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ABSTRACT 

WIND POWER CAPACITY VALUE METRICS AND VARIABILITY: A STUDY IN NEW 
ENGLAND 

 
SEPTEMBER 2015 

 
FREDERICK W. LETSON, B.A., EARLHAM COLLEGE 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor James F. Manwell 

Capacity value is the contribution of a power plant to the ability of the power 

system to meet high demand. As wind power penetration in New England, and 

worldwide, increases so does the importance of identifying the capacity contribution 

made by wind power plants. It is critical to accurately characterize the capacity value of 

these wind power plants and the variability of the capacity value over the long term. 

This is important in order to avoid the cost of keeping extra power plants operational 

while still being able to cover the demand for power reliably. This capacity value 

calculation is particularly interesting because wind power output and demand for 

electricity are not statistically independent. They are both driven by the weather. 

This dissertation describes a model of the New England power system in the 

presence of increasing wind power penetration, used to achieve three major ends: 

1. To evaluate the magnitude of the contribution that wind power would make to 

resource adequacy in the New England Power system at various levels of 

penetration (up to 50%). 
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2. To characterize the inter-annual variability in that contribution 

3. To assess various capacity value metrics with regard to their ability to predict the 

long term capacity value of wind power plants, especially based on limited data 

4. To characterize the interaction of wind power plants and energy storage with 

respect to capacity value 

These ends were achieved by completing three studies: a long-term study based 

on measured wind data, a high-penetration study based on synthesized data, and an 

investigation of the effect of grid-scale energy storage. While the methods used in these 

studies are generally applicable, New England is used as a consistent example since 

many of these phenomena are strongly affected by the regional wind and power system 

characteristics. 

The results of this work show that wind power capacity value is relatively high at 

low penetration and decreases substantially as penetration increases to 50% and that 

this is not significantly improved by the inclusion of grid-scale (daily load-shifting) 

energy storage. Also, the capacity value of this energy storage, considered separately is 

relatively high, and not strongly dependent on wind energy penetration level. In future 

power systems with higher wind penetrations than 50% or those relying on longer-term 

storage (which could be necessary to reach very high levels of renewable penetration), 

new metrics of capacity value may be necessary to ensure system adequacy 
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CHAPTER 1 
INTRODUCTION 

This dissertation documents an investigation of the effect of wind power plants 

on the reliability of a power system. The goal was to identify effective metrics for 

characterizing a wind plant’s contribution to reliability using easily available data. These 

metrics should be useful for system planners making decisions about the adequacy of 

the generator fleet at some future date, and should be useful to wind developers, siting 

wind projects. 

 Bulk power system reliability can be divided into two major parts (Billinton & 

Allan, 1984): 

System Security is the reliability of the power transmission and distribution 

system. It is a measure of how likely it is that failures in these system will lead to 

interruptions in electrical service for customers, and how widespread those 

outages are likely to be. 

System Adequacy is the ability of the generator fleet to provide adequate power 

at all times. This is considered separately from system security. System 

adequacy is the focus of this study. 

The contribution of a power plant to system adequacy is called the capacity 

value of that plant. Capacity value is not an easily-defined quantity like capacity factor. It 

is dependent on many characteristics of the power plant and the power system of which 

it is a part.  Calculating the capacity value of a wind plant is particularly challenging, 
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because the power available from a wind plant is not statistically independent from 

power demand; they are both influenced by the weather. 

The following definition of terms is included here as a primer for the reader. 

Readers familiar with the terminology of power system reliability can safely skip to the 

beginning of Chapter 0. 

1.1 Definition of terms 

 Resource adequacy is the degree to which the existing or planned generation 

resources meet the current or projected distribution of electrical power demand.  

 The capacity value (CV) of a generator is a general term for how much a power 

plant contributes to resource adequacy. This is not to be confused with the 

capacity factor 

 The capacity factor of a power plant is a measure of its average power output 

compared with its maximum power output. This is usually expressed as the 

fraction: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝑁𝑎𝑚𝑒𝑝𝑙𝑎𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 8760 ℎ𝑜𝑢𝑟𝑠/𝑦𝑒𝑎𝑟
 

1 

Capacity factor is a dimensionless quantity, often expressed as a percentage. 

