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ABSTRACT

EXACT SOLUTIONS IN GRAVITY:
A JOURNEY THROUGH SPACETIME WITH THE

KERR-SCHILD ANSATZ

SEPTEMBER 2015

BENJAMIN ETT

B.Sc., CALIFORNIA STATE UNIVERSITY NORTHRIDGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Kastor

The Kerr-Schild metric ansatz can be expressed in the form gab = ḡab + λkakb,

where ḡab is a background metric satisfying Einstein’s equations, ka is a null-vector,

and λ is a free parameter. It was discovered in 1963 while searching for the elusive

rotating black hole solutions to Einstein’s equations, fifty years after the static solution

was found and Einstein first formulated his theory of general relativity. While the

ansatz has proved an excellent tool in the search for new exact solutions since then,

its scope is limited, particularly with respect to higher dimensional theories. In this

thesis, we present the analysis behind three possible modifications. In the first case

a spacelike vector is added to the ansatz, and we show that many, although not

all, of the simplifications that occur in the Kerr-Schild case continue to hold for the

extended version of the ansatz. In the second case we look at the Kerr-Schild ansatz

in the context of higher curvature theories of gravity; specifically Lovelock gravity

vii



which organizes terms in the Lagrangian in such a way that the theory is ghost-free

and the equations of motion remain second order. We find that the field equations

reduce, in a similar manner as in the Kerr-Schild case, to a single equation of order

λp for unique vacuum theories of order p in the curvature. Finally, we investigate the

role of the Kerr-Schild ansatz in the context of Kaluza-Klein gravity theories.
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CHAPTER 1

INTRODUCTION TO THE KERR-SCHILD ANSATZ

1.1 Brief History of General Relativity

Black holes are the most majestic objects in the universe. They can rotate. They

can be charged. They can be supermassive and lie at the heart of galaxies, or they

can be microscopic and hurtle through space in complete isolation. Some are as old

as the universe itself, while others are the fantastical endpoint of stellar collapse.

Black holes can be used to confirm astronomical data, and they can be used as purely

theoretical tools. If we allow ourselves to step outside the friendly confines of our

familiar four dimensions, the black hole possibilities explode. In essence, the task of

the black hole physicist becomes a complete categorization of the types of black holes

given certain initial conditions. These can depend on the physical properties of the

black hole itself, such as the aforementioned rotation and charge, or on the spacetime

the black hole resides, such as the number of dimensions or the curvature. What was

essentially a simple task in four dimensions, becomes a massive exercise in higher

dimensions.

One of the most intriguing features of a black hole is the event horizon; a boundary

where the geometry of spacetime is so warped that even light cannot escape. The

event horizon encloses a region of spacetime surrounding the black hole that is cutoff

from all forms of communication with the Universe surrounding it. We cannot know

what happens beyond the horizon, and if any object should happen to cross it, that
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object will be lost to us forever1. This concept was first2 theorized as early as 1783

by John Michell when he discussed escape velocities greater than the speed of light

for classical bodies [1]. He writes

“If there should really exist in nature any bodies, whose density is not
less than that of the sun, and whose diameters are more than 500 times
the diameter of the sun, since their light could not arrive at us; or if
there should exist any other bodies of a somewhat smaller size, which are
not naturally luminous; of the existence of bodies under either of these
circumstances, we could have no infomation from sight;”

Michell named these objects “dark stars” since their gravitational pull was so strong

that light could not escape from the surface; therefore, they could not be seen by the

naked eye. He further hypothesized how we could detect3 the presence of these dark

stars, remarking;

“if any other luminous bodies should happen to revolve about them we
might still perhaps from the motion of these revolving bodies infer the
existence of the central ones with some degree of probability, as this might
afford a clue to some of the apparent irregularities of the revolving bodies,
which would not be easily explicable on any other hypothesis;”

Michell was able to predict these objects almost 150 years before Einstein presented

his gravitational equations. The idea was apparently so abstract that it made almost

no impact with the surrounding scientific community.

Black holes are a physical consequence of Einstein’s General Relativity, formulated

in 1915, which relates the geometry of spacetime to the matter, or stress-energy,

contained within it. This can be seen in Einstein’s equation

Rab −
1

2
Rgab = Tab (1.1)

1Or maybe not, depending on what Quantum Mechanics has to say.

2Pierre Laplace came to a similar conclusion independently in 1796 [2].

3This is an amazingly accurate predicition considering that, currently, there are between one and
two dozen stellar black hole candidates in the Milky Way galaxy, and all of them are in X-ray binary
systems.
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where the left-hand side is understood to contain the geometric information, e.g.

the curvature of the spacetime, and the right-hand side is the Stress-Energy tensor

containing the matter content of the spacetime. Einstein first demonstrated [2] the

power of the new theory using the precession of the perihelion of Mercury. While the

precession of orbits was known at the time, Newtonian theory was able to correctly

account for this behavior in all of the planets, except Mercury. The disagreement

between the astronomical observation of the precession, and what Newtonian theory

predicted, was approximately 45 arcseconds per century. At one of four lectures to the

Prussian Academy of Sciences in 1915, Einstein, using an approximate solution, was

able to demonstrate4 that general relativity indeed accounted for the descrepancy.

Within a month of the introduction of general relativity the first non-trivial (i.e.

non-flat) exact solution, one describing a four dimensional static and spherically sym-

metric “black hole5” in a vacuum spacetime, was found by Karl Schwarzschild [3]. At

the time, he was serving on the front lines for the German military to help with bal-

listic trajectories [2] during World War I. He sent his calculations directly to Einstein,

who was impressed, remarking;

“I had not expected that one could formulate the exact solution of the prob-
lem in such a simple way. I liked very much your mathematical treatment
of the subject.”

Einstein would go on to present6 the findings to the Prussian Academy of Sciences

on behalf of Schwarzschild.

4Einstein also showed that General Relativity would give twice the value of the Newtonian theory
for the deflection of light around the sun. However, it would take three years before this prediction
was confirmed using the 1919 eclipse by Sir Arthur Eddington and his team on the island of Principe,
situated one degree North of the equator off the Eastern coast of Africa [2].

5The term “black hole” was first seen in print in a 1964 article by Ann Ewing for Science News
Letter and later popularised by Wheeler during a talk at the Goddard Institute in 1967.

6A few weeks later, Einstein would present another paper by Schwarzschild [4], however it would
be one of his last - within six months Schwarzschild would pass away after contracting an auto-
immune disease on the front line.
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A short time later, another exact solution was found independently by Hans Reiss-

ner in 1916 [5], Hermann Weyl in 1917 [6], and Gunnar Nordström in 1918 [7]. Reiss-

ner and Weyl solved Einstein’s equation for the gravitational field surrounding a

charged point source, whereas Nordström would expand the solution to a charged fi-

nite matter distribution. This result, which essentially added electric charge to the al-

ready known four dimensional static, spherically symmetric solution of Schwarzschild,

would become known as the Reissner-Nordström black hole7.

While it was well known at the time that stars could have angular momentum,

there was no accompanying metric for one, i.e. a spherically symmetric rotating

solution to Einstein’s equations. Due to the highly non-linear nature of the Einstein

field equations8, the world would have to wait almost half a century to obtain such

a solution for a rotating black hole. In 1963 a four-dimensional rotating solution

was discovered by Roy Kerr [9]. This solution, now referred to as a Kerr black hole,

was not obtained through a brute-force analysis but one of subtlety and nuance: the

aforementioned spherical symmetry condition was relaxed to that of axial symmetry,

and the key assumption that the metric was algebraically special9 was added. The

technique that was used would come to be known as the Kerr-Schild ansatz [12].

Besides being instrumental in the discovery of the Kerr solution, it would become

extremely useful in the search for other exact black hole solutions. That it took so

long to find a rotating exact solution to Einstein’s equations is a testament not only

to their complexity, but also to the ingenuity necessary in order to make progress in

the field.

7According to Thorne [2], the result was not fully understood as a charged black hole until the
work of Brill and Graves [8] in 1960.

8Even when only considering solutions in a four dimensional vacuum, there are initially 16 cou-
pled, second-order, non-linear, partial differential equations to solve. In practice, when taking certain
spacetime symmetries into consideration (i.e. the spacetime is torsion-free) these 16 equations im-
mediately reduce to, the much more manageable, 10 linearly-independent equations.

9This concept is discussed in detail in Section 1.4
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1.2 Motivation

Black hole solutions to Einstein’s equations were initially formulated in four di-

mensions along with uniqueness theorems, that in a sense, showed four dimensions

to be quite special. The search has since been to try and formulate similar relation-

ships for black holes existing in higher dimensions. Certain topologies or questions of

stability that, in some cases, are unique to four dimensions become relaxed when con-

sidering their higher dimensional analogues; consequently, the spacetime can enjoy a

much richer structure10. This essentially becomes a task of classification. How many

parameters are necessary to categorize a black hole? How does this scheme change

when extending into higher dimensions? In four dimensions, only three parameters

are needed to classify a black hole - mass, charge, and rotation. In other words, in

four dimensions we have a three parameter family of stationary black hole solutions

leading to four different types of black holes depending on the values of these param-

eters. We could consider it as one black hole, the Kerr-Newman black hole11 having

non-zero values for all three parameters. The other three types of black holes would

then be special cases of the Kerr-Newman black hole with some of those parameters

set to zero: Schwarzschild would result from setting the charge and rotation parame-

ters to zero, Reissner-Nordström would result from setting rotation equal to zero, and

the aforementioned Kerr black hole would result from setting charge equal to zero.

The future of black holes is in extra dimensions. Given the high degree of non-

linearity in solving Einstein’s equations in four dimensions, the task in extra dimen-

sions can quickly turn from monumental to impossible. This is where the Kerr-Schild

formalism enters in such a powerful way. By using a special geometric property of

the spacetime, the ansatz is able to drastically reduce the complexity of the equa-

10The topology of the event horizon in four dimensions is restricted to be spherical, however in
five dimensions, e.g. a toroidal topology for the event horizon is allowed [28].

11Discovered in 1965, shortly after the Kerr solution
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tions of motion, making the problems much more tractable. This feature cannot

be overstated. After discovering the static Schwarzschild solution, physicists would

spend almost half a century searching in vain for the rotating solution to Einstein’s

equations. The rotating solution, i.e. the Kerr black hole, would come with the ini-

tial construction of the Kerr-Schild ansatz [10][11] in 1963 in which Kerr and Schild

[12] were investigating the properties of algebraically special spacetimes, or those

spacetimes that enjoy special symmetries allowing them to be classified into specific

families. These families in turn lead to uniqueness theorems for black holes and the

larger goal of complete classification of black hole types. This scheme is well un-

derstood for four dimensions, but the situation becomes much different as soon as

we generalize the number of dimensions. As previously stated, this can be difficult

as exact solutions are hard to come by. The higher dimensional analogues to the

Schwarzschild and Reissner-Nordström solutions were found by Tangherlini [13] in

1963. It would take an additional 23 years to find the higher dimensional general-

ization of the rotating Kerr solution, known as Myers-Perry black holes [17], where

the Kerr-Schild ansatz would again play an integral role. To this point the ansatz

has proved an invaluable tool for finding new black hole solutions in a multitude of

settings. It is therefore natural to investigate its extension under different circum-

stances, e.g. in higher curvature theories of gravity as well as modifications to the

ansatz itself.

1.3 The role of the Kerr-Schild ansatz

Following the prescription outlined by Xanthopolous [14], the spacetime metric is

taken to have the following form

gab = ḡab + λhab, hab = kakb (1.2)
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where ḡab is the metric of a background spacetime which is not necessarily taken as

flat12, ka is a null vector with respect to the background metric (ḡabk
akb = 0), and

λ is a constant that will be used as an ordering parameter to aid in calculation. Ini-

tially this can be viewed as a small perturbation around the background spacetime.

