<r(SFRj

)

to )'

r(l - e~( t ~ t°)/r )
' (6-9)

For star-forming ages of !0 to 15 Gyr, the measured ratios in M101 and the Mill,

rates a:! 5

^ 8 *"«^^
be compared with th.'^^^ffl"' ^ eS ‘imateS ‘h°"W

W. which P redict much

Gyr respect,veIy (see Tab,e 6-1), initial starbirth rates that are 25 and 33 timesgher than the current-epoch birthrates, and star-form,ng ages of 9.3 and 7.3>yr respec ive y. Such discrepancies indicate that there are problems with theexponen la mo el and, or the derived star forming properties. Two possible
complications are highlighted below.

• The starbirth histories are episodic, and the current epoch represents amore intense phase than would be predicted from the exponentially decayingmo e. e episodic possibility is not without precedent. Both M82 andNGC 1569 show strong evidence for episodic starbirth histories. Not only do
they have current-epoch starbirth rates that are many times higher than their
lifetime-averaged birthrates, but they also show evidence for supernovae-driven
outbursts. In the case of NGC 1569, the ionized relics of the outburst can be
used to date the eruption at 10 - 30 Myr. This provides a strong precedent for
episodic “starburst” activity occurring on temporal scales of at least 10

7
years and

on spatial scales of at least a kpc.

In M101 and the Milky Way, the episodic modes of starbirth activity would
have to prevail over timescales of at least 10

8
years and on spatial scales of -10

kpc. Such large-scale variations in a galaxy’s starbirth history would have many
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and metallicity. MUkv^V ^ qT™"
distribu,io" s °f Cellar age, mass,

distribution of F and G da a d

3 ' ^ *

‘

h '^ «" ^uency
**« <>f .0 ov„inte^x :::

"at

r
s,arb,r,h~-—

»

7

r
5 c;yr- -- - -\i“—^ °ccurred

enhancement could be occurring in the disk of Midi
S"" “

leading to the dislepMcvin^f

^ arC SignifiCan"y overestima‘ed, thus

, ,

discrepancy in e-folding gas depletion timescales 4 mdepletion timescale nf ^ C' 1 1

-A commonP imescale of 5 Gyr would result from the birthrate ratio (Ea fi 0,and starbirth efficiency (Ea fist iftK
q '

times lower „ e , ,/J ,!f
* ““ “-birth rates were 2.3

.be depletion time^ at ^7'^^ ^ ^^
aat results from consideratinne ,-vf + u

fraction, v(gas) / a(tot) (see Table 6-1), where

e current-epoch gas

<?{gas) = a{tot) e
~ (t ~ to ^ T

(6 - 10
)

and where a star-forming age of 1 n r 1 ,. •

require a lower ,< ,FR

}

/Z “ &>r “ Th' lo-“ Hi,thra.„ would

that is flatter C
ronv^.on which, in turn, would entail an IMF

K
" ° f bmSed '°Wards hi«h» >— stars than the IMF prescribed byKenmcutt (1983) (see Table A-l in Appendix A).

is a b^
aVa, ‘ab 'e

;
VidenCe f° r ,MF ' baSed o-restinrations of the starbirth rates

InMlOlTh h'

lfficult to d,smlss (cf- Gusten and Merger 1982; Scab 1986).

red continu

? em“SI°n " * mUCh
Salart°™'* profile than the

,

um emission. his immediately indicates a significant difference
between the geocentric distributions of current-epoch massive star formation

past-averaged star formation in M101. Either the radial distribution of
s ar ormatton has truly varied over time, or the IMF is spatially skewed so

a. the *(SFR)/I(Ha) conversion should be lower in the outer galaxy This
latter possibility is supported by the higher Ha equivalent widths , ha, are found
evond 5 kpc of the nucleus (see Chapter 3). The higher equivalent widths are

pro a y tracing IMFs with higher upper mass limits and/or flatter slopes. Such
variations in the IMF will lead to lower <7(SFR)/I(Ha) conversions (see Table A-lm Appendix A) thus reducing the discrepancies in depletion timescale-.
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Tables