The effective load carrying capacity (ELCC) of a power plant is a measure of how 

much that plant contributes to system reliability, compared to a plant with 

perfect availability (an ideal plant). ELCC is a dimensionless quantity, often 

expressed as a percentage. 
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 The loss of load probability (LOLP) is the probability for a given period of time 

(typically an hour) that the generation resources will be inadequate to meet the 

load.  𝑋𝑡 is a random variable representing the system capacity at time t, 𝑑𝑡 is 

the electrical demand at time t, and 𝑟𝑡 is the contribution of variable renewable 

(such as wind power) at time t. The renewable contribution is treated as 

negative demand (and shown on the right side of the inequality) because both 

the load and the renewable contribution are modeled using historical data, 

rather than represented by a probability distribution. 

𝐿𝑂𝐿𝑃 = 𝑝(𝑋𝑡 < 𝑑𝑡 − 𝑟𝑡) 2 

 The loss of load expectation (LOLE) is the long term expectation value, in hours 

per year, of the amount of time that there will be un-served load.  This is 

required to be 1 day in 10 years or less in North America. LOLE is the industry-

standard rigorous metric for resource adequacy. The following equation 

describes the LOLE calculation. 

𝐿𝑂𝐿𝐸 = ∑ 𝑝(𝑋𝑡

𝑡

< 𝑑𝑡 − 𝑟𝑡) 
3 

 

 The forced outage rate of a power plant is the probability of an unplanned 

outage of that plant, usually due to mechanical failure 

 In this dissertation, the term wind penetration is used to mean amount of energy 

a power system gets from wind power compared to the total system energy 

consumption. This could be over one year or over a period of years. Except 

where otherwise specifically noted, penetration will be used to mean this 
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concept of energy penetration. Wind penetrations expressed in this study are 

the raw fraction of wind energy output over system energy demand, regardless 

of whether the timing of the wind and the load allow for all energy from the 

wind power plants to be applied to the load (wind curtailment is not considered 

in the penetration calculation). 

 The Load-Net-Wind (LNW) is the time series of system load with the wind power 

time series subtracted out for each hour. This net load of the load which must be 

met by the conventional generators of the system.  
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CHAPTER 2 

OVERVIEW OF WIND AND POWER SYSTEMS 

This chapter is intended as a primer on issues surrounding wind integration. 

Many of the topics in this chapter are tangential to the concept of wind power capacity 

value, and are included here for completeness. Wind integration is the study of large 

scale issues in the bulk power system relating to the introduction of wind power. Issues 

surrounding interconnection of wind power (local issues, mostly having to do with 

voltage control) are excluded entirely. 

As a part of plans for the reduction of greenhouse gas emissions, wind power 

penetration in many countries including the United States is growing rapidly. The 

benefits of wind include reduced gas and particulate emissions and non-exposure to fuel 

insecurity and price volatility. The unique attributes of wind power require special 

attention where power system planning and operations are concerned. The variability of 

wind power and the fact that wind resource is often located far from electrical load 

centers create grid issues specific to wind power. These complications will increase in 

importance as the penetration (the percentage of yearly system energy provided by 

wind power) increases.  

2.1 Power System Planning and Operation 

The goals of a power system operator are to provide power to customers as 

demanded, within certain power quality tolerances, and to do so at a reasonable cost. 
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These goals have two major implications of relevance to this chapter. First, the system 

must be operated such that the total power being consumed by the load and the total 

power being generated on the system are equal, or very close to equal, at each moment 

in time. This requires that the generator fleet be capable of meeting the maximum 

demand, and also that the fleet be capable of ramping (changing power output with 

time) quickly enough to cover any changes in the load that occur. The system must also 

have adequate transmission to deliver all of the power generated to the locations where 

it will be consumed (Ackermann, 2012).  

The process of matching generation to the load is undertaken on several time 

scales. The longest time scale is that of system planning for resource adequacy 

discussed above. On a day-to day basis, individual power plants are dispatched 

(commanded to run with a certain power output) to cover the load while minimizing 

cost and maximizing system reliability.  