When calculating the inverse metric, which appears in the Christoffel symbols and by

extension the Riemann curvature tensor and the Einstein equations, the perturbative

expansion would generally include terms at all orders of λ. However due to the prop-

erties of the null vector ka, we encounter a wonderful simplification when calculating

the inverse metric such that it has the simple form

gab = ḡab − λhab (1.3)

While seemingly innocuous, the fact that the inverse metric truncates after first or-

der in λ is one of the most important facets of the Kerr-Schild ansatz - it will lead

to considerable simplifications and cancellations when calculating other quantities

that would otherwise be deemed intractable. What was initially viewed as a linear

perturbation to the background spacetime, is actually the exact metric. These two

properties of the Kerr-Schid ansatz, the simple form of the inverse metric and the

“perturbation” being described in terms of a null-vector, are what allow us to inves-

tigate these spacetimes in a more nuanced way than would otherwise be possible if

using a brute-force method. Further computation shows that, if the null vector is

tangent to a geodesic congruence of the background metric, i.e. the null-vector is

parallel propagated along itself with respect to the background spacetime, then the

Ricci tensor Ra
b of the KS metric also truncates beyond linear order in λ [15]. These

results can also be generalized to non-vacuum cases [16].

12The background was taken as flat in the initial formulation by Kerr and Schild, however it was
showed by Xanthopolous that this condition could be relaxed to any vacuum solution which would
include curved backgrounds.
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There are many known exact solutions that can be put into Kerr-Schild form.

A few of the notable ones mentioned previously are the static spherically-symmetric

neutral Schwarzschild black hole and the Kerr exact solution for stationary axially-

symmetric neutral black holes (as well as the Kerr solution’s higher-dimensional gen-

eralization known as Myers-Perry black holes). The background metric in (1.2) is not

restricted to be Minkowski as Kerr-(A)dS black holes are also known to be expressible

in Kerr-Schild form and the general higher dimensional (A)dS neutral rotating black

holes were similarly found by Gibbons et. al. [20] starting from (A)dS background

metrics. For charged black holes, the D = 4 Kerr-Newman solution for charged ro-

tating black holes can be put in Kerr-Schild form. One can also naturally extend

the ansatz to non-vacuum spacetimes such as Einstein-Maxwell theory by taking the

vector potential Aa to be proportional to ka.

On the other hand, there are known exact solutions that cannot be put in to Kerr-

Schild form such as the the five dimensional black ring [28]. In addition, Myers-Perry

black holes were the higher-dimensional generalization of Kerr black holes and both

were expressable in Kerr-Schild form. However, an analogous result for the higher-

dimensional generalization of the charged, rotating black holes in Einstein-Maxwell

theory, i.e. Kerr-Newman black holes, was not as forthcoming. It was shown by Aliev

[22] [23] that these solutions were only found in the limit of slow rotation. This meant

that although the Kerr-Schild formalism for describing Kerr-Newman black holes was

successful in four dimensions, it is restricted in its use for the higher-dimensional

analogues. More broadly these counter-examples show that although the Kerr-Schild

ansatz has been instrumental in finding exact solutions, its use is constrained in

higher dimensional spacetimes, and an analysis of where it is applicable starts with

understanding how special a spacetime can be.
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1.4 Algebraically special spacetimes and Petrov classification

In d = 4 dimensions there are four null vectors, known as “principal null vectors

(PNV)” that are associated with the Weyl13 tensor. They are usually distinct but

if two or more happen to coincide, we say the spacetime is algebraically special -

essentially, these repeated principal null vectors are eigenvectors of the Weyl tensor.

Since spacetimes can be classified by the algebraic type of the Weyl tensor, and since

the Kerr-Schild ansatz describes algebraically special spacetimes, this puts restrictions

on the form and transformation properties of the null-vector ka. One can use the

Newman-Penrose formalism14 to express the metric in a null-tetrad basis15 of the

PNV’s, and the null-vector ka which itself is one of the principal null-vectors, will

have its direction uniquely defined. Precisely how the null-vector ka contracts with

the Weyl tensor determines how special the particular space is. There are six different

possibilities, each one known as a Petrov type. They are I, II, D, N, III, and O. For

example, the null-vector for a Type II, Type III, and Type N spacetime would satisfy

the following equations, respectively

(II)Cabcdk
bkd = αkakc (III)Cabcdk

bkd = 0 (N)Cabcdk
d = 0. (1.4)

Type I is known as algebraically general and Type O describes the situation when the

Weyl tensor vanishes and the metric is conformally flat. Each type of algebraically

special spacetime represents different physical situations. In four dimensions, with a

flat background metric, the null vector ka in a vacuum KS spacetime is necessarily a

repeated principal null vector of the Weyl tensor [15]. In higher dimensions, it was

13The Weyl tensor is the trace-free component of the Riemann curvature tensor which is confor-
mally invariant and vanishes under contraction of any two indices.

14The Newman-Penrose formalism is a special type of tetrad formulation of general relativity in
four dimensions, specifically with the use of spinors.

15In four dimensions, four null-vectors are needed - two being real and two being complex. The
complex null-vectors are constructed from two real, orthonormal space-like vectors.
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shown in reference [29] that the Weyl tensor of vacuum KS spacetimes is always of

Type II, or more, algebraically special, within the classification scheme of reference

[30]. The metrics that can be expressed in Kerr-Schild form fall under the category

of Type II or more special, whereas the black ring was shown to be of Type I [31] and

therefore not expressible in Kerr-Schild form.

Nevertheless, one could make a long list of potentially interesting black hole so-

lutions that have not so far been found via the KS ansatz (or by any other method).

Candidates for this list would include the rotating, charged black holes of Einstein-

Maxwell theory for D > 4, vacuum black holes with non-spherical event horizon

topology beyond D = 5 (e.g. such as those discussed in [21]), as well as black branes

and rotating black holes in Lovelock gravity theories (beyond the special cases found

in [24, 25] and [26] respectively).

1.5 Initial formalism and the vacuum Einstein equations for

Kerr-Schild spacetimes

As stated previously, the null vector ka leads to simplifications when calculating

the Christoffel symbols as well as the Riemann and Ricci tensors. In this section

we present the basic formalism that goes into these calculations (see e.g. [18, 19]

for an extended treatment), assuming the special form of hab = kakb. Letting ∇a

denote the covariant derivative operator compatible with the full Kerr-Schild metric

and ∇̄a denote the covariant derivative compatible with the background metric ḡab,

we see that the two are related when acting upon an arbitrary vector vb such that

∇av
b = ∇̄av

b + Cb
acv

c with the tensor Cc
ab given by

Cc
ab =

λ

2
gcd
(
∇̄ahbd + ∇̄bhad − ∇̄dhab

)
(1.5)

=
λ

2

(
∇̄ahb

c + ∇̄bha
c − ∇̄chab

)
+
λ2

2
hcd∇̄dhab

= λC
(1)c
ab + λ2C

(2)c
ab

10



Note that this truncation only happens for the specific form of hab = kakb, whereas

in general there are an infinite number of terms. It is possible to show that the

determinant of the full metric reduces to that of the background. Going forward,

this will allow us to calculate quantities using solely the background metric and its

associated covariant derivative. When hab is of the form kakb, we are able to show

that

habCc
ab = hc

bCc
ab = Cb

ab = 0. (1.6)

This last property will reduce the number of terms in the Ricci tensor, now given to

be

Rab = R̄ab + ∇̄cC
c
ab − Cd

acC
c
bd (1.7)

where R̄ab is the curvature of the background spacetime. Taking the background to

be flat (i.e. R̄ab = 0) for the time being, we notice that the Ricci tensor contains

terms quadratic in the connection coefficients meaning that it is theoretically fourth

order in λ with the expansion

Rab =
4∑
l=1

λlR
(l)
ab . (1.8)

We initially consider the expansion of the Ricci tensor Rab with both of its indices

down which goes out to order λ4. Computation shows that the fourth order con-

tribution R
(4)
ab vanishes identically. Further progress is facilitated by considering the

contracted equation Rabk
akb = 0. One finds that R

(3)
ab k

akb and R
(2)
ab k

akb vanish iden-

tically, while

R
(1)
ab k

akb = −(D̄ka)D̄k
a (1.9)

where D̄ = kc∇̄c is the background covariant derivative taken along the null vector

kc. Hence, the vacuum Einstein equation then implies that D̄ka is a null vector.

Since it is also orthogonal to ka, it follows that the vector D̄ka must be parallel to

the null vector ka, i.e. that D̄ka = φka for some function φ. This is equivalent to

11



the statement that ka is tangent to a null geodesic congruence of the background

metric. Assuming this to be the case, it then follows that the contribution to the

Ricci tensor at order λ3, which is given by R
(3)
ab = −1

2
kakb(D̄kd)D̄k

d, vanishes as well.

The contribution at order λ2 does not vanish automatically for ka geodesic. However,

one can show the for geodesic ka, it is related to the order λ1 according to

R
(2)
ab = kak

cR
(1)
cb . (1.10)

Therefore the vacuum field equations will be satisfied if R
(1)
ab = 0. This establishes

that for Kerr-Schild metrics with a geodesic null vector ka, solving the vacuum field

equations reduces to solving the linearized equations in hab around the background

metric, namely

R
(1)
ab = ∇̄e[∇̄(a(kb)k

e)− 1

2
∇̄e(kakb)] = 0. (1.11)

Taking the trace of this equation and defining ∇̄ak
a = θ leaves one with the identity

θ̇ + φ̇+ θ(θ + φ) = 0 (1.12)

where the ’dot’ denotes differentiation with respect to the null vector. It is understood

that θ represents the expansion of the null-vector congruence, which is the same

with respect to both the metric and its background. Kerr-Schild spacetimes are

naturally split into two families; Expanding (θ 6= 0) and Non-expanding (θ = 0).

An example of expanding solutions are the familiar Myers-Perry black holes whereas

an example of non-expanding solutions are pp-waves belonging to the Kundt class

of spacetimes. As usual, the situation is more subtle in D > 4 dimensions as all

pp-wave spacetimes cannot be put into Kerr-Schild form. This shows once again

the difference between four-dimensional spacetimes and those of higher dimensions.

PP-waves have many applications and are exact solutions in Brans Dicke theory,

12



some higher curvature theories, and also have appliations in Kaluza-Klein theory as

well as modeling gravitational radiation. The fact that they are expressible in Kerr-

Schild form in four-dimensions, but not necessarily so in higher dimensions shows

that although the Kerr-Schild ansatz has proved invaluable in the search for black

hole solutions, its role in higher dimensions is limited, and therefore it makes sense

to investigate its possible extensions either through modifications of the ansatz itself,

or how it applies in higher derivative theories of gravity.
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CHAPTER 2

THE EXTENDED KERR-SCHILD (XKS) ANSATZ

Given1 how well the Kerr-Schild ansatz has been employed to find exact solutions,

it seems reasonable to ask whether it might be possible to extend the ansatz in a way

that might allow one to find new black hole solutions not expressable within the

Kerr-Schild formalism, e.g. the D = 5 black ring. One possible extension2 was

suggested recently in reference [32]. The authors showed that the charged, rotating

black holes of minimal, gauged D = 5 supergravity, originally found in reference [33]

and known as the CCLP spacetimes, may be rewritten in a form similar to (1.2), with

gab = ḡab + λhab and ḡab a flat background metric, but now with

hab = Hkakb +K(kalb + lakb). (2.1)

Here ka is again a null vector with respect to the background metric ḡab as well as the

full metric gab. Similar to the Kerr-Schild case, there are now two scalar functions,

H and K. The vector la is spacelike and orthogonal to ka with respect to ḡab, such

that ḡabk
alb = 0, and we are defining ka ≡ ḡabk

b and la ≡ ḡabl
b. We will call metrics

of this general form extended Kerr-Schild or xKS metrics.

Another indication of the usefulness of the xKS ansatz comes from considering

higher dimensional pp-waves, which are defined by having a covariantly constant null

1Much of this chapter follows along our previous publication [34]. It has been condensed and
streamlined to better fit the thesis format. Some references and discussion have also been added.