Table 6-1

Globally- Averaged Properties of the Galaxies

Galaxy M.W.a M 1 0

1

6 M82 c NGC 1569
Type Sbc Sc Amorph. Sm
cr(tot)

(M0 pc
-2

)

446 427 955 105

cr(H[)

(M0 pc
-2

)

2.9 5.1 19.1 35.0

cr{H2 )

(M© p C
~ 2

)

7.3 7.7 318 6.4

cr(gas)

(M0 pc~ 2
)

e

13.6 17.0 458 55.0

<r(gas)/a-(tot) 0.03 0.04 0.48 0.52
cr(SFR)

(M0 pc
-2

Gyr -1
)

10.5 9.16 3690 105

SFE(H 2 )

(Gyr- 1

)

1.44 1.19 11.6 16.4

SFE(gas)

(Gyr-1
)

0.77 0.54 8.06 1.91

r (gas) /

(Gyr)

a(SFR)

2.1 2.9 0.2 0.8

(cr(SFR)) X5GyT
0.36 0.33 111 31.5
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Explanation of Notes for Table 6-1

“AH Galactic mass densities and starbirth intensities concern the inner R< 10 kpc, where the Solar Circle is set at R = 10 kpc
from Sanders et al 1 1 QS4 1 a 4 r

<”(#2
)
and ,x( ff/

) are

of Bloeman eta, n 986
4’' Th^)//(CO) conversion

,FR)
" ’ " mS 'ead °f the oriS*“J inversion, however

and ;
(

C01!"" 1Umin°SitieS °f GUS'™ a"d Mezger
( 1982 )

^

)/ ( ) con\ersion of Kennicutt
( 1983 ).6

All M 10 I mass densities and starbirth intensities concern the inner R < 5 7arcmm, or R < 8 kpc for an assumed distance of 4.8 M pc at,on is d
the rotation curve of Bosma et al.

( 1981 ) atH ) I tut
er,ved from

eta, (,9881a 4 r ,

' ^^ > antM #T) are from Solomon

e , a , 1986 r ,

’ erem
’ Wi,H ’ he conversion of Bloeman

^

(1986) rePlacmg the original conversion.
c
All M 82 mass densities and starbirth .ntensities concern the inner R < 1 1arcmm. or R <1.0 kpc for an assumed distance of 3.2 Mpc. a(tot), a(H, ), and

(HIJ are from houng and Scoville
( 1984 ) and references therein

, , „

A“ NGC 1569 maSS densi,ies and s( arbirth intensities concern the inner R
:

R

- L ° kp ° f° r M aSSU1“d distance of 2.2 Mpc. a(tot) and

l
^ fr°m ReakeS (198°»- '<*»)“ from Israel

( 1988 ) who used the single
C O observation (50 beam) of Young ef al. (1984) plus a x4 higher N(H,)/I(CO)
conversion (to compensate for low metal abundance) as well as a x3 spa, ml scaling
factor (based on the ratio of the total FIR luminosity to that from the central 50”)

Total gas mass densities include estimated contributions from HII and from
He.

’ The gas depletion timescale, r(gas), is based on a constant star formation
rate according to r(9«) = a(gas)/(f a(SFR)). where f corresponds to the
fractional mass that stays locked up in low-mass stars and stellar remnants. For a
Salpeter type IMF, / =; 0 . 65 . If a constant star formation efficiency is assumed.
r(gas) corresponds to the gas depletion e-folding time.
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Figures

Figure 6-1

Galactocentric distributions of the starbirth intensity. The star formation

intensities are plotted as surface densities in the plane of each galaxy. All values

of a(SFR) are based on the cr( SFR)/cr[ X
, )

conversion of Kennicutt (1983). The

<7(.\,) values for M83 and Mol are based on the I(Ha) data in Lord (1987); and

the cr(A,) values are based on the thermal radio continuum data in Gusten and

Mezger (1982). The profiles for M82 and NGC 1569 are represented as flat

straight lines, because of the 1 kpc binning radius and the lack of significant Ho
emission beyond this radius.
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Figure 6-2

