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ABSTRACT

On White Dwarf Models of Variable Compact X-Ray Sources

(February 1977)

Paul D. Guthrie, B.A. , Cornell University
M.S., University of Massachusetts, Ph.D.,

University of Massachusetts

Directed by: Professor Eugene Tademaru

It is known that white dwarfs exist in some binary systems which

undergo Roche lobe mass transfer during their evolution. Nova theory

indicates that these white dwarfs can develop a runaway thermonuclear

reaction in the non-degenerate hydrogen shell, thus ejecting the

outer layers of the star, although not necessarily to escape velocity.

When this occurs during periods of high mass transfer the system must

become an x-ray source. Since the radiation will be produced by free-

free emission in a shock, the luminosity will vary as the shock

velocity changes.

An expression for the opacity-limited luminosity is developed,

.
.'

. 37-1
giving luminosities of less than 10 erg s . It is argued that a

model involving a detached shell will produce periods of nuclear

burning with the intensity controlled by the net loss or gain of

kinetic energy of the shell to or from the accreting gas. This

implies an equilibrium state of the system defined by balancing the

energy gains and losses by the shell during one cycle of radial

motion.

A method is developed for computing the luminosity and spectrum

of the x-ray emission from the shocked gas at a given shock velocity.
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The equation of motion of the shell is developed. Two asymptotic

limits are defined; that in which gravity dominates and that in which

the ram pressure dominates. These are solved analytically and the

general equation of motion is solved numerically. Equilibrium

conditions are obtained for the analytic solutions.

Combining the velocity solutions and the radiation analysis, the

luminosity is obtained as a function of time for the limiting cases

and for intermediate cases where the general equation of motion is

used. These light curves are developed for various combinations of

the parameters describing the detonation conditions and the accretion

flow conditions. The time behavior of the spectrum is obtained for

several cases. It is found that this is characteristic for models of

this type and distinct from the spectral time development predicted by

other types of models for x-ray sources.

It is concluded that some white dwarfs in binaries should undergo

subnova detonations during accretion, and should thus become x-ray

sources. Such sources should be identifiable by their spectral time

behavior and comparison of their light curves with model predictions

should offer insight into the underlying source conditions. The

predictions are compared with existing observations of x-ray sources.
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CHAPTER I

INTRODUCTION

This work concerns most aspects of a particular model for

variable compact x-ray sources, based on a pulsating white dwarf.

As we will consider later whether this type of model behaves like any

of the observed x-ray sources, the presentation of the model is here

prefaced with a short summary of the characteristics of compact x-ray

sources. One of the striking features of this class of objects is

the preponderance of binary systems. This strongly supports theories

in which matter is lost by a star in its giant phase and accretes

onto a binary companion, providing a simple energy source for the

emission of x-rays. Although not all compact x-ray sources are known

to be in binaries, there is no such source at this point for which

accretion can be ruled out.

The time behavior of these sources can be grouped into three

classes: l) pulsed sources, 2) transient sources, and 3) burst

sources. Each class is characterized in terms of the characteristic

time scales of variations in the x-ray flux, and the regularity of

those variations.

The first class, the pulsed sources, contains only two members,

Her X-l and Cen X-3. They are characterized by a highly regular

periodic modulation of the x-ray flux with periods of the order of

seconds. There are also other modulations at longer periods, but

these are not necessarily intrinsic to the x-ray source (e.g.

eclipses). The rapid pulsations clearly require a model with a



rather regular clock. Many authors take this to indicate the presence

of a rotating neutron star. However the shortest known period, . 1.2 s

for Her X-l, is barely tolerable for a whole-body vibration of a white

dwarf without destroying the star. If only a fraction of the star,

such as an outer shell, is participating in the vibration the periods

are quite tolerable. Although there are major problems involved in

applying the white dwarf model developed in this work to either of the

known pulsed sources, it will be shown that in principle the model can

produce such behavior.

The second observed class is that of the transient sources.

These sources "turn on"; they go from below detector limits to fluxes

comparable to the brightest known steady sources and then disappear

again, all on a time scale of the order of weeks. At least two are

known to be pulsed during their observed existence, but the periods

involved are on the order of hundreds of seconds, much longer than

the pulse periods in class one. The paucity of observations makes

comparison with detailed model predictions rather inconclusive for

this class. However, the transient behavior, combined with at least

some cases of pulsation, is suggestive of variations in the accretion

rate rather than processes intrinsic to the x-ray source itself.

The third, and newest, class is that of the burst sources.

These are characterized by "bursts" of x-ray emission which rise very

rapidly and then decay more or less exponentially. The time constant

for this decay is variable both within and between sources, but is on

the order of a few seconds (Clark et al. 1976). In some cases the

bursts are quasi-periodic, but. with a large jitter. The time scales



for the intervals between bursts range from tenths to thousands of

seconds in various sources, and span at least three decades in one

source, MXB 1730-335 (Levin et al. 19T6). This source also shows a

correlation between the integrated energy in a given burst and the

length of the following interval. Although an identification is by no

means well established, it will be shown that this correlation is to

be expected for a particular limiting case of the model considered

below. The decay may be another clue to the nature of these sources;

however Canizares (1976) has suggested that this may be due to

processing of the radiation in a surrounding medium, and may thus mask

an entirely different and more rapid decay of the original burst.

There is also some indication that these sources are associated with

globular clusters (Clark et al. 1976).

Models for compact x-ray sources have generally been based on

collapsed objects, i.e. black holes, neutron stars and white dwarfs.

This approach is based on the assumption that the sources are for the

most part fueled by accretion. Within that assumption the luminosity

is determined by the accretion rate and the depth of the gravitational

potential well, and the radiation temperature (for thermal emission)

is determined by the well depth alone. The classes of collapsed

objects cover the range of our understanding of stellar remnants. The

electron-degenerate white dwarfs are well understood and are known to

exist in non-x-ray binaries. The neutron-degenerate neutron stars are

less well understood, but have been detected as pulsars. One is known

to be in a non-x-ray binary. Black holes are poorly understood, but

seem to be required by accepted treatments of relativity and current



understanding of stellar structure and evolution. A massive (> 5

solar masses) variable x-ray source would be a strong candidate for

the first detection of a black hole. The present work assumes a

white dwarf as the collapsed object. We will examine the expected

emission of x-rays from the impact of the accreting matter in both

static and dynamic models, and particularly the temporal behavior of

the emission.

Studies of accretion effects on white dwarfs have been done by

many authors. Mestel (1952) assumed that the energy of the accreting

matter went into heating of the degenerate core and concluded that

this could result in a supernova explosion. Later authors concluded

that most of the energy remains in the non-degenerate layers,

eventually producing a hydrogen burning shell which leads to a nova,

rather than a supernova. In particular, Rose and co-workers, and

Starrfield and o-workers have done a great deal of work on the

details of the detonation process in what has come to be the canonical

model for a nova.

In this picture novae are white dwarfs in binary systems. The

collapsed star accretes hydrogen from the companion. A layer of non-

degenerate matter builds up on the surface in hydrostatic equilibrium,

gradually raising the temperature and density at the bottom of the

layer. Eventually the gas reaches the regime of thermonuclear burning

and there is a thermonuclear "runaway" due to the strong temperature

dependence of the reaction rates. This finally ejects the outer

layers of the star to produce the nova outburst.
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In the nova models there is an implied assumption that, at the

time of detonation, the accretion rate has decreased to the point of

being negligible. The question of interaction between the ejected

shell and the gas flow is not considered. While matter accretes at

rates comparable to those necessary to produce a detonation in the

first place, the nova must be an x-ray source. This follows from the

fact that the accretion flow will be supersonic with a velocity deter-

mined by the gravitational potential of the star. (if the flow is

sufficiently dense to be sonic, the entire region around the star will

be at x-ray temperatures and opaque.) When the shell encounters the

gas flow, the bulk velocity will be thermalized in a shock, and the

resultant temperature (which depends only on the velocity) will

produce thermal x-rays

.

While it is certainly possible for the source to detonate after

mass transfer has stopped, it is not a necessary censequence of the

model. The time to reach detonation depends on the accreted mass.

(The standard models assume relatively cold white dwarfs and neglect

the kinetic energy of the accreted matter. Changing either assump-

tion should decrease the evolution time.) Thus for larger accretion

rates the time scale is shorter. However, the accretion rate depends

primarily on conditions in the companion star, and should not be

affected by the evolution of the burning layer, unless the luminosity

approaches the Eddington Limit. One thus expects that in at least

some cases the detonation will occur while the flow is large,

producing an x-ray source.



For simplicity we assume the accretion flow is radial, spherically

symmetric and in free-fall. A full analysis of this model would

involve extensive numerical work on the details of the evolution of the

burning layer. Since the x-ray emission is due to the interaction of

the shell and the accretion flow, such a study has not been undertaken.

Rather, the basic idea of the nova models is assumed, and the ejected

matter is described in terms of parameters which could in principle be

determined by such a study.

In order to determine a reasonable range of parameter values, we

examine some of the details of the nova models, in particular those of

Starrfield et al. (I97l*a,b; hereinafter SU). It should be remembered

that these were attempts to match the observed characteristics of

novae, requiring the ejection of masses of the order of 10 g at

velocities of several thousand kilometers per second. In order to

achieve this, Sk assumes that core mixing has enhanced the CNO abun-

dances in the burning layer by large factors. Without this enhance-

ment the computations produce detonations, but with ejected masses

much lower than those desired. Since these models "fail", they are

not presented in detail.