Figure 1 shows four time scales relevant to power plant dispatch. The longest 

time scale is called unit commitment. It is a high-level process to ensure that adequate 

generation will be available over the next time period (on the order of days) to meet the 

expected load. Plant scheduling generally happens one day ahead of time. The bulk of 

power plant dispatch happens during this period in part because many large thermal 

plants require several hours of preparation to reach full output. Load following refers to 

scheduled intra-hour changes in plant output to follow expected changes in the load. 

The shortest time scale of power plant operation is called regulation. Plants responsible 
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for meeting fluctuations in the load on the time scale of seconds to minutes are 

automatically controlled by the system operator to achieve the reaction time required 

for high-frequency load matching (Smith, Milligan, DeMeo, & Parsons, 2007). 

 

Figure 1 - Time scales of generator fleet operation (Smith et al., 2007) 

Successful system operation also requires attention to the transmission system. 

Power plants must be dispatched in such a way that no transmission lines are 

overloaded, and that voltage at each node in the grid is within its specified range. 

2.2 Complications Due to Wind Power 

Wind plants are unlike conventional generation in several important ways, two 

of which will be discussed here. First, the wind resource varies significantly with 

location. This drives the placement of wind power facilities to those areas where the 

wind resource is sufficient to produce power economically, and these areas are often far 
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from load centers and existing transmission lines. Second, wind power is inherently 

variable. Rather than power output being controllable within the entire range of 

operation, as with conventional power plants, wind plant output varies substantially 

with wind speed. These effects of the nature of the wind resource have important 

implications for the way wind power must be treated in the power system. 

The variability of wind power can have a large effect on the generators providing 

power regulation to the system. With increasing wind penetration more regulation and 

load following operations may be required than would otherwise be necessary (with 

existing generators). In the extreme, this could require the construction of new plants to 

cover the increased variability in the system. Figure 2 shows two examples of inter-hour 

variability from different times of the day and year. For hours in which load tends to 

increase while wind power output is decreasing (or vice versa) the ramping 

requirements of the other generators on the system are increased. 
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Figure 2 - Inter-hour variability with and without wind power (Smith et al., 2007) 

The availability of adequate transmission is key for the development of wind 

power on a large scale. Remote, variable generation such as wind power can have 

detrimental effects on voltage if the connection to the rest of the grid is weak. Also, the 

transmission lines from remote areas of wind generation must have sufficient power 

capacity to carry the wind power to market. Figure 3 shows a summary of grid issues 

surrounding wind integration and the time/length scale associated with each. It is of 

note that the issues associated with large time and length scales tend to be related to 

power supply, and those with small time/length scales tend to be related to voltage and 

power quality. 
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Figure 3 - Time scales of system impact from wind power (Holttinen et al., 2011) 

2.3 Geographic Smoothing 

The negative effects of increasing wind penetration are exacerbated by the 

correlation in output of one wind farm to the next. Geographic diversity among wind 

farms tends to reduce this correlation and to smooth the total wind power output on 

the system. Figure 4 shows the variability of the wind resource as a function of 

frequency. Small scale variation (less than one hour in characteristic period), is easily 

smoothed out with any reasonable geographic diversity in wind plant geography. Larger 

scale variations (with characteristic periods of hours to days), require plants to be 
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spread over distances of hundreds or thousands of miles, depending on the speed of the 

weather system.  

 

 

Figure 4 - Time scales of wind variation 

 Figure 5 is a power duration curve showing the smoothing effect 

associated with increasing the region of interest from Denmark and Germany, to all of 

the European Union (EU), to the EU and North Africa. It can be seen here that increasing 

geographic diversity tends to lower the probability of extremely low or extremely high 

outputs. The total wind output from a system with wind power spread out significantly 

will tend toward some middling value and rarely reach the extremes. 
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Figure 5 - Smoothing effect on total wind power output (Van Hulle, 2005) 

Another concern relating to wind variability is high-wind cutout events. These 

events occur when turbines shut down at high wind speed to protect themselves from 

high mechanical loads. These events can occur quite suddenly, and, unless the system 

operator has access to real-time or forecast wind data, can occur without warning. 

