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Abstract

Estimation Problems in Complex Field Studies

with Deep Interactions:

Time-to-Event and Local Regression Models for

Environmental Effects on Vital Rates

September 2015

Krzysztof M. Sakrejda, B.A. Vassar College

M.S. University of Oregon

Ph.D. University of Massachusetts, Amherst

Directed By: Dr. Benjamin H. Letcher

Field studies that measure vital rates in context over extended time periods are a cor-
nerstone of our understanding of population processes. These studies inform us about the
relationship between biological process and environmental noise in an irreplaceable way.
These data sets bring “big data” and “big model” challenges, which limit the application of
standard software (e.g., BUGS). The environmental sensitivity of vital rates is also expected
to exhibit interactions and non-linearity, which typically result in difficult model selection
questions in large data sets. Finally, long-term ecological data sets often contain complex
temporal structure. In commonly applied discrete-time models complex temporal structure
forces the analyst to make many competing decisions about discretizing time, which add
complexity to any analysis and confuse the interpretation of parameters. I tackle these prob-
lems in three ways: 1) I apply and improve current state of the art statistical algorithms
and software (Hamiltonian Monte Carlo with the NUTS sampler implemented in Stan) to
implement the estimation of vital rates from mark-recapture data in a large Atlantic salmon
data set; 2) I extend continuous-time time-to-event models with continuous estimated rate
functions to mark-recapture and emigration data; and 3) I apply simple local regression to
the estimation of vital rates to turn the model-selection problem resulting from interactions
and non-linearity into an estimation problem, which is solved by the estimation algorithm.
For each model I present methods for visualizing the results in biologically meaningful terms
and use these for model criticism.
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Chapter 1

Vital rates as an estimation problem

Constructing relationships between vital rates and environmental covariates is an important
current topic due to increasing demand for predictions for a variety of ecological systems.
While complex specialized models have been created for some systems, their development
requires advanced statistical knowledge. I see a recurring set of requirements that have stim-
ulated the development of complex models: 1) flexibility in relating the data to a process
model and often also to an observation model; 2) flexibility in the timing of observations;
3) flexibility in discovering and estimating non-linear responses of process to covariates and
combinations of covariates; 4) flexibility in discovering and estimating seasonal variation in
the response of process to covariates; 5) an ability to explore the quality of the estimates;
and 6) a method for evaluating data requirements in the context of the desired quality
of estimates. For some systems these requirements do force ecologists to rely on special-
ized models. For an important subset of models I suggest that a general set of methods
can be constructed from available, if advanced, statistical tools that addresses all of these
requirements.

My interest in this problem arises from the analysis of a long-term mark-recapture study
of fish in a small stream system that resulted in 21,386 captures of tagged Atlantic salmon
over 47 recapture occasions. The Atlantic salmon data set spans more than a decade and
data collection continues for other species at the site. While previous analyses have used
this data set to estimate how survival of Atlantic salmon is affected by seasonality and age
structure (B. H. Letcher, Dubreuil, et al., 2004; B. H. Letcher & Horton, 2008; B. H. Letcher,
Gries, et al., 2002), I focus primarily on the response to environmental covariates.

The salmon study displays variation in timing of sampling common to complex field
studies. Sampling occasions for this study are scheduled around early April, early June,
mid September, and early December based on salmon biology. Carrying out a sampling
occasion requires two weeks of intensive in-stream work by a team of people that can be
impossible to complete during storms and potentially for weeks after extensive rainfall. For
this reason and due to other logistical constraints, samples during the decade of the study
are spread over much of the year.

Field conditions from the salmon study also challenge our ideas of environmental ef-
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fects. Environmental tolerances of Atlantic salmon are well defined in the laboratory, and
field measurements of environmental effects seem almost superfluous. However, according
to laboratory measurements, stream temperatures at the site rarely enter the zone that
prevents feeding in Atlantic salmon. During the decade of the study stream temperatures
never entered the zone that would cause mortality. Salmon are clearly capable of coping
physiologically with the range of conditions available at the West brook.

A straightforward hypothesis would be that any environmental effects on survival should
be either weak or non-existent. If the animal can survive these conditions confined to a
tank, it can surely survive just as well in its natural habitat. An alternative hypothesis
would be that in the field environmental effects act through mediating mechanisms. Low
water conditions might deplete habitat, increase antagonistic interactions, and make the
remaining stream habitat more accessible to predators. Such indirect effects could clearly
affect survival even though stream flows would never enter a range that posed a physical or
physiological challenge to salmon. Though indirect effects have been demonstrated (Breau
et al., 2007; Cunjak et al., 1998), little is known about the range of conditions that cause
them to become relevant for survival.

Adding another layer of complexity to the question of environmental effects, experience at
the study as well as the physiological and behavioral literature tell us that salmon react to the
strong seasonality of the study system. They seek season-specific habitats, season-specific
food intake rates, and are more or less territorial according to the time of the year. I expect
that environmental responses might also vary seasonally. This issue is critical because it
cuts roughly by four the sample size for estimating environmental response surfaces, leaving
about 11 sampling occasions per season.

The tools for addressing these issues are, broadly speaking, available in the statistical
literature. The challenge in applying them to ecological systems is that naive applications
do not meet the requirements outlined in the opening paragraph above, and the tools are
generally not appropriate for complex field data. Making them applicable requires non-
trivial modifications.

This dissertation presents a series of methods for discovering relationships between vital
rates and environmental covariates using field data. I discuss the likelihood calculations
required to fit each model along with the details required to extend calculations to related
models. I present each method with a simple illustrative example that includes a statistical
interpretation but limited biological interpretation. Throughout the dissertation I return to
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the Atlantic salmon system as both a statistical example and in order to answer biological
questions about the sensitivity of this species to key environmental covariates.

First I treat Atlantic salmon survival in detail, considering a set of models based on
the Cormack-Jolly-Seber mark-recapture model. Rather than replacing this basic model I
modify it to incorporate some ideas from time-to-event modeling in order to simplify the
calculations for this large data set. I use polynomial regression models with interactions to
produce response surfaces describing the seasonal sensitivity of survival to stream flow and
water temperature. While these surfaces are plausible they are difficult to evaluate at given
points in covariate space for their fidelity to the data.

Second, I illustrate how time-to-event models can be applied to univariate and multi-
variate event data collected under common observation schemes with and without uncer-
tainty. Time-to-event data includes data on emigration and survival that is critical for
measuring vital rates, as well as other studies where the time until a discrete outcome is
measured. The time-to-event literature is particularly rich and spans multiple fields. Rather
than attempt a comprehensive treatment I focus on inhomogeneous Poisson process (IHPP)
models with both continuous and piecewise constant intensity functions. These models have
a clear mathematical foundation and are appropriate for many problems with time-varying
event rates driven by outside forces. I apply these model to a laboratory example as well as
our Atlantic salmon data set.

Third, I introduce local regression as a method parameterizing the environmental sur-
faces in a more flexible way. Local regression makes it easier to designate which parts of
the estimated surface are reliable by relating both data and parameters to specific parts of
the covariate space. The method is based on seasonal multi-dimensional splines linked to
arbitrary likelihood functions using the moderately user-friendly and very extensible Stan
modeling language. Estimation is handled through a variety of algorithms included in Stan,
and the trade-off between data requirements and flexibility of the associated relationships is
tuned through the definition of knot points. I include methods for visualizing the resulting
relationships and for evaluating uncertainty of estimates, as well as implications for data
requirements. The goal is to provide a model that could be used throughout a field study
to adapt study design and maximize efficiency of data collection.

3



1.1 Prediction context

Climate change is expected to drive changes in species distributions in the future (Peterson
et al., 2002) as it has in the past (Chen et al., 2011; D’Andrea et al., 2011). These spatial
species shifts will impact the availability of species for economic exploitation (A. H. Hines
et al., 2010), as well as the effectiveness of conservation strategies particularly for species on
high-elevation islands of cool habitat (Dullinger et al., 2012), freshwater fish (Lyons et al.,
2010; Xenopoulos et al., 2005), and ice-dependent circumpolar species (Lynch et al., 2012).
Our ability to respond to species declines, expansions, and invasions is dependent on our
ability to make accurate predictions about potential future shifts in species distributions and
the processes that will bring them about. An interest in prediction is not new to ecology
but implementing practices to achieve the promised benefits (J. S. Clark et al., 2001) has
proven difficult. Our contribution focuses on estimation in the prediction context, but I first
expand on that context here.

Ecology possesses a number of frameworks that have been applied to prediction problems.
Matrix projection models (Caswell, 2001) have a rich theory and are rooted in the field of
population biology. These models were historically restricted to discrete classification of
population sub-groups but in recent years they have been extended to Integral Projection
Models (IPMs) in order to address continuous population parameters (Ellner & Rees, 2006)
while keeping much of the useful theoretical machinery. In the IPM framework the focus
is on vital rates—reproductive rates, death rates, and emigration/immigration as well as
movement rates. These models are expressive and attractive exactly because they directly
model the parameters (vital rates) that capture population-level dynamics and can be used
to predict future population trajectories.

In contrast with the population-level approach of IPM’s, Individual Based Models (IBM’s)
typically focus on parameterizing individual biology based on trait values and environmental
responses. Starting from a given population, growth and reproductive histories of individ-
uals are simulated forward. Finally, to characterize the possible future trajectories of the
population, such individual histories are reduced to summary statistics such as population
size and growth rate. Due to the focus on individual level parameters, IBM’s can benefit
from the detailed literature on physiological and behavioral responses of animals.

Tests of predictions based on IPM’s and IBM’s are important to characterizing the state
of the art with regards to prediction in ecology. However, such tests are also rare, likely
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because the models are data-intensive and data collection is expensive and time consuming
relative to other methods. Crone et al. (2013) show that the state of the art is weak and
provide some insight into the mechanisms. They constructed stage-specific matrix models
for 82 plant populations and 20 species using population-specific methods and used them
for deterministic as well as stochastic predictions of population sizes. These matrix models
were constructed from relatively high quality data—primarily stage-specific observations of
individual fates. While the matrix models did effectively represent the data (good in-sample
predictions), they performed very poorly in a five-year out-of-sample prediction exercise.

The conclusions of Crone et al. (2013) included two key points about ecological pre-
diction: 1) for poorly studied systems we can not expect predictive models to perform
accurately; and 2) even for well-studied systems, understanding responses to environmental
covariates is critical for accurate predictions. We acknowledge that many important systems
are not well studied, and that the development of techniques for prediction in these systems
is a critical area of research(Contamin & Ellison, 2009; Hastings & Wysham, 2010). Our
focus in the present manuscript is on species that have attracted sufficient resources to be
well-studied and yet remain poorly characterized in the context of quantitative ecological
predictions. Such species include many species of economic importance(Brodeur & Wilson,
1996; Krkosek & Drake, 2014), scientific model systems that could be used to understand
prediction problems in more generality, as well as other species that have attracted attention
for a variety of reasons including conservation status and cultural importance.

Constructing broadly applicable estimates of environmental effects is not a purely sta-
tistical problem as it combines statistics along with the desired interpretations of effects
relevant for prediction. Estimates embed assumptions and when those assumptions are not
met in prediction we should expect poor results. For example, estimating individual-level
environmental effects under laboratory conditions may not be relevant for predicting the
fraction of surviving individuals in the field under a given set of conditions. The general
topic is broad and not united in the literature. This dissertation contributes by focusing
on estimation of environmental responses in the context of deep interactions from complex
field studies.

Although environmental effects are clearly important in some form, there are many ways
environmental effects could be included in predictive models. The paucity of out-of-sample
model testing and validation exercises in the IPM/IBM context means we are left with no
guidelines on which environmental effects to pursue, how to include them, and what level
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of detail is relevant. Conveniently, this question is addressed extensively in the literature
on species distribution models—a context where data collection, estimation, and prediction
are all simpler exercises.

1.2 Species distribution models

Species distribution models have been broadly applied to answer questions about the po-
tential impact of climate change. Species distribution models (SDMs) are sometimes called
environmental niche models, bio-climatic envelope models, or environmental envelope mod-
els depending on the focus of the analyst. The typical application of an SDM is to describe
the realized niche of an organism and its relationship to biotic and climatic predictors
(Guisan & Thuiller, 2005). The primary goal of model building is to describe correlations
that are stable enough to provide ecological insight or generate accurate spatial and tem-
poral predictions (Guisan & Zimmermann, 2000; Wenger & Olden, 2012). Environmental
niche models are fitted to data using a variety of techniques from statistics and machine
learning including generalized linear mixed models, artificial neural networks, generalized
additive models, and maximum entropy (Downie et al., 2013; Guisan & Zimmermann, 2000;
Sundblad et al., 2009; Wenger & Olden, 2012). Different computational choices can affect
inference but they are typically less important than overall questions about the meaning of
the inferred relationships.

The early interest in SDM’s (Guisan & Zimmermann, 2000) and more recent expansion
in their use has been driven in part by their low data requirements and access to cheap GIS-
or satellite-derived predictors. The cost advantage has allowed researchers to apply SDM’s
on a continental scale (Logez et al., 2012), which would be very difficult both in terms of
data requirements and computationally for a more dynamic model.

Due to the confusing range of predictors available in the SDM context, some effort has
been put towards classifying predictors. Some predictors, particularly abiotic predictors,
can be accurately measured remotely making large-scale analysis less costly (Snickars et
al., 2014). Other predictors, particularly biotic predictors, are more costly to measure
and if used they make models more difficult to apply for spatial prediction. These practical
aspects of predictor choice must be weighed against theoretical concerns. Specifically, Guisan
& Zimmermann (2000) advocates the classification of predictors (and their gradients) as
resource, direct, and indirect. Resources are predictors that, when used by an organism, are
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not available to others, such as territories, food, or insolation. Direct predictors affect the
organism directly but are not consumed in the process such as water temperature or water
velocity for a stream fish. Indirect predictors have no direct effect on the organism but are
correlated enough with direct predictors to be useful. The correlations between indirect
predictors and more direct predictors are not necessarily stable in space or time but their
low cost and wide availability have made them a staple of species distribution models.

Species distribution models have widely acknowledged caveats in their interpretation
due to their reliance on correlations (Guisan & Zimmermann, 2000). The main caveat
is that they measure the realized niche whereas their application to prediction would be
better served by describing the fundamental habitat niche, which may be larger or smaller.
Common sources of mismatch are dispersal, interspecific competition or mutualisms, and
non-equilibrium populations either used in model fitting or in model validation. Due to these
caveats some recent modeling efforts have focused on the spatial and temporal predictive
ability of species distribution models. We discuss both spatial and temporal predictive
ability as “transferability” in the sense that the goal is to train a model on one data set and
transfer the inferred responses to environmental variables to another setting separated in
space and/or time.

Focusing on the ability to predict species presence or absence, Randin et al. (2006) as-
sessed bi-directional transferability between a study area in Switzerland and one in Austria.
They assessed transferability for SDM’s describing 54 plant species based on topography
and climate variables. They found that transferability varied widely by species and that the
models were not transferable for approximately 50-70% of species. The index used to assess
transferability is discussed in detail by Randin et al. (2006). Sundblad et al. (2009) found
better overall results for two fish (northern pike and roach) but also showed that transferabil-
ity could be directional, which highlights the need to understand the relationship between
sites used to estimate a model and its the sites it will be applied to (Barbet-Massin et al.,
2010).

Ultimately it is not environmental correlations but vital rates that control species range
distributions (Guisan & Zimmermann, 2000). In line with the focus on vital rates, Austin
(2002) pointed out that predictors can be thought of as variables chained together by cor-
relations with a distal end and a proximal end relative to vital rates. The very distal end
moves freely and it encompasses variables, such as longitude, that are only loosely related
to conditions experienced by the organism. The proximal end might include ground-level
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insolation for a forb or the body temperature of an ectotherm. The proximal end is directly
tied to the biological process affecting the organism. While distal variables are easier to
measure we rely on ecological theory and data to establish how to best relate them to proxi-
mal predictors and ultimately vital rates. In toto, this body of work suggests that assessing
direct variables and their relationship to vital rates is an appropriate area to explore in
order to advance our ability to make generalizable predictions about climate-driven changes
in species distributions.

From a theoretical point of view it is expected that predictors relevant to vital rates
would be best for prediction. However, this expectation has not been thoroughly tested
in the matrix model or integral projection model literature with the exception of (Crone
et al., 2013). It is the species distribution modeling literature, with its cheaper estimation,
prediction, and validation framework that convincingly demonstrates the importance of vital
rates.

Frequently the relationship between proximal variables and biological responses is as-
sessed in the laboratory in studies of animal physiology and behavior. For Atlantic salmon,
our focal organism, this literature yields a rich collection of detailed and generally consis-
tent measurements of salmon response to temperature stresses and different flow regimes,
as well as behavioral responses to starvation or predator exposure. From the perspective
of individual based models it appears as though we have the required response estimates
in hand for constructing a complete model. However, these responses are not necessarily
directly applicable to prediction on larger temporal and spatial scales. First, lab studies
and small scale field studies by definition do not measure endpoints relevant to long-term or
large-scale prediction. For example a lab study might measure the response of 7-day survival
to extreme temperatures whereas monthly or quarterly survival would be relevant. Second,
a lab study by definition reduces variation by removing environmental influences that will
operate in a field setting. Some of these might simply increase variation whereas others will
bias the measured outcome (e.g., survival under temperature stress in the absence of preda-
tors will be higher than with predators present). I am not aware of a literature to support
our assertions that laboratory studies are difficult to apply in the prediction context, but
I do have estimates for a wide range of parameters available and I compare them to our
environmental response surfaces for Atlantic salmon to qualitatively evaluate their utility.
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1.3 Key challenges

The general issue of parameter estimation for prediction is very broad and impacts a variety
of fields. Prediction exercises to compare competing approaches have sprung up in a number
of fields from epidemiology to genetics. Rather than attempting a comprehensive treatment,
I focus on a few important challenges.

In the first chapter I introduce our most complex field study and recurring example—an
Atlantic salmon (Salmo salar) mark recapture data set collected between 1997 and 2008. I
describe the entire set of field methods used to collect this data set as well as the relevant
life history and physiological or behavioral literature on responses to key environmental
parameters. This data set is used for three analyses: 1) an analysis of the time until
emigration; 2) an analysis of survival based on a Cormack-Jolly-Seber model adapted to
varying time intervals and multiple outcomes; and 3) a final-reanalysis of the survival data
with the same model but using local regression to describe the relationship between survival
and environmental covariates.

Long-term intensive field studies often include mark-recapture data, which is a cost-
effective way of monitoring a population in detail, by marking a hopefully representative
sub-population and monitoring its fate. We take one such data set and modify the Cormack-
Jolly-Seber model to account for multiple known and unknown fates and varying time in-
tervals between recaptures. This treatment is a half-step to a continuous-time model but it
makes it possible to construct the environmental response model without also attempting a
new model type.

Multi-year (or otherwise long-term) field studies are critical to evaluating population
responses to climate change. They are a bridge between detailed laboratory studies and large
scale species distribution models. Long-term field studies often result in complex temporal
structure in the observations due to logistical constraints and technological changes. In
contrast, most analytical methods for field data are designed around discrete time steps and
complicate the analysis of field data. In the third chapter, I demonstrate how continuous-
time methods for the analysis of discrete events can be applied to a variety of problems
typically analyzed using discrete-time methods. I use two examples—the Atlantic salmon
data set as well as a behavioral study with multi-variate outcomes.

In ecological systems we do not expect effects to act alone, but experiments that mea-
sure multiple interacting covariates are difficult to model. The quality of inference in such
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complex models is difficult to evaluate. In the fourth chapter I re-use the survival model
framework from the second chapter but modify it to use a flexible method for both quanti-
fying complex interactions and evaluating how well the data support the estimated response
surface. I illustrate this method with a small data set of stream temperature observations
and the larger analysis of Atlantic salmon survival.
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Chapter 2

Natural history and field study

In the remainder of the dissertation I use a three data sets. I use measurements from
one behavioral study on shiners and sunfish conducted by Fuller & Earley (2015). I avoid
the discussion of the scientific motivation for this study as I only became involved in the
somewhat complicated analysis after the experiment was carried out. I also use a small
subset of a dataset on water temperatures from streams in New England (B. Letcher et al.,
n.d.). The original motivation for this dissertation and the most complex examples I use are
a subset of the mark-recapture data set collected by the Letcher lab since 1997 and currently
extended by a larger group. In addition to the methods described in the following chapters,
I also contribute an analysis of stream flow and temperature effects on Atlantic salmon. I
describe the life history of Atlantic salmon and their environmental sensitivity here along
with a compilation of the field study methods.

2.1 Salmon freshwater life history

Atlantic salmon are an iteroparous salmonid that begin their life in small freshwater streams.
Generally they remain in their natal stream through the most of the juvenile portion of their
life cycle before migrating out to the ocean to complete growth, mature, and return to the
natal stream to spawn. The Atlantic salmon life cycle is a model system for life history
variation and admits many departures from this general scheme. We present a detailed
summary of Atlantic salmon life history here to provide a context for the interest in flow
and temperature effects on survival. The life history of Atlantic salmon, and therefore
salmons’ interaction with the environment, is strongly structured by stage.

Atlantic salmon begin life as fertilized eggs, buried at a depth of 15-25 cm, in coarse
gravel-to-cobble sized material. These sites, called redds, are found beneath fast (0 − 50

cm s−1), shallow (20 − 30 cm) water (Bardonnet & Baglinière, 2000). Redds vary widely
in their outward appearance and location but on a small scale they are unified by the eggs’
need for oxygenated water (Rubin & Glimsater, 1996), as well as protection from predators
and high-flow events. The development of the eggs is controlled by temperature but after
a period of 4-5 months (Heggberget, 1988), the surviving eggs hatch. The resulting alevin
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continue to develop and consume their yolk sac before they swim up through the gravel into
their new habitat. The emerging fry are small (∼ 25 mm) and with their yolk exhausted
they turn to preying on benthic invertebrates (Petersson et al., 1996) and searching for
suitable habitat. The search for prey and shelter exposes young fry to strong inter- and
intra-specific predation (Leaniz et al., 2000) and makes them vulnerable to mortality from
high flow events (Jensen & Johnsen, 1999). The limited endurance and swimming ability
of small fry result in primarily downstream movement though dispersal distances can be
significant (e.g.-∼ 1 km, (Webb et al., 2001)). Fry prefer riffles under 10 cm deep and slow
flows (20− 50 cm per second) for habitat through their first summer and transition to more
open habitat in the first autumn following hatching (Rimmer et al., 1984; Saunders & Gee,
1964).

In the autumn of their first year fry continue to grow, darken in colour, and develop
vertical marks on their sides. When the marks are developed juvenile salmon are referred
to as “parr”. Atlantic salmon parr use deeper riffles (25 − 50 cm) and faster flowing water
(10− 65+) than most other freshwater stream fish as they are able to use their fins to hold
position on the stream bottom without actively swimming (Arnold et al., 1991). When parr
settle they typically stay in their chosen home range (Saunders & Gee, 1964; Steingrímsson
& Grant, 2003) over multiple seasons or years. If the salmon survive the winter, they end
their young-of-year (YOY) stage and are referred to as over-yearling fish. This time point
is important as it marks the beginning of the first high-growth spring period. Up through
the young-of-year stage, the changing interaction between salmon and their environment is
driven primarily by their changing size and ability to move through the environment.

For over-yearling fish, size is still important but the interaction with seasonality increases
in importance. The age 1 winter following the YOY stage is the first season when growth
is minimal due to a voluntary reduction of food intake (N. B. Metcalfe & Thorpe, 1992).
Reduced food intake results in dropping body lipid reserves (Berg & Bremset, 1998) and it
is mediated by a behavioral mechanism that triggers increased feeding when lipid reserves
fall below a threshold (Finstad, Berg, et al., 2010; Finstad, Ugedal, et al., 2004). The
winter season is typically a time of severely reduced activity (Cunjak, 1988; Gardiner &
Geddes, 1980). Increased activity by fish with the smallest energy reserves appears to result
in increased mortality, likely from increased exposure to predation (Berg & Bremset, 1998;
Finstad, Ugedal, et al., 2004). The pattern remains the same for older fish in the winter
season (Finstad, Ugedal, et al., 2004), except at least some older fish begin to prepare for
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smolting and maintain growth through the winter (Sigourney, 2010).
Besides reduced activity and increased preference for shelter (Cunjak, 1988), over-

wintering fish also face decreasing stream flows and habitat availability during the early
winter period. During the mid-winter period anchor ice formation and melting affect habitat
availability (Linnansaari et al., 2009) whereas decreased water quality and habitat scouring
become more important during the warming phase (Cunjak et al., 1998). Following the
winter, most growth for the year takes places in a short period during the spring season
(Bacon et al., 2005).

While spring snowmelt and the resulting flood conditions can rearrange the stream bed
and present a challenge for many stream organisms, Atlantic salmon are uniquely adapted
to maintain position without swimming (Arnold et al., 1991) and appear to not be strongly
affected (Enders et al., 2005; Jensen & Johnsen, 1999). High flows during this period can
have positive (Davidson et al., 2010) or negative (Jensen & Johnsen, 1999) effects on growth
and only weakly affect survival (Bacon et al., 2005; Jensen & Johnsen, 1999) of over-yearling
fish. Stream temperatures also change rapidly in spring and in laboratory conditions this
often leads to increased growth (J. M. Elliott & Hurley, 1997). However, the reverse can
be true in natural conditions (Davidson et al., 2010) so the direction and magnitude of any
temperature effects on growth are uncertain.

As stream flows decrease and temperatures climb in the summer months, heat stress
becomes an important challenge for salmon (Breau et al., 2007). The physiological limits
for growth and survival in Atlantic salmon and related species are well characterized (J. M.
Elliott & J. A. Elliott, 2010), but these physiological limits can not be directly compared
to measured in-stream temperature due to a variety of behavioral mechanisms. Even in a
stream where overall water temperature is above the physiological maximum, cold ground-
water seeps or inputs from smaller, cooler streams create zones of acceptable environmental
conditions termed “thermal refugia”(Torgersen et al., 1999) and Atlantic salmon have been
shown to exploit these (Breau et al., 2007).

