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ABSTRACT

The Nature of the Circumstellar Envelopes of MR II9 and P Cygni

(May 1977)

William R. Oegerle, B.S., University of Florida
Ph.D., University of Massachusetts

Directed by: Professor David Van Blerkora

The physical conditions in the envelopes of P Cygni and m II9, a

representative WN8 star, are investigated using available observations

of the HI, Hel, and infrared spectra. The general approach is to con-

struct models of the envelopes by computing line intensities and pro-

files for various parameters such as the stellar temperature, mass loss

rate, and the velocity of the outflow. Comparison of these models with

the observations hopefully singles out a unique set of parameters.

A model for Hel emission in Wolf-Rayet envelopes is cosistructed

and then compared with MR 119- At one point in the envelope, the non-

LTE populations of the levels are computed by solving the statistical

equilibrium equations using the escape probability method. Assuming

homogeneity in the envelope, the line intensities are then calculated

and compared with observations. The best fitting model indicates a

-k -1
mass loss rate of 10 ^^y^ ^.nd an envelope temperature of 20,000 K.

Recent work on the interpretation of hydrogen emission lines from

P Cygni has led to contradictory models of its atmosphere. In order

to resolve the problem, a model for Hel emission in an accelerating

envelope was constructed. The resulting line profiles agree quite well

-6 -1
with the observed lines for a mass loss rate of 2x10 M^yr .

The



unusual behavior of the helium lines, in which absorption components

of lines in the same series have quite different displacements from

line center, is a natural consequence of the model. Recent observa-

tions of the infrared continuum indicate that the flow is accelerating

more slowly than previously thought. Therefore, a model for the en-

velope, in which the velocity of the outflow increases linearly with

radius, was constructed in order to produce the observed Balmer lines.

Using a stellar temperature of 20,000 K and a mass loss rate of

-5 -1
1.5x10 M^yr , the computed Balmer lines were in fair agreement

with the observed lines. Unfortunately, the model does not allow

the formation of an arbitrarily deep absorption component. Therefore,

the absorption components of the calculated profiles are much shallower

than observed.

The Balmer lines observed in the spectrum of P Cygni are hard to

produce in an accelerating flow because the central intensities of the

emission peaks are very large, while the absorption features are very

deep. It is shown that the only way to produce both of these features

is to have the source function in the line decrease very rapidly with

radius. The radial dependence of the source function for Ha is derived

analytically, using a three level atom, and it is found that the source

function can decrease rapidly at large radii.

Portions of this work have been published in the Astrophysical

Journal. The model for MR 119 was published in Vol\ame 206, page 150,

and the model for the Hel lines in P Cygni appeared in Volime 208, page

h53.
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CHAPTER!
INTRODUCTION

Circumstellar Envelopes

Rockeo observations of far ultraviolet stellar spectra have pro-

vided evidence of high velocity mass loss from hot supergiants. Ab-

sorption lines of the resonance transitions of CIV, NV, and SilV have

blue shifts corresponding to Doppler velocities in the 1000 - 2000 km s""^

range (Morton 196?) . It is nov generally accepted that the phenomenon

of high velocity mass loss occurs in almost all hot supergiants and in

a few giants of spectral type BO. 5 and earlier (Morton I968).

Wolf-Rayet and P Cygni stars have long been recognized as prom- •

inent members of the class of stars which lose mass. The spectra of

both of these classes of stars are characterized by spectral lines with

a nearly undisplaced emission component and a shortward displaced ab-

sorption component (in the" case of P Cygni there may be double or even

triple absorption components). The formation of this type of line pro-

file, called a "P Cygni" profile, has long been explained by emission

in a spherically expanding envelope surrounding the star (Beals 1929).

Using this concept, it is possible to construct an emission model for

a star undergoing mass loss. The profile of a line formed in the out-

flowing envelope will depend on the temperature and velocity distribu-

tions of the gas and the star's temperature and mass loss rate.

The purpose of this work is to determine the physical nature of

the envelopes surrounding I^IR 119 (a typical late-type Wolf-Rayet star)

and P Cygni. The Hell spectra in WN5 and WN6 stars have been investi-



gated by Castor and Van Blerkora (19T0), and a model for the early Balmer

lines of P Cygni has been constructed by Kuan and Kuhi (l9T5). Since

the ionization potential of Hel is substantially different from that of

Hell and HI, the neutral helium lines would most likely be formed in a

different region of the atmosphere. Therefore, an emission model based

on the Hel lines vould serve to give a more complete picture of the phys-

ical conditions in the envelope.

Wolf-Rayet Stars

There are three types of Wolf-Rayet (V/R) stars known: the nuclei

of, some planetary nebulae, components of binary systems, and single

Population I objects (Paczynski 1972). V/R stars are classified as

either M or V/C depending on whether the spectra are characterized by

emission lines of He and N or He, C, and 0 respectively (Beals 1938).

In this manuscript, we will be concerned only with the single Popula-

tion X WN stars.

The VrN stars are further subdivided into classes WI3 through WN8.

Generally speatking, stars on the upper end of this sequence (i.e. WN7-8)

have larger ratios of hydrogen to helium in their atmospheres and lower

effective stellar temperatures than those on the lower end (Smith 1972).

The single Population I objects typically have temperatures of 30,000 K,

masses of 10 M , and luminosities of 2 x 10^ L . Therefore, these stars

are too luminous to be on the hydrogen main sequence and are thought to

be in a "post main sequence" phase (Paczynski 1972). The observed out-

flow velocities in WR stars, as deduced from the doppler widths of the

emission lines, are 1000 km s""*" implying that the mass loss rates are



10'" - 10" M^yr""^.

There have been a number of mechanisms presented to explain the

hich mass loss rates in WR stars. A brief review of these suggestions

will be given here because the velocity distribution in the envelope

will depend on the mechanism causing the outflow.

Paczynski (1969) and Simon and Stothers (1960) have postulated

that WR stars are vibrationally unstable because of the temperature

sensitivity of the triple alpha reaction. In this model, mass loss

would occur if the amplitude of the oscillation was large enough.

Limber (196U) has suggested that a "forced rotation instability" could

give rise to the mass loss. This model cannot explain the violet dis-

placed absorption features seen in some emission lines. Rublev (196U)

has proposed that radiation pressure in the continuum is responsible

for the mass loss. It is true that the Iximinosities of WR stars are

close to the Eddington limit (to be defined in the next section), but

it seems that a stable interior solution cannot be built if the surface

luminosity exceeds this limit.

Lucy and Solomon (1970) found that radiation pressure in resonance

lines could lead to outflow velocities of 1000 km s However, the

2 -8 -1
maximum mass loss rate allowed by the mechanism is L/c * 10 ^^y^ >

which is several orders of magnitude too low. Castor, Abbott, and

Klein (1975) have included the radiation pressure due to many subordin-

ate lines of GUI in Of star envelopes and found that the maximum loss

rate is L/cv ~ 100 L/c . Therefore, radiation pressure in the lines

appears to be a very promising mechanism for causing mass loss from

early-type stars.



P Cygni

Although it is the prototype of a class of emission line stars,

P Cygni (HD 193237) is unlike other members of its class in a number

of respects. For one, P Cygni displays the classic "P Cygni" profile

more completely than other members of the class. Second, P Cygni under-

went a nova-like outburst in the year 16OO. The outburst was very un-

usual, because the maximum brightness lasted for six years.

Because of its high apparent brightness, P Cygni has been observed

in some detail (Adams and Merrill 1957, Beals 1950, de Groot I969 and

references therein) and lends itself to theoretical investigations of

its excitation conditions and velocity distribution in the circumstellar

envelope. The spectrum of P Cygni is very rich and includes many lines

of hydrogen and neutral helium.

The most recent studies of P Cygni are those of de Groot (I969) and

Kuan and Kuhl (1975 )» which reach quite different conclusions. By analyz

ing the Balmer lines, de Groot concluded that the outflow is accelerating

while Kuan and Kuhi analyzed the same lines and showed that a decelerat-

ing flow could produce the lines.

In 1967, Magalashvili and Kharadze reported that P Cygni 's brightnes

varied with a period of .5OO6 days. This has never been verified, but

the possibility is very interesting because P Cygni may be pulsationally

unstable. If P Cygni conforms to the mass-luminosity relationship,

then its visual absolute magnitude of -8 indicates a mass of 100 M^.

Schwarzschild and Harm (1959) have shown that any star more massive

than 65 M will be pulsationally unstable. Therefore, P Cygni could be



losing mass through large amplitude pulsations. This type of mass loss

could easily lead to shells in the ejected envelope and a decelerating

flow.

On the other hand, radiation pressure must play an important role

because P Cygni's luminosity is very close to the Eddington limit.

This limit is defined as the luminosity for which the radiation force

due to electron scattering balances the gravitational force of the star

and can be written in the form

^edd
= X 10^^(M^/M^) ergs"^ . (l)

Assuming a mass of 60 M for P Cygni gives L , , 2 x 10^ L . Makinr0 edd o

the gross assumption that P Cygni radiates like a blackbody at a tem-

perature of 20,000 K and has a radius of 90 (Barlow and Cohen 19TT),

2 k 6
the luminosity is L = UttR^ aT^ ~ 1.5 x 10 L^. Therefore, the lumin-

osity of P Cygni is very close to the Eddington limit, indicating that

radiation pressure may be the dominant mass loss mechanism. As shown

by Castor, Abbott, and Klein (1975), radiation pressure leads to an accel-

erating outflow of gas.