Galactocentric distributions of the starbirth efficiency. The starbirth

efficiencies in M83 and M51 are based on the annular-averaged Ha. CO. and

HI data in Lord (1987); the efficiencies for the Milky Way are based on the

radio continuum data in Gusten and Mezger (1982) and the CO and HI data in

Sanders ei al. (1984). Each starbirth efficiency involves a starbirth intensity

and gas surface density of matching resolution. Considerations of the IMF

and extinction-dependent conversion between If Ha) and <r(SFR), as well as the

uncertain conversion between I(C'O) and <t(H 2 )
indicate that the plotted SFEs are

absolutely certain to within a factor of about 3 (or ± 0.5 dex as plotted here) and

self-consistent to within a factor of about 2 (or ± 0.3 dex as plotted here).

a. Galactocentric profiles of the starbirth efficiency with respect to the Ho

surface density alone.

b. Galactocentric profiles of the starbirth efficiency with respect to the total

gas surface density.
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Figure 6-3

Annular- averaged starbirth intensities vs. Ho, HI, and total gas surface

densities in 6 galaxies. Each point involves a starbirth intensity and gas surface

density of matching resolution.

a. Starbirth intensity vs. H 2 surface density.

b. Starbirth intensity vs. HI surface density.
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Figure 6-3 (cont.)

total gas surface density.Starbirth intensity vs.
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appendix a

computation of star formation rates

rrru :r- -
mtiai Mass Function (Salpeter 1955 ):

N{\I)dM = KM~ 235dM
Ionizing Luminosity (Panagia 1973 );

-V, (A/) = 3.8 x 10
42

3/
3 86

( 3/ > 32 A/0

X UU) = 2.4 X J0» .I/
8 67

(9 < .1/ < 32 hu
Main Sequence Lifetime (Mihalas and Binney 1981):

r(M) = 10
1OM- 2 - 2

yrs

where all masses are in solar units.

.
t

Power laws, one can model the emerging luminosity of ionizing

uee
imegral " the“ i0—

U-

(-4 -

(-4-

.4 -

Ni(tot) = X(> 9Mq) ^9 -MM )
A

i (
M

)
r(M

) dM
(A-

Here the stellar birthrate, .V
( > 9A/e ), corresponds to only those stars

contributing to the tomzation. Solving for this birthrate in terms of the
observable N

l , one gets

v '
• v .u-

//'“ N(M) dM

Is
“ -V(A/) Ni (M) r(M) dM

Cpon plugging in the above power laws and solving the integrals, the
birthrate conversion becomes for two choices of the upper mass limit (,V/„)

N (> 9 .1/ 3 )
= 2.01 X 10

~ 55
X, (

M

u = 100 M )

.4 -

(4-7)
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and

A- (> 9A/S )
= 3.35 x 1CT 33

N, • .!/,.
(-4-8)

Extrapolation of this birthrate to include ib • •

formulated as
^ n°n ‘ 10niZing »tars can be

aT

(tot) = AT(> t) \r Jm, A(.U) i/.u

one chooses a lower mass limit of 0.1 A/0 , the extrapolated conversion becomes

N(tot) = 9.2 x 10' 53
.V, {Mu = 100 Me

and

'© :.4 - io)

A-(fof) = 16.0 x IO'52
.V, (A/u — go Mq).

