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ABSTRACT

THE ACCELERATION AND DISSOLUTION OF STARS

MOVING THROUGH THE BLACKBODY RADIATION OF A COLLAPSING UNIVERSE

September 19 86

ALICE L. ARGON, B.A. , WELLESLEY COLLEGE
M.S., UNIVERSITY OF MASSACHUSETTS
Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Edward R. Harrison

This dissertation deals with the motion and ablation of stars in

the collapse phase of a closed Friedmann universe. Stars are initially

accelerated due to the collapse of space. Radiation drag becomes

increasingly important, however, and in most of the cases considered

leads to maximum speeds and rapid deceleration. The external blackbody

radiation also leads to mass loss, which acts as an additional acce-

lerating mechanism.

Three species of degenerate stars are considered: black dwarfs

(BD), white dwarfs (WD), and neutron stars (NS). Each is assumed to

have a non-degenerate, ionized atmosphere. In the star's rest frame

the external blackbody radiation appears highly anisotropic, with most

of the radiation entering the atmosphere through a narrow cone cen-

tered on the forward direction (opposite to the direction of motion).

This radiation is Compton scattered. Atmospheric electrons (and hence

ions) are accelerated azimuthally. After having travelled about one

quarter of a circumference, they detach themselves from the star and

vii



stream away. The atmosphere is constantly replenished by upwelling

from the interior. Mass loss then is a result of nEchanical forces and

is not due to thermal boiling.

Four optical depths are considered for each species: 0, 1, 2,

and 3. Maximum speeds characterized by T = A.SxlO^, 1.7x10^, S.AxlO'^,

1.2xl05, 2.1xl05, 8.1x10^ 1.1x10^, 1.3x10^, and 1.5x10^ are achieved

at temperatures of 1.1x10^ K, 1.2x10^ K, 2.1x10^ K, 2.1x10^ K,

2.6x10^ K, 2.0xl0l2 K, 2. 3x10^2 k, 2.8x10^^ K, and 2. 8x10^2 ^ for BDO,

BDl, WDO; WDl, WD2, NSO, NSl, NS2, and NS3 respectively, Where

T = (1 - v2/c2)~^/2 . BD2, BD3, and WD3 never achieve maximum speeds

because in these cases mass loss is too r^id. The model and points

where it is expected to break down are described in detail.
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INTRODUCTION

Much study has been devoted to the formation of structure in the

universe but comparatively little to its dissolution (Rees 1969). In

closed Friedmann models dissolution mirrors formation only in the sense

that the most tenuous structures tend to be the last created and the

first destroyed.

In the collapse phase of the universe the average distance bet-

ween groips of galaxies shrinks. One can single out a unique frame of

reference, the comoving frame, in which the resulting galactic blue

shifts appear isotropic. The blueshifts of individual groups of

galaxies may deviate from the average blueshif t at a given distance.

This deviation reflects the group's peculiar velocity and is not due to

the collapse of space.

Dissolution begins with the merging of clusters when the univer-

sal scale factor has shrunk, by a factor of five and the temperature of

the background radiation has risen to 15 K. Galaxies, which have pecu-

liar velocities of order 300 km s~^, begin to accelerate. Acceleration

occurs because the gravitationally non-interacting galaxies always

overtake comoving observers that move towards them. When the tem-

perature of the radiation has reached 150 K and these velocities have

increased to 3000 km s~^, the average density of the universe becomes

comparable to the mean density of galaxies (= 10"^^ g cm~^). Galaxies

release their constituent stars with peculiar velocities of order 3000

km s~^. The stars accelerate and by 10^ K become relativistic.



Acceleration continues, but, as the radiation field intensifies, they

are slowly whittled away. Eventually, the universe contains only

radiation, neutrinos, gas, and black holes. In this paper attention is

focused mainly on the motion and ablation of stars in the radiation

field of a collapsing universe.

We consider three species of stars: black dwarfs, white dwarfs,

and neutron stars. In the first chapter these stars are taken to be

structureless, indestructible spheres. Their motions are initially

dominated by the acceleration due to universal collapse. Radiation drag

becomes increasingly important, however, and eventually conqjarable to

the acceleration. Maximum speeds are achieved, followed by rapid dece-

leration.

In the second chapter stellar ablation is taken into account.

Stars now have an atmosphere, an interior, and a 'surface' separating

the two. Radiation, which appears anisotropic in the star's rest frame,

enters the atmosphere. Some is scattered by atmospheric electrons and

some travels straight to the surface. The azimuthal component of scat-

tered radiation accelerates atmospheric material. This material then

leaves the star, causing it to accelerate to a higher velocity than

would be attained if the collapse of space were the only means of acce-

leration. Radiation that reaches the surface either directly or

indirectly via particle collisions acts as a decelerating force. When

and if the drag force finally becomes comparable to the acceleration,

deceleration occurs, but more rapidly than before.

In the third chapter miscellaneous topics are discussed. It was
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assumed in the calculation of chapters I and II that collisions are

unimportant. In this chapter we show that such an assumption is

justified. Additional contributions to deceleration (or acceleration)

are also discussed. These include changes in the nass-radius relation,

e+e" pair creation, and the presence of gas. Finally, we consider the

possibility of supermassive black holes consuming large numbers of

stars.



CHAPTER I

STELLAR MOTIONS ASSUMING NO MASS LOSS

The Stellar Model

As a first approximation, we assume that stars are structureless,

indestructible spheres. We make no distinction between atmosphere and

interior. It is only the total mass and radius that concern us here,

and these remain constant throughout the period of interest. No distor-

tion in shape is assumed to occur, even though the external radiation

field appears anisotropic in the rest frame of the star.

We also assume that all stars are non-rotating. Observations

indicate that most white dwarfs rotate slowly, if at all (Shapiro and

Teukolsky 19 83). Neutron stars (pulsars) are assumed to lose mDSt of

their rotational energy during the hundreds of millions of years that

elapse between the dissolution of galaxies and the onset of relati-

vistic motion in the stars. No new star formation is assumed to occur

once the galaxies have dissolved.

In addition, stellar magnetic fields are ignored. Main sequence

stars have typical surface magnetic fields of order 100 G (Shapiro and

Teukolsky 1983). As they collapse to form the various types of dege-

nerates, the strengths of the magnetic fields increase according to the

inverse square of the radii. Hence, a neutron star whose radius is five

orders of magnitude smaller than that of a typical main sequence star

1

2

such as the Sun will have a magnetic field strength of order 10 G.
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These fields are thought to decay slowly. A homogeneous neutron star,

for example, will lose its magnetic field in about 10^ years. The decay

time depends upon the detailed interactions between the electrons and

other matter in the interior and can be much longer for ncre realistic

models. White dwarfs, on the other hand, are for the most part

non-magnetic. Only a few percent have significant magnetic fields and

only a handful have magnetic fields as high as 10^ G.

Drag Force Due to Background Radiation

In Cosmology there is a unique or absolute frame of reference,

the comoving frame. This frame is distinguished from all others by the

isotropy of matter and radiation. Properties, such as the radiation

temperature, depend only upon how much time has elapsed since the onset

of collapse. The star's rest frame, on the other hand, presents a dif-

ferent picture. It singles out a particular direction, the direction of

motion. The observer still sees blackbody radiation wherever he or she

loc^s, but its temperature is now angle dependent. Radiation coming in

along the forward direction (opposite to the direction of motion)

appears hottest and that coming in along the backward direction

coolest. This radiation can be described by the anisotropic intensity

distribution (Heer and Kohl 19 68):

i(e)dfi =
^^4(1 . e^cc«e)A . (1)

The angle 6 is measured from the forward direction (Fig. 1). T is the

temperature of the blackbody radiation in the comoving frame, Vg = ^gC



the speed of the star through the comoving frame, where -Yg =
^^-^s^)~^^^y

and a the Stefan-Boltzmann constant.

The anisotropic intensity of equation (1) gives rise to a drag

f orce:

f = --^ // 1(6) cos e'cosedTidi^^ g. (2)

The cos 6 factor (Fig. 1) is always present when radiation does not

enter normally and is due to the fact that an area viewed at an angle

appears smaller than an area viewed face on. The cos 9 factor gives the

component of force in the forward (-S) direction. R is the star's

radius and c is the speed of light.

Substitution of equation (1) into equation (2) gives

I = / / / / [

—

A ^

,

— ^^Ta] cosBsmMBdd)coo o o Yg (1 - pgcose)"*'

cos e'sineMe'dij)' r2

Integration is first performed over all inward normals (-n) (keeping

6 and 9 fixed) and then over all photon directions (Ji) for a given nor-

mal direction. We find

f . _ IMImZ TrR2 z\ (3)
3c

This is the relativistic drag force. Since it depends only upon the

relative motion of the star and the radiation through which it moves,

it can be calculated in either frame. We chose the star's rest frame

because only in this frame does the star appear spherical. It is far

easier to describe the anisotropic intensity distribution that occurs

in the star's rest frame than to determine the star's shape in the

comoving frame. A comoving observer sees more than a simple Lorentz
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contraction in the direction of motion.

Consider the case of a comoving observer whose line of sight to

the star is perpendicular to the direction of motion (Fig. 2A). The

Observer is far enough away so that, to a high degree of accuracy, all

rays appear to come in parallel. Divide the star up into infinitesi-

mally thin rings with all points on any given ring being equidistant

from the observer. Each ring appears Lorentz contracted in the direc-

tion of motion. In addition, light from rings closer to the observer

must leave the star later than light from more distant rings. During

these time intervals, however, the star has moved so that the Lorentz

contracted rings are displaced by varying amounts in the direction of

motion. What the observer sees, then, is a rotated hemisphere (Fig.

2B). The angle of rotation from the line of sight is given by

= cos-l(l/ys),

where Ys is the relativistic factor, (1 - &g^)~'^/2. This means that as

Vg -»• c (ifg °°)y 6j. tt/2 and the hemisphere is rotated into the direc-

tion of motion.