The question of whether the outflow is accelerating or decelerating

is an important one and will be addressed in Chapter IV.



CHAPTERII
THE ESCAPE PROBABILITY METHOD

Basic Concepts

The usual assumptions that are rr.ade in calculating model atmos-

pheres for hot main sequence stars (hydrostatic equilibrium, radiative

equilibrium, local thermodynamic equilibrium (LTE), and negligible cur-

vature effects) are probably all violated in Wolf-Rayet and P Cygni

stars (Van Blerkom 1972). The escape probability method developed by

Sololev (i960) and extended by Castor (1970) has been employed with

fair success in studies of Wolf-Rayet stars, novae, molecular clouds,

and will also be used in this investigation.

The escape probability method can be used with a fair degree of

confidence when the bulk velocity of the flow is much greater than the

thermal velocity of the gas at the local electron temperature. In Wolf-

Rayet ^stars, the maximum velocity of the gas -in the envelope is 50-100

times larger than the thermal velocity, while for P Cygni this value is

'V 20-30.

Consider a point in an expanding envelope surrounding a star. If

there is a velocity gradient in the gas, a photon emitted at this point

will be preferentially absorbed near its point of emission, or" it will

escape from the envelope because of the Doppler effect. Therefore, a

transfer problem exists only in a narrow zone where the photon has a

chance of being absorbed. The width of this zone is usually on the

order of a few thermal Doppler widths.



Constant Velocity Surfaces

In order to illustrate how the escape probability method works,

consider a velocity distribution in the envelope of the form

v(r) = vJl-Vr)^/2 , (2)

which can be produced by radiation pressure acting on the gas (see

Chapter III). We will also adopt the geometry of the envelope used by

Castor (1970). The origin of the Cartesian coordinate system is centered

on the star. The z-axis is directed along the line connecting the center

of the star with the observer, and the p-axis is perpendicular to the

line of sight. A dimensionless frequency parameter, x, equal to v /v
z °°

will be used throughout the discussion. The observed line extends from

X = -1 to X = +1.

The loci of points in the envelope with a constant value of v is
z

called a constant line of sight velocity surface. Each con,stant veloc-

ity surface corresponds to a particular value of x, the frequency dis-

placement from line center. The velocity surfaces for the law given in

equation (2) are shown in Figure 1. Emission from these surfaces dis-

tributed over the entire envelope contributes to the observed spectral

line.

A simple mathematical formula can be derived for the constant veloc-

ity surfaces. For a given value of p and x, we want to determine the

value of the radius that satisfies the conditions of the velocity sur-

2 2 2
face. The relation between r, p, and z is just r = p + z . Therefore,

we have

r^(l-y^) - p^ = 0 , (3)
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Figure 1: Constant line of sight velocity surfaces for the accelerat-

1 /?ing velocity law v = v^(l-R^/r) . The minimum radius

of the surface for x= .9 is shown.



p



where y = z/r. Now, using the definition of x, ve have x = v /v = uv/v

Equation (3) now becomes

r2(i_x2(v^/v)2) _ p2 . 0 , (1,)

where v is some function of radius. For the particular velocity lav given

by equation (2), we have the relation

r2(i_rx2/(r-Rj) _ = q . (5)

For an accelerating velocity law there will be a minimum radius for

a particular velocity surface. In other words, regions close to the star

cannot contribute to the flux at large frequency displacements because

near the star the gas is moving too slow. For a given value of x, the

minimum radius is found by setting y = 1 in the equation for the defini-

tion of X. Since x = yv/v , we have v(r . ) = xv . For the velocity°° mm 00

law given by equation (2), the minimum radius is

^min = V(l-x^) . (6)

Line Profiles

In order to compute line profiles, the intensity and optical depth

of a line must be known. For the reader's convenience the functional

form of the intensity and optical depth will be given below. Derivations

of these relations can be found in the paper by Castor (l9T0).

In the p-z coordinate system, the intensity and optical depth in a

line will be functions of x, p, and z. The intensity seen by the ob-

server, l(x,p,z=°°), is given by
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I(x,p>R^,z=c°) = S(rQ)(l-exp(-T(x,p,z=co)))

l(x>0,p<R^,z=oo) = S(rQ)(l-exp(-T(x,p,z=~))) (7)

+ 1^ exp(-T(x,p,z =»))

I(x < 0,p <R^,z =00) =

2 2 1/2where ^ ^^0 "^^0 ^ ' subscript refers to a value of a

variable on the constant line of sight velocity surface, ^(^q) is the

source function in the line at r^, and is the continuous intensity

emitted at R^. The optical depth in the line is given by

t(x,p,z=oo) = XQ(rQ)/(l + azQ^/rQ2)
, (8)

where

and

0 = ^-1 . (10)
d In r

The total flux in the line per unit frequency interval is then

00

F^ = k-n j 2TTP I(x,p,«>) dp , (11)

o

and the continuous flux of the star is given by

F =1477/ 27TP dp = I+ttS^^I^ , ...(12)

o

assuming no limb darkening of the stellar radiation.

Features of Other Velocity Laws

Two other velocity distributions of importance are the laws v « r



11

, -1/2
and veer .In this section, the necessary equations will be given

for computing the constant velocity surfaces which are shown in Figure

2. The effect of these two velocity laws on the emergent profile will,

also be discussed.

First, consider the accelerating law

where v^ is the velocity of the gas at the stellar surface. For pur-

poses of computation, v^ is usually taken to be the thermal velocity at

the stellar surfalce. The definition of x has to be modified because

there is no terminal velocity in the flow. So, we assume that the gas

accelerates up to a maximum velocity, v^^. Then, the frequency param-

eter is

"
^""/""max

"
> (1^)

where a = v„/v
0 max

Solving equation (l^O'for y, and substituting into equation (3) re-

sults in the relation:

z = xE„ v /v. . (15)* max 0

So, for a given value of x, z is a constant independent of p. The re-

sulting velocity surfaces are therefore straight vertical lines, as

shown in Figure 2a. Consequently, the value of ^or a given value

of X is just the same as the value of z given in equation (15).

Now, we turn to the decelerating velocity law

V = V (R^/r)^/^ ,
(16)

max *

where v is the velocity of the gas at r = R^. Unlike the previous
max
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Figure 2a: Constant line of sight velocity surfaces for the accelerat-

ing velocity lav v = v r/R^.
o *

Figure 2b: Constant line of sight velocity surfaces for the decelerat-

ing velocity law v = v (R„/r) '
.max *
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velocity lavs, this decelerating flow has velocity surfaces that do

not extend to infinity, but are closed surfaces as shown in Figure 2b.

This means that for a given value of p and x, there are two values of

the radius that are on the constant velocity surface. These values

are the positive, real, nonzero roots of the equation

3 2
r^ + Ar + B = 0

,

2 ?where A = -R^/x and B = -Ap .

Now we turn to the differences in the line profiles produced by

the three different velocity laws that have been discussed above. The

salient features of any accelerating velocity law are: (l) for a given

value of X, there is a minimum distance of the velocity surface from

the star, and (2) photons emitted from any spot on the disk of the cen-

tral star must pass through all of the velocity surfaces before reach-

ing the observer. Just the opposite is true for the decelerating veloc-

ity law. As shown in Figure 2b, for values of x > .6, the velocity sur-

faces do not occult the entire disk of the star. Also, every velocity

surface passes through the surface of the star (i.e. there is no minimum

radius )

.

These features have a drastic effect on the resultant line profile.

For the decelerating envelope, there will be a cutoff in the flux on

the red side of the line at x ~ -.62. For values of x < -.62, the

stellar disk entirely occults the velocity surfaces. For a given mass

loss rate, the intensity of the central emission peak produced by a

decelerating flow will be larger than that for an accelerating flow,

because the equation of continuity requires that the density, and con-



Ik

sequently the source function, decrease less rapidly with radius. For

the decelerating flow, the line profiles will also tend to have absorp-

tion features at large violet displacements, because the velocity sur-

,

faces for large values of x are near the star where the optical depth

is large. Also, at these large violet displacements, the surface area

of the velocity contours are small, thereby making the total emission

only slightly larger than the continuum.

On the other hand, rapidly accelerating velocity laws such as equa-

tion (2) cannot give rise to a profile with a large central intensity

and a deep, violet displaced absorption feature. If the m.ass loss rate

is increased enough to give a large central intensity, then the result-

ing emission will completely fill in the absorption feature and a

"parabolic" emission line will result. This will be considered in

slightly more detail in a later chapter.
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CHAPTERIII
WOLF-RAYET STARS

A One Point Model For MR II9

The general properties of Wolf-Rayet stars have been suimnarized

in Chapter I. In this chapter, a detailed model for m II9 is developed

in order to calculate the intensities of the neutral helium lines,

and thereby infer the temperature in the envelope and the mass loss

rate from the star. MR 119 seems to be a fairly good representative

of the WIJ8 stars and is used throughout this work because of the avail-

ability of observed line intensities.

The spectrum of Hel (see Figure 3) is different from hydrogenic

atoms because transitions between angular momentum substates are ob-

served as distinct lines. Therefore, all of the angular momemtum sub-

states will be included in the model atom. The transitions observed

in MR. 119 are between levels with n<8, so at least this many levels

need be included.