2see [38] for a closely related extension of the Kerr-Schild ansatz complementary to the work
presented here.
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vector (and hence a null Killing field). These spacetimes have long been of interest as

exact string backgrounds [37]. It is known that in D = 4, all pp-wave spacetimes can

be cast into Kerr-Schild form (see [19]). However, as discussed in [29], examples of

pp-wave spacetimes are known in higher dimensions that have Weyl types [30] that

are not compatible with those of Kerr-Schild spacetimes. Therefore, not all higher

dimensional pp-waves can be cast in Kerr-Schild form.

On the other hand, the particular example of a non-Kerr-Schild pp-wave given

in [29] is of xKS form, and one may speculate that perhaps all higher dimensional

pp-waves can be cast in xKS form. Their general properties and classification have

since been studied in greater detail by Málek in [35, 36]. Using the Newman-Penrose

tetrad formalism to determine the Weyl type, he was able to show that extended

Kerr-Schild spacetimes with a geodesic null vector are of Weyl Type I or more special.

Depending on the expansion θ of the null vector, the extended Kerr-Schild ansatz can

be used to describe Kundt spacetimes in the non-expanding (θ = 0) case3, as well as

the previously discussed CCLP spacetimes in the case of an expanding (θ 6= 0) null

congruence. This is similar to the situation in 4 dimensions with some important

exceptions. In the non-expanding case in 4D, the geodesic null-vector is a priori also

non-twisting and non-shearing, belonging to the Kundt class of spacetimes described

by the original Kerr-Schild ansatz. This class also exists in higher dimensions, however

there is now a second class, one in which the geodesic null-vector may also have

shear and twist, and is now described by the extended Kerr-Schild ansatz. For the

expanding case in 4D, these spactimes are algebraically special of Type II or D and

represent black hole solutions described by the Kerr-Schild ansatz. In 5D this is no

longer the case, as we have seen that the CCLP spacetime is of Type I and can be

represented by the extended Kerr-Schild ansatz.

3With certain assumptions, such as a Ricci-flat condition, higher dimensional pp-waves of Types
II, III, and N are described by the xKS. See [35] for further analysis.
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The main focus of this section will be an analysis of the vacuum Einstein equations

for xKS metrics. As an indication of the simplifications we will find, we first consider

the inverse of an xKS metric. Using a similar perturbative expansion as in the Kerr-

Schild case, the calculation shows that the inverse metric now truncates beyond second

order in λ, being given exactly by

gab = ḡab − λhab + λ2hachc
b. (2.2)

Recall that the truncation of the inverse metric beyond linear order in the Kerr-Schild

case led to a similar truncation of the Ricci tensor Ra
b beyond linear order. Our main

task below is to discover the degree of simplification of the Ricci tensor that occurs in

the xKS case. We will see that for ka geodesic and la also satisfying a certain condition

with respect to the background metric, that the Ricci tensor Ra
b will truncate beyond

second order in λ. The vacuum Einstein equations then reduce to a set of differential

equations that are quadratic in hab.

2.1 The extended Kerr-Schild form of CCLP spacetimes

Aliev and Çiftçi observed [32] that the charged rotating black holes of min-

imal D = 5 supergravity [33], known as the CCLP solutions4, may be written

in the extended Kerr-Schild form (2.1). Their metrics are presented in a type of

spheroidal coordinates and following a sequence of steps given in the Appendix, we

have transformed them into Cartesian coordinates. This was done in order to find

a higher-dimensional generalization and with the hope of comparing them to the

odd-dimensional form of the well known Myers-Perry uncharged rotating black holes

[17]. After the transformation, the background is then the familiar 5-dimensional

4Interestingly, the authors of the paper stated that the CCLP solutions were found using a
brute-force method.
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Minkowski spacetime ds̄2 = −dτ 2 + dx2 + dy2 + dw2 + dz2, while the vector fields ka

and la are then given by

kadx
a = dτ − r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
− r(wdw + zdz) + b(wdz − zdw)

r2 + b2

(2.3)

ladx
a =

b (a(xdx+ ydy)− r(xdy − ydx))

r(r2 + a2)
+
a (b(wdw + zdz)− r(wdz − zdw))

r(r2 + b2)

(2.4)

where a and b are defined as the rotation parameters in the x− y and w − z planes,

respectively. The scalar functions H and K in (2.1) are given by

H =
2m

Σ
− Q2

Σ2
, K =

Q

Σ
. (2.5)

Here we take Σ = r2 + a2 cos2 θ + b2 sin2 θ, and r is the spheroidal radial coordinate

satisfying

x2 + y2

r2 + a2
+
w2 + z2

r2 + b2
= 1 (2.6)

and the angle θ is defined in equation (A.4) in the Appendix. The 1-form gauge

potential is proportional to the null vector, and given by A = (
√

3Q/2Σ)k.

Indeed we see that the vector ka is identical to that which appears in the D = 5

Myers-Perry uncharged rotating black holes [17]. We also see that similar to the null

vector ka, the spacelike vector la is independent of the mass m and charge Q of the

spacetime. It can also be easily shown that the vector la is orthogonal to ka in both

the x − y and w − z rotation planes. We also note that the null vector ka satisfies

ka∇̄ak
b = 0 for CCLP spacetimes, where ∇̄a is the covariant derivative operator for

the background metric. This indicates that the vector ka is tangent to a congruence

of affinely parameterized null geodesics. This property is central to the Kerr-Schild
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construction of the Myers-Perry spacetimes [17] and we see that it holds in xKS case

as well. In combination, the vectors ka and la can also be shown to satisfy

kb(∇̄bla − ∇̄alb) = 0, lb(∇̄bka − ∇̄akb) = 0 (2.7)

which implies the relation

ka∇̄al
b = −la∇̄ak

b (2.8)

between the covariant derivative of each vector field along the other.

2.2 Curvature calculations and the vacuum Einstein equa-

tions for the extended Kerr-Schild ansatz

We will find it useful to consider the expansion for the Ricci tensor with indices in

mixed position, such that Ra
b = gacRcb, as it organizes the expansion in a convenient

way which will simplify the proceeding calculations. However, due to the extra factor

of λ in the inverse metric for the xKS case, the Ricci tensor now has an expansion in

powers λn that goes out to order nmax = 8. The coefficients R(n)a
b in the expansion

of Ra
b are simply related to the coefficients in the expansion of Rab, with for example

R(2)a
b = ḡacR

(2)
cb − h

acR
(1)
cb + hadhd

cR̄cb. (2.9)

It is well known that for KS metrics, many properties that hold for the background

metric also remain when calculated using the full metric. Moreover one can show

that the expansion, shear and twist of ka are the same in the KS metric as in the

background. This turns out to be true in the xKS case as well. One of the main results

in the KS case is that if the vector ka is geodesic with respect to the full metric it

is also geodesic with respect to the background metric. This also holds true in xKS

case and can be seen explicitly in the expression ka∇ak
b = ka∇̄ak

b + Cb
ack

akc where

one can check that the quantity Cb
ack

akc vanishes, thus showing the relationship.
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We are now able to present an analysis of the vacuum Einstein equations for

extended Kerr-Schild metrics. We are interested in seeing what simplifications will

occur and, in particular, whether the expansion of the Ricci tensor will truncate

beyond some relatively low order in λ in a similar way to the KS case. We also hope

to find a general condition for the vector la analogous to the geodesic condition for

ka, which we saw in the previous section was the case for CCLP spacetimes.

We begin by rescaling the vectors ka and la in the xKS ansatz to absorb the

functions H and K which will simplify the calculations. Using the same symbols for

the rescaled vectors, the xKS ansatz then takes the form

gab = ḡab + λhab, hab = kakb + kalb + lakb (2.10)

with the vectors still assumed to satisfy the null (kak
a = 0) and orthogonality (kal

a =

0) conditions. In our computations it will be helpful to use the relations between

terms of successive order in the expansion for the connection coefficients

C
(2)c
ab = −hcdC(1)d

ab , C
(3)c
ab = hcdh

d
eC

(1)e
ab , (2.11)

where the first order term is simply C
(1)c
ab = 1

2

(
∇̄ahb

c + ∇̄bha
c − ∇̄chab

)
.

Proceeding initially with the expansion for the Ricci tensor with both indices

down, it follows that R
(6)
ab vanishes identically. Unfortunately R

(5)
ab does not vanish

identically and recalling the procedure for the Kerr-Schild case, we consider the con-

tracted equation Rabk
akb = 0. This should equal zero once again because we are in

vacuum gravity - our intuition is that solving the contracted equation should lead to

a condition that will help us with the uncontracted equation, similar to the situation

found in the KS case. We find that R
(n)
ab k

akb with n = 5, 4, 3 vanish identically, while

at order λ2 we have
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R
(2)
ab k

akb =
1

2
ψ2(D̄ka)D̄k

a − 1

2
(laD̄k

a)(lbD̄k
b) (2.12)

= −1

4
αabα

ab (2.13)

where αab = laD̄kb − lbD̄ka and ψ2 is defined to be the norm of the spacelike vector

la. The vacuum equation implies that the anti-symmetric tensor αab must be null.

Together with the identity kaD̄ka = 0, this implies that D̄ka must have the form

D̄ka = φka + ηla (2.14)

for some functions φ and η. At order λ1 one finds

R
(1)
ab k

akb = −D̄(laD̄k
a)− θlaD̄ka − (D̄ka)(D̄k

a + D̄la + lb∇̄bk
a). (2.15)

Substituting the form (2.14) into this result gives

R
(1)
ab k

akb = −∇̄c(ηk
clbl

b)− η2lblb − ηlblc∇̄bkc. (2.16)

It is clear that taking ka to be tangent to a geodesic congruence of the background

metric (i.e. taking η = 0) solves R
(1)
ab k

akb = 0. This is analogous to the condition

found in the KS case, however, it is unclear whether null vectors ka satisfying (2.14)

with η 6= 0 are possible. We will proceed by assuming that ka is geodesic. As noted

in section (2.1) the null vector field in the CCLP spacetimes satisfies D̄ka = 0.

Given the geodesic condition, we return to the uncontracted equation and find

that R
(5)
ab = 0. Due to the complicated nature of calculating R

(4)
ab , we will alter

our approach in two ways. Firstly, we choose to work with the Ricci tensor with

mixed indices, R(n)a
b, in which the expansion now goes out to order λ8. We then

find R(n)a
b = 0 for n = 5, . . . , 8. The second alteration is to adopt a simpler, but
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still equivalent, form for hab. Given that the null vector ka is assumed to satisfy the

geodesic condition we can rescale it by a scalar function such that the rescaled vector

satisfies D̄ka = 0 (i.e. so that the geodesic congruence, to which the rescaled vector

is tangent to, is now affinely parameterized). Similarly we can rescale the spacelike

vector la by a scalar function such that the rescaled vector has unit norm with respect

to the background metric. The quantity hab will now have the form given in (2.1) for

CCLP spacetimes for some functions H and K, where ka and la now represent the

rescaled vectors. Finally, we can define a new vector ma such that

ma = la + (H/2K)ka. (2.17)

Because the vectors ka and la are orthogonal, the vector ma will also have unit norm.

In terms of ma, the tensor hab then reads

hab = K(kamb +makb), (2.18)

where now kak
a = 0, mam

a = 1, kam
a = 0 and D̄ka = 0. This new form for hab

simplifies the calculations considerably5 and we find that R(4)a
b vanishes. Moving on

to R(3)a
b we obtain the following expression

R(3)a
b =

1

2
∇̄d

(
K3kb[k

avd − vakd]
)
− 1

2
K3kavd∇̄bkd (2.19)

where6

va = kb
{

(∇̄bla − ∇̄alb)− lc(∇̄blc − ∇̄clb)la
}
. (2.20)

5However, note that it is now harder to take a Kerr-Schild limit of the extended Kerr-Schild
calculations.