The evolution seems to depend rather strongly on the initial

white dwarf model assumed. In Sh the "successful" models are based

on fairly standard cold white dwarfs. Since the depth of the burning

layer (and thus the overlying mass) depends on the temperature

structure of the outer layers, the mass will be reduced by assuming

a hotter initial star, as well as by considering the heating due to



the kinetic energy of the accreting matter. It is interesting to note

that much of this energy will be radiated away in a standing shock at

the surface during the time preceding the outburst. A nova thus may

be preceded by a steady x-ray source.

The surface velocity produced by the detonation is determined by

two effects. The first is the emergence of a shock at the surface,

S
generated by the detonation deeper in the layer. While Sh indicate

temperatures as high as h x 10
6

K due to the shock, the outward-moving

layers cool rapidly by adiabatic expansion. The second effect is the

acceleration of the overburden by radiation pressure even before the

shock goes by. This effect seems to be important for all but the

weakest detonations, and produces velocities which are comparable to

those produced by the emergent shock. The temperatures found for this

process are lower than the LTE value in the SU calculations.

Based on tl 2 above, we accept the masses of Sh as upper limits to

the ejected mass. Since the acceleration mechanisms do not depend as

strongly on the burning depth, the velocities probably do not change

much, and are chosen as typical values. The temperature at the

surface is taken to be less than 10 K except in the very earliest

stages of the motion, a point which will become important in consid-

ering the spectrum of the x-rays produced.

A given outburst is thus characterized by the initial mass, M
,

and velocity, V , of the ejected shell. The accretion flow is
o

described by density p and (free-fall) velocity v . The accreting

gas is taken to be fully ionized. The value of v
&

is determined by

the mass and radius of the star. The value of p is a free parameter



subject to constraints discussed in Chapter II. The initial (maximum)

shell velocity is taken to be of the order of 10
8

cm s"
1

, and the

value of M
q

is less than (possibly much less than) 10
26

g. The

temperature of the surface of the optically thick shell is taken to

be several times 10 5
K, but this is discussed further in Chapter VII.

For repetitive sources it will also be necessary to consider the

relation between the parameters describing successive outbursts.



CHAPTER II

GENERAL CHARACTERISTICS AND CONSTRAINTS

§1. Introduction

The details of a model for an x-ray source are usually developed

with the aim of reproducing or predicting the detailed behavior of the

source. There are, however, several observational and theoretical

constraints on the model - e.g. energy source, energy conversion

mechanism, and opacity - which provide some information about the

source independent of the details of the model, and which serve to

define the allowed regime of physical parameters. The energy source

and conversion mechanism in particular have forced nearly all authors

in this area to assume the now canonical binary system with accretion

of gas onto a compact object. This follows quite simply from the

observed fact that the spectra of compact x-ray sources are thermal or

power laws. One could perhaps concoct a model based on non-thermal

processes which would yield appropriate luminosities for some sources;

however, accretion onto a compact object offers a simple mechanism for

both the overall energy flow and the observed temperatures for a

thermal spectrum. An appropriate conversion process is provided by a

shock at the surface of the compact object.

Within this framework of assumptions we can derive some general

limits on the accretion density and luminosity, in §3, and in §H we

consider the effects of gross energy balance on a white dwarf in an

equilibrium pulsation mode. Both sections assume radial accretion;



10

although it is known (e.g. Pringle and Rees 1972) that the accretion

process produces a disk of gas near the compact object, the assumption

of radial inflow simplifies the analysis. Some effects of relaxing

this assumption are discussed in Chapter VII. In §U, for the equili-

brium analysis, ve assume a moving shell. It should be noted that

similar work has been done by Cameron (1966) for a normal mode

pulsation of the entire star, and by DeGregoria (197*0 and DeGregoria

and Woltjer (1973) for a model based on radiation pressure modulation

of the flow density into a standing shock. The latter found no stable

periodic solutions.

§2. Observational Constraints

Having assumed a shock as the energy conversion mechanism, we can

reach some immediate conclusions as to the appropriate range of

physical parameters for a typical source. In particular, the radia-

tion temperature provides an immediate check on the self-consistency

of the model assumptions. For any shock model the maximum temperature

—9 2/behind the shock is given by T - 2 x 10 v (t), where v(t) is the
II13.X

shock velocity in the frame of the accreting gas . For a free-fall

flow onto a stationary surface (a standing shock) this is just the

escape velocity for the source object. If the surface is not station-

ary, v is the sum of the escape velocity and the instantaneous

intrinsic surface velocity. This becomes important in the details of

the model; for the present purposes we note that it seems unlikely,

particularly so in a periodic source, that the surface velocity is
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very much larger than the escape velocity. Thus, for a white dwarf

(or any other object for which the ratio of mass to radius is known)

the radiation temperature determines, at least approximately, the mass

of the source. In principle this could be determined exactly, along

with the initial shell velocity, by comparing the temperatures in the

leading and trailing edges of the pulse. In practice, however, the

observations do not generally have sufficient time resolution and

sensitivity to permit this analysis. Most compact x-ray sources seem
o

to have radiation temperatures of the order of 10 K, which is con-

sistent with the free-fall velocities of white dwarfs.

If the distance - and thus the luminosity - is also known, one

can estimate the density of the accreting gas in the shock region for

16 -1
a given scale size. For luminosities of order 10 erg s , white

dwarf scale sizes imply a mass density of the order of 10~ g cm" .

This is also sul ject to an opacity limit derived below.

Finally, if an independent determination of the mass can be made

(e.g. in optically observed binaries), the temperature-velocity

relationship can be used to fix the radius observationally (again

subject to the assumption of free-fall). In this case all of the

major parameters are fixed, and the entire class of models can be

rigorously tested for consistency with regard to a particular object.

§3. Opacity Limits

As has been noted by several authors (e.g. Fabian, Pringle and

Rees (1976)), the assumption that the radiated energy is supplied by
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accretion, kinetic energy implies an upper limit to the luminosity of

such a source. Conservation of mass requires that the mass accretion

rate be given by

dM 1 2 / \ / \

•ft
= p(R)v(R)

( 2 .!)

where R is the surface radius. The energy available per unit mass is

just

K R

where M# is the stellar mass and G is the gravitational constant. The

minimum accretion rate for a given luminosity, L, is then

dM L
,

and

= UttR
2
p(r)v (R) . (2.3)

1/2
Now for free-falling matter, v(R) = (2 GM# /R )

' and the necessary

value of the surface density is given by

P(R) = *i ( g|-
)3/2

-Sf •
{2 - h)

In terms of = 10
2^ GM* and Rg = 10~^R,this gives

p(R) * 5.6 x 10
_ll5

R
8

l/2r^/2
L . (2.5)
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The other limit on p(R) is derived from the requirement that the

x-rays be able to escape, i.e. the accreting gas must be optically

thin. Assuming complete ionization, the dominant source of opacity

for the energy range of interest is simple Thomson scattering. The

optical depth is then given by

R p

where X is the distance to the outer edge of the accreting gas.

R2Since we are assuming free-fall (radial) inflow, p(r) = — p(R)

and
r

T = R^p(R) J \ dr = -± R
2
p(R)(| - \) . (2.7)m

p R r
m
p

R X

If we take X - 10 R this implies that

p(R) < 3 x lO^Rg1
(2.8)

to avoid quenching of the x-rays. Combining this with Equation

(2.5) we then find

L < 5.3 x 10
36
Rg

1/2r^2
erg s

_1
. (2.9)

For white dwarfs we thus expect luminosities no larger than a few

,~36 -1
times 10 erg s

§U. Equilibrium and Stability Considerations

One type of source behavior to which white dwarf models might be
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applied is, as mentioned in Chapter I, the pulsating x-ray sources.

This may be taken to include the transient pulsating sources, as veil

as Her X-l and Cen X-3. The existence of a veil defined pulsation

period clearly requires a model vhich can exist in some equilibrium

oscillatory state. In earlier vhite dvarf models (e.g. Cameron 1966,

197*0, it has frequently been assumed that the oscillation is a normal

mode vibration of the entire star, fueled by nuclear burning. Katz

and Salpeter (197*0 have argued that the accreting hydrogen vill burn

as fast as it arrives, and that the pulsations vill damp out as an

extended hydrogen burning shell develops.

Guthrie and Tademaru (1975), hovever, argue that this assumption

of rapid burning on the surface is not valid for a pulsating source,

although it may be accurate in the case of a steady source. This

point reflects a somevhat subtle but quite important distinction

betveen this and other considerations of vhite dvarf models.

One of the main conclusions of the nova vork mentioned previously

is that nuclear burning in the atmosphere of the accreting star is

triggered veil belov the surface. For very lov accretion rates, the

burning may be slov enough for the outer layers to expand as they are

heated, eventually perhaps producing a steady source vhich burns the

hydrogen on the surface. Hovever, for accretion rates veil belov

those indicated for compact x-ray sources, the nova computations

produce a rapid thermonuclear source vhich blovs off the overlying

material. Whether or not this shell reaches escape velocity is not

germane to the point at issue; once a shell has been blovn off, the
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burning layer expands, cools and quench.* Itself Thus, once the

burning layer has been triggered, the hydrogen will hum only inter-

mittently - if the shell escapes, at long intervals; if the shell

does not escape, at those times when the returning shell compresses

and heats it.