(-4 - 11
To compute the star formation rate in A/9 /yr, one multiplies the b.rthrate bvmean mass ,n the model stellar population, t.c. SFR = 1X(tot) \I .u

'

the mean mass is determined from
' ’ Uhere

(M) = Lv* WM) M dM
(-4 - 12;

For the Salpeter IMF with A/, = 0.1 A/0 and the two choices of A/„. the meanmasses are both very close to 0.35 A/0 , and so the final conversions are

^ ^ y r
* * 10 53

N,
(photons s

1

) (A/ = j 00 M~.1 0

and

SFR y r ]

)
= 5.5 x 10

53 Ni (photons s' 1

) (Mu 60 Mr.©

-4 - 13)

!
-4 - 14)

Note that the lover A/„ produces a somewhat higher conversion. That is

because the dependence of ionizing luminosity (.V,) on M is much steeper than the
dependence of stellar number (N) on M, leadtng to the need for disproportionately
more tontzmg stars with the lower Mu . This enhancement near A/„ is then
extrapolated to lower masses, leading to a higher overall SFR.
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If °ne rePea,ed the Pr— “in* a two step IMF of the form

N(M)JM = KM- {M> u/ ,

= KM-'-UM (0.1 < M< u/0) ,

•he resulting conversion would be lower by a factor of 1.6, giving

SFR (Mq yr~ l

) = 1 95 x in -53 at t l ± -1’ 1.06 x 10 A, (photons s >)
( Mu = i 00 A/0 )

^

F

R
( Mq yr~ ]

) = 3 2Q x l

n~ 53 v t l * 110 (Photons s ')
(.!/„ = 60 >l/0 )

The flattening of the IMF at lower ntasses leads to lower conversions heone is a ways extrapolating downward bom the well-constrained high-mass SFRT
1 lllT e T

nden ' l0"'‘ma5S SFR ' " fla,,er MF * -sses means that there

Kennic ,Ml 9

m
83

S

,

S

f

S,ar

I7
,h “ S '° * W" <”«*“venmcutt (1983) found that a two-step IMF of the form

A - 15)

A - 16)

A - 17)

A - 18)

A (M )<1M - KM - °dM (1.0 < M < 100 Mq

A
( M)dM = A M lAdM (0.1 < M < i.q Mq

[-4 - 19)

4 - 20)
oul bes reproduce the colors and Ha equ,valent widths observed in 170 nearbysptral and .regular galaxtes. The confers,on that he calculates, using a more

soph, s,mated treatment of the mass and age dependent ion,zing luminosities, isagain a factor of 1.6 lower —

SFK id/, yr
) 1.2 x 10

53
A', (photons s ’) (Mu = 100 A/0 j. (.4-21

This conservatively low conversion (compared to the Miller-Sealo equivalent) is
a opted throughout the body of the present dissertation. To compare with
other IMFs, Kennicut, includes the following table, where the conversions are
normalized to the Kennicutt (Mu = 100) value.
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Table A-l: Star Formation Rate Conversions

IMF Mu

—

____ 3D _ 60 100 900

Miller-Scalo 8.01 4.05 3.35

- zuu

2.55
Kennicutt 3.78 1.44 1.0 0.53
Shallow(a = 2) 1.44 0.43 0.26 0.11

Kennicutt refers to his own IMF as an “ extended Miller-Scalo IMF - H Inotes , ha, h.s computed conversions for the Salpeter IMF are virtually identical

“

tha, all ST rs

,,m ”* ,0 ' a ' °f - can assume
11 are on the zero-age mam sequence (t.e. a s.ngle coeval burs, of starformation), and so formulate

where

and where

m* = yjtot) (M)

Nm {tot)
A (tot)

Ar

(> 9 A/q
)

Ar

( > 9Mq )
= N

t
A " iVW dM

/9
Uu

-V(T/) Ni{M) dM
as in the previous treatment, with all the time dependences removed
Salpeter IMF, the resulting conversions are

(.4 - 22
)

(.4-23)

(.4-24)

For a

4/,(-1/q ) 1.49 x 10
46

A', [photons s
1

) (0 1 — 60 M,
) (.4-21

.'/.(-'/©) = 3.81 x 10
4

‘ Ni (photons s~') (0.1 _ 100 Mq) (.4 _ 26

These conversions can be regarded as conservative because evolution of the ZAMS
population will naturally lead to lower ionizing luminosities.