Early autumn marks a further decrease in growth from the summer (Finstad, Berg, et
al., 2010). Decreased growth is also matched by a shift towards slower water velocities that
would have fewer feeding opportunities and better cover (Rimmer et al., 1984). Stream-wide
flows increases and temperatures drop making temperature and oxygen stress less relevant
at this time of the year. This discussion of seasonality for over-yearling fish applies best to
those that remain as parr, and some that will smolt late in the following year. Another group

13



of fish that will smolt early in the following spring continue to grow through the autumn and
winter seasons, which suggests that they continue their regular foraging activities through
the cool autumn and winter season.

2.2 Summary of known mechanisms affecting vital rates

Based on the Atlantic salmon life history, I divide effects on survival into four groups: 1)
metabolic issues affecting time budget and predation; 2) shelter availability; 3) physiological
stress brought on by high temperatures and oxygen limitation; and 4) physical injury and
physiological stress brought on by extreme flows. These have overlapping causes but have all
been well documented for Atlantic salmon or closely related species. Our study is unlikely
to assign effects to finer categories than these due to the coarse scale of our observations.

2.2.1 time budget, feeding, predation

Atlantic salmon have a well documented seasonal activity pattern with maximum time spent
on feeding in the spring, decreasing activity throughout the summer, and a dramatic drop in
autumn. Feeding and all other activity is minimal through winter (Cunjak, 1988; Gardiner
& Geddes, 1980), increasing again in the early spring. The timing of these seasons varies
spatially, with spring feeding beginning prior to ice breakup and ending sooner in northern
latitudes. However, this pattern depends on the metabolic status of individuals. Low lipid
reserves serve as a trigger for feeding (Finstad, Berg, et al., 2010; Finstad, Ugedal, et al.,
2004) and winter feeding carries a survival cost, presumably due to predation. Metabolic
requirements related to smolt timing also interact with the time budget. Individuals in
their final freshwater winter prior to smolting continue to feed throughout the entire winter
season (N. Metcalfe et al., 1988). As allocation of time among feeding and sheltering has
been shown to be strongly related to mortality in a closely related system (Biro et al., 2003),
I expect this mechanism to apply in our system. Specifically, poor environmental conditions
can be expected to reduce growth and result in compensatory feeding either when conditions
recover or if lipid reserves are later depleted.

14



2.2.2 shelter availability

Atlantic salmon are generally territorial and this is also true of shelter locations (Harwood
et al., 2002). Attempts by salmon to monopolize shelters result in scarcity of shelters at
sufficiently high densities. At the Westbrook, shelter availability is low relative to sites
in Norway (personal communication) so I expect this mechanism to be important. Mea-
sured shelter availability has already been shown to be positively correlated with growth in
our system (Davidson et al., 2010) and I expect to see direct and indirect effects on sur-
vival through growth due to changes in time budgets. Finally, shelter availability in small
freshwater streams is strongly affected by flow. Changes in wet width modify the area of
accessible stream bed habitat and can either directly make shelters inaccessible or make
them undesirable by disconnecting shelters from feeding areas.

2.2.3 temperature stress

Atlantic salmon, like many salmonids, are cold-water species and their temperature toler-
ance has been throughly described in the laboratory (J. M. Elliott, 1991). Incipient lethal
temperatures, defined as the period of time survivable by 50% of a population, for Atlantic
salmon are 22 − 28◦C. The lower end of that range is reached in the peak of summer at
our site, suggesting that temperature stress will be a relevant mechanism, but the lack of
longer-term laboratory studies on temperature effects makes the strength of the effect un-
certain. An additional source of uncertainty is in-stream temperature heterogeneity, which
is exploited by fish seeking shelter from extreme temperatures (Breau et al., 2007; Torg-
ersen et al., 1999). Salmon growth is known to be more sensitive to temperature with
measured optimum growth temperatures of 17◦C (Bal et al., 2011) for a population from
northern France and 16◦C for a pouplation from northwest England. A previous analysis of
data from our study site also shows a consistent negative effect of temperature on growth
(Davidson et al., 2010).

2.2.4 flow velocity stress

Low flows affect survival through two other mechanisms. First they reduce habitat that
reduces shelter and feeding opportunities and can result in increased risk of predation and
a deficient energy budget. Second, low flows at times of high temperature stress can further
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limit available oxygen and thermal refugia. Direct effects of flow are expected only at high
flows when the stream bed is mobilized and holding position becomes energetically expensive.
Atlantic salmon are uniquely adapted for holding position in high flows Peake et al. (1997)
so I do not expect a strong negative effect of flow in our system, particularly for older fish.
Young of year (YOY) have more limited swimming ability and Enders et al. (2005) showed
that high flows do affect feeding behavior, which leads us to expect some stage-specific
negative correlation between extreme flows and survival. Accordingly, in another system
Jensen & Johnsen (1999) show no relationship between high flow events and survival for
over-yearling fish and only a moderate negative effect for young of year.

2.3 Study Description

The Connecticut river watershed is located on the southernmost tip of the known historical
range of Atlantic salmon on the North American continent (Parrish et al., 1998). Perhaps
salmon populations were always marginal here, which leaves open the question of why use
a field study in such a marginal environment. Clearly there are latitudinal gradients in
Atlantic salmon biology and if our goal were to parameterize prediction models for northern
populations directly on this somewhat extreme environment, we would be hard pressed to
justify such an application. Instead, our focus is on transferability and in this case we
have much to learn from comparing our general knowledge of Atlantic salmon biology and
important parameters to an extreme environment. In addition, some of what makes our
Connecticut River system extreme is expected to travel north with climate change, which
suggests that our system may provide valuable insight for northern populations. The relevant
latitudinal differences are: 1) water temperature; and 2) ice dynamics.

The southern end of the Atlantic salmon range experiences higher summer water tem-
peratures when it is thought to be most likely to affect salmon survival. This difference is
muted at the West Brook study site as our site is located in a heavily forested valley, which
reduces summer air temperatures and insolation. The study stream also receives stable
groundwater inputs in all but the most extreme summers, which tends to increase base flow
and provide a buffer against dewatering. Southern environments also generate different ice
dynamics. While anchor ice is common in our system, it rarely develops enough to limit
habitat availability, which is a concern at northern latitudes. Additionally, while surface ice
typically does develop and provides additional shelter in winter, warm winter conditions can
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result in limited or non-existent ice cover, which gives predators more access to the stream.

2.3.1 West Brook description

We carried out the mark-recapture fieldwork (42◦25 N; 72◦39 W) on the West Brook, a 6.3
kilometer long third order tributary of the Connecticut River with a 2% average gradient.
Study sections are located 1 kilometer below a reservoir that feeds the stream through an
overflow spillway. The study sections are composed of riffle-runs (depth ≤ 45 cm, surface
water velocity ≥ 20 cm/s), with 12 identified pools (depth ≥ 45cm, surface water velocity
≤ 20 cm/s). Each study section is ≈ 20 meters long with a mean wet width of 4.7 meters.

The riparian zone is forested with mixed hardwood trees, which form a dense canopy
in the summer. Summer temperatures in this stream are relatively cool (max recorded 21◦

C, 99th percentile 19.8◦ C); winter temperatures decline towards the 0-4 degree range in
December and begin to rise in early April. Surface and anchor ice formation is common
in winter but streamflow is maintained throughout the winter. During summers and in all
except four droughts (summers of 1998, 1999, 2001, 2001) the study sections of the stream
typically maintain surface flow due to groundwater contributions even when other segments
of the stream form disconnected pools. Substrate is primarily cobble and gravel with a mean
substrate size of 21.5 cm. Shelter density is low for an Atlantic salmon stream (Davidson
et al., 2010).

2.3.2 Stocking techniques

In most years (1997-2000 and 2003) salmon were brought from the White River National
Fish Hatchery (US Fish and Wildlife Service, Bethel, Vermont) and stocked into the West
Brook as unfed fry (26-28 mm fork length) at a density of 50 fry per 100 meters square in
the last two weeks of April or the first week of May. In the years 2001 and 2002, we carried
out two rounds of stocking experiments. In 2000, we used two stocking techniques. First, we
stocked five families of fish in artificial incubators at ≈ 100 fry per incubator, and allowed to
emerge naturally. Second, we stocked at 30 fry per 100 meters square at three time points in
the spring (4/13, 4/30, and 5/22) in order to compare the effect of stocking on vital rates. In
2001 we repeated the stocking time experiment with the three time points (4/17, 5/1, 5/17).
With the exception of eggs used in incubators, we used unfed fry that had consumed ≈ 92%

of their yolk for all stocking. We manipulated water temperature in order to achieve this
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developmental index despite variation in time of stocking. For stocking using incubators,
we fertilized eggs and subsequently kept them in in-stream incubation trays. In total these
efforts allowed us to analyze ten overlapping cohorts. Stocking techniques were only varied
for other experiments to explore the effect of stocking timing on early fry survival.

2.3.3 Mark-recapture technique

We captured fry and juvenile Atlantic salmon using electrofishing (300-500 volts, unpulsed
DC). The portion of the voltage range used depended on stream conditions during sampling.
Low flows required a reduced voltage and reduced pursuit time to avoid mortality. High
flow periods required a larger voltage to maintain the effectiveness of sampling. We divided
the study site into three segments. For 47 central sections, we used block nets (9 mm mesh)
to contain fish in each ≈ 20 m section. Electrofishing always started at the lowest sections
and moved upstream. Typically, one person carried an electrofishing backpack and a net,
while two others carried only nets. To capture fish, the person carrying the electrofishing
backpack, inserted the probe into the water, turned it on, and swept it through a section
of the stream. Fish within a few feet of the probe became unable to swim and we captured
and removed them to water-filled buckets. The team of three started at the downstream
end of each section and worked its way across and then up the stream. The end of the pass
occurred when the team arrived at the upstream end; at each sample we completed two
passes for each of the central 47 sections. After each pass we checked the block nets for
stunned or trapped fish. We used three sets of nets and leap-frogged the block nets upstream
to minimize the possibility that a fish might move down between electrofishing passes. For
the peripheral sections upstream and downstream of the central segment we started at the
downstream end and moved upstream, but we only completed one pass per section and we
did not use block nets.

All captured Atlantic salmon over 55 mm were tagged intraperitoneally by making a
small incision between the pectoral fins and inserting a passive integrated transponder (PIT)
tag. Scales were taken from all untagged fish to determine age. This technique resulted
in high retention (≥ 99%) and low mortality (≤ 5%) (Gries & B. H. Letcher, 2002). Any
Atlantic salmon captured were scanned for PIT tags, and their length (+/-1mm) and weight
were recorded using field computers (Juniper Systems, Logan, Utah). Recaptures were used
to establish histories of when individuals were known to have survived as well as to estimate
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recapture probabilities, which provides information on survival after last recapture.
Sampling by electrofishing rarely results in some fish mortality. Dead fish are found

either during sampling or when block nets are checked for fish prior to removal. The fate
(death) of these fish is recorded so that it is available for modeling.

2.3.4 Smolt trap techniques

From 1998 to 2001 we used a picket weir (Anderson & MacDonald, 1978) to trap emigrating
smolts. We installed the trap in April once temperatures reached 5◦C and dismantled it two
weeks after the last smolt capture. The trap was cleaned and checked for fish twice daily.
The trap was effective in 1999 and 2001 but did not operate effectively in 1998 and 2000
due to high flows. From 2001 to 2003 a combined screw trap (Scace et al., 2007) and picket
weir were used to trap emigrating smolts. The smolt traps provided limited information on
smolt timing and probability, as well as identifying some individuals that left the study site.

2.3.5 Antenna system

Emigration of tagged fish from the study site was monitored using a stationary PIT tag
antenna system (Castro-Santos et al., 1996). The configuration of antennas at the West
Brook changed over the years but generally included a pair of antennas at the downstream
end of the study site and one at the upstream end. Fish last observed at an antenna and
never again were considered permanent emigrants and their fate (survival or death) was
not modeled past that time point. From May 2001 to February 2008, a pair of antennas
(1.1 m x 0.4 m) were operating at the downstream end of the study site (Zydlewski et al.,
2006). A single antenna (1.1 m x 0.4 m) operated at the top of the study site. The antenna
system was operated in order to disentangle true survival from emigration and remove the
typical ambiguity between environmental effects on emigration and environmental effects on
survival. Individuals that were last seen at an antenna were censored and their life histories
were not modeled past that time point.

2.3.6 Discrete season boundaries

Over a decade of quarterly mark-recapture sampling, electrofishing samples generally started
in mid-March, mid June, early August, and late November. These sampling dates correspond
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Table 1: Definitions of biological seasons for Atlantic salmon.

season start stop
spring 68 140
summer 141 247
autumn 248 335
winter 336 67

to important time-points for the interaction of Atlantic salmon and their environment. The
mid-March sample is able to recapture overwintering salmon before they are able to smolt.
The June sample captures most non-smolts, early August is a time with increased mobility
by mature salmon, and the late November sample captures individuals immediately before
they become unavailable due to stream conditions (snow, ice and decreased response to
electrofishing). For practical reasons the actual timing of samples varied, making it difficult
to assign samples to seasons. Therefore I calculated season boundaries as follows:

1. Use k-means clustering (4 clusters) to assign samples four groups based on their start
dates.

2. Label each sample according to its calculated season (group).

3. Visually inspect the distribution of sample start dates grouped by season to assess the
number of early outliers.

4. Choose the start date of the third earliest sample within each season to represent the
season start date.

By following this procedure I assigned Julian days to seasons as shown in table 1:
This classification of seasons is faithful to the seasonal nature of the recapture design

but insensitive to the vagaries of fieldwork. For some models I also used the day of the year
directly as a covariate indicative of seasonality.
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2.3.7 Deviation from the typical season

To characterize environmental variation at the study site, we used a water temperature
probe and data logger at the downstream end of the study site. We also used a water depth
logger and stage-discharge relationship to calculate an index of stream discharge (m3s−1).
These covariates were measured at a high rate and summarized to daily means. Discharge
was highly skewed towards large values so I used a log10 transform to generate a convenient
covariate. Both covariates include some season-specific patterns with 1) temperature near
freezing for part of the winter, increasing in the spring and through the summer, and again
falling in autumn and early winter; and 2) flows generally increasing in the transition from
winter to early spring, dropping in through spring and summer, and typically rising again
in early autumn and winter. My goal was to characterize environmental variation around
these typical patterns, which I did as follows:

1. Calculate the Julian day for each measurement time-point from all years of the study.

2. Fit a loess smoother with Julian day as the predictor and the daily average temperature
or log discharge as the dependent.

3. Adjust the smoothing parameter so that only seasonal trends were captured by the
smoother.

4. Predict a mean daily temperature or log discharge for each Julian day.

5. Subtract the predicted value from the daily average temperature or log discharge.

The resulting covariate has a value of zero (in its original units) when the average value
for that day is at the expected value for that time of year. Positive values indicate a warmer
than typical day, or higher than typical discharge for a given part of the year. To use these
covariate values for our seasonal modeling, I calculated the mean of these values between
individual recaptures or recapture occasions, these seasonal values became our flow (F) and
temperature (T) covariates. For the recapture model only, I also used the flow on the day
of capture (Fd) calculated as above.
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2.3.8 Environmental covariate patterns

High rate covariates present a special challenge in modeling environmental responses with
coarse data. We observe survival—but never death—four times a year at most, however,
we observe environmental data at least hourly. Matching these two scales means deciding a
priori which summaries to use. There is support in the literature for a variety of summaries,
many more than we could possibly relate to our data.

In order to simplify this part of the modeling task I chose to use a seasonal component
as well as average deviation from the seasonal component as defined below. Variance in
environmental covariates can be equally important in general (Lawson et al., 2015). In our
system variance can also be important as there are documented responses to short-term
high-flow and high-temperature events. The techniques I develop could be applied to other
summary statistics but they are beyond the focus of this dissertation.

Both flow and temperature showed seasonal variation (figure 1), with the fastest changes
in temperature occuring during spring and autumn. Winter temperatures were consistently
in the 0-4 degree range, spring showed a rapid rise (≈ 0.1◦C per day), which continued
into the summer. Temperature typically peaked before the final third of the summer season
and dropped during autumn (≈ 0.1◦C per day). Winter flows were typically consistent
around ≈ 0.3 m3/s, flow rose quickly and peaked mid-spring, primarily due to snow melt
and limited absorption capacity due to frozen soils. Peak spring flows were around ≈ 0.6

m3/s. Flows decreased over the course of the summer with an initial period similar to
winter and a final low of ≈ 0.03 m3/s at the end of the season. In autumn, flows typically
returned slowly to winter levels. Environmental covariates calculated as deviations from
these seasonal patterns indicate whether a particular season was exceptionally wet, dry, hot
or cold. This means that in summer a high discharge covariate might indicate more favorable
conditions whereas in spring a high discharge covariate might indicate flood conditions with
potentially negative impacts.

As designed, seasonal boundaries clearly divide major portions of the yearly environmen-
tal cycle. Maximum observed summer temperatures are clearly below the known thermal
maxima of Atlantic salmon (J. M. Elliott & J. A. Elliott, 2010) but above the optimum
growth temperature (15◦C, J. M. Elliott & Hurley (1997)). Winter temperatures clearly
dipped into the no-growth zone (J. M. Elliott & Hurley, 1997).
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Figure 1: West Brook water temperature and flow data show a strong seasonal pattern.
Minimum winter temperatures are typically in the no growth range for Atlantic salmon.
Maximum summer temperatures are below any lethal levels from the literature. Discharge
also shows a strong seasonal pattern with high flows in spring and decreasing flows through-
out the summer. Flows return to average levels over the winter until the spring flush.
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Chapter 3

Mark-recapture in continuous time

To use mark-recapture data to estimate vital rates and their sensitivity to environmental
effects, ecologists commonly rely on the Cormack-Jolly-Seber (CJS) model (Cormack, 1964;
Darroch, 1958, 1959; Jolly, 1965; Seber, 1965) and its extensions. Most of the development
in the basic model is summarized in Lebreton et al. (1992) with Barker (1997) and Kendall,
Nichols & J. E. Hines (1997) introducing important extensions. Barker (1997) introduced a
more holistic view of mark-recapture data by incorporating (live) recapture, (live) resight-
ing, and (dead) recovery data and was an early forerunner of current work on integrating
varied data types (Schaub, Gimenez, et al., 2007). The original CJS model was restricted
to consider only two states—alive and dead—and Kendall, Nichols & J. E. Hines (1997)
extended this to multiple, sometimes unobserved, states. These models are supported by
software with Program MARK and various BUGS-language implementations being most
common. For a number of reasons we were not able to use these options (see appendix A
for details) and relied on Stan (Stan Development Team, 2014) instead.

The model I apply is best thought of as a multi-state extension of the CJS models
described in Lebreton et al. (1992). Our primary data source is the mark-recapture survey,
described fully in section 2.3. The model ignores individuals prior to their first capture.
When an individual is tagged it enters the population and can only exit the population
when it 1) dies, with probability 1 − φ; 2) emigrates and is detected by antenna, with
probability ρ; or 3) emigrates and also smolts, with probability ρ× α. The smolt trap and
emigration antennas were both assumed to be 100% effective up until the last successful
recapture, but we included undetected emigration and/or smolting as possible outcomes
after the final successful recapture. Because data on smolting is limited and emigration is
detected directly, I used a simple seasonal model for these components. I assumed both were
absorbing states. Smolting is certainly a well identified absorbing state, whereas emigration
is defined as the last re-sighting at a downstream antenna, which makes emigration an
absorbing state by definition. I do not include a model for temporary emigration.

In addition to possible detection at emigration and smolting, the CJS model assumes
that recaptures of individuals are also attempted at specific time points, labeled “occasions”.
I define a random variable X to describe whether a successful capture occurs (X = 1) or

24



not (X = 0). At each occasion, j, an individual, i, has a well-defined recapture probability
pi,j of recapture. When an individual is known to be available (e.g., is captured later) the
model for recapture is: X ∼ Bern(pi,j). When an individual was last detected alive, and is
not subsequently detected as a smolt or an emigrant, the remaining possibilities are that it
survived and was not detected; or it died. With each attempted but failed observations it
becomes more likely that the true outcome was death.

The CJS model explicitly represents each process and allowed me to separate parameters
for the survival process we are interested from parameters of the (unimportant) recapture
process. Separating component models also made it possible to elaborate the survival model
and measure environmental effects more directly rather than relying on observed patterns
of recaptures. The main cost to using this model is some ambiguity about whether a given
data set provides enough information to resolve the confounding between survival, recapture,
emigration, and smolting parameters. I address this ambiguity in the results section along
with the substantive survival estimates.

3.1 Methods

3.1.1 Notational interlude

This chapter and the chapters that follow deal primarily with events, the timing of events,
states, and state changes for well-defined units. I define the notation used to refer to these
entities here and use this notation throughout the rest of the dissertation. As much as
possible I follow conventions from the statistical literature, though I try to avoid the more
ambiguous conventions.

A unit might be an individual in a mark-recapture study that enters the study at a
specific time and remains alive until death or some other event occurs. The unit enters the
study in a given state, and events that affect the unit are observed. Individual units are
indexed by i and the time of an observation is indexed by j.

I indicate random variables by using capital letters, typically X, Y , and Z. Random
variables are associated with distributions that describe how their outcomes arise, for ex-
ample:

X ∼ Bernoulli(p)
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When I discuss a series of similar distributions and random variables, they are distin-
guished by indexing the random variables and the associated parameters, as in:

X1 ∼ Bern(p1)

X2 ∼ Bern(p2)

. . .

XM ∼ Bern(pM )

Realizations of random variables for a given unit and observation are denoted by the
corresponding letter in lower case: xi,j or yi,j . State changes (transitions) are statements
about the transition from one state to another given the probability model and parameters.
Parameters are either indicated explicitly or elided when obvious given the context and
replaced by an ellipsis.

Pr[X = xi,j |θ] = Pr[X = xi,j | . . .]

In the present context where we follow units as in a longitudinal study, we deal with the
state of a unit at multiple time points. The initial states of the units are typically observed
when they enter the study and they remain in that state until the time of a state change.
These are typically written as conditional probabilities, for example:

Pr[X = xi,j |X = xi,j−1, θ] = Pr[X = xi,j |X = xi,j−1, . . .]

When only one unit is discussed, the index i is dropped. Each observation on a single
unit xj is associated with a time point also indexed by j, written as either tj or sj . Each
observation after the first is also associated with a duration, written dj , so that the duration
from t0 to t1 is written d0.

In likelihood or probability density calculations it is often useful to distinguish between
variables that will always be fixed in the local context and those that may be integrated
out as nuisance parameters, estimated, or otherwise the focus of manipulations in a given
equation. For variables that we fix to a single value we use s, and for focal variables we use
t. When there is no useful distinction to be made we use t only. When only two time points
are in play we use s for the first and t for the second.
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In all cases indexing of units takes values from 1 to N ({i ∈ N|i ≤ N}), and indexing of
observations runs from 1 to J ({i ∈ N|i ≤ J}). I follow this pattern for any other indexes
so that a group index k would run from 1 to K and so on.

3.1.2 Probability model

The Cormack Jolly Seber (CJS) model can be written based on the state Z of each individual,
i, at time points 1, . . . , J . Z is defined as 1 when alive and available for capture and as 0

otherwise. The model and can be written as:

Zi,j |Zi,j−1 ∼ Bern(Zi,j−1 × φi,j−1 × (1− αi,j−1)× (1− ρi,j−1)) (1)

With parameters defined as per-individual and per-occasion survival (φi,t), recapture
(pi,t), emigration (ρi,t), and smolting (αi,t) probabilities. To complete this I add a simple
model for recapture outcome X, which is defined as 1 when a recapture is successful and
0 otherwise. This outcome is conditional on the state as only alive resident individuals are
available for recapture:

Xi,j |Zi,j ∼ Bern(Zi,j × pi,j) (2)

This large number of parameters is not identifiable so specific models relate these pa-
rameters to fewer higher-level parameters. The definitions of these first level parameters
are:

φ: Survival over a standard quarter-year.

p: Probability of recapture from electrofishing at a point in time.

ρ: Probability of emigration at a point in time.

α: Probability of smolting at a point in time.

The survival parameter is defined for a period of time because the data collected—
recaptures—directly informs us about the event: survival. Recapture is not dependent on
the duration of time since the last event so it is associated with an instant. It may be more
correct to think of the probability of smolting or, especially, emigration as something that
depends on the duration of time considered but the data we collect does not inform us about
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when the decision to smolt or emigrate is made. Therefore we only associate the probability
of smolting with conditions at a point in time. I use these parameters indexed by event (i:
individual, t: time) to construct per-event log likelihoods as described in table 2, which are
then summed to construct the model likelihood.

There is no closed form for the likelihood of events after the final observation when
the state is unknown and the only information brought by these terms is in terms of the
probability of not observing the individual within the study site if it happened to survive.
The recursive relationship for the probability of a non-observation conditional on survival
is:

Pr[Xt = 0] = Pr[Xj = 0|Zj = 1] + Pr[Zj = 0|Zj−1 = 1] (3)

This recursive relationship is used to sum over all the possible intervals that the indi-
vidual could have survived in order to calculate the likelihood contribution and each sum is
terminated by a death term (1−φ). In practice the terms decrease in magnitude quickly if p
is relatively high, making it practical to carry the sum out over a small number of intervals
after the last observation. An efficient non-recursive version of the sum is implemented in
the Stan program associated with this dissertation (appendix B). Note that as long as for
each individual the events are contiguous and well-defined, this model can be reinterpreted
as a continuous-time survival model.