During outward motion of the shell, a shock is established in

the accretion flow. In passing through this shock, the kinetic

energy of the infalling material is thermalized and rapidly - indeed

"instantaneously" on the time scale of the shell motion - lost via

radiation. During this phase of the motion, energy is lost from the

system, both from the accretion flow and from the shell, which is also

doing work on the gas. This energy can be returned to the shell only

during the infall phase, when the unthermalized accretion flow does

net work on the shell. The shell kinetic energy as it returns to the

surface determir. ^s the degree of compression of the burning layer, and

thus the impulse imparted to the shell for the next cycle.

If the energy acquired during the infall and compression phases

is greater than or less than the energy imparted by the previous im-

pulse, the conditions in the burning layer will adjust to the net gain

or loss of energy so as to increase or decrease the burning rate,

respectively. This argument was put forth by Cameron (1966) to

explain the stability of normal-mode-type models, but it is also

applicable here. It implies that, for a relatively constant burning

depth and accretion flow, there exists a stable equilibrium value of

the shell ejection velocity which is determined by energy equilibrium
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during one cycle. This stability is with respect to changes in the

burning rate; the response of the system to changes in other para-

meters will be considered later in this work. The important point is

that the burning rate is determined not by the rate of accretion of

matter alone, but by the rate of accretion of kinetic energy from the

infailing gas. The burning layer becomes, in effect, a spring.

Examples of equilibrium calculations . As examples of the

application of this equilibrium criterion, we consider two cases in

which the shell motion is described by simple analytic functions of

time. In the detailed models this will not generally be the case.

The system loses energy only during outward motion, defined as

positive shell velocity, V
g
(t) > 0. For a spherical shell, the total

work done on the gas flow by the surface is

T
W = UirR

2
p / [v + v ft)]

3
dt (2.10)L 'as *

where R is the (~ constant) shell radius, p is the density of the

accreting gas, v
T

is the (free-fall) accretion velocity, P is the

period of the shell motion, and T is the turn-around time for the

shell, 0 <_ t <_ T < P. Note that this expression approaches a non-zero

limit as v
g
(t) goes to zero. This amounts to considering only the

strong-shock limit; the thermalization efficiency within the shock

region drops rapidly as the shock becomes weak.

Since momentum must be conserved, the work done by the gas flow

during one period is
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The equilibrium state is determined by setting Wp
= W , which yields

T

3p-/ [v
a

+ v
s
(t)]

3
dt .

( 2 . 12)
V

Expressing v (t) as v (t) = V f(t) this becomes

T

y
3
p = / [y + f(t)] 3

dt
, (2.13)

where y a v
a
/V

Q
. To be physically meaningful, f(t) must be zero at

t = 0 and t = T and must have a single maximum on that interval.

Evaluation of the integral then reduces the problem to the solution of

a cubic equation in y.

For example, suppose that the time dependence ,were given by

f(t) = sin(2TTP" t) on 0 < t < P/2. The integral is then

P/2
I = / [y + sin(^ t)]

3
dt [2.1k)

0

which may be evaluated to give

I"f [fY
3 + 3Y

2
+ f yfl , (2-15)

and Equation (2.13) becomes

f Y3_ 3Y
2.

. (2.16)
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This equation has only one real positive root, at y = l.iT , impiying

that for equilibrium in the energy flow V = V ~ A£
o critical D V

As another example, let f(t) he a symmetric, linear function of

time

f(t) = Ut/p ; 0 < t < P/U

= 2(1 - 2t/P) ; P/U < t < P/2 . (2.17)

The cubic in this case is

3 3 2 1
y ~ 2

y ' Y " k
= 0 (2-18)

for a critical velocity V
c

* .51 v
&

. Note that, although the critical

velocity is of the same order as the accretion velocity (as one would

expect), the exact value of V
c

depends on the form of f(t). In general,

the smaller the integral of v
g

over time, the larger is the necessary

critical velocity, since the loss rate is velocity dependent, as well as

the total energy loss.

Although in the cases of some of the more interesting periodic

pulsation models it will not be possible to write down a simple explicit

form for f(t), the energy balance principle illustrated here can still

be applied. For more realistic equilibrium calculations, one must also

realize that the radiation losses do not necessarily stop at the moment

of turnaround (v (t) = 0). If the accretion flow is highly supersonic

there will still be a shock even for downward (negative) velocities of

the shell. This should, however, be a rather small correction. The

loss rate goes as the cube of the relative velocity, so that as

v - v , W
T

•* 0 quite quickly,
s a Li
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CHAPTER III

RADIATION ANALYSIS

We are interested here in time variable x-ray sources. In order

to model such a source one must specify the relevant radiation

mechanisms and the physical conditions in the source as functions of

both space and time. For problems involving shocks this requires the

solution of the full set of gasdynamic equations. In general, exact

analytical solutions of these equations are quite difficult, and such

problems are usually solved by extensive numerical analysis.

For the models considered herein, however, it is possible to

reduce the numerical complexity considerably. As mentioned in

Chapter I, the approximate time scales for variability in compact x-ray

sources are of the order of seconds or longer (with the notable ex-

ception of the most rapid burst sources). The radiative time scales,

however, may be much shorter. For the temperatures of interest

(10 - 10 K), and the densities indicated in Chapter II, the free-free

cooling times are of the order of tenths of seconds, or even shorter.

If the overall time scale is characteristic of the motion of the shock,

then the cooling time is short compared to the dynamic time scale.

Under these conditions the shock velocity changes by very little during

a cooling time.

We limit our investigation to the regime in which the shock is

radiative, the shock motion being uncoupled from the conditions in the

cooling region. We consider then a series of constant velocity (or

standing) shocks, the velocity being determined by processes unrelated
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to the radiative losses. This reduces the gasdynamics problem to

that of determining the equilibrium flow in one spatial dimension for

a transparent radiating gas. The process governing the velocity of

the shock as a function of time will be considered in Chapters IV and V.

The physical conditions behind a standing shock at the surface of

a white dwarf have been investigated by a number of authors, especially

Aizu (1973) and Fabian, Pringle and Rees (1976). Aizu develops an

analytic approximation to the run of parameters in the cooling region.

Both Aizu and Fabian et al. find that for many purposes it is sufficient

to consider the cooling region as being homogeneous in temperature and

density out to a sharp cutoff. For the purposes of this investigation

a more detailed analysis is desired, for which numerical solution of the

flow equations are developed.

The relevant equations are the conservation equations of mass,

momentum and energy for a stationary-state flow in one dimension. Thus,

the gas flows through the cooling region so that the conditions at each

point depend only on the distance from that point to the shock. Mathe-

matically, this means that 3/3t = 0 and all time derivatives can be

expressed as d/dt = vd/dz. Assuming the perfect gas law, the equations

are then

dp _ „ du /,u di-- p d? <3 - 1)

PA (3.2)
dz m dz dz

/ 3 k dT x k _ du i r> r>\
pu ^ - — ) = - - pT — - e (3.3)

2 m dz m dz il
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where p, u, T are density, velocity and temperature, respectively.

Here e
ff

is the radiative loss rate per unit volume and may be

expressed as

e
ff

= .5 x 10
21

ip
2
T
1/2

erg cm'
3

s"
1

( 3 .U)

where i is the Gaunt factor. For the cooling rate calculations £

may be taken as 1.0; however in computing the spectrum the energy

dependence is retained. By using as the initial conditions the jump

conditions for a strong adiabatic shock with specified velocity and

density, we reduce the flow problem to an initial value problem in one

dimension. This can be easily solved via numerical methods.

The computations are carried out using a fourth order Runge-Kutta

scheme, but the coupled derivatives complicate this somewhat. By

substituting (3.1) into (3.2) and the resulting expression for du/dz

in (3.3), one ot ains an equation for dT/dz involving only the

variables p, u and T, the derivatives being eliminated. This is used

to evaluate dT/dz at each net point. For each space step the T

derivative is extrapolated, the other derivatives evaluated, and all

are then corrected to the center of the interval using a standard

forward and backward finite differencing technique (see e.g. Richtmyer

1957). These new values of the derivatives are then used in the

Runge-Kutta routines. For an Eulerian initial value problem such as

this, the problem of instabilities may be simply avoided by using a

variable step size as the derivatives become large.

In comparing the runs of this model with the standing shock

calculations it should be remembered that the shock is, in fact, not
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at the stellar surface. Because of this a different criterion for

ending the calculation is used. The solutions of Aizu show the

variables changing rapidly (steep derivatives) right down to the

stellar surface where an infinite sink boundary condition is applied.

Although it is not apparent on this scale, the models shown in Figure

3-1 level off. This is due to the fact that a temperature cutoff has

been used, rather than one based on position. In particular, the

density levels off as expected for a radiative shock with

Pfinal
= Pinitial ^ V

i^
Vp and the initial values are those immedi-

ately behind the shock. The scale is chosen to show the curvature in

the density function. The minimum temperature is determined by the

history of the underlying mass shell, and has been arbitrarily set at

various levels between 10
5 and 10^ K. In Figure 3-1 the cutoff is at

5 x 10^ K. Although the temperature chosen does not greatly affect

the depth of the cooling region, it may strongly affect the spectrum

of the escaping radiation. This is due to the effects of inverse

Compton cooling if the cutoff is too high (Katz and Salpeter 1975).

For reasons outlined in Chapter IV and in Guthrie and Tademaru (1975)

the cutoff temperature should be less than 10^ K.