6In the expression for va, the vector la may be replaced by the vector ma without changing the
result for R(3)a

b.
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A sufficient condition for the vanishing of R(3)a
b is that the vector va be proportional

to the null vector,

va = αka (2.21)

for some scalar function α. This condition on la may be viewed as a counterpart to

the geodesic condition for ka. It is independent of the metric functions H and K,

depending only on properties of the vectors la and ka with respect to the background

metric. It can be shown that the CCLP spacetimes of section (2.1) satisfy (2.21) with

α = 0. It remains an open question as to whether the condition on la is also necessary.

Recently, it was shown in [35] that the vectors ka and la are surface forming.

We have now established a set of sufficient conditions, the geodesic condition on

ka and the condition (2.21) relating ka and la, such that the Ricci tensor with indices

in mixed position vanishes beyond quadratic order in λ for xKS spacetimes. One is

now left to consider only the quantities R(2)a
b and R(1)a

b with

R(2)a
b = −1

2
∇̄d

{
∇̄b(h

achc
d) + hde(∇̄ahb

e − ∇̄ehab) + hac(∇̄chb
d − ∇̄dhb

c)
}

(2.22)

−1
4
(∇̄ehac + ∇̄chae − ∇̄ahce)(∇̄ehbc − ∇̄bhce − ∇̄chbe)

R(1)a
b =

1

2
∇̄c

(
∇̄ahb

c + ∇̄bh
ac − ∇̄chab

)
. (2.23)

Although we have not shown it definitively, we believe that no manipulations of

the expression for R(2)a
b in the xKS case, using the geodesic condition for ka in

combination with (2.21), will make R(2)a
b vanish. It is interesting to note that in

the KS case, the inverse metric is first order in λ and the vacuum Einstein equations

reduce to the equation R(1)a
b = 0, which is linear in hab. While in the xKS case,

the inverse metric is second order in λ and the vacuum Einstein equations reduce to

R(1)a
b = 0 and R(2)a

b = 0, which is quadratic in hab.
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2.3 Adding stress-energy

The CCLP spacetimes [33] shown to be of xKS form in [32] and presented above in

section (2.1) are non-vacuum spacetimes in Einstein-Maxwell-Chern-Simons theories

of gravity. The equations of motion are given by

Ra
b − 2

(
F acFbc −

1

6
gabF

2

)
= 0 (2.24)

∇aF
ab − 1

2
√

3
√
−g

εbcedfFcdFef = 0 (2.25)

where the second equation is the gauge field equation of motion - the first term is

from the standard Maxwell Lagrangian7, and the second term is the Chern-Simons

contribution. To see how the xKS ansatz works in the presence of matter fields, we

recall that a key step in our analysis of the KS case was considering the equation

Rabk
akb = 0 which led to the geodesic condition on the null vector ka. This equa-

tion is identically true for vacuum spacetimes and it can easily be shown to hold

for Einstiein spacetimes possessing a cosmological constant as well. Although it is

possible to consider more general cases for the null vector, we focusing our attention

on the geodesic case which in turn implies that the stress-energy tensor should satisfy

Tabk
akb = 0. We will further restrict our attention to the electromagnetic case, with

the stress-energy tensor given by

Ta
b = FacF

bc − 1

4
ga
bF 2 (2.26)

and assume that the gauge potential is related to the xKS null vector ka according to

Aa =
√
λβka (2.27)

7The gauge field equation of motion for Einstein-Maxwell theory is ∇aF
ab = 0
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where β is a scalar function. This form of the gauge field holds in D = 4 Kerr-Newman

spacetimes, in the KS form of the Reissner-Nordstrom spacetime in any dimension,

and also in the CCLP spacetimes [33] in xKS form [32]. It is easily checked that the

condition Tabk
akb = 0 is satisfied by this ansatz for the gauge potential.

Let us consider the Kerr-Schild case first. Given that it is necessary to raise

two indices on the field strength tensor using the KS inverse metric (1.3) in order to

compute the components of Ta
b, there could in principle be contributions out to order

λ3. However, calculation shows that this is not the case. With the ansatz (2.27) for

the gauge potential, the only non-vanishing contributions to T ab are linear in λ. This

is consistent with the reduction in order of the Ricci tensor in mixed form Ra
b. Had

there been a contribution to T ab at e.g. order λ2, this would have been inconsistent

with the vanishing of R(2)a
b.

Now consider the xKS case. Given the form of the xKS inverse metric (2.2), there

could in principle be contributions to Ta
b out to order λ5. Computation shows that

while the order λn terms in Ta
b vanish for n = 3, 4, 5, they will generally be non-zero

for both n = 1 and n = 2. This is consistent with our findings above in section (2.2),

where we found that, in contrast to the KS case, the term R(2)a
b does not generally

vanish for xKS spacetimes8.

For the standard Maxwell Lagrangian, the equations of motion are given by

∇aF
ab = 0 and it is straightforward to substitute in the xKS ansatz. One finds

that F ab = λ1/2F (1/2)ab+λ3/2F (3/2)ab with higher order terms vanishing. It is natural,

however, to also include the contribution to the equations of motion coming from the

Chern-Simons term in the action of minimal D = 5 supergravity that is relevant for

the CCLP spacetimes9. The gauge field equation of motion is then given by

8It is potentially interesting to note that this same truncation of the stress energy tensor holds
if a term

√
λγ la is added to the gauge potential (2.27) for γ an arbitrary function, if la is assumed

to satisfy condition (2.21) that implies the vanishing of R(3)a
b.

9Note that the Chern-Simons term does not contribute to the stress energy tensor.

24



∇aF
ab − 1

2
√

3
εbcedfFcdFef = 0. (2.28)

At this point, however, a conflict arises in the order by order expansion in powers of

λ. Because
√
−g =

√
−ḡ for xKS spacetimes, one can replace the derivative operator

in (2.28) with the background derivative operator. The first term in (2.28) thus has

contributions at orders λ1/2 and λ3/2, while the second term is manifestly of order λ1.

We expect that a more subtle analysis would be required in order to properly

incorporate the gauge field of minimal D = 5 supergravity into our analysis. In

hindsight, this is evident from the form of the CCLP spacetimes given in section

(2.1). The gauge field is proportional to the charge, and we may therefore think of

λ1/2 as being proportional to the charge Q. In Reissner-Nordstrom spacetimes or

in the four dimensional Kerr-Newman spacetimes, the metric depends only on the

square of the charge. However, the metric function K in (2.5) is linear in Q. The

CCLP metric then appears to include terms proportional to λ1/2 as well as λ1. The

first term in (2.28) is linear in Q, while the second term is quadratic. It can only be

solved by virtue of terms in the metric that are linear in Q.

We will not attempt to carry out such a more subtle analysis here. We note that

this issue does not affect our main result in section (2.2), the truncation of the Ricci

tensor Ra
b beyond quadratic order in λ for xKS metrics with ka geodesic and ka and

la jointly satisfying the condition (2.21).

2.4 Conclusions

In summary, we have shown that for a null vector ka satisfying the geodesic

condition D̄ka = 0, and a spacelike vector la satisfying equation (2.21), that the

terms R(n)a
b in the expansion of the Ricci tensor vanish for n = 3, . . . , 8. The vacuum

Einstein equations are quadratic in hab and reduce to the two equations in (2.22).

Condition (2.21) depends only on properties of the vectors ka and la with respect to
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the background metric and can be regarded as a counterpart to the geodesic condition

on ka. When stress-energy was added in the form of an EM field with the gauge

potential being chosen proportional to the null vector, the stress-energy tensor was

also seen to truncate beyond second order. This was the case when either choosing

an aligned Maxwell field (such that Fabk
b ∝ ka) or aligned pure radiation (where

Tab ∝ kakb). However, when considering the full field equations an ambiguity arose

- the Chern-Simons term was shown to throw off the balance of the perturbative

expansion around λ. This is a subtle point to be explored (hopefully) at a later date.

The Kerr-Schild ansatz has shown its applicability in many instances, but its

limitations have been known for some time. Recently there have been searches into

extensions of this ansatz in order describe the spacetimes that remain out of reach.

One such extension is the extended Kerr-Schild ansatz and as we have seen, the vac-

uum Einstein equations continue to simplify considerably in the xKS case, although

not to the full extent that they do in the original KS case. That being said, the ex-

tended Kerr-Schild ansatz has shown to be quite useful in the study of certain higher

dimenisional spacetimes and warrants further investigation, perhaps most interest-

ingly in its applicability to higher curvature gravity theories such as Lovelock gravity

[39].
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CHAPTER 3

LOVELOCK GRAVITY

Another1 possible extension of the Kerr-Schild ansatz involves looking at how it

behaves in higher curvature gravity theories, as opposed to directly manipulating

the ansatz itself as we saw with xKS example in the last chapter. One such theory

is that of Lovelock gravity [40] which is a class of higher curvature gravity models

that enjoy a number of desirable properties that are not shared by generic higher

curvature theories. Lovelock gravities have been studied in a wide variety of contexts

including brane-world models beginning with the work of [43] and the gauge-gravity

correspondence [44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

The action in Einstein’s four dimensional General Relativity contains a single

power of the Ricci scalar, whereas higher curvature gravity theories entail adding

higher order curvature terms composed of the Ricci scalar, Ricci and Riemann tensors,

to the action. The Lagrangian for Lovelock gravity [40] combines these quantities in

a specific fashion and has the form L =
∑p

k=0 ckLk where ck is an arbitrary constant

and Lk is the Euler density of a 2k-dimensional manifold

Lk =
1

2k
√
−g δa1...akb1...bkc1...ckd1...dk

Ra1b1
c1d1 . . . Rakbk

ckdk , (3.1)

where the δ symbol denotes the totally anti-symmetrized product of Kronecker delta

functions such that

δa1...akb1...bkc1...ckd1...dk
=

1

n!
δa1...akb1...bk[c1...ckd1...dk]

. (3.2)

1Much of this chapter follows along our previous publication [39]. It has been condensed and
streamlined to better fit the thesis format. Some references and discussion have also been added.
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At zeroth order one has L0 =
√
−g and therefore c0 is proportional to the cosmological

constant. At linear order L1 =
√
−gR and we recover the familiar Einstein term in

the Lagrangian. The first order correction to the Einstein Lagrangian, the term

quadratic in the Riemann tensor in (3.1), is known as the Gauss-Bonnet term and is

expressed as L2 =
√
−g(RabcdR

abcd− 4RabR
ab +R2). After this, the number of terms

at subsequent orders increases rapidly - the L3 and L4 terms, i.e. the second and third

order corrections to the Einstein Lagrangian, contain 8 and 25 terms, respectively.

One of the most attractive aspects of Lovelock theories, as opposed to generic

higher curvature theories, is that the equations of motion only depend upon the

curvature tensor and not on its derivatives, i.e. the equations of motion are second

order [40]. This is precisely the situation in General Relativity and in fact, Einstein

gravity can be seen as a specific case (k = 1) of Lovelock gravity. Another interesting

property is that the higher order curvature terms in the Lagrangian are essentially

“quasi-topological” since in D = 2k dimensions the variation of Lk is a total derivative

whose volume integral is the topologically invariant Euler character, which does not

contribute to the equations of motion. Therefore, one can think of this as the kth

term in the Lagrangian “turns on” in 2k+ 1 dimensions, e.g. the Gauss-Bonnet term

L2 only contributes to the equations of motion for D ≥ 5. Other useful properties

of the Lovelock forumulation are the existence of ghost free constant curvature vacua

[41] and a reasonably well behaved initial value formulation [42].

The black hole solutions of Lovelock gravity have been the subject of consider-

able interest. Static black hole solutions were discovered, beginning with the work

of [41, 54, 55] (references [56, 57, 58, 67, 68, 69, 70] review these and related devel-

opments, including the thermodynamics of Lovelock black holes). Beyond the static

case, many investigators have also been interested in stationary solutions, but so far

have only been met with partial success. Rotating solutions in Gauss-Bonnet gravity

with asymptotically AdS boundary conditions were found in [59] using first order
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perturbation theory in the limit of small angular momentum. The full solutions in

five dimensions were studied using numerical methods in [60, 61].