3.1.3 Data classification

While data and events (e.g., recapture or emigration) were classified based on their associate
timepoint, processes such as survival occur over an interval of time. To match this modeling
framework we calculated the interval corresponding to each classified state and calculated
further covariates (e.g., season or average temperature) based on this interval. For a pair
of states, Xi(t

∗) and Xi(t), we defined the relevant interval m, as {m : t∗ < m ≤ t}. The
season assigned to an observation was based on this interval and due to events at season
boundaries each interval had an unambiguous season designation. The average environ-
mental covariates were also calculated for these intervals. Finally, the duration, dj , of the
interval was calculated as t − t∗ and used to scale survival probabilities to survival over a
standard quarter-year.
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Our data on survival consisted of recaptures of live individuals, some known deaths,
observed emigration, and smolt captures. The recapture process was imperfect, leading us
to use the Cormack-Jolly-Seber model (Cormack, 1964; Darroch, 1958, 1959; Jolly, 1965;
Seber, 1965) with modifications to account for both emigration and smolting. The state
(X) of each tagged individual (i) at each time point (j), is classified as follows:

Xi,j =



1, if individual i is recaptured alive at timepoint j.

2, if individual i is uncaptured but known alive at timepoint j.

3, if individual i is last detected at a boundary at timepoint j.

4, if individual i is last detected at a smolt trap at timepoint j.

5, if individual i is known alive at timepoint j.

6, if individual i is in an unknown state at timepoint j.

7, if individual i is known censored (previously dead/emigrated/etc...) at timepoint j.

Based on the data collected and the existence of an ’unknown’ state, as in the classical
CJS model, the individual state can be classified at any time point. This classification is
applied for all time points after tagging until the individual’s record is censored (i.e.-observed
death, smolting, or emigration) or until one and a half years after final capture. The choice
of time points is in part dictated by data since the time of capture, censoring, emigration,
or smolting are observed. For the remaining states, time points were assigned as follows:

X = 2: Uncaptured individuals were assigned a timepoint uniformly distributed between
the first and last capture of a given capture occasion. This state and timepoint was
only generated if an individual was not captured during a given occasion.

X = 5: Regardless of any other captures, a timepoint was generated for each individual at
each season boundary. This made it possible to unambiguously assign each interval to
a particular discrete season by dividing intervals that would otherwise cross a season
boundary.

X = 6: When individual state was unknown, timepoints were still generated to allow for
the recursive CJS likelihood calculation. Since model parameters depend on season
and age classifications, these timepoints were also generated at season boundaries.
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This classification defines all the events that we model and they are described in table
2 with their per-event likelihoods.
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Table 2: Mark-recapture per-event likelihoods. The event class matches the data classification in the text. All
parameters are individual and time-specific but these subscripts are dropped in the table for clarity. The parameters
are φ for survival, p for recapture, α for smolting, and ρ for emigration. For individuals in an unknown state we
follow the usual solution and calculate the likelihood using a recursive relationship (see equation 3).

event class likelihood description
1 φ× (1− ρ)× (1− α)× p individual is recaptured alive within the site
2 φ× (1− ρ)× (1− α)× (1− p) individual is know alive but not recaptured
3 φ× ρ individual is known alive and observed to emigrate
4 φ× ρ× α individual is know alive and smolted, emigration is implied.
5 φ× (1− ρ)× (1− α) individual is known alive and still within the site
6 f(φ, p, α, ρ) individual state is unknown, see equation 3 for likelihood.
7 0 individual is censored (known smolted, emigrated, or dead).

31



Table 3: Model structure specification for survival (φ), recapture (p), smolting (α), and emigration (ρ) parameters.
The notation is as follows: 1) subscripts indicate a discrete effect; 2) terms in parentheses indicate a continuous
relationship; 3) terms such as A×B indicate both individual factor effects and interactions; 4) terms such as A : B

indicate interactions only; 5) terms such as A,B,K, with K constant, indicate a multi-dimensional spline; and 6)
terms such as A,K, with K constant, indicate a single-dimensional spline with K knots. Each component model
is transformed through the inverse logistic transformation to generate an event probability.

Model# Survival Recapture Smolting Emigration

1 φS p(d, 4) + p(dT ) + p(d log(F )) αA ρS

2 φA×S p(d, 4) + p(dT ) + p(d log(F )) αA ρS

3 φA×S p(d, 4) + p(dT ) + p(d log(F )) + pOCC αA ρS

4 φA×S + φA+A:S(T ) + φA+A:S(F ) + φS(T × F ) p(d, 4) + p(dT ) + p(d log(F )) αA ρS

5 φA×S + φA+A:S(T ) + φA+A:S(F ) + φS(T × F ) p(d, 4) + p(dT ) + p(d log(F )) + pOCC αA ρS

6 φA×S + φA+A:S(T )
2 + φA+A:S(F )2 + φS(T × F )2 p(d, 4) + p(dT ) + p(d log(F )) + pOCC αA ρS
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3.2 Model structure

Due to the computational requirements of complex models with a large data set and the
broad knowledge base about mark-recapture techniques and Atlantic salmon biology, I chose
a set of a priori models. I estimated the models sequentially, generally moving from simpler
to more complex structures in order to discover computational problems individually and
to generate starting values for more complex models. In all cases I used weak priors that
encompassed the plausible set of effect sizes. The models are summarized in table 3. Each
component model is a linear model for an event probability and I chose to use the inverse
logistic transformation for all components to move from the linear model coefficients to the
event probability unscaled event probability.

Despite their complexity, these models are basic models for known components of our
system. Even the most complex model could be modified to capture further effects that are
known to exist from laboratory studies. I limit the analysis to these models as they can be
used to address the questions at hand and I expect the data to contain sufficient information
to estimate these effects. The simple smolting and emigration models allow us to estimate
the overall importance of these sources of apparent mortality but in the case of smolting
very limited data are available. In the case of emigration most departures are observed
and departing individuals are censored, which limits the effect of model mis-specification on
survival and recapture estimates. Model components are described below, with the following
notation:

1. subscripts and square brackets indicate a discrete effect;

2. terms in parentheses indicate a continuous relationship;

3. terms such as A×B indicate both individual factor effects and interactions;

4. terms such as A : B indicate interactions only;

5. terms such as A,K, with K constant, indicate a one-dimensional spline with K knots;
and

6. terms such as A,B,K, with K constant, indicate a multi-dimensional spline with K
knots per dimension.
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3.2.1 Recapture

The goal of the recapture model is to 1) account for missing observations and 2) to develop
a parametric structure for this accounting that can be used to evaluate the coherence of the
reporting model vis-à-vis field experience. The relevant field experience for the West Brook
system is as follows:

1. In the cool seasons, particularly winter, salmon activity is diminished and correlated
with temperature. Extremely low temperatures result in fish sheltering in the substrate
and a slow response to electroshocking, which results in lower recapture rates.

2. In the summer season, low flows result in fish sheltering in the substrate and restrict
the permissible pursuit of individuals that initially respond to electrofishing due to an
increased risk of mortality. This results in lower recapture rates for low-flow seasons
in the summer.

3. In the high-flow spring season in particular, but also in any other high-flow situation,
the increased volume of the particular stream sections makes it difficult to capture
individuals that are sighted when they initially respond to electrofishing. Decreased
recapture rates are expected in high absolute flow setting.

4. Environmental covariates aside, seasonal variation in activity and response to elec-
trofishing affects recapture rates.

5. Uncharacterized environmental variation as well as the experience of the field crews
affect recapture rates.

To capture these effects, I constructed a set of environmental, seasonal, and occasion-
specific effects on recapture rates.

It is common for mark-recapture studies to capture seasonal variation in recapture prob-
ability using a season indicator. The present study was carried out over the course of a
decade in a wide range of environmental conditions. Environmental conditions resulted in
important variation in sample start and end dates within seasons. To avoid classifying re-
captures from a single occasion into multiple “seasons”, I used a seasonal radial spline on
the Julian day of recapture, d, to model recapture probability. The radial spline uses a
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parametric basis function, f , to define the intercept βk around a given time of year, muk,
and a smooth function in between these points.

p(d,K) : logit(pi,t) =
K∑
k=1

βk × f(di,t, µk, σ
2) (4)

In addition to seasonal variation, I expect temperature effects on recapture as fish re-
spond to cold water temperatures by becoming lethargic, leading us to use centered unstan-
dardized temperature as a covariate for recapture. Flow on the day of the recapture has a
direct impact on recapture probability so I used the centered log average flow for that day
as the covariate.

p(dT ) + p(d log(F )) : logit(pi,t) = . . .+ βdT × dTi,t + βd log(F ) × d log(F )i,t (5)

Many other factors, including the number of sampling team members, the harshness
of conditions, and the experience of available team members affect recapture probability.
These effects can not be estimate independently for all occasions due to identifiability issues
but we were able to fit a per-occasion random effect (pOCC) to describe this variation.

pOCC : logit(pi,t) = . . .+ βOCC[i,t] (6)

These occasion-specific effects were constrained to be Cauchy-distributed with mean
zero and estimated variance. The heavy-tailed distribution allowed recapture probability to
be estimated as near-zero for failed samples when stream conditions were very poor. For
more common recapture conditions this distribution applies some shrinkage to the estimated
recapture effects. Relying on shrinkage is appropriate for this study due to the limited infor-
mation available for estimating recapture probability in non-robust mark-recapture study
designs.

3.2.2 Survival

The goal of the survival model is to characterize survival probability with respect to age
structure, seasonality, and especially environmental components. Environmental conditions
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change over the course of the year in a predictable way (figure 1) and are known to combine
with seasonal changes in behavior and physiology in ways that affect survival. I used the
standard approach of assigning each interval to a specific season and estimating a season-
specific intercept for survival across all age classes.

φS : logit(φi,t) =βs[i,t]

φA×S : logit(φi,t) =βs[i,t] + βa0+ × (Ai,t = 0+)+

βa2+ × (Ai,t = 2+) + βa3+ × (Ai,t = 3+) + . . .+

βaJ+ × (Ai,t = J+)+

βx,s6=2,a6=1+

Age 1+ is the intercept in this scheme, with an offset for age 0+ and a separate offset for
each of the older ages. Initially I used a series of sequentially applied offsets for older ages
to maximize the amount of information contributing to the younger age classes. In early
models age effects were clearly not very important and I simplified the age structure.

Due to the seasonal changes in average environmental conditions, I expected the response
to environmental conditions to also vary seasonally. I structured our environmental models
following the same age and season structure as the intercept models for survival. I present
the equations used to calculate coefficients here for completeness.
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φA+A:S(T ) : logit(φi,t) = . . .+

βa0+ × (Ai,t = 0+)× T + βa2+ × (Ai,t = 2+)× T+

βa3+ × (Ai,t = 3+)× T + . . .+ βaJ+ × (Ai,t = J+)× T+

βx,s 6=2,a6=1+ × T

φA+A:S(F ) : logit(φi,t) = . . .+

βa0+ × (Ai,t = 0+)× F + βa2+ × (Ai,t = 2+)× F+

βa3+ × (Ai,t = 3+)× F + . . .+ βaJ+ × (Ai,t = J+)× F+

βx,s 6=2,a6=1+ × F

φS(T × F ) : logit(φi,t) = . . .+ βs × T × F

φS(T, F, 4) : logit(φi,t) = . . .+

4∑
k=1

4∑
m=1

βk,mN((T, F ), µk,m, σ2)

The structure of the age effects and interactions mirrors that for the intercepts. The
only addition was a seasonal interaction term between flow and temperature.

3.2.3 Smolting and emigration

Data on smolting is very limited relative to the rest of the study. I used a seasonal and an
age-specific component to account for the proportion of individuals lost from the study due
to smolting. Smolting probability was set to zero for all non-spring seasons. Smolting was
estimated independently for age 2+ and age 3+ and older fish. No 1+ smolts were observed
at our site and few fish older than age 3+ were observed, which led us to aggregate all fish
age 3 and older. Data on emigration are more complete but do not span the entire study
duration which led me to use a simple seasonal model to account for emigration probability
based on antenna detections.

3.3 Mark-recapture global model results

3.3.1 Recapture estimates

For the relevant times of the year, recapture estimates are high enough (p ' 0.5) to expect
that a mark-recapture model will be effective for estimating survival parameters. When
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sampling occasions are by discrete seasons, recapture estimates are consistent regardless
of model structure. The simple 4-knot spline recapture model also generally reproduces
the recapture discrete seasonal recapture pattern (results not shown). The addition of
occasion-specific Cauchy-distributed random effects generates the same pattern but with an
exaggerated peak in summer recapture probability (figure 2). The presence of clear outliers
in recapture probability (figure 3) results from samples which were aborted when conditions
were too likely to result in fish mortality.

Although the occasion-level effects are well-estimated for the core study occasions when
sample sizes are adequate, they do display a seasonal pattern with negative winter effects and
positive summer/autumn effects. This suggests that while the combined recapture probabil-
ity may be approximately accurately estimated, a 4-knot spline may not be flexible enough
to capture seasonality of recapture and testing 5 or 6 knot splines may prove an effective
method for maintaining the conceptual separation between seasonality and occasion-specific
effects. Based on a variety of recapture models, including a simple seasonal model, as well
as a 4 knot and pathological 8 knot model, I did not see any effect on estimates or sur-
vival parameters from the choice of the recapture model structure (results not shown). The
lack of sensitivity suggests that with relatively high recapture probabilities, the recapture
histories themselves provide sufficient information on when individuals died for any given
occasion—likely within the season or two after their last capture.

In addition to solid estimates of per-occasion recapture probability, our model also pro-
duced estimates of environmental effects on recapture. Flow had a negative effect on recap-
ture (figure 2) and temperature had only a weak effect on recapture.

3.3.2 Seasonal survival estimates

Regardless of the model employed, seasonal survival is relatively high (≈ 0.75) and strong
seasonal patterns are apparent. Survival is highest in summer and winter and lower survival
in spring and autumn regardless of age category (figure 4). This seasonal pattern is very
robust with regards to model choice and all age-by-season models are shown in figure 4 with
varying shading to emphasize this point. In contrast to the strong seasonal pattern, the
full panel of models shows very limited variation in average survival by age. These seasonal
intercepts combine with season-specific environmental effects to determine overall survival
under specific environmental condition (figure 6)
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Environmental effects were estimated both with and without interactions using a variety
of recapture models. Because interactions were ultimately important, I do not present our
results about environmental sensitivity from models without interactions. Interaction terms
are generally distinct from zero, well enough estimated that MCMC sampling variation does
not affect qualitative survival patterns. Two dimensional plots of survival as a function of
temperature and flow result in clear patterns of interaction (figure 5), with temperature
having a positive effect on survival in all seasons except for summer at low flows. At high
flows, temperature has a negative effect on survival in winter and spring, temperature is
unimportant in autumn, and it has a strong positive effect in summer.

With complex interactions the plots of individual effects become more difficult to inter-
pret and it can be helpful to look at a response surface instead (figure 6). In spring the
surface shows little response of survival to temperature at average flows, but a negative effect
of temperature at high flows and a positive effect of temperature at low flows. In summer
this pattern reverses completely. Typical summer conditions still show only a weak effect of
temperature but high flow conditions result in a positive effect of temperature on survival
and low flow conditions result in a negative effect of temperature on survival. In autumn,
temperature has a weakly positive effect at average and high flow conditions, but increasing
temperatures have a strongly positive effect at low flow conditions. Unlike the other seasons,
average autumn are not at the saddle point of the surface. The winter surface mirrors the
spring with weak temperature effects at average flows, a negative temperature effect at high
flows, and a positive temperature effect at low flows. This complex set of surfaces is well
supported by the data. Much of the covariate space where effects are estimated contains
multiple resightings of individuals (figure 7). Results for the final model are presented here
(figures 6 and 7), with results for simpler models in the appendix. None of the simpler
models presented in the appendix gave results that contradict the final model.

The basic survival surface patterns described above occur in the context of seasonal
changes which are masked by z-score transformations of the flow and temperature variables.
A hot dry spring season refers to different environmental conditions than a hot dry summer.
The following presentation of results introduces these seasonal reference points.

Spring flows generally increase above winter levels, driven by snowmelt combined with
rainfall before returning to winter levels. Average spring survival is relatively low (≈ 0.72).
Environmental effects in spring suggest that the best conditions occur when high temper-
atures combine with low flows (an early spring following a low-snowpack winter) or low
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temperatures with high flows (a slow spring with a decreased rate of temperature increase,
conditions that would typically still result in a melting snow pack and disappearing river
ice). High spring temperatures combined with high flows are relatively rare (figure 7) and
it is difficult to evaluate the effect of such conditions. However, low temperature dry spring
seasons are relatively common and result in strongly decreased survival. These conditions
would imply an extended winter season and indeed the overall pattern of spring effects
matches the pattern of winter effects.

Summer is a season of decreasing flows and increasing/peaking temperatures with rel-
atively high average survival (≈ .84). Relatively low summer temperatures combined with
low flows (cool dry summer) as well as higher temperatures combined with high flows (warm
wet summer) both result in good survival. Hot dry summers as well as cool wet summers
result in strongly diminished survival.

Autumn is a season of increasing flows and decreasing temperatures with relatively low
(≈ .68) average survival. Environmental effects in autumn are weakest but still important.
Survival is highest in a warm wet autumn and decreases with drier conditions such as would
be expected following a dry summer or when the onset of higher precipitation is delayed.
Cool autumn conditions, which would generally be brought on by an early winter, also
decrease survival.

Winter flows and temperatures are stable and average survival (≈ .8) is relatively high.
Like spring, cold and dry winters or warm and wet winters both result in decreased survival,
while cold wet conditions and warm dry conditions improve survival. Winter environmen-
tal variation tends towards the kind that is bad for survival (cold/dry or warm/wet) and
therefore winter seasons that depart from the typical are unlikely to improve survival.

In order to compare these results to the more flexible local regression model I defer
discussion of these substantive results to the final discussion chapter.
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Figure 2: Seasonal estimates of recapture probability. Results presented here are from the
final model. Each line represents one draw from the posterior distribution of the effect with
low stream flow conditions resulting in high recapture probabilities (dashed lines) and high
stream flow conditions (dotted lines) resulting in lower recapture probabilities.
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Figure 3: Seasonal and occasion-specific estimates of recapture probability. Results pre-
sented here are from the final model. Seasonal-time-specific estimates at average conditions
(line) vary smoothly over the year. Sample-specific estimated recapture probabilities (dots
are medians with 95% credible intervals) constructed from the seasonal mean plus the per-
sample random effect vary widely. Some samples were excluded as the tagged population
was not large enough to estimate recapture effectively.
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Figure 4: Atlantic salmon survival estimates for each season by age group. The models
presented (differentiated by shading) all include seasonal recapture probabilities, as well as
environmental effects on recapture. Some include random effects on recapture occasions as
well as environmental effects showing that these results are insensitive to the structure of
the recapture model.
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Figure 5: Survival as a function of environmental conditions with flow classified into average,
low, and high categories. Low and high categories are defined by offsets of 1.2 standard devi-
ations. Seasons are labeled on the plot and temperature spans from low to high temperature
conditions for each season.
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Figure 6: Survival surface as a function of flow and temperature for each season. Result are
from the final linear model. Contours are labeled with estimated survival probability at the
isoline. Flow and temperature show clear interactions in determining the ultimate survival
probability.
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Figure 7: Survival surface as a function of flow and temperature, with data adequacy. The
heatmap and a contour plot match the previous contour plot. Areas of high survival are
shown in light blue and darker areas indicate low survival. The points represent environ-
mental conditions for all observed season intervals. Effects of flow and temperature vary
seasonally and interact to determine their joint effect on vital rates.
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Chapter 4

Time-to-event modeling

Discrete data observed at specific time points are common in biological experiments and
field studies. These include behavioral choice experiments (Clotfelter et al., 2006), survival
experiments (Pollock et al., 1989), visitation experiments (Muenchow, 1986), large scale
survival studies (B. H. Letcher, Schueller, et al., 2014), and monitoring using antenna arrays
(Zydlewski et al., 2006). A wide range of models is available for modeling such data from
logistic regression, survival and reliability analysis, and multiple literatures on multi-state
models. Most of these analyses, with the exception of discrete-time multi-state models
(Kendall & Nichols, 2002) were developed outside of ecology and experimental biology and
only later adapted to common data types in these fields. Survival (reliability) analysis for
fully observed data was brought into use in ecology early on by, for example, Muenchow
(1986). Continuous-time multi-state models made a more recent entry into the biostatistical
literature (Putter et al., 2007). Continuous time models only appear rarely in the ecological
literature both because of their relative novelty and the need to adapt them to the realities
of field work (Walsh et al., 2015).

Unifying these models under one conceptual framework would be beneficial to the design
of experiments and observational field studies. Using a common framework makes it possible
to express different models using a common set of parameters. It would encourage direct
comparisons of the trade-offs between more or less expensive data types with regards to
specific experimental goals.

Sharing a conceptual framework also simplifies analysis, particularly for long-term stud-
ies. Many long-term studies experience shifts in methodology due to technological innova-
tions and changing priorities. Without a unified framework it is more difficult to construct
analyses of these valuable long-term datasets. Sometimes new technological innovations are
disregarded exactly because of ambiguities about how to compare different experimental
designs.

I suggest following Muenchow (1986) and the more recent work by Walsh et al. (2015)
to its roots in the counting process and related theory. This allows the resulting model to
handle arbitrary overlapping time scales within a single experiment, and to parameterize
multiple otherwise unrelated experiments using a single set of parameters, which is a criti-
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cal aspect of combining multiple experimental designs into one analysis, particularly using
formal integrated modeling (Schaub, Gimenez, et al., 2007). At the same time these models
are able to account for the full range of censoring and other partial observations.

A counting process, shown in figure 8, is a way of describing arbitrary events occurring
in time. It gives us both a flexible way to describe the timing of these events, and a flexible
way of making the event probability calculations required for constructing a likelihood. The
process N(t) begins at zero at time t0 and remains at zero until an event occurs. An event
at time t after t0 causes the process to jump to one. The process then remains at one
until another event occurs. On the interval between any two arbitrary time points, defined
strictly as (t1, t2], the number of events occurring is N(t2)−N(t1).

0 1 2 3 4 5 6
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1

2

3

4

5

t

N(t)

↓

↓

↓

Figure 8: Graphical counting process definition. The counting process is a mathematical
formalism useful in both describing the rate at which events arrive, and the probability
of a given set of events. Here the counting process N(t) begins at zero at the origin and
generates three events indicated by arrows. One event occurs at time 2, two events at time
3.3, and one event at time 5.5 measuring from the origin.

The rate at which events occur in a counting process is defined by the associated intensity
function, typically written as λ(t), which is defined from t0 onwards and is always either
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zero or positive. When λ(t) is time-constant, it is often written simply as λ. In all cases it
is specified in terms of events per unit time.

The focus for inference is typically on the λ(t) parameter or function. The expressive
power of this model comes from flexible parameterizations for λ and it can produce a number
of commonly used models as special cases. When counts are observed, the model can reduce
to Poisson regression with offsets. Survival models as well as models from the queue theory
literature often use inter-arrival times while observations of point patterns in space are used
in kriging. Before returning to the counting process formulation in full, I review closely
related models and alternatives, focusing on ecological applications.

4.1 State of the Art

State-change models for discrete data focus on the observed state of identified units. The
individual units, indexed by i, are tracked starting at some time ti,0 and continuing until
either censoring or until they arrive at some immutable state such as death or permanent
emigration from the study area. The simplest models track only two states: one original
state detected at ti,0 and the final immutable state. Figure 9 shows an example with “alive”
as the original state and “dead” as the immutable state.

With only two states and a single time period, data such as these fit into the reliability
(Hamada et al., 2008) or survival analysis framework (Cox & Oakes, 1984; Freedman, 2008).
Specifically, these models consider the probability of event-free survival for the duration di,
followed by an event (death) at di. While many theoretical and applied papers retain the
nomenclature of survival analysis regardless of context, “survival” analysis is in practice
another word for time-to-event modeling.

Survival models cover a dizzying array of experimental variations including left- and
right-censoring, and time-varying covariates. These models cover estimation of absolute
survival probabilities as well as proportional hazard estimation that is important in settings
where absolute survival might be affected by many complex factors but a small set of isolated
factors are of inferential interest. Estimation can be carried out using standard software for
survival analysis.

Survival analysis brings to the forefront a set of issues around the choice of reference
points for measured times and the bias they can induce. Fieberg & DelGiudice (2009)
bring up a variety of ways to anchor and scale time measurements to focus the analysis on
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Figure 9: Multi-state model graphical example. Multi-state models focus on the measured
time of to transitions between discrete states. The simplest models consider only two states
and one time interval, which I show for four units.

seasonal patterns, patterns in time-since treatment, or age-dependent survival. Wolkewitz
et al. (2010) use the humorous example of actors at-risk for an Oscar, and also at-risk for
death after an Oscar to discuss sources of bias in estimates due to mistaken assumptions
about what the at-risk pool is.

One lesson of Wolkewitz et al. (2010) is that in many simple scenarios and practical
experiments, the at-risk pool is more complex than it would otherwise appear and more than
one transition needs to be considered. Figure 10 shows the states for a choice experiment
where the subject begins the trial at time ti,0 and can choose either state A or state B first,
potentially followed by the remaining choice. In this case individuals at risk to make choice
A include both individuals in the beginning state and individuals who have made choice B.
If switching between the two choices was not possible (the choice was an absorbing state)
then the risk pool would exclude individuals who made choice B from the at-risk pool for
choice A. Complex at-risk pools are better represented by a multi-state model.