The distance D in Figure 3-1 is determined by following the

analysis in Fabian, Pringle and Rees (1976). They assumed free-

falling gas, spherical symmetry, total radiation of accretion energy,

and homogeneous cooling layer to obtain a cooling depth, D
ff

. Their

value was expressed in terms of the stellar mass, radius, and

accretion rate. A similar expression in terms of velocity and density

may be obtained as follows.
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We set the luminosity, L, equal to the energy accretion rate;

GM
L = M -57- (3.5)

For a homogeneous layer this is also given by

L = *™*\
t
z
tf

. (3.6)

For free-falling gas and spherical symmetry

2
M = l+TTR^pv (3.7)

and

2GM 1/2
v =

("r-^ • (3.8)

We may thus write

2
Pv3 = D

ff
e
ff (3 - 9)

In terms of p and v, e is given by

e
ff

= 3.76 x 10
1T

p
2
v (3.10)

where the strong adiabatic shock values are assumed throughout the

8 -1 8 -

3

layer. Writing v = Vg x 10 cm s and p = p « x 10 g cm one has

v
2

n = 1.33 x 10
6

. (3.11)
11 p_8

In Figure 3-1 we see that this is in reasonably good agreement with the

computations

.
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Figure 3-la: Run of temperature, bulk velocity and density relative

to initial values in cooling layer of radiative shock

at shock velocity v = 3 x 10
8

cm s"
1

, p = 10~8 g cm
-3

.b a

Figure 3-lb: Run of temperature, bulk velocity and density relative

to initial values in cooling layer of radiative shock

at shock velocity v = 6 x 10
8

cm s"
1

, p = 10~ 8 g cm"
3

.
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Knowing the physical conditions at each point we can now

calculate the radiation emitted from the cooling region. For the

total luminosity, L^, we use simply the integrated emissivity

(Equation 3.U) at depth z in a layer of thickness dz and sum ever z.

This gives a luminosity per unit area which is multiplied by the

surface area of the shell to obtain L^.

We also wish to obtain the spectrum of the radiation. The ex-

pression for the spectral emissivity is (Blumenthal and Tucker 19lk)

8(B) = 1.6 x Kf20

-fe
(i)"

0,VE/kT
erg cm'3 s'

1
Kev"

1
(3.13)

where n is the number density in cm and E is in Kev. The energy

dependence of the Gaunt factor has been retained in an approximation

appropriate for E comparable to kT. Again we sum over z to obtain the

spectrum shown in Figure 3-2. A spectrum for a homogeneous region at

Q
T = 10 K is shown for comparison. In both of these spectrum and

luminosity examples we have assumed that the cooling region is

optically thin, and that there is negligible inverse Compton cooling.

In comparing such a spectrum with observations we must remember

that this curve is the instantaneous spectrum; observational spectra

will always be integrated over some time interval. In Chapter VI the

time development of the spectrum during an outburst is computed in a

way which makes comparison with observations somewhat more straight-

forward.



gure 3-2: Computed spectrum ( see text ) and spectrum of

g
homogeneous region at T = 10 K.
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CHAPTER IV

VELOCITY OF THE SHOCK

The next step in the analysis of the model is to determine the

velocity of the shock as a function of time. This is divided into

two parts; an acceleration phase and a decay phase. Because the

acceleration phase is controlled by the details of the nuclear

burning, we are unfortunately limited to a rather qualitative analysis

based on the nova calculations mentioned above. The decay phase,

however, can be treated fairly rigorously.

§1. Acceleration

In considering the ejection of nova shells, Sh find two processes

to be of importance in determining the ejection velocities. There is,

in general, a shock generated by the burning layer which then propa-

gates to the surface. For some models, however, they also find that

radiation pressure produces significant surface velocities, reducing

the relative shock intensity and thus producing lower surface

temperatures for the same surface velocity. Although the relative

importance of these two effects cannot be determined for a given model

without a detailed treatment of the burning layer, it is possible to

estimate the pulse rise time scales for both.

a) Radiation pressure case . In the case where radiation pressure

dominates, Sh find that, particularly in the later stages of the

ejection process, the radiation pressure force can exceed gravity by a

factor of as much as 5 to 10. Defining X as the ratio of the radiation
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force to gravity (and assuming that X is approximately constant

during the time scales of interest) one may write

V a (X - 1) gt

where g is the surface gravity. For white dwarf gravities and final

velocities of the order of several times 10
8

cm s"
1

, this indicates

rise times of several tenths of seconds. Such rise times are indeed

observed in both pulsating (Doxsey et al. 1973) and bursting (Clark

et al. 1976) x-ray sources.

b) Emergent shock case . The case of an emergent shock is some-

what more complicated. Consider a density distribution

p = bx
6

where x is measured inward from the surface of the star. The problem

of shock propagation outward (i.e. x <_ 0) in such a distribution has

been considered by Zel'dovich and Raizer (1966) and references therein.

They find solutions of the form

x = At , x = cxAt ,
s * s

where t is defined as minus the usual time variable and t = 0 at x = 0.

The shock analysis yields a as a function of 6.

Now consider the observable luminosity due to this shock as it

approaches the surface. The luminosity per unit area due to free-free

emission is
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where C
ff

is a constant, p and T are the density and temperature behind

the shock. Since the shock is initially adiabatic, this beiecomes

t _ P „ . 2 26 •

L - C C b x x
s lis s s

where C
g

includes all the constants in the post-shock dependence of p,

T. In terms of t, this becomes

L = C„C b
2
aA

2«+l
t
a(2« +l)-l

Note that as t * 0, the temperature increases but the luminosity

decreases, due to the density dependence. This approximation should

be valid until the overlying material becomes transparent and the

shock motion becomes radiation dominated.

We wish to determine the observable luminosity as a function of

time as the shock approaches transition. We approximate this by

assuming that thj shock is adiabatic for overlying optical depth

z >_ 1 and radiative thereafter. The adiabatic phase must then be

corrected for opacity to get the observed luminosity.

The observed luminosity, L is related to the shock luminosity

by

L , = L e
ob s

where
x
s

T = Kj p(x)dx
o

and K is the absorption coefficient. Thus
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T = J£L $+1 _ Kb .6+1 a( 6+1)
6+1

x
" 6+T

A t

We then have for L
ob

L
ob =V8

bV+¥^)%
(.f.A^^5) .

Note that for large values of t the exponential dominates, i.e. the

shock is not seen, as expected. The observed luminosity will then

increase, even though the shock luminosity decreases . The time scale

for this rise is determined by the values of K, b, A and 6.

In order to consider a numerical example we must find some

approximation to the density structure. We can estimate the amount of

mass involved by noting that the total kinetic energy of the shell

must be comparable to the integrated energy loss over one pulse. For

many x-ray sources, subject to the constraints of this model, a reason-

able number for this is E < 10 erg. We then write

ViTR
2
M V

2
10

38
erg

o o o &

where R is the stellar radius, M is the mass per unit shell area,
o o '

and V is the maximum velocity of the shell. Since V and R are
o o o

fixed, at least to order of magnitude, by the model assumptions, we

-2
obtain M

q
~ 10' s to 100' s of g-cm . If the shell depth is taken to

be on the order of 10^ cm (SU), we then have a mean shell density

-h -3
p - 10 g-cm . In finding reasonable values of the parameters b
s

and 6 we assume that the outer layers have expanded from their

equilibrium configuration in such a way as to change the power law,
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but maintain the constant of proportionality. For white dwarf

structures this gives b - 10~12 in CGS units. Then the expression for

p(x) gives a value for 6 of U/3 when applied to the outer shell. The

corresponding value for a is approximately O.76, and assuming the

opacity is primarily due to electron scattering gives K - O.U.

In order to approximate A, we assume that the peak luminosity

occurs at T = 1. We define t' such that x(t') = 1, i.e.

t i = (
6+1 )i/a(6+i)

KbA
6+1

We then match the adiabatic and radiative solutions at t'. For

o
typical conditions this implies a peak velocity of the order of 10

—1 • f a l] D

cm s . Then x
g
(t') = aAt'

v
' = V

Q
x 10 . Substituting for t',

KbA

a-1

x

or
x ft') —

, s^ \ ct , Kb ^6+1

The exponential term then becomes

x (+1)
, Kb A 6+l 4

.a(6+lh
, t

Kb >a, s
v 1

Na(6+lKct(6+lh
exp( " 6+1

A t }
= 6XP( " {

~
} }

Plugging in the numbers, this gives
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a(26+l)-l , L h i a
exp(-3V

fi
x lCT'V- 0

)

L « t
ob

We thus expect the luminosity due to the emergent shock to rise on a

time scale of ~ 10" 3
seconds which is essentially instantaneous com-

pared to the currently available x-ray observations.

Although some burst sources show unresolved rises (Lewin et al.

1976), in displaying the model calculations we will assume the radi-

ation pressure case. Since we cannot calculate the details of this

case, the "pulses" will be computed for an arbitrarily assumed con-

stant acceleration with a time constant of ~ . 5 seconds.

§2. Decay

Once the velocity of the ejected material has reached maximum

and starts to decrease, the source luminosity will also begin to

decay. In considering this phase of the motion we assume that the

ejected material forms a thin, plane-parallel shell.

In principle one might expect the pressure of the gas behind the

shell to dominate the equation of motion, at least initially. However,

the acceleration process produces a velocity gradient from the position

of the initial stellar surface to the surface of the ejected material

(SU). This in turn leads to a pressure gradient once the acceleration

is complete, producing expansion of some of the gas back toward the

star. By the time the layer has relaxed to equilibrium the surface has

moved far enough, and the mean temperature and pressure in the layer
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have been reduced enough, that the motion should be reasonably veil

approximated by a simple detached shell treatment.