Increasing the lower mass limit from 0.1 Ms to 0.5, 1.0, 5.0. and 10.0 Mehas the effect of reducing the mass and SFR conversions by factors of 1.4. 2.0. 4.3
and 7.0 respectively (if the upper mass limit is fixed at 60 A/0 ).



310

Raising M
l has an even greater effect nn tk

mass that is forever locked up in the stars F l

0"'"5 ' 0" 5 Which Pertain to th*

1 - 0
, 5.0, and 10 0 \U the in'

r lower mass limits of 0.1, 0.5,

16 7 and 26 0

’ 05 he mass lockup conversions are reduced by 1.6 2 3 44’ and - 6 ' 0 resPectively (see Sandage 1986
)

' ’ ’ 4 ’ 4,
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appendix b

emission-line and continuum fluxesfrom narrow and broad-band imagery

Gaseous emission nebulae (HII reg.ons) and their exciting stars are ri bof information on photoionization, chemical enrichment hvdrod

'

star formation processes On P f wi ’

h> drod
”Vnamics

> and
processes. One fruitful way to study HII regions U h,-

•

them through various optical filters, so that the spectral-line a d
emissions can be isolated and measured. To do so usually;~ rT a—-

—

a a„ off

tha‘ fi,S * he narrow bandpass) as wellas an off-,me image taken through a filter of similar bandwidth bu, displacedength so as not to pass the spectral-line emission. By carefully - Vand digitally subtracting the “off-line” image from the “on-line” image/ one clnproduce a spec, raid, „e image that is free of any contamination by the continuum(see the excellent review by Jacoby e, af.
[
1987]). This image, in turn canbe compared with the -off-line” continuum image for purposes of computing

line-to-contmuum ratios (i.e eauivalent j

the nebula K
’ Ie”' " ld,hs

) and so gauging the excitation ofttie nebula by the underlying stars.

Often, however, the continuum emission from HII regions and their
underlying star clusters is considerably weaker than the spectral-line emission
hus requiring frustrating long exposure times at the telescope in order to obtain

decent signal-to-noise ratios. One way around this dilemma is to replace the
narrow-band “off-line” filter by a broad-band filter that passes lots of continuum
emission plus (alas) any spectral-line emission falling within the broad bandpass
If one spectral emission line dominates the bandpass, however, it is still possible
to isolate the line and continuum components. In the following sections, this
capability is developed theoretically and then demonstrated using the Orion nebula
as an example.
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B. 1 Theoretical Basis

The effect of filtering and delecting the light from a cosmic source is to

:r
ee

r:rr
h

- - hi ch c„ : i
JtzT* fil,er ,ransm,ssivity T '— ,h?—~

-

The detector efficiency produces a weighting of the fine and continuum emissbn

'

h h Can be forraally ex pressed as an integral over the bandpass.

Rr

'A\
V\( Une)f\{line)d\

' AA
rj\

( cont ) f\ ( cont )d\. IB -2
where R0 denotes the measured count rate in units of ADU s' 1

(after correction
for atmosphenc absorption) and /.\ is the line or continuum flux density Bv

bo,h ,he de,ec, ° r ^ «« <•«*, are co„s,an ,the bandpass, one can approximate the formal integrals as simple products
involving constant detector efficiencies and effective bandwidths.

For the sake of illustration, consider the effect of filtering the light through
wide (W and narrow (N, bandpasses, both of which are centered on an emission
me. I he detected count rates through the two filters are

R0 (\V) = V{W) j{live) + bw{W) fx (cont)} [B- 3

and

flo(-V) = V(N) f(line) + bw(N)fx (cont)} (B - A]

where bw(VV) and bw(N) are the FVVHM bandwidths of the two filters. n(W) and
n
[

1 are ,he de,ec,ion efficiencies through the two different filters in units of ADU
erg cm ‘ s and where it is assumed that the spectrum of the source has

neS^§ible slope across the wide band

Af\(cont
< 1.

