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ABSTRACT 

A SEMISYNTHETIC STRATEGY LEADS TO ALTERATION OF THE 
BACKBONE AMIDATE LIGAND IN THE NISOD ACTIVE SITE 

 
SEPTEMBER 2015 

 
JULIUS OMAYAO CAMPECIÑO, B.S., MSU-ILIGAN INSTITUTE OF 

TECHNOLOGY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS-AMHERST 
 

Directed by: Professor Michael J. Maroney 
 
 

Computational investigations have implicated the amidate ligand in nickel 

superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in 

preventing cysteine thiolate ligand oxidation. To test these predictions, we used an 

experimental approach utilizing a semisynthetic scheme that employs native chemical 

ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these 

N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits 

the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically 

active. The semisynthetic scheme was also employed to construct a variant where the 

amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategy that 

retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% 

of the catalytic activity of the recombinant wild-type enzyme, and have altered 

spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar 

site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results 

indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, 

as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type 

enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in 
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the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is 

observed on gz, confirming the addition of the apical histidine ligand in the Ni(III) 

complex. The altered electronic properties and implications for redox catalysis are 

discussed in light of predictions based on synthetic and computational models. 
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CHAPTER 1 
 

THE NICKEL SUPEROXIDE DISMUTASE 

1.1 Introduction 

1.1.1 Superoxide Radical: Its Biochemistry and Pathology 

Oxygen is a diatomic molecule that plays an important role in aerobic respiration 

as the final dumping ground for electrons in the electron transport chain: a cellular 

process involved in energy production in mitochondria.1 The molecular oxygen is 

reduced to water by cytochrome oxidase using the electrons that are passed down in the 

electron transport chain from one enzyme complex to another in a tightly choreographed 

mechanism. In this mechanism, cytochrome oxidase is the last enzyme complex to 

receive the reducing electrons.2 Cytochrome oxidase then reduces molecular oxygen in a 

stepwise fashion – one electron at a time. Coupled with these electron transfer processes 

is the pumping of protons from the mitochondrial matrix into the intermembrane space. 

This creates a proton gradient which drives the synthesis of ATP.2 The drawback of the 

stepwise redox reaction, however, is that it is not foolproof and about 1-2% of the total 

daily human oxygen consumption is not completely reduced to water but released as 

superoxide radical (O2
•-) and it is believed that the electron transport chain in the 

mitochondria is the main source of superoxide radical.1,2 

The superoxide radical itself is a benign radical; so low in reactivity that it was 

previously argued that a defense mechanism against this radical is not important.3,4 

However, this benign reactivity makes O2
•- more dangerous because it can diffuse over 

long distances, without being quenched, and eventually finds its target.5 It has been 

1 



 

shown that O2
•- could inactivate catalases,6 glutathione peroxidases,7 and more than a 

dozen of other enzymes8 - most importantly FeS-cluster containing enzymes such as 

aconitase and dehydratases.5,9 The iron ions released from these deactivated FeS-cluster 

containing enzymes act as catalyst for the Haber-Weiss reaction: 

Fe3+ + O2
•- → Fe2+ + O2 (1) 

Fe2+ + H2O2 → Fe3+ + OH− + OH• (2) 
_______________________________________________ 

O2
•- + H2O2 → OH• + OH- + O2 (3) 

O2
•- and H2O2 from the Haber-Weiss reaction work together to produce an even more 

toxic reactive oxygen species, hydroxyl radical (OH•). The hydroxyl radical is so reactive 

that it will react with the first molecule it encounters.9,10  

Since superoxide radical is predominantly produced in mitochondria, the most 

important target is the mitochondrial DNA (mtDNA).11 Damage to mtDNA was one of 

the bases for the mitochondrial theory of aging. The damage to the mtDNA causes 

mutations to the encoded proteins; the more important mutations are the ones involving 

the respiratory complexes.11 These mutations decrease the efficiency of the electron 

transport chain; and as pointed out by Genova et al. (2004), these mutations “lead to 

further production of reactive oxygen species, thus establishing a vicious cycle of 

oxidative stress and energetic decline”.12 This oxidative stress is thought to play a major 

contribution to all human inflammatory diseases, ischemic diseases, hemochromatosis, 

and neurologic diseases such as Alzheimer’s disease, Parkinson’s disease and 

amyotrophic lateral sclerosis.8  
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1.1.2 Superoxide Dismutase: Nature’s way to regulate the level of superoxide 
radical. 

Energy production (in the form of ATP) via aerobic respiration has the advantage 

over glycolysis (anaerobic) in that it produces 18 times more ATP per glucose 

molecule.13 However, one trade-off for this advantage is the production of O2
•-. Since O2

•- 

is an inevitable by-product of aerobic respiration and since reactive oxygen species are 

tremendously destructive, superoxide radical has to be regulated at the cellular level.14 To 

acquire both the advantage of aerobic metabolism as well as the ability to survive against 

reactive oxygen species, microorganisms and complex organisms had evolved with a 

defense mechanism using superoxide dismutases (SODs).13 The pressure to develop a 

defense against O2
•- is so intense that organisms developed SODs on three separate 

occasions and these are Fe/MnSOD, CuZnSOD, and NiSOD.13 

Superoxide dismutases are indispensible for an aerobic lifestyle and are found in 

all organisms exposed to oxygen.15 They are even found in facultative anaerobes with the 

exception of Neisseria gonorrhoeae, and Lactobacillus plantarum and related lactobacilli 

which use high concentration of manganese to scavenge O2
•-.16-19 Even a few examples of 

obligate anaerobes harbor this class of enzyme.20,21 Microorganisms can possess one, 

two, or all three classes of SODs to meet their antioxidative demands.22 Among SODs, 

the most ancient is perhaps FeSOD on the basis that it is found in microorganisms that 

are extremely primitive. This claim is also consistent with the bioavailability of iron prior 

to the Great Oxidation Event; whereas, Cu and Zn were still tied up in insoluble sulfide 

containing minerals in the crust.23 The first superoxide dismutase isolated was CuZnSOD 

by Mann and Keilin in 1938.24 It was then called haemacuprien (isolated from the blood 

corpuscles and serum of mammals) and hepatocuprien (isolated from the ox liver). Its 
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enzymatic activity was unknown until in 1969 when McCord and Fridovich discovered 

that the enzyme catalyzed the dismutation of superoxide radical to molecular oxygen.25 

Shortly thereafter, MnSOD and FeSOD were isolated from E. coli, 26,27 and all three have 

since been found in a variety of organisms in all three life forms: archea, bacteria and 

eukarya.23 

The most recent SOD that has been discovered is one that harbors nickel in its 

active site – NiSOD. It was first isolated in Streptomyces species;28,29 and its encoding 

gene, sodN, was later found in marine cyanobacteria, actimycetes, gammaproteobacteria, 

bacteriodetes, planctomycetes and deltaproteobacteria.30,31 NiSOD is unique among the 

superoxide dismutases in that it uses Ni(II) ions, which are redox inactive in the absence 

of the protein environment in aqueous media. Unlike aqueous solutions containing 

Cu(II), Mn(II), and Fe(II), aqueous Ni(II) ions do not catalyze the dismutation of 

superoxide radical.23 This is perhaps due to the fact that the redox potential of aqueous 

Ni(II) is estimated to be +2.29 V,32,33 hence, it is stable in aqueous medium and renders 

Ni(III) unattainable because water can be oxidized at a potential less extreme than 

Ni(II).23,33 This inaccessible Ni(II) redox potential is decreased to the optimal redox 

potential by the redox tuning afforded by the nickel active site ligand environment.33  

This chapter will examine the structure and function of the nickel active site 

protein environment in NiSOD with an in-depth review particularly focused on the roles 

played by the nickel active site ligands in redox catalysis. The roles played by second-

sphere residues will also be highlighted. To complete the story on NiSOD, the enzyme 

evolution and genomics will also be discussed in the section that follows. 
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1.2 Evolution and Genomics 

The sodN gene that encodes the NiSOD enzyme had previously been noted in 

Synechococcus sp. and Prochlorococcus sp.34 Since then, it has been found in a number 

of organisms; and its phylogenetic distribution has been characterized.31 The 

phylogenetic tree of forty-three fully sequenced genomes of model organisms revealed 

four major clusters: I. actinomycetes, II. cyanobacteria, III. gammaproteobacteria and 

bacteriodetes, and IV. planctomycetes, cyanobacteria and deltaproteobacteria.23,31 With 

the exception of cluster IV, each major cluster can be broken down into two or three 

subclusters. Additional metagenome sequences of forty-one microbes from the Sargasso 

Sea,35 and a full sequence from gutless worm endosymbiont metagenome,36 a within the 

major clusters, form new subclusters within the major clusters, or are simply 

unassignable.31 The phylogenetic tree previously constructed can be found in reference 

31. 

Using homology modeling and similarity searches, the predicted secondary 

structures of the post-translationally modified sodN gene products (vide infra) of 

representative organisms from each of the phylogenetic clusters could be sufficiently 

aligned to the structure of Streptomyces sp. NiSOD, even though the sequence alignment 

suggested that some of the genomes are only 30% similar to the Streptomyces sp sodN.31 

The sequence alignment revealed that the most conserved region in the Streptomyces 

sodN gene product after post-translational modification (vide infra) is the N-terminal Ni-

hook motif (HCDLPCGV-).23,31 In this motif only His1, Cys2 and Cys6 are invariant. 

Tyr9 and Pro5 are highly conserved, with Tyr9 replaced by Phe only in one sequence, 

and Pro5 is replaced by either Tyr or Phe in only two sodN sequences, both from 
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Mycobacterium.23,31 The rest of the amino acids are variable, but the variation is 

phylogenetically consistent. For example, Asp3 is replaced only by glutamine in cluster 

IV except in the gutless worm endosymbiont where it is replaced by glutamate. Gly7 is 

replaced by either Ala or Lys in most sequences in cluster III; and Val8 is replaced by Ile 

in several sequences within clusters III and IV.23,31 

 The sodN gene is regulated by nickel-uptake regulator, Nur, which is a 

transcriptional regulator in the Fur (ferric-uptake regulator) family.23,37,38 In  

Streptomyces coelicolor, Nur indirectly regulates sodN through its direct interaction with 

the promoter region of sodF, a gene that encodes FeSOD.37 In the presence of 

submicromolar Ni(II) concentration, Nur binds to the Nur-consensus sequence (Nur-box), 

tTGCaa-N5-ttGCAA, that overlaps with sodF promoter region (Figure 1.1). This binding 

represses sodF and inhibits the production of FeSOD. Since the sodN promoter region is 

uninhibited, the sodN gene is expressed to produce NiSOD precursor protein. This 

precursor protein has a 14-amino acid N-terminal prosequence that is proteolytically 

cleaved by a peptidase (sodX).39 Proteolysis only commences in the presence of Ni(II)38 

to expose the N-terminal Ni-hook region (HCDLPCGVY-) and produce a mature 

NiSOD.23,39-41 Under nickel-limited conditions, apo-Nur loses its ability to bind to the 

Nur-box, allowing the expression of the sodF gene at the same time repressing the 

expression of sodN.37,40 The repression of sodN occurs at the level of mRNA translation. 

It was revealed that a conserved 19 nucleotide upstream of sodN is complementary to the 

sodF downstream sequence. Under nickel-limiting conditions, transcription of the sodF 

gene produces a full length sodF mRNA containing a 90 nucleotide 3’UTR 

(untranscribed region). From this 3’UTR, a 19 nucleotide anti-sodN mRNA is cleaved off 
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and functions as a small regulatory mRNA (s-SodF). The cleaved s-SodF forms a perfect 

base pairing with the 5’ end of the sodN mRNA up to 18 base pairs. This base pairing 

inhibits translation of sodN mRNA and facilitates its degradation (Figure 1.1).40 This 

tight regulation leading up to NiSOD maturation has Ni(II) involved in 3 steps: sodN 

expression, N-terminal proteolytic processing, and active site constitution.38 

 

While Streptomyces coelicolor contains both FeSOD and NiSOD, in some 

Streptomyces sp. FeSOD is lost; while NiSOD appears to be ubiquitous within the 

genus.42 It was found that most of the sodN-containing genomes sequenced to date do not 

have the sodF gene.31 It is believed that organisms first acquired MnSOD/FeSOD based 

on the pervasive presence of sodA (MnSOD) and sodF genes throughout the tree of life 

and in ‘primitive’ life forms.31,43 Compiled data suggest that ancestral lineages of some 

bacteria contain either MnSOD or FeSOD, while daughter lineages acquired NiSOD after 

the invention of oxygenic photosynthesis.31 This evolution and its acquisition via 

 

Figure 1.1. Model for Nur-dependent inverse regulation of sodN and sodF (reprinted 
with permission from Oxford University Press).40 

7 



 

horizontal gene transfer is a response to the decreased availability of soluble iron as a 

result of the oxygenation of marine environment.23,31 Fe limitation is so pervasive in 

marine environments that all of sodN-sodF exchanges occurred in marine life forms.31 

The role of nickel in biological systems is not well understood due to the limited 

number of Ni-containing enzymes The discovery of Ni-containing superoxide dismutases 

was totally unexpected and surprised the community studying SODs knowing that the 

redox potential of aquated nickel is biologically inaccessible and the use of thiolate 

ligands in the nickel active site is incompatible with superoxide dismutation products 

(oxygen and hydrogen peroxide). The discovery of NiSOD opened up an exciting era for 

Ni metallobiochemistry; and since its discovery, much had been understood about 

NiSOD including its molecular structure, electronic structure, and catalytic mechanism 

which will be discussed in the next section. 

