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ABSTRACT 

UTILIZING IN SILICO AND/OR NATIVE ESI APPROACHES TO PROVIDE NEW 

INSIGHTS ON HAPTOGLOBIN/GLOBIN AND 

HAPTOGLOBIN/RECEPTOR INTERACTIONS 

 SEPTEMBER 2015 

OLOLADE FATUNMBI, B.S., LINCOLN UNIVERSITY 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Igor A. Kaltashov 

 Haptoglobin (Hp), an acute phase protein, binds free hemoglobin (Hb) dimers in 

one of the strongest non-covalent interactions known in biology. This interaction protects 

Hb from causing potentially severe oxidative damage and limiting nitric oxide 

bioavailability. Once Hb/Hp complexes are formed, they proceed to bind CD163, a cell 

surface receptor on macrophages leading to complex internalization and catabolism.  

Myoglobin, (Mb) a monomeric protein, that is normally found in the muscle but can be 

released into the blood in high concentrations during myocardial injury, is homologous to 

Hb and shares many conserved Hb/Hp interface residues.  Both monomeric Hb and Mb 

species present potential risks, yet their interactions with Hp have not been extensively 

studied or are a matter of controversy, respectively.  To predict possible interactions of 

monomeric globins with Hp, we employed a variety of cost and time effective molecular 

modeling approaches. Native electrospray ionization mass spectrometry (ESI MS) 

experiments confirm the modeling results and show that monomeric Hb and Mb bind Hp 

with a stoichiometry of two globin monomers per Hp tetramer.  

The ESI MS results also demonstrate the success of our computational 

approaches to Mb/Hp interactions, motivating us to model Hb/Hp/CD163 complexes. 

Both CD163 bound Ca2+ and specific CD163 acidic residues are known to be essential 

for binding specific Hp basic residues resulting in Hb/Hp/CD163 complex formation, but 
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the structural details of Hb/Hp/CD163 interactions are unknown. We therefore 

constructed experimentally driven molecular models of Hb/Hp/CD163 complexes using 

molecular docking. In order to understand the role of Ca2+ in Hp/CD163 interactions and 

dynamics, all-atom molecular dynamics (MD) simulations were conducted for CD163 

models in the presence and absence of Ca2+. The molecular models of Hb/Hp/CD163 

suggest that Hp basic residues R252 and K262 each interact with a conserved acidic 

triad (E27, E28, D94) in CD163 domains 2 and 3. A calcium ion is postulated to stabilize 

this CD163 acidic cluster facilitating Hp recognition. Consistent with this, MD simulations 

on isolated CD163 domains suggest that Ca2+ bound at a specific site in CD163 

preserves the arrangement of the acidic triad and protein structural stability. Our studies 

demonstrate how molecular modeling and molecular dynamics aided/correlated with 

mass spectrometry experiments can elucidate the structural basis and dynamics of 

interactions between Hp, globins and/or CD163. This approach may be useful for 

designing therapeutics that utilizes the Hb/Hp/CD263 endocytosis pathway and 

unraveling novel avenues for possible Hp-therapy administration for diseases or 

complications arising from Mb toxicity. 
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CHAPTER 1 

INTRODUCTION 

1.1. Haptoglobin 

 

1.1.1. Function 

During intravascular hemolysis, erythrocytes (red blood cells) rupture, releasing 

hemoglobin (Hb) into the extracellular environment. Circulating Hb is potentially toxic 

because it can cause severe oxidative tissue damage and renal failure. Hb toxicity arises 

from its tetrameric structure dissociating into dimers (Hbα1β1) in the extracellular 

environment, exposing residues that are prone to oxidative modification1. In addition, 

iron, which is present on the heme prosthetic group on Hb can react with hydrogen 

peroxide to generate reactive oxygen species (ROS) through Fenton and Haber-Weiss 

iron catalyzed reactions2 (Figure 1.1.).  

 

Figure 1.1. Reactions with Fe2+ associated with the generation of reactive oxygen 
species. 

Moreover, both globin proteins and heme constituents of free Hb can cause excessive 

oxidative damage to the body by reacting with small molecules in circulation such as 

hydrogen peroxide. Extracellular Hb, can also react irreversibly with nitric oxide (NO), a 

critical regulator of smooth muscle tone and platelet activation3. The consumption of NO 

by Hb leads to limited bioavailability of NO and the production of nitrate and 

methemoglobin3. To counteract the negative physiological consequences of 

intravascular hemolysis, haptoglobin (Hp), an acute phase glycoprotein, binds Hb2, 4 in 
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one of strongest non-covalent events known in nature (Kd ~1 × 10–15 mol/L)5-7.  Upon 

Hb/Hp complex formation, a neo-epitope is exposed, which interacts with CD163, 

resulting in signaling events and endocytosis of the receptor/ligand complex (see Figure 

1.2). During this process Hb/Hp complexes are released from CD163 in the early 

endosome, and the receptor recycles to the cell surface, while the Hb/Hp complexes 

continue through the endocytic pathway and become degraded in the lysosome4. Free 

heme is converted into to ferrous iron, CO, biliverdin and by the endoplasmic reticulum 

enzyme heme-oxygenase 1 in the cytosol. Biliverdin is reduced to bilirubin by biliverdin 

reductase, binds to albumin, and transported to the liver8. 
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Figure  1.2.  Schematic representation of Hb/Hp complex uptake by macrophages 

via CD163-mediated endocytosis. Upon Hb/Hp complex formation, a neo-epitope is 

exposed. This epitope interacts with CD163 resulting in signaling events and 

endocytosis of the receptor/ligand complex. The Hb/Hp complexes are released from 

CD163 in the early endosome, and the receptor recycles to the cell surface, while the 

Hb/Hp complexes continue through the endocytic pathway and become degraded in the 

lysosome. 
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Recent X-ray crystal structures of the porcine Hb/Hp complex9 and of human 

Hb/Hp in complex with a trypanosome receptor10, 11, have revealed important molecular 

details of the interactions between Hp heterotetramers and Hb dimers. Although there is 

no crystal structure of Hb/Hp in complex with CD163, a few insights can be gained from 

previous experiments. Mutagenesis experiments have suggested that negatively 

charged residues on CD163 domains 2 and 3 and positively charged residues on Hp 12 

are critical for CD163 associations with Hb/Hp complexes. Specifically, site-directed 

mutagenesis of Hp residues R252 and K262 and acidic residues E27, E28 and D94 

(acidic residue cluster) conserved in CD163 domain 2 abrogated Hb/Hp high affinity 

complex formations12. In addition, small angle X-ray scattering (SAXS) data suggests 

that CD163 binds Hb/Hp complexes on the longitudinal axis9. 

1.1.2. Other functions of haptoglobin 

 Antibacterial Activity 

 When Hb binds to Hp, Hb and iron are no longer available to Escherichia coli and other 

bacteria that require iron13. Thus, when Hp was administered intravenously to rats that 

have been also injected with E. coli and Hb, Hp was able to prevent fatal effects and 

survive. Whereas, 85%of the rats only injected with E.coli and Hb died within a 72 hours 

observation period14. 

 Antioxidant Activity  

Hp has a significant role as an antioxidant15.  Free hemoglobin also increases the 

peroxidation of purified arachidonic acid and other polyunsaturated fatty acids within 

neuronal cell membranes16.  Iron released from heme proteins can catalyze oxidative 

injury to neuronal cell membranes and might have a role in posttraumatic central 

nervous system (CNS) damage16.  Hp binds to Hb removing it from the circulation and 

preventing iron-stimulated formation of oxygen radicals17. 
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 Prevention of Renal Damage  

Another consequence of free Hb is oxidative damage in renal tissues following 

intravascular hemolysis13. Yet when Hp binds to Hb, the complex is too large to pass 

through the glomeruli of the kidney and will be removed via the reticuloendothelial 

system13. Therefore Hb induced injury to the parenchyma is prevented by Hp. 

1.1.3. Structural features 

Human Hp exists in 2 genotypes, Hp1 and Hp2. Hp in its simplest form, the so-

called isoform 1-1, is a 92 kDa heterotetramer composed of two light (L) chains (8.9 

kDa) and two heavy (H) chains (40 kDa), connected by disulfide bridges in the H-L-L-H 

configuration18 as shown in Figure 1.3. The Hp2 genotypes can form many polymorphs 

of Hp consisting of larger molecular weights with Hp 2-1 and Hp 2-2 being 90-300 kDa 

and 170-900 kDa respectively19. The light chains in Hp are linked by the disulfide bond 

formed between C33 on one L-chain and C33 on the other L-chain, while a disulfide 

bond between L-chain C72 and H-chain C105 link the light and heavy chains20. In 

addition, there are 4 N-linked glycosylation sites found on each monomer in Hp1-121.  

The Hp light chain shares 25% homology with complement control proteins18 

while the heavy chain is 29-33% homologous to serine proteases18, 22. The serine 

proteases catalytic triad required for activity typically consists of H57, D189 and S195. In 

Hp, the His and Ser are replaced by lysine and alanine, respectively while the aspartic 

acid is retained15.  
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Figure 1.3 Structure of human haptoglobin removed from the hemoglobin-haptoglobin 

bound to a trypansomal receptor (PDBID: 4WJG)11. 

1.1.4. Haptoglobin and its potential as a drug carrier and therapeutic 

 Haptoglobin potential as a drug carrier  

Since macrophages  (and their progenitors monocytes) play a prominent role in the 

establishment of certain types of viral infections (including HIV), virus dissemination, and 

development of viral reservoirs23, an ability to deliver antiviral therapeutics directly to 

macrophages by conjugating them to Hp should result in a dramatic improvement in 

drug efficacy. Another high value target for such a strategy might be hepatitis C virus 

(HCV), since there is evidence that resident liver macrophages are infected by and 

support replication of HCV24. In addition to viral infections, a similar strategy can be 

envisioned as a way to design novel therapies against certain types of cancers (most 

notably acute myeloid leukemia, AML), as the monocyte/macrophage lineage specificity 

of CD163 expression is preserved beyond malignant transformation25, 26. The specificity 
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of targeted cytotoxin delivery in this case would be particularly beneficial, as Hp‐

mediated drug delivery specifically to the CD163‐ expressing cells will be limited to 

monocytes and macrophages and spare normal stem cells in the bone marrow25. Clinical 

success of therapies based on Hp as a delivery vehicle (e.g., Hp‐ cytotoxin or Hp‐

antiviral conjugates) requires detailed understanding of conformational dynamics and 

interactions in the Hb/Hp/CD163 protein/receptor system both in the extracellular and 

the endosomal environments, as well as the effects exerted by the conjugated drug. 

 Haptoglobin potential therapeutic 

Circulating Hb wreaking oxidative havoc in the extracellular environment is one of the 

main unfavorable consequences of hemolysis. Hemolysis affects hematologic diseases 

such as sickle cell anemia and non-hematologic diseases such as acute myeloid 

leukemia.  Currently, there is no established treatment that targets circulating 

extracellular globins27. However, Hp-administered therapy has recently showed 

promises in the clinical community as a natural therapy for the sequestration of free Hb28. 

In past studies, the treatment of such patients suffering from hemoglobinuria with Hp 

administration has led to a noticeable improvement in their conditions29. In other very 

recent research efforts, Hp-administered therapy is being investigated for the treatment 

of Hb toxicity implicated in sickle cell anemia patients30.  

 
1.2. In silico methods to characterize protein structure, interaction and/or      
dynamics  
 
1.2.1. Homology modeling 
 

A myriad of biological events are dependent on molecular machines composed 

of a variety of components. These essential molecular processes are often dependent 

on protein-protein interactions that keep these machines interacting at the exact right 

time. The standard means for elucidating protein-protein interactions is X-ray 

crystallography. However, since residues critical for binding are likely to be evolutionarily 
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conserved, protein-protein interactions could be predicted through computational biology 

approaches31. There are two ways of predicting a protein’s 3D-structure: ab-initio and 

homology modeling. The latter is used to predict the unknown structure of a protein by 

inference based on a known structure. The homology modeling technique assumes that 

the target protein and the template protein share a common ancestry. 

The success of homology modeling relies on various factors including identifying 

a homologous experimental template, the efficiency of homologue detection through 

BLAST searches or other methods for sequence alignments, and the quality of the 

model building process once the homologue is detected32. A template used to model a 

protein should have high sequence similarity with the unknown protein and a sequence 

identity of 30% or greater32. One of the ultimate goals in computational structural biology 

is to generate models of protein structures as accurate as those determined by high-

resolution experimental studies. This would require more advancement in computational 

strategies and more experimental templates. 

 Assessment of Predicted Models 

The assessment of a homology model’s accuracy is direct when the experimental 

structure is known. The root-mean-square deviation (RMSD) between the model and a 

known structure is the most common method of comparing two homologous protein 

structures to a generated model. RMSDs measure the mean distance between the 

corresponding atoms in the two structures after they have been superimposed. There 

are various software used to make these RMSDs measurements including VMD33 and 

PYMOL34. PROCHECK35 is another commonly used homology modeling assessment 

program that provides sensitive and consistent methods for evaluating the accuracy of a 

model35. PROCHECK examines various structural properties, such as the bond length, 

bond angles, and atom clashes, detecting atoms that have abnormal stereo-chemical 
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values. PROCHECK can also distinguish between homology models of higher and lower 

accuracy35. 