Figures 6 and 7 show a high-wind cutout event in Texas in 2007. The ramp rates of 

individual wind farms are extreme as they shut down in self-preservation, but the 

aggregate effect, shown in Figure 7 is much more spread out over time. This allows the 

rest of the system time to react and balance this change in power. 
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Figure 6 - Effects of a high-speed cut-out event (Michael Milligan & Kirby, 2008). Power is 

shown in MW 

 

Figure 7 - Aggregate effect of the same cut-out event (Michael Milligan & Kirby, 2008). Power 

is shown in MW 
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Quantifying the effects of geographic smoothing on the costs and benefits of 

wind power could be an important contribution to wind plant siting decisions and 

transmission planning efforts for wind power. Having a ready way to judge the effects of 

wind farm siting on grid operation, above and beyond annual energy output of the farm, 

could lead to better decisions about the locations in which wind farms are built, and 

placement of long-distance transmission built to collect wind power. Operational costs 

of wind integration and the value of wind power to the grid both get less favorable as 

wind power penetration increases. The effects of geographic smoothing can help to 

mitigate these negative effects.  

One benefit of geographic diversity of wind power is the decreased cost of 

regulation, as discussed in the Geographic Smoothing section above. Less operation of 

regulation means higher efficiency and lower cost for the system. Figure 8 shows results 

from several studies of the increasing cost of regulation as penetration increases. This 

increase in cost is related to the magnitude of the variability in the wind power output 

increasing with wind penetration, and becoming a larger contributor to the total 

variability of the system. At low penetrations the variability in net load due to wind 

power is overshadowed by the variability in the load itself.  As penetration increases 

wind makes a real contribution to the system variability. This contribution is mitigated 

by having geographically diverse wind plants. The less correlated the outputs of the 

wind plants on the system are, the smaller the total contribution of wind power to the 

total net load variability. 
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Figure 8 - Operating reserve requirements as a function of wind penetration for various power 

systems (Smith et al., 2007) 

Figure 9 shows the capacity value (called capacity credit, here) of wind energy 

found in several state and national studies. It can be seen that there is a general trend 

toward less capacity value of wind power (as a percentage of installed capacity) as wind 

penetration increases. This indicates that each new wind farm contributes less to the 

maximum capacity of the power system than the previous one did. This can be 

explained by a concept called loss of load expectation (LOLE). As defined above in the 

definition of terms, the LOLE is the expected value, in hours per year that the generation 

on the system will be inadequate to meet the load. Since the capacity value of a 

generator is a measure of how much the addition of that generator to the system 

affects the LOLE. Plants with a high availability, particularly at times of heavy load, will 

have a high capacity value, since they contribute more to the system’s ability to meet 
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high demand reliably. A wind plants capacity value is related to the expected plant 

output at times when system load is highest. Or, to put it another way, the relationship 

between weather (which is a major load driver) and the wind resource at the site has a 

major effect on the capacity value of a wind plant at that site.  

 

Figure 9 - Capacity value of wind for various power systems (Keane et al., 2011) 

As wind penetration on a power system increases, the times of high net load 

(load minus wind power output) are shifted away from days where the wind is blowing, 

since the system has a comparatively large contribution from wind on those days. The 

‘problem’ days in a system with a high wind penetration will tend to be non-windy days, 

and thus the contribution of wind power to reducing LOLE on such a system is low. This 

effect is obviously mitigated by geographic smoothing of wind power output. As wind 

farms are spread over a wider area, the correlation between their outputs will decrease, 

and the probability of non-windy days decreases as the total wind power output 

becomes smoother.  
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CHAPTER 3 

CAPACITY VALUE METRICS 

Capacity value metrics are used by power system planners to ensure that there 

will be enough power plants to meet demand at some point in the future. When two or 

more power plants need to be compared with respect to their contribution to system 

adequacy, system planners rely on several metrics.  

Historically, system adequacy was ensured using a planning reserve margin. This 

is a rule of thumb, based on experience with power system operation, rather than 

probability theory.  A planning reserve margin is the amount by which the total capacity 

of the generator fleet exceeds the maximum expected demand, as a percentage of 

expected demand. A typical value for a planning reserve margin might be 15% (Billinton 

& Allan, 1984). This method does not address the actual reliability of current or future 

power plants and does not give the user an accurate idea of the probability of an event 

in which demand exceeds generation capacity. 

More probabilistically rigorous methods of examining system adequacy are now 

preferred (Michael Milligan, 2011). 