1.3 NiSOD Molecular Structure, Electronic Structure and Catalytic Mechanism 

1.3.1 Molecular Structure 

The quaternary structures of mature wild-type NiSOD from Streptomyces coelicor 

and Streptomyces seoulensis are homohexamers41,44 and virtually identical. This is 

expected since these two enzymes are highly homologous with 90% sequence 

identity.23,45 The hexamer has a molecular weight of approximately 80 kDa and is 

composed of 13.2 kDa monomers each containing one Ni center. The monomeric 

structure is a 4-helix bundle in an up-and-down topology41,44 stabilized by hydrophobic 

packing at the base of the structure and hydrogen bonding within the loops between 

helices (Figure 1.2A).41 Interhelical interactions are further stabilized by salt bridges and 
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hydrogen bonding.41,44 The 4-helix structure is unique from the other SOD structures 

which feature β-barrel fold (CuZnSOD) and α- and β-structure (Fe/MnSOD) and only 

dimeric or tetrameric as opposed to hexameric for NiSOD.23,46-48 The hexamer structure 

is a hollow sphere with an exterior diameter of about 60 Å and an internal diameter of 

about 20 Å filled with water and cocrystallized ions.23,41,44 Hexamer formation is 

independent of N-terminal processing or nickel binding, although the active site structure 

of apo-NiSOD is more disordered than that of the holo-enzmyme.23,41  

To form the hexameric structure, sets of three subunits come together to form a 

tripod-like structure through contacts at the N-terminal of the α2 helices (Figure 1.2B).41 

This tripod-like trimer features a 3-fold axis that relates the three monomers to each 

other.23,41 The hexamer involves locking two tripod-like trimers together so that their legs 

interdigitate. This is stabilized by hydrophobic interactions,41,44 (Figure 1.2C) and 

features three 2-fold axes perpendicular to the 3-fold axis that relate monomers from two 

tripod-like trimers (Figure 1.2E).23,41 This structure arranges the six nickel ions in a 

distorted octahedron with Ni-Ni distance of approximately 25 Å.23,44 

The nickel first coordination sphere includes two thiolates from Cys2 and Cys6, 

the Cys2 amidate backbone N-donor, the His1 imidazole, and the N-terminal amine 

(Figure 1.2D).23,41,44 An interesting feature in the NiSOD active site is the dual 

conformation of the His1 imidazole ligand. It is bound to nickel in the oxidized state to 

form a square pyramidal active site while forming an H-bonding interaction with Glu17 

which is likewise hydrogen bonded to Arg47. In the reduced state, the imidazole is not a 

nickel ligand but maintains the His1-Glu17-Arg47 H-bonding network (Figure 

1.2D).23,41,44 The interconversion between these two conformations involves a rotation at 
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the His1 Cβ-Cγ, which is the only degree of freedom for His1 side chain.41,44 It was 

revealed that the resting enzyme is a 50:50 mixture of His-on (oxidized) and His-off 

(reduced) conformation by crystal refinement of His1 side chain occupancy and by EPR 

spin quantification.41,49 This redox dependent His-on/His-off mechanism is also shared by 

CuZnSOD, and interestingly, the reduction of Fe in most superoxide reductase is also 

accompanied by the loss of glutamate ligand.23,41,50 

 

 

Figure 1.2. NiSOD molecular and active site structures. A. 4-helix monomer. B. Tripod-
like trimer with C3 rotation. C. Hexamer. D. The active site structure. E. Hexamer C2 
relationship. 
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The second sphere ligands also play significant roles in the assembly of the active 

site structure. Pro5 for example, isomerizes from trans- to cis- conformation in order to 

properly position Cys6 for nickel binding.23,41,44 Together with Tyr9, Pro5 forms a 

bottleneck at the end of a narrow active site channel (Figure 1.3) and blocks access to the 

nickel open coordination site, opposite the His1 imidazole, conferring selectivity for the 

substrate.41,44 This also effectively buries the active site from solvent access even though 

it is located near the surface of the protein. The active site also has two ordered water 

molecules both hydrogen-bonded to Tyr9, with one of them hydrogen-bonded to the 

Cys6 amidate proton, while the other is hydrogen bonded to Asp3 amidate proton.23,44,49 

These water molecules are assumed to be displaced by the superoxide in the proposed 

outer-sphere mechanism (vide infra).23,49 

 

1.3.2 Electronic Structure 

The first spectroscopic evidence for the presence of nickel in the active site comes 

from electron paramagnetic resonance spectroscopy.28,44 The rhombic spectrum with gxyz 

 
Figure 1.3. NiSOD proposed active site channel. 
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values at 2.306, 2.232, and 2.016 (Axyz = 16.2, 17.7, 24.6 G) is consistent with low-spin, 

(dz
2)1, ground state Ni(III) species in a five-coordinate pyramidal geometry (Figure 

1.4a).23,51 Isotopic substitution of the naturally abundant metal ion in the active site with 

61Ni (I = 3/2) gave rise to the expected hyperfine splitting pattern of the highest field 

signal, giving an unequivocal assignment of the rhombic EPR signal to nickel (Figure 

1.4b).23,44 The highest field signal shows a hyperfine splitting consistent with an N-donor 

(I = 1) ligand. Enrichment of the enzyme with 15N (I = 1/2) gave rise to a doublet 

hyperfine splitting pattern (Figure 1.4c) confirming the presence of an N-donor ligand. 

This ligand had been assigned to His1 imidazole based on a theoretical model.33,52 

Isotopic substitution of the thiolate ligands with 33S (Figure 1.4d) did not show 

appreciable signal perturbation, only line-broadening, indicating that the unpaired spin is 

largely nickel centered.23 

 

 

Figure 1.4. NiSOD X-band EPR spectra. A. As-isolated WT-NiSOD. B. 61Ni labeled 
WT-NiSOD. C. 15N enriched enzyme. D. 33S thiolate labeled enzyme (copyright (2004) 
National Academy of Sciences, U.S.A.).44 
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 DFT calculation provided a detailed description of the electronic structure of the 

nickel active site. The result is summarized by the orbital energy diagram in figure 

1.5A.23,52 The DFT calculation revealed a strongly covalent filled/filled antibonding 

interaction between Ni(π) and the ligand(π) orbitals (Figure 1.5B) that is reflected in the 

energies of the HOMOs consisting mainly of MOs with π symmetry in the NiSOD 

reduced state. The filled/filled interaction effectively destabilizes the HOMO facilitating 

electron transfer from Ni(II) to substrate O2
•-.23,52 Upon oxidation, the binding of the 

imidazole ligand strongly destabilizes the Ni dz
2 orbital and effectively induces the 

unpaired spin to be on the dz
2 orbital. This mechanism suggests that the redox active MO 

for NiSOD is different for oxidation and reduction half reactions: Ni/N/S(π) based for 

oxidation and Ni dz
2 for reduction.52  

 

 

Figure 1.5. A. Molecular orbital energy level diagram for the oxidized (ox) and reduced 
(red) form of NiSOD. (Adapted with permission from reference 52. Copyright (2005) 
American Chemical Society.) B. Illustration of the Ni active site π orbitals. 
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UV-Vis spectroscopy and MCD studies of the as-isolated WT-NiSOD revealed a 

strong transition at around 380 nm (ε = 6800 M-1 cm-1), which disappears in the reduced 

enzyme. This transition is associated with resonance Raman Ni-S vibrations at 349, 365 

and 391 cm-1 and had been assigned to a S(Cys) →Ni(III) ligand-to-metal charge-transfer 

transition (LMCT).23,52 Upon reduction of the as-isolated WT-NiSOD, the MCD 

spectrum showed the charge-transfer band shifted to the UV region, and only revealed 

weak ligand field transitions in the visible region consistent with the spectra of planar 

Ni(II) complexes with N2S2 coordination.23,52 

1.3.3 Mechanism 

1.3.3.1 Superoxide Self Disproportionation 

Superoxide is highly soluble in water and can be easily protonated to form 

hydroperoxide, HO2, which has a pKa ~4.80.53 Superoxide undergoes a self 

disproportionation reaction according to Eq. 4 (inset, Figure 1.6) with an optimal rate 

constant kcat = 9.7x107 M-1 s-1 at its pKa.23,53 In this reaction, HO2 serves as a one-electron 

oxidant due to the fact that it has a proton that can stabilize the additional electron; while 

O2
•- serves as reductant.23 At higher pH, O2

•- dominates and the efficiency of superoxide 

disproportionation decreases. Reaction between two O2
•- anions does not occur due to the 

fact that O2
•- is quite stable and its negative charge facilitates repulsive interaction.23 In 

the absence of any O2
•- scavenging mechanism, at physiological pH the amount of O2

•- in 

cells could go as high as micromolar in concentration.54,55 In superoxide bimolecular 

kinetics, a micromolar concentration has a half-life in the seconds time range. However, 

as the concentration goes down, the half-life increases, and superoxide at nanomolar 
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concentration could persist for hours.23 This has biological ramifications that have 

already been mentioned. 

 

1.3.3.2 NiSOD Superoxide Dismutation 

In the presence of superoxide dismutase, the rate of the superoxide 

disproportionation reaction is essentially pH independent at physiologically relevant pH 

values (Figure 1.6), with a catalytic rate that is essentially diffusion limited, k ~ 109,23 and 

maintains the O2
•- concentration in the picomolar range.23,54,55 SODs catalyze the 

superoxide disproprotionation via a pingpong mechanism that is achieved by alternating 

 

Figure 1.6. Rate contants of superoxide self disproportionation and superoxide 
dismutation catalyzed by MnSOD (green), CuZnSOD (red) and NiSOD (black) (credit: 
Dr. Diane Cabelli). 
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one-electron oxidation and reduction half-reactions. In the oxidation step, oxygen is 

produced concomitant with the reduction of the metal ion. In the reduction step, hydrogen 

peroxide, H2O2, is produced concomitant with the oxidation of the metal ion. In NiSOD 

this metal ion redox pair involves Ni(II)/Ni(III) tuned at ~0.29 V potential, a potential 

close to the optimal redox potential.23,33 However, in NiSOD, the nickel ion can be fully 

reduced but could only be oxidized up to 50%. This may indicate an inter-subunit 

communication between the nickel sites that still remains to be uncovered. 

The redox reaction in NiSOD appears to involve proton-coupled electron transfer 

(PCET). This was observed using a NiSOD mimic made of the first 12 N-terminal amino 

acids (Figure 1.9B).56,57 The mimic is catalytically active towards superoxide dismutation 

at a reasonably slow rate (k = 6x106 M-1s-1), and kinetic studies in D2O (pH 8) at room 

temperature showed a kinetic isotope effect (KIE) of 20(4) which is suggestive of a 

PCET event.57 To further explore this phenomenon, the mimic was treated with ascorbate 

and TEMPO; both of which have an abstractable proton with  moderate X-H bond-

dissociation free energies (BDFE) of ~70 kcal/mol and both were able to reduce the 

mimic. In contrast, no reduction was observed using reductants with slightly stronger X-

H bonds such as 1,4-dihydroquinone (first BDFE = 81.5 kcal/mol) and hydrazine (first 

BDFE = 83.4 kcal/mol). The calculated BDFE for the mimic was estimated to be ~79 

kcal/mol57 and this value is more than the BDFE for HO2 (48.2 kcal/mol)58 allowing a 

thermodynamically favorable oxidation of superoxide to oxygen. This is also less than 

the BDFE for H2O2 (89.5 kcal/mol)58 allowing a thermodynamically favorable 

superoxide reduction. It has to be noted that since the mimic showed a kinetic isotope 

effect and that NiSOD had diffusion limited catalysis, the two might have distinctly 
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different mechanisms and this has to be borne in mind for the rest of the chapter; 

nonetheless, mimics provide useful insights on NiSOD catalysis. With this in mind, the 

redox half reactions can now be written as: 

Oxidation: Ni(III)SOD + O2
•- + H+ -> Ni(II)SOD-H + O2 (5) 

Reduction: Ni(II)SOD-H + O2
•- + H+ -> Ni(III)SOD + H2O2 (6) 

1.3.3.3 Outer-sphere vs Inner-sphere 

The most controversial aspect of the mechanism is the disagreement over whether 

the catalysis proceeds via an inner-sphere or outer-sphere mechanism. The open 

coordination in the nickel active site suggests an inner-sphere mechanism and has led 

theoretical calculations to assume such is the case.23,59,60 One mechanism proposed, 

shown in Figure 1.7,59 suggested that the oxidation half-reaction involves an end-on 

binding of a protonated superoxide (the proton could be from a group within the active 

site which is reprotonated later by the solvent) to the Ni(III) ion forming an 

antiferromagnetically coupled nickel and substrate, while a simultaneous hydrogen-bond 

formation occurs between the substrate and Cys2 thiolate. This then led to a transition 

state that involves proton transfer from the substrate to the Cys2 thiolate followed by 

subsequent reduction of the metal site and release of O2.59 The reduction half-reaction 

again involves an end-on binding of a protonated superoxide, which is immediately 

followed by the oxidation of the metal site. This then led to a transition state that involves 

proton transfer from Cys2 thiolate to the substrate and the subsequent release of H2O2.59 

In this mechanism, it is suggested that the preferred site of protonation is Cys2 rather than 

the Cys6 thiolate or His1 imidazole on the basis that the Cys2 thiolate has a larger 
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electron density at the solvent accessible face compared to Cys6 thiolate.59 Protonation of 

His1 imidazole, on the other hand, led to paths that are energetically unfavorable. The 

other feature in this mechanism is that the Ni-Nδ
His1 axial remains intact throughout the 

catalytic cycle (see section 1.4.2).59  

 

The presence of an active site channel (Figure 1.3) that leads directly towards the 

open coordination site appears to support the inner-sphere mechanism. The channel 

 

Figure 1.7. Proposed catalytic cycle for NiSOD from DFT calculations. (Adapted with 
permission from reference 59. Copyright (2006) American Chemical Society.) 
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which has three conserved lysine residues (Lys64, Lys115 and Lys27 from a neighboring 

subunit), is proposed to provide the substrate electrostatic guidance towards the active 

site in the same manner as in CuZnSOD and Mn/FeSOD.41,44 DFT calculation, however, 

showed that the electrostatic potential on the surface of the presumed channel does not 

show significant positively charged areas. This lack of strong surface potential leading to 

the active site is in agreement with the low ionic strength dependence for NiSOD.44,45 It 

appears that perhaps electrostatic steering, although important for the other SODs, is not 

so important in NiSOD and the open coordination site might reflect the need for low-spin 

electronic configuration.23  

Recent experimental data appears to favor an outer-sphere mechanism. It has been 

well established that NiSOD, like all other SODs, can be inhibited by small molecules 

such as azide, cyanide and hydrogen peroxide.28 EPR data of azide-treated NiSOD shifted 

and introduced a hyperfine splitting to the gy tensor. The altered spectral property is the 

same whether the azide is 14N- or 15N-labeled suggesting that the inhibitor may not be 

directly bound to the metal ion but rather introduced the hyperfine interaction through 

structural perturbation.41 Azide-treated NiSOD also showed minor perturbation on the 

MCD spectrum complimenting the EPR data.52 On the other hand, Tietze et al. claimed 

that CN- binds to the Ni site in a NiSOD metallopeptide mimic.61,62 It is a claim 

contradictory to what has been found by Shearer et al.63 using a similar metallopeptide 

mimic which showed that CN- strips off the Ni ion from the peptide, and not to mention 

the fact that active site mimics do not have the anion binding pocket (see below). 