The PROCHECK outputs are Ramachandran plot quality, peptide bond planarity, 

bad non-bonded interactions, main chain hydrogen bond energy, C-alpha chirality and 

overall g-factor. Generally, highly quality models are models with a g-factor above -0.5 

and a Ramachandran score of 90% in the most favored regions36. The latter is an 

indication of the stereochemical quality of the model

 and R-factors no greater than 

20%37. R-factors are used in crystallography to measure the agreement between the 

crystallographic model and the original X-ray diffraction data38. For structural models, the 

G-factor mimics the R-factor used to assess crystal structures. The G-factor is also 

known as an ‘uncertainty factor’ because a high value implies high uncertainty, or low 

confidence about a specific part of a model.  

WhatIf39 is another program used to assess a protein. WhatIf is based on the 

amount of structural information that supports each part of the model. The program 

requires the user to input a target sequence with predicted secondary structure and a 

template to do the calculations. Whatif then outputs “Z-scores or z-values” which are 

used to indicate the normality of a score. The Z-score is the number of standard 

deviations that the score deviates from the expected value.   

A property of Z-scores is the root-mean-square of a group of Z-scores (the RMS 

Z-value) is expected to be around 040. A protein is certain to be incorrect if the Z-score is 

below -3.039.  

1.2.2. Macromolecular docking 
 

Determining the tertiary structure of a protein complex experimentally is usually 

more challenging than determining the structure of an individual protein. Macromolecular 

docking is an inexpensive, valuable tool for the computational prediction of quaternary 
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structures of two or more interacting biological macromolecules. A wide range of 

successful blind docking experiments have been showcased in the Critical Assessment 

of Prediction of Interactions (CAPRI)41.  

The two main methods for protein docking are rigid-body docking or flexible 

docking42. In rigid-body docking bond angles, bond lengths and torsion angles of the 

components are not modified at any stage during complex generation. Sometimes 

conformational changes occur upon protein-protein complex formations. In this case, 

molecules should be docked using flexible docking, which accounts for changes in 

internal geometry upon protein-protein complex formation.   Flexible docking requires a 

lot more computing power than rigid-body docking because the sampling of all possible 

conformational changes can be computationally expensive.  

Assessments of docked protein-protein models outputs require the same tools 

used to evaluate homology models including Ramachandran plots and Z-scores. 

Additionally, models are assessed by using scoring functions that are based on weighted 

sums of the free energy estimations (e.g., from the CHARMM or GROMOS force fields), 

phylogenetic desirability of the interacting regions, clustering coefficients, and other 

scores based on residue contacts42.  

The success of molecular docking many times relies heavily on experimental 

information gathered from X-ray crystallography, NMR, mutagenesis, and other 

biophysical experiments.  For example, in a commonly used molecular docking software, 

Haddock43, biophysical information derived from previous experiments, such as NMR 

shifts and limited proteolysis experiments, can be incorporated as constraints used in 

predicting protein-protein interactions.  

1.2.3. Molecular dynamics (MD) simulations 
 

While the structural information of a protein target is almost always essential for 

most of the goals in targeted drug delivery, ultimately conformational dynamics play a 
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tremendous role in the success. Unfortunately, the dynamics of proteins and especially 

protein complexes are much more difficult to probe experimentally. Molecular dynamics 

has been emerging as a useful tool for elucidating structural, dynamic, and 

thermodynamic information of protein and protein complexes. In molecular dynamics 

simulations, the numerical motions (dynamics) of proteins and protein complexes are 

investigated under the influence of internal and external forces. Simulations can provide 

non-trivial details about the motions of individual particles as a function of time.  

One practical consideration in molecular dynamics simulations is choosing the 

appropriate molecular mechanic force field which is a energy function for describing the 

intramolecular and intermolecular interactions44. The parameters of the force fields are 

derived from both computational and experimental studies of small molecules. The 

underlying idea is small molecules will behave the same as larger biomarcomolecules.   

The most broadly used force fields in biomacromolecules simulations are OPLS45, 

GROMOS46, AMBER47, and CHARMM48.  Why all force fields have been shown to 

provide valuable insights in the field of structural biology, they all have similar setbacks 

that due to their parameters being over simplified. 

In addition, like nuclear magnetic resonance (NMR), MD simulations also have 

size limitations. The larger the system, the longer the computations take and the more 

computing power required. As technology is evolving worldwide, advancements are 

always made to improve computing power and accuracy of the computation. For a more 

detailed description of MD simulations see references49, 50. 

 
1.3. Experimental methods to characterize protein structure, interaction       _____ 
and/or dynamics 
 
1.3.1. Conventional methods: X-ray crystallography and  (NMR) 
 

Traditionally, X-ray crystallography and NMR are the golden means of elucidating 

the tertiary structure of proteins and protein complexes. NMR has the ability to analyze 
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protein in solutions, which is very valuable for studying protein complex formation, 

dynamics, and kinetics. In addition, NMR is also useful for observing hydrogen because 

it has NMR active nuclei. However, X-ray crystallography has the advantage of ability to 

obtain atomic resolution data of proteins and protein complexes in the mega dalton 

range unlike NMR.  

Both NMR and X-ray crystallography require very pure protein samples at high 

concentrations. In addition, to conduct these experiments highly specialized equipment 

is preferable: for NMR a very powerful electromagnet (600-900 MHz), and for X-ray 

crystallography data collection at a synchrotron has become more common, for its more 

powerful and highly stable beam.   As mentioned before, disadvantages of NMR include 

a size limit on proteins that can be used for NMR (detecting limitations). Typically the 

proteins must around 60 kDa or less.  Recent advancements in NMR have been made 

for solving macromolecular structures of larger proteins such as isotopic labeling, 

TROSY, and CRINEPT experiments. Yet even with these advancements, one of the 

largest determined NMR structures is malate synthase G, with molecular mass of 82kDa 

protein. The disadvantages of X-ray crystallography are not trivial either, there are 

limitations in the ability to see the flexible regions of proteins, crystal formation can be 

unpredictable, and the resulting structure is from a solid-state conformation, which lacks 

information about protein dynamics. An additional consideration when selecting a 

method for solving macromolecular structures is the length of the experiment, which can 

range from days to months.  

Although X-ray crystallography and NMR are the standard means for gathering 

and assessing structural information of proteins, limitations in both methods have 

influenced some scientists to explore computational approaches in predicting the tertiary 

structure of proteins. Therefore, it is important to understand that computational 
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predictions rely heavily on the accuracy of experiments. The models can only be as 

good as the templates derived from experimental structures. 

1.3.2. Mass spectrometry 

 Mass spectrometry (MS) is a very powerful technique that can be applied to 

characterizing protein-protein interactions and architecture.  While mass spectrometry 

cannot be used to determine the 3D structure of a protein, depending on the technique, 

MS can be applied to confirming protein interactions, stoichiometry, and dynamics. 

Fundamentally, mass spectrometry provides spectra of a sample based on the analyte’s 

mass to charge ratio. The basic components of a mass spectrometer are an ion source, 

a mass analyzer, and a detector. In tandem mass spectrometry (MS/MS) there is often 

at least one additional mass analyzer, although quadrupole ion traps and many fourier 

transform ion cyclotron resonance (FTICRs) do not require an additional mass analyzer 

for MS/MS experiments. MS/MS experiments allow more selective detection of a target 

compound, better structure elucidation, and greatly reduce interferences from other 

sample components.  One clear advantage of mass spectrometry over conventional 

techniques is the ability to handle large masses and allow users to analyze several 

species in one spectrum, simultaneously. 

 Native Mass Spectrometry: Electrospray Ionization Mass Spectrometry (ESI 

MS) 

 ESI is typically the MS method of choice in studying intact biomolecular structures 

of proteins in the gas phase. This is due ESI being is a soft ionization technique and 

allowing perseveration of the quaternary structure of non-covalent protein interactions. In 

the technique, the sample is first prepared in a volatile buffer, and then a high voltage is 

applied to the sample to create an aerosol. This allows the sample to be transferred from 

a solution phase to the gas phase, where it is then passed through an analyzer and the 

ions are separated according to their mass-to-charge ratio, and subsequently detected. 
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 Native ESI MS has a few advantages in structural biology over conventional 

methods. The technique has the ability to preserve native-like conditions, is faster, and is 

very sensitive in providing information on spatial arrangement of the subunits in the 

complex, stability, and stoichiometry51, 52.  Native ESI MS requires the use of volatile 

aqueous buffers prepared at neutral pH such as ammonium acetate and ammonium 

bicarbonate. For highly quality measurements, high sample quality and the removal of 

salts and of non-volatile solvents into the spraying solution, is necessary. 

 A practical consideration in native mass spectrometry is observing large proteins, 

protein complexes, and proteins with post-translational modification (such as Hp) are 

often non-trivial. Advancements such as charge reductions strategies have been used to 

improve accuracy in charge assignment. An incomplete charge reduction technique has 

been previously been developed in our lab and applied for the accurate charge 

assignment of Hp53.  In addition to developing methods, our lab has been successful in 

designing novel experimental strategies based on electrospray ionization mass 

spectrometry  (ESI MS)54, which has allowed us to study protein conformations and 

interactions with their receptors in great detail55.  

 One of the latest trends in the field of structural biology is moving towards 

combining computational biology approaches to guide or integrate mass spectrometry 

experiments52. Researchers in this field have usually focused on using experimental 

information to improve computational modeling design. Politis and coworkers have 

generated a method that incorporates data collected from various MS experiments in 

order to generate constraints used for the prediction of protein complexes56. 

Computational experiments could be used to guide and improve MS experiments as well. 

A well-constructed framework for predicting novel or unknown interactions using both 

computational approaches and native ESI-MS experiments will be very useful for the 

development in this field. 
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1.4. Objectives 
This work aims to provide new insights into physiologically important Hp protein- 

protein interactions. Simultaneously, we aim to design new frameworks for investigating 

protein interactions by combining computational modeling with native ESI MS to predict 

and confirm physiologically relevant protein complexes.  

This study will make use of enhanced computational and experimental 

technologies in order to understand the molecular mechanisms of the interaction 

between Hp and monomeric globin species. In addition, we will utilize advanced 

computational techniques to provide a detailed dynamic picture of the role Ca2+ plays in 

the Hp/CD163 associations. This knowledge will be invaluable in guiding the design of 

novel therapies against a variety of pathologies, including AIDS and AML. 

Specific objectives of this work include: (i) separation of hemoglobin α and β 

chains through LC to characterize monomeric Hb/Hp interactions through native ESI MS 

and (ii) combine computational modeling with native mass spectrometry to study 

complexes between monomeric globins and haptoglobin, Chapter 2. (iii) Generate new 

template-based molecular models of CD163 using molecular modeling, investigate the 

role of Ca2+ in CD163 using molecular dynamics, and (iv) for the first time, generate 

experimentally driven molecular models of the Hb/Hp/CD163 system that provides 

atomic detail and characterizes the role of Ca2+ in receptor-ligand associations using 

molecular dynamics, Chapter 3. 
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CHAPTER 2 

HAPTOGLOBIN INTERACTIONS WITH MONOMERIC GLOBIN SPECIES: INSIGHTS 

FROM MOLECULAR MODELING AND NATIVE ELECTROSPRAY IONIZATION 

MASS SPECTROMETRY 

This work was accomplished in collaboration with Dr. Rinat R. Abzalimov. 
 

2.1 Introduction 

Haptoglobin (Hp) is an abundant plasma glycoprotein that binds free hemoglobin 

(Hb) dimers (αβ) following their escape from red blood cells, preventing oxidative 

damage to kidneys and other organs. Hp/Hb binding is one of the strongest non-covalent 

associations known in biology.57 Recent X-ray crystal structures of the porcine Hb/Hp 

complex9 and of human Hb/Hp in complex with a trypanosome receptor10, 11 have 

revealed important molecular details for the interactions between Hp heterotetramers 

and Hb dimers. Above and beyond the fundamental biophysical interest, Hp has long 

attracted attention in the clinical community not only due to its obviously important role in 

detoxifying free Hb following hemolytic events that occur in a range of pathologies 27, 29, 58 

and modulating the action of Hb-based blood substitutes,59 but also due its potential as a 

carrier for targeted drug delivery to macrophages.60 Further understanding of Hp 

physiological interactions beyond its interactions with Hb dimers will likely be useful for 

future clinical applications of Hp. 