Griem (1963) has given a condition for determining which levels of

a hydrogenic atom are nearly in LTE by comparing radiative and colli-

sional rates into and out of a certain level. The population of a

level n will be within ten percent of its LTE value when n>_nQ, where

„ ,_18 „6 kT 1/2 2/17

"o = t
'- r "

'if' ' •

''''

e H

E„ is the ionization potential of hydrogen, T is the local electron
n 6

temperature, N is the electron number density and Z = l for Hel. For

11 -3
the typical values found in WI^ envelopes (i.e. N = 10 cm and



16

Figure 3: Term diagram for Hel shoving the wavelengths of some of the

transitions commonly observed in V/olf-Rayet spectra.





1*^

= 10^ K), we find - 10
. Although equation (l8) is strictly valid

only for hydrogenic atoms, its use for neutral helium should not be too

severe. Consequently, a neutral helium atom consisting of the first

eight principal quant^am states including all angular momentum sublevels

will be adopted, because of the availability of atomic rates up to n=8.

In order to calculate the populations of these levels, the statis-

tical equilibrium equations must be solved. In a steady state,

"IT =
^nil

= 0
' (19)

where R^^ and C^^ are the net radiative and collisional rates, respec-

tively, by which level nZ is populated. The net collisional rate is

given by

+ y (N N „ .C „ , „ - N N „C „ „,)
^ nil', nil c nfi, nJl,n]l'^

+ N^(N.N y 0
- N .C

0 J , (20)
e 1 e nii nZ n£,k

where N. is the ion number density, and C C „ k and Y „ are the
1 n'£' ,n£ nil, nJl

collisional bound-bound, bound-free and three body recombination coeffi-

cients. C „, n is the coefficient of collisional redistribution of
n£' ,nic

angular momentum, and is the number density of the species causing

this redistribution. N will be the density of electrons, protons, or
c

heli\im ions. The methods used to calculate these collisional rates are

given in the Appendix.

The net radiative rate can be written in the form
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R

- / Jv^l - exp(-hv/kTj/b^^)dV
, (21)

where a „ is the radiative recombination rate to level n£, a (v) is the
nil

photoionization cross section from level nl, is the departure coeffi-

cient, and is the mean intensity of the continuous radiation field.

^n'£',n£ ^n'£',njl
usual Einstein coefficients, and

^n'i\r.i
specific intensity of the radiation field in the transi-

tion n'£' ->n£ integrated over the line profile and average over angle.

Equation (21) can be rewritten in terns of the escape probability

of a photon. Castor (19T0) showed that the mean intensity, J , „

,

n ^ , n

in an expanding envelope is given by

where 3 and 6^ are escape probabilities defined as:

6 = (l-exp(- T^.,.,,,(r)))/T^.,,^^,(r) , (23)

3 = W3 . • (2U)
c

The term 3^ is the probability that a photon will escape from the region

in which it was emitted and strike the central star or core. In the

above equations, W is the dilution factor, is the intensity of the

core, and S .is the source function in the line and is given by
' n' £ ,ni6
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By substituting equation (25) into equation (22), the mean intensity,

'^n'Z\nV written solely in terms of atomic rates and escape

probabilities. The net radiative rate given by equation (21) can now

be expressed in the following form:

R ^
n'L vl.J^'n^^'^n^V.ni^ ' ^"n'^.^n'r ,n£ " Vn.,n'£- ^V*^

J^(l-exp(- hv/kT^)/b^^)dv . (26)

^n^

Methods used to calculate the atomic rates are listed in the appendix.

Also, the simplified method used by Castor and Van Blerkom (19T0) to

deal with the continuum radiation will be adopted here.

Now, with the net radiative and collisional rates being given by

equations (26) and (20), respectively, the rate equation (19) can be

written in matrix form

A X = B , (27)

where A is a matrix containing escape probabilities and X is a vector

whose elements are the populations of the levels. Equation (27) is

solved by an iterative method. The populations of the levels are ini-

tially guessed to be their LTE values for the local electron tempera-

ture. Then, using equations (9) and (23), the optical depths and es-

cape probabilities in the lines are calculated. This completely deter-

mines matrices A and B in equation (27). The new populations, contained
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in vector X, are then found by calculating the product B A"^. This pro-

cess is repeated until the populations of all levels converge. In prac-

tice, the fractional change in the populations of all levels is less

than 1% after only three or four iterations.

So, after equation (2?) has been solved, the populations of the

levels of neutral helium are known at one point in the envelope. The

populations can now be used to calculate the total intensity of an

emission line. The intensity of the transition n' i' -> nZ is given by

^n'£',nil " /j^^^^^^^^^
' (28)

where j(r) is the emission coefficient and V is the volume. Using the

rt-lations j(r) = k(r)S(r) and from equation (9)

^^^^ = V,n'r , (29)

equation (28) becomes

^•VM ' ! St--' <i-"P'- V.n'r''-)')'^^ •
'30)

This integral cannot be evaluated correctly without knowing the run of

physical parameters over the whole volume of the envelope. Since the

calculations have been performed at only one point in the envelope,

the integral can be approximated by assuming that S(r)(l-e ) is con-

stant for r<R and zero for r>R. Then,

V^(l-exp(- T J)

where K is a constant. In order to eliminate this constant, the inten-

sities will be given in terms of a reference intensity. The reference
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lines are 2^? - u\ {XUhU) and 2^? - l^^D (XU922) for the triplets and

singlets, respectively. These lines vere chosen because they are pre-

sent in the spectrum of MR II9 , and they are relatively free of blends.

We now apply this model to MR II9 , a representative WN8 star. MR II9

has a core temperature of 23,000 K and H/He % 1 (Smith 1972). The

bolometric magnitude of a W1^8 star is -8.5 (Smith 1972), which corre-

sponds to log(L/L^) = 5.3 where L = Uttr/oT^^ Using a core temperature

of 23,000 K gives a radius of R^ ^ 30 R^. The representative point in

the envelope where the rate equations are solved is chosen to be R = 3R^

= 90 and the velocity of the gas at this point is assumed to 1000 km s"\

These choices have very little effect on the computed line intensities.

The two remaining parameters that must be chosen are the temper-

ature and density of the gas at the representative point. If the stellar

-5-1 1mass loss rate is 10 M^ yr , then using R = 90 R^, v(R) = 1000 km s~ ,

and the equation of continuity, we find that the number density of heli um

10 -3
IS roughly 10 cm at this point. With this rough estimate of the par-

ticle density in mind, eight models were computed corresponding to two

h
values of the electron temperature: T^ = 1 and 2 x 10 K; and four values

of the helium density: N(He) = 2,3,5 and 7 x 10"''° cm~^.

The calculated and observed relative intensities are shown in

Table I for both singlet and triplet transitions. All the observed re-

lative intensities are taken from the Atlas of Wolf-Rayet Line Profiles

3 3
(Kuhi and Smith 1972), except for the intensity of the 2 P - 2 S transi-

tion which is taken from Kuhi (1968).

In Figure h, the logarithm of the departure coefficient is plotted

versus the principal quantum number, n, for the £ = 0 state for two tem-
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Figure k: The logarithm of the departure coefficient, b . , is plotted

against the principal quantum number for triplet states with-

in = 0. Curve (a) is for T = 20,000 K and N(He)=5xlO^° cra"^,

and curve (b) is for T = 10,000 K and N(He) = 3x10^° cm~^.



c



2h

peratiires and densities. The departure coefficient falls to approximately

unity as n->8, verifying the assumption made earlier that levels above

n = 8 would be within ten percent of LTE.

It is difficult to interpret the results from Table I. Therefore,

for purposes of clarification, some of the relative intensities from

Table I are plotted in Figure 5 for the two different temperatures for

3 3the n D-2 P series of transitions. The observed values are also shown.

On the basis of this graph there does not seem to be a unique solution

for the temperature and density in the envelope. For an envelope tem-

perature of 20,000 K a density of 5-T x lO''"^ cm~^ fits best, whereas for

10
10,000 K a density of 2-3 x 10 cm is indicated. The scatter in the

observed intensities, partially caused by line blending, makes it very

difficult to rule out one of these two sets of temperatures and densities.

However, we can eliminate one' of these sets by studying the other ob-

served lines.

Consider first the singlet lines. Even" though there are only two

singlet lines present in the spectrum (and the intensity of '^^D - 2^?

transition is uncertain), the calculated intensities for the high den-

10 — 3
sity (7x10 cm ) case are in good agreement with the observed values.

There is not much difference, however, between the calculated values for

10,000 K and those for 20,000 K. Therefore, the two singlet lines are

consistent with the high density and high temperature case, but not with

the low density - low temperature case.

3 3
Two of the strongest lines observed in MR 119 are the X3889 (3 P-2 S)

and XIO83O (2^P-2^S) lines. The calculated result for A3889 is in very

good agreement with the observed intensity for the case with a total
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Figure 5: The intensity of the transitions n^D - 2^P relative to the ii

3 3tensity of the transition h D-2 P is plotted as a function

of n (U <_ n < 8). Curves (a), (b), (c), and (d) are for

total helium densities of 7, 5, 3, and 2x10"'"° cm~^, re-

spectively. Curves (a) and (b) are for T = 20,000 K v;hile

curves (c) and (d) are for T = 10,000 K. Observed values

appear as encircle'd dots.
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helium density of ^ 1 x 10^° cm-^ Again, there is not much difference

between the calculated intensities for the two different temperatures.