The case for the outer-sphere mechanism has also been fortified by 

crystallographic data from a Y9F-NiSOD mutant.49 The crystal structure revealed that the 
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conservative Tyr9→Phe substitution opens up the binding pocket and allows the 

replacement of one of the two ordered water molecules in the active site (Figure 1.2D) by 

a small anion (Cl- or Br-) from the buffer solution. The Ni-Cl has a nonbonded distance of 

3.5 Å and does not result in the observation of Cl- hyperfine splitting in the EPR 

spectrum.49 This has led to the proposal that during catalysis, superoxide replaces both 

the ordered water molecules and hydrogen bond with Asp3 and Cys6 amide backbones 

similar to the displaced water molecules. The superoxide is then reduced or oxidized 

according to Eqs. 5 and 6 (section 1.3.3.2) in an outer-sphere mechanism (Figure 1.8).49 

 

 

Figure 1.8. Proposed outer-sphere mechanism for NiSOD. (Reprinted with permission 
from reference 49. (Copyright (2009) American Chemical Society.) 
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1.4 The Role of the Nickel Ligands 

1.4.1 The Role of the Thiolate Ligands 

Among the Ni-containing enzymes known so far, only redox active enzymes 

feature thiolate ligation. This includes NiFe-hydrogenase, CO dehydrogenase, acetyl-

CoA synthase, methyl coenzyme M reductase and Ni superoxide dismutase.64 With the 

exception of methyl coenzyme M reductase, it appears that thiolate ligation is a 

prerequisite for any redox-active nickel enzyme; perhaps it is a primary mechanism to 

tune the active site nickel to biologically relevant potentials.23,45 In NiSOD, Cys2 and 

Cys6 provide the necessary thiolate ligation, and together with the rest of the ligands, the 

redox potential is reduced from +2.29 V32,33 for aqueous Ni(II) to just +0.29 V49 for 

NiSOD. Mutation of Cys2 and Cys6 to Ser, individually or in tandem, produces mutants 

that can still bind nickel but are catalytically inactive and have a high spin (S = 1) Ni(II) 

center that gave rise to EPR silent species.23,65 None of the single Cys→Ser mutants 

involved thiolate ligation, which suggests that mutation of any of the thiolate ligands 

precludes the other Cys thiolate from binding to the Ni site. All these suggest that both of 

these thiolates are important for tuning the redox potential of the nickel active site and are 

required for the low spin electronic configuration.23,65 

The thiolate ligands also appeared to undergo protonation during the oxidation 

half reaction and were implicated as the proton source during the reduction half reaction 

to produce H2O2. The evidence comes primarily from sulfur K-edge X-ray absorption 

spectroscopy of as isolated enzyme as well as peptide mimics.56,66,67 The sulfur K-edge 

data for the as isolated enzyme revealed two pre-edge features, 2469.7 eV and 2470.9 eV, 

(Figure 1.9)23,67; and were assigned to S1s→Ni(dz
2) and S1s→Ni(dx

2-y
2), respectively.23The 
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lower energy transition gradually disappeared upon continuous X-ray beam exposure of 

the sample as the Ni site is progressively photoreduced. In comparison, the peroxide-

reduced NiSOD (blue line, Figure 1.9) displayed a broad structureless S K-edge with the 

pre-edge at 2470.9 eV significantly decreased. This broad feature was interpreted to be 

consistent with thiolate protonation, which is expected to shift the pre-edge transition to 

higher energy and overlap with the edge energy (Figure 1.9A arrow c).23,67 The above 

finding was complemented by using a NiSOD peptide mimic made of the first 12 N-

terminal amino acids. This is the same mimic described earlier (section 1.3.3.2) and is 

known to undergo chemical reduction via proton-coupled electron transfer (PCET).56 The 

sulfur K-edge spectrum of the reduced mimic at pH 7.4 (Figure 1.9B (c)) displayed a 

weak transition at ~ 2470 eV in contrast to the oxidized mimic at pH 7.4 (Figure 1.9B 

(a)) and to the reduced mimic at pH 9.5 (Figure 1.9B (b)). These observations were 

consistent with the interpretations that (1) the strong intensity of the transition at 2470 eV 

in the oxidized mimic at pH 7.4 is consistent with the increase in the number of holes in 

 
Figure 1.9. A. Sulfur K-edge spectra of radiolitically and chemically reduced WT 
NiSOD. (Reprinted with permission from reference 67. Copyright (2004) American 
Chemical Society.) B. Sulfur K-edge spectra of (a) oxidized NiSOD mimic at pH 7.4, (b) 
reduced mimic at pH 9.5 and (c) reduced mimic at pH 7.4. Inset: structure of the reduced 
NiSOD mimic, Ni(II)M1-H (copyright © 2013 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim).56 
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the 3d manifold, (2) the decrease in intensity of the transition at 2470 eV and the 

broadening of the edge transition in the reduced mimic at pH 7.4 is consistent with 

thiolate protonation, and (3) the recurrence of the same transition for the reduced mimic 

at pH 9.5 suggests deprotonation of the thiolate ligand at this pH.56 

Nickel K-edge XAS data for the same complex mimic described above further 

strengthened the argument that the thiolate ligands are the possible proton source.56 The 

average Ni-S bond length derived from the Ni K-edge XAS for the reduced mimic, 

Ni(II)M1-H, at pH 7.4 is shorter (2.18 Å) compared to the average bond length for the 

same reduced mimic, Ni(II)M1, at pH 9.5 (2.20 Å).56 This increase in bond length at 

elevated pH is consistent with a thiolate deprotonation event and this phenomenon has 

also been observed in planar NiN2S2 complexes.52,56,68-70 The protonation of the thiolate 

ligand relieve the unfavorable Ni(π)/S(π) interaction (Figure 1.5B), and leads to Ni-S 

bond contraction.52,56  

As mentioned earlier in the text (section 1.3.3.3), the role of the thiolate ligands as 

possible proton sources was initially tagged to Cys2 on the basis that Cys2 thiolate has a 

larger electronic density at the solvent accessible face compared to Cys6 thiolate.59 

However, a recent result using a NiSOD mimic with methylation (as a proton substitute) 

at one or both thiolate ligands showed that only the mimic with Cys6 methylation is 

capable of binding nickel. The Cys6 methylated mimic also showed a sulfur K-edge 

spectrum reminiscent that of the Ni(II)M1-H at pH 7.4.66 This suggested that Cys6 is the 

probable protonation site. 
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1.4.2 The Role of the Imidazole Ligand 

Histidine is a very common ligand in superoxide dismutases, where it is actively 

involved in redox tuning in Fe/MnSOD and as a proton donor/acceptor in CuZnSOD.23 

The first evidence that revealed the importance of the His1 imidazole ligand in NiSOD 

came from the H1Q-NiSOD mutation.71 It was demonstrated that the mutant is 

predominantly in the reduced state and has a catalytic activity of two orders of magnitude 

lower than WT-NiSOD. In a recently published result, H1A-NiSOD showed a similar 

decrease in catalytic activity and displayed a unique spectral behavior (Figure 1.10), 

suggesting a transient species during catalysis that is not observed in WT-NiSOD.72 

Kinetics employing pulse radiolytic generation of O2
- and reduced WT-NiSOD showed 

the rapid appearance of the absorption maximum at ~380 nm that has been assigned to 

SCys→Ni(III) charge transfer and its persistence during subsequent turnovers. In the H1A-

 

Figure 1.10. Spectral data taken during pulse radiolytic catalysis of WT-NiSOD (black) 
and H1A-NiSOD (red, blue and green). (Reprinted with permission from reference 72. 
Copyright (2015) American Chemical Society.) 
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NiSOD mutant, however, the spectral behavior shows a rapid increase in absorbance at 

~390 nm followed by a decay that is much slower than catalysis. This decay is 

independent of [O2
•-] and occurs in two steps, one with a rate constant k = 40 s-1 and the 

other at k = 3 s-1. 72 A possible rationale for this observation is the possibility of an 

internal redox process where the oxidized H1A-NiSOD decays via reduction of Ni(III) by 

the thiolate ligands.72 

Most of our understanding about the role of His1 imidazole comes from the 

NiSOD metallopeptide-based mimic, [NiII(SODM2)], consisting of the NiSOD first seven 

N-terminal amino acids63 and its variant, [NiII(SODM2H(1)A)], where His1 is mutated to 

Ala (Figure 1.11). Thin-film voltammetry of [NiII(SODM2H(1)A)] showed an increased 

peak to peak separation as the scan rate is increased from 5 mV/s to 50 V/s. The 

voltammogram displayed quasireversible behavior and the peak separation, as a function 

of scan rate, has an exponential behavior.63 In contrast, thin-film voltammetry of 

[NiII(SODM2)] showed a far more complex behavior as a function of scan rate. At lower 

scan rates (<500 mV/s), the voltammogram displayed a large peak-to-peak separation of 

~120 mV. At intermediate scan rates, the cathodic wave disappears into the baseline and 

reappears at faster scan rates (>10 V/s) with smaller peak separations of ~30 mV and 

with significant broadening relative to the lower scan rates.63 This was interpreted in 

terms of the His-on/His-off mechanism. At slower scan rates, His-on/His-off appears to 

be the main mechanism during the redox process. At very fast scan rates, however, the 

imidazole likely remained ligated throughout the redox process. Whereas, at the 

intermediate scan rates the two mechanisms are possibly occurring simultaneously 

resulting to a broad oxidation wave that blurred into the background.63 
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Although the modeled electrochemical data using a square kinetics scheme73,74 

revealed oxidation and reduction rate constants (ko) that are nearly identical (440 s-1 vs 

450 s-1, Figure 1.11), the reduction half-reaction involving a five-coordinate complex 

occurs at a much lower potential at 0.45 V. This potential is closer to the optimal SOD 

potential compared to the potential of the oxidation half-reaction of the four-coordinate 

planar complex, which is at 0.59 V.63 Also, comparison of the His-on/His-off rate 

constants, kon vs koff, and the equilibrium constants, Kon vs Koff, revealed a strong 

preference of the mimic towards His-on structure. These data implied that, at the 

diffusion limited catalytic rate, the His1 imidazole likely remained ligated during SOD 

catalysis.63 This finding is in line with the DFT calculation done by Pelminschikov et al. 

(Figure 1.7).59 If His1 imidazole remained ligated throughout the catalysis, it appears that 

 

Figure 1.11. Thin film voltammograms and redox mechanisms for [NiII(SODM2)] and 
[NiII(SODM2H(1)A)]. (Adapted with permission from reference 63. Copyright (2007) 
American Chemical Society.) 
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the redox active MO is the same for both oxidation and reduction and involves only the 

Ni(dz
2) orbital. This would ensure a Ni-centered redox process.63 

Using ko from the electrochemical data described above, and DFT calculated 

values of the reorganization energy (λ), the rate of electron transfer (kET) during O2
•- 

oxidation and reduction by the mimic can be calculated.  From this, a plot of oxidation-

reduction overpotential vs kET for [NiII/III(SOD)-Hisoff] as well as for [NiII/III(SOD)-Hison] 

(in both high-spin and low-spin NiII) were obtained (Figure 1.12). At the overpotential  

required for O2 generation (negative overpotential), the ET rate constants differ by no 

more than a factor of 4 with kET for [NiII/III(SOD)-Hisoff] being the fastest (green square, 

Figure 1.12). However, at the overpotential required for H2O2 generation (positive 

overpotential), the kET for both low-spin and high-spin [NiII/III(SOD)-Hison] are larger by 

at least an order of magnitude (purple and red circles vs green circle). These data 

suggested that imidazole coordination to the Ni ion is important in Ni active site redox 

tuning so that ET is optimized. 