[
B — 5

1

< / \

(

con t ) >
Using a standard star, or region in the target field containing no Ho emission,

one can scale the broad-band image to the narrow-band image by equalizing the
counts, such that.

flo(.V) - c R„(W) = 0 (B- 6)
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or equivalently

:,(.V) 6 U1 (A-, _ cr,iW)buiW)} h(cont) = o

Therefore, the scaling factor, c. can be formulated as

7(-V) bw(N

)

c =

(B-7

(B-8)^(W) bw(]\')'

S

?b

le

,

faC,0r Sh°Uld ^ de,"mi“ b1^ *»» a prior, knowledge of

and filter b d*

1

Tl
ePend<>m quan,um efficiencies, the filter transmissivities

filter bandwidths. However, it is most often determined by equalise 2-e^d count rates from a region containing only continuum enbssl. ^ ‘fin

J”
H fi"

e em,,
",
ng HI1 regi°n ' ,he SCaHng and ima«e attraction will yield

^finite results. From equations B-3 and B-4.

^o(-V) - cR 0(W)= V(N) f(line
) T ...

7(A)6u’(7V) f\(cont
)
— ...

c 7 (VF) f(line) - ...

which can be simplified to

#c(A
T

)
- c R0(W)

Solving for the line flux gives

/{line,

or

/{line]

c 7( ^ ) bw{\\
) f\{cont) {B - 9

' /{line) [tj(N) - c r]{W)
].

(
B - 10

[7(Ar)-c7(H')j (5-11)

[i? 0 (-V) - c i? 0 (U')l

7(Ar
)[l - bw(N)/ bw{W)} (B- 12)

, ^ a caiiDration star. 11 the
filter is much narrower than the W filter, the above formulation reduces to the'
more intuitive

[Ro{N) - c R0(W )]

v(N) •

/{line]
{B — 13)
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The emission-line equivalent width is defined as the ratio of the r fl . tconttnuum flux density at the lines eentral wavelength, o
*

EW(line) = f(line)/ f\(cont), (B _ U)
and is expressed in units of Anestrom? 4 , .

obtaininp- • .

' lng just, derived the means ofobtaining the emission-line flux fl Jin P \ ,

h(cont) from thr r
H 1 ' "°W "eed to obtai " *hc continuum fluxJ\\coni) trom the line-contaminated R-band imave »„„• r

and B-4. we get
8 °m eq^ations B-3

5q( ^ ) R0 (N)

'/(»')
~ = W) - htf(.V)] [B - 15}

SO that the continuum flux is

f\(cont) = ^ )
~ R0 [

A
)

rj{ I I
)

V(W) v(N){bw(W) - bw(N)} (

5 - 16
)

which upon rearrangement of terms becomes

fx(cont) = >7(^)1 - R0 (X)
n(X) bw(W)[i - bw(N)/ bw(W)Y (B ~ 17)

The line to continuum ratio is then

Ii hne \ = {Rq(B’) - c R0 {Wj\ \y(N) bw(W\]
h{cont) (5-18)

or more simply

EW(line) = _ [5q(-V) - c R 0 {W)} bw(N
)

c R0 (\\ )
- R0 (N) rj

(
W

) / rj(N)''
(B ~ 19)

This can be re-expressed in terms of the relative bandwidths as

EW{line) = [50 (-V) - c i?0 (IT
r

)] bujN)
[c R0 (\V )

- R0 (N) bw(N)/ bw(W)\

'

(5-20)

Note that if the wide-band image is replaced by an -‘off-line” continuum-band
image, then the equivalent width reduces to

EW(line) = ^o(-V) - c R0 (cont)] bw{N)

[c R0 (cont )]

(5-21)

as anticipated.