Although the A3889 line is blended with a hydrogen line and an ionized

helium line at roughly the same wavelength, these lines contribute only

slightly to the intensity of the Hel line. Not any of the calculated

intensities for AIO83O are close to the observed value, indicating that

the idea of a representative emitting point in the envelope may be break-

ing down.

On the whole, a temperature of 20,000 K and a total helium density

10 -3
of 5-1 X 10 cm at R = 3R^ seems to be consistent with the observa-

tipns. The most serious approximation made in this calculation was the

assumption of homogeneity. Obviously, the temperature and density are

not constant everywhere in the envelope. By taking values of tempera-

ture, density, and velocity at one point as being representative of the

whole envelope, calculated intensities of some lines may be in error

by a factor of two or more. However, the use of homogeneity gives re-

sults that agree rather well with observation and simplifies the calcula-

tions immensely. Besides, a more detailed approach for MR 119 is not

warranted because of the probable errors in the observed line intensities,

Castor and Van Blerkom (1970) found that the temperature in the en-

velope was greater than the core temperature for HD I92163, which means

that some kind of mechanical energy input is required to keep the en-

velope hotter than the core. For MR 119, ve find that < T.,^ indicat-

ing that a source of mechanical energy is not required and that the en-

velope may be in radiative equilibrium.

10-3
A total helium density of 5-T x 10 cm at R = 90 R gives a mass



loss rate of 'v^ 10 M yr~'
©

for Wolf-Rayet stars is 10

end of this spectrum.

27

The usual range of mass loss rates quoted

-h -1
10

, putting MR 119 on the upper
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CHAPTERIV
P CYGNI

Previous Observations and Interpretations

As pointed out in the introduction, two of the most recent studies

of P Cygni have reached different conclusions regarding the velocity

distribution in the surrounding envelope. A brief summary of the argu-

ments for and against an accelerating flow are given below.

It has been known for a long time that there is a definite corre-

lation between the displacement of the absorption edge of a line and

the excitation potential of the absorbing ion (Beals 1935, Struve 1935).

In general, the radial velocity obtained from the displacement of the

absorption is larger for lines arising in ions of lower total excita-

tion energy (ionization potential + excitation potential). Thus, ions

with large total excitation energy exist in a more slowly moving region

of th^ atmosphere than those with small total excitation energy. If

there is no temperature inversion in the atmosphere, it follows that

the material velocity increases with radius, i.e. the flow is "acceler-

ated" .

As discussed in the introduction, de Groot ( 1969) reported that the

hydrogen Balmer lines have violet displaced absorption features that

show three distinct components. The component furthest to the blue

shows a periodic variation in radial velocity of llh days. If this ab-

sorption component is formed in a particular portion of the envelope

(for instance, in a shell) the absorption region is most likely far from

the star. If it was near the star, then it would be hard to explain
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why this region varied periodically and the outer regions did not. So,

the fact that only the most violet displaced absorption component shows

this variation is evidence that the outermost regions of the atmosphere

expand the fastest.

Recent infrared observations of P Cygni have been made by Wright

and Barlow (1975) and Barlow and Cohen (1977). The excess infrared flux

from P Cygni is almost certainly due to thermal free - free emission from

the circumstellar ionized gas. Now, the linear free - free absorption

coefficient is a function of the gas number density, which in turn is

a function of the velocity distribution in the envelope via the equation

of continuity. Therefore, the flux density - frequency relation for the

emitted free - free radiation will vary depending on the velocity law in

-1 /Pthe circumstellar envelope. For the three velocity laws, (l) v « r ,

(2) v = constant, (3) v-^r, Wright and Barlow (1975) find the following

flux density - frequency relations: (l) S = constant, (2) S«v and

6/5
(3) S<^v , respectively." If the gaunt factor is included, then the

spectral indices will be decreased by about .1. The spectral index

found for P Cygni by joining the radio and infrared fluxes; between 10 GHz

and 10 n is ,75. This spectral index indicates that the flow is accel-

erating slowly.

The three lin-es of evidence presented above tend to give the accel-

erating flow hypothesis quite a bit of credibility. However, Kuan and

Kuhi (1975) have pointed out two features of the hydrogen Balmer lines

that indicate a decelerating flow. First, the early Balmer lines have

strong central emission (up to 12 times the continuum intensity for Ha),

but absorption components that reach nearly to zero. Second, the red
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side of the emission components of these lines have a cut-off at x*-.6.

Both of these features are easily produced by a decelerating flow, as

discussed in Chapter II. An accelerating flow model with the velocity

> 1/2law v(r) = v^(l-R^/r) cannot produce the observed Ha profile, be-

cause the strong envelope emission necessary to account for the central

intensity will fill in the absorption trough, producing only a weak ab-

sorption feature. Faced with the substantial differences between de

Groot's interpretation of P Cygni and that of Kuan and Kuhi , both based

on an analysis of hydrogen Balmer lines, we decided to look at the rich

Hel spectrum to see whether a consistent model could be obtained from

this ion.

A Model for the He I Spectrum

The neutral helium line profiles have a very different appearance

than the Balmer lines (Adams and Merrill 1957). The central intensities

are quite small and the absorption features are usually much closer to

line center. The smaller emission intensities suggest that an accelerat-

ing flow has a good chance of being able to produce the helium lines.

Since the process by which mass is being ejected from P Cygni is

not known, the velocity law in the envelope is not known. Nevertheless,

assume that the gas is being accelerated outward from the surface by

some unknown force that produces an acceleration of a times the gravita-

tional acceleration. If g is the acceleration of gravity at the stellar

radius R^, the equation of motion is

r = (a-l)g(R*/r)^ . (32)
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Integrating this equation gives the velocity law

v(r) = [v2(Rj + v^2(l-R^/r)]l/2
^ ^^^^

which is identical to equation (2) with v(R^)=0.

The density of helium at any point in the envelope, Nj^^(r), is de-

termined by the equation of continuity. If Y is the mass fraction of

helium, then

Nj^^(r) = YM/(U7Tr^mjj^v(r)) . (3U)

The temperature distribution of the gas in the envelope is unknown

and will have to be assiamed. For the following calculation, it was

assumed that the temperature of the gas decreased radially as r~ .

However, it was found that the exact temperature distribution was rela-

tively unimportant as far as the emergent line profiles are concerned.

Using the equations presented above with the method outlined in

Chapter II, the profiles of the Hel lines, and their equivajLent widths,

were constructed with the following additional parameters. The atmos-

phere is assumed to be composed of only hydrogen and heli'om in a ratio

of 2 to 1 by mass. The terminal velocity of the flow is taken to be

280 km s . A static photosphere of radius = 15.2 and temperature

T^ = 30,500 K (Kuan and Kuhi 1975) radiates a continuous spectrum taken

to be blackbody at. T^. These parameters, together with the mass loss

rate M, define a model of the line emitting region. A few of the cal-

culated and observed line profiles are shown in Figures 6, 7» and 8.

The peculiarities of the Hel spectriim were first pointed out by

Adams and Merrill (1957). While HI lines show absorption components

which all have about the same velocity displacement from line center.



Figure 6: Line profile for XU38T. The solid line is the theoret-

ical profile, and the dashed line is the observed pro-

file.





33

Figure 7: Line profile for AU026. Curves (a) and (b) are the cal-

culated profiles using M = 3 x 10~ and 2 x 10~ M yr~
®

respectively. The dashed line is the observed profile.





3h

Figure 8: Line profile for AUU71. Curves (b) and (c) are the theoret-

-6 -6 1ical profiles using M = 2 x 10~ and 1x10 M^yi"" respec-

tively. Again, the dashed line is the observed profile.
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Hel absorption components have displacements that vary from line to

line. "In general, the strongest helium line in the photographic re-
o

gion, hhn A, yields displacements something like those of the hydrogen

lines, while weaker lines, even in the same series, yield smaller nega-

tive displacements. This peculiar behavior deserves further study."

The lines Xkhll and AU026, shown in Figures 7 and 8, show this effect:

the absorption edge of Al+l+Tl has a displacement of % l85 km s"-*", while

that of AU026 is only % 110 kms"^. Since this behavior involves the

absorption components of the lines, it seems reasonable to assume that

this effect is caused by the optical depth in the lines. Therefore,

let us consider the effect of a finite optical depth on the emergent '

line profiles.

The violet absorption component is produced by matter lying in front

of the star, where p ~ 1. The optical depth to a photon in the continuum

at a frequency displacement x is, from equation (8), x (r )/(l + o(r )),00 o

where r^ is on the constant velocity surface corresponding to x. Using

equations (9) and (lO), the optical depth can be written

2 No g.N r , -1

x(x,p=0,z=<.) = — (gf)^ -d-^)— (--) . (35)
^% ^u 1 ilu

Now, using the equation of continuity and ignoring the stimulated emis-

sion term in equation (35), ve have

x(x,p=0,z=») = (fA),^ (f(r)/r2 1^)^ . (36)

o

where f(r) = N./N, is the fraction of neutral helium in the lower level
X/ He

of the transition. Written in this manner, the radial dependence of the

optical depth is more clearly seen. For the velocity distribution
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given by equation (2), equation (36) reduces to T(r) <x f(r). If E is

the energy of level i above the ground state of neutral helium, and

U^(t) is the partition function, then

g^b^ exp(- E /kT)/U (T)
""^^^ = 1 ^ N /N —

' (37)

He"" He°

where doubly ionized helium is assumed to be a negligible constituent.