The apparent rotation described above is seen only by distant

observers. This is because the distant observer is never able to see

more than 50% of the star. The nearby observer, on the other hand,

begins to see the 'back' of the star after a very short time. To such

an observer, the rings of equidistant points no longer appear con-

centric. Distortion occurs. Because this distortion is difficult to

describe in general, we do not attempt an analysis of the drag force in

this frame of reference.
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Stellar Speeds as a Function of Temperature

We now wish to find the speed of stars through the blackbody

radiation of a collapsing universe as a fuction of time (or, equiva-

lent ly, radiation temperature). If mass loss is not taken into account,

acceleration obeys (Weinberg 19 72)

7t^ dT TT ^T'

The rate of acceleration (or deceleration) is determined by the rela-

tive strengths of the gravitational force per unit rest mass (first

term on right) and non-gravitational force per unit rest mass (second

term on right). The gravitational term can be computed from the

Robertson-Walker line element, which describes spacetime intervals in a

universe characterized by homogeneity and isotropy. The

non-gravitational term is calculated from the drag force, equation (3).

Taking the time component of equation (4) and making use of the

drag force of equation (3), we find

where dt,, is the time interval measured in the comoving frame.

Before solving equation (5), we eliminate the time variable by

finding a relation between blackbody temperature and time. Since we are

concerned mostly with high tenperatures, we can write this relation as

(Weinberg 19 72)

ill = (

^ttGp, 1/, ^/ (6)

dtc ^
which holds for temperatures higher than about 10 K. T = T/Tq, where
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Tq = 150 K is the temperature of the radiation when galaxies merge.

Pt is the total energy density with contributions from both matter and

radiation. When reaches about lO^, radiation dominates and we can

write Pt = Py -< t'^. Substitution into equation (6) gives

CiT (7)

with the constant

Ci = (SttGp /3)V2 = 4.9x10-17 s"!,

where p^q is the energy density of radiation at 150 K.

Equation (5) can now be solved for Yg(T):

Ts = [C2T2exp(-C3T2) + i]V2. (8)

The constant C2 is determined from the initial (at 150 K) stellar velo-

for black dwarfs, white dwarfs, and neutron stars respectively.

In calculating the constant C3, it was assumed that all black

dwarfs have masses of 0.1 M0, all white dwarfs masses of 0.7 M0, and

all neutron stars masses of l.A M0. The radii of the various species

are then determined by employing the most appropriate mass-radius rela-

tion. Black dwarfs, for example, are well described by an n = 3/2

polytrope. This implies a radius of £ 6.0x10^ cm for stars composed

entirely of hydrogen (Shapiro and Teukolsky 1983). White dwarfs can be

described reasonably well by Chandrasekhar 's simple degenerate model,

city, = 3xl03 km s"'^, and has the value

C2 = 4.4x10-9 K-2.

The constant C3 has the values:

and 2.5x10,-2 5 y-2
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which assumes a single species of nonrLnteracting fennion. For stars

containing no hydrogen, this model gives a radius of = 8. IxlO^ cm. The

radii of neutron stars are more uncertain due to the uncertainty in the

equation of state for densities higher than that of nuclear matter. We

take an average of the six different values predicted by the models

described in Baym and Pethick (1979) and find the radius 1.2x10^ cm.

The temperatures at which maximum speeds are achieved can be

found be differentiating equation (8):

Tmax = (l/C3)^/2. (9)

These temperatures can then be used to find the maximum values of the

relativistic factor, Tg*

^s,max = 6. 1x10-1 (C2/C3)V2. (10)

One can also obtain simple expressions for 7g in the limits of

lew and high temperature. In the low ten5)erature limit, C3T^ << 1,

^s^s = (^2)^/2 T, (11)

which sinply says that, initially, stellar motions are dominated by the

collapse of space. Later on, however, when C3T'^ > 1, radiation drag is

dominant and

£ (C2)V2Texp(-C3T2/2). (12)

Numerical Results

Figure (3) shows a plot of log Yg versus log T for the three spe-

cies of stars. The linear rise (see eq. [11]) reflects the collapse of

space. Radiation drag does not become noticeable until the blackbody



11

temperature has risen to about 5.0xl07 k, l.OxlO^ K, and 1. 0x10^2 k for

black dwarfs, white dwarfs, and neutron stars respectively. By T =

l.lxloS K, 2.1x10^ K, and 2.0xlol2 k, the two opposing forces have

become equal (see eq. [9]). Maximum speeds are achieved, characterized

by Ts = 4.5xl03, 8.4x10^, and 8. 1x10^ (see eq. [10]). Thereafter,

radiation drag dominates.



CHAPTER II

STELLAR MOTIONS TAKING MASS LOSS INTO ACCOUNT

Brief Overview

We now give the star structure: an ionized atmosphere, an

interior, and a distinct surface. Radiation enters the atmosphere and

is Compton scattered by ambient electrons. Numerous collisions then

ensure that energy is transferred to atmospheric ions, such that both

species nove off with comparable speeds. The azimuthal component of

particle momentum leads to mass loss. The radial conponent is trans-

ferred to the surface and contributes to stellar deceleration. Material

always upwells from the interior at a sufficient rate to replace what

i s los t.

In this chapter we derive the five equations needed to find

stellar speeds as a function of black body temperature for stars that

are losing mass. Many assumptions and simplifications are made along

the way, which are best discussed as they arise. The five equations are

then reduced to two sets of coupled first order differential equations:

one set gives stellar acceleration and rate of mass loss in the limit

of low blackbody temperature, and the other gives the same things in

the limit of high blackbody temperature. Solution is by the Runge-Kutta

method.

The Transfer of Radiation Through the Atmosphere

12
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The Intensity

In the first chapter we showed that the external radiation field

appears anisotropic to an observer in the star's rest frame if this

observer moves with respect to a comoving observer. More radiation

appears to come from the forward direction than from any other, and the

faster the star moves, the more pronounced this effect becomes. Once

speeds have become relativistic, almost all of the entering radiation

comes through a narrow cone centered on the forward direction, which

means that very little radiation strikes the back of the star. Because

of this, we make the assumption that the front of the star is irra-

diated, while the back is not.

Radiation entering the atmosphere can be absorbed, scattered, or

left unaffected by the presence of matter. Since ionization levels are

high at the temperatures considered, we can ignore contributions to the

absorption from bound-bound and bound-free transitions. Free-free tran-

sitions are also assumed to be unimportant because, by the time

atmospheric densities have become high enough (which occurs late in the

calculation), temperatures have become too high. We are therefore left

with electron scattering as the dominant interaction. Multiple scat-

terings need not be considered because photons are expected to give up

most of their energy upon scattering. This happens because incident

photons are mach more energetic than scattering electrons. Even though

electrons initially take up most of the energy entering the atmosphere,

they distribute it among neighboring ions (via collisions), such that
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both species develop comparable velocities within a short time. This,

of course, leads to ion energies which are about m^/xn^ times greater

than electron energies, where and are the masses of the ion and

electron respectively. Photons that are not scattered are assumed to

reach the surface directly.

Emission within the atmosphere is ignored because the photons

produced are esqpected to be of mach lower energy than the ones

inpinging upon the atmosphere.

So, ignoring absorption, multiple scatterings, and emission and

assuming steady state conditions, we write the equation of transfer:

n-vi(v,n) = -/"dv' ;4T^n'0g(v-^v^n-^n')i(v,fl).
^^^^

A A/
and are directions of photon travel, v and photon frequencies,

and ag(v-»v the scattering probability per unit length for

radiation entering the atmosphere at v and and being scattered into

V and Q. . The separate Q, and dependences, rather than a single

scattering angle , are due to the fact that the electrons are

moving. There is a preferred direction and it is the direction of

electron motion.

One should note that equation (13) is written for an inertial

frame. Although the star's rest frame is not an inertial frame, we can

envision it coinciding with such a frame at a given instant of time and

over an arbitrarily small but finite interval of space.

We rewrite equation (13) as

f2.^(v,^) = -a( v,J2)I(v,J2)

with
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a(v,a) = /»dv' /4^d5'o3(vV,a-.r)
(14)

by bringing the intensity outside the integral.

We then solve:

I ( V, n)

ijvlfi)
= exp[-o(v,R)s].

(15)

Io(v,ft) is the intensity of radiation entering the atmosphere and

I( V, fl) the intensity after having traversed a path length s. In the

next two sections we find expressions for o( v, fl) and s.

The Scattering Probability

In order to calculate the scattering probability, Og (

v

-jv' , ft ),

we start with the Klein-Nishina formula for Conpton scattering off sta-

tionary electrons. We then discuss how this scattering probability

transforms when we go to frames in which the electrons are moving. One

of these frames, the star's rest frame, is the frame in which we wish

to integrate the scattering probability given by equation (lA),

The Klein-Nishina scattering probability can be written:

where the 'e* subscripts denote the electron rest frame. The scattering

angle Cg = ^g* ^q' appears here because in this frame nothing is moving

and there can be no preferred direction, ng is the number density of

electrons, rQ the classical electron radius, and = hv^/mgC^ and
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otg' =hVg'/mgc2 dimensionless frequencies, where h is Planck's

constant, the electron's mass, and c the speed of light.

We now wish to find the scattering probability in the star's rest

frame. It is assumed that all electrons move with the same speed

because, although there is a thermal distribution, the speeds involved

are expected to be much smaller than the bulk speed, which is uniform.