Human Hp in its simplest form, the so-called isoform 1-1, is a 92 kDa 

heterotetramer composed of two light (L) and two heavy (H) chains connected by 

disulfide bridges in the H-L-L-H configuration.18 The Hb binding site is localized on the H-

chains of Hp, and Hb binding exposes a neo-epitope on Hp which is recognized by the 

Hb/Hp scavenger receptor (cluster differentiation 163, CD163) on the macrophage 

surface, followed by internalization of the entire complex and its routing to the lysosome, 
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where the Hb/Hp complex is catabolized.1, 61 Although the Hb/Hp binding stoichiometry in 

a fully saturated complex is 1:1, i.e. one Hp heterotetramer per Hb tetramer, each H-

chain can only bind a single Hb αβ dimer, giving rise to both unsaturated complexes, H-

L-L-H·(αβ), and saturated complexes,  (αβ)·H-L-L-H·(αβ), when the Hp concentration 

exceeds that of Hb.53  Hb dissociation to dimers exposes the binding epitopes normally 

buried in the dimer-dimer interface of the Hb tetramer and is thus essential for Hp 

binding.  

While the Hb tetramer-to-dimer dissociation occurs immediately upon release 

from red blood cells (RBCs) due to the dramatic decrease in concentration, further 

dissociation, to monomeric globin chains, is also possible62,62, 63   especially when 

oxidative damage alters the polypeptide structure by inducing non-enzymatic post-

translational modifications or the protein environment is acidified. 64  However, it is 

2007unclear if Hp can bind monomeric globin chains. In addition to the α- and β-globin 

chains produced upon Hb dissociation, human blood may contain another monomeric 

globin, the 17.5 kDa protein myoglobin (Mb), which is normally confined to muscle tissue, 

but can be released into circulation in relatively large quantities during myocardial 

related injuries such as rhabdomyolysis, reaching concentrations as high as 1 mg/mL65, 

66.  Free Mb in circulation presents the same dangers, such as renal toxicity67, as its 

close cousins, the Hb α- and β-subunits, with which it shares a very high degree of 

sequence homology and an iron-containing prosthetic heme group. Despite the 

similarities between Mb and the globins comprising Hb, the mechanism of Mb 

detoxification remains an area of on-going debate, and whether Mb can associate with 

Hp is a matter of controversy68, 69.  

In this work we use a combination of computational and experimental tools to 

address whether and how Hp can interact with monomeric globins (both Mb molecules 

and α-globins derived from Hb). While molecular modeling shows that some key local 
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interactions are absent in the putative Hp/Mb complex relative to Hb/Hp, it is unclear 

whether the absence of these key residues renders Mb binding-incompetent or simply 

reduces the binding affinity, an issue that can resolved only by using experimental tools.  

Modern experimental biophysics offers a very impressive armamentarium of 

techniques that can be used to study protein interactions; however, the large size of the 

Hb/Hp and putative Hp/Mb complexes (well over 100 kDa) and significant structural 

heterogeneity make their characterization a challenging task. Native electrospray 

ionization mass spectrometry (ESI MS) has been used extensively to probe the structure 

of protein complexes,51, 70-72 and the reach of this technique can be further expanded by 

combining it with non-denaturing separation techniques, such as size exclusion 

chromatography 73 or methods of ion chemistry in the gas phase.53, 74 In this work we 

used native ESI MS to determine whether Hp can associate with monomeric globins. 

The experimental data provide clear evidence that both α-globin (derived from Hb) and 

Mb can associate with Hp under non-denaturing conditions, a finding which is in 

excellent agreement with the results of the molecular modeling work.  The results of 

these experiments reveal that Hp can bind monomeric globins and demonstrate how 

computational tools can aid in planning MS experiments and interpreting their results. 
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2.2 Materials and methods 

2.2.1 Homology modeling and molecular docking  

The porcine Hb/Hp complex structure (PDB ID: 4F4O) was used as a template 

for homology models of the human Mb/Hp complexes. Sequences of human Mb and 

porcine Hp were obtained from Uniprot (accessions P02144 and Q8SPS7, respectively). 

The Hb/Hp and the Mb/Hp sequences were aligned using ClustalW 75 and the BLOSUM 

76 multiple alignment scoring matrix, with a gap start penalty value of 10 and a gap 

extension penalty value of 1. This alignment was then used in Modeller 77 to construct 

ten structural models of Mb/Hp complexes. The top model was selected based on the 

discrete optimized protein energy score (DOPE score)77. This model was then minimized 

using GROMACS 4.5 78, the Gromos96 force field79 and 5,000 steepest descent 

logarithm steps. The quality of the refined and minimized model was assessed through 

PROCHECK.35 PYMOL34 and VMD33 were used to analyze and visualize the resulting 

structure. Residues that interact with Hp were identified through CocoMaps.80 

To further validate predicted interactions between monomeric globins and Hp, 

the Haddock molecular docking server43 was used to dock Hbα, Hbβ or Mb to Hp. 

Haddock generates molecular models of protein-protein complexes based on residues 

the user defines as active (interface residues) or passive (surrounding interface 

residues). The resulting complexes are given a “Haddock Score” based on energy 

calculations associated with complex formation including electrostatic energies and van 

der Waals energies.32  Hbα was docked to Hp defining the Hbα/Hp interface residues in 

the human Hb/Hp model (82% sequence identity to porcine Hb/Hp complex9) as active 

residues in Haddock. Hbβ docking to Hp was performed in a similar manner.  Mb was 

docked to Hp by setting the same Hbα/Hp interface residues as active in Hp and the 

corresponding Mb residues as active in Mb. 
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2.2.2. Structural comparisons of Mb/Hp models with the Hbα and Hbβ binding 

sites on Hp 

The 3-D models of Hbα/Hp and Hbβ/Hp complexes were generated by removing 

the complementary Hb chain from the porcine Hb/Hp crystal structure in the Hb/Hp X-ray 

crystal structure using Pymol34. The Mb-Hp homology model was structurally aligned 

with these Hbα/Hp and Hbβ/Hp structures, using the VMD33 tool MultiSeq and the 

degree of conservation was determined from the BOLSUM62 scoring matrix76 Per 

residue root mean square deviations (RMSDs) were calculated from the structural 

alignment in VMD.33 

2.2.3. Identification of critical Hb interface residues 

Mutations to critical interface residues are likely to perturb protein-protein 

interactions. To identify residues important for Hb/Hp association, computational alanine 

scanning was performed on the Hb/Hp and Mb/Hp complexes using the DrugScore-PPI 

Server81. DrugScore-PPI uses a knowledge-based scoring function based on pair 

potentials from known protein-protein interactions and results from alanine scanning 

experiments to predict protein-protein interaction hotspots and outputs the effects of 

alanine mutations on the binding energy, G, in kcal/mol.  

2.2.4. Materials and HPLC separation of Hb chains 

Lyophilized horse heart Mb, human Hb, and hemin chloride were purchased from 

Sigma-Aldrich Chemical Co. (St. Louis, MO). Human Hp1-1 was purchased from Athens 

Research and Technology (Athens, GA). All other chemicals, buffers, and solvents were 

of analytical grade or higher. Apo-Hb (heme-free) was prepared using a modified 

acetone precipitation method14 where the cold acetone was at -40 oC rather than -20 oC. 

The resulting apo-Hb precipitate was suspended in 50 mM ammonium acetate, pH 7.5 

and lyophilized. Hb α- and β-chains were separated with reverse phase HPLC (HP1100, 

Agilent Technologies, USA) using a 4.6 mm × 150 mm C8 analytical column with 5 μm 
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pore size (Separation Methods Technologies, Newark, DE). Multiple fractions 

corresponding to the α-chain peaks were collected, pooled and lyophilized and the 

protein identity confirmed by ESI MS. Holo-Hbα was prepared by reconstituting the apo-

form of isolated α-globin with a heme group as described previously14 the integrity of the 

heme/globin complex was confirmed by ESI-MS 

2.2.5. Mass spectrometry.  

All ESI MS measurements were carried out with a QSTAR-XL (ABI Sciex, 

Toronto, Canada) hybrid quadrupole-time-of-flight mass spectrometer equipped with a 

nanospray source. Aqueous protein solutions were buffer exchanged into 100 mM 

ammonium acetate and the pH was adjusted to 7.6 with diluted ammonium hydroxide. 

Repeated concentration and dilutions were done using Centricon (Millipore) centrifugal 

filters with a 5-kDa, 15-kDa and 30-kDa cut-off for Mb, Hb, and Hp, respectively (fixed 

angle rotor operated at 4 °C and 4000g). Concentrations of all heme-containing proteins 

were determined by measuring the Soret band, using the extinction coefficient of 191.5 

mM-1cm-1.
82

  Hp concentrations were determined by measuring absorption at 280 nm, 

and using the extinction coefficient 57340 M-1 cm-1 determined by the EXPASY server 

ProtParam tool83. Concentrations of all stock solutions were adjusted to 1 mg/mL 

(corresponding to 15.5 μM Hb tetramer, 63.5 μM Hb α-chain 56.8 μM Mb, and 11 μM 

Hp) unless noted otherwise. 
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2.3 Results and discussion 

2.3.1. Construction and evaluation of the Mb/Hp model 

The Hb/Hp complex contains two Hb αβ heterodimers, one bound to each H-

chain of Hp.18 Although the Hb α and β chains are highly homologous (41% identical and 

64% similar), each has a distinct Hp binding site on the Hp surface. Mb is similar to both 

Hb chains with 27% and 28% identity, and 48% and 50% similarity to Hbα and Hbβ, 

respectively (Figure 2.1A), including 7/14 (α) and 8/11 (β) of the residues involved in 

Hp/Hb binding. This suggests that Mb may be capable of binding to Hp at either Hb 

subunit binding site. To investigate the likelihood of Mb binding to Hp, as well as its 

preference for either the Hbα or Hbβ sites, Mb/Hp models were constructed using 

Modeller for homology modeling (Figure 2.2A) and Haddock for molecular docking 

(models not shown). The stereo chemical quality of the models was assessed and 

compared to X-ray crystal structures of human Mb (PDB: 3RGK 1.65 Å resolution) 

(Figure 2.5) and porcine Hb/Hp complex (PDB: 2.4 Å resolution) using PROCHECK29, 

QMEANClust84, and PYMOL46. High-resolution X-ray structures have Z-scores of around 

0, from a range of -5 to 5, and a Ramachandran score of 90% in the most favored 

regions.29 The Mb/Hp stereochemical assessment of models fell within the range of a 

good quality model according to results output from QMEANClust and which calculated 

a Z-score of -1.4 and PROCHECK calculated Ramachandran plots of 89.1% of the 

residues to be in the most-favored regions, 9% in the allowed regions, and 1% in the 

generously allowed regions (Figure 2.3). This comparison is also favorable relative to the 

Hb/Hp structure, which has a Z-score of -0.7 and 90.8%, 8.9% and 0.3% of the residues 

in the favored, allowed and in generous regions of the Ramachandran plot, respectively. 

The Mb model superimposed on the Mb crystal structure indicated a positional RMSD of 

1.3 Å (Figure 2.5). 
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Figure 2.1. Sequence alignments of human Mb to the human and porcine Hbα or 
Hbβ subunits and structural super-positions of human Mb, Hbα, and Hbβ crystal 
structures (PDBID: 2DN1 and 3RGK). (A) Clustal W75  sequence alignments of Mb to 
Hbα and Hbβ subunits. The symbols under the alignment indicate (*) identical sites, (:) 
conserved sites, and (.) semi-conserved sites.  Blue rectangles indicate Hbα interface 
residues and green rectangles represent Hbβ interface residues. (B) Cartoon 
representation of the crystal structures of Hb/Hp complex (Hbα cyan, Hbβ green, Mb 
red) which resulted in an over-all positional RMSD of 1Å. The heme prosthetic group is 
shown as sticks. 
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Figure 2.2 Structure of porcine Hb/Hp complex superimposed on the human 
Mb/Hp model structures: Hbα cyan, Hbβ green, Hp purple and models: Mb yellow, Hp 
pink, heme as sticks.  Stick representation of protein-protein interactions in (B-D), 
Hbα/Hp structures superimposed on Mbα-site/Hp models and (E-G), Hbβ/Hp structures 
superimposed on Mbβ-site/Hp models, and (H,I) Hb α/β dimers structure superimposed 
on Mb2 models to show the globin-globin interactions. 
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 Figure 2.3. Ramachandran plot prepared by “Procheck” for the Mb2/Hp homology 

model shown in Figure 2A. Glycine and proline residues are represented by triangles 

and squares are used for all other residues. The most favorable combinations of the phi 

psi values are shown in red (89.1%) areas. Additionally allowed regions (9.4%) are 

shown in dark yellow areas, generously allowed (1.0%) regions are light yellow areas, 

and disallowed regions (.6%) are in the white areas. 
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Figure 2.4. RMSD per residue in angstroms for structural alignments of Hb/Hp 

structures and Mb/Hp models as calculated by VMD. (A) Hbα/Mb(α-site) RMSD. (B) 

Hbβ to Mb(β-site) RMSD. Hb residues, black and corresponding Mb residues, red. 
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Figure 2.5. Structural alignment of free Mb and Mb bound to the Hp α-site and β-
site. The 1.65 Å structure of free human Mb (PDB ID: 3RGK, red) superimposed on Mb 
from the homology model (yellow). The heme prosthetic group is shown as sticks and 
the total RMSD is 1.2 Å at both sites. 
 