Taking all these observations together, it appears that His1 imidazole enhances 

SOD catalysis in a number of ways. First, by maintaining the coordination throughout the 

catalysis, the reorganization energy is minimized; thereby facilitating a faster ET process, 

which is in line with the diffusion limited SOD catalysis. Secondly, the imidazole 

coordination forces the redox active MO to be metal based ensuring Ni-centered 

oxidation. Finally, a five-coordinate Ni site has a potential shifted to a more negative 

value (relative to a four-coordinate Ni center) and is closer to the optimal redox potential 

for SOD catalysis.63 
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1.4.3 The Role of Mixed Amine/Amide Ligand 

A survey of redox active Ni-containing enzymes, with the exception of methyl 

coenzyme M reductase, reveals a possible role of Ni amidate ligands. Ni-enzymes 

featuring amidate ligands, such as acetyl-coenzyme synthase75 and Ni superoxide 

dismutase,23 are oxygen tolerant. Whereas, redox active Ni-enzymes that do not have any 

amidate ligation, such as NiFe-hydrogenase76 and carbon monoxide dehydrogenase,77 are 

oxygen-sensitive. The functional role of amidate ligation is experimentally challenging to 

investigate because of the fact that it is not accessible through point mutation. In NiSOD, 

 
Figure 1.12. Plot of kET vs overpotential for [NiII/III(SOD)-Hisoff] (green), low spin 
[NiII/III(SOD)-Hison] (red) and high spin [NiII/III(SOD)-Hison] (purple). (Reprinted with 
permission from reference 63. Copyright (2007) American Chemical Society.) kET 
values for O2 (squares) and H2O2 (circles) generation are: 1.6x105 s-1 (red square), 
6.3x105 s-1 (green square), 2.8x104 s-1 (green circle), 4.6x105 s-1 (red circle) and 1.7x106 
s-1 (purple circle). The kET value at the overpotential required for O2 generation for high 
spin [NiII/III(SOD)-Hison]   (purple square) is not provided in the text. 
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the functional role of the amidate ligand was investigated both by performing DFT 

calculations and by using enzyme mimics characterized primarily by sulfur K-edge XAS 

and electrochemistry.52,78-82 It was revealed in these studies that in going from bisamine, 

mixed amine/amidate, to bisamidate, the sulfur character in the HOMO and LUMO 

frontier orbitals decreases and the nickel character increases.52,78-82 This suggested that 

the amidate ligand is crucial in tuning the redox potential so that the redox reaction is Ni-

centered rather than S-centered, thus protecting the thiolate ligands from being oxidized. 

In line with the above observation, is the decreasing redox potential in going from 

bisamine to bisamidate, with the bisamine complexes generally having irreversible redox 

potentials compared to mixed amine/amidate and bisamidate complexes.  A likely 

explanation for this is that a bisamine complex has a significant sulfur character in the 

HOMO making it less stable towards oxidation.78,79,81 It is also interesting to note that 

bisamidate complexes are significantly reactive towards oxygen giving rise to sulfur 

oxygenated products.79,80,83 This is due to the fact that an additional amidate anion further 

raises the energy of the Ni d orbitals, relative to bisamine and mixed amine/amidate, 

through filled/filled interaction (Figure 1.5), which results in an “activated” HOMO that 

is now more susceptible to oxidation by oxygen.79,80,83 From these observations, it 

appears that the mixed amine/amidate ligand combination is ideal so that the redox 

potential in NiSOD is at the optimum and the system is still stable to reaction with 

oxygen. 

Mullins et al.80 argued that amidate ligation might not be the only factor 

responsible for the robustness of the NiSOD active site against thiolate oxidation. Their 

argument is based on the fact that NiN2S2 bisamine and bisamidate complexes readily 
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react with oxygen forming thiolate oxidized products, albeit at different rates with 

bisamine complexes having the slower rate.80 A structurally similar mixed amine/amidate 

complex will likely react similarly with oxygen at a rate that is more or less halfway 

between that of a bisamine and a bisamidate. They also argued that an oxidation of one of 

the thiolate ligands in Ni(bmmp-dmed) (Figure 1.13 A&D), a bisamine, led to a 

significant “deactivation” toward oxidation of the other thiolate ligand. They found that 

oxygenation of the thiolate led to a decrease in the negative potential in both thiolate 

ligands, which suggests that oxygenation in one of the thiolate ligands relieves both 

thiolates of their nucleophilicity.80 The same effect was found when complexes B and C 

(Figure 1.13) had H-bonding at one of their thiolate ligands (E and F). The molecular 

electrostatic potentials calculated for complexes E and F revealed that H-bonding 

removes electron density from both sulfur atoms nearly equally and with the nickel center 

having the highest electron density in both complexes compared to their parent 

complexes.80 This suggested that in addition to the mixed amine/amidate ligation, H-

 

Figure 1.13. Complexes A-F used in reference 80 (with kind permission from Springer 
Science and Business Media © 2006). 
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bonding or protonation is a possible mechanism in stabilizing the nickel active site 

against deactivation by thiolate oxidation. Inspection of the resting nickel active site 

shows Cys6 H-bonded to a water molecule (Figure 1.2D), and Cys2 is protonated during 

catalysis (section 1.4.1). 

1.4.4 The Role of the Second Sphere Ligands 

The protein environment in NiSOD serves at least three roles: (1) to tune the 

redox potential of the nickel active site, (2) to provide a source of protons for the 

formation of H2O2 and (3) to control the access of small anions to the nickel site. Tyr9 in 

NiSOD appears to fulfill the third role much in the same way as the “gateway” tyrosine 

found in MnSOD84 and FeSOD.13,85 Tyr9 is positioned close to the vacant site of the Ni 

ion (Figure 1.2D) with Ni-O(Tyr9) distance of approximately 5.47 Å and it is H-bonded 

to two ordered water molecules.49 In Tyr9→Phe-NiSOD mutant, as described previously, 

the loss of the phenol group led to the opening of the binding pocket (Figure 1.14) and 

allowed the replacement of one of the two ordered water molecules with a small anion 

(Cl- and Br-). The Cl- is positioned such that it could interact with the phenol group in 

WT-NiSOD which suggest that Tyr could be involved both in controlling the access of 

small anions to the active site as well as the release of H2O2.49  

 

 

Figure 1.14. Crystal structure for WT-NiSOD (A) and Y9F-NiSOD (B). (Reprinted with 
permission from 49. Copyright (2009) American Chemical Society.) 
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The proper positioning of Tyr9 in the active site appears to be modulated by 

Asp3. Mutation of Asp3 to alanine led to a perturbation in the Ni active site, most notably 

the Tyr9 residue moved ~1Å closer to the nickel site, which results in the displacement of 

one of the two ordered water molecules.49 Asp3 also appears to be involved in stabilizing 

the WT-NiSOD structure through ionic interaction with Lys89. In the D3A mutation, the 

loss of the salt bridge between Asp3 and Lys89 led the disruption of the salt bridge 

network across the interface between monomers in the hexamer. The movement of Lys89 

due to the mutation caused the neighboring Glu49 to be displaced by ~2.0 Å (toward 

Lys89) which in turn weakens  the Glu49 and His53 ionic interaction.49 Thus, the loss of 

Asp3 residue led to the loss of two monomer interface salt bridges (Asp3/Lys89 and 

Glu49/His53) which translates to 12-ion pairs per hexamer. This disruption is manifested 

in the decrease of the melting point of the mutant from 84.8 °C to 73.9 °C.49 

The other two second-sphere residues that are essential for proper folding and 

redox tuning of the nickel active site are Glu17 and Arg47. As mentioned earlier (section 

1.3.1), the two second-sphere residues form a hydrogen-bonding network with the His1 

imidazole. The His1 imidazole is hydrogen bonded to Glu17, which is likewise 

hydrogen- bonded to Arg47 (Figure 1.2D).  The role of this hydrogen-bonding network 

was studied by altering this network using H1A, R47A, E17A/R47A, E17R/R47E 

mutants.72 Metal analysis using ICP-OES showed that these mutants are still capable of 

binding nickel; and EXAFS analysis showed that the Ni binds in the same site in these 

mutants as in WT-NiSOD. The mutants displayed decreased thermal stability, which is 

more pronounced for the ones with altered His1/Glu17 hydrogen bonding.72 The mutants 

that are EPR active (R47A and E17R/R47E) displayed similar hyperfine splitting at the gz 
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peak indicating that the mutants retain the His-on structure. However, the EPR intensities 

in these two mutants are significantly decreased compared to WT-NiSOD with the 

intensities being ~15% for R47A and ~8% for E17R/R47E. The other two mutants (H1A 

and E17A/R47A) are EPR silent. This suggests that the hydrogen-bonding network is 

also important in redox tuning of the Ni active site.72 

1.5 Summary 

It has been over a decade since Ni-containing superoxide dismutase was first 

isolated. Since then, much has been uncovered about this enzyme after years of 

investigation which includes the phylogeny of this enzyme in archea and bacteria, its 

regulation in response to nickel availability, and how the protein scaffold folds and 

provides the essential ligands to prime its nickel active site for redox catalysis. Many 

aspects of the reaction mechanism still have to be elucidated with the outer-sphere vs. 

inner-sphere processes being the most controversial aspect. From the total amount of 

work dedicated to this enzyme, it is tempting to draw a picture of how the first- and 

second-sphere residues achieved the robustness of the Ni active site and how it achieved 

the optimum state at which it is able to sequester superoxide in the same efficiency as 

other SODs. Thiolate ligation deserves much of the credit for bringing the nickel redox 

potential down to a biologically relevant value. The mixed amine/amide ligation, along 

with hydrogen bonding and thiolate ligand protonation, stabilize the thiolate ligands 

against oxygen deactivation. The His1 imidazole, which appears to remain bound to the 

nickel site during catalysis, ensures that the redox active MO during turnovers is Ni-

centered. A second-sphere residue, Tyr9, controls the access of small anions to the active 
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site rendering the enzyme ion selectivity. Its proper positioning, on the other hand, is 

modulated by another second-sphere residue, Asp3, which also appears to be essential for 

the inter-subunit stability. Finally, the His1-Glu17-Arg47 hydrogen-bonding network 

appears to be essential for fine tuning the enzyme redox potential as well as the proper 

folding of the active site and the overall protein stability. 
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CHAPTER 2 

SEMISYNTHETIC APPROACH FOR CONSTRUCTING H1*-NISOD 

2.1 Introduction 

  Prior computational investigations of the NiSOD active site1 as well as 

experimental and DFT calculations on model complexes,2-6 predicted that the amidate 

ligand in NiSOD plays a role in the electronic structure of the Ni(III) site by keeping the 

oxidation product Ni-centered rather than S-centered, in contrast to the oxidation 

products of planar Ni(II) complexes with amine and thiolate ligation.7-10 To study the 

functional role of the amidate ligand, however, is challenging due to the fact that it is not 

accessible through site directed mutagenesis. To test the predictions mentioned above, 

herein we describe a semisynthetic strategy employing native chemical ligation (NCL) of 

a pentapeptide (HCDLP) to recombinant Streptomyces coelicolor NiSOD that lacks these 

five N-terminal residues and features an N-terminal Cys residue (NΔ5-NiSOD) to 

produce a variant (H1*-NiSOD, Figure 2.1) wherein the backbone Cys2 amidate N-donor 

ligand is altered to a secondary amine.  

 

 
Figure 2.1. The Ni site structures of WT-NiSOD (left) and H1*-NiSOD (right). 
(Reprinted with permission from reference 11. Copyright (2015) American Chemical 
Society.) 
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2.2 Materials and Methods 

2.2.1 Mutagenesis 

The deletion mutant, NΔ5-NiSOD, was expressed using the pelB expression 

system.12 The pelB WT-NiSOD construct was designed by isolating the WT-NiSOD gene 

previously inserted in pET-30 Xa/LIC vector13 and re-inserting the gene into the 

pET22b(+) upstream of the pelB sequence (Novagen protocol). This construct was then 

used as a template to construct a plasmid containing the NΔ5-NiSOD deletion mutant 

using the polymerase chain reaction (PCR). To delete the first five amino acids of the 

WT-NiSOD sequence (Figure 2.2) the following primers were used: 5′-

TGCGGCGTGTACGACCCTGC-3′ (forward primer) and 5′-

GGCCATCGCCGGCTGGGC-3′ (reverse primer) with melting temperatures of 74 and 

77 °C, respectively. The PCR was performed using Q5 high fidelity DNA polymerase 

(New England Biolabs Inc., Ipswich, MA) and only 1 pg of the template DNA. The 

denaturation temperature was 98 °C, and the annealing and extension temperature was 72 

°C (NEB protocol). The PCR product was ligated without further purification by first 

adjusting the buffer using 5 μL of the 10X T4PNK reaction buffer (NEB) for every 45 μL 

of the PCR product. The sample was then treated with T4 DNA kinase followed by T4 

DNA ligase (NEB protocol). To isolate the NΔ5-NiSOD plasmid, the ligated PCR 

product was transformed in NovaBlue cells and selection was performed using an LB 

agar plate containing 100 μg/mL ampicillin. Single colonies were picked and each colony 

was grown in 5 mL LB media with ampicillin for 16 h at 37 °C. The cultures were 

harvested, and plasmid preparation was performed using a Qiagen (Valencia, CA) kit. 
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The sample plasmids were then submitted to Genewiz (South Plainfield, NJ) for 

sequencing. The plasmids with the correct sequence were stored at −20 °C for future use. 