Consider such a shell of mass M per unit area moving upward with

velocity v(t). The layer encounters and sweeps up infaliing gas of

density p and downward velocity v
&

. In the general case the layer is

in a gravitational potential
<f>G

= T/R, where T E M*G, is the stellar,

mass, G is the gravitational constant, and R is the radial coordinate

of the shell, assumed constant. This latter assumption is valid so

long as the amplitude of the shell motion is small compared to the

stellar radius, which condition is satisfied for all cases considered

herein.

Assuming the bulk kinetic energy of the infaliing gas is instan-

taneously lost via radiation at the shock, the equation of motion is

determined by the momentum equation. The identical case was considered

in Blumenthal et al. (1971) for v =0, the classical "snowplow"

approximation.

The equation of motion of a unit area of the shell is then

(Mv) = -p(v
n

+ v)
2

- M ~ (k.l)
dt a

r2

and

during outward motion

(Mv) = p(v - v)
2

+ M —j (k.2)
at a

during inward motion,
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The first term on the right in each equation is just the ram pressure

of the infailing gas on the shell. Note that v represents the

magnitude of v(t )

.

The equation of motion is most easily handled via a Lagrangian

approach with the mass per unit area, M(t), as the Lagrangian variable

Thus,

t
M(t) = M

Q
(t = 0) + / dM/dt'dt' (U.3)

o

and the velocity is related by

M = p(v ± v(t)) (k.h)
el

where the upper and lower signs refer to outward and inward motion,

respectively.

In this formulation the equations become

_ [M(-- v
a
)] (^.5)

with

and

with

v = — - v (outward;
p a

dt a p p r

v = v - — (inward)
a p
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We introduce a new variable, y = M/pv
a

, and get the equati on

W + 2y
2

- y + = o ^
a R

for both phases of the motion. This equation is now to be solved as

a boundary value problem.

This general equation is somewhat intractable, although sus-

ceptible to numerical techniques. In order to gain some physical

insight, we distinguish two cases which can be handled analytically in

their asymptotic limits. The first, called the "quasi-snowplow" (QSP)

approximation, is an extension of the classical snowplow to the case

V
a ^ °' and cons iders the motion to be dominated by the momentum flux

of the accreting matter. This also corresponds to the limit of low

shell mass and large momentum density in the flow, when gravitational

effects may be neglected. The second case, which is gravity dominated,

is Just the usual ballistic problem with a vertical trajectory. This

corresponds to the high mass case, where the mass accreted during one

period is small compared to the initial shell mass.

a) The QSP limit . In this case we neglect the gravity term.

Equation (U.7) then becomes

yy + 2y
2

- y = 0 .
(I*. 8)

Using standard techniques, we let P = y and obtain the equation

P(y ^ + 2P - 1) = 0 . (U.9)
dp
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Ignoring the trivial and unphysical solution P = 0, y = constant,

this is separable and integrable, yielding the first integral

i -
| (cyu

2
+ i) (U.io)

where c is the constant of integration.

Equation (U.10) may also be separated to yield

(U.ll)

This integral may be evaluated, and gives

M - /57 tan
-1^) = |

^1
t + c

2
. (U.12)

For uniqueness we must consider the ambiguity in the inverse tangent

function. In general we can write Equation (U.12) as

U - /c7a tan (-^—) = ~~ t + C_ + nir /c~
1

&l
2 2 1

where n is an integer. Since is completely arbitrary at this point

we redefine It such that C * - niT /C
1

no matter what n is. Thus in

the equations below the inverse tangent takes its principal value and

the arbitrary constant of integration is used to remove the ambiguity.

The constants remain to be determined from the boundary conditions.

P = 0, y = const, corresponds to the gravitational limit.
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At t = 0 we have 2

M
M = P_ =

°

o pv
a

and , .
,

(U.13)

V + v
5- 0 a

v
a

where V
q

is the initial velocity amplitude of the shell. From

Equation (U.10) we then find

We define a "turnaround time," T, such that v(T) = 0. Then, for

t = T, y(T) = 1. We thus require the y (T) = C , again from Equation

(U.10). This gives

(1 - tt/U) = | T + C
2

or (U.15)

T = 2[v^ (1 - tt/U) - Cg] .

To find C
2

consider y(t = 0),

U - /c~ tan"
1 — = C0 (U.16)

1 ^7 2

2Throughout this chapter t = 0 corresponds to the time of maximum

upward velocity.
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or in terms of y and a,

The turnaround time is then given by

T = 2u
Q
{a[l - TT/lt + tan

_1
(^)] - l} . (Uil8)

Within the QSP approximation we may also find the equation of

motion during the infall phase. The equation is the same, but the

boundary conditions now consist of requiring that u and 0 be continuous

at t = T. We define the new constants of integration, C
3

and by

i A
M(t > T) - | (-* + 1)

u

and ('..19)

|i(t > T) - ST tan"
1

(-^-) = \ (t - T) + C,- .

vol.
^

• 2
S::.nce u(T) 1, C- where u

T
= p(T) is defined by the solution to

Equation ( If. 12 ) for 0 <_ t £ T. Also, since

U
T

- P
T
tan"

1
(l) = C

k
20)

we have

c
k

= u
T
(i - TT/U) . (l*.2l)

The second pair of constants is then related to the first by
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r r - 2 2

and
(4.22)

C
U

= C
2

+
|

= a^
0
(l ~ 'A) •

The entire motion (both ejection and infall phases) is thus determined

in the QSP approximation by the parameters a and u , which in turn are

specified in terms of the physical parameters p, v , V and M Thea o o

velocity is shown as a function of time for two combinations of

parameters in Figures 4.1 and 4.2.

k)

—

Gravitational limit . In this approximation the (large) mass

of the shell is constant. The motion is given by the elementary

relation

V = V
Q
--I

2
t (4.23)

R

and the dynamics are unaffected by the accretion flow. Note, however,

that the kinetic energy of accretion is still lost to radiation. In

2this case the turnaround time is T = V
q
R /T, and the impact time is

just twice this value.

Numerical solutions of Equation (4.7) are shown in Figure 4-3 and

4-4. Note that the solutions progress from the gravitational case (v

linear in t ) to the QSP limit as M is reduced. Note also that one
o

effect of the gas flow is to increase the effective escape velocity.

To summarize, we have now developed a description of the velocity

of the ejected shell as a function of time. The acceleration phase is
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determined by processes beyond the scope of this work; accordingly we

accept the time scales found in the Sh nova calculations as being

correct to within an order of magnitude. The rise times of the out-

burst to be studied are schematic only. The decay phase, however, can

be specified rigorously. The two asymptotic limiting behaviors can be

handled analytically. The QSP limit, as illustrated in Figures h-1

and U-2, shows a non-linear decrease in the outward velocity. The

numerical solutions of the general equation, shown in Figures h-3 and

k-k, demonstrate the transition from the QSP behavior to the gravita-

tional case, characterized by the familiar linear velocity function

(Figure k-3) and parabolic position function (Figure k-U) , as the

initial shell mass is increased. The QSP solution, which is in some

sense the more interesting - or at least novel - case, is examined in

more detail in Chapter V.
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Figure k-2: Solution to QSP equation of motion for

M = 20 g cm"
o

V = 3 x 10
T cm g"1

o

-9 -3
p = 10

7
g cm
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Figure k-3: Velocity solutions to general equation of motion (U.7)

for

V
q

= 3 x 10
8

cm s'
1

-9 -7
P = 10 g cm 1

M as labeled .

o
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Figure h-h: Position (height) solutions to general equation of

motion (U.7) as in Figure k-3.
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CHAPTER V

QSP EQUATION OF MOTION

§1. Soluti on

In this section ve examine in greater detail the QSP limit to the

shell motion. Although this requires what are probably rather un-

usual source parameters, it permits a detailed examination of the

effects of the accreting gas per se on the motion of the shell. Since

the solution is obtained in analytic form, we can also develop a

rigorous expression for the ratio of the shell kinetic energy at

impact to the initial shell energy.

For reference purposes the solution to Equation (U.12) and the

relevant boundary conditions are summarized as follows:

for 0 <_ t <_ T , v = v (m - l)
EL

V - C^tan"1^) = | t + u
q
[1 - atan"

1
^)] ; (5.1)

o

for t _> T , v = v ( 1 - y

)

3.

M - au
o
tan

1
(^u

~) = | (t - T) + au
Q
(l - tt/U) ; (5.2)

o

where

T = 2y {a[l - tt/U + tan"
1
!-)] - l) . (5-3)

o ct

In both regimes
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ay M
5 = | (-2^+ i ) > y = —

—

a B [2
_^__a

. l3
i/ 2

or ^2

and at t = T, y = ay .

o

We need to derive expressions for the position, z, above the

original surface as a function of time (or of u), the maximum

displacement, z^, and the kinetic energy, and time, t., at impact

(z 0* t j 0).

The displacement, z, is defined by

t

z =
J vdt (5.5)
o

and for 0 _< t <_ , v = v ( y - 1 ) . Thus

,

t

z = v / [y - l]dt (5.6)
EL

o

and

z = v [y - y - t] . (5.7)
a. O

Substituting for t as a function of y,

z = v {2ay [tan"
1^) - tan

_1
(-)] - (y - y )} . (5.8)

a r o ay a
o

Now define a dimensionless variable n = — . Then
o
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z = V^teattaiT
1
^) - tan"

1
^)] -

( n - i)} . (5 . 9)

We use the identity

tan"
1
{tan[tan~

1
u - tan

_1
v]} = tan"

1^ " V
)

1 + uv

to reduce this to

Z = v
a
U
Q
{l - n + 2atan"1

[

a < n = . (5.10)
a + n

The ambiguity in the inverse tangent thus introduced is removed "by

noting that z = 0 at n = 1, thus requiring the principal value.