 
2.3.2. Analysis of the Mb/Hp model interface 

The inter-chain contacts at the globin/Hp binding interface were identified in both 

the Hb/Hp X-ray crystal structure and the top-scoring Mb/Hp homology model using 

CocoMaps. This analysis reveals that 73% of the Hbα/Hp interactions are shared with 

Mb bound to the α site, which will be referred to as Mbα-site/Hp (Figure 2.6A, Table 1). 

In comparison, Mb bound to the β site of Hp (Mbβ-site/Hp) shared 50% of the Hbβ/Hp 

interactions (Figure 2.6B, Table 2.1). Many of the non-conserved residues are charged 

residues involved in electrostatic interactions and salt bridges. Specifically, Hbβ residues 

R40, E101 and R104 are charge swapped in Mb (residues E40, K102 and E105, 

respectively, as highlighted in Figure 2.2E), which may indicate unfavorable interactions 

Hp 

Hbα 
Mb(α-site) 
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between Mb and Hp at the Hbβ binding site. 

 

Figure 2.6. Schematic overview of porcine Hp/Hb interactions and the 
corresponding interactions in the human Mb/Hp homology models. (A) Comparison 
of Hbα and predicted Mbα-site interactions with Hp shows that 76% of the interactions 
are conserved. (B) Similar comparisons between Hbβ bound to Hp and Mbβ-site show 
52% conservation. Grey lines represent van der Waals contacts, dashed black lines 
represent hydrogen bonds and black lines represent salt bridges. Stars denote 
conserved interactions, blue circles denote non-conserved interactions, and blue 
diamonds denote unfavorable interactions in the order of the the lines drawn. For 
example, H124Hp has 2 stars because its salt bridge with R141 and van der Waals with 
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interaction with R92 is conserved in the Mb/Hp models. H124Hp interacts with K147Mb 
and K98Mb respectively. 
 

It is possible that some of these residues in Mb may still interact with other nearby 

residues in Hp. For instance, the salt bridge formed between R104β and E235Hp is not 

conserved at the Mb/Hp interface because the basic R104β (Figure 2.2E) residue is 

replaced with the negatively charged E105Mb.  However, E105Mb may form a hydrogen 

bond with the nearby Hp residue N228.  

Hb and Hp have extensive interactions that contribute to the extremely low 

dissociation constant of 1X10-15 M.7 As shown in Table 2.1 and Figure 2.5 many of these 

interactions are conserved in the Mb/Hp model structure. The Hb/Hp crystal structure 

reveals that 16 Hp residues interact with 14 Hbα residues through 26 interactions and 13 

Hp residues interact with 12 Hbβ residues through 25 different interactions. In the Mb/Hp 

models, 23 Hp residues interact with 9 residues for Mb α-site binding in 19 conserved 

interactions and 8 residues for Mb β-site binding in 13 conserved interactions.  This 

comparison alone suggests that Mb is likely to bind to Hp albeit with lower affinity than 

does Hb.  

 

Table 2.1. Comparisons of Hb/Hp and Mb/Hp molecular interactions. 

 van der Waals Salt Bridges H-Bonds 

Hp/Hbα 19 2 5 

Hp/Mb 15 1 3 

% Conservation 78% 50% 60% 

 

Hp/Hbβ 15 4 5 

Hp/Mb 10 0 2 

% Conservation 67% 0% 40% 
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Although the modeling results suggest that Mb binding to Hp is more likely to 

occur at the Hbα/Hp interface, many contacts appear to be preserved at the Hbβ/Hp 

interface as well, prompting us to explore the possibility that an Mb dimer could bind to a 

single Hp H-chain (Figure 2.2).  Although Mb is usually a monomeric protein, at high 

concentrations in solution Mb is commonly known to dimerize as revealed by ESI MS 

and size exclusion chromatography.85 The Hbαβ heterodimer was used as the template 

to create a molecular model of an Mb dimer (Mb2). The Hb/Hp complex model was 

structurally aligned to the Mb2 homo-dimer  (Figure 2.2A) and the interface of the Hb α/β 

heterodimer in the Hb/Hp structure was compared to the Mb/Mb homodimer interface in 

the Mb/Hp models (Table 2.2). 

 

Table 2.2 Comparison of globin-globin hydrogen bond interactions in human Hbα/β or 
Mb2 dimers in complex with Hp. 
 

Interaction Hb α/βheterodimer Mb/Mb homodimer 

 Hbα Hbβ Mb(α-site) Mb(β-site) 

1 R31 F122 R31 F123 

2 R31 Q127 R31 Q128 

3* H103 Q131 E109 N131 

4* P114 H116 P114 S117 

5 F117 R30 F123 R31 

6 H122 R30 Q128 R31 

*non-conserved interactions. 
 

 
Analysis of the contacts across the binding interface reveal that 67% of the 

interactions in the α/β heterodimer are conserved in the Mb/Mb interface (Table 2.2, 

Figure 2.2H,I). Although this analysis suggests a high percentage of conservation, the 

non-conserved interactions may be particularly important for α/β interface stability. In 

particular, two non-conserved residues, Hb H116β corresponding to S117Mb and A111α, 

were previously shown to be important for Hb α/β heterodimer association and 

stabilization.86  This lack of two important residues and the high concentrations required 
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for Mb2 formation suggest that an Mb/Mb homodimer interface is unlikely even when 

bound to Hp.  

 Docked models 

The Haddock molecular docking server was also used to generate molecular 

models of Mb docked to the Hbα and Hbβ sites on Hp. To test the accuracy of the 

docking Hbα and Hb  were individually docked to Hp by specifying the interface 

residues found in the Hb/Hp crystal structural in the Haddock program. Haddock 

accurately mimicked Hbα/Hp and Hbβ/Hp interactions in Hb/Hp with overall structural 

RMSDs of 0.4 Å compared to the experimentally determined porcine structure9. 

Following this validation, Mb was docked to Hp. The docked structure contained Mb in 

the Hbα binding site in a similar orientation to that observed in the Mb -site/Hp 

homology model with RMSDs of 0.3 and 0.5 Å compared to the Mbα-site/Hp homology 

model and the Hbα/Hp porcine crystal structure, respectively. However, attempts to dock 

Mb in the Hbβ binding site failed. This is consistent with the results from homology 

modeling indicating that Mb binding to the Hbα site is more favorable. The energies for 

complex formations, as calculated by the Haddock server are -287 ±52 kJ/mol and -253 

±44 kJ/mol for Hbα-Hp complexes and Mb-Hp complexes respectively. While we do not 

want to over-interpret these theoretical energy values, they do indicate that Mb binding 

to Hp may be slightly less favorable than Hbα binding, again agreeing with the results 

from homology modeling.  

2.3.3. Further identification of residues important for binding  

Predictions of the effects of alanine substitutions on the binding energies of 

Hb/Hp and Hbα/β heterodimers was determined using the DrugScorePPI webserver 

(Figure 2.6). In protein-protein interactions there are often key contacts in binding 

interfaces, referred as “hot spot” residues that make the largest contributions to the 

protein-protein interactions. Mutation of these hot spot residues to alanine is likely to 
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perturb the protein-protein interactions resulting in ΔΔG values for binding of 1.5 

kcal/mol or higher.87  The less critical warm spot residues have ΔΔG 0.5 - 1.5 Kcal/mole) 

and unimportant residues are designated as having ΔΔG>0.5 Kcal/mol.87, 88  
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Figure 2.7. Predicted effects of alanine substitutions on the binding energy of the 
Hb/Hb structures  and  Mb/Hp models calculated by the DrugScorePPI Web server 
in kcal/mole. A black  “X” denotes a non-conserved residue in Mb and a gray “X” 
denotes a partially conserved residue. The results were categorized into three sets: hot 
spots (ΔΔG ≥ 1.5 kcal/mol), warm residues (0.5 - 1.5 kcal/mol), and unimportant 
residues (< 0.5 kcal/mol).87, 88  
 

In the Hb/Hp and Mb/Hp interface, DrugScorePPI identified Hb residues K99α, 

Y140α, V135 α, R40β, Y145β, K140 Mb, Y146Mb as warm spot residues and V1α, D99β , 

W37β as hot spot or warm spot residues (Figure 2.7). The interactions involved in the 

predicted warm and hot spot residues in Hb/Hp were then compared to the 

corresponding Mb/Hp interactions. The V1α (G1α)/R323, T324Hp interactions are not 

conserved in Mbα-site/Hp (Figure 2.2D) models while the K99α (E105Mb)/N230, A229Hp 
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and Y140α (Y146mb)/L126Hp (where the corresponding Mb residues are in parentheses) 

are conserved (Figure 2.2B). This analysis suggests that Mb binds to the Hbα site on Hp 

but with lower affinity.  In contrast, the predicted Hbβ hot spot residues were mostly non-

conserved in Mbβ-site/Hp.  In particular alanine mutations on D99 β, (Figure 2.2G) non-

conserved in Mb, had the highest predicted ΔΔG affect of 3.2 kcal/mol. Again, Mb 

binding to the Hbαsite on Hp appears to be more favorable. 

Still, if Mb were capable of binding both the Hbα and Hbβ sites on Hp, this may 

require a favorable Mb/Mb homodimer interface. Determining critical residues in the 

Hbα/β heterodimer interfaces would likely provide more inference on the likelihood of 

Mb/Mb associations.  The Hbα/β heterodimer interfaces were also analyzed by 

DrugScorePPI (Figure 2.7) to determine if alanine mutations at any of the Hbα/β 

heterodimer interface residues (denoted with an asterisk in Figure 2.7) would be likely to 

affect binding. Alanine mutations on Hb indicated the conserved R31α, R30β, R31Mb(α-site) 

(Figure 2.2H and 2I) and non-conserved R116β (in porcine, H116β in human, see Figure 

2.2H) residues as hot spot residues (ΔΔG> 1.5 kcal/mol). Porcine residue R116β (or 

human H116β) forms a hydrogen bond with P114α and is not conserved in Mb (Figure 

2.2H).  As mentioned before R116β was previously shown to be important for Hb α/β 

associations.86 These results further support the hypothesis that only one monomer of 

Mb will interact with Hp because the Mbβ-site is missing key residues in both the Mb/Mb 

and Mbβsite/Hp interfaces that are predicted to affect binding. 

2.3.4. Native ESI MS of Hb/Hp and Hbα/Hp Complexes.  

Previous native ESI MS experiments53, 63 provide clear indications that 

interactions between Hb and Hp occur in a step-wise fashion, with one α/β heterodimer 

binding to a single H-chain of Hp, so that the fully saturated complex has 1:1 

stoichiometry (one tetrameric Hb (αβ)2 per one covalent dimer of Hp H-L-L-H). Therefore, 

depending on the Hb/Hp concentration ratio in solution, both H-L-L-H·(αβ) or (αβ)·H-L-L-
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H·(αβ) complexes were observed by MS. Figure 2.8B shows a mass spectrum of the 

Hb/Hp mixture where the former is present in slight molar excess (6.1μM tetramer Hb αβ 

dimer: 3μM Hp tetramer). Even though the ionic signal in the low m/z region (inset in 

Figure 2.8B) reveals the presence of some residual Hb in solution, its binding partner is 

completely consumed, as no ionic signal corresponding to the free Hp or the partially 

saturated complex is observed in the mass spectrum (see Figure 2.8A for the reference 

spectrum of free Hp in the absence of Hb). 

While it has long been known that Hp binds Hb αβ heterodimers, there is still no 

consensus vis-à-vis the ability of individual globins to associate with Hp. However, the 

computational modeling does suggest that Hb monomers can bind to Hp. In order to 

address this question, α-globin was prepared by isolation from Hb tetramers followed by 

reconstitution with heme. The resulting α-globin was mixed with Hp at a 5:1 molar ratio 

and the protein solution was immediately analyzed by native ESI MS. Only the ionic 

signal of α2Hp species could be observed in the high m/z region of the resulting mass 

spectrum (Figure 2.8C), while ionic species corresponding to either free Hp or the 

partially saturated complex α·Hp were absent. This result not only shows that Hp is 

capable of binding monomeric globins, it also suggests that Hp has high affinity (at least 

in the sub- M range) for α-globin.  
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Figure 2.8. ESI-MS shows that monomeric globins can bind to Hp. (A) Native ESI 
mass spectra of free Hp in the absence of binding partners. Native ESI mass spectra of 
Hp in the presence of (B) a slight molar excess of Hb, (C) 5-fold molar excess of heme-
reconstituted α-globin and (D) 5-fold molar excess of Mb. The gray trace in panel D 
shows a mass spectrum of Hp in the presence of 2-fold molar excess of Mb. Insets in all 
panels show low-m/z regions of the respective mass spectra. 
 