The transformation between the two frames (electron rest frame

and stellar rest frame) is given by (Pomraning 1973)

where D = l-6*n,D' = and 6 = v/c. This transformation is, of

course, only valid for inertial frames, but, as noted above, such

frames can be constructed to coincide with the real frames at a given

instant and over a small interval of space. One can now use the above

transformation and transformations for the various quantities within

OggCVg^Vg' , Cg) to show

s 2 a TV f'BD y'^DD'

ea-i^:^-^). (17)
a' a

The quantities y and B have the usual definitions, y = and 3

v/c. Other quantities are defined as in the Klein-Nishina formula. When

Y = 1 equation (17) reduces to equation (16) as expected.

Before integrating the scattering probability over all exit fre-

quencies and directions of photon travel, we make the following

assumptions

:

First, we choose the frequency at which the intensity, lQ(v,n),
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is a maximum to be the frequency of the incoming radiation. An observer

in the star's rest frame sees the usual blackbody spectral distribu-

tion except for an angle dependent temperature:

I(v,n)dvdn = {exp i-—^] ' 1}-^ dvdfl
,

where = 1(6) = T/Tq (l-BgCos 6). 0 is measured from the forward

direction, i.e., a ray coming in along the forward direction (-z ) would

have 6 = 0 (Fig. 1). T is the temperature of the blackbody radiation in

the comoving frame and Vg = BgC is the velocity of the star. For 6 = 0

and Ys » ^ we find the simplified blackbody temperature, T(e) = 2y„T.

The expression above can now be differentiated to give the frequency at

which maximum intensity occurs. We write this in terms of a, the dimen-

sionless frequency:

a £ 9. 5x10" 10 y^i, (18)

Second, we note that most of the radiation comes in through a

small solid angle centered on the forward direction. Hence, the forward

direction can be taken to be the direction of travel for incoming pho-

tons, an assumption that has already been used in the derivation of

equation (18).

Third, we assume a constant optical depth in 6, i.e.:

o(v, fi)s = constant in 9 , (19)

where 6 is the angle between the forward direction (-z ) and the inward

normal to the surface (-n) (Fig. 1). This simplifies the calculation of

the scattering probability, since we need not calculate it as a general

function of 6.

With these assumptions in mind, we perform the integrations of
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equation (14) to find the total scattering probability. The first

integral is simply a delta function in yD/a' and can be solved to

yield

'
T-^.." V (1 + fl^^.^ 2 [YD^+a(l-0]^ ^ ^ TW^J

YD' LyD^+ad-^)]^* (20)

The second integral is quite tedious but straightforward if we

perform it at 6 = 7i/2. The assumption of constant optical depth allows

us to calculate the scattering probability at any angle between 6 = 0

and 6 = i\/2 (recall that radiation does not strike the back of the star

in our ncdel) and we choose 6 = ti/2 because incoming photons, which

come in along the forward direction, are moving parallel to the

electrons. This untangles the conqjlicated angular dependences and

allows us to write

D = l-l'-n = 1- B, = 1-f- = l-BcosSg, and K = cos Bg.

The only angle remaining is the scattering angle, Sg.

We, therefore, write

nr^^ (1-6)
OgCv, O --2^

[y(1-Bcos 65 )+a(l-coseg)]2

_ (l-cosSg) ^
" Y^(l-6)(l-6cose^)^^s

a2(l-coses)2
Y(l-6coses)lT(l-6cos eg)+aCl-cos Q^)!

This equation is to be integrated over all solid angle. Performing the

4) g integration and writing the equation in terms of the variable

X = cos 6g, we find

Og(v, 6=71/2) = Tmro2 ;_1
^^^i^^Had-x) ]^



19

T^(l-B)(l-3x)J ^ Y(l-Bx)[Y(l-Bx)+a(l-x)]^ ^^^^

The above mist be solved in pieces. The first term can be integrated

easily:

o -MT(l-Bx;+a(l-x)]'^ y^(e + ct/Y)4-3 "(l+B) + 2a/f^*22)

The second term, the one of the form [ can be multiplied out

and written in terms of the variable, y E B(l-x)/ (1- Bx):

^^o' ^23/(l^B) 7^^r^%2[l -77^^ bVIi-B)^ ^ MTY
(23)

Integrating, we find

Tinr 2
1

2TrD.r^^

"^rf- ~ 1 + 2a/(l + B)Y^ aV(l--B)^^''^ + 2a/(l+B)T^
^

1
TTnr^2 2^

"
1 + 2a/(l + B)Y

^"
«V(1-B)2^^-^''^^

2a 1

(1 + B)T
"

1 + 2a/(l + B)Y^^*
^^^^

The third term in equation (21) can also be written in terms of

the variable y and integrated:

Eo^d r ^ 1 + — — 2

a 4 + 20/(1 + 3)^^ 2 1 + 2a/(l + B)Y

2

Yot

2[1 + 2a/(l+B)Y]2^'
^"^^

Adding the three terms (equations [22], [24], and [25]) together,

assuming that the electron velocity is highly relativistic (Y>> 1)»

and sinqjlifying, we find

TT
2 2

o_(v, 6»Tr/2) = T7r~TT2'[ ("5^ + 9 + 16-1+ 8^)
S ' Y(1+oi/y; 2y a a

+ (iL - 2 - 15^^^- 2o4- 84)ln(l +^)]. (26)
'Y a a a"



Equation (26) can be written in two limits, a low temperature

limit corresponding to ct/y << 1 and a high temperature limit

corresponding to cx/y >> 1. Rejecting terms that are less than 10% of

the largest term (if a/y < 0. 1 for the low temperature limit or if

a/y > 10 for the high temperature limit), we find for the two limits

03(v,e=7T/2) = ^ , -^« 1 (27)

and

03(v,6=ir/2) =^ [1--, ind-.^)], ^» i. (28)

Equations (27) and (28) have been written in terms of the Thomson scat-

tering cross section per electron, a^ = 8^^2/3. These equations say

that the scattering probability increases as the electron density

increases and decreases as the electrons accelerate or the incoming

photons become more energetic (a/y >> 1 only).

The Photon Path Length

We now determine the photon path length, i.e. , the distance that

unscattered photons nust travel (at 6 = 71/2) in order to reach the

star's surface, h is taken to be the height of the non-degenerate

atmosphere and R the radius of the degenerate interior. Both h and R

are assumed constant in 6 for a given blackbody temperature. The two

regions are divided by a distinct surface. We do not worry about par-

tially degenerate transition layers, since they would be superfluous in

the nodel. We need only an atmosphere to facilitate mass loss and an
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interior to replenish what is lost and to maintain equilibrium.

The photon path length can be shown to obey the relation (Fig. 4)

for the condition h << R,

The optical depth, t, is now simply the product of equations (27)

and (29) for the low temperature limit and equations (28) and (29) for

the high temperature limit. It has been found to depend upon electron

density and speed, the height of the atmosphere, and the star's radius

and speed through the blackbody radiation, all of which are ultimately

functions of the radiation temperature. Our first constraint is there-

fore

T = o(v,a)s. (30)

T is assigned a value, and the five variables above are constrained so

as to satisfy equation (30).

The Acceleration of Atmospheric Particles

The Hydrodynamical Equations

In the last section we calculated the probability of photons

scattering off electrons of a given density and moving at a given

speed. In the present section we find how electron momentum changes as

a result of interacting with these photons.

We start with the hydrodynamical equations for a relativistic,

ideal fluid. In the Eulerian picture particle, momentum, and energy
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balances are performed on a differential volume element, which is fixed

in space. Such a description is the natural choice for an observer in

the star's rest frame because atmospheric quantities such as particle

density or velocity are required at specific locations.

If D(r, t) represents the density of the quantity under con-

sideration, i.e., particle, momentum, or energy density, F(r,t) the

flux of the quantity, and S(r,t) any external source of the quantity

per unit volume, we can write the general conservation equation

(Poraraning 1973):

^^^^•F(?,t)=S(?,t).

Specifically:

+ ?-(TP^) = 0 (31)

for particle balance, where no external source of particles is assumed;

3t
^ -^(pc2 + + Pj,)-^ + + + [-^(pc2 + + P^)^^r

•^PrJ=S,om» (32)

for momentum balance, where S^^^ is an external source of momentum; and

= S,„. (33)

for energy balance, where Sg^^ is an external energy source, p is the

mass density of the fluid in its rest frame, the energy density of

the fluid in its rest frame in excess of the rest energy (E^otal

PC^), Pffi
pressure of the fluid, and v" the velocity of the fluid

with Y = (l-32)-V2 and 3 = v/c Equations (31) through (33) include the
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presence of a radiation field with energy density E^., flux f^, and

pressure tensor Pj..

Radial Forces

The force on atmospheric material due to external photons has

both an f and 6 conponent. Even though these two components of force

are conparable, we do not expect the velocities in the two directions

to be of similar magnitude. Azimuthal acceleration continues until

atmospheric material detaches itself from the star at 6 = 7^/2, but

radial acceleration only continues until the bottom of the atmosphere

is reached. Since R >> h, we expect vq >> Vj.(gp) at all angles except

for 6 s 0, where Vj.(gp) is that conponent of the radial velocity due to

external photons.

In addition to the inward force of external photons, we have an

outward force due to upwelling material. Material from the interior

must upwell at a sufficient rate to replace what is lost. We do not

expect it to transfer much momentum to the atmospheric particles,

however, because the area through which upwelling material may pass is

much greater than the annulus through which material is lost. Assuming

a constant density, this means that the velocity of upwelling material

is nuch smaller than the atmosphere's azimuthal velocity (see equation

[31]): Vi.(um) << Vq, where 'um' stands for upwelling material. Since

"^r(ep) ^r(um)
separately mich smaller than vg and since the two

forces act in opposite directions, we expect Vj- << vg, where Vj. is the
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vector sum of Vj.(ep) and v^(^^^y

Of course there are other radial forces such as gravity, pressure

gradients, etc., but these are expected to be so small compared to

either the force of external radiation or the force of upwelling

material that they can be ignored.