The applicability of the Kerr-Schild ansatz in five dimensional Gauss-Bonnet grav-

ity2 is shown to be restricted in [26]. The authors note the expectation that the

Kerr-Schild ansatz would not yield a general solution for rotating black holes in

Gauss-Bonnet gravity. However, they do show that the Kerr-Schild ansatz leads to a

solution in an interesting special case, namely when the coupling constants are such

that the theory admits a unique constant curvature vacuum. We restrict ourselves to

this special case3 of the Lovelock unique vacuum which will be explained in further

detail in the next section.

3.1 Lovelock Gravity equations of motion

The equations of motion for the Lovelock theory are essentially a slightly modified

version of the Einstein tensor. For maximal order p, the curvature tensor has the form

G(p)ab = 0, where G(p)ab may be written in terms of a new set of parameters4 α0, . . . , αp

in the form

G(p)ab = α0 δ
ac1...cpd1...dp
be1...epf1...fp

(
Rc1d1

e1f1 − α1δ
e1f1
c1d1

)
· · ·
(
Rcpdp

epfp − αpδepfpcpdp

)
. (3.3)

For convenience in the following calculations, we will without loss of generality assume

that α0 = 1. We will also restrict ourselves to the special case mentioned in the

2See [71] for a more recent application, where the authors present a new exact solution in
Quadratic Curvature Gravity related to the Kerr-Schild ansatz.

3See Appendix C for a discussion of the distinct constant curvature case and an explicit example
of black hole solutions in the Gauss-Bonnet gravity.

4The coefficients ck in the Lovelock Lagrangian are given by sums of products of the parameters
αk (see [64] for the explicit form of this relation). Inverting this relation to get the αk’s in terms of
the ck’s requires solving a polynomial equation of order p.
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introduction, referred to as Lovelock unique vacuum5 (LUV) theories, for which all

the α’s are real and equal6. This leaves (3.3) in the following form

G(p)ab = δ
ac1...cpd1...dp
be1...epf1...fp

(
Rc1d1

e1f1 − αδe1f1c1d1

)
· · ·
(
Rcpdp

epfp − αδepfpcpdp

)
. (3.4)

In the next section we show how the null-vector of the Kerr-Schild ansatz reduces the

complexity of the Riemann curvature tensor before moving on to how it reduces the

equations of motion, of which, the Einstein and Gauss-Bonnet examples are worked

out explicitly.

3.2 The Kerr-Schild Ansatz in Einstein and Gauss-Bonnet

Gravity

Contrary to the case in Einstein gravity where it is sufficient to work with the

Ricci tensor, for Lovelock theories we will find it necessary to work directly with

the Riemann curvature tensor - it shows up explicitly in the quadratic term of the

Lovelock Lagrangian. Expressed with one index up, the curvature Rabc
d of the full

Kerr-Schild metric is then related to the curvature R̄abc
d of the background metric

according to

Rabc
d = R̄abc

d + ∇̄bCac
d − ∇̄aCbc

d + Cac
eCbe

d − CbceCaed. (3.5)

The Lovelock equation of motion (3.3) is expressed with mixed indices and we there-

fore want to solve for the Riemann tensor in the form Rab
cd = gceRabe

d, which in

5These theories have been discussed in detail in reference [64]. The analysis of the Kerr-Schild
ansatz in these unique vacuum theories works much as it does in Einstein gravity. Unique vacuum
theories were also shown to have special properties in reference [24], where extended black brane
solutions of Lovelock theories were studied. In dimension D = 2p + 1 the unique vacuum theory
with highest Lovelock interaction Lp can be rewritten as a Chern-Simons theory (see [64]) much as
Einstein gravity can in D = 3 [65, 66].

6In the full generalization, the αp’s are distinct and can include complex terms.
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principle has an expansion going out to fifth order in λ. Computation shows that

the third, fourth, and fifth order terms in the expansion vanish identically, and the

remaining relation for the curvature tensor is Rab
cd = R̄ab

cd+λR
(1)
ab

cd+λ2R
(2)
ab

cd where

R
(1)
ab

cd = −2∇̄[a∇̄[ckb]k
d] + R̄ab

l[ckd]kl (3.6)

R
(2)
ab

cd = k[ak
[cAb]

|k|Bk
d] + k[a(D̄k

[c)Ab]
d] − k[c

[
(D̄k[a)Bb]

d] − 2∇̄[a(kb]D̄k
d])
]
(3.7)

with Aa
b = ∇̄ak

b + ∇̄bka and Ba
b = ∇̄ak

b − ∇̄bka. It is useful to note that each term

in (3.7) contains at least one factor of the null vector with no derivatives acting on

it. This feature will aid in greatly reducing the complexity of the expressions when

solving for the equations of motion.

3.2.1 Einstein Gravity

For vacuum Einstein gravity, which is Lovelock gravity with maximum order p = 1

and α1 = α = 0, the equations of motion in (3.4) reduce to,

G(1)ab = δacdbefRcd
ef . (3.8)

It follows that for the Kerr-Schild ansatz the Einstein tensor (3.8) will have the

expansion G(1,n)ab = λG(1,1)ab + λ2G(1,2)ab with the individual terms given by

G(1,1)ab = δacdbef R
(1)
cd

ef (3.9)

G(1,2)ab = δacdbef R
(2)
cd

ef (3.10)

We see that with one factor of the Riemann tensor, the Einstein tensor could have

been a priori fifth order, but reduces to second order due to the null vector in the

Kerr-Schild ansatz.
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3.2.2 Gauss-Bonnet Gravity

For Gauss-Bonnet gravity, which is Lovelock gravity with maximum order p = 2,

the equations of motion have the form G(2)ab = 0 with

G(2)ab = δacdefbghij

(
Rcd

gh − αδghcd
) (
Ref

ij − αδijef
)
. (3.11)

We assume that the background metric ḡab in the Kerr-Schild ansatz is a constant

curvature vacuum of the theory, so that R̄ab
cd = αδcdab. This takes (3.11) to the further

reduced form

G(2)ab = δacdefbghij Rcd
ghRef

ij. (3.12)

We can expand the Gauss-Bonnet field equations in powers of λ, expressing them as

the sum G(2)ab =
∑

n λ
nG(2,n)ab. Given the assumptions stated above and plugging in

the nonzero terms at orders λ0, λ1 and λ2 in the expansion of the curvature tensor

for the Kerr-Schild ansatz, one finds contributions to G(2,n)ab at orders n = 2, 3, 4.

Calculation, however, shows that G(2,4)ab vanishes identically and one is left with the

two term expansion for the field equations G(2,n)ab = λ2G(2,2)ab + λ3G(2,3)ab with the

individual terms given by

G(2,2)ab = δacdefbghij R
(1)
cd

ghR
(1)
ef

ij (3.13)

G(2,3)ab = 2δacdefbghij R
(1)
cd

ghR
(2)
ef

ij (3.14)

Please note, in a similar fashion to the Einstein case, we see the highest-order non-

vanishing term contains one factor of R
(2)
ef

ij. We will see shortly that this is the case

for all higher orders in the generic Lovelock case, but first we take a slight a detour

in the hopes of finding something special to help us solve the equations of motion.
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3.3 Contracting with the null-vector

Following the strategy of [14], we first consider the implications of the Einstein

and Gauss-Bonnet tensors contracted twice with the null vector so that we have

G(1)aakbka = 0 and G(2)abkakb = 0 for the Einstein and Gauss-Bonnet cases respec-

tively. With hindsight in mind, this approach will yield a relationship on the null

vector that will reduce the complexity of the expressions when solving the equa-

tions of motion. In the Einstein case, inspection shows that the quantity G(1,2)abkbka

vanishes identically because of anti-symmetrization over repeated factors of the null

vector. Similarly for the Gauss-Bonnet case, the quantity G(2,3)abkakb vanishes iden-

tically, also due to anti-symmetrization over repeated factors of the null vector. The

full expression for the contracted Einstein equation then reduces to

kak
bG(1,1)ab =

1

2
kak

b δacdbef

(
(∇̄ckd)∇̄ekf + (∇̄ck

f )∇̄ekd
)

(3.15)

= −1

2
(D̄kc)(D̄k

c).

For a Kerr-Schild metric to solve the vacuum field equations, the right hand side of

(3.15) must vanish. This is the statement that the vector D̄ka must itself be null,

i.e. (D̄kc)(D̄k
c) = 0. Since D̄ka is also orthogonal to the null vector ka, it follows

that D̄ka must be proportional to ka, such that D̄ka = φka for some function φ. This

means that the null vector ka is tangent to a geodesic congruence of the background.

If φ = 0 we say that the geodesic is affinely parameterized.

For the Gauss Bonnet case we find something similar

kak
bG(2,2)ab = −24 (D̄ka)(D̄k

b) δacdbef αcd
ef (3.16)

= 12 (D̄ka)(D̄k
b)G(1,1)ab

with αcd
ef ≡ (∇̄ckd)∇̄ekf+(∇̄ck

f )∇̄ekd. For a Kerr-Schild metric to solve the vacuum

Gauss-Bonnet field equations, the right hand side of (3.16) must vanish. If ka is in
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fact geodesic, we see that the right-hand-side of (3.16) reduces to the right-hand-side

of (3.15) with an extra factor of φ2. This establishes that the geodesic condition is at

least a sufficient condition for solving the contracted Gauss-Bonnet field equations.

Let us now assume that ka satisfies the geodesic condition, and see how that alters

the expressions for the curvature tensor. It follows then, that the expression (3.7) for

R
(2)
ab

cd reduces to

R
(2)
ab

cd = k[ak
[cEb]

d] (3.17)

with Eb
d = Ab

eBe
d − 2φBb

d. Note that the expression for R
(2)
ab

cd now includes factors

of the null vector with indices both down and up. Also note that Ea
a = 0 and

that contracting the tensor Ea
b with the geodesic null vector gives the simple results

kaEa
b = −φ2kb and kbEa

b = +φ2ka. With these results it is straightforward to show

that the quantity G(1,2)ab vanishes identically for ka geodesic. The vacuum Einstein

equations then reduce to the requirement that G(1,1)ab = 0 which is linear in hab.

This is then the advertised result, that for a geodesic null vector the vacuum Einstein

equations for the Kerr-Schild ansatz reduce to a linear equation.

For the Gauss-Bonnet case, the key result is that with the use of the geodesic

condition, calculation now shows that the quantity G(2,3)ab vanishes identically. The

field equations then reduce to the single equation

G(2,2)ab = δacdefbghij R
(1)
cd

ghR
(1)
ef

ij = 0, (3.18)

which is quadratic in hab. In both the Einstein and Gauss-Bonnet cases, the geodesic

condition led to the vanishing of the highest order term, the one containing one factor

of R
(2)
ab

cd. Crucial to this process was the step of contracting the Einstein equation with

the null-vector, which in turn revealed its geodesic nature. Using this fact we were able

to reduce the complexity of the equations of motion even further. We will attempt

to extend this process to general Lovelock orders in the next section. Although we
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considered only vacuum Einstein gravity, the analysis is essentially unchanged for

non-vacuum theories if the stress-energy tensor satisfies Tabk
akb = 0. In particular,

this includes Einstein gravity with a non-vanishing cosmological constant, which we

may think of as the most general Lovelock gravity theory including terms up to linear

order in the curvature, i.e. with maximal order p = 1 in the Lovelock Lagrangian.

3.4 Kerr-Schild Ansatz in Lovelock Gravity

We next consider Lovelock theories of arbitrary maximum order p in the curvature

tensor. We assume that the spacetime dimension D ≥ 2p+ 1, so that the maximum

order curvature term is dynamically relevant. Similar to the Einstein and Gauss-

Bonnet examples, we consider the unique vacuum case such that α1 = · · · = αp = α,

and the field equations have the form G(p)ab = 0 with

G(p)ab = δ
ac1d1...cpdp
be1f1...epfp

(
Rc1d1

e1f1 − αδe1f1c1d1

)
· · ·
(
Rcpdp

epfp − αδepfpcpdp

)
. (3.19)

Once again we assume that the background spacetime in the Kerr-Schild ansatz is the

constant curvature vacuum, so that the background Riemann tensor is R̄ab
cd = αδcdab.