Equation (37) is a very complicated function of radius. The departure

coefficient, b. , the temperature, and the ratio N /N are all func-
•~ +0

He He
tions of radius. However, the behavior of the exponential term probably

dominates f(r), so that the optical depth decreases with radius (for in-

•5 -1/?
stance, for transitions out of the level 2 P, if T r , exp(- E^/kT)

decreases by a factor of 2000 from r = to ^R#). Figure 9 shows

the calculated radial dependence of the optical depth for three of the

Hel lines.

Absorption of contihiium photons becomes significant when T(x,p,z)~l.

Let us define the radius at which "^^02^ ~ 1 to be ^i^q2^
\h026

line. Continuum photons are absorbed in the line from line center,

x = 0, to X = v(R^q2^)
/"^oo"

'Since the envelope is more opaque to XUU7I

radiation, Ri^i^^l '^^026* -^S^^^' absorption in the XUi;71 line extends

from X = 0 to x = v(Rj^^^-|^)/v^. In an accelerating envelope, v(R^^^-j^) >

v(Rj^Q2g^ so absorption extends further to the blue in the XU^Tl trans-

ition than in A^026. Of course, the real appearance of the line profile

will depend on the emission component (for instance, if the emission is

large, there may not be any absorption component at all). Nevertheless,

this simple argument suffices to show that two lines may be formed in

the same region of the envelope, and yet have different displacements
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Figure 9: The logarithm of the optical depths (for y = l) in the three .

lines AXUl^Tl, ^4387, and 1^026 is plotted against r, the radial

distance from the star.
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of their absorption edges from line center if they differ in optical

depth.

Equation (36) also states that the optical depth in a line is di-

rectly proportional to the mass loss rate from the star. Changing the

mass loss rate will therefore change Rj^Qjg and R^^-^-j^, thereby changing

the positions of the absorption edges, as shown in Figures 7 and 8. For

M = 10 ^ yr""*" both XU026 and XkUjl are optically thin over most of

the envelope, and thus have profiles with absorption components rela-

-fi —1
tively close to line center. When M is increased to 3 x 10~ M vr~ .

0 '

the two lines are optically thick for a considerable distance, and give

rise to absorption edges with large velocity displacements. Clearly,

a mass loss rate between 1 and 3 x 10 ^ yr is required to give a

larger violet displacement for XU^iTl than for XU026. Figures 6, 7, and

-6
8 show the results of the line profile computation for M = 2 x 10~

yr""*". The agreement between the model calculations and the observed

profiles is quite good. The equivalent widths of the absorption com-

ponents of various lines are listed in Table II. In general, the cal-

culated values are within 20 percent of the observed values. In some

cases, e.g. XU713, the comparison leaves something to be desired, but

the overall results are still rather good. Errors in the observed

values are estimated by de Groot to be about 15 percent.

Unfortunately, the success of this model is limited, because we can-

not infer that the whole envelope is accelerating for the following

reason. The weak lines (i.e. XXl+026, i+387) have small velocity shifts

of their absorption minima, indicating that these lines are formed near

the star. For instance, the absorption minimum for Xi+026 is at x = 0.3,



TABLE II

Equivalent Widths of Hel Absorption Components

±1 cLlioXOXVJIl wave-Lengt.n
o

(A)

Calculated

E.W. (A)

*
Observed

E.W. (A)

2^P - h^D 1^1471 1.2T 1.01

3 3
U026 0.92 0.80

2^P - 6^D 3819 o.tu 0.62

2^P - U\ i+T13 0.65 0.36

3 3
i4l20 0.i;2 0.29

2-^P - hh i+921 0.66 0.53

2^P - 5"^D i+38T 0.61 0.56

2^P - 6^D i4lU3 0.52 O.U5

2^S - k^? 396U 0.55 0.58
'

2^S - 5"^P 3613 0.32 0.21

de Groot (1969)
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Which corresponds to layers of the envelope at r 5= 1.1 R^. This shows

that the outer portion of the envelope, say, beyond 2R^, may not con-

tribute significantly to the formation of the weaker lines. To test

this hypothesis, line profiles were constructed exactly as before, but

ignoring contributions to the lines from r ^ 2R^, by setting the source

functions and optical depths at these points equal to zero. The resul-

tant profiles of the weak lines are not significantly changed, the only

difference being a small decrease in the height of the emission peak and

shortward and loagward cutoffs to the profile. The profile of the

stronger line XUU71 is changed to a greater extent, but in general, the

deletion of the envelope beyond 2R^ does not greatly affect the appear-

ance of the emergent line profiles. Basically, this whole problem is

caused by the rapidly accelerating velocity law we have used. The

velocity in the envelope approaches the terminal velocity so rapidly

that the outer portions of the atmosphere cannot contribute significantly

to the line. Therefore, we can conclude that the region in which the Hel

lines are formed is expanding with a velocity that increases with radius,

but we cannot say with any assurance that the envelope is accelerating

at still larger values of radius.

The Double Absorption Features

According to de Groot (1969), the hydrogen Balmer lines have violet

displaced absorption features that show more than one component. One

of these lines, HIO (10^2), is shown in Figure 10. One of the more puz-

zling aspects of the double absorption features is their variability,

de Groot suggested that these features were caused by absorption in
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Figure 10: The observed line profile for Balner 10, shoving the char-

acteristic double absorption components.
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shells in the envelope. However, a shell moving at % 100 km s"-*" (and

probably expanding at near its thermal velocity) could not give rise

to an absorption feature for more than a month or so. In fact, spectro-

grains taken at Mount Wilson show that the duplicity of absorption com-

ponents observed in Hy and H6 in July 19U2 has disappeared by late Oct-

ober of the same year. Therefore, the multiple absorption features

seem to be transient phenomena and could be caused by moving shells in

the envelope. On the other hand, the multiple absorption features may

persist too long to be caused by shells in the atmosphere.

An accelerating flow can give rise to absorption features close to

line center (because the optical depth is large near the star) whereas

a decelerating envelope will always give an absorption feature with a.

larger violet displacement (because the central emission is usually too

strong for an absorption feature to be formed near line center). These

facts prompt the following question: Could the double absorption features

just be a consequence of line formation in an envelope where the veloc-

ity of the flow first increases and then decreases? Kuan and Kuhi (l9T5)

have already shown that it is quite easy to reproduce the early Balmer

lines (Ha, HB, Hy) using a decelerating flow. However, they point out

that there must be a region near the photosphere where the atmosphere

is accelerated to the escape velocity. This type of "ejected" flow prob-

ably occurs in many stars and galaxies, and so an investigation of line

formation in this type of flow might be very rewarding.

The exact treatment of the transfer of radiation in an envelope

that accelerates and then decelerates would be a monumental problem.

Therefore, the reader should bear in mind that the following formulation



is an approximate treatment of the radiation transfer.

Consider a star of radius ejecting mass into an envelope of ex-

^^^^ \ax* ^"^^ accelerates outward to a radius , and then decel-

erates. The velocity lav to be used is a combination of equation (2)

for the inner region, and the decelerating law used by Kuan and Kuhi

for the outer region:

v(r < R^) = v^(l-R^/r)l/2
,

1/P (38)"
v(r > R = V (R /vr'^ .— c max c

Matching the two velocity laws at r = R gives the relation between v
c o

and V :

max

V = V (1 -R„/R )"-^^^
. (39)o max * c ^

In order to determine the appearance of the constant line of sight

velocity surfaces, we must find the relation between r, p, and x. The

dimensionless frequency parameter, x, is defined as ^ ~
l-''^/'^jjjajc'

Using

equation (39)j this may be written as

X = y[(l-R^/r)/(l-R^/R^)]^/2 ^ (i^^^

In order to find the minimum value of the radius for any given velocity

surface, set y = 1 in equation {hO) to give

r . = R„[l - x^(l-R„/R )]"-^
.

• (^1)mm * * c

Since the outer portion of the envelope is decelerating, the veloc-

ity surfaces will be closed. Therefore, for a given value of p and x,

there are two possible values of the radius r for which the line of

sight velocity, v , is the same. Using equations (3) and (i+O), we



have for r < R ,
c

r^[l-x^(l-R^/R^)/(l-R^/r)] - = 0 , (U2)

and for r > R
c

r^[l-x'^r/R^] - p2 = 0 . (U3)

Designating the value of p when the velocity law changes from accelerat-

ing to decelerating as p , we find from equation (U2) that p =R (l-x'^)"'"^^c ^c c

So, for a given value of p and x, if P < then equation {U2) gives the

value of the radius on the velocity surface in the accelerating region,

and equation (U3) gives the radius in the decelerating region. If p>p ,

both roots are in the decelerating region and are given by equation (^43).

The constant line of sight velocity surfaces are completely determined

by equations {h2) and {h3) , and are shown in Figure 11. Notice that un-

like the velocity surfaces for an accelerating atmosphere, all the sur-

faces pass through the region between the surface of the star and R^.