The Momentum Balance Equation

We not only assume that Vj. << vg but also that v^ << vg. There

is no external force in the 4) direction and thus no net movement of

material. We can therefore write the total velocity as

V = VQ, (34)

which means that the 6 momentum equation is now decoupled from the f

and (\> momentum equations.

The equation for momentum balance in the 6 direction can be writ-

ten out ejqplicitly as

2

+ Em I'm>^<^^e] +7 ^(PC^ + Em Pm^^^e^r " cotSv^v^)

ox ro' rsin6 do oo rsinS 9(j)

Quantities are defined as in equations (31) through (33). The

subscripts "r
' ,

'6*, and '<})' refer to the components of the quantity
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under consideration in the r, and % directions respectively. Double

subscripts indicate tensor quantities. For example, is the force

due to radiation moving in the 6 direction impinging upon a unit area

with r normal. The dyadic terms, i.e., those of the form v^v^, can be

defined in a similar way. y^/c^ ( pc^ + En, + Pi„)v^ve, for example, is

the momentum flux of material moving in the 6 direction and passing

through a surface perpendicular to f. The second through sixth terms

are due to matter, the last four terms to radiation, and the first term

to both matter and radiation.

Instead of finding the relativistic density, D(r, t), and flux,

F(r,t), and performing a balance of the quantity under consideration

(as Pomraning does), one could have en^jloyed the more widely used ten-

sor approach. This approach makes use of the energy-momentum tensor of

a perfect fluid:

tPV ^ pgyv + (p + p)uyuV (3^)

in order to solve the equation for conservation of energy -momentum:

T^^;v = 0. (37)

u^ is the local value of dx^/dr = Tv^ for a comoving fluid element, and

P and P are the pressure and energy density measured by an observer in

a locally inert ial frame that noves with the fluid at the instant the

measurement is made. gyv> metric tensor, is defined by

= -gyv dx^'dx^ = dt^ - (dr^ + r^de^ + r^sin^ ed<j)2).

Taking the 6 component, we arrive at equation (35) except for the

radiation and external source terms. These too will emerge if we write

equation (36) to include the radiation field and equation (37) to



include an external source of energy-momentum. In writing out equation

(37), one must remember that the conponents of the velocity v^., v q, and

used by Pomraning in equation (35) are neither the contravariant

components, v^, nor the covariant components, v^, but functions of

these components and the metric tensor.

We now return to equation (35) and discuss the various simplifi-

cations that can be made.

We start off by arguing that the thermal energy of particles is

not only much smaller than the energy associated with bulk motion but

is also non-relativistic. Most of the photons that enter the atmosphere

are involved in scattering events, since absorption is not inq)ortant at

the high temperatures and not so high densities e3q)ected. These do not

heat the gas. Scattered photons are available for heating, but their

energies are mich lower than they were when they entered the

atmosphere. We therefore e2q>ect only a small percentage of the energy

that enters the atmosphere to go into heating. Photons that are not

removed from the original beam strike the surface and contribute to

stellar deceleration.

One can therefore assume that the temperature of the atmosphere

is on the order of T (blackbocfy temperature in comoving frame) and not

many orders of magnitude higher. Now, since the condition

m m
nil

holds for T << 10^^ K, thermal notions are non-relativistic for the

entire period of interest. This is an important sinplification because

now the temperature of the atmosphere need not enter our discussion.
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Steady state conditions can be assumed because, even though the

blackbody temperature rises, its change is negligible over atmospheric

times cales.

The third term and the veVj. part of the sixth term can be ignored

since Vj. << ve- The net momentum passing through the r surface is mich

less than the momentum passing through the 6 surface.

Terms involving are negligible.

One can also assume that no significant radiation field exists in

the atmosphere. Scattered photons are of very low energy; photons,

which have either been emitted or absorbed, are also of low energy,

and photons from the original beam that have not been scattered or

absorbed have no effect on particle momentum. We therefore ignore the

last four terms on the left hand side of equation (35).

Finally, it can be assumed that the material pressure gradient in

A.

the 6 direction is zero. There is no a priori reason to expect a signi-

ficant azimuthal variation, since the total incoming energy varies very

little in 6 (over the front face) when the star is moving very fast.

Taking the assumptions in the above paragraphs into account, we

write equation (35) as

^J^g—[sinepT2ve2j =s^^,e- ^38)

The source term, S^^^ g, is the 6 component of the momentum of external

photons scattered in a unit volume of atmosphere per second. In writing

equation (38), we have assumed that scattering photons transfer all

their momentum to electrons, which in turn transfer most of their

momentum to ions such that both species end up moving with the same



velocity. The density in equation (38) is therefore the total density

and the velocity, v 9, is the velocity of atmospheric particles, both

electrons and ions, in the 6 direction.

Since we are not concerned with how quantities such as p and

ve vary with depth, we write S^^^j^^ g as an average:

Smom, e = ^-S^. (39)

A large number of photons enter the atmosphere through a unit area per

second. Most of these are scattered by the time the original beam

reaches the surface. Pgcat just the total 6 momentum of all these

photons. Since steady state conditions are assumed to prevail, it is

also the sum of the fluxes entering individual layers.

Equations (38) and (39) give

^[sinepT^^e^] =^-F^rsinO ae ° h

Since 6 is the only variable over which quantities vary, we write

^^[sinepAe^j (40)

R replaces r because, to the accuracy required, all atmospheric layers

lie a distance R from the center.

Approximation for Incoming Intensity

Before calculating Pgcat (®^» approximation for the

angular dependence of the intensity of incoming photons. Our approxi-

mate intensity is constant within a small solid angle centered on the

forward direction and equal to the maximum value of the actual inten-
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sity, such that the integrated intensity within the small solid angle

is equal to the total integrated intensity over all soUd angle if no

approximation is made. That is,

•^o'' ImaxSin^d^d? = Z^'' f^^^ 1 ( e)s inSd Sd^, (Al)

where 6 is the angle between the incoming photons and the forward

direction (Fig. 1). 1(6) = rfT^ / ir ( l-BgCos 6)^ is the exact intensity

distribution, and 1^^^ = 1(6=0) is the intensity of radiation coming in

along the forward direction. Carrying out the integrations of equation

(41) and assuming that Yg >> 1 and 6^ ^ 0, we find

6„ . ^
and hence the approximation for the intensity distribution of incoming

phot ons

161 < ±-
lo = (^2)

0 161 > /3\.

The limits of integration in equation (41) are really only

appropriate for 6 = 0. In general, the upper limit of 6 depends upon

6 and <(>. We do not worry about such complications, however, because at

high stellar speeds the entering radiation is highly focused. One does

not ejqiect a noticeable variation in 6, since the same narrow cone

through which most of the radiation passes impinges upon all normal

surfaces except those very close to 6 = tt/2.

The total nomentum flux can be written

Pscat ^/Iscat^^-e'^i^e'^^ ^'^^



^scat is the intensity of photons scattered out of the original beam in

traversing the atmosphere, and e' is the angle between the incoming

photons and the inward normal to the area under consideration (Fig. 1).

For simplicity, we assume that the optical depth of the

atmosphere remains constant in time (or blackbody temperature). This

allows us to write

= exp [-o(v,n)s ] = constant in T = C4,

where Iq is given by equation (42). Igj,^,. is now siTi?>ly:

Iscat = ^o - 1 = ^o^^ - ^4)- W
Since most of the radiation enters the atmosphere through a

narrow cone centered on the forward direction, we can write

e' E e.

Making use of equations (44) and (42), we perform the integration of

equation (43) and find

Pscat - '^""'^-3^' -"^^ cosesine. (45)

In a similar manner we find the energy flux:

scat
- /Iscat-se'd« . iM^I^il^^ileos e. (46)

Equation (40) can now be solved to give the speed of atmospheric

particles. If the speed at 6 = 11/2 is denoted by vj^, where 1^ = (1
"

vj|^/c^)~'^/2 and the density by pj^, we can write

o_ 16otS.2(1 - C4)
(47)^ - 9C5PMC^

C5 is the ratio h/R, which, like C4, is assumed constant in 6 and time

(or blackbody tenqjerature ).
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The speed will be taken to be the speed of all particles but

really represents a maximum speed. Particles that start from rest at

6 = 0 will indeed achieve this speed by 6 = ti/2, but particles which

start from rest at other azinuthal positions (newly upwelled material)

will not reach such high speeds. We do not worry about this hierarchy

of speeds, however, and take V14 to be the speed of all particles.

Equation (47) tells us how fast atmospheric particles will be

moving at 6 = ii/2 if electrons Compton scatter and transfer mast of

their energy to nearby ions, such that both develop the same speed

within a short time. Atmospheric material is expected to detach itself

from the star very close to 6 = ti/2 because the inward radial force

due to external photons drops off very suddenly as this point is

reached.

Mass Loss

The equation for energy balance in the atmosphere can be written

in the general form:

l;[y^iPc^ + + P^) -
Pn, + E^] + ^-|;[r2y2(pe2 ^ + p^)^^

+ r^F^] + —r-T •^[sineT2(pc2 + + Pn,)ve + sineFg]
*• rsint) * lu ui

+ I L.rY2cnr2 + F + P )va + Fx] = S . (48)
rsine

^P'^
<t>^ en*

Making the same assumptions that we did for equation (35), we find
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which can then be solved with the help of equation (46) to give

To find the total energy lost per second as seen by an observer

in the star's rest frame, we sin^^ly multiply the energy flux by the

surface area of the annulus through which atmospheric naterial nust

pass, i.e., ( pf^c^-yj^^^ ) (2TTRh ). This is then set equal to -kc'^y^, where

-M = -dM/dt is the rate at which the star itself loses mass. Solving

f or M , we find

X5 c

The Mass -Radius Relation

Every astronomical body that is massive enough to pull itself

into a sphere has a unique equilibrium radius. Very low mass bodies,

such as planets, do not have widely varying densities and so obey a

mass -radius relation of the form

R «»<

In such bodies electrostatic solid state forces are mjch stronger than

gravitational forces.