The following subsections describe the capacity value metrics which are in 

common use by system operators to identify the capacity value of wind power plants. 
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3.1 Risk-based Methods 

Risk-based methods of ensuring system adequacy are designed to estimate the 

probability of a low-capacity event and, sometimes, the severity of that event. These 

methods take into account the reliability of each power plant on the system and some 

of these methods are applicable to wind power plants.  

3.1.1 Loss of Load Expectation and Effective Load Carrying Capability  

Loss of Load Expectation (LOLE) is the most rigorous, widespread and trusted 

measure of system adequacy (Keane et al., 2011) (Billinton, 2001). LOLE is the 

expectation value (usually measured in hours per year) of the fraction of time for which 

generation will be inadequate to meet demand. In the United States, the target value 

for LOLE is 1 day in 10 years (Michael Milligan & Porter, 2006; "NERC Reliability 

Standards,"). Since this metric is so widespread and will be of central importance to this 

project, it is described here in higher detail than other metrics. 

An LOLE calculation requires the following data an inputs (Holttinen, Bettina 

Lemström, Meibom, & Bindner, 2007): 

1. A demand time series for the period of investigation 

2. A wind power time-series for the same period 

3. A complete inventory of conventional generation units’ capacity and forced 

outage rates 
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4. The target reliability level. 

Using these four inputs, the LOLE is calculated in three steps (Garver, 1966). 

1. Construct capacity outage probability table (COPT) 

Given that each generator making up the system has a probability of outage, 

there is some finite chance, for each hour, the total available generation will 

be inadequate. 

Starting with the forced outage rate of each power plant in the system, the 

probability distribution of available generation for any hour is calculated. This 

system-wide probability distribution is the convolution of the individual 

probability distribution of available power output for each generator. 

2. Calculate LOLP 

The Loss of Load Probability (LOLP) is the probability, for each hour of the 

period, that the generator fleet will be inadequate to meet demand: 

𝐿𝑂𝐿𝑃 = 𝑝(𝑋𝑡 < 𝑑𝑡) 4 

where 𝑋𝑡 is a random variable representing the system capacity at time t and 

𝑑𝑡 is the electrical demand at time t. 

3. Average over the hours in the period of investigation. 
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The LOLE is calculated from the LOLP by summing over all hours in the period 

of investigation and then dividing by the number of years in that period, T. 

𝐿𝑂𝐿𝐸 = ∑ 𝑝(𝑋𝑡

𝑡

< 𝑑𝑡)/𝑇 
5 

When using this method, conventional power plants are modeled using a two-

state model: they are either operating or they are offline. This two-state model is 

inappropriate for a wind plant since its output is variable within a range. When a time-

varying resource like wind power is included in this reliability model, it is included as a 

negative load, since there is important information contained in the time history of wind 

plant output and its relationship to electrical demand. The two are not independent, so 

it is important to use concurrent load and wind power data in this calculation. Including 

a contribution from one or more variable, renewable power plants, rt, the LOLP and 

LOLE are given by the following equations: 

𝐿𝑂𝐿𝑃 = 𝑝(𝑋𝑡 < 𝑑𝑡 − 𝑟𝑡) 6 

𝐿𝑂𝐿𝐸 = ∑ 𝑝(𝑋𝑡

𝑡

< 𝑑𝑡 − 𝑟𝑡) 
7 

In order to find the reliability contribution of a particular power plant, the 

system is modeled with and without that plant and the resulting change in LOLE is the 

credited to that plant. 
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Effective load carrying capability (ELCC) is the most common way of expressing 

capacity value. The ELCC of a power plant is a comparison between the reliability benefit 

of adding that plant to the power system and adding a plant with perfect availability. 

ELCC is useful for comparing the contributions of plant with differing size, reliability and 

on-peak delivery. ELCC can be used with a wide array of system adequacy metrics, and is 

generally paired with LOLE (Michael Milligan & Porter, 2006). 

For example: a 500MW power plant which, when added to the power system in 

question, gives the same reliability benefit as a perfectly available 300MW plant, has an 

ELCC of 300MW or 60%. 

An example of ELCC calculation with LOLE is given in Chapter 0. 