As can been seen from Figure 11, for a given velocity surface, there

is a maximum value of p. In order to find p and the radius to this^ ^max

point, we evaluate

^""^ ^ (U = 0 , ihh)
dz 8z V

max

which after some algebra gives

2R
c

P = nmax „ rr- ed

3/3 X

and
2p

^^Pmax^ = TT '

3x

We can now write down the approximate equations for the line pro-
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Figure 11: Constant line of sight velocity surfaces for a flow that

accelerates out to a radius R , and then decelerates.
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files (for x>0, x<0, p>R^, and p < RJ . in general, the flux can be

vrritten (Castor 1970):

F -F

c

where F is the emitted flux, F is the flux absorbed in the line, and

F^ is the fl-ox occulted by the star. On the blue side of the line (x>0),

there is no occultation. So, for x>0 and Pjjj,^^l (in units of R^j = l)

we have

F -F msLX ^/ V -T(r)N , .^ c _ p - f S(r) (1-e '^""n ^ , s. -T r ^ ^
F^ - ^e - - / -T, 7(7) ^o^^^^

2rdr

pin

^ ^* -T(r)
- / T- (1-e '^^'M2pdp . (UT)

0 *

The emission integral must be broken into two parts because a photon must

cross two constant velocity surfaces. Therefore, for x>0, p > 1 we

have

r(p ) -T^

^ r SM 1 ^ e 2 2rdr

^c r .
^* ^1 °1

min

R -T^

r S(r) (1-e ^)
+

I

—^

—

~ T 2rdr

i-(p )

I' '2 °2
max

1
+ / exp[- (T^ + T2)]2pdp . i^Q)

0

In this equation, and are the optical depths at the inner and

outer roots, respectively. The approximation made was in multiplying

the first integrand in equation (U8) by e to take into account the

passage of the photon through the outer portion of the velocity surface.
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Similarly, for x>0 and p < 1 , we havemax

V ) -T
r max r> / N / , 1 X -T
_iL _ f

S(r) (1 - e
^

)
^2

c r .
^* ^1 °imin

R -Tmax o/ \ / 2
. ,

S(r) (1-e
+ I

— T 2rdr/ I

P
meix 1

+ / .
exp[- (t^ + T^)] 2pdp + / 2pdp ,

(I49)

o p

the last term of which reduces simply to (l-p For x<0 and
max

^max - whole velocity surface is occulted by the star and we there-

fore have F /F =1. For x<0 and p >1, we haveX c '^max '

F ""^Pmax^ ^, . .
"^1.

c r.(p=l) * 1 1
1

f /
Sir) (l:^e_I^ ^ 1 ^^dr , (50)

r(p ) * 2 2^max

where rj^(p=l) and r^(p=l) are the radii of the two points on the constant

velocity surface where p=l.

The non-LTE source functions and optical depths in the lines for

hydrogen were calculated for this "ejected" flow using the escape prob-

ability method. These values were then used in the equations derived

above to compute the line profiles. The line profile program was tested

in two limits: (l) = (a simple decelerating envelope) and (2) R^=°°

(a simple accelerating envelope). For case (l), the program produced

a line profile for Ha almost identical to the profile derived by Kuan

and fCuhi (1975) for a simple decelerating envelope. The profile pro-
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Figure 12: Theoretical line profiles for Balmer 10 obtained from an

envelope that accelerates and then decelerates. The

three different profiles correspond to the three different

values of R as shovm in the figure.
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duced by using case (2) was also the same as that using a tested line

profile program for an accelerating flow. Therefore, the numerical

evaluation of the integrals in equations (U8) - (50) was accurate.

The line profile for X3T9T (HIO) was then computed for the three

cases R^ = 1.2 R^, I.5 , and 3.0 R^. The results are shown in Figure

12. Clearly no double absorption features are present, but the pro-

files are quite unusual in appearance. The mutilation of the emission

on the shortward side of the line is caused by absorption very close to

the star. HIO is very weak and the optical depth in the line decreases

rapidly with radius. The fact that there is virtually no absorption

beyond x ~ .2 results in the unusual behavior of the flux rising above

the continuum on the blue side of the absorption component.

There exists at least one P Cygni star that exhibits this type of

unusual line profile. The H3 line of NWC 3^+2 has a very narrow central

emission and an absorption feature on the shortward side th^t dips

sharply to a point a little below the continuum and then rises back up

to a level twice that of the continuum at x .5.

In conclusion, it appears that this type of "ejected" flow will not

produce multiple absorption components in P Cygni profiles, and we are

left to speculate about the presence of shells in the atmosphere.

The Early Balmer Lines

Even though a rapidly accelerating envelope is able to produce the

weak Hel lines, it cannot produce the strong Balmer lines of hydrogen,

as previously mentioned. If the gas is accelerating, it must be doing

so at a much slower rate than in the velocity law used for the Hel model
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The velocity law inferred from the infrared free-free spectrum by Barlow

and Cohen (1977) is also a slowly accelerating one. Therefore, in this

section, we will investigate the Balmer line profiles produced by a stel-

lar wind which has a velocity that increases linearly with distance from

the star (see equation (13)).

Before building a detailed model, let us investigate in more detail

why it is difficult to produce the early Balmer lines with an accelerat-

ing flow. This can be shown quite easily from the expression for the •

emitted flux in the line (Castor 1970):

OO

* min

Let us assume a velocity law of the form v = v r/R„. Since this veloc-
o *

ity law has no terminal velocity, we must replace the upper limit of

the above integral with r instc^-id of infinity. In order to simplify

the integral, assume that the source function is constant over the emit-

ting volume and that the optical depth is everywhere much greater than

unity. The integral becomes

^ Vax
p

F = ^^3— / r(l + OM'^)dr . (52)

min

For the velocity law v = v r/'R,^, we have 0 = 0 and r . = xr (see
O inin xncL^

Chapter II), The emitted flux becomes

y = §
. (53)

Written in this manner, it is easy to see that the emission has a para-
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bolic shape and is positive everyvhere except at jx] =1, where it

vanishes. In order to produce an absorption component at a frequency

displacement x, we must have F > F where F is the absorbed flux

(see equation (U6)). If the central intensity of the emission component

is, say, twelve tidies the continuum, then the approximate form of the

emitted flux is F = 12(1 -x^). At a frequency displacement x= .8, we

have F =U.32. Since the absorbed flux has the limits 0 < F < 1— a — '

< and an absorption component will not be present. In deriving

equation (53), the only assumptions made were that the optical depth

was everywhere large and that the source function was constant over the

emitting region. The former assumption should be rather good (in fact

it is required in order to get a deep absorption). So, it appears that

the only way in which the Balmer lines can be produced in an accelerat-

ing flow is if the source function is not constant but decreases rapidly

with radius. The emission component would no longer be parabolic and

would be small enough in the wings for an absorption feature to be formed.

The radial dependence of the source function for Balmer alpha can

be investigated by using a simple three level atom. Using equation (26),

the net rate by which level three is populated can be written in the

form

dN
= 0 = -N^A^^3-,o - N^A^,3-

dt "3 32^32 3 31 31

e 3 3 3

where W is the dilution factor and is the photoionization rate out
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of level three, vhere in general we have (approximately)

^n
= / -h^%(")dv . (55)

n

Similarly, the net rate by which level two is populated is given by

^ = 0 = -N^A^.S^i ^ (\^12-^y21)^^^21^*21 ^ ""^^^^^^^

+ (N3B32 - N2B23)W632l,^^ . K^a^ - N^P^ . (56).

In equations and (56), the collision rates have been omitted since

they have a negligible effect on the level populations (Mihalas 1970).

In order to produce the deep absorption in Ha, we consider the case

where T^^>1 over most of the envelope. This in turn implies that the

optical depths in Lya and Ly3 will be very large. In this limit, S^-^

and
33-]^

SlTB negligible, and for simplicity we set them equal to zero.

Equations (5^) and (56) reduce to

-N3A32632 ^ (V23-N3B32)WB32l,^^ . A3 - N3P3 = 0 , (5Ta)

N3A32632 + (N3B32-N2B23)W332l* + K^ot^ - N^Pg = 0 . (5Tb)

Adding these two equations gives the condition

Now, the source function in Ha, S32, is related to the populations of

levels two and three by the equation, 83^ = N3A32/(N2B23 - N3B32 )
.

Us-

ing this relation we can write the population of level two in terms of

N3 and S32. This expression for '^^ substituted into equa-
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tion (58) to give

S \J . • (59)

(P +P ( 32- + _3iN)

Now, dividing equation (5Ta) through by (^^B^^ -
1^2^22)^32 ^ives

0 = -S WI,
)g

- • (60)
^ 32 ^''2 23 3 32^*^32 ^32 "^32

Combining terms in this equation, eliminating by the use of equation

(59), and solving for the source function gives (after some tedious al-

gebra)

P a

'32- ^ ^ ¥— •
^^^^

[B -( ^— ) —^— p + (
^— ) -^1

So, now we have expressed the source function for Ha in terms of atomic

constants, the dilution factor, and the escape probability in the Ha

line. From equation (55) we see that P "W. Therefore, the source func-
n

tion can be written in the form

S = —32 (62)

where a,b, and c are constants independent of radius given by (assuming

= 2 X 10 K):
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a = = 7 X 10~^

32

= = -bJ(S7%)s^(-|)-sJ^(s-^)(^^-)=o.i . (63)

Near the star, the optical depth in Ha is very large (on the order

of 10^), and, therefore, * ^^'^^2 ^^'"^ ^rom equation (62), we

can see that since is so small, S^^ is governed by the value of the

constants b and c. At r ~ R„, we find that ~ 7 x 10~^ ~ i . The
32

source function in Ha does not start to decrease rapidly until has
'

increased to a value of 0.1 and r > lOR^. At these radii, the radial

dependence of S^^' '^'^ ^ good approximation, is given by

= '>^'(a + b/B32) • (6U)

As the radius increases, approaches an upper limit of unity, and

therefore the source function in Ha can decrease with radius very rapidly.