 

2.2.2 NΔ5-NiSOD Protein Expression and Purification 

The pelB NΔ5-NiSOD plasmid was transformed into BL21 (DE3) and selected 

for ampicillin resistance on an LB agar plate supplemented with ampicillin. Single 

colonies were selected and grown in 5 mL LB media for 16 h at 37 °C @ 200 rpm and 

used to prepare frozen stocks by storing 1 mL aliquots in 50% glycerol at −80 °C. From a 

frozen stock, cultures were prepared in 150 mL LB medium supplemented with 

ampicillin and grown for 16 h at 37 °C @ 200 rpm. Aliquots (20 mL) from the culture 

were used to inoculate flasks containing 2 L of LB medium supplemented with ampicillin 

(total of six) and grown at 25 °C until 0.5 OD is reached. At this point, 200 μL of 1 M 

IPTG was added to each 2 L culture, and they were incubated for another 12 h at 25 °C. 

The culture was then harvested by centrifugation. To extract NΔ5-NiSOD, the cells were 

disrupted by osmotic shock. This was done by resuspending the cells in 30 mM Tris 

buffer at pH = 8.00 containing 20% sucrose (50 mL total volume of per 2 L cell culture). 

After 10 min, the cells were centrifuged, the supernatant was discarded, and the cells 

were resuspended in water (50 mL total volume per 2 L culture) at 4 °C for another 10 

 

Figure 2.2. The pelB WT-NiSOD amino acid sequence. Highlighted in blue is the pelB 
sequence. Highlighted in red is the first five amino acids that are deleted to form the 
NΔ5-NiSOD. (Reprinted with permission from reference 11. Copyright (2015) American 
Chemical Society.) 
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Figure 2.3. ESI-MS for NΔ5-NiSOD after the 
Q-sepharose purification. (Reprinted with 
permission from reference 11. Copyright (2015) 
American Chemical Society.) 

 
 

 

 

 

 

 

acetaldehyde-modified protein 

cysteine bound protein 

min. The cells were again centrifuged, the pellet was discarded, and 200 μL of 200 mM 

PMSF was added per 50 mL of the supernatant. After 30 min, cysteine was added to the 

supernatant to a final concentration of 100 mM, and the solution was stored at 4 °C 

overnight to allow the cysteine to form a disulfide bond with the cysteine N-terminus of 

the NΔ5-NiSOD, thereby protecting the N-terminal cysteine from oxidation. The NΔ5-

NiSOD was purified using Q-sepharose resin packed in XK 16 column with resin height 

of 41 cm. The buffer used was 50 mM Tris at pH 8.50 and the NaCl concentration was 

linearly increased from 0 to 200 mM 

over 1500 at 3 mL/min. PAGE was 

performed to determine the fractions 

that contain pure NΔ5-NiSOD. The 

purified protein was characterized by 

mass spectroscopy (Figure 2.3), 

which showed the presence of NΔ5-

NiSOD (12634 Da) and impurities 

that correspond to N-terminally 

modified forms of NΔ5-NiSOD, 

principally the thiazolidine modification resulting from reaction with acetaldehyde 

(12661 Da).  

2.2.3 NΔ5-NiSOD Chemical Rescue 

Almost half of the NΔ5-NiSOD isolated as described above has the cysteine N-

terminus reacted with endogenous acetaldehyde forming a thiazolidine ring structure.14 
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Figure 2.4. ESI-MS of NΔ5-NiSOD after the chemical 
rescue. (Reprinted with permission from reference 11. 
Copyright (2015) American Chemical Society.) 
 

To rescue the modified N-terminal cysteine, the protein was incubated at 37 °C at a final 

concentration of 1 mM in a solution containing 100 mM semicarbazide in 6 M guanidine 

HCl with 30 mM TCEP unbuffered at pH 4.00 for 1−2 h.15 This procedure reverses the 

thiazolidine cyclization. The sample was then added to an equivalent volume of 1 M 

cysteine in 50 mM Tris buffer with 6 M guanidine hydrochloride at pH 7.50 and left for 4 

h to overnight to allow the cysteine to replace the bound aldehyde via nucleophilic 

substitution. This procedure was done twice to remove most of the aldehyde. Prior to the 

native chemical ligation, the cysteine bound at the N-terminus was removed by buffer 

exchanging the sample with 50 

mM Tris pH 7.50 containing 

30 mM TCEP at room 

temperature. The sample buffer 

was then exchanged with the 

ligation buffer (section 2.2.6) 

and stored at −20 °C for future 

use. The molecular weight of 

the product was determined by 

ESI-mass spectrometry: 

Found: 12634 Da. Calculated for NΔ5-NiSOD: 12635 Da (Figure 2.4). Yield: 50% of the 

protein from section 2.2.2 is recovered. 
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2.2.4 His-Cys(o-NBn)-Asp-Leu-Pro-Nbz (Protected Unmodified HCDLP) 

2.2.4.1 Synthesis of Alloc-Cys(o-NBn)-OH. Cys(o-NBn)-OH 

Cys(o-NBn)-OH was first synthesized by dissolving 15 mmol cysteine in 

deaerated aqueous solution of 10 mmol potassium carbonate in 20 mL water /10 mL 

dioxane and treated with 10 mmol o-nitrobenzyl chloride. Formation of a crystalline 

product was observed after 30 min, and after 4 h the pH of the reaction mixture was 

adjusted to 5.9 with acetic acid. The product was collected by filtration and washed with 

water, isopropanol, and ether. The solids were dried under vacuum and a yield of 2.06 g 

(79%) of the product was obtained at 99% purity.  

Alloc-Cys(o-NBn)-OH was then synthesized as previously described.16 About 

100 mmol of cysteine was dissolved in 2 mL of 4 N NaOH. The solution was cooled in 

an ice-bath and treated with 10.6 mL of allyl chloroformate and 25 mL of 4 N sodium 

hydroxide, added in eight equal portions with vigorous shaking for a few minutes after 

each addition and intermittent cooling. The reaction mixture was kept alkaline to 

phenolphthalein throughout. After the last addition, the mixture was shaken vigorously, 

allowed to stand for 15 min at room temperature, extracted with ether, and then acidified 

to congo red with concentrated hydrochloric acid. After cooling for several hours, the 

product that crystallized was collected, dried, and recrystallized. 

2.2.4.2 His-Cys(o-NBn)-Asp-Leu-Pro-Nbz SPPS Assembly 

The pentapeptide His-Cys(o-NBn)-Asp-Leu-Pro-Nbz was assembled by Fmoc 

SPPS using 0.2 mmol of the commercially available Dawson Dbz AM resin. The C-

terminal Pro was loaded onto the resin via two 1-h couplings using 1.2 mmol of Fmoc 
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Pro with activation via 1.2 mmol HATU and 1.8 mmol DIEA in DMF. Subsequent 

residues, Leu, Asp(OtBu) and Alloc-Cys(o NBn) were coupled similarly using HBTU in 

place of HATU. The peptidoresin was protected from light after incorporation of the 

Alloc-Cys(o-NBn) residue. The Alloc protective group was removed by adding 

(PPh3)4Pd(0) with 1,3-dimethylbarbituric acid (scavenger) to the peptide under neutral 

conditions. The final residue was incorporated using Boc-His(Trt)-OH.  

After chain assembly, the resin was gently agitated with 2 mmol of p-

nitrophenylchloroformate in DCM for 1 h to convert the resin to the N acyl-

benzimidazolinone (Nbz) form, which was then washed with DCM. The resin was 

agitated with 0.5 M DIEA in DMF for two 30 min treatments, then rinsed with the same 

solution until no further yellow coloration (from p-nitrophenol release) was observed. 

The peptidoresin was washed with DMF, MeOH, DCM then dried overnight in vacuo. 

The peptide was cleaved from the resin with trifluoroacetic acid/water/triisopropylsilane 

(90:5:5, 25 mL, 3 h) then precipitated in ice-cold ether. The crude product was purified 

by reverse phase HPLC to yield the final product (120 mg). 

2.2.5 His-ψ-Cys(o-NBn)-Asp-Leu-Pro-SBn Synthesis (Modified H1*-CDLP) 

2.2.5.1 Boc-His(Nπ-Adom)-H Synthesis 

Protected histidinal, Boc-His(Nπ-Adom)-H, was prepared by first synthesizing 

Boc-His(Nπ-Adom)-OMe. This was accomplished by reacting 2-adamantyloxymethyl 

chloride with Boc-His(Nπ-Boc)-OMe as described by Okada et al.17 The product (Boc-

His(Nπ-Adom)-OMe) was then converted to Boc-His(Nπ-Adom)-ol by first dissolving 10 

mmol Boc-His(Nπ-Adom)-OMe in 100 mL THF containing 60 mmol sodium 
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borohydride. Methanol (16 mL) was then added dropwise followed by heating the 

solution at 40 °C. The progress of the reaction was monitored by HPLC on a C18 

column. When the reaction was completed, excess sodium borohydride was removed by 

the addition of an aqueous solution of citric acid. The resulting solution was concentrated 

until most of the organic solvent had been evaporated. The pH was then adjusted to 9 

using potassium carbonate and the product (Boc-His(Nπ-Adom)-ol) was extracted using 

dichloromethane. The product was obtained as white foam (3.4 g) with 98% purity 

(HPLC).  

The alcohol (Boc-His(Nπ-Adom)-ol) was then converted to the aldehyde, Boc-

His(Nπ-Adom)-H. This was done by dissolving 3.6 mmol Boc-His(Nπ-Adom)-ol in 100 

mL dichloromethane followed by dropwise addition of 1.7 eq Dess-Martin reagent. The 

progress of the reaction was monitored by HPLC and when the reaction was completed, 

the solution was treated with 10 mmol thiosulfate in 25 mL 10% bicarbonate buffer. The 

solution was concentrated until most of the organic solvent was removed and the material 

was used without any further purification. 

2.2.5.2 His-ψ-Cys(o-NBn)-Asp-Leu-Pro-SBn SPPS Assembly 

The pentapeptide benzylthioester, His-ψ-Cys(o-NBn)-Asp-Leu-Pro-SBn, was 

assembled by first synthesizing Alloc-Cys(o-NBn)-Asp(OtBu)-Leu-Pro by standard 

SPPS on 2-chlorotrityl resin. The cysteine N-terminal allyl chloroformate (Alloc) 

protective group was then removed as before (section 2.2.4.1). The resulting peptide, 

Cys(o-NBn)-Asp(OtBu)-Leu-Pro, was then cleaved from the resin using acetic 

acidtrifluoroethanol-dichloromethane (1:2:7, v/v). Reductive alkylation was then 
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performed in solution to synthesize Boc-His(Nπ-Adom)-ψ-Cys(o-NBn)-Asp(OtBu)-Leu-

Pro-OH. This was done by dissolving 1.7 mmol Cys(o-NBn)-Asp(OtBu)-Leu-Pro and 1.6 

equiv of Boc-His(Nπ-Adom)-H in 30 mL methanol containing 0.3 mL acetic acid. The 

resulting solution was then treated with 4 eq sodium cyanoborohydride in portions. The 

reaction went to 90% completion (HPLC) after which methanol and acetic acid were then 

removed by evaporation under vacuum. The product, (Boc-His(Nπ-Adom)-ψ-Cys(o-

NBn)-Asp(OtBu)-Leu-Pro-OH), was then suspended in citric acid solution and extracted 

with dichloromethane, and then concentrated without further purification. 

To the crude 1.68 mmol Boc-His(Nπ-Adom)-ψ-Cys(o-NBn)-Asp(OtBu)-Leu-Pro-

OH solution, 9 mmol benzyl mercaptan was added together with 0.2 mmol DMAP 

hydrochloride and 0.26 eq DMAP in 30 mL dichloromethane. The resulting solution was 

treated with 2.14 mmol EDC for 1 h, after which the reaction was quenched with 

phosphate buffer at pH 6. The solution was then concentrated and the excess benzyl 

mercaptan was removed by washing the residue with heptane. The remaining material 

was then dissolved in dichloromethane and washed with phosphate buffer. The crude 

peptide was further purified using FC silica gel yielding 0.94 g material with ~80% 

purity. Treatment of the product with TFA/water (95:5) for an hour cleanly removed acid 

sensitive protecting groups, Boc, tBu, and Adom. The target peptide was finally purified 

on reverse phase column in TFA-containing gradient of water and acetonitrile and then 

lyophilized. 
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2.2.6 Native Chemical Ligation (NCL) and Product Purification 

The native chemical ligation was performed by combining 6 mM pentapeptide 

and 3 mM NΔ5-NiSOD in 100 mM phosphate buffer with 6 M guanidine hydrochloride, 

15 mM TCEP and 250 mM 4-mercaptophenylacetic acid (MPAA) at pH = 7.00 for 24 h 

at room temperature in an anaerobic chamber (Coy Laboratories Inc., Grass Lake, MI). 

The ligation product is a mixture of properly ligated H1*-NiSOD as well as NΔ5-NiSOD 

oxidized at the N-terminal Cys residue, and NΔ5-NiSOD that had been desulfurized by 

reaction with TCEP18 (Figure 2.5A). The properly ligated protein was purified from the 

oxidized and desulfurized NΔ5-NiSOD, which both lack a thiol group, by using activated 

thiol sepharose affinity column chromatography. First, the NCL buffer was exchanged 

with a binding buffer consisting of 100 mM Tris, 8 M guanidine hydrochloride, 500 mM 

NaCl, and 1 mM EDTA at pH = 7.50. This step also removes the excess MPAA that 

might interfere with the purification process. Next, the protein was loaded on to a column 

 

Figure 2.5. A. ESI-MS of H1*-NiSOD after NΔ5 and H*CDLP-thioester NCL. The 
peaks under the blue dots are the peaks that correspond to the charge states for H1*-
NiSOD. Unlabeled peaks correspond to the charge states of oxidized and desulfurized 
NΔ5-NiSOD. (Reprinted with permission from reference 11. Copyright (2015) American 
Chemical Society.) 
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containing 5 mL of activated thiol sepharose resin and incubated at room temperature for 

at least 2h. The column was then washed with 30 mL of the binding buffer to remove 

unbound proteins. The bound protein was then eluted with 10 mM Tris containing 50 

mM β-mercaptoethanol at pH= 7.50 (Figure 2.5B). 