3.1.2 Expected Unserved Energy 

Expected unserved energy (EUE) is a reliability metric very similar to LOLE, but 

EUE also contains information about the magnitude of capacity shortages, not just their 

likelihood. The EUE is calculated as follows: 

𝐸𝑈𝐸 = 𝛥𝑇 ∑ 𝑈(

𝑡

𝑑𝑡) 
8 

Where U(dt) is the expectation value of unserved load at time t (Fockens, van 

Wijk, Turkenburg, & Singh, 1991), (Michael Milligan, 2011). 
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3.2 Capacity Factor Methods 

Some reliability metrics work by examining the average output of a variable 

generator, such as a wind plant, during some relevant subset of hours in the year. 

Generally these are hours of high electrical demand, the drivers of LOLE.   

3.2.1 Peak Period Method  

The Peak period method is a simplified method for determining the capacity 

value of a variable generator. It is used by many system operators in North America as a 

standardized metric for crediting renewable generators with a capacity value. This 

method approximates ELCC by investigating the average output of the proposed plant 

during certain representative periods; usually periods when power demand is high. For 

example ISO New England uses summer afternoons and evenings in the fall, winter and 

spring (Milligan and Porter 2006). 

3.2.2 Annual Peak Method  

The annual peak method refers to two different capacity value metrics. One is a 

risk-based metric: examining the change in LOLP during the peak demand hour of the 

year due to the addition of the plant in question. The other is a capacity factor metric: 

checking the plant output during the peak hour.  
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The strength of these metrics is simplicity and transparency. Their weakness is their reliance 

on a single data point to characterize each year. Since the advent of computerized data 

analysis, these methods have fallen out of favor. 

A metric similar to these was investigated in this study. The average plant output 

during the top 1% of load hours was used as a predictor of capacity value. This metric is 

referred to below and the top load hours metric, or TLH. 

 

3.3 Distribution Methods  

Distribution methods work by examining the distribution of power demand, and 

wind power output, rather than a time history. These methods have the advantage of 

being less sensitive to extreme events than the methods above, but information relating 

to chronological relationship between wind power output and power demand can be 

lost. 

3.3.1 The Z-Statistic Method  

The Z-statistic method centers on the random variable Z, defined by the 

distribution of surplus generation at on-peak times. Z is defined as: 

𝑍 =
𝑆̅

𝜎𝑆
 

9 
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Where 𝑆̅ is the expectation value of surplus generation, and 𝜎𝑆 is its standard 

deviation. This random variable is related to LOLP as shown in Figure 10. 

 

Figure 10 Surplus distribution and the Z- Statistic (Dragoon & Dvortsov, 2006) 

By analyzing what is required to hold Z constant during changes to the power 

system model, one can determine the load carrying capability of a power plant added to 

the system. If one assumes that the shape of this distribution is unchanged by the 

addition of a wind plant (the mean and width of the distribution may change), then the 

Z-statistic method is a valid method for determining the capacity value of that wind 

plant (Dragoon & Dvortsov, 2006) 

3.3.2 Garver’s method  

Garver’s method, also called Garver’s approximation, is a graphical 

approximation method for calculating the capacity value of power plants (Garver, 1966). 

In order to apply this method to a wind power plant, one must assume that its 
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distribution of power output is that same at all times. As a result, this method has been 

rendered obsolete (Dent, Keane, & Bialek, 2010). 

3.3.3 Multi-state representation of wind power plants in COPT 

Wind power capacity value can be calculated by using the ELCC/LOLE process 

described above, but instead of including wind power output as a negative load, the 

wind plant can be represented as a part of the capacity outage probability table (COPT) 

like any other power plant. While most power plants are represented using a two-state 

model (the plant is available or it is not), wind power plants can be better represented 

by a multi-state model. The unconditional cumulative density function for wind plant 

power output is convolved with the rest of the two-state cumulative density functions 

for the rest of the generator fleet 

Representation of wind power plants in this way fails to address the mutual 

statistical dependence of wind power output and load, and has fallen out of favor 

(Keane et al., 2011) 

3.3.4 Wind distribution percentile methods 

Wind distribution percentile methods are a way of characterizing the ‘firm 

capacity’ that a wind power plant provides to the power system. These methods 

characterize the capacity value of a variable generator by expressing the maximum 

power output with a given exceedance probability. Usually the power output 

distribution during peak load hours in considered in this calculation.  
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For example, the power output which is exceeded by the plant in question 95% 

of the time (the power output with a 95% exceedance probability), can be used to 

compare its reliability benefit to one or more other power plants (C.J. Dent, 2010). 