Under the assumptions made above (optical depth in the Lyman lines

infinite, t^^>1, validity of using a three level atom), we find that the

source function in Ha can decrease almost as fast as the dilution factor.

In order to produce a deep absorption in the violet wing of Ha, the ^

source function does not have to decrease with radius quite this rapidly.

However, if our simple analytic treatment showed that the source func-

tion could not decrease rapidly with radius, the accelerating envelope

hypothesis would be in severe trouble.

In order to calculate the accurate radial dependence of the source

functions for the Balmer lines, the statistical equilibrium equations for
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a multilevel atom must be solved. Therefore, a detailed ' model for neu-

tral hydrogen emission in P Cygni's envelope was constructed assuming

that the velocity of the flow increases linearly with distance from the

star. Once the velocity law is stipulated, there are four parameters

that affect the line profiles that need to be chosen: (l) the velocity

of the flow at the surface of the star, v^, (2) the stellar temperature,

T^, (3) the maximum velocity of outflow, v , and {h) the mass loss rate

of the star, M. The velocity of the flow at is most likely equal to

the thermal velocity of a gas at the temperature T^, e.g. v^ = 12.85

(T„/10^ )"'"^^ kms However, the actual value of v could be somewhat
o

different than this. Li"kewise, we do not know exactly what the maximum

outflow velocity is, but we will continue to use the value of 280 kms"'''

suggested by Kuan and Kuhi (19T5)- A more accurate determination of

P Cygni's radius and temperature gives = 90 R^ and T^~ 20,000 K

(Barlow and Cohen 1977), and these values will be used in this model. •

Therefore, v , v , T„, and R„ are more or less fixed so that really
o max * *

the only free parsoneter is the mass loss rate, M.

The statistical equilibrium equations were set up for a twelve level

neutral hydrogen atom and were solved at fifty points in the envelope.

It was found that for the conditions in P Cygni's envelope, using only

six levels gave the same source function for Ha as using twelve levels.

Therefore, the populations of the lower levels are not really affected

by recombination and cascade from levels greater than 6.

The solution of the equilibrium equations was carried out in the

same manner as described previously, except for the treatment of the

diffuse radiation field. The populations of the levels are dominated by
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photoionizations, recombinations and radiative transitions between the

various levels. Since the line profile of Ha depends crucially on the

radial dependence of the line source function, the radial dependence of

the populations of the second and third levels needs to be calculated as

accurately as possible. A more accurate method of treating the diffuse

radition field is to invoke the on-the-spot (OTS) approximation. The

OTS approximation amounts to assuming that diffuse ionizing photons will

be absorbed close to the point at which they are generated. Therefore,

recombinations to the ground state will be balanced by diffuse photo-

ionizations.

The OTS approximation is fairly accxirate in an optically thick

nebula, except near a boundary. The approximation breaks down near a

boundary because a diffuse ionizing photon is not really absorbed at

its point of emission, but will travel roughly one mean free path before

o

being absorbed. The mean free path of a photon of wavelength X = 912A-

is

£ = (N(Hl)a^ , (65)

o

where N(HI) is the density of neutral hydrogen and a^ is the photoion-
o

ization cross section of hydrogen at the Lyman edge. The approximate den-

sity of neutral hydrogen can be calculated in the following manner. The

ratio of the number of ionized hydrogen atoms to the number of neutral

atoms is given by

00 J

011) = I ^ a^dv .
(66,

o

where is the mean intensity of the stellar radiation field, and
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is the case B recombination coefficient. Assuming = B^(T^j), vhere

B^(T^) is the Planck function, we have

flif =8.a^v>^a/)-M>[exp(|^)-ir^
, (67)

O V *
O

vhere = a^ (v^/v)^. For = 20,000 K, a = l.U3xlO~^^ cm^ s"^ and
o

the integral in equation (6T) is approximately equal to J+xlO"^. Using

an appropriate value for the electron density for a mass loss rate of

-5-1 <^1.5x10 M^yr gives N(HII)/N(HI) ~ 3 x 10 . Nov, using the additional

fact, N(HI) + N(HII) = N^, ve find N(HI) 10^ cm"^. Equation (65) for

the mean free path then gives I ~ IR^ vhere = 90R^. Therefore, a dif-

fuse ionizing photon emitted vithin IR^ of the stellar surface has a

good chance of escaping from the envelope by penetrating the stellar

photosphere. Beyond 2R^, the diffuse photon will probably be absorbed

in the surrounding media and so the GTS approximation is valid.

Assuming that photons are emitted isotropically , a photon emitted

just outside the star's surface vill have roughly a 50^ chance of escap-

ing the envelope and a 50^^ chance of being absorbed. Let y the factor

by vhich the number of recombinations to the ground state resulting in

a diffuse ionizing photon exceeds the number of diffuse photoionizations

.

At r = R^ we have Y ~ 2, and for r >_ 2R^, y ~ 1 . Therefore, y is a de-

creasing function of radius, and, for simplicity, ve vill assume that Y

decreases linearly vith distance from the star.

Using this method to treat the diffuse radiation, the statistical

equilibrium equations vere solved and the line profiles vere calculated

for the velocity lav v = v^r/R^. The resulting profiles for Ha, H3,
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and HY are shovn in Figures 13, ih , and 15, along with the observed

lines and the profiles computed by Kuan and Kuhi (1975) for a decelerat-

ing flow. The parameters used are = l8 kras"^, ^^^^ = 280 km s"-*" , and

M = 1.5x10 ^ M^yr"^. By varying these parameters, the profiles can be

changed somewhat but not enough to give a significantly better profile.

A quick look at the calculated profiles shows that this model does

not have any trouble producing a large central intensity. However, the

model does not allow us to produce an arbitrarily deep absorption com-

ponent. If the mass loss rate is increased much more than the value

used here, the emission component becomes too large. If M is decreased,

the emission component will be smaller, but then the optical depth in the

wings of the line will be too small, e.g. there will not be any absorp-

tion in the blue wing.

The fact that this model produces Balmer lines with violet displaced

absorption components indicates that the source functions ip the lines

are decreasing rapidly with radius. However, the source functions for

the early Balmer lines are not decreasing rapidly enough to give a really

deep absorption. The source function in Ha is related to the level popu-

lations by ^ (62^2/(22^3'*
"^^

-'-^ order for S^^ '^^ decrease rapidly

with radius, the ratio ^^/I'l^ must increase rapidly with radius. This fact

implies an optically thin Balmer continuum. Otherwise, photoionizations

out of level two would make it difficult for the ratio N^/N^ to increase

rapidly. For the model presented here, with M = 1.5x10 ^ M^yr the

optical depth at the Balmer edge at r ~ 15R^ is only '^^ 0.1. Therefore,

the second level is not becoming depopulated by photoionizations, and

if the velocity law v^^r is roughly correct, then some unknown mechanism
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Figure 13: Line« profile for Ha. The solid curve is the theoret-
'

ical profile obtained by using the velocity law v = v r/R„
o *

and M = 1.5x10 ^ M^yr""^. The dashed curve is the observed

profile, and the dotted curve is the profile computed by

Kuan and Kuhi (1975) using a decelerating atmosphere.
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Figure 1^4: Line profile for H3. The solid curve is the theoret-

ical profile obtained by using the velocity law v = v r/R„
o *

and 1*1 = 1.5 x10 ^ M^yr""^. The dashed curve is the observed

profile, and the dotted curve is the profile computed by

Kuan and Kuhi (19T5) using a decelerating atmosphere.
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Figure 15: Line profile for Ky . The solid curve is the theoret-

ical profile obtained by using the velocity law v = v r/R^
o *

and M = 1.5x10 ^ M^yr""^. The dashed curve is the observed

profile, and the dotted curve is the profile computed by

Kuan and Kuhi (1975) using a decelerating atmosphere.
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must "be operating to overpopiilate level two.

In order to explain P Cygni ' s infrared spectrum, Barlow and Cohen

(1977) derived a slowly accelerating velocity law. The velocity in-

creases roughly linearly with radius out to % 8R^, beyond which the

velocity increases very slowly, resulting in a very extended envelope.

It is very difficult, if not impossible, to produce a deep absorption in

the early Balmer lines with this type of flow, because the envelope will

become optically thin at small frequency displacements.

The velocity law v r has no terminal velocity in the flow. To

circumvent this problem, we defined a maximum velocity of outflow, v
max

which is attained at a radius r = R„v /v . In doinf^, this, we ac-max * max o

tually ignored any contribution to the line profile arising in the en-

velope at radii greater than
^j^^g^-

Strictly speaking, this is valid

only if the optical depth in the line is equal to zero beyond

cause there will be no additional absorption or emission in. the line

(see equation (51))- In most of the models that were computed, at

r = r , T(Ha) < 1, and T(Ha) approaches zero rapidly for r>r
max' ' ' ' J

^g^y.

This fact, coupled with the rapid decrease of the source function with

radi\is, allows us to ignore cc-ntributions to the line from ^ > r^^

without incurring too much error. Including contributions to the line

from radii greater- than r will increase the emission component at
° max

line center only slightly and will make the absorption component some-

what shallower. Since this model does have a problem in producing a

deep absorption anyway, the latter point is the most serious objection

to truncating the envelope at r = r^g^j.-
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Discussion of Results

The evidence presented in this chapter strongly indicates that the

gas in P Cygni's circiamstellar envelope is slowly accelerating. The

simple velocity law, v°:r, used to model the early Balmer lines in the

previous section, is probably not a bad representation of the actual flow.