2.2.7 Cys2 Protective Group Removal, Folding and Metalation 

To remove the 2-nitrobenzyl protecting group, 50 μM protein in a buffer 

consisting of 100 mM sodium acetate, 6 M guanidine HCl, 20 mM TCEP, and 10 mM 

semicarbazide at pH 5.80 was placed in an ice bath and irradiated with UV light at 365 

nm. The extent of the reaction was monitored by mass spectrometry, and the reaction is 

complete after 4 h of irradiation. The sample was then dialyzed at 4 °C against 20 mM 

Tris buffer containing 5 mM TCEP and 5 mM NiCl2 at pH 8.00 overnight. The sample 

was then dialyzed at 4 °C against 20 mM Tris at pH 8.00 for 12 h, twice. Finally, the 

sample was treated with Chelex to remove any unbound nickel by adding a small amount 

of chelex resin and incubated at room temperature for 30 min and agitated occasionally. 

The Ni:protein ratio was determined by analyzing the nickel and sulfur content of the 

sample by ICP-OES. The ICP-OES determination of the enzyme concentration was done 

by first making a standard curve using 2, 5, 10, 20, and 50 ppm sulfur standards prepared 

from a 1000 ppm sulfur ICP standard (Sigma-Aldrich). The concentration of sulfur in 

each sample was then determined using the standard curve (machine automated 

determination). The protein concentration was calculated by dividing the sulfur 

concentration by 3 (since NiSOD has two cysteines and one methionine). Yield: 600 μg 

protein from 10 mg prior to native chemical ligation. 
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2.3 Results and Discussion 

A semisynthetic approach (Figure 2.6) was used to produce a variant of NiSOD in 

which the backbone amidate ligand provided by Cys2 is altered to a secondary amine. 

The semisynthesis of WT-NiSOD was carried out as a control using NCL to couple a 

pentapeptide comprising the five N-terminal amino acids to a truncated NiSOD with an 

N-terminal Cys residue, NΔ5-NiSOD, which was produced recombinantly. A key feature 

of the approach is the use of a photolabile thiol protecting group (2-nitrobenzyl) that was 

 

Figure 2.6. Semisynthetic approach for constructing H1*-NiSOD. (Reprinted with 
permission from reference 11. Copyright (2015) American Chemical Society.) 
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Figure 2.7. ESI-mass spectra of the semisynthetic 
WT-NiSOD (A) and H1*-NiSOD (B) after the 
removal of the 2-nitrobenzyl Cys2 protective 
group by UV irradiation. Peaks under the red dots 
in figure B correspond to a modified NΔ5-NiSOD 
that does not contain a high-affinity nickel 
binding site. (Reprinted with permission from 
reference 11. Copyright (2015) American 
Chemical Society.) 
 

used to protect Cys2 in order to keep it protected during NCL after acid deprotection of 

other residues, and also distinguish it from the N-terminal Cys of NΔ5-NiSOD. 

Following NCL and purification of 

the product, the 2-nitrobenzyl 

protecting group was removed 

photochemically by exposing the 

sample with UV light at 365 nm. 

The production of the semisynthetic 

WT-NiSOD protein was confirmed 

by ESI-MS performed under 

denaturing conditions (Figure 

2.7A). The sample was then folded 

and nickelated. Nickel and protein 

(sulfur) content were determined by 

ICP-OES and gave a nickel loading 

of 84%. The resulting enzyme was 

found to be a fully active catalyst 

(vide infra) and was hexameric 

according to size exclusion 

chromatography (Figure 2.8). 

The synthesis of the H1*-NiSOD variant was accomplished in an analogous 

manner to the semisynthesis of WT-NiSOD. The pentapeptide benzylthioester was 

prepared using SPPS and Alloc-S-o-nitrobenzyl cysteine, as before. The desired amide → 
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amine modification was introduced in solution after cleavage of the tetrapeptide (CDLP) 

from the resin by using the aldehyde, histidinal, instead of the natural amino acid 

histidine to produce an imine linkage that was then converted to secondary amine by 

reduction with Na[(CN)BH3] (Figure 2.6C). The synthesis of δ-N-adamantyl-O- and Boc-

protected histidinal from the corresponding protected histidine was achieved by reduction 

of the amino acid to the alcohol followed by Dess-Martin oxidation (Figure 2.6A).19 The 

synthesis of high purity histidinal in significant quantities and in a form suitable for 

peptide synthesis is reported here for the first time and was a significant component of 

the research. It was achieved by protecting the imidazole amine with an adamantyl group 

prior to reduction of the amino acid and oxidation of the alcohol. Following the removal 

of the acid-labile protecting groups, NCL was performed as for the semisynthetic WT-

NiSOD, except starting with the benzylthioester of the modified pentapeptide. The use of 

the poorer SBz leaving group compared with NBz used for the WT-NiSOD,20,21 led to 

extensive oxidation or desulfurization of the NΔ5-NiSOD N-terminal cysteine when large 

excesses of TCEP were used18 (Figure 2.5A), necessitating separation of the desired 

protein from the impurities that do not contain a thiol by chromatography on activated 

thiol sepharose. The resulting H1*-NiSOD is ~70% pure by mass spectral deconvolution. 

The only remaining impurity is an N-terminally modified NΔ5-NiSOD that does not 

undergo NCL (Figure 2.5B). This species does not affect the characterization of the 

enzyme because it lacks the high-affinity nickel binding site. 

Following photochemical deprotection of Cys2, the resulting product was 

analyzed by ESI-MS under denaturing conditions, which confirmed the expected MW for 

the protein (Figure 2.7B). The sample was then folded, metalated, and analyzed for Ni 
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content, as described for semisynthetic WT-NiSOD. The sample after chelex treatment 

was found to be 62% nickel loaded, after taking into account the sample purity. Like the 

WT enzyme, H1*-NiSOD was also found to be hexameric by size exclusion 

chromatography (Figure 2.8). 

 

The synthetic strategy detailed above provides a method to alter any backbone 

amide to a secondary amine employing aldehydes derived from amino acids that can be 

adapted to solid phase peptide synthesis. This approach differs from previous backbone 

alterations reported in the literature in that it preserves the backbone N atom in the 

protein, while altering its chemical properties including deprotonation (charge) and 

ability to engage in π-bonding. Of the strategies for modifying backbone amides that have 

 

Figure 2.8. Size exclusion chromatography on the NiSOD variants. The apparent MW 
determined for all variants is approximately 73 kDa (Calculated: 79 kDa). (Reprinted 
with permission from reference 11. Copyright (2015) American Chemical Society.) 
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been employed to make proteins (rather than small peptides), this strategy is novel in that 

it preserves the N-donor ligand as opposed to replacement with an ester O donor. The 

latter can be achieved in several ways including the use of preactivated (L)-lactic acid or 

(S) hydroxymethylbutyric acid in solid phase peptide synthesis or the use of α-

hydroxyacids in tRNA suppression strategies.22-29 These amide → ester modifications 

enabled investigations probing the effect of altering hydrogen bonding interactions 

involving the amide, but are less applicable to amides that are metal ligands in 

metalloproteins, since ester O atoms are poor metal ligands. Although rare, 

metalloenzymes featuring active site metal amidate ligands include nitrile hydratase30 and 

thiocyanate hydrolase,31 in addition to NiSOD studied here. The use of histidinal to 

modify the peptide bond is specifically applicable to proteins that feature the amino 

terminal Cu(II)- and Ni(II)-binding (ATCUN) motif,32 which binds in a tetradentate 

planar fashion utilizing the N-terminal amine, a histidine residue in position 3, and two 

intervening amide N atoms. The ATCUN motif is a common feature of albumins, and 

95% of serum Ni(II) is bound to albumin.30 The ATCUN motif is also found in histatins, 

neuromedins C and K, and human sperm protamine P2a, and is also a component of 

proteins engineered for DNA cleavage.30,33-35 N-terminal ATCUN-like binding sites are 

also features of a number of proteins involved in Ni trafficking, including NmtR,36 

RcnR,37 and HypA,38 where the His residue is second residue and the resulting Ni(II) 

complexes are all six-coordinate. 
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CHAPTER 3 

REACTION KINETICS AND PHYSICAL CHARACTERIZATION OF H1*-
NISOD 

3.1 Introduction 

This chapter is dedicated to the kinetic and spectroscopic characterization of H1*-

NiSOD to understand the effects of the modification and draw conclusions regarding the 

functional role of the amidate ligand in NiSOD. The characterization of the mutant 

includes: kinetic studies using pulse radiolysis to produce O2
- that were used to determine 

the catalytic rate; UV-Vis spectroscopy, to determine the electronic absorption 

characteristics; X-ray absorption spectroscopy, to determine structural features of the 

local environment of the Ni ion; and EPR spectroscopy, which is a useful probe of 

electronic structure and redox activity particularly in comparison with WT-NiSOD. 

3.2 Experimental 

3.2.1 X-ray Absorption Spectroscopy 

A 50-μL sample containing 3 mM enzyme (per nickel basis) in 20 mM Tris buffer 

at pH = 8.00 was treated with 10 μL of 180 mM dithionite for 1-2 min in a coy chamber 

(Coy Laboratory Products Inc., Grass Lake, MI). The sample was then added with 10 μL 

of glycerol (~15% final concentration) and loaded into a polycarbonate XAS holder 

wrapped in Kapton tape and slowly frozen in liquid nitrogen. Ni K-edge XAS data were 

collected as previously described1 at 10 K using a liquid helium cryostat (Oxford 

Instruments) on beamline 7-3 at the Stanford Synchrotron Radiation Laboratory (SSRL). 

The data were collected at ~10 K using a liquid helium cryostat (Oxford Instruments) 
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under ring conditions of 3 GeV and 495-500 mA. Beamline optics consisted of a Si (220) 

double-crystal monochromator and a flat rhodium-coated mirror before the 

monochromator for harmonic rejection and vertical collimation. X-ray fluorescence was 

collected using a 30-element germanium detector (Canberra). Scattering was minimized 

by placing a set of Soller slits with a Z-1 element filter between the sample chamber and 

the detector. Internal energy calibration was performed by collecting spectra 

simultaneously in transition mode on nickel foil to determine the first inflection point on 

the edge, which was set to 8331.6 eV. 

Sixpack software was used to remove signals from bad detectors, calibrate the 

edge energy of Ni foil, and finally to average the data. Athena software was used for data 

reduction and normalization using the Autobk algorithm. Data normalization was 

performed by setting the pre-edge range from -200 to -30 eV (WT: -200 to -50 eV) 

relative to E0, and the post-edge was set from 200-896 eV (WT: 200-905 eV) relative to 

E0. Background removal was done by setting E0 = 8340 eV, Rbkg to 1.0 and a spline range 

from k = 0 Å to k = 16.166 Å (WT: k = 0 to k = 16 Å). 

Extended X-ray absorption fine structure (EXAFS) data were analyzed using 

Artemis software as previously described.2 The k3-weighted data for the dithionite-

reduced WT-NiSOD was fitted using the X-ray reduced WT-NiSOD crystal structure 

(PDB: 1Q0G) as a model for calculating theoretical phases and amplitude parameters 

using FEFF 6.0, including multiple-scattering pathways for second coordination sphere C 

atoms from the five-membered chelate rings formed by His1 and Cys2. The FT window 

was set to 2.0-12.5 Å and fitting was performed over the range r = 1.0 - 4.0 Å in r-space 

with an So value set to 0.9. To assess the goodness of the fit, the fit parameters χ2, χv
2, and 
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R factor were minimized. The R factor generally improves with increasing number of 

adjustable parameters; whereas, χv
2 may go through a minimum then increase, which 

indicates that the data is overfitted.2 The statistical parameters are defined as follows: 

 

and 

 

“where Nidp is the number of independent data points defined as Nidp = (2ΔrΔk)/π, Δr is 

the fitting range in r-space, Δk the fitting range in k-space, Npts is the number of points 

in the fitting range, Nvar is the number of variables floating during the fit, ε is the 

measurement uncertainty, Re() is the real part of the EXAFS Fourier-transformed data 

and theory functions, Im() is the imaginary part of the EXAFS Fourier-transformed data 

and theory functions, χ(Ri) is the Fourier-transformed data or theory function” (Martin-

Diaconescu 2012, p. 2) and 

 

Similarly, for dithionite-reduced H1*-NiSOD, fits of first-coordination sphere 

scattering atoms were obtained using an FT window = 2.0 - 12.5 Å, So = 0.9, and r = 1.0 

to 2.3 Å with the following combinations of first-shell scattering atoms: 4N; 3N, 1S; 2N, 

2S; 1N, 3S; and 4S. The 2N, 2S combination afforded the best fit with the 2N-scattering 

and 2S-scattering atoms each averaged in single shells (Appendix, Table A.3). When it 

became apparent that the H1*- NiSOD active site is structurally similar to WT-NiSOD, 

judged by the minimum values of R factor and χv
2, second shell carbon atoms were added 
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to the fit using the X-ray reduced WT-NiSOD crystal structure (PDB: 1Q0G) as before, 

and the fitting range was extended to r = 1.25 - 4.5 Å.  