More massive bodies, such as small stars, become degenerate once

nuclear reactions have ceased. In these stars equilibrium is maintained

by the balance of degenerate electron or neutron pressure and gravity;

electrostatic solid state forces are negUgible. More massive

degenerates are therefore smaller:
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Equation (51) is really only valid for small degenerates, but will be

assumed valid for all stars in this calculation.

As a white dwarf loses mass, its radius increases according to

equation (51). The pressure due to degenerate electrons becomes less

and less dominant and at some point becomes equal to the ordinary ionic

pressure. The star may continue to lose mass, but we no longer call it

a white dwarf. A maximum radius is achieved, followed by a gradual

shrinking.

As a neutron star loses mass, its radius also increases, but once

central densities drop belcw a few x 10^ g cm""^, it becomes unstable to

3 decay. Neutrons are transformed into protons, electrons, and anti-

neutrinos. B decay was blocked at higher densities because there were

no available energy levels for the emitted electrons to fill. Neutron

stars don't gradually turn into white dwarfs; they become unstable.

It may happen that degenerates lose so nuch mass that equation

(51) is no longer an adequate mass-radius relation. If this happens,

however, it will be late in the collapse. Now, since the spatial

collapse speeds up as the temperature of the radiation increases, the

anount of time during which the star is no longer adequately described

be equation (51) (if this occurs at all) is very small compared to the

total integration time.

The Star 's Motion through the Background Radiation
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The Total Decelerating Force

Radiation enters the atmosphere and is Compton scattered. The

e component of the scattering radiation accelerates atmospheric

material azimuthally, while the (-r) conponent accelerates it radially.

In this section we consider the radial contribution to stellar

deceleration. We mentioned earlier that the radial force on atmospheric

particles has several conponents, the two major ones being due to

external radiation and upwelling material. We ignore upwelling naterial

here and assume that the radial force on particles is due entirely to

scattering radiation. This force is transferred to the surface through

collisions. The small number of photons from the original beam that do

not scatter also contribute to stellar deceleration and are taken into

account.

The decelerating force due to scattering radiation can be

written:

^scat ' ^//tscat^os®'^°s®'^^®^^'i®^ ^^^^

Once again, e' is the angle between the incoming radiation and the

irward normal to the surface (-ft), 6 the angle between the forward

direction (-z ) and the inward normal (-n), and 6 the angle between the

forward direction (-z ) and the incoming radiation {Si) (Fig. 1). The

cose term arises because we are interested in the component of the

radial force in the (-z) direction. Making use of equations (44) and

(42), we find

t ^ =
-8drS,2(l -C4) .p2 (53)

^scat 3^
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The decelerating force due to unscattered radiation can be

written:

^unseat " -^//Icos e''cos edftdJ^R^ z. (54)

Making use of the fact that I = I0C4, we find

^unseat 3^;^"— z. (55)

In both of the integrations we have assumed that 6'' ^ 8.

The total decelerating force, Ty is just the sum of the two com-

ponents and is given by

This is really more of an upper limit because the force exerted on

atmospheric particles by upwelling material has not been taken into

account.

The Equation of Motion

When mass loss is taken into account, the equation describing the

star's motion through the blackbody radiation can be written:

- dx^ d^ + il .±^dx}i (57)
d-z^ dT dT M M dT dx

The first term on the right hand side is simply the gravitational force

per unit rest mass and is the same as it was in Chapter I, the second

term is the decelerating force per unit rest mass, and the third term

is the additional accelerating force caused by the continuous ejection

of stellar material.
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Taking the time component of equation (57) and mking use of

equations (56) and (51), we find

d-Y. _ Te^ - 1 _ Cf> &c;YsT Ifs

dT - H^r^ - (58)

The constant is given by

^6 ^
. (59)

where K is the constant of proportionality in the mass-radius relation,

equation (51).

Equation (58) can be simplified when stellar speeds are highly

relativistic, i.e. , when Yg i*

dT T M^M M dT

Reduction to Two Coupled First Order Differential Equations

We now have five equations: (27-28) together with (29), (47),

(50), (51), and (60) for the five unknowns: p^y y^, M, R, and y^. In

this section we reduce them to two sets of coupled first order

differential equations (one set for the low temperature limit and the

other for the high temperature limit). Each set consists of a mass loss

equation and an acceleration/deceleration equation.

We start with the scattering probability, equations (27-28).

These equations have been written in terms of the electron number den-

sity, n, and not the mass density, p. To convert, we make use of the

relation

p(l + X)
n =

2mH
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where X is the hydrogen mass fraction. We assume that black dwarfs are

composed entirely of hydrogen (X * 1) and that white dwarfs and neutron

stars are conposed entirely of elements heavier than hydrogen (X = 0).

One can then use equations (27) and (29) or (28) and (29) to

write the atmospheric mass density in the limits of low and high tem-

perature:

^ ao(l+X)R (2C3)V2

and

a

:5)V2 - M ' ^
where use has been made of the two assumptions, I/Iq ^ exp [- o( v, n)s ]

=

C4 and h/R = C5. The subscript 'M', as before, denotes the value the

quantity takes on at 6 « n/2.

Next, we substitute these mass densities into equation (A7) to

find the atmospheric speed (written in terms of 7(4):

^

Soa.q.X)
(

1
^1/2 ^±^^^1/,^!/,, 1/2

9c ^ma
-lnC4 s

and

[1 +ln(l +£ZlsI)]l/3
2 ^

for a/'YM << 1 and a/y^ » 1 respectively if atmospheric speeds are

highly relativistic. C7 is the constant of equation (18).

Finally, we write the mass loss equation, equation (50), as a

function of Tg, M, and T. Using the above two expressions to eliminate

^ and making use of the mass-radius relation, equation (51), we find
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3Cic2 '8oao(l+X)K

FTT^' (61)

and

The presence of in the ln( ) term of equation (62) will be discussed

in the next section.

We new have the two sets of coupled first order differential

equations, equations (61) and (60) for the low temperature limit and

equations (62) and (60) for the high temperature limit.

In deriving equations (61) and (62), we had to convert time

intervals in the star's rest frame into time intervals in the comoving

frame and then into tenperature intervals in the comoving frame. The

first transformation is simply

dtj. = Tgdt,

where dt indicates time intervals in the star's rest frame and dt^, time

intervals in the comoving frame. This is identical to what one would

expect from Special Relativity because the general gravitational field

is homogeneous and changes very little in the time it takes a photon

leaving the star to reach the comoving observer. The second

transformation is the one used in Chapter I:

_ T^^dT
dtc = " o •

CiT3

We HEasure time in the comoving frame because we need a standard
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that is the same for all stars and for all stages in the acceleration/

deceleration of a single star. Time intervals in the rest frame of a

black dwarf, for example, will be different from those in the rest

frame of a white dwarf, which moves at a different speed, or even from

those in the rest frame of the black dwarf at a later time.

In writing equations (61) and (62), we did not take relativistic

corrections to the time interval due to the star's own field into

account. These corrections are negligible for black and white dwarfs

but not for neutron stars. From the Schwarzschild metric one can show

that the time interval in the weak field limit is given by

dt' = (1 -f^-V2dt,
Kg

where dt is the time interval in the rest frame of the star in the

absence of gravitation (the time interval used in the hy drodynamical

equations), and dt' the time interval taking the star's own

gravitational field into account, dt' has the values l.Odt, l.Odt, and

1.3dt for black dwarfs, white dwarfs, and neutron stars respectively.

Since we do not consider vertical atmospheric structure and hence do

not take the star's gravitational field into account in the hydrodyna-

mics, we also do not take it into account in calculating time inter-

vals. This means that neutron stars lose mass slightly faster in our

calculation than they would if the gravitational field were taken into

account, i.e., dM/dt = 1. 3dM/dt^ . Of course this rate will diminish in

time, since ZGM/Rc^ °< M^/^ decreases in time.
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Method of Solution

We can write the two equations, equations (61) or (62) and

equation (60), in the form

•^=f(x,y,z) (63)

and

^ = g(x,y,z) (64)

by substitution of equation (61) or (62) into equation (60). Our new

equations are then (61) or (62) and (60) with dM/dT written out

e3q5licit ly.

Solution is by the Runge-Kutta method (Grove 19 66):

yn+1 = yn + ^/^(^l + + 2k3 + k^)

and

z^+i = + l/6(m| + 2m2 + 2m3 + m^).

The k. 's and m's have the following values and are to be calc3jlated in

the order in which they appear:

ki = hf(Xn, y^, Zn)'

mi = hg(x^, y^, z„),

k2 = hf (Xjj + h/2, + ki/2, + mi/2),

m2 = hg(Xn + h/2, y^ + ki/2, z^^ + mi/2),

k3 = hf (x^ + h/2, y^ + k2/2, z^ + m2/2),

m3 = hg(xj, + h/2, y^ + k2/2, + m2/2),
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1^4 = W + h, y„ + k3, + 103),

m4 = hg(x„ + h, + + m3).

h is the size of the increment, i.e. , x^+i - x^. In the above scheme

one starts with the initial conditions, y = and z = z^ at x =

and, having chosen the size of the increment, calculates the new values

y and zj. From these one then calculates y2 and and Z3, etc.

In our analysis the incremental variable is the blackbody

temperature, T. We start the calculation at T = 8.6x10^ K, l.AxlO^ K,

and 4.3x10^ K for black dwarfs, white dwarfs, and neutron stars

respectively. These values were chosen in order to just barely satisfy

the conditions 1^ >> 1 and Yg >> 1. The increments are of equal size in

logT:

log(Tn+i) - log(T^) = 10-2 (65)

but not in T:

Tn+1 - Tn = 2.3293x10-2 t^.