This result is very interesting in view of the present predictions of

stellar wind theory. The theory of radiation-driven mass loss of Of

stars formulated by Castor, Abbott, and Klein (1975), (hereafter referred

to as CAK), predicts a rapidly increasing velocity flow in the supersonic

region. The equations governing the flow are of mass conservation

M = h-nr pv = constant , (68)

and of momentum balance

V ^+ [l-n = 0 , (69)
dr p dr 2

r

where p is the mass density, P is the gas pressure, is the stellar

mass and T is defined as

a L„

P ^
( -L) ,

e
, (TO)

where L„ is the stellar luminosity and a is the mass scattering coeffi-

cient of the free electrons. Physically speaking, T is the ratio of

the total radiation force on the gas to the gravitational force, and Y,

the force multiplier, is the ratio of the force in the lines to the force

in the continuum.

CAK found that the inclusion of a great number of subordinate lines

made important contributions to the total radiation force. Furthermore,
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they found that the supersonic region is characterized by an almost con-

stant value of Y>1. This means that equation (69) can be integrated to

give the velocity law

v(r) = vJl-r^/r)l/2
^ ^^^^

in the supersonic region, where the sonic radius, r^, is essentially the

same as the photospheric radius, R^. Therefore, the very detailed anal-

ysis of radiation pressure in the lines by CAK results in the same rapidly

accelerating velocity law that has been used (without any real justifica-

tion) for line profile calculations (Castor 1970, Van Blerkom 1973).

Even though P Cygni is losing mass at a tremendous rate, we must be

careful in comparing the stellar wind theory of CAK to our results. CAK

considered the radiation pressure in the lines of only one ion, CIII.

This ion is fairly abundant in the envelopes of 0 type stars, but its

presence in the atmosphere of P Cygni (Blp) has not been confirmed

(de Groot I969). Even if it is present, the fraction of doubly ionized

carbon atoms is probably small because of P Cygni 's low temperature

{"^ 20,000 K). Besides, P Cygni is not a normal star and it would be some-

what presumptuous to infer from our results that the stellar wind theory

of CAK is incorrect. The differences may indicate something unusual about

the mode of mass loss operating in P Cygni.

It should be pointed out here that the presence of a slowly acceler-

ating flow in P Cygni 's envelope does not invalidate the explanation

given previously of the different violet displacements of absorption

components in Hel lines of the saine series. From equation (36) we have

t(x,p=0,z=«>) - (f(r)/r^ dv^/dr) ,
(72)

r
o



vhere f(r) = N^/N^^^. Using the veloci

T °c f(r)r , and so the optical depth

radius. Therefore, strong lines will

further to the blue than weaker lines

viously.

65

ty law V = V r/R we find that
o *

in a line decreases with increasing

have absorption components shifted

for the same reasons given pre-
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CHAPTERV
SUMMARY

The physical conditions in the envelopes of MR 119 (a represen-

tative WN8 star) and P Cygni have been investigated by analyzing their

emergent spectra. Using the escape probability method to simplify the

transfer of radiation, models for P Cygni and MR II9, based on the Hel

spectrum, were calculated.

Using a "one point" model for MR II9, the line intensities for Hel

were computed and compared with the observations. It was found that at

a distance of 3R^^ from m 119 the total helium density was 5-7 x 10^^ cra"^

and the temperature was 20,000K. This value of the density requires

-h -1
a mass loss rate of '^> 10 M^JT from MR 119 . This mass loss rate is

comparable to the maximum rate expected from a Wolf-Rayet star.

Because recent interpretations of hydrogen emission lines in the

envelope of P Cygni by de Groot (1969) and Kuan and Kuhi (1975) reached

different conclusions, the Hel spectrum was investigated to see if a

consistent model could be found. The statistical equilibrium equations

were solved at several points in an accelerating envelope and the re-

sulting run of source functions and optical depths were used to calcu-

late line profiles. The calculated profiles agree quite well with Lhe

-6 -1
observed lines for a mass loss rate of 2 x 10 ^^Y^' '• The unusual

behavior of the helium lines, in which absorption components of lines

in the same series have quite different displacements from line center,

is a natural consequence of the model. These results together with the

evidence of the velocity-excitation potential relation strongly indi-

cate an accelerating flow in the region where the neutral helium lines
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are formed.

An approximate method for dealing with the transfer of radiation

in a flow that is accelerated and then decelerated was formulated in

order to explain the double absorption components seen in many lines.

However, the line profile for HIO (10-^2) produced in this type of flow

did not possess the characteristic double absorption components dis-

played by the observed line.

A recent interpretation of the frequency dependence of the infra-

red flux from P Cygni indicates a slowly accelerating flow (Barlow and

Cohen 1977). The early Balmer lines, which have large central inten-

sities and deep absorption components, cannot be produced in a rapidly

accelerating envelope. Therefore, a detailed model for HI emission in

a slowly accelerating envelope (v°^r) was constructed. The resultant

line profiles of Hct, H3, and Hy for a mass loss rate of 1.5xlO~^

M^yr agreed rather well with the observed profiles. This mass loss .

rate is larger than that found from the analysis of the Hel lines be-

cause a different radius was adopted in the two models. The calculated

emission components of the Balmer lines were acceptable, but the violet

shifted absorption components were not quite deep enough.

It was shown that the source function in a line must decrease

rapidly with radius in order to produce a deep absorption. Using a

three level atom, the radial dependence of the source function in Ha

was derived, and it was found that under certain conditions the source

function can decrease as fast as the dilution factor.

In conclusion, the evidence of the velocity-excitation potential

relation, together with the interpretations of the infrared free-free



spectrum and the model of the early Balmer lines constructed here, all

point to a slowly accelerating flow in the circumstellar envelope of

P Cygni. This result is very interesting because the present theory

of radiation driven mass loss formulated by Castor, Abbott, and Klein

(1975) predicts a rapidly increasing velocity in the supersonic region

of the atmosphere.
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APPENDIX

In this appendix, the necessary equations are presented for com-

puting the atomic rates for bound-bound and bound free transitions of

neutral helium.

Collisional Excitation Rates . The formulae used for collisional

excitation rates are given by Mihalas and Stone (1968). In the transi-

tion n'£' -> nZ, the collisional excitation rate is

E 2 U

where E is the threshold energy of the transition, f ,p, is the oscil-

lator strength of the transition, and 0 = 5.^465 x lO""'"". E,. is the ion-
H

ization potential of hydrogen, \J^ = E^/kT, U^=Uq + 0.2, and E, (x) is the

exponential integral. For transitions between states with l<2 (which

are fairly nonhydrogenic ) , the oscillator strengths given by Green,

Johnson, and Kolchin (1966) were used. For £>3, the oscillator strengths

were calculated from the spontaneous transition probabilities.

Collisional Ionization Rate . The appropriate formulae are again

found in the paper by Mihalas and Stone (I968). The collisional ioniza-

tion rate for the transition n£ ^ ic is given by

^n^.K = - IjfW ^o'^''°(^' •

Where = E. /kT, =U_ + 0.2T, U^=U„ + 1.U3 and 0 is a tabulated
0 ion 1 U d V u

quantity given in the same paper.

Collisional Redistribution of Angular Momentum . For transitions with

£<2, the rates computed according to equation (Al) were used. Because
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an appreciable energy difference occurs between i sublevels for £<2,
electrons are of dominant importance in the redistribution of angular

momentum. However, for £> 3, the slower moving protons and the He'

nuclei are more efficient than electrons in producing redistribution

(Brocklehurst 1972). For £> 3, the formulation of Pengelly and Seaton

(196M was used to calculate the rate of redistribution of angular mo-

raentum.

Three Bod^r Recombination. The three body recombination coefficients

"^nl
''^^ calculated from the equation of detail balance:

^e'^^i^^ = "n£Vnil,K ' (A3)
.

Spontaneous Transition Probabilities . For transitions between levels

with 5, < 2, the transition probabilities were calculated from the oscil-

lator strengths given by Green, Johnson, and Kolchin (1966). For trans-

itions with 2,>_2, the hydrogenic formula given by Brocklehurst (1971)

was used:

n£,n'£' ^ ,2 2^ {2Z + 1 ) ^^^^ ^ '^^^ (AM
n n

The squares of the, radial matrix elements were computed using the method

suggested by Gordon (1929). The Einstein coefficients for stimulated

emission and absorption were calculated using the A „

Radiative Recombination . For £<2, the radiative recombination rates

were obtained from the paper by Burgess and Seaton (1960). For £_>2,

the recombination rates were calculated using the formulae given by
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Brocklehurst (1972).

Photoionization . For £^2, formulas for the photoionization cross

section are given \)y Brocklehurst (1971 ). For £<2, the general formu-

lation is necessary because of the nonhydrogenic character of the energy

levels. From Burgess and Seaton (1959), if 1^^^ i3 the threshold energy

and E' is the energy of the ejected electron in Rydberg units, then

hv = I „ + E'
nil

and

a .(V) = 8.559 xlO-19(Llil!:) ^ ^^f^ lg(v,£;EMl' ) 1^
,

nx, —

(A5)
•

where V is the effective principal quantum number of the initial state

and g(v, £;£',£') is a quantity which must be calculated. Formulas for

g(\;,i?,;E' ) are given in the same paper.
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