 

The modeling also predicts that Mb will bind to Hp. This hypothesis was 

evaluated by mixing the two proteins at a 2:1 Mb:Hp molar ratio, followed by immediate 

acquisition of native ESI mass spectra. Interestingly, the spectra were devoid of ionic 

signal corresponding to free Hp, while displaying prominent signals for the partially 

saturated Mb/Hp complex (with 1:1 stoichiometry). Increasing the Mb:Hp molar ratio to 

5:1 led to the appearance of the Mb2/Hp complexes, although Mb/Hp complexes were 

still the predominant species (Figure 2.8D). The presence of abundant ionic species 

corresponding to both partially unsaturated Mb/Hp complexes and free monomeric Mb 
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(see the inset in Figure 2.8D) indicates that Mb affinity for Hp is lower than that of α-

globin. Another noteworthy feature of the mass spectra presented in Figure 2.8D is the 

absence of Mb/Hp complexes with stoichiometry higher than 2:1, indicating that only a 

single Mb monomer can associate with an Hp heavy chain, giving rise to Mb·H-L-L-H 

and Mb·H-L-L-H·Mb species.  This result agrees with the modeling, where Mb binding 

was more favorable in the α site. 

 Computational and native-ESI results suggest Hbα and Mb are similar.  

Molecular modeling results suggest that Mb, Hbα and Hbβ are structurally quite 

similar. But, deeper investigation of the binding interface suggests that the Hbα binding 

site on Hp is more favorable for Mb binding (76% conserved interactions Hbα/Hp vs 50% 

in Hbβ/Hp). Additionally while the non-conserved Mb/Hp interactions at the Hbα binding 

site were electrostatically favorable, various modeled contacts for Mb at the Hbβ binding 

site were predicted to be unfavorable. In particular, in silico mutagenesis results suggest 

that partially conserved W37β (Figure 2.2F) and non-conserved residues D99β (Figure 

2.2G) and R40β (Figure 2.2E), which participate in salt bridges with Hp, are important for 

Hbβ/Hp binding. In comparison, most of the interactions predicted to be important for 

Hbα binding, e.g. K99α (Figure 2.2B) and Y140α (Figure 2.2B), are conserved in Mb.  

These computational results imply that Mb is likely to bind to Hp in the Hbα binding site 

but with lower affinity than does Hbα. An Mb/Mb homodimer interface where two Mb 

monomers bind to the α and β sites on the same Hp heavy chain also seems unlikely 

since Mb/Mb homodimers are missing key contacts shown to be critical for α/β 

heterodimer interface stability.86 

Native-ESI analysis of Hbα or Mb alone and Hbα/Hp or Mb/Hp complexes are 

consistent with predictions from the computational studies. Isolated Hbα and Mb 

solutions are detected as monomers, with a minor dimer component for Mb. Hbα/Hp and 
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Mb/Hp complexes are detected and even when monomeric globins are in slight excess 

relative to Hp, they only bind one Hp heavy chain. The lower 2:1 Mb:Hp complexes 

(Figure 2.8D) present in the native ESI-MS spectra than Hbα/Hp complexes (Figure 

2.8C) under the same conditions suggest Mb binds Hp at lower affinity as predicted by 

the computations. 

 Could Hp complexes with monomeric globins be recognized by CD163 for 

internalization? 

The ability of Mb to associate with Hp is important, since it is present in blood 

serum in significant levels during certain cardio-pathological events, such as 

rhabdomyolysis, a type of myocardial injury.89 The exact mechanism of Mb clearance 

from circulation, where it certainly poses a danger of severe oxidative damage, remains 

largely unknown. The results of this work indicate that Hp may play a critical role in Mb 

sequestration and catabolism.89 Just as Hb/Hp structures illustrate the Hp protective role 

by shielding some of the residues to prone to oxidative modification9, the Mb/Hp models 

suggest that the redox active90 and conserved Y146Mb (equivalent to Y140α and Y145β) 

is deeply buried within the Mb/Hp interface. The apparent ability of Hp to act as a 

scavenger of free Mb following its release to circulation in the same way it scavenges 

free Hb raises a few interesting questions. What happens after Mb binds Hp, i.e. is the 

association event only the first step in the catabolic chain? Are Mb/Hp complexes 

recognized by CD163, the Hb/Hp scavenger receptor, which binds Hb/Hp complex at the 

surface of the macrophages and mediates its transport to the lysosomal compartments? 

If Hp is indeed capable of neutralizing free Mb in circulation, a very intriguing question 

would be whether or not it could be used as a therapy in patients with myocardial injuries 

to control oxidative damage by removing free Mb from circulation. 

Andersen and coworkers have characterized Hb/Hp9 and Hb/Hp/CD163 receptor 
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complexes12. According to these studies, Hb/Hp complex formation induces a 

conformational change on Hp that exposes a loop recognized by the Hb/Hp receptor 

CD163 allowing complexes to be internalized into cells and degraded12. Hp alone has 

been shown to have very low to no binding affinity for CD16391-93, further indicating that 

Hb/Hp complex formation is critical for CD163 recognition. Since the Mb/Hp complexes 

were modeled after the Hb/Hp structures, this recognition loop is exposed in the Mb/Hp 

models. The use of Hp as a possible therapeutic for mediating clearance of monomeric 

globins will require knowledge on whether Hp interactions with CD163 are preserved 

when only a single globin is bound per heavy chain. 

That CD163 might recognize Mb/Hp complexes is suggested by recently 

documented uses of Hp as an emergency therapeutic in hemolysis patients. In fact, 

rhabdomyolysis is a well-known complication leading to Mb release to circulation in 

patients with severe burns; and the recently reported treatment of such patients with Hp 

had led to noticeable improvement in their conditions.29 Even though the success was 

ascribed to the free Hb sequestration, our results suggest that it is possible that 

elimination of free Mb was also a contributing factor. However, it remains to be seen if 

Hp administration may limit some of the damage following other cardiac pathologies, 

such as myocardial infarction, where the levels of Mb released from muscle tissue to 

circulation are similar to those associated with rhabdomyolysis.  
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2.4. Conclusions 

We have used computational tools to explore the possibility that Hp binds 

monomeric globins, including the α-chain of Hb and intrinsically monomeric Mb. The 

computational results suggest that Mb can interact with Hp, and that the α-globin chain 

binding site on the Hp surface is the preferred site for Mb binding. These conclusions 

were verified by native ESI MS, which showed that both monomeric α-globin (derived 

from human Hb) and Mb can associate with Hp in solution, although the Mb/Hp complex 

is somewhat less stable compared to the Hbα/Hp complex. Even when monomeric 

globins were present in significant molar excess (5-fold), only a single monomeric globin 

per each heavy chain of Hp was observed (despite the fact that Mb undergoes limited 

dimerization in solution at this high concentration), further supporting the conclusion of 

the molecular modeling work that Mb only binds to the α-globin chain binding site on Hp. 
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CHAPTER 3 

MOLECULAR MODELS OF THE HEMOGLOBIN-HAPTOGLOBIN COMPLEX 

DOCKED TO CD163 AND CALCIUM-INDUCED DYNAMICS REVEALED BY 

MOLECULAR DYNAMICS 

 

This work was accomplished in collaboration of the Scott Auerbach Group at the 
University of Massachusetts Amherst, chemistry department. 

 

 

 

 

 

 3.1 Introduction 

 
During intravascular hemolysis, Hb is released from erythrocytes and it can 

potentially become physiologically very toxic in the extracellular environment. The 

haptoglobin-CD163-mediated-heme pathway is an efficient route for the removal of free 

Hb from the extracellular environment. In this pathway, Hp first binds to circulating Hb 

dimers, shielding redox active residues. Once Hb/Hp complexes are formed, they 

proceed to bind CD163, a cell surface receptor on expressed exclusively on cells of the 

monocyte/macrophage lineage, leading to complex internalization and catabolism. The 

Hb/Hp complexes are released from CD163 in the early endosome, and the receptor 

recycles to the cell surface4.  There are currently no experimentally determined 

structures of full-length CD163 or of the Hb/Hp/CD163 complex. 

Elucidating the structural basis of the Hb/Hp/CD13 pathway has gained high 

interest in the clinical community.  Recent better understandings of the Hp-CD163-

mediated-heme pathway for Hb clearance have provided strong indications that this 



 

 42 

pathway may be used for targeted drug delivery94.  Since macrophages  (and their 

progenitors monocytes) play a prominent role in the establishment of certain types of 

viral infections (including HIV), virus dissemination, and development of viral reservoirs23, 

an ability to deliver anti-viral therapeutics directly to macrophages  (e.g., by conjugating 

them to Hp) should result in a dramatic improvement of the drug efficacy. Another high 

value target for such strategy might be hepatitis C virus  (HCV), since there is evidence 

that resident liver macrophages are infected by and support replication of HCV24.  In 

addition, to viral infections, a similar strategy can be envisioned as a way to design novel 

therapies against certain types of cancers  (most notably acute myeloid leukemia, AML), 

as the monocyte/ macrophage lineage specificity of CD163 expression is preserved 

beyond malignant transformation25, 26.  

While there is no crystal structure of CD163 alone or in Hb/Hp in complex with 

CD163, a number of experiments have shed some light on structural information about 

CD163 and in complex with Hb/Hp12, 92, 95. SPR studies have indicated Hb alone has 

lower affinity for CD163 compared to Hb/Hp complexes and Hp alone has little to no 

affinity to CD163. Another critical biophysical detail in the Hb/Hp/CD163 interaction is 

surface plasmon resonance (SPR) experiments revealed Ca2+ containing conditions is 

critical for CD163 associations with Hb/Hp complexes. The same researchers also 

concluded Ca2+ free conditions renders CD163 unstable and induces autolysis (self-

cleavage) of CD16395. 

Structurally, CD163 contains 9 scavenger receptor cysteine rich (SRCR) 

domains belonging to the ancient and highly conserved SRCRs superfamily. Although 

the specific functions of SRCR domains have not been defined with certainty, SRCRs 

are thought to mediate ligand binding. Along with the 9 SRCR domains, CD163 also 

consists of a transmembrane segment, and a cytoplasmic tail as illustrated in Figure 3.1. 

Site-directed mutagenesis experiments performed by Nielson et al, and coworkers 
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revealed alanine mutations on the acidic residues D27, D28 and E94 (acidic residues 

cluster) found in CD163 domains 2 and 312 severely reduced the binding affinity of 

CD163 to Hb/Hp/CD163 complexes. On the other hand, mutations on Hp basic residues 

R252T and K262 (located in a protruding loop in Hp and called the Hp-CD163 

recognition loop), drastically reduced binding and or completely abrogated binding of 

Hb/Hp complexes to CD163, respectively. These results suggest the Hp/CD163 

interfaces are driven by electrostatic interactions between the basic Hp and acidic 

CD163 domain 2 and 3 residues. Additionally, these results are consistent with 

experimental structures of endocytic receptor-ligand complexes involved in calcium-

dependent interactions such as cubilin in complex with intrinsic factor 12.  

 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of CD163.  Orange eclipses represent the 
SRCR domains. Gray and salmon colors are used to highlight CD163 domain 2 and 3, 
the domains known to be involved in Hb/Hp binding. Green spheres represent Ca2+ ions. 
 
 

While researchers were unable to locate a CD163 binding site on Hb after 

numerous attempts mutagenesis attempts12, the Hp-CD163 recognition loop has been 

extensively studied.  In an earlier Hb/Hp/Cd163 binding study, a synthetic 26 amino-acid 

peptide containing residues found in the Hp-CD163 recognition loop (which includes Hp 

residues R252 and K262) was synthesized92 and experimentally shown to compete with 
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Hb/Hp binding to CD16392. Whereas, a synthetic loop containing residues in the same 

region of a protein called haptoglobin related protein (Hpr), a protein that share 91% 

identity with Hp1 but does not bind CD163, did not compete. Results of these 

experiments further implicate the importance of the specific basic Hp residues in the 

Hp/CD163 associations and also suggest that a peptide containing the essential basic 

Hp residues is sufficient to monitor Hp/CD163 interactions. 

Since the CD163 SRCR domains are highly homologous to various proteins with 

experimentally solved structures, high quality molecular models of CD163 can be 

generated. The current molecular models of CD163 domain 2 and 3 (the suggested 

interacting domains) deposited in the protein model portal (PMP) are modeled based on 

the structure of mac-2 binding protein scavenger receptor (PDBID: 1BY2), a protein that 

is not known to bind Ca2+.  In light of the goal of generating more accurate molecular 

models of CD163 domain 2 and 3 we explored the SRCR domain of MARCO, a calcium-

binding macrophage receptor, as a probable template. MARCO is a trimeric protein 

composed of a transmembrane segment, a short intracellular domain, and a large 

extracellular region. The SRCR domain of MARCO (spanning amino acids 421-522) is 

located within its extracellular region, and contains the calcium coordinating acidic acid 

cluster (447D/448D/511E). This calcium coordinating acidic acid cluster is conserved in 

CD163 domains 2, 3, 7, 9 corresponding to D27/D28/E94 in each domain. These 

similarities suggest the structure of MARCO may serve as an excellent template for 

CD163 domains 2 and 3 since mutagenesis and surface plasmon resonance 

experiments revealed the importance of these specific acidic residues and Ca2+ 

respectively. 