The subsequent analysis then proceeds much as it did in the Einstein and Gauss-

Bonnet cases.

One can expand G(p)ab =
∑

n λ
nG(p,n)ab by plugging in the background curvature

and the nonzero terms (3.6) and (3.7) in the expansion of the Riemann curvature

tensor. One finds immediately that G(p,n)ab = 0 for n > p + 2 because of anti-

symmetrization over repeated factors of the null vector and further computation shows

that G(p,p+2)a
b = 0 as well. What remains is then once again a two term expansion,

with nonzero contributions at orders λp and λp+1 given respectively by

G(p,p)ab = δ
ac1d1...cpdp
be1f1...epfp

R
(1)
c1d1

e1f1 · · ·R(1)
cpdp

epfp (3.20)

G(p,p+1)a
b = p δ

ac1d1...cpdp
be1f1...epfp

R
(2)
c1d1

e1f1R
(1)
c2d2

e2f2 · · ·R(1)
cpdp

epfp (3.21)
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These results straightforwardly generalize those found in the Einstein and Gauss-

Bonnet cases which correspond to maximum Lovelock orders p = 1 and p = 2.

We proceed once again by considering the field equation contracted with a pair of

null vectors, kak
bG(p)ab = 0. It follows immediately that the contraction kak

bG(p,p+1)a
b

vanishes identically, again due to anti-symmetrization over multiple factors of the null

vector. For the contraction kak
bG(p,p)a

b, a result generalizing equation (3.16) from the

Gauss-Bonnet case can be shown to hold, namely

G(p,p)abkakb = 2p(p+ 1)G(p−1,p−1)ab(D̄ka)D̄kb. (3.22)

It then follows by induction, based on the result holding in Einstein gravity (p = 1),

that the geodesic condition is sufficient for the vanishing of the field equations in the

more general Lovelock theory.

Assuming that the null vector ka is geodesic, and in analogy with the Einstein

and Gauss-Bonnet cases, we would like to show that the quantity G(p,p+1)a
b vanishes

identically. Although we believe that this will very likely turn out to be the case, the

calculation (already long in the Gauss-Bonnet case) has so far proven too cumbersome

for us to bring to completion. Should G(p,p+1)a
b vanish as a consequence of the geodesic

condition, then one would again be left with a single pth order equation, G(p,p)ab = 0,

for the quantity hab in the Kerr-Schild ansatz to solve the general Lovelock unique

vacuum case.

3.5 Conclusions

Our study of the Kerr-Schild ansatz follows analysis of its applicability to 5D

Gauss-Bonnet gravity [26] and specifically to rotating black hole solutions in the

theory [27]. Extending their analysis to the higher orders in Lovelock theory, we have

focused on the unique vacuum case [64] and have shown with definiteness for Gauss-

Bonnet gravity, and up to plausible expectations in the general case, that the full
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field equations reduce to a single equation that is purely of order p in the quantity hab

in the Kerr-Schild ansatz. In the general case of distinct constant curvature vacua,

a more complicated set of equations emerge, which appear less promising in terms of

their compatibility with the Kerr-Schild ansatz. Finally, we have also studied how

the known static black hole solutions of Gauss-Bonnet gravity in the unique vacuum

theories fit into our framework. A plausible next step would be looking for rotating

black hole solutions of Kerr-Schild form in these theories.

37



CHAPTER 4

THE KERR-SCHILD ANSATZ IN KALUZA-KLEIN
GRAVITY

4.1 Introduction to Kaluza-Klein

Theoretical physics in five dimensions has enjoyed a rejuvination of late due to

its being seen as the low energy limit for certain higher-dimensional supergravity and

string theories [72, 73]. Any study of higher dimensions should begin with five, and

one of the simplest extensions of Einstein’s General Relativity is that of Kaluza-Klein

theory, which seeks to unify general relativity and electromagnetism, introducing

scalar fields by way of an extra spatial dimension. Therefore, a five-dimensional vac-

uum can be viewed as a four-dimensional spacetime imbued with an electromagnetic

field.

One of the first attempts at unification [74] was made in 1914 by Gunnar Nord-

ström (of Reissner-Nordström fame) as a way of bringing together his own scalar

theory of gravity1 with electromagnetism under a unified 5-dimensional framework.

The one caveat he added was the so-called “cylinder condition” which said that, a

priori, the metric components did not depend on the fifth dimension. Interestingly

there was little to no impact on the surrounding community to Nordström’s unifica-

tion idea, the author of [77] speculating it was because of its being published so close

to the onset of WWI.

1Nordström developed a scalar curvature theory of gravitation at the same time Einstein was
developing his tensor theory. Nordström’s theory was eventually shown to be incorrect when it did
not account for the proper precession of the perihilion of Mercury and did not allow for the deflection
of light [75, 76].
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Consequently, Theodor Kaluza independently investigated the topic of unification

through addition of an extra dimension which he described in a letter to Einstein in

1919, who replied enthusiastically about the idea, remarking [2]

“A five-dimensional cylinder world never dawned on me...At first glance
I like your idea tremendously.”

By 1921, Kaluza would publish his results [78] which were subsequently presented to

the Prussian Academy by Einstein later that year [79]. Even though unaware of the

previous results obtained by Nordström, Kaluza’s unification scheme was similar and

different in important ways. Unlike Nordström, who was developing his theory pre-

relativity and used a scalar potential, Kaluza’s unification scheme used the correct

Einstein tensor potential. However, in a similar fashion as Nordström, Kaluza would

also impose the cylinder condition, but offered no mechanism as to why physics would

only depend on the first four dimensions and not the fifth [73].

Kaluza’s work was extended in 1926 by Oskar Klein [80] who initially relaxed

the cylinder condition and suggested that the extra spatial dimension was in fact

compactified, curled up and very small. It was calculated by Klein to be on the order

of the Planck length. This result also conveniently explained why we hadn’t observed

this extra dimension. This compactification would lead to a periodicity requirement

in the fifth coordinate, thereby naturally restoring the cylinder condition [73]. We

begin our investigation by considering the simplest case in the next section.

4.2 Kaluza-Klein theory in 5 dimensions

We begin with the Kaluza-Klein reduction on a circle from vacuum gravity in

D = 5 to Einstein-Maxwell-dilaton theory in D = 4. We assume the cylindrical

condition holds such that the D = 5 metric is invariant under translations in the

compact x5 direction and can be expressed in the following form

ds25 = e−4φ/
√
3(dx5 + 2Aµdx

µ)2 + e2φ/
√
3g(4)µν dx

µdxν . (4.1)
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Starting from the action for vacuum gravity in D = 5, we have

S =
1

16πG5

∫
d5x
√
−g5R5. (4.2)

After performing the Kaluza-Klein reduction of the fifth dimension, the resulting

action for the D = 4 metric gµν , gauge field Aµ, and the dilaton scalar potential φ is

found to be

S =
1

16πG4

∫
d4x
√
−g4

(
R4 − 2(∇φ)2 − e−2

√
3φF 2

)
(4.3)

with G4 = G5/L, where the compact x5 direction has been identified with period L.

Varying this action with respect to the 4D inverse metric, the equations of motion

can be expressed as

∇µ(e−2
√
3φF µν) = 0 {i} (4.4)

∇2φ+

√
3

2
e−2
√
3φF 2 = 0 {ii}

Rµν − 2(∇µφ)(∇νφ)− 2e−2
√
3φ(FµρFν

ρ − 1

4
gµνF

2) = 0 {iii}

The four-dimensional component, of a five-dimensional spacetime expressed as in

(4.1), would solve this set of 15 four-dimensional equations of motion. This shows

explicitly that the 4D theory contains matter, the electromagnetic tensor along with

a scalar dilaton potential, whereas it was initially derived from a five-dimensional

vacuum. Here it is instructive to show how to obtain the Kaluza-Klein form of (4.1)

when starting from a known solution. Such an example is provided by the boosted
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black string which is obtained by adding a flat direction z to the previously known

4D Schwarzschild solution2,

ds25 = −(1− α/r)dt̂2 + (1− α/r)−1dr2 + r2dΩ2 + dẑ2

This is now a 5-dimensional metric that solves the 5-dimensional vacuum equations of

motion. Next, performing a boost along the z direction, we take the transformations

to be

ẑ = (cosh β)z + (sinh β)t

t̂ = (sinh β)z + (cosh β)t. (4.5)

After some algebra, we find

ds25 = (1+
α

r
sinh2 β)[dz+

(α/r) sinh β cosh β

1 + (α/r) sinh2 β
dt]2+

−1 + (α/r)

1 + (α/r) sinh2 β
dt2+

dr2

(1− α/r)
+r2dΩ2

We are now in a position to make the identifications with (4.1) where we see

e−4φ/
√
3 = 1 + (α/r) sinh2 β (4.6)

2Aµdx
µ =

(α/r) sinh β cosh β

1 + (α/r) sinh2 β
dt (4.7)

which puts the metric into the following form

ds25 = e−4φ/
√
3[dz + 2Atdt]

2 + e4φ/
√
3(−1 +

α

r
)dt2 +

dr2

(1− α/r)
+ r2dΩ2

= e−4φ/
√
3[dz + 2Atdt]

2 + e2φ/
√
3[e2φ/

√
3(−1 +

α

r
)dt2 + e−2φ/

√
3(

dr2

(1− α
r
)

+ r2dΩ2)]

(4.8)

2see Appendix D for a similar construction starting with the Kerr-Schild form of the metric.
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The metric is now in the desired form for a generic Kaluza-Klein parameterization.

The 4D metric is clearly seen to be

ds24 = g(4)µν dx
µdxν = e2φ/

√
3(−1 +

α

r
)dt2 + e−2φ/

√
3(

dr2

(1− α/r)
+ r2dΩ2)

= − 1− (α/r)

(1 + α
r

sinh2 β)(1/2)
dt2 +

(1 + α
r

sinh2 β)(1/2)

1− α/r
dr2 + r2(1 +

α

r
sinh2 β)(1/2)dΩ2

(4.9)

As the 4D Schwarschild plus a flat direction presented in (4.5) is clearly a solution

to the action for a 5D vacuum given in (4.2), after performing the Kaluza-Klein

reduction and subsequent boost along the compact direction, it can be shown that

equation (4.9) is a solution to the field equations (4.4) and the action defined in (4.3).

4.3 A Kerr-Schild analysis in Kaluza-Klein dilaton

gravity

Given how well the Kerr-Schild ansatz has been successfully employed in other

contexts, it is natural to wonder whether it may be usefully extended in some manner

to apply to theories with scalar fields such as Kaluza-Klein gravity, which has gained

interest due to its interpretation in a string theory context. A recent example of this

is seen in [81], where the authors start from a generalized Myers-Perry black hole

solution in D + 1 dimensions and perform a Kaluza-Klein reduction to find higher

dimensional, charged, rotating black holes in Einstein-Maxwell-Dilaton gravity. By

subsequently adding a cosmological constant, Wu noticed in [82] (also see [83]) that

the form of the metric was similar to that of the Kerr-Schild ansatz. Continuing along

this line of thinking, we want to understand how the Kerr-Schild ansatz manifests in

the dimensionally reduced setting by studying the resulting equations of motion. In

order to understand how the Kerr-Schild ansatz acts in this setting, we need to take

a closer look at the null vector. Normally, the Kerr-Schild null-vector ka does not
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furnish a natural scalar with which to work - however it is worth noting that if one

does not assume that the norm of ka vanishes, the simple form of the inverse metric

may also be achieved by starting with the somewhat more complicated form for the

metric

gab = ḡab +
λkakb

1− λkckc
. (4.10)

The norm of the null vector f = kck
c could then provide a natural ansatz for a

scalar field. As we will see, Kaluza-Klein theory serves as a kind of bridge between

the ordinary Kerr-Schild ansatz, which applies in the higher dimensional vacuum

gravity context and a time-like version, which we will call the modified Kerr-Schild

ansatz, that emerges in the dimensionally reduced setting. We hope to see how the

simplifications of the field equations from the modified Kerr-Schild ansatz may be

understood directly in the dimensionally reduced setting.