X-ray absorption near edge structure (XANES) analysis was performed over the 

energy range from 8325 to 8340 eV using an error function centered at 8340 eV to fit a 

portion of the edge background, and Gaussian functions centered at 8331 eV to fit the 1s 

→ 3d transition and at 8336 eV to fit the 1s → 4pz transition (Appendix, Figure A.1 and 

Table A.4). 

3.2.2 UV-Vis Spectroscopy 

UV−Vis absorption spectra of the recombinant WT-NiSOD, dithionite-reduced 

WT-NiSOD, semisynthetic WT-NiSOD, and H1*-NiSOD were obtained using a 

NanoDrop 2000c spectrophotometer. The absorption coefficients were calculated using 

the enzyme concentration determined based on the sulfur content of the sample as 

determined by ICP-OES (Chapter 2, section 2.2.7). 

3.2.3 Electron Paramagnetic Resonance Spectroscopy 

The EPR spectra were obtained using a Bruker Elexsys E500 cw-X-band EPR 

spectrometer. About 100 μL of a 200-1000 μM solution of each sample was loaded in 

EPR tubes and frozen using liquid nitrogen. The magnetic field is centered at 3200 G 

with a sweep width set to 1500 G. The modulation frequency was set to 100 kHz, while 

the modulation amplitude was set to 2 G. The receiver gain of 60 dB and attenuation of 

10 db were applied and a time constant and conversion time of 0.64 and 655 ms were 

used, respectively. Spectral smoothing and baseline correction were performed using 

SpinCount software (M. Hendrich). Spin integration of the EPR signal from H1*-NiSOD 
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was performed by comparing the double integration of the first derivative signal vs a 

Cu(II) standard (1.0 mM CuSO4 in 2 M NaClO4 and 10 mM HCl), where the Cu content 

was determined by ICP-OES. 

3.2.4 Pulse Radiolysis 

The catalytic activities of the semisynthetic WT-NiSOD and H1*-NiSOD were 

determined by kinetics studies that employed pulse radiolysis using a 2.0 MeV van de 

Graaff accelerator at Brookhaven National Laboratory, as previously described.3 

Micromolar concentrations of the semisynthetic enzymes were exposed to short pulses 

(100-600 ns) of highly accelerated electrons producing 2-10 μM of superoxide radical. 

The catalytic activity was measured by monitoring the rate of disappearance of 

superoxide radical absorption at 260 nm in a buffered solution containing 2 μM protein 

(per nickel basis), 10 mM phosphate, 30 mM formate, and 5 μM EDTA at pH 7.50. Rates 

of reaction are reported on a per Ni basis and assumed that all of the Ni in the sample is 

catalytically active. All quoted rates represent the average of at least three individual 

measurements and the system error is approximately 10%. 

3.3 Results 

3.3.1 Structural Characterization of the Ni Site in H1*-NiSOD 

XAS analysis was used to characterize the structure of the Ni site in H1*-NiSOD 

and WT-NiSOD (Figure 3.1). For H1*-NiSOD, the XANES spectrum shows a resolved 

maximum near 8336 eV that is associated with a 1s → 4pz electronic transition that is 

diagnostic for four coordinate planar coordination, and is also observed for dithionite-
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reduced WT-NiSOD.4,5 In contrast to WT-NiSOD, the expected peak associated with a 1s 

→ 3d transition for H1*-NiSOD was not observed; however, it has very low intensity in 

many 4-coordinate planar complexes, including some where it is not detected.5 The H1*-

NiSOD EXAFS arising from first-coordination sphere scattering atoms was best fitted 

with 2 N-donor atoms @ 1.970(7) Å and 2 S-donor atoms @ 2.17(2) Å (Table 3.1). The 

N-donor atoms in H1*-NiSOD were not resolved by the data (resolution = 𝜋
2𝑘

 = 0.15 Å), 

which is distinct from the results for WT-NSOD, where the two shells are resolved (1.88,  

2.09 Å) (Table 3.2). This may reflect the fact that in WT-NiSOD, one N-donor atom is an 

amidate and the other is an amine, whereas in H1*-NiSOD, both N-donors are amines. 

The N and S distances in both H1*- and WT-NiSOD are similar to the distances found in 

planar NiN2S2 complexes (Ni-N = 1.84− 1.99 Å; Ni-S = 2.14−2.20 Å).6-8  

 

 

 

Figure 3.1. Ni K-edge XANES spectra for dithionite-reduced WT-NiSOD and dithionite 
reduced H1*-NiSOD. Figure insets: (A) Fourier-transformed (k = 2-12.5 Å-1) EXAFS 
(blue) and fit (red). (B) k3-weighted EXAFS data (blue) and fit (red). (Reprinted with 
permission from reference 9. Copyright (2015) American Chemical Society.) 
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Table 3.1. H1*-NiSOD first- and second-coordination sphere EXAFS fit results showing 
Ni-N, -S and -C distances, r; threshold energy shift, E0; Debye-Waller factor, σ2 ; and 
statistical parameters. (Reprinted with permission from reference 9. Copyright (2015) 
American Chemical Society.) 

Shells r(Ǻ) E0 (eV) σ2  (x10-3 Ǻ-2) χ2 χv
2 % R 

2N 1.970(7)  
 

-1.94 

0.2(0.9)  
 

312.07 

 
 

33.09 

 
 

0.79 
2S 2.17(2) 7(1) 
1C 2.43(3) 1(1) 
1C 2.69(3) 1(1) 
2C 2.90(2) 1(1) 

 

Table 3.2. WT-NiSOD first- and second-coordination sphere EXAFS fit results showing 
Ni-N, -S and -C distances, r; threshold energy shift, E0; Debye-Waller factor, σ2 ; and 
statistical parameters.  

Shells r(Ǻ) E0 (eV) σ2  (x10-3 Ǻ-2) χ2 χv
2 % R 

1N 1.88(1)  
 

-2.81 

2(1)  
 

1348.60 

 
 

198.39 

 
 

0.32 
1N 2.09(2) 2(1) 
2S 2.157(4) 3(1) 
1C 2.61(6) 11(4) 
3C 2.87(3) 11(4) 

 

3.3.2 UV-Vis Spectroscopy 

UV-Vis absorption spectra of the H1*-NiSOD and semisynthetic WT-NiSOD are 

compared to spectra obtained for recombinant WT-NiSOD (Figure 3.2). The 

semisynthetic WT-NiSOD spectrum closely matches that of the recombinant WT-NiSOD 

and features the transition near 380 nm that has been assigned to CysS → Ni(III) ligand-

to-metal charge transfer (LMCT).10 This LMCT transition is absent in the spectrum for 

H1*-NiSOD, which resembles the spectrum obtained for reduced recombinant WT-

NiSOD, consistent with the sample being mostly reduced, i.e., Ni(II). Spin integration of 

the EPR spectra obtained on an as-isolated sample of H1*-NiSOD (section 3.3.3) 

accounts for ~11% of the nickel in the sample. Thus, the resting sample in air contains 
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both Ni(II) and Ni(III) centers, but at a lower Ni(III)/Ni(II) ratio than the recombinant 

WT enzyme where 50% of the Ni in the aerobic resting enzyme is Ni(III).3 

 

3.3.3 Electron Paramagnetic Resonance Spectroscopy 

The EPR for H1*-NiSOD is consistent with a low spin dz
2 ground state Ni(III) 

species in a five-coordinate pyramidal geometry. The signal has gx = 2.27, gy = 2.22, and 

gz = 2.02, with hyperfine attributed to the apical His1 imidazole N-donor ligand resolved 

on gz, Azz = 24.2 G (Figure 3.3). This signal is more axial compared to the rhombic 

spectrum observed for recombinant WT-NiSOD and semisynthetic WT-NiSOD (g-values 

= 2.30, 2.23, 2.01; Azz = 24.9 G).3 

 

Figure 3.2. UV-Vis absorption spectra of the NiSOD variants. (Adapted with permission 
from reference 9. Copyright (2015) American Chemical Society.) 
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3.3.4 Redox Catalysis 

In contrast to the relatively small structural and electronic perturbations, the effect 

of substitution of the backbone amidate ligand by a secondary amine on redox catalysis is 

dramatic. Using pulse-radiolytically generated superoxide, the catalytic rate constant 

determined by monitoring the disappearance of the superoxide radical at 260 nm was 

only ∼1% of that observed for the recombinant WT-NiSOD. The semisynthetic WT-

NiSOD has a catalytic rate constant kcat = 9.4 ± 1.6 × 108 M−1 s−1 at pH = 7.5 and a pH 

dependence that is experimentally indistinguishable from the catalytic rate constant 

 

Figure 3.3. EPR spectra of recombinant WT-NiSOD, semisynthetic WT-NiSOD and 
H1*-NiSOD. (Adapted with permission from reference 9. Copyright (2015) American 
Chemical Society.) 
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observed for recombinant WT-NiSOD (Figure 3.4).3,11 In contrast, H1*-NiSOD has a 

catalytic rate constant kcat = 5.6 ± 0.5 × 106 M−1 s−1 at pH = 7.5. Nonetheless, this residual 

activity is due to enzyme catalysis, and not the uncatalyzed bimolecular 

disproportionation reaction, since doubling the concentration of H1*-NiSOD doubled the 

rate of reaction (Appendix, Table A.1). 

 

3.4 Discussion 

The Ni-dependent superoxide dismutases are a large class of superoxide 

dismutases that are encoded by the sodN gene. The sodN gene encodes a highly 

conserved (HCXXPCXXY) N-terminal “nickel hook” motif that binds Ni using the N-

terminal amine and the side chain imidazole of His1, the amide N atom and side chain 

thiolate of Cys2, and the side chain of Cys6 (Figure 3.5). The N-terminal location of the 

 

Figure 3.4. Catalytic activity pH dependence of recombinant WT-NiSOD (black square) 
11 compared with that of semi-synthetic WT-NiSOD (red circle). The catalytic activity of 
H1*-NiSOD at pH= 7.50 is shown as a blue triangle. (Reprinted with permission from 
reference 9. Copyright (2015) American Chemical Society.) 
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binding site made synthesis of model peptides an approach that has been extensively 

exploited for studying the NiSOD active site,12-15 and the role of the Cys6 residue as the 

only ligand not derived from His1 or Cys2 makes semisynthesis of the protein employing 

NCL very attractive, particularly for a study modifying the backbone amidate ligand, for 

which no point mutation is possible. Using the synthetic strategy detailed in Chapter 2, 

histidinal was incorporated into a synthetic pentapeptide in order to produce a variant 

nickel hook motif, where the amidate ligand of the nickel center in WT-NiSOD was 

altered to a secondary amine. NCL was then employed to ligate the peptide to the 

remainder of the enzyme that was produced recombinantly and featured an N-terminal 

Cys residue. 

Taken together, the spectroscopic characterization of H1*- NiSOD suggests that 

the nickel site in the variant is structurally very similar to those in WT-NiSOD. The 

Ni(II) sites are four coordinate and planar with a N2S2 ligand donor-atom set, and the 

Ni(III) sites are five coordinate and pyramidal with the addition of an apical imidazole 

ligand from His1. Even the electronic structure of the site seems little perturbed in the 

H1*-NiSOD variant. The EPR spectrum of H1*-NiSOD (gx = 2.27, gy = 2.22 and gz = 

2.02, Azz = 24.2 G, Figure 3.3) is consistent with a low-spin d7 electronic structure with 

the unpaired electron residing in a dz
2 orbital, similar to WT-NiSOD, but has a more axial 

signal than the rhombic signal observed for WT-enzyme. This arises mostly from a shift 

of gx from 2.30 to 2.27 in the variant. This can be rationalized in terms of the interaction 

of the N-donors with π-symmetry orbitals on the Ni(III) center. An amidate N-donor is 

expected to raise the energy of a π-symmetry Ni 3d orbital through a filled π−π 

interaction that is not present for an amine N-donor (Figure 3.5).10 Thus, asymmetric 
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amidate-amine ligation would affect interactions with dxz and dyz differently, and is 

reflected in a rhombic EPR signal. 

 

Despite the minor structural and electronic perturbations, the alteration of the 

Cys2 amidate ligand to a secondary amine in H1*-NiSOD has a dramatic effect on the 

redox catalytic properties of the active site. Alteration of the amidate ligand found in 

WT-NiSOD to a secondary amine apparently results in raising the redox potential of the 

nickel site to a value that is less accessible to air oxidation, resulting in lower amounts of 

Ni(III) in as-isolated samples of H1*-NiSOD (~11%) relative to recombinant WT-

NiSOD (50%) and is accompanied by lower catalytic activity. The higher redox potential 

for H1*-NiSOD would be expected to greatly decrease the catalytic activity, in line with 

the observed activity of 1% of WT-NiSOD. In addition, the trend for increased redox 

potentials in amine complexes relative to complexes with amidate ligands has been 

noted.16,17 The increased redox potential makes Ni(III) harder to access and thus inhibits 

 

Figure 3.5. NiSOD active site diagrams illustrating the different interactions between the 
N-donor ligands and a Ni π-symmetry 3d orbital in WT-NiSOD with a Cys2 amidate 
ligand (left), and in H1*-NiSOD with a Cys2 2° amine (right). (Reprinted with 
permission from reference 9. Copyright (2015) American Chemical Society.) 
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the reduction of O2
− to H2O2. Thus, the single amidate ligand present in the WT-NiSOD 

plays a critical role in the redox tuning of the catalytic site.  