Multi-state analyses have gained traction in the medical trial and epidemiological (Ieva

50



Begin

Choice A

Choice B

ti,0

ti,T

ti,T

di,a

di,b

di,a→b di,b→a

Figure 10: Continuous-time multi-state model graphical example. A more complex multi-
state model might consider the time of from the initiation of an experiment to two alternative
outcomes, shown here for only a single unit. In some contexts the choice is an absorbing
state and only one of the two can be measured on each unit. In other experiments both can
be measured and compared.

et al., 2015) literature as an effective way of comparing outcomes for groups of patients who
might follow complex trajectories from illness to recovery or some other state. They are
supported by two flexible and established packages for the R programming environment—
msm developed by Jackson (2011), and mstate developed by Wreede et al. (2011).

While both survival models and continuous-time multi-state models as implemented
handle complex state transitions, censoring, as well as individual-specific time-varying co-
variates, they require fully observed data. Censoring can not account for the case where the
state of a unit is unknown at last observation. This is one of the major barriers to apply-
ing them to field-based studies where the ability to acquire an observation is uncertain. A
second barrier is that event times must typically be observed with high accuracy relative to
the time between state changes.

Discrete-time multi-state models are increasingly common in ecology, supported by tools
like program MARK (White & Burnham, 1999) and standard BUGS language imple-
mentations (Lunn et al., 2000; Plummer, 2003). These models provide a rich and generic
framework for analysis of discrete state transitions (e.g., stage-based growth, survival, patch-
to-patch movement). They have been used to analyze survival, growth, and movement data
making them key to estimation of vital rates in field studies.
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One assumption of discrete-time multi-state models is that individuals within an exper-
iment must be sampled around the same time (figure 11). This is a loose requirement in the
sense that near-equivalent recapture times make the meaning of period-specific state change
probabilities less representative of the standard period. It can be managed by discretizing
time on a finer scale and estimating state change probabilities over multiple contiguous in-
tervals of time. Both of these work-arounds are only partial as they create ambiguity around
the meaning of parameters, multiply the required number of parameters, and therefore scale
poorly to complex datasets, which are already burdensome due to number of parameters
required.

The assumption of near-equivalent recapture times enforces planning on the logistical
side of field studies. In practice it means that the study must be designed to attempt
a capture of all individuals in the study population with non-negligible probability. The
typical logistical requirement is many people for a short period of time with multiple sets
of gear (i.e.,inefficient and difficult to plan). For studies that cover multiple years, these
logistical challenges also make it unlikely that seasonal recapture attempts will occur at the
same time of the year. Shifting seasonal sampling times make seasonal parameters more
difficult to interpret and requires the above-mentioned work-arounds.

Discrete-time models have the advantage of being compatible with many experimental
designs for field studies because they typically model the probability of detection in addi-
tion to state changes. Units are modeled as observed with a probability, typically labeled
p, so when an observation is attempted there is no guarantee that the state will be known.
Information about p comes mostly from the proportion of units that are known to be avail-
able for observation at time tj but are unobserved. In turn, if a unit is observed and then
never observed again despite repeated attempts, p helps probabilistically bound the time
that a unit might stay in its observable state. The last attempted observation time is im-
portant because after that time the calculations using p are no longer relevant and the unit
is effectively censored as in typical survival models.

The inclusion of detection probability is the main feature that distinguishes the discrete
time model structure from the continuous time model structure as available in the literature.
Discrete-time likelihood calculations with a detection probability term are straightforward
prior and up to the last successful detection time. With event probability θ, and an obser-
vation probability p, the likelihood calculations are:
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Figure 11: Discrete-time multi-state model graphical example. Discrete-time multi-state
models focus on the probability of transition between states between fixed time periods.
The simplest models consider only two states and one time interval, which I show for four
units.

Pr[X = x] =



θp, event occured and state was observed.

θ(1− p), event occured and state was not observed.

(1− θ)p, event did not occur and state was observed.

(1− θ)(1− p), event did not occur and state was not observed.

(7)

As first noted by Darroch (1959), the likelihood calculation after the final detection is
more complex but can be carried out using a recursive relationship. The recursive prod-
uct calculation can be extended up to the last observation attempt and turns into simple
censoring with the end of the study. The likelihood calculation for transition to a single
absorbing and unobservable state (common in survival models for field data) is:

θt + (1− θt)(1− pt)θt+1 + (1− θt)(1− pt)(1− θt+1)(1− pt+1)θt+2 + . . . (8)
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More states and non-observable non-absorbing states make the calculation more complex
but conceptually parallel. The summation must extend over the set of possible states that
would lead to a non-observation—either removal from the observable pool or a non-detection,
at each time step. It is not commonly implemented in the continuous time setting but see
Walsh et al. (2015) for an implementation with piecewise constant hazard functions and
section 4.2.1 for more flexible hazard functions.

The rest of the chapter is organized as follows. First, I state all the necessary details
of the counting process required for our calculations and clarify the notation. Second, I
introduce discrete-time covariates that can apply to a unit or a group over interval of time
but remain constant for the period. Third, I introduce continuous-time covariates that can
also apply to a unit or a group over an interval of time but need not maintain a constant
effect. This generalization removes the need to rely on piecewise constant hazard functions
and as a computational compromise it is implemented using integrable splines. Finally, I
discuss the recursive calculation required to implement an observation process model for
continuous-time multi-state models but leave the implementation for chapter 3.

4.2 Counting process specification

The data recorded in discrete-state continuous-time experiments are the time of occurrence
for multiple types of events. Events might be emitted by a system, such as when worker
bees arrive at a hive entrance. Equivalently events might be state changes in one of many
units composing the study, such as when an animal gives birth or when a GPS unit stops
functioning. The object of interest is the probability of an event—or lack thereof—on a
given time interval.

In any case, events of different types for a given unit (or system) can simply be laid
out on a time line. We show the point process with its corresponding counting process
(figure 12) where the counting process jumps in increments of one at each event. To use this
formalism I assume that only one event can ever occur at one point in time. In a continuous
time process this restriction is not an important constraint as even co-occurring events can
be jittered by a very short time period without significantly affecting calculations.

The Poisson process adds a weak distributional assumption to the counting process. A
Poisson process is a counting process (N(t) : t ≥ t0) with the following properties:
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Figure 12: Hypothetical timeline of events in one unit. Both the temporal point process
view of discrete-event continuous-time data, and the counting-process view are included.
The point process view corresponds to how data is often collected and visualized whereas
the counting process view corresponds to a useful formalism.

Pr[N(t0) = 0] = 1 (9)

N(tj+m)−N(tj) ∼ Poisson(Λ(tj+m)− Λ(tj)) (10)

Λ(tj+m)− Λ(tj) =

∫ tj+m

tj

λ(u)du = Λ(tj , tj+m) (11)

The properties are 1) the process always begins at zero (at some arbitrary time), 2)
between any given timepoints, tj < tj+m, the number of events follows a Poisson distribution;
and 3) the expected number of events can be re-written as an integral. When λ(t) is
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not constant this is referred to as an inhomogeneous Poisson process (IHPP) model or
less commonly as a non-homogeneous Poisson process model. The first is a probabilistic
statement of the definition of the counting process starting at zero and the second says
that on arbitrary interval, chosen by the analyst, the number of events follows the Poisson
distribution (and its mean-equals-variance assumption). While this assumption is somewhat
restrictive, it is no more restrictive than models that use discrete-time event probabilities or
piecewise-constant hazard functions as these also imply strict mean-variance relationships.
The final property of writing the number of events as an integral provides a flexible way of
specifying relationship in continuous time.

4.2.1 Time-varying rate functions

Most continuous-time models in the literature apply piecewise-constant intensity functions
to simplify the conversion between the instantaneous event rate, λ(t), and the cumulative
expected event count, Λ(tj , tj+m). I avoid piecewise-constant hazard functions to take ad-
vantage of the flexibility of a continuous time model formulation. Now I need to specify
λ(t) in a broadly applicable way. The typical requirements for λ(t) are that the function
should be easy to calculate for any given interval, positive everywhere, and that it should
be integrable. It is helpful when the function is simple to parameterize.

I suggest that radial splines with any simple-to-integrate basis functions fit these char-
acteristics. Splines can be bounded above zero either by requiring positive coefficients for
basis functions or by using a link function. Spline functions are specified as sums of basis
functions, which means integration depends only on the basis function and not the complete
spline function. Radial basis functions also provide a simple interpretation by relating the
knot weight to an approximate local intercept. A radial spline with K knots, centered at
knot points µ with scale σ is specified as follows:

λ(t) =

K∑
k=1

βk × f(t, µk, σ) (12)

Integration relies on the choice of the basis functions, labeled f above. Any integrable
basis function would work, but I use the probability density function of the normal distribu-
tion (PDFN ) for our basis functions due to their general familiarity and the availability of
integrals in most computational packages. The integral of the PDF is the cumulative distri-
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bution function used in common theoretical quantile calculations. Due to this property, the
relationship between the instantaneous event rate and expected event count is as follows:

Λ(s, t) =

∫ t

s
λ(x)dx ==

∫ t

s

K∑
k=1

βk × PDFN (x, uk, σ)dx =

=

K∑
k=1

βk ×
∫ t

s
PDFN (x, uk, σ)dx ==

K∑
k=1

βk × CDFN (x, uk, σ)|ts =

=

K∑
k=1

βk × [CDFN (t, uk, σ)− CDFN (s, uk, σ)] (13)

The flexibility of this function is established either by limiting the number of knots
as appropriate to the problem at hand, introducing a penalty term for differences in knot
weights or the curvature of the resulting spline, or introducing an equivalent penalty by
placing priors on the knot weights. Frequentist approaches are discussed by Wood (2006),
and Bayesian formulations are also well established with Eilers & Marx (2010) as the canon-
ical reference. For simplicity I limit the number of knots in our applications as I know
the general temporal scale of patterns I am interested in and fine-scale data are often not
available in ecological applications.

4.2.2 Event time calculations

The Poisson process model discussed above gives a straightforward way to calculate the
likelihood for a flexible intensity function, λ(t), and counts of events that arrive in batches
where

Y ∼ IHPP(Λ(tj , tj+k)) (14)

Estimating this model requires observations of the batch count, yi,j , the start time of
counting for the batch tj , and the end time of counting for the batch, tj+k. This is a common
data type and a relatively flexible model.

When arrival times are observed in more detail than batch counts, they can always
be summarized to batch counts. However, summarizing them makes it more difficult to
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characterize changes in λ(t) within batches. Fortunately, it is possible to look at inter-
arrival times directly by transforming the count model into an inter-arrival time model that
deals more naturally with data at the single event level.

I present a generic IHPP model for time-to-event data below. The random variable for
IHPP-distributed event times is T and the realizations of event times are ti,j . To complete
the model I specify a random variable Zi,j that takes a value of 1 when the event time is
observed and a value of 0 when the event is not observed. The probability of observing an
event at time ti,j given that it occurs is p and zero otherwise.

Ti.j+k ∼ IHPP(Λ(tj , tj+k)) (15)

Zi,j+k ∼ Bern(pi,j) (16)

The matching indexing between T and Z indicates that a realization of Z is defined
only when an event occurs. This is a common all-or-nothing observation process where and
observation is acquired with probability pj if and only if an event occurs.

These random variables have associated realizations ti,1, . . . , ti,J observed on specified
intervals. For a single process in either the univariate or multivariate context we might be
interested in likelihoods for any of the following:

• A single event observed at s2 after s1.

• A single event observed on the interval (s1, s2].

• No event observed on the interval (s1, s2].

• No event observed on the interval (s1, s2] with imperfect observations.

• A single event not observed on the interval (s1, s2], when the probability of detecting
events from that interval is p

I discuss each of these in turn below. With these calculations in hand it is possible to
compose a model matching any of the event models I review above and integrate inferences
from different models using shared parameters.
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4.2.3 Univariate likelihood calculations

4.2.3.1 No event observed on the interval (s1, s2]

In complex studies with time-varying covariates and many discrete periods, the no-event
and single-event likelihood calculations are common. The no-event calculation arises when
a unit crosses some discrete time boundary—for example the end of a study or an arbitrary
boundary between seasons—without experiencing an event. The corresponding likelihood
calculation for no events on the interval [s1, s2) uses an implied but still unknown density
function for event time—p(t|t > s1, λ(t))—which can be turned into a direct calculation
using the Poisson probability mass function:

`(λ(t)|t > s1, t > s2) =

∫ ∞

s2

p(t|t > s1, λ(t)) =

= Pr[N(s2)−N(s1) = 0|Λ(s1, s2)] = exp(−Λ(s1, s2)) (17)

The first step restates the desired likelihood as the integral of an unknown density func-
tion. The second step transforms this into its corresponding counting process specification,
and the final step relies on the Poisson probability mass function producing zero events. I
use this expression to derive the rest below.

4.2.3.2 A single event observed on the interval (s1, s2]

The single-event on an interval calculation arises when an event does occur at an unknown
time t on the interval (s1, s2]. This corresponds to when a state-change occurs during a
study and only the state changed is available for observation, not its time. The single-event
likelihood calculation can be derived from the no-event starting point. It is worthwhile
pointing out that the second step of the probability calculation is much more complex than
the rest and I avoid expressing it in detail.

`(λ(t)|t < s2, t > s1) = Pr[N(s2)−N(s1) > 0|Λ(s1, s2)] =

1− Pr[N(s2)−N(s1) = 0|Λ(s1, s2)] = 1− exp(−Λ(s1, s2)) (18)
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This likelihood is also the cumulative density function of the first arrival time of the
IHPP after s1, which I can use to define the density function for the first arrival time after
s1.

4.2.3.3 A single event observed at s2 after s1

The single-event at time s2 calculation occurs when the time of the event is observed pre-
cisely. The density for a known arrival time can be calculated from the derivative of the
CDF from above with respect to the arrival time.

`(λ(t)|t = s2, t > s1) = p(t = s2|Λ(s1, s2), t > s1) =

d

dt

[
1− exp(−Λ(s1, s2))

]
= exp(Λ(s1, s2))×

[
d

dt
Λ(s1, s2)

]
(19)

In the piecewise-constant version of the NHPP model, Λ(s, t) is λ× t and the remaining
derivative is simply λ following Walsh et al. (2015). I maintain a little more generality by
assuming that Λ(s, t) has a derivative with respect to t, which I write as λ(t) following the
definition of the properties of the IHPP. In both cases λ(t) is a rate with units of events per
unit time. If the rate is constant, the number of events on an interval is simply λ× t, which
produces the correct units:

# of events
day

× # of days = # of events (20)

The density for inter-arrival times that I need for the single-event likelihood calculation,
is then:

`(λ(t)|t = s2, t > s1) = λ(s2) exp(−Λ(s1, s2)) (21)

The single event calculation is sufficient to define the product for a likelihood of a
series of successive events, but it becomes inconvenient when sequential arrival times must
be integrated out. In that case the direct Poisson model may be more appropriate. An
alternative for a set of J events on an interval (0, tJ ], appears in Yakovlev et al. (2008),
which gives an expression for a complete set of events. This expression must typically be
calculated using numerical integration but certain forms can be simplified:
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p(s) =
1

Λ(tJ)

[
λ(s) exp(−Λ(s)) +

∫ tJ−s

0
λ(t)λ(t+ s) exp(−Λ(t, s))dt

]
(22)

It considers all possible inter-arrival times for all possible total event counts on the
interval. I only include it for completeness and do not apply it further.

4.2.3.4 No event observed on the interval (s1, s2] with imperfect observations

The case of partially observed event times arises in the ecological literature more than
in areas where continuous-time survival has been applied historically. Up until the final
observation, calculations are carried out as above with additional p or (1− p) terms in the
likelihood product. After the final observation there are two general cases. The first is
only relevant when the event is a change in observable state such that the new state can
be observed after the event takes place. Observations are attempted at discrete times with
probability of success p and the likelihood of a non-observation is calculated. In the second
case, there is a probability p of observing any particular event that occurs at time t.

The first problem is typically solved in discrete-time models following Darroch (1959)
using a recursive calculation for observations occurring with probability p at discrete times.
The recursive calculation also shows up in the continuous case but only as a final computa-
tional step.

I calculate the likelihood as follows. First define the interval when the event occurs as
some time in the future after s1; I write this (s1,∞). Second I define our observation data
as x1, . . . , xJ , with associated random variables X1, . . . , XJ and the times when the data
were collected as t1, . . . , tJ . The model for the observed data is then Bernoulli with p for the
observation probability and an indicator function that is one when the observation times tj
are less than the unknown event time t and zero otherwise.

Xj |tj , t, pj ∼ Bern(1tj<t × pj) (23)

The likelihood for our non-observations with an unknown event time t after s1 is then:

`(λ(t), p) = f(x1, . . . , xJ |λ(t), ~p, s1) (24)

This can be rewritten in terms of an integral for the likelihood with a known event time
and all observations in ~x equal to zero:
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`(λ(t), ~p) =

∫ ∞

s1

`(λ(t)|t = s2, t > s1)`(~p|~x, t)dt =

=

∫ ∞

s1

λ(t) exp(−Λ(s1, t))

J∏
j=1

(1− (1tj<t × pj))× dt (25)

All the continuous-time calculations here can be carried out with time boundaries be-
tween continuous periods at observation times (or other arbitrary boundaries) since no event
is ever directly observed. Ultimately the integral here must be computed in a piece-wise
fashion due to the indicator functions and an example appears in equation 25.

4.2.3.5 A single event observed at s2 when the probability of observing a
given event is p

A second case of partially observed events occurs when observations are continuous but can
only be made successfully with probability p when an event occurs. If no auxiliary data are
available, the observation parameter is fully confounded with the observation probability
leading to pλ(t) as the inferred rate function. If auxiliary data are available, model-based
inference of p can be used to reduce confounding. The model-specific discussion is beyond
the scope of this section.

4.2.4 Multivariate likelihood calculations

Multivariate time-to-event calculations follow the same patterns as the univariate calcula-
tions but also consider the issue of competing risks. With K competing processes, an event
from processes 1 at time t means that no events occurred from competing processes. Exact
calculations can still be relatively straightforward when t is observed but become difficult
when t is unobserved. In all cases I consider K competing independent processes. For each
independent process, the distribution of inter-arrival times follows the inhomogeneous Pois-
son process distribution as above with the random variables T1 through TK and the dummy
variables t1 through tK with the first-event time density functions:
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p1(t) = λ1(t1) exp(−Λ1(0, t1)) (26)

. . . (27)

pK(t) = λK(tK) exp(−ΛK(0, tK)) (28)

Due to independence, the joint distribution is simply the product: p(t1, t2, . . . , tK) =

p1(t1)p2(t2) . . . pK(tK). The calculations below are stated as integrals over this joint distri-
bution. Where I can, I maintain generality by using λ(t) and Λ(s, t) but in cases where only
the homogeneous case can be simplified, I assume homogeneity and use λ and λ× (t− s).

4.2.4.1 No event observed on the interval (s1, s2]

When no event occurs on (s1, s2], it is known that none of the processes produced an event,
or equivalently the probability that the event occurred after time t2. The corresponding
calculation, starting from the joint distribution and following the definition of a no-event
likelihood derived above is:

`(λ(t1), . . . , λ(tK)|t1 > s2, . . . , tK > s2, t1 > s1, . . . , tK > s1) =

Pr[t1 > s2, . . . , tK > s2|t1 > s1, . . . , tK > s1] =∫ ∞

s2

. . .

∫ ∞

s2

K∏
k=1

pk(tk|s > 1, λ(tk)) =

K∏
k=1

exp(−Λ(s1, s2)) (29)

When no events occur there are no interactions among the K processes and the joint
likelihood is simply the product of the univariate likelihoods.

4.2.4.2 A single event observed on the interval (s1, s2]

When an event occurs somewhere on (s1, s2], the calculation is complicated by competing
risks. Assuming the event from process j occurs at time tj , we learn about the outcomes
of a variety of processes. Namely process j produced a single event and failed to produce
any further events, whereas the remaining processes produced no events. I start from the
joint density for single events, p(t1, . . . , tK |t1 > s1, . . . , tK > s1), specified as the product of
individual process densities. The interval is divided into two time periods for process j so
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it enters the product twice, once anchored at s1 and once anchored at tj . I integrate over
(s1, s2] for the no-event processes, and I integrate from t1 to s2 for the single event process.
Unfortunately I do not know where on (s1, s2] the point t1 is found, so I integrate t1 over
the interval as a final step.

`(λ1(t1), . . . , λK(tK)|t1 > s2, . . . , tj < s2, . . . , tK > s2, t1 > s1, . . . , tK > s1) =∫ s2

s1

pj(t = tj |s1)dt
∫ s2

tj

pj(t|tj)dt
∫ s2

s1

. . .

∫ s2

s1

K∏
k=1,k 6=j

pk(t)dt

 dtj =

∫ s2

s1

λ(tj) exp(−Λj(s1, tj)) exp(−Λj(tj , s2))

K∏
k=1,k 6=j

exp(−Λk(s1, s2))

 dtj =

K∏
k=1,k 6=j

[exp(−Λk(s1, s2))]× exp(−Λj(s1, s2))×
∫ s2

s1

λj(tj)dtj =

K∏
k=1,k 6=j

[exp(−Λk(s1, s2))] exp(−Λj(s1, s2))Λj(s1, s2) (30)

In certain situations, particularly when events are state changes, the processes active
before tj are not necessarily the same as after tj that leads to a similar set up but does
not simplify as far. I start again from the joint density but this time I divide it into events
before tj when processes from set A are active and events after tj when processes from set
B are active. For a known tj the likelihoods for the two sets are:

`(λ1(t1), . . . , λK(tK)|ti∈A > tj , tj = t, ti∈B > s2, ti∈A > s1, ti∈B > tj) =

pj(tj = t|s1)
∫ tj

s1

∏
k 6=j,k∈A

pk(t)dt×
∫ s2

tj

∏
k∈B

pk(t)dt (31)

Since tj is unknown and present somewhere between s1 and s2, the final expression
integrates over the possible values of tj .
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`(λ1(t1), . . . , λK(tK)|t1 > s2, . . . , tj < s2, . . . , tK > s2, t1 > s1, tK > s1) =

Pr[tj > s2|tj > s1, . . . , tj < s2|tj > s1, . . . , tK > s2|tK > s1] =∫ s2

s1

pj(t = tj |s1)
∫ tj

s1

∏
k 6=j,k∈A

pk(t)dt×
∫ s2

tj

∏
k∈B

pk(t)dt (32)

Simplification would typically be model-specific or require a homogeneous Poisson pro-
cess assumption.

4.2.4.3 A single event observed at s2 after s1

A single event likelihood at a known time can be calculate as part 1 from above with a
known tj :

`(λ1(t1), . . . , λK(tK)|t1 > s2, . . . , tj = s2, . . . , tK > s2, t1 > s1, tK > s1) =

Pr[t1 > s2|t1 > s1, . . . , tj = s2|tj > s1, . . . , tK > s2|tK > s1] =

pj(t = tj |s1)×
∫ ∞

s2

K∏
k 6=j

pk(t)dt = λj(tj) exp(−Λj(s1, tj))×
K∏
k 6=j

exp(−Λk(s1, s2)) (33)

4.2.4.4 No event observed on the interval (s1, s2] with imperfect observations

Sometimes the events are not observed, but the state can be observed, before the event only,
with a fixed probability. If only a single event is possible (e.g., transition to an absorbing
state) the likelihood is much like the univariate form discussed above.

`(λ1, . . . , λK , ~p|x1 = 0, . . . , xK = 0, t1 > s1, tK > s1) =

K∑
j=1

∫ ∞

s1

λ(t) exp(−Λj(s1, t))
∏

j∈(s1,t]

(1− pj)
K∏

k=1,k 6=j

exp(−Λk(s1, t))dt (34)

In practice the integral must be calculated piecewise using the components defined above.
For an example see equation 25. When the states that lead to the end of detectability are
not absorbing states the sum must cover all possible ways that non-detectability can arise
and I do not cover that case here.
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4.3 Behavioral choice example

I illustrate a simple three-state model with a behavioral experiment on bluenose shiner car-
ried out in order to understand their nest choice. The goal of this example is to illustrate
the continuous-time likelihood calculations on a simple multi-variate model with competing
states. I simplify this example by considering only a homogeneous Poisson process with inde-
pendent rates for different events. The complexity of the calculation comes from calculating
competing forward and reverse transitions on the intervals.

A simpler discrete-time approach might model the probability of each transition over
a discrete period of time but that construction makes it awkward to consider competing
transitions, particularly reverse transitions. Intuitively, a high rate of reverse transitions
makes it more likely that when a transition from A to B is observed between s1 and s2, the
transition occurred closer to s2 than it might otherwise.

4.3.1 Background and methods

The bluenose shiner is a freshwater fish with an interesting egg-laying behavior centered on
the longear sunfish. Longear sunfish are significantly larger than the shiners and male sunfish
build and defend a nest. Shiners search for sunfish nests and lay their eggs alongside sunfish
eggs with no evidence of a parasitic relationship. The relationship appears to be an example
of a mutualistic nest association. Shiners benefit from nest defense by the larger sunfish
and sunfish potentially benefit by having the effect of any successful predation diluted by
the shiners’ eggs. There is also some evidence (Adam Fuller, personal communication) that
sunfish with longer opercular flaps (“ears”) perform better at nest defense.

Fuller & Earley (2015) carried out an experiment to test the hypothesis that shiners in
search of a nest location would prefer the nest of a sunfish with a longer opercular flap.
For each experimental trial, a 120 cm long tank with five compartments was prepared by
placing sunfish in either one or both end compartments (30 cm long by 30 cm wide by 30
cm high). The end compartments were separated from the rest of the tank by a mesh which
was too small for the sunfish to pass through but large enough for shiners to move through
freely. The sunfish were experimentally manipulated to have one of three opercular flap
lengths—short, medium, or long. This ultimately resulted in five experimental treatments
defined by the presence of one or two sunfish and their respective opercular flap length(s)—
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long vs. medium, long vs. short, long vs. empty, medium vs. short, and short vs. empty.
The three middle compartments were left empty. To prepare a trial, typical reproductive
groups of two male and one female shiners were placed in the central compartment and
kept there with removable partitions. To start a trial the partitions were removed and the
movement of the shiners were videotaped. Rather than using shiner egg-laying behavior as
the endpoint, videotaping continued for 30 minutes from the start of the trial. Based on the
video, the locations but not identities of the three shiners were recorded every 20 seconds.
Details about randomization, acclimatization, and other experimental details can be found
in Fuller & Earley (2015).