Starting with vacuum gravity in D = 5 with a flat background in Kerr-Schild form,

we can find the 4 dimensional fields that are produced by the dimensional reduction,

ds25 = ηµνdx
µdxν + (dx5)2 + λ(kµdx

µ + k5dx
5)(kνdx

ν + k5dx
5) (4.11)

= (ηµν + λkµkµ)dxµdxν + (1 + λk25)(dx5)2 + λk5dx
5(kµdx

µ + kνdx
ν)

= (ηµν + λkµkµ)dxµdxν + (1 + λk25)[(dx5)2 + λ
k5dx

5

(1 + λk25)
(kµdx

µ + kνdx
ν)

= (1 + λk25)

(
dx5 +

k5
(1 + λk25)

kµdx
µ

)2

+

(
ηµν +

λkµkν
1 + λk25

)
dxµdxν

where we have completed the square in going from steps 3 to 4. We are now in a

position to read off the D = 4 metric, gauge field, and dilaton;

e−4φ/
√
3 = 1 + λk25 (4.12)

2Aµdx
µ =

k5
(1 + λk25)

kµdx
µ (4.13)

g(4)µν = (1 + λk25)1/2
(
ηµν +

λkµkν
1 + λk25

)
(4.14)
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Focusing on the D = 4 metric (4.14), we see that this has the aforementioned modified

Kerr-Schild form in terms of the timelike 4-vector kµ, which satisfies kµk
µ = −k25. This

modified Kerr-Schild form involves both an overall conformal rescaling of the metric

by a factor related to the dilaton and also a rescaling of the Kerr-Schild contribution

to the metric by a further power of the dilaton field. Alternatively, we can write the

D = 4 metric as

g(4)µν = e−2φ/
√
3
(
ηµν + λe+4φ/

√
3kµkν

)
. (4.15)

Similar metrics and their properties have recently been studied with respect to general

rotating charged Kaluza-Klein-(A)dS black hole solutions in [84]. However the authors

used a different coupling constant for the dilaton charge than we are considering

and also assumed that the 4-vector kµ was a timelike geodesic with respect to the

background (A)dS metric. In this case, when doing a perturbative expansion around

the free parameter in the Kerr-Schild ansatz, the authors found a condition that led to

inconsistencies with their previous work [82]. Since no free parameter could be found

in their scheme, it was not possible to have an analysis of the type we completed in the

previous chapters, and a more general construction of expanding the full Lagrangian

and field equations of motion around the background spacetime was employed.

4.4 Explicit calculations

In this section we want to look explicitly at the five-dimensional equations of

motion, and our hope is to gain insight into how pure geometry in a five-dimensional

setting manifests physically in four dimensions. Essentially, we want to go from a

vacuum in a pure Einstein theory in D = 5, to an Einstein-Maxwell-Dilaton theory

in D = 4. To accomplish this we start with the usual Kaluza-Klein decomposition

and attempt to bring it into a more manageable form.
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ds25 = e−4φ/
√
3(dx5 + 2Aµdx

µ)2 + e2φ/
√
3g(4)µν dx

µdxν (4.16)

= e−4φ/
√
3
{

(dx5 + 2Aµdx
µ)2 + e6φ/

√
3g(4)µν dx

µdxν
}

= e−4φ/
√
3
{

(dx5 + Âµdx
µ)2 + ˆgµνdx

µdxν
}

= e−4φ/
√
3g̃ab

In the above equations, we define

g
(5)
ab = e−4φ/

√
3g̃ab (4.17)

g̃ab = (dx5 + Âµdx
µ)2 + ˆgµνdx

µdxν

ˆgµν = e6φ/
√
3g(4)µν

Âµ = 2Aµ

We want to compute the D = 5 Einstein tensor G(5)a
b solely in terms of the 4D

fields; the dilaton φ, the Maxwell potential Aµ, and the metric gµν . Latin indices

(a,b, etc.) represent the 5D coordinates whereas greek indices (µ, ν, etc.) represent

the 4D quantities. From (4.17) we see that we can first solve for Ĝ(5)a
b in terms of

Âµ and ˆgµν which are defined in terms of the 4D fields. From there we can solve for

G̃(5)a
b in terms of the “hat” quantities and subsequently find the full G(5)a

b by using

transformation equations for conformally scaled metrics. We find

G(5)5
5 =

√
3e−2φ/

√
3

{
∇2φ+

√
3

2
e−2
√
3φF 2

}
(4.18)

G(5)5
ν = −4e−2φ/

√
3Aρ[Aν

{
∇σ(e−2

√
3φF σ

ρ)
}

+ Aρ

{
∇σ(e−2

√
3φF σ

ν)
}

] (4.19)

+ 2
√

3e−2φ/
√
3Aν

{
∇2φ+

√
3

2
e−2
√
3φF 2

}

+

{
Rµ

ν − 2(∇µφ)(∇νφ)− 2e−2
√
3φ(F µ

ρFν
ρ − 1

4
g(4)µνF

2)

}
G(5)µ

ν = 2e−2φ/
√
3[Aµ

{
∇σ(e−2

√
3φF σ

ν)
}

+ Aν

{
∇σ(e−2

√
3φF σµ)

}
(4.20)

+

{
Rµ

ν − 2(∇µφ)(∇νφ)− 2e−2
√
3φ(F µ

ρFν
ρ − 1

4
g(4)µνF

2)

}
]
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This expression can be put in compact form by comparing with (4.4), and thereby

highlighting the relationship between the four and five-dimensional equations of mo-

tion.

G(5)5
5 =

√
3e−2φ/

√
3 {ii} (4.21)

G(5)5
ν = −4e−2φ/

√
3Aρ[Aν {i}ρ + Aρ {i}ν ] + 2

√
3e−2φ/

√
3Aν {ii}+ {iii} (4.22)

G(5)µ
ν = 2e−2φ/

√
3[Aµ {i}ν + Aν {i}µ + {iii}] (4.23)

As {i}, {ii}, and {iii} are all identically zero, we see that G(5)a
b = 0 is satisfied

as required and that the full five-dimensional metric is expressed in terms of purely

four-dimensional quantities. At this point a similar analysis, as to what was done

in the previous chapters, could be performed. We saw there that taking the 5D

vacuum equations of motion and contracting them with the 5D null-vector would

yield equations implying the geodesic nature of the null-vector. In the present context

of Kaluza-Klein theories, we would be able to analyze the situation from a purely

4D vantage point, having all the 5D equations expressed solely in terms of the 4D

quantities. It would be interesting if in an analogous way, a “geodesic-like” condition

was found applying to the 4D solution. This research is ongoing.

4.5 Conclusions

Unification has always been one of the driving forces of physics. From electric-

ity and magnetism, to the Standard Model, and hopefully one day to the union of

General Relativity and Quantum Mechanics. One of the earliest attempts was be-

tween General Relativity and Electromagnetism, and was cleverly done through the

addition of an added spatial dimension. These theories would come to be known as

Kaluza-Klein theories, which have gained a renewed popularity of late, due to their
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appearance as the low energy limit of some string theories. In this chapter, the ap-

plicability of the Kerr-Schild ansatz in Kaluza-Klein spacetimes has been discussed.

Due to its wide range of use, it makes sense to investigate whether the Kerr-Schild

ansatz will provide any advantages to theories with scalar fields.
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CHAPTER 5

SUMMARY

The Kerr-Schild ansatz has proved an invaluable tool in the search for black hole

solutions in higher dimensions. It was initially employed to find the rotating counter-

part to the Schwarzschild black hole solution in four dimensions, which now bears the

name of its founder, the Kerr black hole. The ansatz was seen to be applicable as well

to the higher-dimensional analogue of the Kerr black hole, the so-called Myers-Perry

black holes, to spacetimes enjoying the presence of a cosmological constant, and to

some forms of higher-dimensional gravitational radiation such as pp-waves. However,

the Kerr-Schild ansatz was restricted to certain types of solutions in higher dimen-

sions, meaning that there existed black hole solutions not described by Kerr-Schild.

In this thesis, we have looked at three possible extensions of the Kerr-Schild ansatz

in order to determine its effectiveness in describing new black hole solutions.

The first of these to be investigated was the extended Kerr-Schild (xKS) ansatz

related to CCLP spacetimes which could be described by the usual Kerr-Schild ansatz

with the additon of a spacelike vector component. It was found that in this case,

the xKS metrics did indeed reduce the complexity of the equations of motion in

an analogous fashion to the KS metrics, while also revealing the geodesic nature

of the null-vector. These xKS metrics were found to describe black hole solutions

in Einstein-Maxwell-Chern Simons theories, as well as describing higher-dimensional

pp-waves.

Another possible extension of the Kerr-Schild ansatz is explored through its appli-

cation in higher curvature gravity theories, specifically that of Lovelock gravity. The
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Lovelock theory comibines the Riemann Tensor along with its contractions in specific

combinations to attain certain features such as second order equations of motion and

ghost-free vacua. It is the most natural extension of General Relativity to which

Einstein gravity can be seen as a specific case of the larger encompassing theory. The

KS metrics were shown, in the specific case of the unique vacuum, to reduce the com-

plexity of the equations of motion for these higher curvature theories in an anologous

way to the Einstein case with its single factor of the Ricci scalar in the action. The

known static black hole solutions of Gauss-Bonnet gravity were discussed, and shown

to fit into this framework. This provides evidence that the Kerr-Schild ansatz and its

extenstions could be employed in the search for higher-curvature rotating black hole

solutions.

The last extension of the Kerr-Schild ansatz, its applicability to Kaluza-Klein

theories, was also briefly discussed. Starting with the 4D Schwarzschild solution and

adding an extra spatial direction solves the 5D vacuum equations of motion; after

performing a Kaluza-Klein reduction and then boosting along the flat direction, the

resulting 4D metric attained a “Kerr-Schild-like” form which is a solution to the

Einstein-Maxwell-Dilaton gravity theory. We also investigated the form of the five-

dimensional equations of motion expressed solely in terms of the four-dimensional

quantities. One could now analyze the dynamics from a purely four-dimensional

perspective, and this analysis is ongoing.

Black holes are the most majestic objects in the universe. At first, it was due to

the fact of nature that regardless of the initial internal structure of a body or the

mechanism of its eventual collapse, a massive body of sufficient size would end its life

as a black hole described by only 3 parameters - the Mass, Charge, and Spin. This

was the famous result that black holes in four dimensions “had no hair” and possessed

a spherical horizon topology. It was found later that this maxim was no longer true

once one started to search for solutions in higher dimensions. Black holes could now
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come in different flavors and had exotic names such as Black Strings, Black Rings,

Black Branes, and my personal favorite, Black Saturns. Unlike the simple case of

four dimensions, this freedom greatly complicates the classification scheme of black

holes in higher dimensions and more sophisticated techniques of studying black hole

solutions will need to be employed for future efforts. However we shouldn’t worry too

much since this is precisely what makes black hole physics so fun!
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APPENDIX A

TRANSFORMING CCLP SPACETIMES TO CARTESIAN
COORDINATES

In this appendix we show how to transform the xKS form of the the Λ = 0 limit of

the CCLP metrics given in [32] into the Cartesian coordinates in section (2.1). The

xKS form (2.1) of the Λ = 0 CCLP spacetimes presented in [32] is

ds̄2 = −dt2 − 2dr(dt− a sin2 θdφ− b cos2 θdψ) + Σdθ2

+(r2 + a2) sin2 θdφ2 + (r2 + b2) cos2 θdψ2

ka dx
a = dt− a sin2 θdφ− b cos2 θdψ, (A.1)

la dx
a = −b sin2 θdφ− a cos2 θdψ

with the functions H and K and the 1-form gauge potential Aadx
a as given in sec-

tion (2.1). The flat background metric ḡab can be transformed into more standard

spheroidal coordinates via a transformation such that

dt = dτ − dr, dφ = dϕ− a

r2 + a2
dr, dψ = dχ− b

r2 + b2
dr. (A.2)

giving

ds̄2 = −dτ 2 +
r2Σ

(r2 + a2)(r2 + b2)
dr2 + Σdθ2 + (r2 + a2) sin2 θdϕ2 + (r2 + b2) cos2 θdχ2

ka dx
a = dτ − r2Σ

(r2 + a2)(r2 + b2)
dr − a sin2 θdϕ− b cos2 θdχ (A.3)

la dx
a =

abΣ

(r2 + a2)(r2 + b2)
dr − b sin2 θdϕ− a cos2 θdχ
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A further transformation may now be made to Cartesian spatial coordinates via

x =
√
r2 + a2 sin θ cosϕ, y =

√
r2 + a2 sin θ sinϕ (A.4)

w =
√
r2 + b2 cos θ cosχ, z =

√
r2 + b2 cos θ sinχ.