3.5 Future Direction 

The most important contribution from this dissertation is the synthesis of H1*-

NiSOD, where the amidate ligand in WT-NiSOD was converted to amine. From this 

amide → amine modification, we learned that the amidate ligation present in WT-NiSOD 

is crucial in tuning the redox potential of the nickel active site. This work will provide 

foundation for future studies to characterize the molecular and electronic structural 

perturbation arising from this modification. We also hope to learn about the spin 

distribution of oxidized H1*-NiSOD and compare it to the spin distribution of oxidized 

WT-NiSOD and validate the prior DFT calculation which suggest that oxidation of mixed 

amine/amide complexes are Ni-centered whereas bisamine complexes are S-centered. 

A crystal structure of H1*-NiSOD will be obtained to establish the minor 

structural perturbations caused by the amide → amine modification while MCD and DFT 

calculation of the nickel active site will be done to provide a detailed picture of the 

electronic structure of the oxidized H1*-NiSOD. DFT calculation can be used to 

determine the spin distribution among the Ni ion and the ligands and ENDOR 

spectroscopy will be done to experimentally validate the DFT prediction. Since the 

naturally occurring sulfur and nickel isotopes are NMR-silent, for ENDOR experiments 

33S and 61Ni will be used. In case a 14N Larmor frequency is detected, the N-donor 

ligands can be sequentially labeled with 15N to pinpoint the origin of that frequency. 

Solvent exchangeable protons hyperfine-coupled to a nucleus of interest can be labeled 
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with 2H by H/D exchange. Overall these future studies will confirm what has already 

been established in NiN2S2 complexes (i.e., the presence of an amidate ligation tunes the 

redox potential of the complex to be Ni-centered) in enzymatic system. 
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APPENDIX 

 
SUPPORTING INFORMATION 

 
 

Table A.1. Rates of reactions and [SOD] dependence for H1*-NiSOD. 
H1*-NiSOD  

(2 μM) (4 μM) 
O2

- total dose 
(μM) 

rate reaction 
(M/s) 

O2
- total dose 

(μM) 
rate reaction 

(M/s) 
 

2.27 11.80 1.46 23.00 
2.71 11.10 3.57 20.40 
4.39 12.70 5.01 19.90 
5.09 12.00 8.64 18.90 
5.78 11.70 10.20 22.40 
6.88 9.03 12.60 19.80 
7.59 10.80 14.50 18.30 
8.80 10.20 16.20 20.50 
11.00 12.30 18.00 18.80 

 
 

Table A.2. pH dependent activity assay of semisynthetic WT-NiSOD at 2 μM 
concentration. 

pH 6.50 pH 7.50 pH 8.50 pH 9.50 
O2

- total 
dose 
(μM) 

rate 
reaction 
(M/s) 

O2
- total 

dose 
(μM) 

rate 
reaction 
(M/s) 

O2
- total 

dose 
(μM) 

rate 
reaction 
(M/s) 

O2
- total 

dose 
 (μM) 

rate 
reaction 
(M/s) 

1.29 1500 1.34 2060 1.38 1200 0.92 370 
1.94 1620 1.79 2210 1.83 1450 1.36 473 
3.03 1740 2.50 1800 2.27 1470 2.02 454 
4.56 1710 4.96 1800 2.71 1420 3.61 484 
6.52 1700 7.11 1610 3.39 1340 5.65 485 
8.04 1720 10.3 1540 4.07 1210 6.31 702 
9.13 1670 11.0 2170 5.23 1210 6.97 576 
9.78 1730 N/A N/A 6.86 1200 7.64 640 
N/A N/A N/A N/A 7.53 1330 N/A N/A 
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Table A.3. EXAFS first shell fit results showing Ni-N, -S and -C distances, r; threshold 
energy shift, E0; Debye-Waller factor, σ2 ; and statistical parameters. Fit highlighted in 
yellow is the best fit. 

 Scatterers of the same element but in different 
shells are given different σ2 parameters. 

Scatterers of the same element but in different 
shells are given the same σ2 parameter. 

Shells r(Ǻ) E0 

σ2 
(x10-3 
Ǻ-2) χ2 χv

2 % R r(Ǻ) E0 

σ2 
(x10-3 
Ǻ-2) χ2 χv

2 % R 
4N(@2.0) 1.98(6) 0.85 6(5) 12382.0 3314.90 24.16 NA NA NA NA NA NA 

             
3N(@2.0) 2.00(2) 3.66 0(1) 971.64 559.91 1.88 1.98(2) 3.668 0(1) 1542.02 563.74 3.64 
1N(@2.2) 2.43(3)  -4(3)    2.18(5)  0(1)    

             
2N(@2.0) 2.00(3) 4.46 -3(3) 4555.40 2625.00 11.58 2(2) 0.659 5(131) 12621.6 4614.30 24.7 
2N(@2.2) 4.70(7)  -17(5)    2(2)  5(131)    

             
1N(@2.0) 1.99(5) -0.23 -5(5) 8884.50 5119.70 21.21 2(3) 0.46 6(85) 12855.7 4699.9 25.1 
3N(@2.2) 1.9(3)  18(35)    2(1)  6(85)    

             
4N(@2.2) 1.97(7) -0.35 8(7) 16072.0 4302.70 33.03 NA NA NA NA NA NA 

             
3N(@2.0) 2.00(7) 0.09 5(8) 1486.70 856.69 4.22 NA NA NA NA NA NA 
1S(@2.2) 2.14(3)  2(6)          

             
2N(@2.0) 1.96(3) 0.58 -3(4) 98.98 989.81 0.22 1.96(1) 0.711 -2.7(8) 103.00 140.07 0.24 
1N(@2.2) 2.3(3)  -1(34)    2.33(4)  -2.7(8)    
1S(@2.2) 2.2(1)  0(6)    2.23(2)  0(3)    

             
1N(@2.0) 1.94(3) 1.11 -6(3) 75.72 757.21 21.33 2.34(5) -0.183 -2.5(9) 119.65 162.70 0.27 
2N(@2.2) 2.1(2)  21(74)    1.96(1)  1(3)    
1S(@2.2) 2.19(3)  -2(3)    2.23(2)      

             
3N(@2.2) 2.01(8) 0.00 6(11) 1938.33 1116.96 5.23 NA NA NA NA NA NA 
1S(@2.2) 2.14(4)  1(5)          

             
3N(@2.0) 2.00(7) 0.05 5(8) 1455.81 838.92 4.15 NA NA NA NA NA NA 
1S(@2.3) 2.14(6)  2(6)          

             
2N(@2.0) 1.96(3) 0.59 -3(4) 105.99 1059.90 0.24 1.96(1) 0.697 -2.7(8) 108.64 147.74 0.25 
1N(@2.2) 2.3(2)  -1(35)    2.33(5)  -2.7(8)    
1S(@2.3) 2.2(2)  0(6)    2.23(2)  0(3)    

             
1N(@2.0) 1.94(3) 1.14 -6(3) 75.23 752.30 0.21 2.3(3) -0.305 -2(1) 125.17 170.21 0.28 
2N(@2.2) 2.1(2)  20(67)    1.96(2)  -2(1)    
1S(@2.3) 2.19(3)  -2(3)    2.22(1)  1(3)    

             
3N(@2.2) 2.01(9) 0.02 6(11) 1921.07 1107.02 5.19% NA NA NA NA NA NA 
1S(@2.3) 2.14(4)  1(5)          

             
2N(@2.0) 1.98(2) -4.68 2(6) 623.59 359.35 1.93 NA NA NA NA NA NA 
2S(@2.2) 2.14(2)  6(4)          
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1N(@2.0) 1.93(8) -3.11 -6(21) 317.48 3174.77 0.63 1.93(2) -3.091 -6(4) 317.65 431.97 0.64 
1N(@2.2) 2.1(2)  -6(26)    2.07(4)  -6(4)    
2S(@2.2) 2.07(8)  6(28)    2.13(2)  7(7)    

             
2N(@2.2) 1.99(2) -4.72 3(6) 645.43 371.93 2.04 NA NA NA NA NA NA 
2S(@2.2) 2.14(2)  6(5)          

             
2N(@2.0) 1.9(1) -5.39 -4(12) 183.52 1835.17 0.34 1.8(2) -11.07 41(18) 120.10 163.33 0.28 
1S(@2.2) 2.0(2)  5(66)    2.19(2)  -4.6(9)    
1S(@2.3) 2.19(7)  -3(11)    2.05(2)      

             
2N(@2.2) 1.94(9) -5.64 -4(11) 156.00 1559.96 0.32 1.8(3) -11.5 50(23) 130.05 176.86 0.28 
1S(@2.2) 2.0(1)  5(49)    2.06(2)  -4(1)    
1S(@2.3) 2.19(5)  -3(10)    2.19(2)  -4(1)    

             
2N(@2.0) 1.98(2) -4.76 2(5) 635.54 366.23 1.91 NA NA NA NA NA NA 
2S(@2.3) 2.14(2)  6(4)          

             
1N(@2.0) 1.9(2) -9.99 -1(11) 405.24 4052.42 1.15 1.93(2) -3.245 -6(4) 351.48 477.98 0.70 
1N(@2.2) 1.6(4)  -1(11)    2.07(4)  -6(4)    
2S(@2.3) 2.14(4)  3(7)    2.14(2)  7(7)    

             
2N(@2.2) 1.99(2) -4.75 2(6) 666.13 383.86 2.05 NA NA NA NA NA NA 
2S(@2.3) 2.13(2)  6(5)          

             
1N(@2.0) N/A N/A N/A N/A N/A N/A 1.93(7) -3.111 -6(12) 355.21 3552.13 0.71 
1N(@2.2) N/A N/A N/A N/A N/A N/A 2.1(1)  -6(12)    
1S(@2.2) N/A N/A N/A N/A N/A N/A 2(18)  6(810)    
1S(@2.3) N/A N/A N/A N/A N/A N/A 2(18)  6(810)    

             
4S(@2.2) 2.11(2) -13.41 9(2) 2273.87 608.74 5.24 NA NA NA NA NA NA 

             
3S(@2.2) 2.12(2) -11.26 5(1) 714.26 411.59 2.49 2.13(3) -13.97 7(10) 2241.21 819.35 5.25 
1S(@2.3) 2.4(2)  32(61)    2.0(2)  7(10)    

             
2S(@2.2) 2.1(4) -12.81 28(19) 1139.11 656.41 3.77 2(2) -13.63 8(93) 2250.26 822.66 5.19 
2S(@2.3) 22.11(2)  3(2)    2(2)  8(93)    

             
1S(@2.2) 1.9(2) -14.08 37(84) 698.11 402.29 2.29 2.2(7) -13.67 8(20) 2269.72 829.77 5.22 
3S(@2.3) 2.11(2)  5(1)    2.10(2)      

             
4S(@2.3) 2.11(2) -13.82 8(2) 2538.87 679.69 5.77 NA NA NA NA NA NA 

             
3S(@2.2) 2.12(2) -9.77 7(4) 687.22 396.01 2.09 NA NA NA NA NA NA 
1N(@2.0) 1.98(6)  1(10)          

             
2S(@2.2) 2.18(2) -3.88 4(1) 22.65 226.47 0.08 2.14(2) -11.54 -8(2) 231.56 314.90 0.51 
1S(@2.3) 2.51(1)  11(10)    1.94(2)  -1(2)    
1N(@2.0) 1.94(2)  -3(2)    1.91(3)  -1(2)    

             
1S(@2.2) 1.9(1) -11.42 2(31) 208.10 2081.01 0.41 2.2(2) -9.999 2(41) 655.58 891.52 1.83 
2S(@2.3) 2.15(5)  0(8)    2.1(3)  2(41)    
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1N(@2.0) 1.91(8)  -6(12)    2(2)  6(506)    
             

3S(@2.3) 2.12(2) -10.05 7(4) 730.53 420.97 2.18 NA NA NA NA NA NA 
1N(@2.0) 1.99(6)  1(10)          

             
3S(@2.2) 2.12(2) -10.96 1(1) 529.23 304.97 0.76 NA NA NA NA NA NA 
1N(@2.2) 2.14(2)  -6(2)          

             
2S(@2.2) 2.15(5) -11.11 0(8) 193.85 1938.47 0.39 2.08(2) -13.68 3(6) 570.39 775.67 1.81 
1S(@2.3) 1.9(1)  3(31)    2.2(1)  3(6)    
1N(@2.2) 1.91(7)  -6(11)    1.5(2)  20(77)    

             
1S(@2.2) 2.0(2) -10.30 -2(48) 479.64 4796.37 0.95 2.2(1) -9.962 2(18) 655.37 891.24 1.84 
2S(@2.3) 2.2(1)  1(63)    2.1(2)  2(18)    
1N(@2.2) 2(1)  -2(294)    2(1)  5(311)    

             
3S(@2.3) 2.11(4) -13.16 5(1) 788.58 454.42 2.43 NA NA NA NA NA NA 
1N(@2.2) 2.3(1)  44(48)          

 
 
 
 
 
 
 
Table A.4. XANES analysis for H1*-NiSOD. 

line shape E0 (eV) area (x10-2 
eV) 

sigma χ2 χv
2 % R 

Gaussian(1s->3d) 8331.00 -0.07 1.7(3)  
0.00099 

 
0.0000141 

 
0.02 Gaussian(1s->4pz) 8335.78 0.37 1.17(3) 

error function 8340.00 - - 
 
 

  

80 



 

 
  

 

Figure A.1. XANES spectrum fitted with an error function and two gaussian functions. 
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