The goal of the experiment was to use location, specifically movement towards sunfish
with longer ear flaps, as a proxy for more complex nest preferences. There are a number
of difficulties with this experimental design. First, it is unclear whether preference for
one side of the tank correlates with egg-laying behavior. Second, the object of interest is
the individual behavior but individuals are not identified in the data, rather three sunfish
position are identified purely by ordering: left, center, and right. Third, the “choices”
available to the shiners were not final. Shiners might quickly move to one side and, having
made an internal choice of nesting location, might move away.

The difficulty with interpretation of a non-final choice of location as a proxy for a more
complex behavior is beyond the scope of this analysis. I address the difficulty of using loca-
tions without identities by evaluating the correlation of locations among the three shiners.
High correlation would suggest that a single summary of group location might contain ade-
quate information for an analysis whereas low correlation would mean more complex group
dynamics were present. I address the non-final nature of the available choices by focusing
the model on the time to transitions between discrete segments of the tank.

In the following analysis, tracks of summary statistics are presented rather than tracks of
individuals. The decision to explore the behavior of well-defined summary statistics comes
from the fact that individual identities are not known. I use the order statistic of shiner
positions (left-most shiner, center shiner, right-most shiner) as well as the group median
(effectively the position of the center shiner).

Intermediate positions in the tank might be meaningful, but we can simplify the analysis
by focusing on three states—which we label as unsure (U), left (L), or right (R). Shiners were
assigned to the left (L) state when they were in the leftmost 30 cm of the tank, they were
assigned to the right (R) state when they were in the rightmost 30 cm of the tank, and they
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were assigned to the unsure (U) state otherwise. I consider the time to transition between
any of these states to summarize a given experiment and we compare estimates across groups
to derive inference about preferences. The resulting state and transition duration diagram
is shown below in figure 13.

Unsure (U)Left (L) Right (R)

di,L→U

di,U→L

di,U→R

di,R→U

di,L→R

di,R→L

Figure 13: Three states of the shiner experiment. The states are: left (L, leftmost 30 cm
of the tank), right (R, rightmost 30 cm of the tank), or unsure (U, elsewhere), match the
concept of “choice by location”. The observational data can be converted into a time-to-
event format (where an event is a state transition) and the probability of a transition to
either choice can be modeled and compared across groups to produce inferences about the
biological process.

4.3.2 Exploratory analysis

One important choice in analyzing this data set is whether to analyze all three location
or whether it is possible to characterize group position overall and analyze the group-level
decision making. Analyzing the experiments at the group level is more compatible with the
conceptual framework of the experiment and simpler so it is the preferred choice if feasible.

To assess whether a group-level observable can be generated, we plotted the distance of
each individual from the bottom left corner of the tank over time. In general shiner loca-
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Table 4: Correlations among shiner locations by treatment group.

treatment LHS corr. RHS corr.
long vs. medium 0.87 0.95
long vs. short 0.80 0.79
long vs. empty 0.86 0.81
medium vs. short 0.77 0.85
short vs. empty 0.84 0.83

tions were highly correlated to the point where analyzing separate tracks would yield little
additional information. Some experiments show high correlations among order statistics
(figure 14, top two panels). A smaller number of shiner groups also displayed fusion-fission
dynamics (figure 14, bottom left panel) which occur in many group-living species (Conradt
& Roper, 2000) but are present here primarily as a nuisance feature of the data. Fusion-
fission dynamics make it more difficult to characterize the group choice, particularly with
a very small group. Finally, a few groups exhibited more complex group behavior such as
frequent splitting or an individual displaying limited movement while being visited by the
others (figure 14, bottom right panel). I show a limited set of plots here but I generated
and inspected plots for all experiments to assess the viability of a group location definition.

Overall the shiner movements are highly correlated within the group. I calculated Spear-
man correlation in the distance to the lower left corner by video. The plot by experimental
group of these correlations is shown in figure 15 and generally shows high correlation with
no apparent difference based on the side of the tank with a larger sunfish.

I also calculated quantiles of the group-wise correlations which are shown in table 4.
While there is a substantial amount of variation in correlation among videos, the different
treatments do not appear to have a strong effect on in-group correlation. This makes us
confident that a choice of group summary would not bias a comparison among treatments.

Based on these summaries and visualizations we choose the central shiner as our sum-
mary of the group location. In cases when the group position is highly correlated this
choice does not matter much. In cases where the group splits, at least two fish tend to
stay together and the middle fish will track the pair. In no experiment does the group split
entirely, though some groups do show significant movement over short periods of time and
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our summary may not capture this movement effectively.

4.3.3 Model specification

Since the experiment is observed regularly, we have regular observations of the time t, and
the state X(t) which indicates where the focal fish is located. Since the process for arriving
at a state is interesting, rather than the state itself, we model the time between state-to-state
transitions.

A variety of models might be appropriate for this dataset. We focus somewhat artificially
on a counting process model with a constant per-transition intensity function with parameter
λ. The result of picking this intensity function is an implied exponential distribution for
transition times, which simplifies calculations for this multi-variate problem. We estimate
λ parameters for each non-self transition in figure 13 and each experimental treatment.

As discussed above we choose the middle shiner to summarize group position. To gener-
ate time-to-event data, we classify the position of this shiner as either left (L), unsure (U),
or right (R) states. We make an approximate likelihood calculation. In continuous time, for
an observed transition U → R, the exact likelihood is a sum of the likelihood for one, two,
or more transitions. We truncate this calculation at the single transition likelihood plus the
two-transition likelihood due to the relatively frequent observations and limited likelihood
contribution of the many-transition likelihoods.

The transition to self is simplest. A transition to self is modeled as a non-event with re-
gards to the other available other transitions. For example, the likelihood for the “transition”
U → U on the interval (s1, s2] is:

Pr[tU→R > s2, tU→L > s2|tU→R > s1, tU→L > s1] = exp [−(λU→R + λU→L)× (s2 − s1)]

(35)
A transition from one state to another is more complex as the first term includes a com-

peting risk of the alternative transition in a three-state system but for constant λ parameters
and one event on the interval (s1, s2], it can be written as the single-event on an interval
probability from above, multiplied by the probability of no competing event and no reverse
events. We start from the desired probability statement for all t’s and restate it in terms of
the joint density for independent p(tU→R, tU→L, tR→U, tR→L):
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Pr[tU→R < s2, tU→L > tU→R, tR→U > (s2 − tU→R), tR→L > (s2 − tU→R)|

tU→R > s1, tU→L > s1, λU→R, λU→L, λR→U, λR→L] =∫ s2

s1

∫ ∞

tU→R

∫ ∞

s2−tU→R

∫ ∞

s2−tU→R

p(tU→R|tU→R > s1, λU→R)p(tU→L|tU→L > s1, λU→L)p(tR→U, tR→L|λrtu, λrtl)dtR→UdtR→LdtU→LdtU→R =

λU→R exp(−(λR→U + λR→L)s2) exp((λU→R + λU→L)s1)

−1(λU→R + λU→L − λR→U − λR→L)
×[

exp(−(λU→R + λU→L − λR→U − λR→L)s2)− exp(−(λU→R + λU→L − λR→U − λR→L)s1)
]

(36)

In general this can be written using the rate function for the event, λE , the rate function
for forward events, λF , and the rate function for the reverse events, λR where both λF and
λR sum their component rate functions.

λE exp(−(λR)s2) exp((λF )s1)

−1(λF − λR)
×
[
exp(−(λF − λR)s2) − exp(−(λF − λR)s1)

]
(37)

In the corner case where λU→R + λU→L equals λR→U + λR→L the above expression is
undefined and taking a different path to the integral results a simpler expression:

Pr[tU→R < s2, tU→L > s2, tR→U > (s2 − tU→R), tR→L > (s2 − tU→R)|

tU→R > s1, tU→L > s1, λU→R, λU→L, λR→U, λR→L] =

λU→R exp(−(λR→U + λR→L)s2) exp((λU→R + λU→L)s1)× (s2 − s1) (38)

In general it is possible to have multiple events within a single interval. The general
calculation follows the pattern above but may require numerical integration and is beyond
the scope of this example. Instead of attempting the entire calculation, we instead assume
that the system is observed frequently enough that multiple transitions make a negligible
contribution to the likelihood.

The full table of possible transitions and their event likelihood contributions are shown
in table 5 below.
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Figure 14: Tracks of shiner position order statistics as distance from the left hand side
of the tank over time. Shiner group behavior was typically straightforward with all three
individuals forming a tight group (top two panels). Some groups displayed limited fission-
fusion dynamics (bottom left panel) and some groups displayed much more complex behavior
(bottom right panel) which would be difficult to interpret as any sort of preference for one
side or the other.
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Figure 15: d

istance from the bottom left corner of the tank by treatment group.]Experiment-wise cor-
relation of location among shiners within a group. Position was measured as distance from
the bottom left corner of the tank. The x-axis is correlation of the left hand side and middle
fish, and the y-axis is the correlation of the right hand side and middle fish. Correlations
are generally high with > 54% of experiments having a minimum correlation above .7573



Table 5: Per-event likelihood for the shiner movement data set. The states are: S(ti, ti+1) : S ∈ L,U,R. and a
transition is defined by a pair of states.

Transition No. Transition `(T |λi)

1 U → U exp [−(λU→R + λU→L)× t)

2 L → L exp [−(λL→U + λL→R)× t)

3 R → R exp [−(λR→U + λR→L)× t)

4 U → R see eq. 36 , if λA→B + λA→C 6= λB→A + λB→C

see eq. 38 , if λA→B + λA→C = λB→A + λB→C

5 U → L

6 R → U

7 L → U

8 L → R

9 R → L
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The complete likelihood is the product over individuals and time points. As a result
of these nine possible transitions, we have six rate parameters for each video, grouped by
treatment group. We code this model in the Stan language and fit it using Hamiltonian
Monte Carlo as implemented in Stan (Stan Development Team, 2014).

4.3.4 Results

In all the following results, the left hand side (L) is the side with the larger sunfish (if there
were two sunfish in the tank) or the side with a sunfish (if there was only one sunfish). The
sides were originally randomized but are rearranged here to ease interpretation.

One way to measure preference in this system would be to look at the symmetry of
estimated transition rates within each treatment (figure 16). If shiners had no preference
for one or the other side of a tank, the difference between transition rates U → R and U → L,
or R → U and L → L should be about zero. For simplicity I present only these two pairs of
transition rates. For all treatments except the medium-vs-short treatment the forward bias
(transition out of the uncertain state, λU→R − λU→L) was estimated to be near zero, with
95% credible intervals covering zero. For the medium-vs-short treatment, there was bias
towards the larger opercular flap. The picture is similar for reverse bias (transitions out of
the left/right side towards the center, λR→U − λL→U) with all except the medium-vs-short
treatment and the long-vs-short treatment having estimates of near zero bias. For the two
treatments with non-zero bias it is estimated positive which means transitions from the fish
with the larger opercular flap are more comment than transitions away from fish with a
smaller opercular flap.

An alternative method of comparing treatments is to look at a given rate and check
whether it differs among treatments (figure 17). The benefit of this approach is that it
does not assume any given pattern of rates in the absence of a preference. For two rates
(λU→R and λU→L) and all treatments (figure 6fig:shiner-lambdas) the estimated rates and
their credible intervals ranged from ≈ 0.025 events per minute to ≈ 0.15 events per minute.
The lowest rate (≈ 0.025) was λU→R for the medium-vs-short treatment, which was much
lower than λU→L for that treatment (≈ 0.15). All other treatments had approximately
equal rate estimates (≈ 0.15) with broadly overlapping credible intervals. Only the short-
versus-empty treatment differed, with both rates ≈ 0.075. These rates show clear differences
among treatments but they do not follow any clear pattern with regards to the intent of the
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treatment and associated hypotheses.

4.3.5 Evaluation

There are two conceptual difficulties with this experiment for answering the particular sci-
entific questions presented above. First, the number of events in this data set is relatively
small. A few transitions occur (as defined) and most group have many non-events contribut-
ing to the likelihood, which is consistent with the relatively low transition rates presented in
figure 17. A simulation study would be appropriate for sorting out the required sample sizes
and event counts required for inference of group-level differences in event rates. Second, the
mental model we have is of a data set where more frequent transitions towards a given side
(resulting in a higher estimated rate) indicate preference. Preference might also be indicated
by a transition to one side followed by fidelity to that side. In that case the model might
still be effective (e.g.-detecting fewer back-transitions) but it would only be effective if it
succeeded in using second-order events to correctly classify inter-group differences.

There are also two more technical issues. The first model presented here is relatively
rigid. Our data is structured by experiment and group whereas parameters were estimated
by group only. As can be inferred either from the traces shown (figure 14) or the experiment-
wise correlations among shiner locations (figure 15), experiments differed widely in group
behavior. A hierarchical model of event rates would allow us to distinguish more easily
of among-experiment variation is occluding a clearer story. An alternative model-building
approach would be to estimate experiment-level parameters first and only then proceed to
construct models of group level effects.

Further work on this model will include a simulation study and the hierarchical alter-
native, but it is beyond the scope of this section. We have demonstrated with relatively
challenging data that an approximate multi-process event model can be constructed and the
parameters estimated using available software with the code presented in appendix B. For
one treatment we estimate a clearly asymmetric set of transitions from the initial state with
a clear preference towards the longer-flapped sunfish.
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4.4 Emigration event example

We illustrate a more complex event rate model with the Atlantic salmon emigration data
set. The goal of this example is to illustrate how time-varying rate functions can be applied
even with competing risks. To simplify the calculations we only consider an initial "alive"
state A, a transition to an absorbing "dead" state, D, and a competing absorbing state for
individuals who emigrate, E, prior to their death.

A simpler model might model probabilities of transitions over discrete time intervals. A
discrete time model would need to approximate continuous time using small discrete time
intervals to apply to antenna data, which is collected continuously. A discrete time model
could also consider only piecewise constant rate functions but since continuously collected
antenna data generates arbitrary intervals in time, coherent piecewise constant rate functions
are difficult to construct.

In the part of the field study relevant to this section, individual fish, indexed below using
i, were captured at field occasions typically spanning two weeks. The first capture date of
each individual was recorded as ti,1 and individuals were implanted with a PIT tag and
released into the stream. At subsequent field occasions individuals could be identified by a
code stored in their PIT tag and further recapture dates of all individuals were recorded as
ti,j .

In addition to being detectable when the fish were in hand, PIT tags can also be detected
at a short distance. Two antennas placed at the bottom of the field study site detected
individuals at the study boundary and any individuals nearing these antennas had their
PIT tag code read and recorded along with a time stamp generating further timepoints ti,j .

Conditioning on first capture, our model considers the time until two competing events:
emigration and death. Emigration is fully observed in part of the data set when antennas
were active and not observed otherwise. Death is never fully observed, but the alive state
can be observed (when individuals are recaptured) and the probability of surviving without
recapture bounds the amount of time an individual can be assumed to remain alive despite
failure to recapture during otherwise successful electrofishing occasions.

Each transition is modeled using an inhomogeneous Poisson process with its own rate
function (λD(t) and λE(t)) whereas survival is the lack of a transition. When an individual
is alive it is at risk for transition to either absorbing state and these transitions are a priori
independent, although their estimate rate functions might be correlated.
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4.4.1 Exploratory analysis

The literature on Atlantic salmon suggests that the timing of movement can be driven by
seasonal environmental changes or some other seasonal signal (e.g.-(Rimmer et al., 1984;
Saunders & Gee, 1964)). A simple way of visualizing such a pattern in our data is to take
the day of the year that each emigration event occurred and plot it by year (figure 18).
Assuming a constant risk pool would suggest that emigration is heaviest in late October
through mid December, a dearth of emigration in late winter, another wave of emigration
starting mid April followed by a lull in emigration in the summer months. In addition to
this “slow” seasonal pattern it is also clear that emigration in each year is clumped on the
timescale of days—a pattern that is apparent in most years but especially visible in the
autumn of 2002, 2003, and 2004. This “fast” pattern suggests that whatever signal mediates
the slow seasonal signal (e.g., day length) operates on a much finer timescale.

Figure 18 is ambiguous because it does not illustrate the risk pool, which makes it
difficult to assess whether the influx of newly mobile young-of-year individuals in autumn
is responsible for the autumn emigration (and potentially for more of the seasonal pattern).
To assess the relationship between population structure and emigration we show a subset of
250 of emigrants (figure 19) with both their first capture and their emigration date to give a
sense of the risk pool and the strength of the seasonal pattern. Broadly speaking it does not
appear that autumn emigration is driven by a large autumn pool of new recruits as most
lines span at least a year. However a large proportion of recruits from autumn 2003 and
2004 do appear to emigrate soon after first capture, suggesting that some important drivers
of seasonal emigration vary among years. To take a closer look at the connection between
emigration and age we also plot an approximate age at emigration (time since first capture)
versus the seasonal timing of emigration (figure 20). Both young and old fish emigrate at
all times of the year so any simple correlation between autumn emigration and population
age structure is weak.

While it would be possible to further visualize the seasonal timing of emigration, we
defer the more detailed analysis to the modeling step. The question we want to address is
not simply whether this seasonal pattern exists, but how different the emigration is (e.g.-per
100 at-risk individuals) between the summer and autumn. That question can be addressed
directly by an emigration model.

One pattern observed in this data without an explanation is the clumping of emigration
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events. A plausible hypothesis for the “fast” pattern observed in the timing of emigration is
that environmental conditions are driving the within-season emigration decisions. Previous
work has suggested that both stream flow and water temperature could driven movement
and therefore emigration (Armstrong et al., 1998). To better identify this fast pattern we
use daily discharge data (daily stream temperatures during this period are generally slowly
declining and so an unlikely driver for a fast pattern) and focus only on the years 2002-2004
and only on the time period after day 250 where the fast pattern clearly occurs. In figure 21
it is clear that at least in this portion of the year emigration tends to increase with almost
any storm flow. At this point it is clear that flows do trigger emigration on a fast scale to
some extent and we turn to quantifying this relationship rather than exploring it further.

4.4.2 Model specification

As elsewhere we specify the model using sj to denote observed times we condition on and tj

to denote unobserved times or observations of random variables. We discuss the model for a
given individual and construct the complete likelihood for the model based on the product
of individual likelihoods. The model is fully specified as follows:

t1,D, . . . , tN,D ∼ IHPP (λ(t)) (39)

t1,E , . . . , tN,E ∼ IHPP (λ(t)) (40)

All individuals begin in the alive (A) state and can transition to either the dead (D)
or emigrated (E) state. Since the final states are absorbing, transition to one absorbing
state effectively censors the transition to the other state. Below we discuss the component
likelihoods which arise in our calculations. All calculations are conditioned on a previous
timepoint s1 when the individual is known to still be in the alive state.

4.4.2.1 Observed alive at time s2

The simplest likelihood is for the no-event calculation. In this case neither observable event
has occurred by time s2 after s1.
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`(λD, λE |tE > s2, tE > s1, tD > s2, tD > 21) =

Pr[tD > s2, tE > s2|tD > s1, tE > s1] = Pr[tD > s2|tD > s1]× Pr[tE > s2|tE > s1] =∫ ∞

s2

p(t|tD > s1)dt

∫ ∞

s2

p(t|tE > s1)dt = exp(−Λ(s1, s2)− Λ(s1, s2)) (41)

This calculation uses the CDF of the IHPP to calculate the integral and the fact that
the two risks are independent to simplify to the final form.

4.4.2.2 Observed emigration at time s2

This observation indicates survival up to time s2 and emigration at time s2 which can be
stated as:

`(λD, λE |tE = s2, tD > s2, tE > s1, tD > s1) =∫ ∞

s2

p(tE = s2|tE > s1, . . .)p(tD = t|tD > s1, . . .)dt =

λE(s2) exp(−(ΛE(s1, s2) + ΛD(s1, s2))) (42)

We again rely on the CDF for the IHPP and the exponential form of the two independent
components. The equivalent statement with lambdas reversed also applies for an observed
death and censored emigration.

4.4.2.3 Last observed at s1, further observations attempted

A recursive calculation can arise when an observation is obtained at s1 showing that neither
emigration nor death have occurred, followed by attempted but failed observations. In
this context we have a series of time points, s1, . . . , sJ , with an associated probability of
detection, pj , for each time point. In addition we have observations x1, . . . , xJ , which
are either successful (1) or unsuccessful (0) with probability pj . When an observation is
successful, the likelihood follows the no-event calculation above (since either emigration or
death make the individual undetectable) with an additional detection component. When
the observation is unsuccessful it is ambiguous whether the individual is alive or if the
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observation failed. This results in a calculation like equation 25, except with two competing
processes.

`(λ(t), p) =

∫ ∞

s1

J∏
j=1

(1uj<tpj)
xj (1− (1uj<tpj))

1−xj × λ(t) exp(−Λ(s1, t))dt (43)

Due to the indicator functions this integral must be calculated in a piecewise fashion
with two possible (unobservable) outcomes on each segment: death or survival without
capture. We write the likelihood components below, dropping parameters for convenience,
and leaving the recursion implicit.

`(λD(tD), λE(tE), ~p|tD > s1, tE > s1, ~x,~s) =

Pr[tD < s2, tE > tD|tD > s1, tE > s1] + Pr[x2 = 0, tD > s2, tE > s2|tD > s1, tE > s1]×

(Pr[tD < s3, tE > tD|tD > s2, tE > s2] + Pr[x3 = 0, tD > s3, tE > s3|tD > s2, tE > s2]×

. . .) . . .) (44)

The recursive calculation can be terminated either at the final attempted observation
time j, which is equivalent to censoring or when Pr[tD > sj , tE > sj ] becomes negligible.
Each component of this calculation is either the no-event likelihood or the likelihood for
a single death event with no emigration event on an interval. Unfortunately I know of no
solution for the relevant integral.

One simple alternative is to assume a time of death and carry out the calculation based
on that assumption. To be accurate this method requires high recapture probabilities which
make it unlikely that an individual would still be alive after multiple recapture attempts.
Our recapture probabilities are roughly ∼ 0.8 much of the time which means that after two
recapture attempts the probability of remaining undetected is less than five percent. First,
we assume that individuals survive one recapture occasion after their final capture.

An alternative approach to the unknown time of death calculation is to avoid the inte-
gration and sample from the distribution of the time of death. This adds N state parameters
to the model (where N ≈ 7000) which is a significant computational burden for HMC but
not necessarily infeasible.
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4.4.3 Results

The brute-force approach of leaving an unmodified model to sample from the distribution
of time-of-death in addition to model parameters was not successful. Adaptation resulted
in a very small step size and the resulting sampling clearly did not adequately explore the
posterior (results not shown).

In the model with assumed time of death, the emigration rate function shows seasonal
variation within each year with (typically) two peaks—one in autumn and one in spring
(figure 22). In the main portion of the study where the estimates are based on the largest
number of at-risk individuals there is clear variation among seasons in the emigration rates.
During peak emigration times of the year, emigration rates are estimated to be high (e.g.,
near 2-3 per year per individual) whereas during low emigration seasons the rate falls to ≈ .6

per year per individual). In contrast, the estimated death rate is low in the main portion of
the study (figure 23, < .1 per year per individual).

4.4.4 Evaluation

The continuous-time method successfully delineated high emigration and low emigration
times of the year. When only mark-recapture data was available (1998-2001) supplemented
with limited smolt trap data, the emigration and death rate functions are confounded as ev-
idenced by the larger posterior uncertainty in both (figures 22 and 23). Estimating apparent
survival would be more appropriate for this time period.

When mark-recapture data is supplemented by antenna data (2002-2006), the method is
very effective at estimating the emigration rate but it is also sensitive to prior distributions.
Our current prior distribution represents the idea that both emigration and death are rare
in this system at any given point in time. The instantaneous death rate is < .1 per year per
individual. This is not a weak prior and it clearly biases estimates of death rates downwards
which is visible when comparing the period 1998-2001 where death and emigration are
confounded to the period 2002-2006 when emigration is measured directly and death is still
measured indirectly (figure 23). Alternative priors which default to a higher death rate
(≈ 0.8 per year per individual) also gave results which were difficult to interpret as they
result in patterns similar to the emigration posterior (results not shown) but with much
larger uncertainty. With a death rate of 1 per year per individual, 40% of individuals are
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expected to survive (without an event) one year and 15% are expected to survive two years.
This is roughly in line with estimated survival rates from the CJS model (0.84 ≈ 0.4).

My results suggest that continuous-time mark-recapture models will be useful but that
using them to get accurate estimates from mark-recapture data alone requires further work.
First, evaluating appropriate weak priors for continuous rate functions will be an important
step forward. This should likely be part of a more comprehensive simulation study of these
methods. While continuous time methods have been the subject of simulation studies, the
combination of partially observed data and continuous rate functions which are not piecewise
constant is distinct enough to warrant exploration as a separate method. Second, weak priors
become more confusing to visualize for functions as there is only one dimension to visualize
uncertainty. Developing methods for visualizing uncertainty in rate functions would go a
long way towards making continuous-time methods more accessible. Third, working fully
with mark-recapture data requires integrating over the uncertainty in the time of death. We
were not able to successfully do that in the present work but the results (failed sampling
due to a small step size) suggests that the problem is with our parameterization rather than
with the method itself. Exploring the component pieces of this method (continuous rate
functions, partially observed data, prior specification, competing outcomes) individually via
simulations studies should lead to a resolution of the problem.
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Figure 16: Transition rate asymmetry is limited. Bias is defined as the difference between
center-to-left and center-to-right transition rates. Estimates are calculated directly from
MCMC samples as λU→R−λU→L, and credible intervals are summarized as 2.5% and 97.5%
quantiles. Bias is generally near zero and indistinguishable from zero based on the credible
intervals except for the medium-vs-short and long-vs-short treatment.
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Figure 17: Shiner transition rate estimates. Estimated transition rates for each treatment
showing only U → R and U → L transitions. Estimates for all two-sunfish treatments tilt
towards a higher rate of transitions to the longer-flapped fish. Only one treatment showed
a definitive effect (medium versus short opercular flaps) and this effect is driven by a low
rate of transitions towards the shorter-flapped fish (U → R).
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Figure 18: Antenna data shows elevated emigration in autumn. Each point represents one
emigrant with the date of final boundary detection on the x axis. There is a clear pattern
with late autumn emigration and early spring emigration being most pronounced. This
figure does not illustrate the risk pool.