This metric is also called the guaranteed capacity, and is used some German 

studies of wind capacity value, such as the DENA study (Bartels et al., 2006). 

3.3.5 Mont Carlo methods 

If the joint probability distribution of wind power output and load is known, a 

long time series of wind power data can be synthesized which reflect the complex inter-

relationship between these two quantities. These Monte Carlo methods are sometimes 

used in operational studies of grid integration of wind power. The difficulty of using 

these methods is the results can only be as accurate as the characterization of wind and 

load that one uses as a starting point (Michael Milligan & Porter, 2006) (Ensslin, 

Milligan, Holttinen, O'Malley, & Keane, 2008). The difficulty of assessing this relationship 

is central to the problem of estimating wind power capacity value. 

3.4 Capacity value metric summary papers  

The following is a list of papers which summarize the metrics used to calculate 

the capacity value of wind power plants, dating back to 2006. The metrics outlined in 

each of these papers is listed also. The intention of including this list here is to show 

how widespread the use of a few major metrics is, and to support the idea that the 
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above list of metrics represents a reasonably exhaustive account of the metrics used in 

the literature. 

 Methods to Model and Calculate Capacity Contributions of Variable Generation 

for Resource Adequacy Planning, (Michael Milligan, 2011) 

o Reserve margin, LOLP, LOLE (recommended),  

 Capacity Value of Wind Power, IEEE transactions on power systems (Keane et al., 

2011) 

o LOLE, ELCC, Garver’s method 

 Impacts of large amounts of wind power on design and operation of power 

systems, results of IEA collaboration (Holttinen et al., 2011) 

o LOLP, ELCC  

 Capacity value of wind power: summary(O'Malley, Milligan, Holttinen, Dent, & 

Keane, 2010) 

o LOLE, LOLP, ELCC 

 Simplified Methods for Renewable Generation Capacity Credit Calculation: A 

Critical Review (C.J. Dent, 2010) 

o Annual peak method, Garver’s method, Z-method, wind distribution 

percentile methods, peak period methods. 



28 

 Capacity Value of Wind Power: Calculation and Data Requirements (B. U. C. D. 

Hasche, Keane, Engineering, & O'Malley, 2009) 

o LOLE, Garver’s method 

 Comparison of capacity credit calculation methods for conventional power 

plants and wind power (Amelin, 2009) 

o LOLP, ELCC, Garver’s method, Guaranteed capacity 

 Wind capacity credit in the United States (M. Milligan & Porter, 2008) 

o ELCC, LOLE, Peak period methods, wind distribution percentile methods 

 Current methods to calculate capacity credit of wind power, IEA collaboration 

(Ensslin et al., 2008) 

o ELCC, LOLE, EUE, Monte Carlo methods 

 The capacity value of wind in the united states: Methods and implementation 

(Michael Milligan & Porter, 2006) 

o ELCC,EUE, LOLP, LOLE, Peak period methods, Garver’s method, Monte 

Carlo methods 

3.5 Wind Integration Studies  

Wind Integration Studies are in-depth studies of the effects of the addition of 

wind power to a particular power system. They are usually undertaken by system 

operators in order to predict what measures will be necessary to accommodate more 

wind power coming online, and what benefits the system will see from the addition of 

wind power (Keane et al., 2011).  
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The Eastern Wind Integration and Transmission Study (EWITS) is a study that was 

finished in 2009. It is a study of the effects and requirements of getting 20% of electrical 

energy from wind power in the eastern United States. One of the major components of 

the study is a large amount of synthesized wind data for thousands of sites in the 

Eastern US. The data set for each site contains a wind speed time series for the years 

2004, 2005 and 2006, as well as a time series of power output for a theoretical wind 

farm at the site, based on a simple plant model (Corbus et al., 2010). This synthesized 

wind speed and wind power output data is publicly available and forms the basis for 

much of the analysis in this project.  