Late in the calculation mass loss occurs very quickly and the

increments must be made smaller in order to avoid negative masses. We

— 3 ~5
therefore set the right hand side of equation (65) equal to 10 , 10 ,

or IQ-^, as needed.

The initial values of M and Tg ^re taken from Chapter I. It is

assumed that only a negligible amount of mass loss has occurred before

the start of the integration. From these initial conditions, one can

see that the values of a/^M satisfy the condition a/^ « 1 for all

three stellar types. We, therefore, start by solving equations (61) and

(60). As soon as the inequality a/y^ > 1 is met, however, we switch
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over to the other set of equations, equations (62) and (60). The

transition from one set of equations to the other is abrupt and is not

smoothed out by some sort of averaging process.

We now discuss the presence of the variable in the ln( ) term

of equation (62). This dependence arises because the equation for ^ in

the high tenperature limit is a transcendental equation; we cannot find

Yi4 purely as a function of R, Yg* "^^ '^^^^ does not present a

problem in our analysis, however. The fact that the logarithm of a

variable varies nuch more slowly than the variable itself allows us to

use the old approximation for in the logarithmic term in order to

find a new approximation. We also use the old approximations for Ys

T (the values at the beginning of the interval) when they appear within

the logarithm. Other than this, everything is conputed according to the

scheme outlined above.

Equations (61) and (62) still require that we assign values to

C4 and C5. We consider three optical depths, t = 1, 2, and 3, and one

atmospheric height to stellar radius ratio, h/R = 10 .An optical

depth of zero is equivalent to no atmosphere and no mass loss and was

treated in Chapter I.

The computer program used to solve the two sets of differential

equations was written in Fortran 7 7 and is included as an Appendix. The

constant Aj is the constant that appears in the low temperature limit

of -ym. ^2 the constant in (61), AB the constant (59), the constant

that appears in the high temperature limit of and B2 the constant

in (62). The values of these constants in the nine cases considered are

shown in Table 1.



TABLE 1

Constants of Differential Equations

o L ar T A ^1 AB ^1 »2

BD 1 2. 9(--4) 1.3(41) 4.5(37) 1.8(--2) 2.2(39)
BD 2 2.7(--4) 2.1(41) 3.5(37) 1.6(--2) 3.3(39)
BD 3 2.5(--4) 2.5(41) 3.2(37) 1.4(--2) 4.2(39)
WD 1 1.8(--4) 1.5(40) 2.8(36) 9.5(--3) 2.8(38)
WD 2 1. 6(--A) 2.3(40) 2.2(36) 8.4(--3) 4.2(38)
WD 3 1.5('-4) 2.7(40) 2.0(36) 7.5('-3) 5.3(38)
NS 1 3. 6( -5) 2.5(35) 9.8(30) l.K -3) 8.1(33)
NS 2 3.3( -5) 3.9(35) 7.7(30) 9.9( -4) 1.2(34)
NS 3 3. 1( -5) 4.6(35) 7.0(30) 8.8( -4) 1.5(34)

NOTE.- BD means black dwarf, WD means white dwarf,
NS means neutron star, x is optical depth. Aj, A2,

AB, Bj, and B2 are defined in text. Numbers in paren-
theses are powers, e.g., 2.9(-4) means 2.9x10"^.
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Numerical Results

TABLE 2

Selected Results

Star T ^s, max ^ ^ ^s, max ) M/Mi(Ys,max) W/Mi(Tf ) Tf

BD 1 1.7(4) 1.2 (8) 3.3(-3) 6.3(-5) 1.2 (8)
BD 2 No max 5.8(-4) 8.0 (7)
BD 3 No max 6. 7 (-4) 7.1 (7)

WD 1 1.2(5) 2.1 (9) 7.1(-1) 2.7(-l) 4.9 (9)

WD 2 2.1(5) 2.6 (9) 1.8(-1) 1.3(-2) 2.8 (9)

WD 3 No Max 4.5(-4) 2.3 (9)

NS 1 1.1(8) 2.3(12) 8.5(-l) 6.2(-l) 1.0(13)

NS 2 1.3(8) 2.8(12) 6.6(-l) 3.6(-l) 6.6(12)

NS 3 1.5(8) 2.8(12) 5.3(-l) 1.9(-1) 5.3(12)

NOTE. - BD means black dwarf, WD means; white dwarf, NS

means neutron star. T is optical depth. Other headings are

identiried m text, wumoers m parentneses inaicate powers,

e.g. 1.7(4) means 1.7x10^. No max means that no maximum

value occurs.

Table 2 gives the maxinum value of the relativistic factor,

'Ys,max' temperature at which it occurs, T(Yg^^j^); the fraction of

the original mass at this temperature, M/M^ ( Tg , max ^ '
final

tenperature, Tf; and the final fraction of the original mass, M/M^ (T^ ).

The most striking result is that in some cases (BD 2,3; WD3) a

maximum speed is never achieved. This occurs for the larger optical

depths because the higher the optical depth, the greater the mass loss

(see eqs. [61] and [62]). Mass loss, in turn, leads to additional

acceleration (in addition to that due to the collapse of space). In

these cases, the ratio of this additional acceleration to the

deceleration caused by radiation drag first decreases as it does in all
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the cases, but then increases (calculated in program, but not shown in

Table 2). This increase guarantees that a maxLmum speed will never be

reached no matter how long we continue the calculation and how small we

take the temperature intervals. Black dwarfs are most susceptible to

this because they lose the largest percentage of their mass. This

presumably occurs because they have the deepest atmospheres, which

means that the annulus through which mass loss occurs is the largest.

When a maximum speed is achieved, its value is higher and the

temperature at which it occurs is higher than the same quantities in

the case of no mass loss. This is simply due to the additional

acceleration. Deceleration occurs more rapidly (Fig. 5) because the

higher ten^ierature and larger cross section give rise to a larger drag

force.

The last column gives Tf. This is not necessarily the temperature

at which stellar speeds drop below a certain value but simply the last

value printed. It is a good approximation to the temperature at which

stars cone to rest (for those that actually do), however, because at

this point mass loss is extremely rapid and the temperature intervals

extremely small.

The second to last column is at best an upper limit to the mass

that remains, since the calculation has been cut off at a point where

mass loss is rapid.

The fact that the black dwarf values of M/Mi(Tf) increase as

optical depth increases seems to contradict what was said in the second

paragraph above. This is spurious. The last two columns do not



represent the same stage of acceleration/ deceleration, etc., in each of

the three cases. It can be seen from equations (61) and (62) that the

rate of mass loss depends upon the mass present and the stellar speed

and not just upon optical depth. If Yg and M are held fixed, we would

ejqpect to see the behavior described in the second paragraph above.



CHAPTER III

MISCELLANEOUS TOPICS

Collisions

Inp licit in the first two chapters is the assumption that stars

do not collide. In this section it will be shown that collisions are

rare until late in the collapse and can therefore be ignored.

The rates of loss of stars in the comoving volume R"^, where R is

a universal scale factor, are given by

—rf— = -cn3R-^(n3 033),dt
(66)

= -cn2R3(n2022 + ^3032), (67)
«^c

and

3
^ = -cn2R^(ni 0]^2 + n202i + 113031). (68)

3

c

The number densities, n^, n2, and n3, refer to black dwarfs, white

dwarfs, and neutron stars respectively. The Oij 's are collisional cross

sections for the species i and j. Equation (66) says that neutron stars

are destroyed only by collisions with other neutron stars, equation

(67) that white dwarfs are destroyed by collisions with either neutron

stars or other white dwarfs, and equation (68) that black dwarfs are

destroyed by collisions with neutron stars, white dwarfs, or other

black dwarfs. This is a reasonable assumption because the densities of

the three species are so disparate. In a neutron star/white dwarf
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collision, for example, the neutron star will pass right through the

white dwarf without being disrupted or noticeably decelerated since

the white dwarf is many orders of magnitude ncre tenuous than the

neutron star. The white dwarf, on the other hand, will be destroyed.

All species are assumed to be moving at approximately the speed of

light.

Equation (66) can be solved to yield

N3 = (C33tR +
(69)

_ o o
N3 = n3R /n3oRQ , where the 'o ' subscripts refer to quantities at

radiation temperatures of 150 K. This fraction is diminished only by

collisions and is unaffected by the collapse of space.

C33 = co33n3Q and 1^ is a constant of integration, to be determined

later. tR is a temporary variable (it will disappear when sinplifica-

tions are made) and is defined by dt^ = (RQ/R)^dtc*

Equation (67) can be solved with the help of equation (69):

N2 = [l2(C33tR + 11)^32/^33 - ^-p2_(C33tR + I^)]"!. (70)

N2 = i^2^^/i^2o^o^> ^22 = ^*'22"2o' ^^'^ ^32 = ^°32^3o* ^2 another

constant of integration.

Equations (69) and (70) can now be used to solve equation (68):

^ X(C^3tR ^ Ii)-C3l/C33

^ I3 + / CiiX(C33tR + Ii)-C3l/^33 dtR'

with

X = [I2 - F-^^(C33tR + Ii)-C32/C33 + ^r^21^^22.C32-C33

Ni = niR^/nioRo^, Cn = ca^i^io* ^21 = c02in2o, and C31 = c03in3Q.

I3 is yet another constant of integration. We do not worry about the
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integral in equation (71) until after simplifications are made.

In order to simplify equations (69), (70), and (71) we nust

determine the values of the constants C33, C22, C32, C^^, C21, and C31.

These in turn require that we find the values of the collisional cross

sections and the number densities.

We start with the collisional cross sections. For stars of dif-

ferent species an actual collision need not occur for the more tenuous

member to be destroyed. Disruption begins at

Xd = Rt(Md/Mt)V2,

where x^j is the distance from the center of the denser star to the sur-

face of the more tenuous one, the radius of the more tenuous star,

and Mjj and the masses of the denser and more tenuous stars respec-

tively. The collisional cross sections are then given by

Odt = ""(^d ^t^^- (72)

These, of course, reduce to the geometrical cross sections when two

stars of the same species interact and an actual collision occurs. For

simplicity, we take the initial values of the masses and radii when

computing actual cross sections.