86



2003 2004 2005 2006 2007 2008
time

in
di

vi
du

al
 (

ta
g)

fate

known

unknown

Figure 19: A random sample of fifty emigrants, their first capture times, and their final
detection at the site boundary. Individuals are sorted based on their first detection time.
The at-risk pool for emigration can be counted as the number of horizontal lines crossing
any given vertical line and suggests that even considering the at-risk pool, there is some
synchrony in emigration.
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Figure 20: Age is independent of emigration time. Each point represents one emigrating
individual. The x-axis is a proxy for age (time since first capture) and the y-axis is time
of year. Spring and autumn emigration appear to be distributed equally over multiple age
groups suggesting that age structure in autumn does not impact the strength of autumn
emigration.
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Figure 21: Emigration increases with late-season storm events. Storm events result in sharp
increases in flow which then decline. The flow covariate here is a deviation from season-
typical flow on the log scale which emphasizes small increases more strongly. The absolute
magnitude of the peak does not appear to correlate with the amount of emigration, only
the presence of an event.
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Figure 22: The estimated emigration rate function is highly seasonal. One hundred draws
from the estimated emigration rate function over the course of the entire West brook study.
The estimates degrade and shift towards priors at the head of the function where antennas
were not active and at the tail where fewer individuals are in the risk pool.

90



0.0

0.5

1.0

1.5

2.0

1998 2000 2002 2004 2006 2008 2010
date

de
at

hs
 p

er
 y

ea
r, 

pe
r 

in
di

vi
du

al

Figure 23: The estimated death rate function is confounded with emigration. One hundred
draws from the estimated death rate function over the course of the entire West brook
study. The estimates degrade and shift towards priors at the tail of the function where
fewer individuals are in the risk pool.
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Chapter 5

Simple model building for deep interactions

Even in the case of well-studied organisms, characterizing responses to environmental co-
variates can be challenging. Responses of biological systems are generally speaking not
linear over the whole range of environmental conditions and laboratory studies only provide
a rough guide about what sorts of non-linearities can be expected. Worse, as field studies
rely on natural conditions to measure these responses, the extremes will by definition be
poorly characterized. An additional complication is that many systems are seasonal and the
organism’s plastic response to the seasonal cycle will cause widely varying responses to en-
vironmental covariates during different parts of the year. This leaves to the analyst the task
of describing typical responses, locating non-linearities, and characterizing their relevance
in a context where the response may not be stationary over the course of the season.

For an important subset of models, we suggest that available methods can be applied to
standardize the treatment of these difficulties and simplify the task of modeling the response
of vital rates to covariates. We focus on three areas: 1) making the detection of non-linearity
an estimation task rather than a model-choice task; 2) making the detection of interactions
an estimation task rather than a model choice task; and 3) making the uncertainty associated
with the estimated response at a point in covariate space a function of the concentration of
data around that point. Our goal is to provide a method for accomplishing these tasks that
is adaptable with regards to the source of the data as well as the observation process.

5.1 Local regression in biological response modeling

One of the tools we use to address this modeling problem is local regression. Local regression
is a (possibly weighted) regression applied to a neighborhood in the space defined by the
covariates. The benefit is simple: even in a system where responses to extreme environmental
conditions is highly non-linear, the response around average conditions may be close enough
to linear. A variety of other methods including Gaussian process models also have this
property so the choice of the core method is less important than the local property. This
section proceeds by defining the key concepts of a local regression, motivating our preference
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for local regression over the construction of a more complex global model, and discussing
the desired properties of confidence intervals in local regression.

Neighborhoods are familiar to ecologists from spatial models where neighboring (in the
colloquial sense) locations are typically modeled as being similar either by forcing a cor-
relation in effects on discrete neighboring location, or by forcing effects on a continuous
landscape to change smoothly in space. In the present case we are interested in the space of
environmental conditions where a point defines a set of conditions—for example the average
temperature and humidity in a given year. A neighborhood around a point in the space of
environmental covariates can be thought of as set of conditions similar to the original point.
Moving from the point of average temperature and humidity to any other point in the small
neighborhood around average would see conditions that are near average. We will re-use
this terminology throughout the manuscript.

One difficulty with applying regression to establishing more complex relationships is that
polynomial regression, the typical method for introducing nonlinearity and interactions, can
produces coefficients that are difficult to interpret directly and it can easily produce mislead-
ing artifacts in prediction. This difficulty is well known in the modeling community and can
be mediated by interpreting predictions rather than coefficients and avoiding extrapolation.
Figure 24 demonstrates these issues with predictions from linear and quadratic models on
a contrived data set.

It is possible but time consuming to avoid misinterpretation or misuse of polynomial
regression models. In a simple model a trivial plotting exercise can be used to discover
pathologies (figure 24). It is possible to clearly delineate how the functional form interacts
with the data, whether interpretable features such as biological optima are present, and to
delineate the neighborhoods in parameter space where confidence intervals are trustworthy.

In complex models with many covariates and higher-level interactions this plotting task
becomes non-trivial. Two dimensional interactions suggest contour plots for visualization,
which makes it more difficult to compare confidence intervals to data. If low-dimensional
slices of the space are visualized instead, the choice of slices will affect whether artifacts be-
come obvious. If the covariates space is multi-dimensional it also becomes more difficult to
decide when data sparsity—the rarity of certain combinations of covariates—occurs. It sim-
ply becomes unclear whether an analyst is looking at interpolation or extrapolation. Finally,
if the model relates to mark-recapture models or other models with a complex observation
process, there may be no direct way of plotting the response versus the covariates.
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Figure 24: Prediction from linear and polynomial (quadratic) regression are fragile. Prob-
lems include: 1) in a global model, predictive confidence intervals are the same regardless of
how much data is available locally; 2) the functional form must be correct across all parts
of the covariate space; and 3) common interpretations of coefficients, such as a negative
quadratic coefficient used to infer a maximum are very sensitive to model mis-specification.
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It would be preferable to turn this model checking problem into an automated estimation
problem. One desirable property would be for the model of the estimated biological response
to a covariate in a neighborhood to rely primarily on data from that neighborhood. This
is a core property of local regression. Another desirable property would be to have the
credible intervals (and prediction uncertainty) be a function of the data available in the
neighborhood of the point in covariate space for which the prediction is made. This can be
a property of local regression given the right model structure (figure 25).

5.2 Implementation of local regression

5.2.1 Defining a covariate space for biological responses

The complications involved in estimating biological responses to environmental covariates
are simplified by the restricted covariate space. For many organisms, the range of conditions
that allow for persistence for even a short duration is loosely understood. This information
can be gathered from physiological and behavioral studies and it is qualitative rather than
quantitative, which makes it simpler to apply broadly. While biological systems do exhibit
dramatic breakpoints in their responses to environmental covariates, we typically do not
expect multiple dramatic reversals in response. This combination of a loosely restricted
covariate space and expectations about the complexity of effects in this space simplifies
modeling by restricting the expected complexity of the response function. Figure 26 displays
this idea graphically for a two-dimensional covariate space.

We use a two-dimensional version of this restricted covariate space to consider the com-
plexity introduced by seasonality. Seasonality can modify the response of an organism to
a covariate. This often occurs because of behavioral and/or physiological shifts in the or-
ganism in response to dramatic shifts in the range of covariates encountered in different
seasons. Often seasonality is modeled as a discrete effect and the response is estimated
separately in each season. This approach is effective when the transitions between seasons
are crisp and when the transitions themselves do not have drastic negative effects (e.g., high
mortality or depletion of resources at the transition). Figure 6 shows estimated survival and
its response to two covariates for Atlantic salmon in a small stream system. The response
was estimated separately for each season. When seasonal changes are smooth, seasonality
can be considered as a smooth circular covariate, which interacts with other covariates.

95



−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10 15 20
temperature

gr
ow

th model

m1

Figure 25: Local regression estimates depend on local data. Useful properties of local
regression can simplify the analysis of high-dimensional data—local response is a function
of local data and with the choice of the right method, confidence intervals can be a function
of the available data. This model used the MGCV package with third order polynomial
thin-plate splines.
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Figure 26: Biological covariates are typically restricted. The axes cross in the region of
covariate space representing average conditions. The blue region displays the relevant range
of conditions around the average. The response function is expected to be non-linear and
interactions among covariates are also common. However, only a small number of non-linear
regions and interactions are expected. The restricted covariate space of biological systems
is useful for simplifying models.

The Atlantic salmon system is an interesting intermediate case because the seasons are
well defined biologically, but they do change smoothly from the covariate perspective. Fig-
ure 1 shows environmental conditions as observed at the Atlantic salmon study site with a
local smoother used to described (smooth) season-typical conditions and points for observed
conditions. In this case the estimated responses (figure 6) for winter and summer describe
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periods of relatively stable if challenging conditions. The estimates for spring and autumn
describe periods of rapidly but smoothly changing conditions where one challenge (high wa-
ter temperature and drought) is substituted for another (near-freezing temperatures and ice
formation). It is interesting that both transition seasons have generally lower survival than
the stable but challenging seasons. From an organismal perspective this is interesting but
unsurprising since both physiological and behavioral changes are involved in the transition
periods. Whether they are directly responsible for decreased survival is unknown. In any
case if the transition periods are not captured any inference will be misleading.

One flexible way to treat seasonality is as an additional covariate. Using seasonality
as a continuous variable lets the analyst avoid trying to partition the year into discrete
seasons based on limited information. The idea of a neighborhood becomes relevant again
because the effect of, for example, temperature in summer, could be thought of as an effect of
temperature in the neighborhood around July 4th. Much as in spatial models, this effect of
temperature in summer is linked to the effect of temperature in other locations in covariate
space by correlation.

Seasonality as a smooth covariate is complicated by being circular. The effect of the
first day of any given year should be highly correlated with the effect on the last day. This
excludes the possibility of using standard regression models without modification but a
variety of techniques for angular data are applicable. Our use of local regression simplifies
modeling of circular data because any local piece of the season—local in the sense of a small
neighborhood around a Julian day within the year—can for most purposes be treated as
non-circular. The only added wrinkle is that when thinking of a neighborhood around New
Year’s, we must include both the end of the old year and the beginning of the new. This
is easily done by first transforming Julian day to an angle and then calculating minimum
angular distances as the distances between data points.

At this point we visualize our covariate space as an extension of figure 26 that shows the
restricted nature of the original two-dimensional covariate space and figure 1 that shows the
different parts of the covariate space covered by different seasons. The result of projecting
the circle from figure 26 and projecting it along the seasonal covariate results in a bent rod
that follows the covariate space explored by different seasons.

As a final twist we acknowledge the circularity of the seasonal component and connect
the ends of the rod resulting in a warped solid torus shape. This space, shown in figure 27 is
an example of the covariate space of interest in many modeling exercises that consider the

98



biological response to environmental covariates. This shape also highlights why modeling
the response to environmental covariates is challenging—most predictive exercises ask us
to describe the response at most points in this covariate space. Prediction exercises that
consider climate change sometimes ask us to consider parts of this covariate space that are
not explored by the climate system in any available data set.

Figure 27: A solid torus visualizes the covariate space of a seasonal biological model. Average
conditions and plausible extreme conditions around the average sweep out a distorted torus
shape over the course of a given year. Centering environmental covariates on their typical
value for a given Julian day and standardizing their variance reduces the distortion of the
torus and generates a simpler covariate space.

5.2.2 Spline implementation of local regression

A generic local regression can be implemented as a spline using radial basis functions. We
make this generic choice rather than choosing a specific smoother such as loess because it
allows us to later elaborate the technique in response to more specific problems. Specific
choices of basis functions and penalties would be equivalent to more familiar choices for
local regression but we do not address those here.
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In this context, a spline specifies the response function as the weighted sum of basis
functions that share the same covariate space as their domain. While these functions share
the same domain, they might only contribute significantly to the sum on parts of the co-
variate space. In other parts of the covariate space they might be effectively zero. Equation
45 shows a spline for a survival response function specified using K basis functions. The
interpretation of each basis function, fk, depends on the chosen form of the basis functions.

log

(
φ(x)

1− φ(x)

)
=

k=K∑
k=1

βkfk(x) (45)

There is no general intuitive interpretation to the basis functions, which makes interpre-
tation of the general spline specifications unnecessarily obtuse.

Radial basis functions provide a natural intuitive interpretation in the context of a local
regression. Loosely, a radial basis function is defined as being centered on a knot point. The
maximum value of the function is near the knot point and it decays away from the knot
point. A Gaussian function centered on a knot, shown in equation 46 is a common radial
basis function.

y = exp(−1

2
(x− xk)

2) (46)

This function is equal to one at xk, positive near xk, and approaches zero elsewhere. A
gaussian function in a multidimensional covariate space is a product of the one-dimensional
gaussian functions. The intuitive interpretation of a radial basis function is that it represents
the response in the neighborhood around a point in a (multidimensional) space.

5.3 Evaluation of data adequacy and uncertainty

Most models are wrong and most models in biological field experiments are very wrong.
Biologists typically only trust models as summaries of the data and are wary of extrapola-
tion. In a single dimension, data adequacy for a regression is often checked with a direct
comparison or rug plot. In figure 24 we see two linear regressions, each of which provides a
valid summary of the data and interpretable effect sizes in a portion of covariate space. In
other parts of the covariate space the implied results are clearly questionable.
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Three dimensional relationships such as in figure 6 are more difficult, but an overlaid
scatter plot can still present the regions of covariate space where estimates are supported
by the data. If the estimates relate to directly measured data then color coding can be used
to visualize the residual deviation of each data point from the estimated surface in parallel
to figure 24.

In higher dimensional spaces, such as the covariate space defined for the solid torus
model, direct comparisons become even more difficult but the same questions remain: 1)
which parts of an estimated response surface are supported by data; and 2) if the estimates
relate to directly measured data, can the deviation be visualized? Typically, results in three
or more dimensions are visualized as one or more three dimensional slices drawn as heat
maps or contour plots.

We also use the slicing solution and suggest addressing data-adequacy questions using
kernel density estimation to produce a mask or transparency value for contour plots and
heat maps. Kernel density estimates are alternatives to histograms, which generalize better
to moderately high dimensional spaces. The estimates are constructed by placing a kernel
function, much like our radial basis function, at each data point. Once these kernel functions
are placed, the density estimate at any given point in covariate space is defined as the sum
of the kernel contributions from all data points. Since the kernels are typically non-zero only
in a neighborhood around each data point, the density estimate is largest where the greatest
concentration of data points occurs. The multi-dimensional version is given in equation 47.

f(x1, . . . , xK , σ) =
1

N

N∑
i=1

[
k=K∏
k=1

exp(− 1

2σ2
(xi,k − xk)

2)

]

=
1

N

N∑
i=1

[
exp(

k=K∑
k=1

−(xi,k − xk)
2/σ)

]
(47)

One tuning parameter in kernel density estimates is the band width, σ, which is chosen
subjectively. When using kernel density estimates in the context of local regression, a
natural choice for the band width is the scale of the radial basis functions. This assures that
in regions defined as data-sparse by the estimation procedure, the kernel density estimate
approaches zero whereas data-rich regions have a large kernel density estimate.

If choosing the appropriate scale parameters for a local regression is difficult, plots of
kernel density estimates can be informative. For a series of increasing band width values,
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a series of density plots can be used to determine when a given scale of estimation allows
adjacent data points to all inform the response at a give knot point.

In a Bayesian local regression using weak priors, a natural reference for posterior un-
certainty is prior uncertainty. Samples from the parameter priors propagated through the
local regression machinery produce a set of a priori plausible response surfaces (figure 33)
from the survival prior distribution. A set of plausible surfaces serves as a relevant baseline
for further calculations. A posterior surface from an informative experiment should produce
a set of less variable surfaces with more persistent patterns over repeated draws. These
can be readily examined qualitatively by comparing small multiples of draws from each
distribution.

A quantitative evaluation can proceed by comparing prior and posterior uncertainty. As
an example, I use the ratio of the width of the 95% posterior and prior credible intervals.
These (scaled) ratios can be visualized (figure 35) as a black mask that shades out parts of
the posterior with higher relative uncertainty.

Uncertainty could also be evaluated using the width of the posterior credible intervals
directly rather than in comparison to the prior intervals. This would produce a mask with
reference to some absolute sense of whether an estimate is precise or not. In either case there
is a reference as the analyst must make a choice of how to set the minimum and maximum
color values for the mask. Referencing the prior to produce a figure focuses on whether the
experiment improved our knowledge over the weak priors and referencing a desired accuracy
is more informative when there are specific requirements on the use of the parameters.

Uncertainty evaluation is complementary to data-adequacy evaluation in a two-stage
process. Data adequacy addresses whether any information has been collected about a
particular part of parameter space. It is dependent on the covariates and, importantly,
independent of the particular model used. Uncertainty evaluation is dependent on the
covariates, response, priors, and the model. While this relative uncertainty evaluation is
more subjective, it tells us whether the data contributed to an improvement in the state of
our knowledge about a process.

5.4 Temperature model example

Our goal with this example is to illustrate the issue of deep interactions in a simple setting
and how to approach it with splines. The data comprised time series of water and air tem-
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peratures from eight sites in New England. Each site had a limited time series covering only
part of the year. One known important predictor of water temperature is air temperature
(Kanno et al., 2013), although the relationship between air and water temperature can be
non-linear and mediated by other covariates. We also have minimum and maximum air
temperature data for each daily mean water temperature measurement. Additionally, at
the site level we have a variety of covariates relating to local and upstream site character-
istics such as vegetation, elevation, watershed area, and development. For simplicity—and
because we use a small number of sites from the larger data set—we choose only local forest
cover (FC).

5.4.1 Model specification

Due to the diversity of sites present in our dataset and the abundance of short (sub-year) time
series, we choose to model the rate of temperature change rather than absolute temperature.
This lets us focus our statistical model on a measure of the heat-exchange process rather
than a distal result. To implement this model we write the expected value of the change as:

log
yt
yt−1

= s(S,TD,FC) (48)

Where s is the spline function incorporating interacting season (S), temperature differ-
ence (TD) terms, and forest cover (FC) terms. The temperature difference is calculated
as an approximation to the heat flux from air to water. We use the average of the daily
minimum and maximum temperature and subtract the previous day’s water temperature to
get an estimated temperature difference for daily data. This equation can be rewritten as a
regression with an offset term that simplifies model construction:

log yt = B(S,TD,FC) + log yt−1 (49)

The seasonal covariate is calculated as a transformed Julian day [0 − 1). There is no
need to deal with the circularity of seasonal time as our data only covers streams which
freeze (and therefore lack data) in winter. The forest cover (FC) covariate is used directly.
We compare four simple models as outlined in table 6. The first model aims to explore the
(assumed) independent contributions of our three covariates, which may be ambitious since
we have only a dozen sites and time series for only part of the year. The second model
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Table 6: Stream temperature model specifications. All models also include an offset for the
previous day’s log mean temperature.

Model # components
1 s(S) + s(TD) + s(FC)

2 s(S) + s(FC, TD)

4 s(S, TD)

3 site + s(S, TD)site

maintains seasonality as a separate term but allows us to look at the interaction between
site-specific forest cover and the temperature difference term. The third model ignores site
covariates and models only the daily measurements we have available—time of year and
temperature difference. Finally, the fourth model looks at whether the global pattern of
interacting seasonal and temperature effects is relevant across all sites or more likely to be
driven by site-specific covariates.

These models are not definitive and our goal is not to generalize about stream temper-
ature relationships. Our data do allow us to explore the relationship between linearity and
hierarchical data, as well as multiple ways of visualizing this data.

5.4.2 Results and evaluation

For our first model each of seasonality, temperature difference, and site-specific forest cover
we use smooth components to model each effect. Seasonality has a clear effect with persistent
warming in the early part of the year (figure 28, top panel). On its own the temperature
difference term has a clear positive effect on the change of temperature with a comforting
zero effect right around zero difference between air and water temperature (figure 28, center
panel). Finally, the forest cover effect varies dramatically over the span of the covariate,
perhaps driven by the fact that we have a limited number of sites available (figure 28, bottom
panel)..

In our second model (figure 29), seasonality retains its pattern of early-season warming
but the interaction between the temperature-difference term appears to vary by site. All the
sites show decreasing water temperatures when air temperature is below water temperature,
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and all but two sites show the correlation across the entire range. However, two sites
show a lack of correlation between air and water temperature when the air temperature is
significantly warmer than the water temperature. We are not able to assess which factors
drive this variation, though it is unlikely to be the forest cover covariate directly as neither
site has the larger forest cover covariate.

Our third model (not shown) demonstrates that this global pattern, while interesting,
may not be hold at all sites. The site-specific interaction model shows a remarkable number
of sites have a relatively linear interaction between seasonality and temperature difference
terms, with some showing only TD-based patterns and no effect of seasonality.

Our final model (figure 30) ignores site variation in order to construct a pattern relevant
across sites. We see that early in the season temperatures are expected to increase unless
the air is around five degrees cooler than the mean water temperature. As the season goes
on this buffering disappears and the temperature difference acts in a more linear way until
the end of the season, with some bias towards cooling even when air and water temperatures
are closely correlated.

When analyzing a larger set of sites, the benefits of combining information across sites
increase relative to this small dataset. With that expectation in mind we return to the
global season-by-temperature model and apply our local regression method to it.

5.5 Survival model example

The goals of this model follow the goals of the survival model from chapter 3 where we
focused on estimating age-specific and seasonal environmental effects on survival. As age
structure had only very limited effects, here we group all ages together and only consider
seasonal environmental effects. This model could be elaborated to consider age structure
but we do not extend it here.

5.5.1 Model specification

The general implementation of the survival model follows section 3.1. The two modifications
we make are that we replace the linear model for survival by a local regression spline using
radial basis functions and use standard normal priors.
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The spline specification must be modified to apply to a survival model. The radial spline
specification gives a surface of responses and it is straightforward to evaluate at a point on
the surface. The equation for this surface in terms of temperature (t), flow (f), and seasonal
time (s).

f(ti, fi, si, µ, σ) =

K∑
k=1

[
exp

(
−(ti − µk,t)

2

σ2
t

)
× exp

(
−(fi − µk,f )

2

σ2
f

)
× exp

(
−(si − µk,s)

2

σ2
s

)]
(50)

Survival data are collected over intervals rather than at a point. For the environmental
covariates we deal with this by transforming the covariate to generate a well-defined covariate
independent of seasonality. For seasonality, there is no covariate to transform so instead we
take the average value of the surface over the interval from s1 to s2, as shown in equation
51.

1

s2 − s1

∫ s2

s1

f(ti, fi, si, µ, σ)ds =

K∑
k=1

[
exp

(
−(ti − µk,t)

σt

)
× exp

(
−(fi − µk,f )

σf

)
×[

(CDFN (s2, µk,s, σs)− CDFN (s1, µk,s, σs))

s2 − s1

]]
(51)

Here time is seasonal, so subtraction must correctly calculate the length of the interval.
To correctly calculate the length of intervals that cross year boundaries, we make all calcu-
lations in calendar time and only afterwards collapse knots for a given part of a season in
different years into one knot by summing their columns. In most computational environ-
ments the normal CDF, denoted as CDFN , is efficient and available, so we use it to represent
the required integral.

When the interval spans multiple knots, only the portion of each knot within the interval
is included in the integral calculation. The total area calculated by the integral is scaled by
the interval width so that when all knots have equal weight the final function is insensitive
to interval width. This allows us to relate the spline to an interval of time rather than to a
point.
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Using standard normal distributions for the prior specification allows the main mass of
the survival surface distribution to encompass all plausible survival surfaces for our systems,
including survival percentages in the single digits and high nineties. Nine draws from this
prior distribution (figure 33) to illustrate the space of plausible surfaces.

5.5.2 Results and evaluation

The output of our model is a local estimate of survival at any point in the discharge-by-
temperature covariate space, over any given period of time. To produce plots comparable
with the original linear model with interaction terms (fig. 6), we can visualize survival
over the four discrete periods used in the previous model. These four periods are visualized
using our data adequacy metric (figure 34), as well as using the uncertainty of the parameters
relative to the prior (figure 35).
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Figure 28: Effect of season (S), temperature difference (TD), and forest cover (FC) on
the change in mean water temperature. The curve is a multiplicative rate of change so a
value of one indicates no change in mean water temperature. The seasonal and temperature
difference terms show clear patters, but the forest cover covariate relationship is clearly
over-fitted despite use of MGCV for the smoothing penalty. Including a larger number of
sites would solve this problem.
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Figure 29: Effect of season (S) and temperature difference (TD) by forest cover (FC) inter-
action on change in mean water temperature. The seasonal pattern remains the same as in
the independent effects model and the temperature difference term still shows a clear posi-
tive correlation with change in water temperature. At some sites (with relatively low forest
cover values) the water temperature becomes relatively insensitive to the air temperature.
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Figure 30: Effect of season (S), temperature difference (TD) on the change in mean water
temperature while ignoring site-level covariates. The seasonal pattern shifts the TD effect
so that early in the season warming occurs unless very flow air temperature are present.