For T <_ t we define z by

t

z = z - f vdt , v = v (1 - u) .max £ a H '

In this regime

t = T + 2{u - au(l - tt/U + tan'
1
(^

iL-))} . (5. 11)

By the same procedure used for the 0 <_ t <_ T regime one finds

z -z = vu{n-a + 2a tan"
1

(

a " n
)} . (5.12)

max a o a + n.

Since, at t = T, ri = a, Equation (5.10) yields

z = v y {l - a + 2atan
_1

(^Hrr) * . (5.13)
max a o a + 1

We now consider the shell at impact defined by z = 0, t / 0.

Consider Equation (5-12) at z = 0 where n = n
i

- This gives
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Z =VU-ln _ rv 4- o™+„„"1
max

= v
ayo

{n . _ a + 2atan-l
. {5ulk)

But we already found that (Equation (5.13))

Z
max

= Vo {l " 01 + 2atan
"1

•

We thus require that satisfy the equation

n. + aataa"
1 (^1) = i + aatarf

1
= ^ (5>15)

where n. t 1 since T. ^ 0. Note that, since a > 1 by definition for

any initial (positive) upward velocity V , this equation has a unique

solution for each value of a in the regime of interest. Physically,

there will be some maximum value of a beyond which the assumptions of

constant density and velocity in the accreting gas will no longer hold,

and the QSP approximation becomes invalid as herein defined. Solutions

giving r\. as a function of a are shown in Figure 5-1. Although the

function is nearly linear in the regime illustrated, it rises rapidly

for large values of a. This is, however, beyond the scope of the ini-

tial assumptions. Note that a = 1 implies zero initial velocity,

giving the trivial solution = 1. All other quantities describing

the conditions at impact may be derived as functions of and initial

conditions .

The time of impact follows immediately from Equation (5-11) and the

expression for T, Equation (5.3);
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Figure 5-1: Impact mass in units of initial shell mass as a

function of initial velocity for given accretion
v v

velocity v
a
(a = [2 - l]

A/
*). Note that

a
this curve is not quite linear. For extremely

large values of V /v (and a) the curve rises moreO ct

and more steeply. Eventually the approximation

breaks down

.
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T. = T + 2y
o

{n .- o(l - tt/U + tan"
1
A))}

, a(n. - 1)
= 2y

o
(n. - 1 - a tan

1 [—+ ]} .

a + n.
1

The velocity during infall is given by

(5.16)

v = v
a
[l-y] =Iv

a
[l-4]

n

so the impact velocity is

2
1 r-i a !V

i
-

2
V
a
[l " ~2 ] (5.17)

n
i

Finally, the kinetic energy per unit area of the shell at impact,

EL., may be determined. The kinetic energy of a unit area of the

shell is

T-1 1 2

\ = 2
PVV

Using the expressions for r\. - — and v. , we find
1

o
1

\x -i^aV1 " 4>
2

•
(5 - l8)

Since we are ultimately interested in the dynamic equilibrium

conditions (if they exist) for the shell motion, and the effects of

changes in the external parameters (i.e. stability), we need to look

at the energy flow during one period P, analogous to the simplified

analysis in Chapter III. First note that in the QSP approximation n,,
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the ratio of shell mass at impact to shell mass at t » 0, depends

only on a, which is a measure of the initial velocity. It is

independent of the external density p. This is to be understood in

terms of the momentum flow during one cycle. The parameter a may be

thought of as a measure of the rate of acquisition of momentum per

unit mass. Thus the amount of mass flux necessary to stop the shell

will depend only on the relative velocities. The rate of acquisition

of momentum per second, however, does depend on p; and thus so does

the value of T. , the time of impact.

We can define a ratio, R^, of the shell kinetic energy at impact

to that at t = 0. The expression for this is

E
ki

{\ ~ *2)2

R
EK

=
K ""372 ~2 ' (5 ' 19)
ko n

i
(oc - 1)

Note that this is also independent of p. This means that in the QSP

approximation a change in the density of the accreting gas does not

affect the shell kinetic energy available at impact for a given initial

energy. It does affect the duration and spatial amplitude of the

motion of the detached shell. In Figure 5-2, R
£K

is shown as a

function of a.

§2. Stability

Since the value of R„„ never exceeds 0.U, one might expect the

shell motion to damp out, due to a net loss of energy on each cycle.

However, there will also be some interval between impact and the



Figure 5-2: Ratio of shell kinetic energy at impact to initial

value as a function of initial velocity.
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triggering of the next cycle, during which the gas in the outer

layers of the star is compressed and heated. During this interval

the star will continue to acquire kinetic energy from the accretion

flow. Although the details of the transport of this energy into the

compressing layers are quite complicated, we must take this into

account in order to find a steady state description of the

oscillations. We do this by making the following rather crude

assumption: we take the total energy available for compression to

be given by

dE
E = E + e —- ( T ) (5 20)c ki dt c

dE
where -rr- is the (constant) rate of deposition of kinetic energy by

the accreting gas. T
c

is the duration of the compression, and e is

some efficiency factor in which are buried the details of the trans-

port phenomena.

In equilibrium the compression time is the difference between the

period and the sum of the time during which the shell is detached

(l\ for t = 0 defined as the end of the acceleration phase) plus the

rise time. Since the rise time is small compared to the others it

may be neglected. For the system to be in equilibrium the kinetic

energy of the shell which is lost to radiation must be balanced by

the energy gained from the accretion flow during infall and compres-

sion. We are thus treating the thermonuclear burning phase as a

means of converting accretion energy into shell energy and then into

radiation. This approach allows us to write down the equilibrium



relation between P, p and a given by

°r
,

(5.21)

2
pv

a
Rek + z

sT
(P " T±) = 1

*

Inserting the expressions for R
£K

and T\ in terms of a and u we

can solve for P:5

2 2 2

P* = 8li
0[f

{a
2
- I)

2
- } + {„ i . atan-l [_i ]n _

n_- a + n.
1 i

(5.22)

where P* indicates the equilibrium period. Note that the only
M

dependence on p is through y = —2-
, which has been separated. In

o pv
p* a

Figure 5-3 the function — has been plotted for the range of interest

1
in a, assuming z - — •

We can now consider the question of what happens if P i- P*.

Suppose that P = P* ± 6P. We then have

E (n! - a
2

)

2

+ 1 - [P* ± 6P - T. ] (5.23)K 3/2 _\2 * /2 _\2 i
ko n. (a - 1) ay (a - 1)

1 o

or from Equation (5.2*0 >

E

£-=l± \ -6P. (5.2U)
E
ko

"

Uy (a
2

- l)
2

o
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Since the denominator in the last term is positive definite, this
E
csays that -— varies directly as 6P.

^ko

The value of E^E^ on a given cycle determines the value of

on the next cycle; if the thermonuclear "spring" is over or under

compressed with respect to equilibrium, it will increase or decrease

the burn rate (Cameron 1966) and thus the value of E . Assuming
ko &

that the burn depth (and thus M
Q

) remains constant, this means that

for E
c
/E

kQ
> 1, a increases and for E^/E^ < 1, a decreases.

If a changes from one cycle to the next, so will the value of P*.

Since P* is a monotonically increasing function of a (Figure 5-3),

the new value of P* will be such as to reduce 6P. We thus find that

the period equilibrium is stable, but will reflect systematic changes

in a.

We also wish to investigate the response of the system to changes

in p, the external density. From Equation (5.27) and the definition

of y , we may write
o

P*=^^, (5.25)
a

implicitly defining F(a). A change in density, 6p, thus produces a

change in the equilibrium period, 6P*, given by

^=-^. (5.26)
P* p

Any systematic change in the density will thus produce a systematic

change in the equilibrium period; an effect observed in some periodic

x-ray sources.
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Figure 5-3: Equilibrium period in units of u (see text) as a
o

function of the initial velocity parameter a.
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Rather than assuming a constant value for M , an alternative

approach is to assume that the thermonuclear shell is triggered at

a more or less constant energy level whenever the energy of

compression passes some threshold value. This amounts to assuming

a constant value for the product M
q
V , the momentum per unit area.

This implies that

*o
y
o
a = T ;

^o
= COnst

* (5 - 2T >

The assumption of a constant (threshold) compression energy, E
th

then implies that

E
th

=E
k i

+ 4 pV
a
(P - T

i
}

or (5-28)

p* = " 5g + * .

2
pV

a

Substituting for E, . , T. we have
° ki i

P* = + 2u (n. - 1 - cttan"
1

[ 1 ] - | (n,(l -V2

)} (5.29)
1 3 o i 2 o i ^
2

pV
a

a + n
i

n
i

Separating the density dependence (and using Equation (5-27)),

E+u 2<j> . a(n, - 1) , (n, - a
2

)

2

p. = I [2 _SL + { x . atan
-l [-J

] .
J
-A- }]

a i i

(5.30)

where again P* a ^, and the efficiency factor E has been neglected.

This is written as
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2E
th

3
+ 2<j> G(ci)) . (5.31)

v
a

The function G(a) (and thus, to within a constant and a scale

parameter, P*) is plotted vs a in Figure 5-U. Since it is again

monotonic, the general stability arguments above may be directly

We have found that, for the QSP limit, the fraction of the

initial shell energy returned is a function of the initial velocity

only, and never exceeds O.U. We have also argued from this that,

for constant initial mass, the period between outbursts should be

neutrally stable against changes in accretion density and ejection

velocity. If we instead allow M to vary, but assume a constant

threshold value of the compression energy (which amounts to a

critical temperature and density in the burning layer), the period

should also have neutral stability.

applied.