The number densities of the three species can be found from the

initial mass function:

which gives the number of stars per unit mass per unit volume. The

coefficient L and exponent x depend upon the mass range considered. We

approximate (^^^ by two straight lines (Miller and Scalo 19 79) with

X = 1.5, 1 < M/M© < 10,
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X = 0.4, 0. 1 < M/M© < 1.

For the purposes of this calculation, we assume that all tJBtter has

gone to stars, that the matter in black holes is negligible, and that

57c of the matter is to be found in black dwarfs. We mast assume a black

dwarf mass fraction, because black dwarfs have masses < 0. 1 M0 (the

cutoff for nuclear reactions) and observations of stars with such small

masses are simply not adequate to determine a slope for ^»

To find the two values of L, we first calculate the mass density

of the three species and set the sum equal to the total mass density,

assumed to be equal to 2x10"^^ g cm~^ at the present epoch (3K). We

then find one L in terms of the other by requiring that the function

be continuous at 1 M0. The values of L are

Li = 7.6x10-50 gO.A ^^-3^

L2 = 3.2x10-13 gl-5 cm"3,

where is the constant for 0. 1 < M/M0 < 1 and L2 the constant for

1 < M/M© < 10. In calculating these two constants, we assumed that

white dwarfs have initial masses between 0.1 M© and A M0 and neutron

stars initial masses between 4 M0 and 10 M®.

The constants C^^ ^ are found to have the values:

C33 1.6x10- 35 sec

C22 5.2x10- 28 sec

C32 9.6x10" 30 sec

Cu 8. 8x10-•27 sec

C21 9.5x10-•2 6 sec

C31 2.2x10"-27 sec
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Equation (6 9) can now be written in ternB of the variable

Ti = Tq/T and simplified by noting that C33/C1 << 1. The constant 1^ is

determined from initial conditions. We find

"3 ' C33/J; * T,- (73)

Equations (70) and (71) can be simplified in a similar fashion:

CM

and

"1 ^^^r^O^
Collisions are assumed to become inportant when the original num-

bers have been depleted by 50% (U^ = 0.5). This occurs at blackbody

temperatures of 3.6x10^0 K, 1.4x10^^ K, and 4.6x10^^ K for black

dwarfs, white dwarfs, and neutron stars respectively. Collisions are

therefore expected to be of no importance for those stars that come to

rest. Black, dwarfs of optical depths 2 and 3 and white dwarfs of opti-

cal depth 3 never come to rest according to the calculations of Chapter

II.

Possible Decelerating Mechanisms for Stars that do not Come to Rest

In chapter II we saw that black dwarfs of optical depths 2 and 3

and white dwarfs of optical depth 3 never cone to rest. In this chapter

we investigate several possible deceleration mechanisms.

We nentioned earlier that small degenerates obey a mass-radius

relation of the form R ^ M"^/^, while non-degenerates obey one of the
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form R m1/3. This means that stars that are losing hhss will expand

to a maximum radius and then contract. This maxinum radius is charac-

terized by a critical mass. For cold bodies conposed entirely of H, He,

or C, these critical masses are 6.4xl030 g, 2. 2x10^0 g, ^^d A. 4x10^0 g

respectively (Zapolsky and Salpeter 1969). Such masses occur when

blackbody temperatures have reached about 8.0x10^ K, 7.1x10^ K, and

2.3x10^ K for black dwarfs of optical depth 2, black dwarfs of optical

depth 3, and white dwarfs of optical depth 3. Black dwarfs are assumed

to be con¥)osed of H and white dwarfs of either He or C (the tenperature

at which the critical mass is reached is not sensitive to composition

in the case of white dwarfs since mass loss occurs very quickly at this

point ).

—1/3
Now, if we take R «x M ' before the critical mass is reached and

R -< M^/^ after, we find

^d ^ M
and

Fjj is the absolute value of the ratio of the third term on the right

hand side of equation (58) to the second term, i.e., it is the ratio of

the acceleration due to mass loss to the deceleration due to radiation

drag when a degenerate mass-radius relation is used. Fn-d same

ratio using the non-de generate mass-radius relation. One can see that

for M < Merit' ^n-d ^® higher than F^, which means that the

non-degenerate mass-radius relation causes even more acceleration than
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the degenerate mass-radius relation.

The critical mass and maximum radius discussed above occur for

cold bodies in a vacuum. It is possible that this description is signi-

ficantly altered by an intense external radiation field. Our analysis,

for example, begins to predict (at high radiation temperatures)

atmospheric densities that are higher than the average densities of the

stars themselves. So, realistically, one would expect stars to begin to

contract when such a situation arises and perhaps long before. To find

out when and how quickly this occurs, one would have to incorporate the

equations of stellar structure into the analysis. Account would also

have to be taken of the fact that stellar interiors at some point

become hot enough for nuclear reactions to occur. Any shrinkage at all,

though, even one as slow as R ^x" M^, where e is very small, would lead

to additional stellar acceleration. Deceleration could then only occur

if these models were to lead to nuch thinner atmospheres than the ones

assumed in the present analysis.

e''"e pair creation is e^qjected to do little to halt the accelera-

tion of black or white dwarfs. The density of e''"e~ pairs does not

become comparable to the radiation density until the radiation has

reached a temperature of about 5x10^ K. Our calculations do not extend

to such temperatures for the species and optical depths above, but by

8.0x10^ K, 7.1x10^ K, and 2.3x10^ K (the final temperatures printed),

black dwarfs of optical depths 2 and 3 and white dwarfs of optical

depth 3 have F^j values of 31, 51, and 12 respectively. Mass loss is

extremely rapid at this point. If drastic structural changes do not
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occur (leading to nuch thinner atmospheres and less mass loss), the

stars will become unstable since structural readjustment cannot be

expected to keep pace with mass loss indefinitely. e+e~ pair creation

will certainly contribute to stellar deceleration if stars are still

around at 5x10^ K, but its role will be minor.

Gas produced by mass loss is expected to contribute even less to

stellar deceleration. We are far into the radiation era, which neans

that the density of matter is much less than the density of radiation.

Supermassive Black Holes

It has been suggested that supermassive black holes (10^-10^ M0)

are the power sources of quasars and active galactic nuclei (Shapiro

and Teukolsky 1983). If black holes of this size are abundant in the

universe, they may be more effective at destroying stars than colli-

s ions.

As the universe collapses, supermassive black holes are acce-

lerated to high speeds just as stars are, but instead of losing mass

they gain it. We assume for sinplicity that all matter is originally

(at Tq = 150 K) contained in galaxies of 10^^ M0. Each galaxy has at

its center a black hole of 10^ M0. This means that the average distance

between supermassive black holes, dQ> is about 4.3x10^-^ cm at 150 K.

Now, since distance scales as d = d^fl^ where = T/Tq, we can find

the temperature at which supermassive black holes begin to fill the

entire universe. Written in terms of T this is
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4GM (76)

and will be taken to be the 'temperature' at which stars are destroyed

by black holes.

Equation (76) requires that we find an expression for the mass,

M, of the supermassive black hole as a function of blackbody tem-

perature. To do this, we assume that the black hole sweeps up

everything in the cylinder defined by its notion and that it moves at

the speed of light throughout the period of interest. Its mass is found

to depend on temperature according to

M = (L3 - L^t' - L3T'2)-1^

The constants L3, L^, and L3 have the values l/M^, ^ "nG^ p^j^^/Cjc^, and

2ttG Pj-q/Cjc-^ respectively. Mq is the black holes 's initial mass (at

15(K) and p^^^ and p^^ are the initial values of the average density of

matter and radiation. Equation (76) can now be solved for t' or T. We

find that supermassive black holes begin to fill the entire universe at

about 3.5x10^ K. Black holes, if they exist in such numbers, are there-

fore nuch more effective at destroying stars than collisions.



CONCLUSION

In the analysis of Chapters I and II stars were shown to acce-

lerate to high speeds due to the collapse of space and the additional

accelerating force caused by mass loss, and then in most cases to dece-

lerate due to radiation drag. All stars obeyed a degenerate mass-radius

relation of the form: R 'XIT^/^ throughout the period of interest. In

addition, they all had the same atmospheric height to stellar radius

ratio, and this ratio remained constant in time. Four optical depths

were considered (an optical depth of zero is really equivalent to no

atmosphere and no mass loss). Stars with larger optical depths

generally accelerated longer, but once maximum speeds were achieved,

deceleration was more rapid. This was due to the fact that larger opti-

cal depths led to more iihss loss and greater additional acceleration.

This additional acceleration then caused the stars to reach maximum

speeds at higher blackbody temperatures and to decelerate more quickly

once these speeds were achieved because radiation drag was stronger at

these higher temperatures.

There were three species of stars (black dwarfs of optical depths

2 and 3 and white dwarfs of optical depth 3) that never came to rest

according to the analysis of Chapters I and II. The analysis, hcwever,

assumed that stellar interiors can always replace what is lost, no

matter how rapid this loss becomes. This assumption will at some point

break down. As time goes on, less and less of the presumed atmosphere

will be replaced because the internal structure will simply be unable
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to readjust itself quickly enough to keep pace with hhss loss. If the

star is to remain stable then, the atmosphere will have to become

thinner, which could lead to less mass loss and possible deceleration.

On the other hand, the star will probably begin to contract, which

would tend to increase mass loss and acceleration (see Chapter III).

This would be required if one is to avoid a density inversion

(atmospheric densities higher than the average densities of the stars

themselves were obtained at high blackbody temperatures). The relative

contributions of the two effects cannot be determined, however, unless

the star's internal structure is considered in the analysis.