110



0.72

0.88

0.880.92

0.92

0.92

0.92

0.96

0.96

0.96

0.96

0.76

1

1

1

1.04

1.04

1.04

1.08

1.08

1.08

1.080.8

1.12

1.12

1.12

1.12

1.16

1.16

1.16

1.16

1.2

1.2

0.8

1.2

1.24

1.24

1.28

1.28

1.32

1.32

1.36

1.36

1.4

0.84

1.441.48

0.84

0.840.88

0.88

−10

−5

0

5

10

Jan 2007 Apr 2007 Jul 2007 Oct 2007 Jan 2008
season (S)

te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (

T
D

)

Figure 31: Effect of season (S) and temperature difference (TD) with interactions on the
change in mean water temperature, with data adequacy. A large part of the covariate space
(in black) was not supported by data. In the white region data was sufficient to estimate
the model. More sites and multi-year time series would extend the white region to a larger
portion of covariate space.
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Figure 32: Zooming in on the data-dense part of the season (S) by temperature difference
(TD) model. This view shows a pattern that matches closely the results from MGCV. There
is a positive early season effect on water temperature rise that fades out and leaves a mostly
linear temperature difference term.
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Figure 34: Effect of flow and temperature on survival for Atlantic salmon in a small stream
system. Contours are labeled with estimated survival probability at the isoline. Flow and
temperature show clear interactions in determining the ultimate survival probability. Unlike
figure 6, the estimates here are local, less precise, but also not strongly affected by the global
surface. The black mask is calculated based on the amount of data available to estimate
knots in a given portion of covariate space with black regions indicating a paucity of data.
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Figure 35: Effect of flow and temperature on survival as in figure 34. Contours are labeled
with estimated survival probability at the isoline. Unlike figure 34, black mask is calculated
based on the uncertainty of the surface in a given region of covariate space with black regions
indicating uncertainty approaching the prior.
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Chapter 6

Discussion

6.1 Environmental effects on Atlantic salmon survival

I constructed environmental response surfaces for Atlantic salmon (Salmo salar) that make
relatively detailed statements about expected seasonal survival probabilities under a range
of conditions. Even the mean surfaces presented—ignoring for the moment our uncertainty
about the plausible range of estimates—suggest that temporal environmental variation as
observed at the West Brook is critical to making any predictions about the population
trajectory of Atlantic salmon. This result is fully in line with the findings of Crone et al.
(2013) who demonstrate that even with a good understanding of stage-specific vital rates
predictive models perform poorly largely due to environmental effects on vital rates.

In the context of the West Brook the observed environmental sensitivity is striking be-
cause it is a relatively well-buffered stream: the West Brook is shaded, a feature that results
in limited daily insolation and temperature fluctuation; 2) it typically receives sufficient
groundwater input to maintain good connectivity even in dry conditions; and 3) it is down-
stream from a reservoir that buffers both flow and temperature. In this relatively stable
stream we estimated survival rates from ∼ 0.95 down to ∼ .6 or lower depending on how
much trust we put in estimates on the boundaries of the explored parameter space. Clearly
such variation will have important consequences for smolt production and, potentially, for
the population trajectory.

6.1.1 Spring

A focus on feeding is the main behavioral feature of spring for salmon. Energy reserves,
depleted in winter, are restored at a high rate in the spring (Berg & Bremset, 1998). The
stream loses its ice cover (and anchor ice), and it warms from low single-digits to low
teens. The stream environment also experiences some of the highest consistent flows of the
year during this time period. Previous studies lead us to expect that high flows should
not negatively affect over-yearling salmon survival (Bacon et al., 2005; Jensen & Johnsen,
1999). Additionally there is some evidence from another analysis of this data set that growth
increases with high flows in spring (Davidson et al., 2010), suggesting that they are not in
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general very challenging. In the global analysis, spring survival was only negatively affected
by low temperature and low discharge conditions (figures 6 and 7). All other observed
combinations had either a weakly negative or weakly positive impact on survival. In the
local analysis the same pattern is present, with the cold dry region of parameter space
having low survival whereas all other parts of parameter space (figure 34 and 35) have high
survival. Both analyses show that estimates in these regions are well supported by data.

Low temperature and discharge conditions suggest a continuation of winter, delayed ice
melt and especially delayed snow melt, which would otherwise drive up flows. A previous
growth analysis (Davidson et al., 2010) demonstrated a positive relationship between flow
and growth in spring, which suggests that low flow conditions (such as from a persistent
winter) might delay spring feeding and growth opportunities. The negative effect we observe
for survival could play out either directly from an inability to replenish lipid reserves or
indirectly through sub-optimal feeding, which leads to increased exposure to predators.
Davidson et al. (2010) also demonstrated that shelter positively influenced growth in spring,
which suggests that a trade-off between sheltering and feeding likely exists. Others have
shown that fish are able to tolerate surprisingly long periods of starvation, which leads us to
expect a mechanism for mortality mediated by behavior. The data on hand can not be used
to distinguish among these alternatives but it does suggest that direct observation of feeding
behavior and predation pressure would resolve this issue. All other combinations of spring
environmental conditions improve survival. These conclusions do not apply to extreme high
flow and temperature spring seasons as they were rarely observed; their confidence intervals
are very broad and the estimates are not strongly supported by data.

6.1.2 Summer

Based on observed summer conditions at the West Brook, the average daily stream tem-
peratures do not approach either lethal or feeding limits observed in the laboratory (J. M.
Elliott, 1991; B. Jonsson & N. Jonsson, 2009). Diurnal temperature variation on top of
high average daily temperatures may exceed the feeding limit and briefly enter the lethal
temperature range (though not for long enough to directly cause mortality). Based on the
environmental data alone it is an open question whether temperature can act through phys-
iology to directly drive mortality. However, heat-stress is likely to be as elastic in fish as it is
in humans and standardized lab studies might understate the extent of the effect. Summer
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temperatures do exceed the thermal growth optimum for Atlantic salmon (J. M. Elliott &
Hurley, 1997; Forseth et al., 2001), suggesting at least some scope for a direct effect.

A second key constrain in the summer is diminishing flows that reduce the availability
of shelters. During extreme low-flow years, the stream turns into a series of disconnected
pools. Previous work at the same site has demonstrated that shelter is a well utilized
resource during the summer season (Gries & Juanes, 1998). A variety of other studies have
demonstrated that sheltering is a common response in Atlantic salmon to visual sightings
of predators (Dionne & Dodson, 2002) and that individuals will defend territory more after
exposure to the threat of predation (Johnsson et al., 2004).

In the context of these environmental constraints, we found that summer survival was
relatively insensitive to high temperatures at average or above average flows. In contrast
survival was sensitive to low flows but the shape of the surface differed between the local and
global models. In the global model, survival was insensitive to low flows at average or below-
average temperatures, but a combination of hot dry conditions resulted in a strong drop in
survival (fig. 6 and 7). In the local model, survival was also negatively affected low flows
but average temperature conditions show a stronger effect than very hot dry conditions (fig.
34 and 35). In practice this comparison is difficult to make because extreme low flow and
high temperature conditions were rare. In interpreting the two models I note that based on
the local model, the global model is likely not flexible to accommodate the observed surfaces
and the estimate of a strong effect under hot dry conditions is likely too certain.

This drop could be explained either by thermal stress or additional exposure to predation
during low-flow summers. While daily average temperatures at the stream-wide gauge would
appear to remain below the short-term lethal limit, temperatures at the gauge may not be
representative of stream-wide conditions. Subsections of the stream with less groundwater
input might depart from this gauge significantly. Additionally, daily temperature deviations
that can rise to ≈ 5◦C during mid-day might approach thermal limits. Both of these
effects are exacerbated by extreme low flows that can reduce the stream to a series of
pools with limited thermal connectivity. Since high flows mediate the survival effects of
high temperatures, we expect that the loss of thermal connectivity might allow for locally
higher temperatures that will impact survival. Another possible mechanism is exposure to
predation with a loss of shelter. Shelters are clearly heavily utilized and defended resources
(Gries & Juanes, 1998; Johnsson et al., 2004), and shrinking flows increase competition for
these and reduce their total availability. Mortality might result from competition or directly
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from predation. This mechanism is not as compelling in the Atlantic salmon data set as
low flow conditions lead to loss of shelter regardless of temperature conditions, but survival
remains high in low-flow and low-temperature summers. Surprisingly unusually cool wet
summer conditions also decrease survival but whether this is a feature of the parametric
model or a mechanism related to productivity is uncertain. Summer growth is generally
increased at higher flows and insensitive to temperature (Davidson et al., 2010), which
suggests that this response may be an artifact of the parametric model.

6.1.3 Autumn

In autumn, feeding decreases in importance, as evidenced by the choice of habitats with lower
water velocities (Rimmer et al., 1984). Temperatures typically fall into (and through) the
range optimal for growth, making it unlikely that temperature stress is a relevant mechanism
in this season. Salmon undergo a habitat shift to sheltered substrate chambers, particularly
towards the end of the season (Cunjak, 1988; Rimmer et al., 1983), which puts a premium on
the existence of and access to suitable shelters. In results from the global model (fig. 6 and
7), survival is generally lower than other seasons but relatively insensitive to environmental
conditions. Only a combination of low flows and temperatures results in decreased survival—
a reversal of the summer pattern suggesting shifting needs. This pattern is similar to winter,
though with weaker effect sizes (and a lower overall survival). In the local model, autumn
survival estimates are also lower than any other season (fig. 34 and 35). However, the
pattern of environmental effects is much more complex. Generally high flows show much
better survival (∼ 0.95) whereas average conditions are the worst of any season (∼ 0.75).
At average flows, autumns that are both hotter and colder than average show drastically
decreasing survival while drier than typical conditions show improved survival. This complex
pattern suggests that our global model was not nearly flexible enough and we discuss only
the local model.

As the data have a discrete time structure for survival, it is difficult to assess when the
shift from the summer pattern to the winter pattern occurs. High autumn flows, which lead
to better survival, suggest that the typical autumn increase in rainfall arrives early. Low
temperatures with average rainfall conditions suggest that winter temperatures arrive early,
while flows potentially have not recovered from their summer levels. Autumn rainfall is
important to relieving one of the main stressors of the summer season, whereas plummet-
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ing temperatures signal important behavioral shifts associated with winter so this effect is
unsurprising but these results do not provide a basis to resolve among the potential mecha-
nisms. It is possible, and would be interesting to explore in future work, whether a particular
set of physiological and behavioral events must occur in autumn in order to result in good
survival.

6.1.4 Winter

In winter, ice formation and breakup dynamics are an important part of stream ecology
(Cunjak, 1988). While the stream flows at the West Brook do not decrease again after the
autumn recovery, ice formation does affect stream hydrology and habitat in a number of
ways: 1) moderate ice improves shelter in otherwise bare areas by providing cover (Lin-
nansaari et al., 2009); 2) extended cold spells that generate significant ice, especially anchor
ice, reduce access to shelters; and 3) extended cold spells also reduce runoff and contribute
to periods of low flow that compound the decrease in shelters. Salmonids don’t share shelter
(Harwood et al., 2002), which compounds all of these effects. The expectation from Cunjak
et al. (1998) is that cold dry conditions should dramatically reduce shelter and therefore
survival.

In agreement with these expectations, our estimates show that cold dry conditions lead
to a dramatic decrease in survival. The local and global models both give similar estimates
for this part of covariate space. This is a particularly important part of parameter space
as it arises as a result of exceptionally cold winter periods—which also lead to decreased
stream flow regardless of the amount of precipitation. In more northern salmon habitat this
is likely an important source of mortality (Cunjak et al., 1998) and while less common at the
West Brook the mechanism appear to also operate. One of the key predictions of climate
change in the northeastern United States is that winter will be warmer, wetter, and with
more precipitation, which suggests improved survival.

One portion of parameter space where our results depart from previous work is that
warm conditions result in decreased survival, whereas Cunjak et al. (1998) found that high
streamflow was associated with high survival regardless of temperatures. In the global
model only warm wet conditions show this effect, but that model is likely too rigid. This
discrepancy with Cunjak et al. (1998) can be resolved by geography—due to the southern
location of the study site, the warm wet conditions observed at the West Brook may not
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occur at other sites where the effects of winter conditions were studied. Warm wet conditions
at the west brook can involve the complete loss of ice cover and may allow predators access
to the stream. This is one example of how different environments modify the mechanisms
that operate in particular seasons, especially when small changes in a covariate such as
temperature lead to large changes in the physical environment. Direct observations of ice
cover and predator activity would help resolve this uncertainty. Interestingly, we rarely
observed warm dry conditions, likely due to the winter dynamics of snow cover, snow melt,
and temperature at this latitude.

6.1.5 Transition effects

One interesting aspect of local model estimates (figure 35) is that all effect estimates put
the seasonal average conditions near the saddle points of the effect estimate surfaces. With
the exception of autumn, there is nowhere (much) to go but flat or down. We can not
make the obvious local adaptationist claim because the study site was stocked with Atlantic
salmon from a regional recovery program, which makes stream-specific adaptation to the
West Brook unlikely. However, average seasonal conditions do not always reside on the same
saddle point. The spring and summer surfaces resemble each other closely, while the winter
surface appears as a less extreme version of the autumn surface.

Somewhere in seasonal time there must be at least two transitions from one regime
to the other and back again. The salmon, presumably, do as well as they can to adapt
behaviorally and physiologically throughout the transition and we do in fact have some
information on their shifting needs—for example towards feeding in the spring and towards
shelter in autumn. The temporal resolution of the study is interesting here because autumn
appears to fall in one of these periods defined by shifting needs and a sub-optimal response
to typical conditions. Ultimately the present data and model can only pose this question
but not resolve it. We expect that future targeted data collection and modeling would be
able to improve our understanding of these transitions.

6.1.6 Atlantic salmon summary

Clearly a long-term study such as this one is difficult to replicate. Other integrative efforts in
the literature (Chandler & J. D. Clark, 2014; B. H. Letcher, Schueller, et al., 2014; Schaub &
Abadi, 2011) have focused on improving the practical efficiency of mark-recapture studies by
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combining them with less informative presence-absence or count data to better characterize
a variety of sites. Our ultimate goal is different: we ask whether parameters from a detailed
study can be combined with a mechanistic understanding of organismic biology to make the
effects we infer transferable to other study sites and other times.

Overall the effects we observe are in accordance with expectations from the known
literature on how environment affects Atlantic salmon survival. Our analysis helps place
these mechanisms in the context of the seasonal cycle, suggest when they may be most
important, and how the relationship between these mechanisms could be resolved. Some
mechanisms can be resolved solely based on the two consistently measured environmental
covariates. For example, lack of summer habitat due to low flows by itself is unlikely to
cause decreased survival since we only observed such an effect when low flows combined
with high summer temperatures. With additional auxiliary data such as food availability,
fine-scale temperature measurements, or predator activity observations the mark-recapture
data set would be able to address even more of these mechanistic questions.

In other cases, such as autumn survival important questions about the key mechanisms
remain unanswered. Our work does suggest that we need to better understand the sources
of mortality during this season, as well as the behavioral changes and potential knock-on
effects from summer stress. We do however have the benefit of pointing to a specific slice of
time and question, namely: what about low autumn flows and temperatures causes increased
mortality on top of low autumn survival?

The question at hand is how combining a detailed study from a single location with
the known effects from the literature can be used to improve our ability to make climate
change predictions on large scales. Is there information here to link environmental effects to
mechanisms that could be applied range-wide rather than needing to do site-specific detailed
studies.

We expect the answer to be a qualified yes. We are seeing effects that are consistent with
the published literature, but some departures that can be explained by considering site-to-
site differences. For example, the stream study site has significant groundwater input and
relatively mild temperatures so only high-temp/low-flow events cause summer temperature
stress. Our stream is in an area with relatively mild winters so only cold/dry conditions
cause significant habitat loss. However, warm conditions are warm enough to perhaps allow
predators access to streams, whereas in northern streams (e.g., as discussed by (Cunjak
et al., 1998)) do not see this effect. How less intensive short-term work could be used to
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adapt these estimates to other locations is an open question partially addressed by recent
work on integrative models.

6.2 Lessons for the practice of prediction

I began this dissertation by talking about the practice of prediction, its importance to ecol-
ogy, and how the literature as it stands informs our understanding of best practices. One
clear lessons from Crone et al. (2013) is that incorporating environmental effects into pre-
diction efforts is critical, although the question of how to incorporate environmental effects
is left wide open. The current literature about species distribution models in particular sug-
gests that prediction efforts would be more robust if they relied on more direct covariates
(sensu Guisan & Zimmermann (2000)) and made use of existing knowledge on the physiol-
ogy and behavior of organisms under consideration. These general guidelines leave open the
question of how to apply knowledge from physiological and behavioral studies to prediction.

One apparently straightforward avenue for implementing the suggestions of Crone et al.
(2013) and Guisan & Zimmermann (2000) would be to rely more heavily on Individual Based
Models (IBM’s) for prediction. These models can make use of trait estimates available in
the literature to reconstruct the response of an organism to a variety of environmental and
competitive conditions as well as their general life history. A well-studied species such as
Atlantic salmon ought to be well suited to this approach.

Our experience with Atlantic salmon at the West Brook leads us to believe that an IPM-
based approach would fail, and likely fail spectacularly, as complex population predictions
tend to do. Despite relatively mild conditions at the West Brook, our estimated response
surfaces for survival alone demonstrate strong responses to relatively mild differences in
conditions. While the literature as it currently stands is suggestive of how these effects
might be explained, we find nothing in the literature like the quantitative characterizations
required to construct response surfaces.

The reasons for the disparity between field estimates of environmental responses on one
hand and detailed studies on the other are well known in ecology. Small scale studies often
produce inferences about individual effects operating under simplified conditions, particu-
larly if these studies are carried out in the laboratory. In the wild many competing and
interacting effects are present and it is often unclear how field conditions even relate to
conditions constructed in the laboratory (e.g.-constant temperature treatments in a simple
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landscape compared to diurnal temperature variation in the context of competition for refu-
gia). Detailed studies typically focus on demonstrating that an effect operates, but showing
that the effect generalizes to other conditions and how it is mediated by other effects is
typically beyond their scope.

Detailed field studies such as mark-recapture and telemetry studies can generate esti-
mates of many of the same effects as small-scale field and laboratory studies in the context
of natural environmental variation. They can be seen as an alternative to measurements
conducted in more controlled conditions, but I prefer to view them as a natural extension of
the laboratory work used to first establish the existence of certain physiological or behavioral
effects.

Unfortunately there are a number of barriers to using field studies broadly to quantify
environmental responses. First, unlike studies that first establish the existence of effects,
studies that quantify effects are often viewed as less critical. Hopefully with increasing
emphasis on prediction, studies focused on quantifying effects will become more desirable.
Second, even when these studies are carried out, the raw data required to compare estimates
from different studies in a meta-analysis is often unavailable. Finally, for estimates of vital
rates from long-term field studies or studies that cover many sites, the models required to
make sense of the data are not well developed. This is the focus of my contribution.

First I demonstrated how counting process models for time-to-event data can be used
to tackle the complexity of field data sets. I analyzed a simple multi-variate experimental
example as well as the emigration data from the Atlantic salmon population at the West
Brook. These methods are broadly applicable to the estimation of vital rates and they solve
the issues of changing methods in multi-year data sets, continuous models of seasonality,
and using non-constant hazard functions. More work is needed in making these methods
accessible to ecologists without extensive computational experience. Work is also needed to
clarify how these methods interact with the complex observational processes that are the
hallmark of field experiments.

Second, I applied these methods in simplified form to a large multi-year mark-recapture
data set. I used polynomial regression with interactions to construct seasonal response
surfaces for survival over a range of environmental conditions. Surfaces varied strongly across
seasons and were also clearly non-linear. I evaluated how environmental effects on survival
correspond to the known literature on physiological and behavioral mechanisms. The simple
task of comparing surfaces to the known literature makes it clear that a variety of small
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targeted studies would be useful in clarifying why the environmental response surfaces look
like they do. One of the strengths of this quantitative comparison is to highlight specific
discrepancies between our knowledge and observations in a very directed way.

While these surfaces are valuable for understanding environmental effects on survival,
they were clearly non-linear and the model was likely hiding more complex features. In
general we expect environmental response surfaces to be complex when multiple unknown
effects interact and are mediated by environmental conditions. To address the issue of
estimating such surfaces, I suggest using local regression.

I applied one formulation of local regression, along with an evaluation of data adequacy
and parameter uncertainty to the simple problem of evaluating changes in stream temper-
atures. The water temperature example is instructive. The simple model of change in
water temperature as a function of season, forest cover, and air-water difference shows a
non-linear seasonal effect, a linear air-water difference effect, and ambiguous results based
on the site-level forest cover covariate (figure 28). When the interaction of forest cover
with temperature difference is considered, the two are mostly independent based on the lim-
ited number of sites available (29). A site-specific model of the interaction between season
and temperature difference similarly results in surfaces that could be represented by linear
models with interactions. However, when aggregating across sites, the response surface for
temperature difference is more complex (figure 30). The open question is whether the more
complex surface aggregating across sites is simply the result of the available handful of sites
or whether the pattern holds generally—or at least regionally. A general or regional pattern
would be a useful component of a predictive temperature model.

In the survival model example local data are much more sparse—a single year will
only have one kind of winter and the data set encompasses about twelve effective years
of data. Assuming that these effects do not drift over years, we were able to estimate
response surfaces for different seasons. Despite relatively broad confidence intervals these
surfaces clearly depart from surfaces defined by weak priors and narrow the relevant credible
intervals. In visualizing these surfaces we are able to crudely show which parts of covariate
space have significant amounts of data contributing to the estimated surface or, equivalently,
how confidence intervals are narrowed relative to a weak prior.
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6.3 Live data, non-linearity and deep interactions

Ecological models raise a common set of challenges—varying data sources, varying process
models, under-characterized non-linearity, and deep interactions, which bring with them dif-
ficulties in characterizing data adequacy and effect uncertainty in complex covariate spaces.
For well studied systems it is often possible to address these challenges at the cost of creat-
ing complex custom models. I suggest a more generic approach based on tools developed in
statistics to address challenges shared by many other fields.

I suggest applying a set of standard tools including time to event models and local
regression for estimation and detection of non-linearity, kernel density estimation for data
adequacy evaluation in complex if low-dimensional covariate spaces, and relative statistics
for uncertainty evaluation. Using these relatively well-established tools is an advance over
custom global models constructed from polynomial regression with interactions, as it avoids
the losing proposition of trying to build the right model with what are, fundamentally, the
wrong building blocks.

Even in the context of these tools there is plenty of room to specify models that address
many interesting ecological questions. My goal was to solve these basic problems associated
with complex field studies in enough generality to demonstrate the the tools were available
to deal with complex data sources, process models, non-linearity, and deep interactions.
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Appendix A

Choice of software and algorithms

The variety of mark-recapture model is well supported by software. Standard models are
supported by program MARK White & Burnham (1999), which collects them in a remark-
ably user-friendly software package with a unified interface for model specification, com-
parison, and goodness-of-fit testing. At the time of this writing a variety of models have
also been implement using the BUGS language in WinBUGS (Lunn et al., 2000) and JAGS
(Plummer, 2003). The BUGS language implementations are less user-friendly but they are
amenable to iterative modification by researchers, which has allowed them to be applied to
a wider class of problems (Kéry & Schaub, 2012; Royle & Dorazio, 2008). Many of these
experiments might not otherwise fit into the standard mark-recapture models.

One of the BUGS-language implementations of the CJS model, which has recently be-
come popular is the state-space formulation (Royle & Dorazio, 2008). The state-space
representation tracks the state of each individual at each time point. The multi-state ex-
tension to CJS is important for our Atlantic salmon data set since individuals can depart
the system by entering one of three absorbing states: death, smolting, or emigration. In
addition, smolting must be preceded by emigration. In the state-space framework this type
of model becomes prohibitively computationally expensive to estimate for large data sets
(B. H. Letcher, Schueller, et al., 2014). Instead of the state space formulation we return to
the original CJS estimation strategy of summing over possible individual states to calculate
the likelihood.

I do not rely on either MARK or the BUGS language implementations for the present
work. Early work did rely on MARK but we were not able to obtain results for more
complex models on our entire data set. Program MARK is not open source and I did not
pursue a resolution to these problems. The BUGS language implementations are capable of
handling larger data sets, and during the time of this project JAGS in particular improved
dramatically in its robustness. We used JAGS to initially implement models for the Atlantic
salmon data set, and a related project on brook trout (B. H. Letcher, Schueller, et al., 2014).
Our experience with the BUGS language implementation resulted in some successes but lack
of convergence was a continual problem and, in more complex models, difficult to assess.
I did pursue a better understanding of JAGS in particular to see if these problems were

127



resolvable but at the time JAGS was difficult to extend. Ultimately we were not able to
reliably fit complex mark-recapture models for a large data set using either MARK or BUGS.

The work here depends on the Stan (Stan Development Team, 2014) library and inter-
faces. Stan supports a language superficially similar to BUGS but its architecture is by
design more scalable. Briefly, rather than creating a DAG which is then used to condition-
ally sample from the posterior, Stan’s specification is parsed into a C++ program which
defines the C++ density calculation. The C++ program is then compiled and a variety
of algorithms can be used to optimize or sample from the posterior. This work relies on
the Hamiltonian Monte Carlo algorithm in Stan for full Bayesian inference, which has ex-
cellent properties for sampling from a posterior with high and varying correlation among
parameters.

With new software there is always the concern that some results may be wrong simply
due to the software. To partially address that concern, I estimated some models that did not
include a random effect structure with optimization (BFGS-L) in Stan, as well as sampling.
This tests that spurious results are generally not introduced by the two more complex
components of the Stan library which sampling relies on—automatic gradient calculation
and the HMC/NUTS algorithm. The results were generally very close and I do not discuss
these further here.