In order to first elucidate the structural role of Ca2+, molecular models of CD163 

domain 2 and 3 were generated using the crystal structure of the SRCR domain of 

MARCO as template. Since Ca2+ has experimentally been shown to be critical for CD163 
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stability and Hb/Hp/CD163 formations, molecular dynamics was then used to investigate 

the dynamic changes of apo (Ca2+ free) vs Ca2+ bound forms of CD163 domains 2 and 3. 

Towards the goal of elucidating the structural determinants of the Hb/Hp/CD163 

interaction, we docked the molecular models of Ca2+ bound CD163 domains 2 and 3 to 

Hb/Hp complexes defining Hp and CD163 residues that were experimentally shown to 

be critical for binding as residues along the interface. While experimental data suggests 

the acidic residue cluster in CD163 domain 2 and 3 and basic residues in Hp are 

significant, the structural role of calcium is not well understood. In order to better 

understand the role of Ca2+ in CD163 structure and function, molecular dynamics 

simulations were employed to determine the dynamics of apo and Ca2+ bound CD163 

models in complex with the Hp-CD163 recognition loop peptide. Our molecular modeling 

and molecular dynamics results support the importance of the experimentally identified 

acidic residue clusters in both CD163 domains 2 and 3, in interactions with Hp. In 

addition, the results of the molecular dynamics simulations provide additional evidence 

on why Ca2+ is important for the association and stabilization of Hb/Hp/CD163 

complexes, enhancing our knowledge in the Hb/Hp/CD163 pathway. 
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3.2 Materials and methods 

3.2.1. Homology modeling of CD163 domain 2 and 3.  

The X-ray crystal structure of the SRCR domain from mouse MARCO (PDB ID: 

2OY3) was used as the template for homology models of human CD163 domains 2 and 

3. The sequences of SRCR domain of mouse MARCO and human CD163 were 

obtained from Uniprot accessions codes Q60754 and Q86VB7, respectively. Clustal 

Omega96 program was employed to align the sequences of the SRCR domain of mouse 

MARCO with the sequences of CD163 domains 2 and 3 FIGURE 3.2A. This alignment 

was then used to construct ten structural models each of domain 2 and 3 each using 

Modeller97. The top model for each domain was selected based on the discrete 

optimized protein energy score (DOPE score)98. Energy minimization of the structural 

models was then conducted using GROMACS, the Gromos96 force field79 and 5,000 

steepest decent logarithm steps. The quality of the refined and minimized models were 

assessed through PROCHECK35 and QMEAN99. PYMOL34 and Visual Molecular 

Dynamics (VMD)33 were used to analyze and visualize the resulting structures. 

3.2.2. Molecular docking of Hb/Hp/CD163.  

In order to predict the molecular basis of the Hp/CD163 interaction, the 

generated CD163 domain 2 and 3 with Ca2+ bound to site 1 models were docked to Hp 

in the human Hb/Hp structure (PDBID:4WJG chains: 1,2,3) using the Haddock molecular 

docking software. Haddock allows users to docks proteins based on residues defined as 

confidently involved in the interface “active”, residues that should not be in the interface 

“inactive”, and residues that do not have constraints “neutral”. Nuetral residues coul still 

participate in the binding interface. The residues identified in mutagenesis experiments 

as critical for Hb/Hp/CD163 complex formation, R252Hp and/or K262Hp and D27, D28, 

E94 in domain 2 and/or domain 3 with Ca2+ bound to site 1 were set as active residues 

in Haddock. Since it is unclear whether Hp interacts with one or both CD163 domains, a 



 

 47 

total of 4 docking trials were carried out: (i) Hp complex docked to domain 2, (ii) Hp 

complex docked to domain 3, and (iii) Hp complex docked to domin-2 then domain 3 (iv) 

Hp complex docked to domain 3 then domain 2. Once the docking runs are complete, 

Haddock outputs the highest ranked structures and ranks them based on their Haddock 

score. Table 1 summarizes the different docking trials, parameters, and ranking results. 

As mentioned before, based on previous mutagenesis experiments, CD163 only binds to 

Hb/Hp complexes in the presence of Ca2+ 95. To test whether the presence of Ca2+ will 

impact these results, apo-domain 3 was also docked to the human Hb/Hp complex. In 

the Hb/Hp/apo-CD163 docking experiments, R252Hp, K262Hp, D27domain 3, D28domain 3, 

E94domain 3 were set as active residues that should be in the interface.  

 
Table 3.1. 
Summary of interaction restraints used in protein-protein docking and score. 
 

Experiment Hp CD163 
Domain 2 

CD163 
Domain 3 

Haddock 
Score 

Z-score 

1. Hp complex- 
CD163 domain 2 

R252, 
K262 

D26, D27, 
E94 

---------- -40.1 +/- 3.7 -1.3 

2. - Hp complex -
CD163 domain 3 

R252, 
K262 

------------ D26, D27, 
E94 

-60.7 +/- 8.9 -1.9 

3. Hp complex- 
CD163 domain 2-
domain 3 

R252 D26, D27, 
E94 

------------- -37.8 +/- 5.1 -1.8 

 
K262 ------------ D26, D27, 

E94 
  

4. Hp complex-
CD163 domain3-
domain 2 

R252 ------------ D26, D27, 
E94 

-27.0 +/- 6.9 -1.3 

 K262 D26, D27, 
E94 

------------ K269  
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3.2.3. Molecular dynamics.  

Molecular dynamics (MD) simulations were performed using the OPLS-AA/L 

force field with GROMACS version 4.6.178. The protein was placed at the center of a 

rhombic dodecahedral box and the distance to the edge of the box was set to 1.5 nm. 

The box was solvated with single point charge (SPC) water molecules. Periodic 

boundary conditions were applied to satisfy the minimum image convention and simulate 

bulk systems. The counter ions sodium or chloride were added to neutralize the system 

charge and the final NaCl concentration was 0.1 M. An energy minimization of the 

solvated protein and neutralized structures was performed to correct the inappropriate 

geometry. The minimization was performed for a maximum of 5,000 steps with the 

steepest descent algorithm. The convergence criterion of the energy minimization is 

achieved when the potential energy reached a plateau and the maximum force was less 

than 10 kJ mol-1nm-1. 

The number of particles, volume and temperature (NVT) were kept constant in 

first equilibration. This was followed by a second equilibration step where the number of 

particles, pressure and temperature (NPT) were kept constant. In the NVT ensemble, 

the system was heated to 300 K over 100 ps by randomly assigning initial velocities 

taken from the Maxwell-Boltzmann distribution. The temperature was scaled by the 

modified Berendsen thermostat100. In an NPT ensemble, the pressure was scaled to 1 

bar with a compressibility of 4.5X10-5 bar by the Parrinello-Rahman barostat101. Time 

constants for controlling the temperature and pressure were set to with 0.1 ps and 2 ps, 

respectively. 

The van der Waals and electrostatic interactions were applied with cutoff 

distances of 1.4 nm using the Verlet cutoff scheme102. The short-range neighbor list was 

set to 10.0 nm. The Linear Constraint Solver (LINCS) algorithm was used to constrain 

bond lengths103. The production run was performed for 60 ns at a temperature of 300 K 
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and pressure of 1 atm, respectively. In all simulations a time step of 2 fs was used and 

the trajectory was updated every 10 ps. Analysis of MD trajectories was carried out 

using utilities within the GROMACS package and VMD. 

 
3.3 Results and discussion 
 
3.3.1. Homology models of CD163 domains 2 and 3.  

Ca2+ has previously been shown to be critical for CD163 domains 2 and 3 

stability and Hb/Hp/Cd163 complex formation. To elucidate structural the role of Ca2+, 

new CD163 domain 2 and 3 molecular models were regenerated since the previous 

models that were modeled based on mac 2-binding protein, a homologous SRCR 

receptor that does not contain Ca2+ or the conserved coordinating acidic residue cluster. 

In this study, the SRCR domain of MARCO protein was a selected as the template to 

generate models of domain 2 and 3 because the structure of MARCO contains a 

conserved calcium coordinated acidic amino acid cluster bound to calcium 

(447D/448D/511E) found in domains 2 (corresponding to 27D/28D/94E) and 3 

(27D/28D/94E).  

CD163 domains 2 and 3, and the SRCR domain in MARCO belong to the SRCR 

family of proteins that contain a conserved compact globular fold stabilized by 5 disulfide 

bridges. Clustal Omega alignments indicated the MARCO protein is 45% and 49% 

identical to domain 2 and domain 3 respectively (Figure 3.2A). The CD163 domain 2 and 

3 models aligned closely to the MARCO template indicating structural RMSDs of 0.2Å 

and 0.1 Å respectively (Figure 3.2B) and contained the correct disulfide bridge 

connectivity. Ramanchandran plots calculated by PROCHECK for the domain 2 and 3 

models showed that 94% and 93%, respectively, of the residues were in the most 

favorable regions and QMEAN calculated Z-scores of 0.2 and 0.1 respectively. These 
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score were comparable to MARCO structure, with 95% of the residues in the most 

favored regions of the Ramanchandran plot and a Z-score of 0.3. 

 
 
 
Figure 3.2. Molecular models of CD163 domains 2 and 3 A) Sequence alignment of 
the SRCR domain of MARCO to CD163 domains 2 and 3 generated by ClustalOmega. 
The acid residue cluster coordinated to the Ca2+ binding site 1 (highlighted in green) is 
conserved in domains 2 and 3. On the other hand, the acidic residue cluster coordinating 
Ca2+ binding site 2 is 66% conserved in domain 3 (highlighted in pink). B). The crystal 
structure of the SRCR domain of MARCO (shown in white) superimposed on the 
molecular models of domain 2 (black) and 3 (salmon) generated by Modeller97. The Ca2+ 

ions are colored in darker green and pink in the MARCO structure and lighter (green and 
pink) colors are used to show Ca2+ ions coordinated in the domain 2 and 3 models. 
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As Figure 3.2 illustrates, one of the Ca2+ containing acidic residue cluster 

(27D/28D/94E) is conserved in domain 2 (corresponding to 27D/28D/94E) FIGURE 3.1B 

and 3 (27D/28D/94E) and will be referred as Ca2+ site 1. The second Ca2+ binding site 

found in MARCO (coordinated with D29, D31, D34) is not conserved in domain 2 

(corresponding to N29, N31, and H4) and is only partially conserved in domain 3 

(27G/28D/94E) and will be referred to as Ca2+ site 2. In models generated of domain 2 

and 3, Ca2+ is modeled at both site 1 and 2 to further characterize the specific purpose of 

Ca2+ on site 1 in reference to the flexibility and preferred confirmations of the models. 

The Ca2+ sites in calcium-binding proteins have a diverse set of polygonal 

geometries and adopt a wide range of ligand coordination. Commonly, calcium binding 

proteins prefer to adopt octahedral, trigonal bipyramidal, and distorted geometries104 

composed of oxygen atoms from side chains, backbone carbonyl groups, and water 

molecules105. An acidic triad cluster called the “DxDxD motif”106 (as found in the MARCO 

protein and CD163 domain 2, 3, 7, 8), is frequently conserved in calcium binding 

proteins.  Although many proteins with the DxDxD motifs probably share a common 

ancestor, some appear to have evolved independently106.  

The calcium binding sites in domain 2 and 3 models were evaluated by 

comparing the calcium binding sites to other known receptors involved in calcium 

dependent protein-protein interactions. Cubilin, LDLR, and reelin are all endocytic 

receptors in which the acidic clusters in their calcium binding sites interact with basic 

residues on their respective ligands. This is consistent with Hb/Hp/CD163 experimental 

results indicating the acidic residue cluster in CD163 domain 2 and 3 and basic residues 

in Hp are critical for Hb/Hp associations with CD163. Table 3.2 lists these various 

calcium binding proteins involved in calcium-dependent, receptor-ligand Interactions.  

The distances between Ca2+ to coordinating oxygen atom in the acidic residue were 

measured. The molecular models of domain 2 and distances to the calcium fell within 
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the 2.2-2.9 Å, which is expected, between oxygen atoms of basic residues and bound 

Ca2+ 107.  

 
Table 3.2. Comparisons of the calcium-binding sites in the modeled CD163 domains 2 
and 3 molecular models to Ca2+ binding sites in proteins with known structures 
 
 

 

ASP-Ca2+ 
distance 

ASP-Ca2+ 
distance 

GLU-
Ca2+ 

distance 
PBD:ID 
 

Usual 2.2-2.6Å 2.2-2.6Å 2.2-2.6Å NA* 

Cubilin (site 1) 2.3 2.3 2.3 3KQ4108 

Cubilin (site 2) 2.3, 2.7 2.3 2.3 3KQ4108 

LDLR 2.4 --- 2.5 2W2O109 

Reelin 2.3 2.3 2.3 3A7Q110 

CD163 
Domain 2 2.2 2.2 2.2 NA 

CD163 
Domain 3 2.2 2.3, 2.2 2.3 NA 

 
*NA, not applicable 
 

The results of CD163 molecular models suggest Ca2+ stabilizes the acidic 

residue clusters, but no significant structural changes are observed in the overall models 

of Ca2+ bound CD163. The Ca2+ binding sites are also consistent with geometries found 

within other Ca2+ binding proteins. The dynamic effect of Ca2+ will further be studied 

through MD simulations. 