§3. Summary



Figure 5-U: The function G(cx) (see text).
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Table of Impact Conditions

(note that all quantities are functions of a, u n v
o ' a

only)

1) H. = — is defined by
M
o

-1
01 " n

i

n. + 2a tan ( -) = c
i a + n. a

where

C = i + 2a(^^^)
a a + l'

and

n^i .

n
i

3) T. = T + 2y
Q
{n

i
- a(l - tt/U + tan

and

T = 2)J
Q
{a[l - tt/U + tan

_1
(l/a)] - l}

at

t = T, R = R
max

r ^ -1 ,a - Li
R = v u {l - a + 2a tan ( , )i
max a^o a + 1
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CHAPTER VI

LIGHT CURVES AND SPECTRA

Having developed both the radiation analysis and the velocity

curves for the shell, we can now combine them to investigate the

source luminosity as a function of time. Along with the "pulse

shapes" thus produced, one can also see the time development of the

spectrum of the source. In all of the computed curves, the leading

edge of the peak is schematic only. The time scale for the pulse rise

should be correct to within a factor of two or three, as outlined in

Chapter IV, but the linearity is assumed rather than derived. The

curves are parameterized in terms of the "initial" (maximum) velocity,

and the decay phase is computed according to the relevant treatment of

the velocity development.

In order to minimize the number and complexity of the figures, a

specific value of the stellar mass, .5 M , is assumed, which implies a
0

9stellar radius, R# , of about 1.0 x 10 cm. This is taken from the

M vs R relation for cold white dwarfs as given in Schwartzschild (1958).

A white dwarf undergoing the evolutionary stages of mass transfer and

heating leading to the assumed detonation is likely to be somewhat

larger for a given mass than its cold, unperturbed counterpart. A

single value has also been assumed for the density of the accretion

flow, p = 10~^ g cm"
3

. The luminosities are per unit area in CGS
EL

units; within the assumption of a plane parallel radiating layer they

are thus to be multiplied by the surface area to give total

luminosities.
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•e

The general case is illustrated in Figures 6-1 and 6-2. These

are obtained using numerical solutions of the general equation of

motion (Equation U. T ); Figure 6-1 illustrates the approach to the

gravitational limit. The curves are plotted to illustrate the

effects of the initial mass and peak velocity parameters. It is

apparent that, while both parameters affect the shape of the pulse,

the overall duration is most strongly affected by the initial shell

velocity. The "spikiness" increases as the initial velocity increases

and as the initial mass decreases. The instantaneous luminosity, of

course, depends only on the velocity.

These figures schematically illustrate a problem in comparing

computed curves with observed pulse shapes. In observational data

there is always some constant signal underlying the pulse, either due

to a constant component in the source, or to the general background.

The level of thus constant component can drastically change the pulse

shape. The dashed line in these figures represents the luminosity of

a standing shock. While this is not intended to represent a minimum

luminosity (since clearly during the infall phase the velocity of the

shell is negative, and the luminosity below the standing shock level),

it is unlikely that the luminosity between peaks will be much below

this level. Under appropriate circumstances and compression time

scales, this could produce a post-peak dip below the unpulsed level,

or it could hide the presence of a low luminosity tail on the peak.

Figures 6-3, 6-U, and 6-5 illustrate the limiting cases of the

shell motion. While there is overall similarity in the sets of curves,
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Figure 6-1: Light curves for the general Equation (U.7)

8 1
with V = 3 x 10 cm s and various values of

o

-9 -3
M . Stellar mass is .5 M„ and p = 10 g cm
o 0
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Figure 6-2: Light curves for the general equation with

-2
M = 20 g cm and various values of V .

o o

Same stellar and accretion parameters as

in 6-1.
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Figure 6-3: Gravitational limit light curves for various values

of V and stellar mass .5 f<L.
o 0

>



i 1 1

r

TIME (s)



Figure 6-h: QSP limit light curves for v = 3 x 10 cm
a

8 1
V = 3 x 10 cm s and various values of M
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Figure 6-5: QSP limit light curves for v = 3 x 10
8

cm s
1

,a '

-2
M = 20 g cm and various values of V .

o o



TIME (s)
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there are also distinctive trends. In particular, the QSP curves

show a much more prominent and persistent tail than those for the

gravity limit. This reflects the fact that the downward accelera-

tion of the shell is velocity dependent in the QSP case, but

constant in the gravitational case. In fact, examination of the

QSP solution shows that the limiting downward velocity is one half

of the accretion velocity.

The semi-logarithmic plots in Figures 6-6 and 6-7 illustrate an

even more striking difference in the decay portions of the peaks.

The QSP curves are steeper than exponential; i.e. if an exponential

is fitted to the latter portion of the curve, the peak will be above

the fitted function. For the gravitational case, however, the peak

will always be below a function fitted in the same way. Since a

number of attempts have been made to fit the observed behavior of

x-ray sources, especially burst sources, in just this way, one can

hope to use the functional form of the decay phase to determine which

regime is applicable for sources to which this model is applied.

This, in turn, should yield at least a limit on the ratio of the

initial shell mass to the accretion density.

Perhaps the most characteristic behavior of this model is the

time development of the x-ray spectrum. As was shown in Chapter III,

the instantaneous spectrum can be quite close to that of a homogeneous

thermal source. However, any real observation will be integrated over

some finite time span, and this will complicate the spectral analysis.

The general behavior expected is a monotonic decrease in the effective
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Figure 6-6: Same as Figure 6-5 on a semi-log scale illustrating

the shape of the decay phase.
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TO

Figure 6-7: Same as Figure 6-3 on a semi-log scale illustrating

the shape of the decay phase (compare to Figure 6-6).



TIME (s)
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temperature, but the use of a single best-fit temperature becomes

less appropriate as the integration time increases. An alternative

is the use of a hardness ratio, as in Levin et al. (1976). This can

be defined as the ratio of the counts in some high energy band to

those in some low energy band, with the bands being chosen arbitrari-

ly according to the detectors involved. For the present purpose we

have used the definitions of the SAS-3 group, where the hardness

ratio, HR, is defined as the ratio of the flux from 6 to 10 KeV to the

flux from 2 to 6 KeV. For this choice HR = 1 would be appropriate to

Q
a power law of index 0.25, or a thermal spectrum at 2 x 10 K with a

low energy cutoff at 3 KeV (Clark et al. 1976). The curves displayed

in Figure 6-8 have been computed using a half-second integration time,

Q
and no low energy cutoff. Without a cutoff the 2 x 10 K temperature

would correspond to a hardness ratio of ~ .57, including the energy

dependence of the Gaunt factor.

Figure 6-9 shows the general relation between the luminosity per

unit area and the velocity. It is very close to the relation one

might naively expect from the assumption that the kinetic energy is

instantaneously lost to radiation, i.e.

L - \ pv
3

where v is the sum of the accretion velocity and the shell velocity.

In fact, the curves deviate slightly from a pure cubic in v. Two

values for the density are plotted to illustrate that L does scale

linearly with p.
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Figure 6-8: Hardness ratio vs time for

A - general equation,

M* = .5 M
Q

p = 10 g cm

8 1
V = 6 x 10 cm s
o

8 -1
v - 3.7 x 10 cm
a

B - general equation as in A but with

a
-J

V = 1.5 x 10 cm s .

o

C - QSP limit,

8 —1
V = 6 x 10 cm s
o

v = 3 x 10 cm s
a

D - same as C except,

8 —l
V = 1.5 x 10 cm s
o
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Figure 6-9: Luminosity per unit area as a general function of

the relative velocity v for two values of the

accretion density, p.





CHAPTER VII

DISCUSSION AND CONCLUSION

We are now in a position to consider the large astronomical

question involved here: having concluded that white dwarf x-ray

sources should exist, what do they look like and can this type of

model explain any known x-ray sources? We will first examine some

of the general hallmarks of the models, and then consider

similarities between the model predictions and some known sources.

Finally, since the model investigated here is quite simplified, we

will consider the changes to he expected if some of the

simplifying assumptions are relaxed.

A single outburst is characterized by a rather sharp peak,

and except for initial velocities quite small compared to the

accretion velocity is generally asymmetric with the mean slope of

the trailing edge somewhat less steep than that of the leading

edge. The overall duration of the outburst ranges upward from

several tenths of seconds to several tens of seconds, with the

longer pulses having generally a more pronounced low intensity tail

The shape of this decay phase is controlled by the mass in the

ejected shell for a given stellar mass and accretion density.

The decay is accompanied by a softening of the emitted

spectrum. Expressed in terms of hardness ratio the spectrum

declines approximately linearly in time for most of the duration

of the decay, after a rapid rise. The values of the hardness

ratio for the SAS-III energy bands lie in the range .3 to .8.
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For the QSP limit the hardness ratio also has a short period of

rapid decline preceding the linear regime, while in the gravita-

tional limit there is a rapid decline following the linear region.

Because of the way in which hardness ratio is defined it is net

possible to determine a specific maximum temperature from a single

value of the hardness ratio unless there is additional information

as to the presence or absence of a low energy cutoff. Fortunately

this can be obtained to some extent by examining the individual

low-energy channels. For a source in which the maximum temperature

at the peak can be determined, it should be possible to estimate

the amount of mass in the shell by looking at the peak luminosity

and the shape of the hardness ratio versus time. As usual in

astronomy this can only be done if the distance to the source is

known; however, in this model at least there is an upper limit on

the luminosity the model can tolerate, and thus bn the distance

for a given flux.