Other considerations are the possibility that stellar interiors

at some point become hot enough for nuclear reactions to occur and, in

the case of neutron stars, the creation of e'*'e~ pairs at about 5x10^ K.

Both would lead to additional deceleration or perhaps instability.

It is also possible that surface stresses (that arise from that

part of the azimuthal component of the external radiation that reaches

the surface) will tear the stars apart.

Chapters I and II then give a first approximation as to what hap-

pens to stars moving through the blackbody radiation of a collapsing

universe. Successive approximations could perhaps make use of soma of

the suggestions offered in the above paragraphs, particularly the

suggestion about the inclusion of internal structure.

Stellar numbers are unlikely to be diminished while most of the

action is taking place. Collisions were shown to be unimportant.

Supermassive black holes begin to fill the entire universe while
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neutron stars are still accelerating, but this assun>es that every

galaxy has a supermassive black hole at its center and that all mtter

is contained in galaxies.



APPENDIX A

t
Direction

OF
MOTIOK

Figure 1

The various angles in the rest frame of

the star. 6 is the angle between the for-
ward di£ection (-z ) and the inward normal
(-n), 6 the angle between the forward di-
rection (-2) and the direction of incoming

photons (^2), and 6' the angle between the

direction of incoming photons (") and the

itward normal (-ti).
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Figure 2

A distant observer views a star moving perpendicular to
his or her line of sight. In (A) the star, which is at

rest with respect to the observer, is divided up into

concentric rings, such that all points on a given ring

are equidistant from the observer. In (B) the star is

moving at 0.9c and appears as a rotated hemisphere.
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Figure 3

log(Ys) versus log(T) for blade dwarfs (BD), white dwarfs (WD),
and neutron stars (NS) whose masses are constant. T is the tem-
perature of the blackbody radiation in the comoving frame, and
^s " - ) where Vg = BgC is the velocity of the star i
the comoving frame.
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Figu re 4

Photon path length, s,

at e = tt/2 (see Figure 1

for definition of 6 and

R is the star's rad-
ius and h the height of

it's atmosphere.
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A

G 7 8 9 lO 11

L06CT)

Figure 5

Same as for Figure 3 except stars are new losing mass. We consider

three atmospheric optical depths for each species: 1, 2, and 3. An

optical depth of 0 is equivalent to no atmosphere and no mass loss.

In (A) black (karfs and white dwarfs are considered, in (B) neutron

s tars.
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APPENDIX B

PROGRAM SOLVE (INPUT,OUTPUT

)

* PROGRAM TO SOLVE TWO COUPLED FIRST ORDER DIFFERENTIAL EQUATIONS
* IN TWO LIMITS
* READ IN INITIAL CONDITIONS AND VALUES OF CONSTANTS

READ 1, GS,T,EM,IRANGE
1 FORMAT (3E8.1,I3)

READ 2, A1,A2,AB
2 FORMAT (3E8. 1)

READ 3, B1,B2
3 FORMAT (2E8. 1)

GM=A1*T*GS**0. 5/EM**0.0833
* II TELLS HOW LARGE TEMP. INTERVAL SHOULD BE

11=1

DO 6, I=1,IRANGE
8 IF (II .EQ. 1) THEN

JRANGE=10
DT=2.3293E-2*T
ELSE IF (II .EQ. 2) THEN
JRANGE=1 GO
DT=2.3052E-3*T
ELSE IF (II .EQ. 3) THEN
JRANGE=100
DT=2.3026E-5*T
ELSE IF (II .EQ. 4) THEN
JRANGE=1 00

DT=2.300CE-7*T
ELSE
GO TO 7

END IF

DO A, J=1,JRANGE
TSTLG=LOG10(9.5E-10*GS*T/GM)

* TEST FOR LOW TEMP. LIMIT
* IF CONDITION MET DO FIRST BLOCK, OTHERWISE DO SECOND BLOCK

IF (TSTLG .LE. 0.0) THEN
* SOLN. IN LOW TEMP. LIMIT

XI =-A2*GS**0. 5/EM**0. 5833

XK1=DT*X1
XM1=DT* (-AB*GS*T/EM**1. 6667-GS*Xl/EM+GS/T )

X2GS=GS+0. 5*XM1

X2EM=EM+0. 5*XK1

IF (X2EM .LE. 0. ) THEN
11=11+1
GO TO 8

ELSE
END IF

X2T^+0.5*DT
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X2=-A2*X2GS**0. 5/X2EM**0. 5833
XK2=DT*X2
XM2=DT*(-AB*X2GS*X2T/X2EM**1. 6667-X2GS*X2/X2EM+X2GS/X2r)
X3GS=GS+0. 5*XM2
X3EM=EM+0.5*XK2
IF (X3EM .LE. 0. ) THEN
1 1=1 1+l

GO TO 8

ELSE
END IF

X3r=T+0. 5*DT
X3=-A2*X3GS**0. 5/X3EM**0. 5833
XK3=DT*X3
XM3=DT* (-AB*X3GS*X3T/X3EM**1. 6667-X3GS*X3/X3EM+X3GS /X3T)
X4GSKJS+XM3
X4EM=EM+XK3
IF (X4EM .LE. 0. ) THEN
11=11+1
GO TO 8

ELSE
END IF

XAT=T4£)T

X4=-A2*X4GS**0.5/X^M**0.5833
XK4=DT*X4
XM4=DT* (-AB*X4GS*X4T/X4EM**1. 6667-X4GS*X4/X4EM+X4GS/X4T)
DEM=1. /6. *(XK1+2.*XK2+2.*XK3+XK4)
IF (-DEM .GE. EM) THEN
1 1=1 1+l

GO TO 8

ELSE
END IF

EM=£M+DEM
G S =GS +1 . / 6 . * (XM 1 +2 . *XM2+2 . *XM3+XM 4

)

T=T+DT
FRLG=L0G1 0(-EM**0. 6667*DEM/ (AB*T*DT) )

GM=A1*T*GS**0. 5/EM**0. 0833

ELSE
SOLN. IN HIGH TEMP. LIMIT

LOG TERM GIVEN VALUE AT BEGINNING OF INTERVAL

QC = (0. 5+L0G(l. +9. 5E-10*GS*T/GM ) )**0. 3333

Y1=-B2*GS**0. 6667/ (QC*EM**0. 5556)

YK1=DT*Y1
YM1=DT*(-AB*GS*T/EM**1. 6667-GS*Yl/EM4GS/T )

Y2GS=GS+0.5*YM1
Y2EM=EM+0.5*YK1

IF MASS LOSS TOO RAPID MAKE TEMP. INTERVAL SMALLER

IF (Y2EM .LE. 0. ) THEN
11=11+1

GO TO 8

ELSE



END IF

Y2T=T+0. 5*DT
Y2=-B2*Y2GS**0.6667/ (QC*Y2EM**0. 5 556)
YK2=DT*Y2
YM 2=DT* (-AB*Y2 GS*Y2T /Y2EM**1 . 6 667-Y2GS *Y2 /Y2EM+Y 2GS /Y 2T )

Y3GS=GS+0.5*YM2
Y3EM=EM+0.5*YK2
IF (Y3EM .LE. 0. ) THEN
11=11+1

GO TO 8

ELSE
END IF

Y3T=T+0.5*DT
Y3=-B2*Y3GS**0. 6667/ (QC*Y3EM**0. 5556)
YK3=DT*Y3
YM3=DT* (-AB*Y3GS*Y3T/Y3EM**1. 6667-Y3GS*Y3/Y3EM+Y3GS /Y3T)
Y4GS=GS+YM3
Y4EM=EM+YK3
IF (Y4EM .LE. 0. ) THEN
11=11+1

GO TO 8

ELSE
END IF

Y4T=T+DT
Y4=-B2*Y4GS**0. 6667/ (QC*Y4EM**0. 5556)
YK4=DT*Y4
YM4=DT* (-AB*Y4GS *Y4T /Y4EM**1 . 6 667-Y4GS *Y4 /Y4EM+Y4GS /Y4T

)

DEM = 1. /6.*(YK1+2.*YK2+2.*YK3+YK4)
IF (-DEM .GE. EM) THEN
11=11+1
GO TO 8

ELSE
END IF

EM=EM+DEM
GS=GS+1. /6. * (YMl+2. *YM2+2. *YM3+YM4)

T=T+DT
F RL G=LOG 1 0 ( -EM * *0 . 6 6 6 7*DEM / (AB *T*DT ) )

GM=B1*QC*T*GS**0. 3333/EM**0. nil
TSTLG=LOG10(9. 5E-10*GS*T/GM)

END IF

IF STELLAR SPEEDS FALL BELOW A CERTAIN VALUE, TER^aNATE

IF (GS .LE. 3. ) THEN
GO TO 7

ELSE
END IF

GMLG=L0G10(GM)
EMLG=LOG10(EM)
GSLG=LOG10(GS)
TLG=LOG10(T)
IF (II .GE. 2) THEN



* EMLG IS LOG(MASS), GSLG IS LOG (GAMMA-S ), TLG IS LOG (TEMP. )
* TSTLG IS LOG (TEST FOR LOW OR HIGH TEMP. LIMIT), GMLG IS
* LOG(GAMMA-M), AND FRLG IS LOG (ADDITIONAL ACCELERATION DUE
* TO MASS LOSS / DECELERATION DUE TO RADIATION DRAG)

PRINT 9, II, EMLG, GSLG,TLG,TSTLG, GMLG,FRLG
9 FORMAT (I3,6F9. 3)

ELSE
END IF

4 CONTINUE
IF (II .EQ. 1) THEN
PRINT 5, II, EMLG, GSLG, TLG,TSTLG,GMLG, FRLG

5 FORMAT (I3,6F9.3)
ELSE
END IF

6 CONTINUE
7 END
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