The spheroidal radial coordinate r satisfies the relation (2.6). so that surfaces of

large r are approximately spherically symmetric, while as r approaches to zero they

degenerate into the product of a disk of radius a in the xy-plane with a disk of radius

b in the wz-plane. The background metric and the vectors ka and la are then those

given in (2.3).
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APPENDIX B

MYERS-PERRY TO SCHWARZSCHILD WITH
KERR-SCHILD

Here it is useful to show that by starting from the Kerr-Schild ansatz for Myers-

Perry black holes, we can recover the familiar Schwarzschild solution. Assuming a flat

background, the full metric takes the form gµν = ηµν+λhkµkν where h is defined to be

a scalar function. This is a slightly different form from (1.2). In essence, we are always

able to scale the null-vector kµ in order to obtain an affine parameterization such that

D̄kµ = 0, however the tradeoff is that the ansatz will now include a scalar function,

in this case h. To recover the Schwarzschild solution we may define h = 2M/r and

kµdx
µ = dt+ dr, such that

ds2 = −dt2 + dr2 + r2dΩ2 + (2M/r)(dt+ dr)2

= −(1− 2M/r)dt2 + (1 + 2M/r)dr2 + (4M/r)dtdr + r2dΩ2

= −(1− 2M

r
)

{
dt− 2M/r

(1− 2M
r

)
dr

}2

+

{
(1 +

2M

r
) +

4M2/r2

(1− 2M
r

)

}
dr2 + r2dΩ2

= −(1− 2M

r
)d̂t2 +

d̂r2

(1− 2M
r

)
+ r2dΩ2. (B.1)

In an analagous fashion we can find the charged static black hole (Reisnner-Nordstrom)

by taking h = 2M/r +Q2/r2.
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APPENDIX C

DISTINCT CONSTANT CURVATURE VACUA AND
STATIC GAUSS-BONNET BLACK HOLES

In the more general case, the constants α1 and α2 in the Gauss-Bonnet field

equation (3.3) are unequal (but still assumed to be real), so that the theory now has

two distinct constant curvature vacua. We will assume that the background metric

has constant curvature R̄ab
cd = α1δ

cd
ab corresponding to one of these two vacua. Much

of the analysis from the unique vacuum case (α1 = α2) carries over to this more

general case, however, the key modification is now an additional linear term in the

expansion of G(2)ab. Assuming that that the null vector ka is geodesic once again, one

is then left with a pair of equations that must be satisfied, equation (3.18) and also

the equation linear in hab

G(2,1)ab = 4(α1 − α2)(D − 3)(D − 4) δacdbef R
(1)
cd

ef = 0. (C.1)

This latter condition is simply the vanishing of the linearized Einstein tensor1. In

order to have a Kerr-Schild solution of the form (1.2) depending on a free parameter

λ, as we have required, it is then necessary to have a solution to the linearized Einstein

equations that simultaneously solves equation (C.1). Note also that in the analysis

of reference [26], which does not utilize the expansion in λ, the two conditions (3.18)

1For higher order Lovelock theories with distinct constant curvature vacua, we assume e.g. that
all the α’s in (3.19) are real and distinct and that we choose the background metric to be the
constant curvature vacuum having R̄ab

cd = α1δ
cd
ab. It is then straightforward to show that there will

be additional equations to satisfy at orders λn with n = 1, . . . , p− 1
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and (C.1) are combined. We can see how this added complication manifests in the

known static black hole solutions of Gauss-Bonnet gravity.

The static black hole solutions of Gauss-Bonnet gravity have been known for some

time [41, 54], and in D ≥ 5 dimensions have the form ds2 = −fdt2+f−1dr2+r2dΩ2
D−2

with

f = 1− r2

2

{
(α1 + α2)±

√
(α1 − α2)2 +

4σ

rD−1

}
(C.2)

where σ is a constant proportional to the black hole mass. The metric is asymptotic

at spatial infinity to the vacuum with constant curvature α1 or α2, depending on

which sign is chosen in (C.2). Examining the Kerr-Schild forms of these static black

hole solutions will help us appreciate the difference in how the Kerr-Schild ansatz

works in the unique vacuum case and in the more general case of distinct constant

curvature vacua.

The Kerr-Schild construction of static black hole metrics starting from a back-

ground metric with constant curvature α is done by writing

ds2 = −(1− αr2)dT 2 +
dr2

1− αr2
+ r2dΩ2

D−2 + F (r)(dT +
dr

1− αr2
)2 (C.3)

= −(1− αr2 − F )dt2 +
dr2

1− αr2 − F
+ r2dΩ2

D−2, (C.4)

where the vector ka with covariant components kadx
a = dT+dr/(1−αr2) is null with

respect to the background metric and the second line is obtained from the first by

transforming to a new time coordinate t such that dt = dT+dr/(1−αr2)(1−αr2−F ).

If one takes, for example, F = c/rD−3 then this gives the (A)dS-Schwarzschild family

of spacetimes. By taking F = (α′− α)r2 one can also express a metric with constant

curvature α′ starting from the background metric with constant curvature α.

ds2 = −(1− α′r2)dt2 +
dr2

1− α′r2
+ r2dΩ2

D−2. (C.5)
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This is an example in which the background metric is not taken to solve the field

equations, and since there is no free multiplicative parameter in this case, we are not

strictly speaking of Kerr-Schild form as we have defined it in (1.2).

The static Gauss-Bonnet black holes with metric functions (C.2) can be written

in Kerr-Schild form in different ways. Taking a flat background, α = 0 in (C.3), one

can simply take the Kerr-Schild function F = 1− f to obtain

ds2 = −(1− αr2)dT 2 +
dr2

1− αr2
+ r2dΩ2

D−2 + F (r)(dT +
dr

1− αr2
)2

= −(1− F )dt2 +
dr2

1− F
+ r2dΩ2

D−2 (C.6)

= −fdt2 +
dr2

f
+ r2dΩ2

D−2.

However, given the form of f in (C.2), the flat background will only solve the equa-

tions of motion if one of α1 or α2 is zero, and this does not fit within our scheme.

Alternatively, one can start with e.g. the constant curvature background metric with

α = α1. The Gauss-Bonnet black hole with these asymptotics is then obtained by

taking F = 1− α1r
2 − f such that

ds2 = −(1− α1r
2 − F )dt2 +

dr2

1− α1r2 − F
+ r2dΩ2

D−2

= −fdt2 +
dr2

f
+ r2dΩ2

D−2. (C.7)

The function F is more complicated than the one taken for the flat background, and

unlike the case of (A)dS-Schwarzschild, there is no overall free multiplicative factor.

This reflects the more complicated set of equations that the Kerr-Schild null vector

must satisfy in the case of two distinct vacua.

Now consider the static black holes in the unique vacuum case, which are obtained

from (C.2) by setting α1 = α2 = α. In this limit, the metric function simplifies

considerably, becoming
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f = 1− αr2 +
λ

r
D−5
2

(C.8)

with λ a free parameter. One can note that these spacetimes, which are discussed in

some detail in reference [64], have slower than usual fall-off at infinity. However, the

main thing to observe is that the Kerr-Schild form of these metrics is simple. Taking

the background metric to be the unique constant curvature vacuum, the Kerr-Schild

representation is simply (C.3) with F = λ/r
D−5
2 . The appearance of a free multi-

plicative parameter in F indicates that these spacetimes fall within the framework

of our analysis, and we take this as evidence that looking for rotating black hole

solutions via the Kerr-Schild will be simplest in the unique vacuum case. Given the

failure to find rotating Kerr-Schild generalizations of the static black holes of general

Gauss-Bonnet theories in [26, 27], it may be interesting to investigate generalizations

of the Kerr-Schild ansatz such as the one analyzed in [34].
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APPENDIX D

KERR-SCHILD FORM IN KALUZA-KLEIN

We start off with the Kerr-Schild form of the Schwarzschild metric and after adding

a flat direction, we have

ds25 = −dt2 + dr2 + r2dΩ2 + (α/r)(dt+ dr)2 + dz2. (D.1)

We once again boost along the flat direction using the following transformations

t = (cosh β)t̂+ (sinh β)ẑ

z = (sinh β)t̂+ (cosh β)ẑ (D.2)

and we are left with

ds25 = −dt̂2 + +dẑ2 + dr2 + r2dΩ2 + (α/r)[(cosh β)dt̂+ (sinh β)dẑ + dr]2. (D.3)

After a bit of algebra, we are able to express the metric in the form

ds25 = (1 +
α

r
sinh2 β)[dẑ +

(α/r) sinh β cosh β

1 + (α/r) sinh2 β
dt̂+

(α/r) sinh β

1 + (α/r) sinh2 β
dr]2

−dt̂2 + dr2 + r2dΩ2 +
(α/r) sinh β

1 + (α/r) sinh2 β
[(cosh β)dt̂+ dr]2

(D.4)
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Making a similar identification as before,

e−4φ/
√
3 = 1 +

α

r
sinh2 β

e−2φ/
√
3 = (1 +

α

r
sinh2 β)(1/2)

we are once again able to peel off the four dimensional metric

ds24 = (1 +
α

r
sinh2 β)(1/2)[−dt̂2 + dr2 + r2dΩ2 +

(α/r) sinh β

1 + (α/r) sinh2 β
[(cosh β)dt̂+ dr]2]

= (1 +
α

r
sinh2 β)(1/2)[(−1 +

(α/r) cosh2 β

(1 + (α/r) sinh2 β
))dt̂2 + (1 +

α/r

(1 + (α/r) sinh2 β
)dr2

+
2(α/r) cosh β

(1 + (α/r) sinh2 β
))dt̂dr + r2dΩ2].

(D.5)

After completing the square, we have

ds24 = (1 +
α

r
sinh2 β)(1/2){(− (1− α/r)

1 + (α/r) sinh2 β
)[dt̂+

(α/r) cosh β

1− (α/r)
dr]2 + r2dΩ2

+
1

1 + α
r

sinh2 β
[1 +

α

r
cosh2 β +

(α2/r2) cosh2 β

1− (α/r)
]dr2}.

(D.6)

Now after redefining the t̂ coordinates and sprinkling a little algebra on top, we have

ds24 = (1 +
α

r
sinh2 β)(1/2){(

−(1− α
r
)

1 + α
r

sinh2 β
)dt2 +

[1 + α
r
(cosh2 β − 1)]

(1 + α
r

sinh2 β)

dr2

(1− α
r
)

+ r2dΩ2}.

(D.7)

Finally, we are left with the expression

ds24 =
−1 + (α/r)

(1 + α
r

sinh2 β)(1/2)
dt2 +

(1 + α
r

sinh2 β)(1/2)

1− α/r
dr2 + r2(1 +

α

r
sinh2 β)(1/2)dΩ2

(D.8)
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where we see that the final expression using the Kerr-Schild form for the initial metric

matches the previously found expression from (4.9).
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[3] K. Schwarzschild “Über das Gravitationsfeld eines Massenpunktes nach der Ein-
steinschen Theorie,” Sitzungsberichte der Kniglich Preussischen Akademie der
Wissenschaften 7, 189, (1916).
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