When we consider repetitive sources on this model, we must

strongly distinguish between the two limiting cases. In the

gravitational limit the transfer of energy to and from the

thermonuclear source is independent of the accretion rate; the

increase in compression energy is very small since the accreted

mass is small compared to the mass in the shell. The period

differs from that of an imaginary perfectly elastic ball only to

the extent that the burning phase takes a small but finite amount

of time. In the QSP limit, however, the energy returned by the
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shell never exceeds forty percent of the initial shell energy. The

period thus depends on the efficiency of the recompression process

after the shell returns to the surface. The energy for the next

outburst must be supplied by the matter accreted during the

cycle; it cannot be stored in the shell. Even more striking is

the fact that the QSP period depends on the shell mass, while the

gravitational one does not.

In attempting to apply the model to known pulsed sources we

immediately have a problem in isolating the source characteristics

in which we are interested. The pulsating x-ray sources are so rich

in their behavioral phenomena, that a model this simplified cannot

hope to account for all of them. Her X-l, for example, has a highly

variable pulse shape which shows some signs of the characteristic

decline in hardness ratio. However, since many pulses are integrated

to get the published shapes, and these time averaged shapes also

vary in time, it is not possible to rigorously check the spectrum

evolution against the shape of the pulse. The stellar mass

associated with this source is rather high, ~ 1.2 M
Q

. This argues

for the gravity dominated regime, unless the mass in the shell is

taken to be extremely low. The overall period stability seems to

indicate this regime as well, since if the changes in pulse shape are

attributed to lumpiness in the accreting gas, one would expect this

to show up as jitter in the period of a QSP source. Since the

period goes as - and the luminosity goes as p, changes in the

density should produce comparable fractional changes in both period
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and luminosity. The observed hardness ratios are around 1.1 with

a low energy cutoff. Subject to the problems mentioned above, this

is consistent with a peak temperature of ~ 2 x 10
8

K. The period

and spectrum are then both consistent with an almost purely

gravitational equation of motion if the stellar radius exceeds the

classical cold white dwarf value for its mass by as much as 20

percent. On the other hand, the indicated distance to this source

seems to be at least 2 Kpc (Forman et al. 19T2), in which case the

luminosity would exceed the opacity limit derived in Chapter II.

Strictly on the basis of pulse shape and spectral behavior,

the most intriguing similarity between the model predictions and an

observed source is the case of the burst sources. These seem to

display a pulse decay which is often fitted to an exponential,

but which in at least one case exceeds the fitted function at the

peak (Clark et al. 19T6), reminiscent of the QSP cases. This same

burst has been analyzed in terms of its hardness ratio. Although

the data is somewhat inconclusive, the hardness ratio seems to

increase rather sharply, followed by a leveling off or slow

decrease. This has been interpreted as evidence for reprocessing

in a surrounding medium. However, the rise in hardness ratio seems

to be associated with a time lag between the peaks in the two

energy bands, while the ratio is flat or declining throughout the

decay phase. The indicated spectrum is appropriate for tempera-

g
tures less than or the order of 2 x 10 K, with some absorption

at low energies.
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One speculation as to a model for such a burst is that hoth

of the acceleration mechanisms are operative here. Thus the shell

is initially accelerated by radiation pressure, prior to the

generation and arrival of the detonation shocK.. A problem with

this interpretation is that there is some evidence for a decline

in the low energy band prior to or coincident with the high energy

peak. If this is real it would seem to argue against a velocity

effect with a purely thermal spectrum, and require some sort of

processing of the spectrum. The high energy band does seem to

decay somewhat faster than the low energy band, as expected for a

velocity variation and thermal emission.

Looking at the overall source characteristics, of course, one

is hard put to reconcile this model with the suggested association

of the burst sources with globular clusters. Not only is the

simple association difficult to understand, but the implied

distances put the luminosities well above the opacity limits for

white dwarfs.

Another, recently discovered, class of sources with certain

similarities to the models in the QSP regime is that of the

repetitive burst sources (Lewin et al. 1976, Clark et al. 1976).

Although the observations are not yet adequate to attempt a

detailed model fit, the bursts show the quasi-exponential tails

seen in the QSP profiles. In at least some cases the timing of

the bursts is quasi-periodic, with a good deal of jitter. One

possibility for this behavior is that of a model in the QSP regime,
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and in which the depth of the burning layer, and thus the initial

shell mass, is somewhat variable.

Of particular interest is the so-called multiburster

,

MXB 1730-335, discovered by Lewin et al. (1976). In this source

the interval following a burst seems to be directly proportional

to the total energy in the burst, while the peak intensity of the

burst remains nearly constant. Clark (1976) has observed that

this is suggestive of a relaxation oscillator in which some energy

reservoir is emptied by varying amounts in the bursts, and must be

refilled to some critical level before the next burst can occur.

Since the shell in the QSP model returns at most forty percent of

its initial energy, the larger the initial shell energy, the

longer the necessary compression period to replace the energy lost.

Thus if for some reason the initial shell mass is variable but

the velocity is much less so, we would expect behavior similar to

that which is observed. It remains to be determined whether the

bursts display the necessary spectral evolution, and the nature of

the process which would be necessary to modulate the burning depth

remains entirely conjectural.

Finally, we need to consider the possible effects of

relaxing some of the overall model assumptions, in particular the

assumed form of the accretion flow. In any real source there is

quite probably an accretion disk rather than a simple radial infall.

It is thus quite conceivable that the gas accretes to the surface at

less than the free fall velocity. For a given set of model
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process becomes a competitive loss mechanism. Because Katz and

Salpeter assumed the maximum conceivable burning rate in computing

their limits, Guthrie and Tademaru (1975) developed a more general

expression for the ratio of the inverse Compton (1C) to free-free

(FF) loss rates in an ionized gas at given temperature and density

as a function of the radiation temperature, T
R , of the underlying

black body surface. This expression for the loss ratio, R , is
L

T
1/2

e

where T
&

and N
g

are the electron temperature and number density

(cm ) respectively. Figure 7-1 shows this relationship for

various values of the electron parameters. It should be noted that

if free-free losses are the dominant process at the shock itself,

1/2
they dominate throughout the region, since T

g
/N

g
decreases rapidly

as the gas flows away from the shock. If IC cooling is important at

all it will be important at the peak of the outburst, raising the

possibility that a "critical" case, R^ - 1, could produce the dips

sometimes observed in x-ray pulses, particularly in Her X-l. However,

if the shell temperatures exceed the values of a few times 1C?

indicated by the calculations in Sk
t
the characteristic photon

energies may be degraded below the interstellar opacity cutoff. In

that case these sources would be very difficult to detect.

A last possibility not considered in this work is modification

of the accretion flow by the x-ray emission itself. This was

considered in the case of a standing shock by DeGregoria and Woltjer



parameters this will tend to flatten the decay slope and broaden the

outburst. It will also lower the temperatures involved for a given

ejection velocity, although this will be negligible if the ejection

velocity is large compared to the accretion velocity. More signifi-

cantly, it would lower the maximum allowed luminosity for a given

source by increasing the necessary density, and thus the opacity, for

a given rate of energy input.

Another possible consequence of disk accretion is that the

density distribution may not be spherically symmetric. The burning

shell should still be nearly symmetric, since any significant

horizontal temperature gradients will damp the development of the

detonation until the layer relaxes. The ejected shell, however, will

not remain spherical ana plane parallel unless it is in the extreme

gravitational limit. This would tend to broaden the peak and flatten

the slope of the hardness ratio, since one would then have a

distribution of velocities. If the density distribution is highly

asymmetric, it could conceivably smear out the peaks completely.

This would probably result in heating the outer layers of the star

until the matter burned on the surface, since the incoming energy

could no longer be efficiently radiated away.

A basic assumption throughout this work has been that the

important cooling mechanism in the shocked gas is free-free emission.

This has been questioned by Katz and Salpeter (19TM, who point out

that if the temperature of the optically thick surface below the

x-ray emitting region is sufficiently high, the inverse Compton



Figure 7-1: Loss ratio R as a function of radiation temperature
Li

for various plasma conditions.





(1973) and DeGregoria (197*0. They found no stable steady state

modulation of the emission, but for the ejected shell models this

process could conceivably modify the behavior of a given burst to

a very large degree.

While this work has been primarily concerned with the

development of specific model predictions, I would like to emphasize

a point which follows from the most basic and general considerations

of this dissertation. Very simply, given that we know of binary

systems containing white dwarfs, and that the evolution of these

systems must include a mass-transfer phase, there must be some

white dwarfs which are compact x-ray sources. The possible temperal

behavior of such a source is bounded by the standing-shock models,

such as those of Aizu (1973) and Fabian et al. (1976); and by the

nova models (e.g. Starrfield and coworkers) which eject nearly the

entire non-degenerate shell of the star and cannot repeat until the

outer layers have been replaced by accretion. Whether or not there

is modulation of the emission due to motion of the surface, a white

dwarf in an accretion flow must be a source of x-rays. This is an

unavoidable consequence of the depth of the potential well, barring

opacity limitations.

The models presented here are an intermediate possibility lying

between the bounding behaviors mentioned above. We have shown that

repetitive burst emissions and even periodic pulsed emissions are

both energetically and dynamically feasible. Although these basic

models may eventually be refined and matched with currently known



x-ray sources, I would suggest that they are not limited to this

approach. Something like them should exist and the character ist

time behavior of the spectrum should make them identifiable in

future surveys

.
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