3.3.2. Molecular dynamics CD163 domain 2 and 3.  

Since there was no significant structural changes Ca2+ has previously been 

shown to be critical for CD163 domains 2 and 3 stability and Hb/Hp/CD163 complex 

formation. As mentioned above, CD163 domains 2 and 3 contain a conserved acidic 

residue motif, coordinated with a calcium atom at site 1 Figure 3.1A and 3.1B. However 

it remains unclear whether another calcium binding site as shown in Figure 3.1A and 

3.1B is conserved in domain 3. In order to investigate the role of Ca2+ in domain 2 and 3 
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MD simulations were used to determine how Ca2+ binding might affect the overall 

structural fluctuations the modeled CD163 domains.    

 Domain 2 MD simulations 

The root mean square deviations (RMSDs) calculated over the course of 60 ns of 

domain 2 is shown in Figure 3.2A. The 60 ns MD simulations results suggest that 

domain 2 with Ca2+ at site 1 is more rigid than other forms resulting in RMSDs of 0.17 

nm relative to the starting structure. Conversely, apo domain 2 and especially domain 2 

with Ca2+ placed at site 2 appear to be more flexible with overall RMSDs of 0.21 nm and 

2.5 nm, respectively. This result is expected because the Ca2+ binding site 2 is not 

conserved in domain 2 and further demonstrates the importance of Ca2+ being modeled 

in an energetically favorable site. At 41 ns, the RMSDs values show an increase for 

domain 2 bound to Ca2+ binding site 2. This may be because the Ca2+ is placed at an 

unfavorable site where there are no negativity charged residues. When Ca2+ is placed at 

both binding sites 1 and 2, RMSDs results in Figure 3.3A suggests the protein is more 

rigid (RMDS 0.20 nm) likely due to the calcium binding at site 1. In these simulations, the 

Ca2+ ion at site 2 dissociates from the protein at 30 ns (shown in Figure 3.3B and in more 

detail in Figure 3.4). These results further support the importance of Ca2+ at binding site 

1 for the protein’s conformational integrity.  Figure 3.2C shows the calculated Cα root 

mean square fluctuations (RMSF) per residue in domain 2. According to Cα RMSFs per 

residue values, apo-domain 2 loops are especially more flexible from starting structures 

compared of CD163 domain 2 with Ca2+ at binding site 1.  
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Figure 3.3. Ca2+ binding to site 1 in domain 2 reduces fluctuations. A), Cα 

RMSDs calculated over the course of 60 ns. B), Domain 2 with Ca2+ bound to site 1 is 
the least flexible model. At 41 ns, the RMSDs values increase in domain 2 with Ca2+ 
bound to site 2. This is likely due to the placement of Ca2+ in an unfavorable site where 
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there are no negativity charged residues. C), Calculated Cα root mean square 
fluctuations (RMSFs) per residue in domain 2. In the inset, the side-chain RMSFs per 
residue for the Ca2+ binding residues in site 1 are shown in blue with the apo RMSFs in 
green. 

 

 

                                           

 
 
   
 
 
Figure 3.4. Snapshots of the domain 2 structures during the MD simulations. Note 
the loss of Ca2+ from site 2 as might be expected from the unfavorable sequence of this 
putative binding site. 
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 Domain 3 MD simulations 

Similar to CD163 domain 2, the overall RMSD of CD163 domain 3 with Ca2+ at 

site 1 (0.19 nm) was observed to be less than domain 3 with Ca2+ at site 2 (0.22 nm), 

domain 3 with Ca2+ at site 1 and 2 (0.20 nm), apo-CD163 (0.23 nm) (Figure 3.5A). Unlike 

domain 2, the Ca2+ ion at binding site 2 stayed bound to domain 3 during the entire 60ns 

simulation, but rendered domain 3 more flexible as shown in Figure 3.5C. This may be 

due the Ca2+ binding site 2 being energetically more favorable than domain 2 yet still not 

in the proper coordination for Ca2+ ions. It is probable; a second Ca2+ ion is not preferred 

on site 2 in domain 3 as well. Since CD163 domain 2 and 3 models with Ca2+ bound to 

site 1 produced the most rigid confirmations, their energy-minimized models were used 

for the molecular docking of Hb/Hp complexes to CD163 models. 
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Figure 3.5 Ca2+ binding to site 1 in domain 3 reduces fluctuations.. Similar to the 
results for domain 2, Ca2+ binding at site 1 appears to be important for constraining the 
protein structure. A), Cα RMSDs over the course of 60ns for domain 3. B), Cα RSMFs per 
residue calculated from the MD simulations. Domain 2 shows the lowest RMSFs when 
Ca2+ is bound to site 1, as also observed for domain 2. C), Results of the domain 3 
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models with Ca2+ at site 1 (black) at the end of the simulation and domain 3 model with 
Ca2+ on both site 1 and 2 at 41 ns. Inset: The side-chain RMSFs per residue for the Ca2+ 
binding residues in site 1 shown in blue and apo domain 3 shown in green.  
 

3.3.3. Molecular docking of Hb/Hp complex to CD163 domains. 

Previous biophysical experimental12, 92, 95 data enabled us to develop 4 different 

hypotheses for the Hb/Hp/CD163 interactions and incorporate distinct interaction 

restraints12,92 in Haddock (inputs and results shown in Table 3.1).  The basic Hp loop in 

Hb/Hp complexes could be interacting with the negative acidic residue cluster 

coordinating with Ca2+ site 1 in a) just domain 2, b) just domain 3, c) domain 2 at R252Hp 

and domain 3 at K262Hp or d) domain 2 at R252Hp and domain 3 at K262Hp. Since 

previous experiments and our MD simulations suggest that Ca2+ 95 is important for rigidity, 

models of domain 2 and 3 with Ca2+ bound to site 1 was used in the docking simulations. 

The best ranked molecular models (on the basis of the lowest Haddock score) in each 

hypothesis that was generated by Haddock43 are depicted in Figure 3.5 and 3.6.  All 

models agree with previous experimental mutagenesis12. Where in all cases, residues 

that were experimentally determined to be critical for binding are located in the binding 

interface. The oxygen atoms in the acidic residues cluster in the CD163 models are still 

coordinating with the bound Ca2+ ions with the appropriate 2.2-2.6 Å distance lengths. 

 Hp/Domain 2 vs Hp/Domain 3 models.  

Figure 3.4 displays experimentally driven12,92 molecular models of Hb/Hp docked 

to just domain 2 (Figure 3.6A), or just domain 3 (Figure 3.6B). In the Hb/Hp/domain 2 

interaction, residues D28domain 2 and E94domain 2 form hydrogen bonds with K262Hp and 

R252 Hp respectively (Figure 3.6A). Hb/Hp/domain 3 molecular models, Figure 3.6B), 

show a similar arrangement of residues and interactions. The main difference is R262Hp 

additionally forms a hydrogen bond with an oxygen atom in D27domain 3 (Figure 3.6B). 

Haddock scores for Hb/Hp/domain 3 complexes, -40.1 +/- 3.7, is slightly higher than that 
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for Hb/Hp/domain 2, -60.7 +/- 8.9. The additional hydrogen bond in the Hp/domain 3 

models may have contributed to the score since electrostatic energies (which includes 

hydrogen bonds) are weighted into the Haddock score. 

 
 
 
 

 
 
 
 
 
Figure 3.6. Experimentally driven molecular models of Hb/Hp in complex with A), 
CD163 domain 2 with Ca2+ bound to site 1, or B) CD163 domain 3 with Ca2+ bound 
to site 1. When Hb/Hp complexes are docked to domain 2, residues D28domain2 and 
E94domain2 interact with K269Hp and R259Hp respectively (shown in A), while in 
Hb/Hp/domain 3 molecular models, an additional residue, D27domain2, interacts with 
R269Hp.  
 
  

    Hb/Hp/domain 2                   Hb/Hp/domain 3 
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 Hp/domain 2-domain 3 vs Hp/domain 3-domain 2 models. 

 In various calcium-dependent receptor-ligand interactions, a single basic residue 

interacts with the acidic residues coordinating calcium-binding108-110 (Table 3.2). This led 

us to speculate that each of the basic residues on Hp could be independently interacting 

with an acidic residue in domain 2 and 3. In addition, various unsuccessful attempts to 

locate a CD163 binding site on Hb12 also drove our thought process to generate models 

of domains 2 and 3 interacting on the basic residues in Hp loop. Molecular models of the 

Hb/Hp/CD163 complex were constructed based on two alternative hypotheses: (i)  

R262Hp and K252Hp interact with acidic residues in domains 2 and domain 3 respectively 

(Figure 3.6A) or (ii) R262Hp and K252Hp interact with Hp domains 3 and domain 2 (Figure 

3.6B). Table 3.1. summarizes the interactions and restraints used in protein-protein 

docking and the Haddock score. 

In order to create Hb/Hp/CD163 molecular models specific to R262Hp and K252Hp 

interacting with domains 2 and domain 3 respectively, the acidic residue cluster in 

CD163  domain 2 with Ca2+ bound to site 1 and R252Hp were set as active in Haddock. 

The highest ranked Hb/Hp/domain 2 model was selected and docked to domain 3. In a 

separate run, the acidic residue cluster in domain 3 and K262Hp was set as active. The 

results of this output are shown in Figure 3.6A. The binding interface of the generated 

molecular model was analyzed and indicated K262Hp formed salt bridges with D27Domain 3, 

and R252Hp formed salt bridges with D28domain 2 and E94domain 3. Interestingly, oxygen 

atoms in T270Hp backbone oxygen atom and E267Hp side-chain oxygen atom coordinate 

Ca2+ binding sites in domain 3 and domain 2 respectively, both having distances of 2.2Å . 

These results suggest that Ca2+ helps to stabilize both the CD163 acidic clusters and the 

Hb/Hp/CD163 interface. The interactions between CD163 domains 2 and 3 were also 

analyzed. This interface appears to be stabilized by hydrogen bonds between Q19domain 2 
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and the backbones of V52domain 3, K87domain 2 and Q71domain 3, and the backbone of I63 

domain 2 and Y33domain 3. 

 
 
 
Figure 3.7. Experimentally driven molecular models of Hb/Hp in complex with 
domains 2 and 3. 2A), CD163 domain 3 with Ca2+ bound to site 1 interacting with 
R252Hp and CD163 domain 2 with Ca2+ bound to site 1 interacting with K262Hp (Haddock 
sore: -27.0 +/- 6.9, or 2B), CD163 domain 2 with Ca2+ bound to site 1 interacting with 
R252Hp and CD163 domain 3 with Ca2+ bound to site 1 interacting with K262Hp (Haddock 
score: -37.8 +/- 5.1). Molecular models suggest there in the Hp loop, can simultaneously 
bind to two receptors. The binding interface between domain 2/domain 3 is also 
stabilized by hydrogen bonds (see results section).  

 

To generate the Hb/Hp/CD1613 molecular models where R262Hp and K252Hp are 

interacting with CD163 domains 3 and domain 2 respectively, molecular models of the 

the acidic residue cluster in CD163 domain 2 with Ca2+ bound to site 1 interacting with 

and K262Hp were first generated. The highest ranked Hb/Hp/domain 2 model was 



 

 62 

selected to be docked to domain 3. In the next run, the acidic residue cluster in domain 3 

and residue R252Hp were set as active and the binding interface of the highest ranked 

generated model was analyzed. The Hp/CD163 binding interfaces in these models were 

relatively similar to the previous models (Figure 3.5B). The major difference is T270Hp 

was no longer coordinated to the Ca2+ ion in domain 2.  The molecular models suggest 

R252Hp formed a salt bridge with D27Domain 3 and K252Hp formed a salt bridge E94domain 2. 

Additionally, the interface between domains 2 and 3 showed fewer interactions then 

observed in the models discussed above, but Q71domain 3 and Y33domain 3 were still 

interface residues with hydrogen bonds between H87Domain 2 and Q71domain 3 as well as 

between D91domain 2 and Y33domain 3.  

These molecular models also agree with previous experimental mutagenesis 

results, and present 2 more possibilities for Hp/CD163 interactions in the Hb/Hp complex.  

and are consistent with in previous acidic basic calcium dependent receptor interactions 

(Figure 3.9).  