Stan was somewhat slow in some of our very complex models that included three-
dimensional spline structures with hundreds of knot points. The run-times for these models
approached two or three days, which made model building and evaluation time-consuming.
The relevant calculations benefit from sparse matrix algebra which was lacking in Stan. To
solve this problem I programmed a small addition to Stan in C++ which made it possible
to use a sparse model matrix to represent the multi-dimensional spline and cut computa-
tion down to hours. The changes have since been incorporated into Stan. While the C++
API for Stan is not yet well documented I expect it to improve quickly as the team is very
committed to an open development model.
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Appendix B

Commented example codes

The code presented here is available from the author as well as online (Sakrejda, n.d.) and
retrieving up-to-date sources is preferable to working with this code. This code is provided
as a reference for the computational issues involved in coding the statistical models described
in the main text.

Comments on modified CJS code

The modified CJS model used in the Atlantic salmon analysis is relatively standard as both
the survival and recapture calculations used a pre-computed model matrix. The general
model appears here with comments, the complete code is available online.

The smolt model was very limited and specific. I abstracted the calculation of the smolt
probability to this function. Smolt probability is zero in all non-spring seasons and below
age 2+ whereas α is indexed to a[1] for age 1+ and to a[2] for all older ages.

functions {

real beta_smolt(vector alpha, int a, int s) {

if (s!=1) return 0.0;

if (a<=1) return 0.0;

if ((a-1) < num_elements(alpha))

return inv_logit(alpha[a-1]);

else

return inv_logit(alpha[num_elements(alpha)]);

}

}

The indexing required for the long form of mark-recapture data here is relatively involved
but it saves on empty matrix entries relative to the wide form and allows the data to be
kept in a format relatively convenient for visual inspection. Ambiguous individuals are
those without a known fate and ambiguous rows are rows of data where the fate of the
individual is not known. These are typically all rows after the last capture if there is no
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subsequent antenna-detected emigration or smolt trap recapture. Unambiguous fates are
more convenient as those individuals can be censored at their final observation and their
likelihood calculation is simpler. Season and smolt-season are different variables as some
smolts were caught in the smolt trap after the official end of spring, but they were only a
handful and so were lumped with the spring smolts.

The somewhat generic priors we apply require us to separate survival and recapture
events into fixed and random effects (Cauchy for recapture and normal for survival). The
data relating survival and recapture parameters to observations (and environmental condi-
tions) is passed in as a sparse-format model matrix (CSR) which does not have a natural
data type in the Stan language (yet). Instead of using a single type, each model matrix is
represented by the number of nonzero entries (NNZ), the number of rows (m), the number
of columns (n), the values of non-zero entries (w), the row-index of non-zero entries (v), and
two additional vectors (u, z). These are documented further in the section describing sparse
matrix multiplication implemented in Stan.

data {

int n_rows;

int n_censored;

int n_ambiguous_individuals;

int n_unambiguous_rows;

int n_ambiguous_rows;

int n_individuals;

int ambiguous_rows[n_ambiguous_individuals,2];

int unambiguous_rows[n_unambiguous_rows];

int season[n_rows];

int smolt_season[n_rows];

int age_year[n_rows];

vector<lower=0, upper=10>[n_rows] scaled_interval;

int cjs_classification[n_rows];

int n_p_effects;
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int n_p_cauchy_effects;

int n_p_fixed_effects;

int n_phi_effects;

int n_phi_random_effects;

int n_phi_fixed_effects;

// matrix[n_rows,n_p_effects] p_X;

int p_X_NNZ;

int p_X_m;

int p_X_n;

vector[p_X_NNZ] p_X_w;

int p_X_v[p_X_NNZ];

int p_X_u[p_X_m+1];

int p_X_z[p_X_m];

// matrix[n_rows,n_phi_effects] phi_X;

int phi_X_NNZ;

int phi_X_m;

int phi_X_n;

vector[phi_X_NNZ] phi_X_w;

int phi_X_v[phi_X_NNZ];

int phi_X_u[phi_X_m+1];

int phi_X_z[phi_X_m];

}

In the transformed data section Stan makes it convenient to carry out some deterministic
calculations on data only—before running the estimation algorithm. First, we need to know,
based on the data, how long of a vector we will need to keep for calculations on individuals
with non-censored histories. This is determined from the number of non-capture rows after
the last capture for each individual. We start with a zero length buffer and check whether
it is long enough for each individual. When it is (inevitably) found to be too short, we
update the value to be long enough for the offending individual. After the loop covers all
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individuals we store the length of the buffer so we can pre-allocate it and avoid creating a
new one for each individual. Second, we check whether the number of fixed effects in the
recapture model matches the number of random effects and total number of effects. These
values could all be calculated from two out of three but instead we use it as a check on the
R-level calculations.

transformed data {

int ambig_row_calc_buffer;

int m;

ambig_row_calc_buffer <- 0;

for ( i in 1:n_ambiguous_individuals ) {

m <- ambiguous_rows[i,2] - ambiguous_rows[i,1] + 1;

if ( m > ambig_row_calc_buffer ) {

ambig_row_calc_buffer <- m;

}

}

if (n_p_effects != n_p_cauchy_effects + n_p_fixed_effects)

print("n_p_effects != n_p_cauchy_effects + n_p_fixed_effects");

}

In the following section we declare the survival, recapture, smolt and emigration parame-
ters. There are two smolt parameters (one for 1+ and one for all older fish), four emigration
parameters (one per season, based on the exploratory data analysis of emigration). The
survival parameters are divided into random and fixed effects so that they can be assigned
priors in groups below, with one variance parameter for the random effects. The limits on
the survival parameters limit the model to the portion of parameter space where the logistic
transformation is still sensitive to parameter values. Parameters much outside of [−7, 7]

are essentially zero or one after the inverse logit transform, so we limit the values they can
take to simplify analysis. The recapture parameters follow the same pattern. The recapture
parameters have different bounds as they are later transformed to induce a Cauchy distri-
bution on the random effects. This change is important for the Cauchy random effects as
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sampling from a Cauchy distribution directly with an MCMC algorithm is in general not
effective.

parameters {

vector<lower=-7, upper=7>[n_phi_random_effects] phi_random_betas_raw;

vector<lower=-7, upper=7>[n_phi_fixed_effects] phi_betas_raw;

real<lower=0, upper=10> phi_sd;

vector<lower=-pi()/2, upper=pi()/2>[n_p_cauchy_effects] p_cauchy_betas_raw;

vector<lower=-7, upper=7>[n_p_effects-n_p_cauchy_effects] p_fixed_betas;

real<lower=0, upper=3> beta_p_occasion_sd;

vector<lower=-15, upper=5>[2] beta_alpha_seasonal; // smolt

vector<lower=-15, upper=5>[4] beta_rho_seasonal; // emigrate

}

In the transformed parameters the vectors of fixed-effect and random-effect betas are
combined to create a single vector for survival and a single vector for recapture. The
recapture random effects are transformed such that their induced distribution is Cauchy
with an estimated standard deviation.

transformed parameters {

vector[n_phi_effects] phi_betas;

vector[n_p_effects] p_betas;

for ( i in 1:n_phi_fixed_effects) {

phi_betas[i] <- phi_betas_raw[i];

}

for ( i in (n_phi_fixed_effects+1):n_phi_effects ) {

phi_betas[i] <- phi_sd * phi_random_betas_raw[i-n_phi_fixed_effects];

}

for ( i in 1:n_p_fixed_effects) {

p_betas[i] <- p_fixed_betas[i];
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}

for ( i in (n_p_fixed_effects+1):n_p_effects ) {

p_betas[i] <- beta_p_occasion_sd *

tan(p_cauchy_betas_raw[i-n_p_fixed_effects]); // centered cauchy random effects.

}

}

The model block is complex so we break it down into sections below. The first portion is
declaring variables and types. We declare buffers (A, A∗, B, and B∗) and their sizes based
on the calculation from the transformed data block. We also declare a per-row likelihood
value. The priors for recapture are N(0, 1), which places the main mass of the distribution
between a survival probability of 0.1 and 0.9 for a single transformed coefficient and wider
for the result of a linear model. The specific formulation below has no random effects and
therefore the same priors for all types of survival effects. The recapture effects also have
the weak N(0, 1) prior for fixed effects and an implied uniform prior for the random effects
which are then transformed to induce a Cauchy distribution.

model {

real row_lp[n_rows];

int k;

int start_row;

int stop_row;

real A[ambig_row_calc_buffer];

real A_star[ambig_row_calc_buffer];

real B[ambig_row_calc_buffer];

real B_star[ambig_row_calc_buffer];

vector[n_rows] phi;

vector[n_rows] p;

vector[n_rows] alpha;

vector[n_rows] rho;
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// survival priors:

phi_betas_raw ~ normal(0,1);

phi_random_betas_raw ~ normal(0,1);

// most of the mass below sd=1, still allows extreme events

phi_sd ~ gamma(2,10);

// recapture priors:

// p_cauchy_betas_raw ~unif() // implied!

p_fixed_betas ~ normal(0,1);

beta_p_occasion_sd ~ cauchy(0,.5);

// smolting priors:

beta_alpha_seasonal ~ cauchy(-1,3);

// recapture priors:

beta_rho_seasonal ~ normal(-5,3);

Continuing the model block, the survival and recapture model matrices (in sparse matrix
format) are multiplied by their respective parameter to produce per-observation link-scale
values which are then transformed (and/or scaled by per-observation interval duration) to
produce per-observation survival/recapture/smolt/emigrate event probabilities.

// construct per-event probs:

phi <- sparse_multiply_csr(phi_X_m, phi_X_n, phi_X_w,

phi_X_v, phi_X_u, phi_X_z, phi_betas);

p <- sparse_multiply_csr(p_X_m, p_X_n, p_X_w, p_X_v, p_X_u, p_X_z, p_betas);

for ( i in 1:n_rows ) {

phi[i] <- pow(inv_logit(phi[i]), scaled_interval[i]);

p[i] <- inv_logit(p[i]);

alpha[i] <- beta_smolt(beta_alpha_seasonal, age_year[i], smolt_season[i]);

rho[i] <- inv_logit(beta_rho_seasonal[season[i]]);

}
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Finally, the event probabilities are combined based on the actual observed event type
to produce a per-observation likelihood. For events which should not be included in the
model there are guard statements included in this calculation. For all observations between
the first and last the calculation is straightforward based on the known combinations of
events leading to an observation. The calculation for individuals with uncensored histories
("ambiguous") have a second recursive calculation to compute the probability of each non-
observation based on the parameters and the history of observation attempts. This recursive
calculation re-uses the single buffer instantiated at the top of the model block.

// Likelihood calculation:

for ( i in 1:n_unambiguous_rows ) {

k <- unambiguous_rows[i];

if (cjs_classification[k] == 0) {

print("STOP, row ", k, " should not be evaluated.");

row_lp[k] <- 0.0;

}

if (cjs_classification[k] == 1) {

row_lp[k] <- log(phi[k]*(1-rho[k])*(1-alpha[k])*p[k]);

}

if (cjs_classification[k] == 2) {

row_lp[k] <- log(phi[k]*(1-rho[k])*(1-alpha[k])*(1-p[k]));

}

if (cjs_classification[k] == 3) {

row_lp[k] <- log(phi[k]*rho[k]);

}

if (cjs_classification[k] == 4) {

row_lp[k] <- log(phi[k]*rho[k]*alpha[k]);

}

if (cjs_classification[k] == 5) {

row_lp[k] <- log(phi[k]*(1-rho[k])*(1-alpha[k]));

}

if (cjs_classification[k] == 6) {

print("STOP, row ", k, " should not be evaluated here.");
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}

if (cjs_classification[k] == 7) {

print("STOP, row ", k, " should not be evaluated.");

row_lp[k] <- 0.0;

}

increment_log_prob(row_lp[k]);

}

for ( i in 1:(n_ambiguous_individuals)) {

for ( j in 1:ambig_row_calc_buffer ) {

A[j] <- 0.0;

B[j] <- 0.0;

A_star[j] <- 0.0;

B_star[j] <- 0.0;

}

start_row <- ambiguous_rows[i,1];

stop_row <- ambiguous_rows[i,2];

for ( j in start_row:stop_row ) {

k <- j - start_row + 1;

if (cjs_classification[j] != 6) {

print("STOP, row ", j, " should not be evaluated here.");

}

if (j == start_row) {

A[k] <- 1.0;

A_star[k] <- 1.0;

} else {

A[k] <- phi[j-1]*(1-p[j-1]);

}

B[k] <- (1-phi[j]);

A_star[k] <- A_star[k] * A[k];

B_star[k] <- A_star[k] * B[k];

137



}

increment_log_prob(log(sum(B_star)));

}

Comments on continuous-time CJS code

functions {

real protected_normal_cdf(real x, real mu, real sd) {

if ((x-mu)/sd > 10.0)

return(1.0);

else if ((x-mu)/sd < 10.0)

return(0.0);

else

return normal_cdf(x,mu,sd);

}

real lambda_radial(vector theta, real t, vector process_knot_centers,

real knot_scale

) {

real lambda;

int K;

K <- num_elements(theta);

lambda <- 0.0;

for(k in 1:K) {

lambda <- lambda + theta[k] *

exp(normal_log(t, process_knot_centers[k], knot_scale));

}

return lambda;

}

real Lambda_radial(vector theta, real s1, real t,
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vector process_knot_centers, real knot_scale) {

real lambda;

int K;

K <- num_elements(theta);

lambda <- 0.0;

for(k in 1:K) {

lambda <- lambda + theta[k] * (

normal_cdf(t, process_knot_centers[k], knot_scale) -

normal_cdf(s1, process_knot_centers[k], knot_scale)

);

}

return lambda;

}

real time_to_event(

int event_class, real s1, real s2,

vector theta_D, vector theta_E,

vector process_knot_centers, real knot_scale

) {

real log_prob;

real lambda_D;

real lambda_E;

real Lambda_D;

real Lambda_E;

if (event_class == 0) { // non-event, no effect

return 0.0;

}

if (event_class == 1) { // no emigration, no death

Lambda_D <- Lambda_radial(

theta_D, s1, s2, process_knot_centers, knot_scale);

Lambda_E <- Lambda_radial(

theta_E, s1, s2, process_knot_centers, knot_scale);

log_prob <- -(Lambda_D+Lambda_E);
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return log_prob;

}

if (event_class == 2) { // known emigration, no death

Lambda_D <- Lambda_radial(

theta_D, s1, s2, process_knot_centers, knot_scale);

lambda_E <- lambda_radial(

theta_E, s2, process_knot_centers, knot_scale);

Lambda_E <- Lambda_radial(

theta_E, s1, s2, process_knot_centers, knot_scale);

log_prob <- log(lambda_E) - (Lambda_D+Lambda_E);

return log_prob;

}

if (event_class == 3) { // no emigration, known death

lambda_D <- lambda_radial(

theta_D, s2, process_knot_centers, knot_scale);

Lambda_D <- Lambda_radial(

theta_D, s1, s2, process_knot_centers, knot_scale);

Lambda_E <- Lambda_radial(

theta_E, s1, s2, process_knot_centers, knot_scale);

log_prob <- log(lambda_D) - (Lambda_D+Lambda_E);

return log_prob;

}

if (event_class == 4) { // no emigration, death on interval

print("Stop, this likelihood can not be calculated.")

log_prob <- not_a_number();

return log_prob;

}

if (event_class == 5) { // emigration on interval, no death

print("Stop, this likelihood can not be calculated.")

log_prob <- not_a_number();

return log_prob;

}

if (event_class == 6) { // one of emigration or death
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lambda_D <- lambda_radial(

theta_D, s2, process_knot_centers, knot_scale);

Lambda_D <- Lambda_radial(

theta_D, s1, s2, process_knot_centers, knot_scale);

lambda_E <- lambda_radial(

theta_E, s2, process_knot_centers, knot_scale);

Lambda_E <- Lambda_radial(

theta_E, s1, s2, process_knot_centers, knot_scale);

log_prob <- log(lambda_D+lambda_E) - (Lambda_D+Lambda_E);

return log_prob;

}

return not_a_number();

}

real smooth_recapture_event(real s1, real s2,

vector p, vector occ_centers, vector occ_spreads) {

real log_prob;

int n_occ;

n_occ <- num_elements(p);

log_prob <- 0.0;

for (i in 1:n_occ) {

log_prob <- log_prob + log(

1 - p[i] * (protected_normal_cdf(s2, occ_centers[i], occ_spreads[i]) -

protected_normal_cdf(s1, occ_centers[i], occ_spreads[i]) )

);

}

return log_prob;

}

}

data {

int n_rows; // number of rows/observations/events

int n_individuals; // number of individuals/units
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int n_known_s2;

int idx_known_s2[n_known_s2];

int n_unknown_s2;

int idx_unknown_s2[n_unknown_s2];

// class is defined by code in function above.

int idx_event_class[n_rows];

vector[n_rows] s1;

// Known or best guess values for interval end.

vector[n_rows] s2;

// Both death and emigration share the same number of knots and the

int n_process_knots;

// same knot centers/spreads to avoid mobile effects.

vector[n_process_knots] process_knot_centers;

int n_occasions;

vector[n_occasions] start_occ;

vector[n_occasions] stop_occ;

// class is defined by code in function above.

int idx_recapture_class[n_rows];

int idx_occ[n_rows];

// for failed recaptures with unknown state, this data is used

// as the "s1" for the recapture event calculation. It is an

// artifical "s1" which is really the day following the last day

// of the previous recapture occasion.

vector[n_rows] recapture_s1;

int n_p_effects;

int n_p_cauchy_effects;
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int n_p_fixed_effects;

matrix[n_rows,n_p_effects] p_X;

matrix[n_occasions, n_p_effects] p_X_occ;

int start_day; // For generated quantities, lambdas are calculated

int stop_day; // for each day of interest. These are the start/stop

// days (with zero absolute reference, like the s1/s2/t

// variables.

}

transformed data {

real knot_scale;

real knot_weight_scale;

vector[n_process_knots-1] interknot;

vector[n_occasions] occ_centers;

vector[n_occasions] occ_spreads;

for(k in 2:n_process_knots)

interknot[k-1] <- process_knot_centers[k] - process_knot_centers[k-1];

knot_scale <- mean(interknot)/2.0; // Based on interknot distance,

// this scale makes for a flat

// function when weights are

// equal.

knot_weight_scale <- 1/exp(normal_log(0,0,knot_scale));

// Scaling thetas by this makes the function about the height of

// thetas near knot centers.

for(i in 1:n_occasions) {

occ_centers[i] <- (start_occ[i]+stop_occ[i])/2;

occ_spreads[i] <- (stop_occ[i]-start_occ[i])/4;

if (occ_spreads[i] < 1)

occ_spreads[i] <- 1;

}

}
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parameters {

// All parameters on YEARLY scale.

vector<lower=0>[n_unknown_s2] t2;

vector<lower=0>[n_process_knots] theta_D;

vector<lower=0>[n_process_knots] theta_E;

// Recapture, per-occasion and spline parameters:

vector<lower=-pi()/2, upper=pi()/2>[n_p_cauchy_effects] p_cauchy_betas_raw;

vector<lower=-7, upper=7>[n_p_effects-n_p_cauchy_effects] p_fixed_betas;

real<lower=0, upper=3> p_occasion_sd;

}

transformed parameters {

vector[n_rows] t; // parameters for unkonwn event times;

vector[n_p_effects] p_betas;

vector[n_occasions] p_occ; // per-occsaion recapture probability

for ( i in 1:n_known_s2 ) {

t[idx_known_s2[i]] <- s2[idx_known_s2[i]];

}

for ( i in 1:n_unknown_s2) {

// t2 survival in years TO days.

t[idx_unknown_s2[i]] <- s1[idx_unknown_s2[i]] + t2[i]*365;

}

for ( i in 1:n_p_fixed_effects) {

p_betas[i] <- p_fixed_betas[i];

}

for ( i in (n_p_fixed_effects+1):n_p_effects ) {

// centered cauchy random effects.
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p_betas[i] <- p_occasion_sd * tan(p_cauchy_betas_raw[i-n_p_fixed_effects]);

}

// Per-occasion recapture probabilities:

p_occ <- p_X_occ * p_betas;

for(i in 1:n_occasions) {

p_occ[i] <- inv_logit(p_occ[i]);

}

}

model {

vector[n_rows] lambda_D; // per-observation intensity function value.

vector[n_rows] Lambda_D; // per-observation mean function value.

vector[n_rows] lambda_E; // per-observation intensity function value.

vector[n_rows] Lambda_E; // per-observation mean function value.

vector[n_rows] p; // per-row recapture probability

vector[n_rows] log_lik;

t2 ~ gamma(2,1); // YEARLY BASIS STUFF!!!!!

theta_D ~ gamma(2,1*knot_weight_scale);

theta_E ~ gamma(2,1*knot_weight_scale);

p_fixed_betas ~ normal(0,1);

p_occasion_sd ~ gamma(2,1);

//p <- sparse_multiply_csr(p_X_m, p_X_n, p_X_w, p_X_v, p_X_u, p_X_z, p_betas);

p <- p_X * p_betas;

for(i in 1:n_rows) {

p[i] <- inv_logit(p[i]);
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}

for ( i in 1:n_rows ) {

log_lik[i] <- time_to_event(

idx_event_class[i], s1[i], t[i], theta_D/365*knot_weight_scale,

theta_E/365*knot_weight_scale,

process_knot_centers, knot_scale);

// if (idx_recapture_class[i]==0)

// log_lik[i] <- log_lik[i] + 0.0;

if (idx_recapture_class[i]==1)

log_lik[i] <- log_lik[i] + log(p[i]);

if (idx_recapture_class[i]==2)

log_lik[i] <- log_lik[i] + log(1-p[i]);

if (idx_recapture_class[i]==3)

log_lik[i] <- log_lik[i] +

smooth_recapture_event(recapture_s1[i], t[i],

p_occ, occ_centers, occ_spreads);

increment_log_prob(log_lik[i]);

}

}

generated quantities {

vector[n_rows] event_log_lik;

vector[n_rows] recap_log_lik;

vector[n_rows] p;

p <- p_X * p_betas;

for(i in 1:n_rows) {

p[i] <- inv_logit(p[i]);

}

for ( i in 1:n_rows ) {
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event_log_lik[i] <- time_to_event(

idx_event_class[i], s1[i], s2[i], theta_D/365*knot_weight_scale,

theta_E/365*knot_weight_scale,

process_knot_centers, knot_scale);

if (idx_recapture_class[i]==1)

recap_log_lik[i] <- log(p[i]);

if (idx_recapture_class[i]==2)

recap_log_lik[i] <- log(1-p[i]);

if (idx_recapture_class[i]==3)

recap_log_lik[i] <- smooth_recapture_event(recapture_s1[i], s2[i],

p_occ, occ_centers, occ_spreads);

}

}

Comments on multi-state homogeneous Poisson process code

Unlike the two versions of the CJS model, this code is specific to the conceptual model and
is an approximation. While it does consider forward and back transitions in the three-state
system, it does not consider multi-step transitions. In some systems multi-step transitions
may be important. The single-transition function below is complicated by a branch point
because the integral can not be calculated with the same method at all parameter values.
When the forward and reverse transitions have equal rates the integral simplifies to a different
form but the original formula is undefined.

functions {

real no_transition(real[] s, vector lambda, int a_idx, int b_idx) {

real log_prob;

log_prob <- -((lambda[a_idx] + lambda[b_idx])*(s[2]-s[1]));

return(log_prob);
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}

real one_transition(real[] s, vector lambda,

int e_idx, int c_idx, int r1_idx, int r2_idx) {

real log_prob;

real log_a;

real b;

real d;

log_a <- log(lambda[e_idx]) +

(lambda[e_idx]+lambda[c_idx])*s[1] -

(lambda[r1_idx]+lambda[r2_idx])*s[2];

b <- lambda[e_idx] + lambda[c_idx] -

lambda[r1_idx] - lambda[r2_idx];

if (b == 0) {

log_prob <- log_a + log(s[2]-s[1]);

return(log_prob);

} else {

d <- exp(-b*s[1]) - exp(-b*s[2]);

log_prob <- log_a + log(d/b);

return(log_prob);

}

}

}

Simplifying the approximate model to only consider the no-transition and single-transition
cases allows us to simplify the data by keeping track of the index of the forward transition
(e), the complementary transition to the forward transition (c), which did not occur, and
the two reverse transitions (r1, r2), which also did not occur.

data {

// structure:

int n_obs;
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int n_transitions;

int n_groups;

// times:

real<lower=0> s[n_obs,2];

// groups:

int<lower=1, upper=2> transition_type[n_obs]; // self=1, other=2

int<lower=1, upper=n_groups> group[n_obs]; // 1:n_groups;

// Index lambdas: event, competing, reverse 1, reverse 2;

int<lower=1, upper=n_transitions> e_idx[n_obs];

int<lower=1, upper=n_transitions> c_idx[n_obs];

int<lower=0, upper=n_transitions> r1_idx[n_obs];

int<lower=0, upper=n_transitions> r2_idx[n_obs];

}

The parameters here are simple with one set of lambdas per treatment group, and one
lambda within group for each of the available transitions (e, c, r1, and r2). The model block
is also simple, adding one of two possible increments—no transition observed, or transition
observed—to the log probability for each data point.

parameters {

matrix<lower=0>[n_transitions,n_groups] lambda;

}

model {

real log_prob;

for (i in 1:n_groups) {
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col(lambda, i) ~ gamma(2,1);

}

for(i in 1:n_obs) {

if (transition_type[i]==1) {

log_prob <- no_transition(s[i],

col(lambda, group[i]), e_idx[i], c_idx[i]);

} else {

log_prob <- one_transition(s[i],

col(lambda, group[i]), e_idx[i], c_idx[i], r1_idx[i], r2_idx[i]);

}

increment_log_prob(log_prob);

}

}
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