316

B ' 2 Practical ^cation: The Orion Nebula

To test whether the formulations derived in tU
succeed at separating the lin a

preuous section actuallyparatmg the line and continuum components I .

equations B-13 and B-17 to Ha and R K l

•

h e applled^
go0::::;rh;;xr;r:r rrrrrrrr by

,

,he h°- - «»cRrL
telescope and RCA C® d i 7 T “ Kl" A‘ 0.9 -
total field of view of Jx 4̂

^ ^ ^ <* «.«(» -d a

F.gure B— 1(a) shows the Orion nebula imaged for 2 seconds th a

- ", -t 1 11 « *> ^ “;7:*r
-«*. ..:r:i”“L“srr“777 *•

pr-n ~i,- 1 • .

r, -^t stars have saturated the

these2 reSUl,mg
“<~W emanating from

By scaling and subtracting the R-band image [B-l(b)J from the Ha image.B-l,a, according to equation B-13, I obtain an emission-line image that is

'

fr

T h

of

r
ntamination hy the red con,inuum

' Th- - <!>»»„gure 2(a). The elimination of continuum light can be gauged by no,mg•He -appearance of the unsaturated stars above the horizontal blaclt line (a badPtxe, column, and in the lower left-hand corner. The bright stars in the centrrd
Taper, urn cluster and just below the straight ionization front were saturated in
e R-band .mage, however, thus leading to their incomplete subtraction.

1

Kit, Peak National Observatory is operated by the Associate of Universities fo, Researchstronomy, Inc, under contract with the National Science Foundation.

in
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By scaling and subtracting the Ha-band image B Hal' f ,u D1image (B-l ( bJJ acceding to equation B-1T. re-expressed ^
/,\

(

6563
)
^ bw(R) 1

bw{ Hq
) v(Ha' [B- 22

)

I get a continuum-band image that is virtually free of contamination bv the H ,
llne - this is shown in figure R-0,ki„ i , ,,, •

the na

R-band image. Figure B-l( b ) Th

^ e compared with the original

in high con, a t, is 8 L , T™** ^~ here
I is 8., times weaker than the nebulosity in the original R 1 lmage and roughly 5500 times weaker per unit wavelength than heHa emission (after correcting the H, ( in

§ h corresPondmg

iNIIi Within the « A I T
mge 01 10 percent contamination bywithin the 38 A bandpass). In other word, th u i

of the •
,

ner words, the nebular componentot the Ha equivalent width is EWneh(Ha) - ^nn Am-

r:;:::;::rr~r •“—=— ..

•as a, T

Z' ™ Md 2 ' Ph0, °n COn,i "UU "> emission from agas at Te as (500A (cf. Osterbrock 1974 - A ranwUl •a A. Campbell, private communication).
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Figures

Figure B-l

Ha and R-band CCD images of the Orion nebula. The field of view is

approximately 7.3' x 4.5'.

a. Orion nebula and ionizing star cluster through Ha filter (A = 6563 A,

AA = 38 A). The CCD image is dominated by the nebula's Ha spectral-line

emission, but also includes continuum emission from the underlying stars and from

the nebulosity itself.

b. Orion nebula and cluster through broad R-band filter (A = 6500 A.

A A = 1283 A). The image contains strong contributions from both the stellar

continuum and nebular line emission. The brightest stars have saturated the

CCD chip resulting in anomolously low counts and spurious “rays’' emanating from

these sites.
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Figure B-2

Decontaminated emission-line and continuum images of the Orion nebula.

a. Orion nebula in the light of Ha (except for those sites where the R-band

image was saturated). This image was made by appropriately scaling and

subtracting the R-band image from the Ha-band image. Note the disappearance

of the unsaturated stars above the horizontal black line and in the lower left-hand

corner.

b. Orion cluster and nebulosity in the red continuum. This image was

made by appropriately scaling and subtracting the Ha-band image from the

R-band image. Note that most of the nebular emission seen in the R-band image

is now gone. The remaining nebulosity is seen here in high contrast. Free-free

emission and scattering by dust are the most likely radiation processes that are

contributing to the nebular continuum.
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