 Hb/Hp/Apo domain 3 

According to previous experiments95, CD163 does not bind Hb/Hp complexes in 

Ca2+ free conditions. We created molecular models of Hb/Hp/ apo-domain 3 complexes 

using the same parameters used to generate the Hb/Hp/domain 3 with Ca2+ bound site 1 

complexes.  The results suggests, Hp/domain 3 interactions are still energetically 

favorable since the absence of Ca2+ enabled the CD163 basics residues to form more 

salt bridges with the acidic residue cluster in Hp as shown in Figure 3.7. These results 

suggest the need for dynamics to monitor this interaction to better understand the 

importance of Ca2+ in Hb/Hp/CD163 associations.  
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Figure 3.8. Molecular models of Hb/Hp in complex with apo-domain 3. According to 
previous experiments95, CD163 does not bind Hb/Hp complexes in Ca2+ free conditions. 
Our molecular models results show apo-domain 3 (Ca2+ free domain 3) still docks to Hp 
with all previously identified interface residues at the interface.  
 
 
3.3.4. Molecular dynamics of Hp loop/domain 3 
 

MD simulations were performed on Ca2+ bound and Ca2+ free Hp/CD163 

domain3 complexes to further investigate the sturtural role Ca2+ in Hp/CD163 
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associations.  Hp shares 91% sequence identity111 with another protein called 

haptolgobin related protein (Hpr).  Hpr binds Hb at high affinity, but does not bind CD163 

because residues R252Hp, E261Hp, K262Hp and T264Hp in the CD163 recognition loop are 

replaced with T253Hpr, K262Hpr, W263Hpr, and A265Hpr. Previously, a 26 amino-acid 

peptide containing the R252Hp – T264Hp loop region was synthesized92 and 

experimentally shown to compete with Hb/Hp binding to CD163 whereas the peptide 

from the same region in Hpr did not disrupt Hb/Hp/CD163 complex formation92. These 

results suggest that a peptide containing the essential basic Hp residues is sufficient to 

monitor Hp/CD163 interactions. The Hb/Hp/domain 3 molecular models (Figure 3.5B) 

were truncated to just the Hp loop (residues 244-261) in complex with domain 3 and the 

Ca2+ bound and apo states of Hp loop/domain 3 complexes were studied dynamically 

using molecular dynamics simulations.  These simulations were conducted to 

understand whether Ca2+ is essential for these interactions to occur.  

The molecular dynamics results suggest a wonderful explanation as to why Ca2+ 

is important for Hp/CD163 associations (Figure 3.9, 3.10, and 3.11). The Hp loop/CD163 

domain 3 with Ca2+ bound to site 1 remains bound during the entire 60 ns simulation with 

overall RMSDs of 0.30 nm but the interaction does change slightly. During this 

simulation, K252Hp maintains its interaction with D28domain 3 while, R252Hp shifts from 

interacting with both D27domain 3 and E94domain 3 (Figure 3.5B) to just E94domain 3 by the end 

of the simulation (as shown in Figure 3.9 and 3.10). This result is pretty interesting 

because the Hp loop/CD163 domain 3 with Ca2+ bound to site 1 models become more 

similar to interactions between Hp loop/CD163 domain 2 with Ca2+ bound to site 1 where 

R252Hp is only interacting with E94domain 2 as shown in Figure 3.5A. Additionally, this 

result probably suggests R252Hp not interacting with D27domain 3 is energetically more 

favorable, since this allows the oxygen atom in D27domain 3 to stay coordinated to Ca2+. 

On the other hand, the Hp loop/apo-domain 3 complexes dissociate completely after 20 
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ns and the RMSD were larger with an overall RMSD of 0.50 nm. This suggests that Ca2+ 

facilitates domain 3 associations with Hp, agreeing excellently with experiments. In the 

simulations performed on Hp loop/CD163 domain 3 bound to site 1 and 2, the Hp loop 

stays bound to domain 3 but eventually K262Hp dissociates from the and stay 

dissociated (Figure 3.9 and 3.10). The overall RMSDs calculated in the Hp loop/domain 

3 with Ca2+ bound to site 1 and 2 models are also higher than Hp loop/domain 3 with 

Ca2+ bound to site 1 models (0.50nm). The results of this experiment further show the 

significance and specificity of Ca2+ at site 1.  

These results suggest new helpful insights in understanding the Hb/Hp/CD163 

pathway more explicitly.  Ca2+ bound CD163 adopts a rigid confirmation, stabilizing the 

coordinating D27/D28/E94 acidic residue cluster. This rigid confirmation is favorable for 

the basic Hp residues R252 and K262 to form salt bridges with the acidic residue cluster. 

After endocytosis occurs, the pH drops releasing Ca2+, rendering CD163 more flexible. 

The flexibility of apo-CD163 induces the dissociation of Hb-Hp complexes. Then 

continuing the understood Hb/Hp/CD163 pathway, apo-CD163 receptor is now able to 

recycle to the cell well and Hb/Hp proceed to be degraded in the lysosome. 
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Figure 3.9. Molecular models of Hp loop/CD163 domain 3 with Ca2+ bound to site 1 
stays in complex and Hp loop/apo-CD163 domain 3 dissociate during MD 
simulation. Hp loop/ CD163 domain 3 with Ca2+ bound to site 1 remains in complex with 
Hp over the entire 60 ns simulation with overall RMSD of 0.3 nm (represented in blue).  
On the other hand, the Hp loop/apo- domain 3 complex dissociates completely after 20 
ns and the RMSD was larger with an overall RMSD of 0.5 nm (represented in green).  
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Figure 3.10. Hp loop/CD163 domain 3 with Ca2+ bound to site 1 stays in complex 
and Hp loop/apo-CD163 domain 3 dissociate during MD simulation. Snapshots from 
MD simulations performed on Hp loop/apo-domain 3, Hp loop/CD163 domain 3 with 
Ca2+ bound to site 1 and 2, and Hp loop/CD163 domain 3 with Ca2+ bound to site 1. 
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Figure 3.11. Fluctuations of the Hp loop/CD163 domain 3 model. Calculated Cα 

RMSFs per residue during the 60 ns in A) CD163 domain 3 the Hp loop (apo- green, 
Ca2+ bound to site 1- blue, and Ca2+ site 1 and 2 - black). B), The side-chain RMSFs per 
residue of the interacting residues in the apo (green) and with Ca2+ bound to site 1 
models (blue) are displayed by bar graphs. The calculated side-chain RMSFs per 
residue show a dramatic difference in the interface residues of the Hp loop/domain 3 
complex. These MD simulations results suggest the importance of Ca2+ in maintaining 
and stabilizing the association of the complexes. 
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3.4. Conclusions 
 

We have successfully generated molecular models of CD163 domain 2, domain 

3, and Hb/Hp/CD163 complexes that correlate with the existing mutagenesis and SPR 

experimental data on Hb/Hp/CD163 complexes. The molecular models are consistent 

with the interface of experimentally solved protein-protein structures with calcium-

dependent receptor-ligand interactions as shown in Figure 3.12, Table 3.1. The 

Molecular dynamics simulation results suggest that the apo models of domain 2 and 3 

are more flexible than the Ca2+ bound models. However, since the both apo and Ca2+ 

bound models formed a favorable interface in Hb/Hp/CD163 models, molecular dynamic 

simulations was employed to clarify the importance of Ca2+.  The molecular dynamics 

simulation results show that the Hp CD163 recognition loop stays bound to CD163 when 

Ca2+ is present but when Ca2+ is absent, the complex dissociates. These results give 

explanation as to why calcium is important of Hp/CD163 associations.  
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Figure 3.12. Comparisons of Hp/domain 3 interface in the Hb/Hp/CD163 molecular 
models to the interface of experimentally solved protein-protein structures with 
calcium-dependent receptor-ligand interactions. A), Hb/Hp/CD163, B), intrinsic 
factor/cubilin (PDBID:3KQ4108), C), Reelin/LRP8 (PDBID:3A7Q110), D), PCSK9/LDLR 
(PDBID:2W2O109). 
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Table 3.3. Comparison of the distances between acidic and basic residues in calcium-
dependent, electrostatic receptor-ligand interactions. In this case, Hb/Hp/CD163 
distance measurements exclude hydrogen since hydrogen is not present in the X-ray 
structures as well. 
 

Protein- Protein Complex 
X-R(-X)  
distance 

X-K(-X) 
distance 

Cubilin*/Intrinsic Factor 2.9 Å, 3.24 Å 2.9 Å, 2.7Å 

PCSK9/LDLR ----  2.7 Å 

LRP8/ Reelin 
 

2.7, 2.7 Å 

Hb/Hp/Domain 2 2.8 Å 2.7  

Hb/Hp/ Domain 3 2.7Å, 2.7 Å 2.8 Å 

Hb/Hp/ Domain 2/domain 3 2.7 Å, 2.9 Å 2.7 Å 

Hb/Hp/ Domain 3/domain 2 2.7 Å, 3.4 Å 2.6 Å 
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CHAPTER 4 
 

SUMMARY AND FUTURE OUTLOOKS 
 

Elucidating the structural details and dynamics in Hp physiological interactions 

are important for the development of Hp-based therapeutics. Myoglobin (Mb) is highly 

homologous to Hb and shares high structural and sequence similarity with both α- and β-

chains of Hb, with residues critical for Hb binding to Hp conserved yet it’s ability to bind 

to Hp has been debated.  In Chapter 2, we employed computational biology techniques 

are to predict binding preferences of Mb to Hp, followed by experimental verification of 

the predictions using native electrospray ionization mass spectrometry (ESI MS). Using 

the Hb/Hp crystal structure as a template, homology modeling was carried out to 

evaluate Hp/Mb interaction in silico, yielding structural models of two Mb molecules 

bound to a single Hp monomer (Mb2Hp). Molecular modeling suggested that the Hp/Hb 

binding interface remains conserved in Mb/Hp complex at the α-chain binding site. 

Contrary to that, we found several charged residues of the β-chain involved in 

electrostatic interactions with Hp correspond to ionic residues with opposite polarity in 

Mb, suggesting unfavorable electrostatic Hp/Mb interactions at the β-chain binding site. 

Monomeric Hb α subunits were isolated and shown for first time by native ESI MS to be 

capable of binding to Hp in the absence of Hb β-chains forming α2Hp complexes. Native 

ESI MS was also used to monitor Hp/Mb interaction, providing evidence also for the first 

time the existence of both Mb/Hp and Mb2Hp species in solution at physiological pH and 

ionic strength, although Hp affinity appears to be diminished in Mb compared to Hb α-

chains. This change is rationalized based on the structural model of Mb/Hp complexes. 

These results present a well-constructed framework for predicting novel or unknown 

interactions using both computational approaches and native electrospray ionization 

mass spectrometry (ESI-MS) experiments which is very useful for the development in 

this field.  
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The ESI MS results demonstrate the success of our computational approaches, 

motivating us to model Hb/Hp/CD163 complexes. Both CD163 bound Ca2+ and specific 

CD163 acidic residues are known to be essential for binding specific Hp basic residues 

resulting in Hb/Hp/CD163 complex formation, but the structural details of Hb/Hp/CD163 

interactions are unknown. In Chapter 3, we therefore constructed experimentally driven 

molecular models of Hb/Hp/CD163 complexes using molecular docking. Then, to 

understand the significant role of Ca2+ in Hp/CD163 interactions and dynamics, all-atom 

molecular dynamics (MD) simulations were conducted for CD163 models in the 

presence and absence of Ca2+. The molecular models of Hb/Hp/CD163 suggest that Hp 

basic residues R259 and K269 each interact with a conserved acidic reside cluster (E27, 

E28, D94) in CD163 domains 2 and 3. A calcium ion is postulated to stabilize this CD163 

acidic residue cluster, facilitating Hp recognition. Consistent with this, MD simulations on 

isolated CD163 domains suggest that a specific Ca2+ binding site preserves the 

arrangement of the acidic triad and protein structural stability. Our studies show that by 

combining molecular modeling, native mass spectrometry, and molecular dynamics we 

can provide a detailed picture of the structural and dynamic basis of interactions 

between Hp, globins and/or CD163.  These molecular models may also be useful for 

designing therapeutics that utilizes the Hb/Hp/CD263 endocytosis pathway.  

 Future outlook of Chapter 2. 

Since Hp is a natural occurring molecule, the development of Hp as a therapeutic 

for patients suffering from Mb toxicity due to myocardial injury would be promising, 

however, there are various necessary tests or investigations that first need to take place 

to make this realistic. There is no proof showing that Mb actually interacts with Hp in vivo. 

A future experiment could be to screen the blood of myocardial patients to investigate 

whether Mb/Hp complexes exist in the blood.  Additionally, binding affinity experiments 
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between Mb/Hp complexes will also be necessary which could be conducted through 

isothermal titration calorimetry experiments, which could calculate the binding constants. 

 Future outlook of Chapter 3. 

The goal of chapter to 2 was to use computational data generated of Mb/Hp 

complexes to provide a testable hypothesis for MS experiments. In Chapter 3, the 4 

molecular models generated suggest atomic level pictures of Hb/Hp/CD163 complexes 

that could be validated through H/D exchange and limited proteolysis experiments. 

These experiments could test whether protected regions shown in the models are 

consistent with experimental results and help narrow down the computational results. 
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