The EWITS study analyzes the Eastern Interconnection. Figure 11 shows the 

interconnections overseen by the North American Electricity Reliability Corporation 

(NERC). 
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Figure 11 - The NERC Synchronous Interconnections (Corbus et al., 2010) 

The EWITS study addresses the capacity value of the wind farms in its data set 

using the ELCC/LOLE method. Some results of this capacity value study are shown in 

Figure 12. 
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Figure 12 - EWITS capacity value results 

The four scenarios shown in Figure 12 refer to four different sets of wind farms 

chosen as plausible build-outs of future wind power in the eastern U.S. These four 

scenarios are described as follows: 

 Scenario 1  

o Penetration 20% 

o High capacity factor sites, on shore 

 Scenario 2  

o Penetration 20% 

o Hybrid with offshore 

 Scenario 3  
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o Penetration 20% 

o Local, with aggressive offshore 

 Scenario 4  

o Penetration 30% 

o Aggressive  and on- and off-shore 

Penetration percentages in the EWITS study are power percentages: total 

nameplate capacity vs. maximum system load. The shaded area at the top of each bar 

represents capacity value lost to transmission constraints in scenarios with less 

transmission capacity. The capacity value results in the EWITS study vary less year-to-

year than similar results from other studies. This could be the result of a study area that 

is particularly geographically large, with a large number of wind farms represented. 

Scenarios 3 and 4, which have aggressive offshore development, have less geographic 

diversity among wind farms and more inter-annual variability in capacity value results. 

The New England Wind Integration Study (NEWIS) (Clark, Jordan, Miller, & Piwko, 2010) uses 

largely the same data synthesis model as the EWITS study, but with a higher time resolution. 

Capacity value investigations are done using the ELCC/LOLE method in the NEWIS. Figure 13 

shows the capacity value results across several scenarios, with an increasing proportion of 

offshore sites moving from left to right. One can see that scenarios with more offshore wind 

have higher capacity values and more inter-annual variability in capacity value. 

Figure 14 and Figure 15 are from the New York and Minnesota Wind Integration 

Studies, respectively. They show the sensitivity of capacity value metrics to the 

particular year of data used. In the New York study, the system in 2002 has a much 

higher LOLE and gets much more reliability benefit from each wind power scenario than 
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the same system in the year 2001. Investigating data from 2003 in the Minnesota Study 

would lead one to believe that wind power plants had a much higher ELCC than doing 

the same investigation in 2005. 
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Figure 13 - NEWIS capacity value results 14% penetration 

 

Figure 14 Change in LOLP due to the addition of wind power plants (Clark, Jordan, Miller, & 

Piwko, 2005) 
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Figure 15 - ELCC of Wind power plants, by year (Zavadil, 2005) 

In 2005 and 2006, a planning study was done of the German power system: 

Planning of the grid integration of wind energy in Germany onshore and offshore up to 

the year 2020 also known as the DENA study. This study addresses the capacity value of 

wind in Germany using a firm capacity metric. It is not a major part of the study, but 

investigators found the guaranteed capacity associated with wind power plants to be 

between 5 and 8% of nameplate capacity, depending on wind penetration (Bartels et al., 

2006).   

In 2011 an Irish study was conducted on the amount of data required to perform 

an accurate assessment of the capacity value of a wind plant (B. Hasche, Keane, & 

O'Malley, 2011). This study used ELCC/LOLE as its metric for capacity value. The major 

conclusion of the study is that four or five years of concurrent wind and load data are 

required for a stable and reliable capacity value calculation. Figure 16 shows the 
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decrease in ELCC variability as the number of years of data used in the calculation 

increases. 

 

Figure 16 - Variability in ELCC calculation as a function of number of years considered (B. 

Hasche et al., 2011) 

In a 2011 study of the Texas power system (ERCOT), The integration of very high 

penetrations of wind and solar power was investigated (Denholm & Hand, 2011). The 

focus was on the grid flexibility and storage infrastructure required to operate with 

variable renewable generators supplying 80% of system energy. The following three 

figures are from this NREL 80% renewables study. They relate to wind and solar 

penetration and curtailment, as they relate to storage and grid flexibility. Figure 17 

Shows wind curtailment as a function of wind penetration for various levels of grid 
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flexibility. Grid flexibility is a measure of the fraction of power plants which are not 

“must run” baseload plants, and whose output may be varied to follow the load-net-

wind. At 50% wind penetration, 80% grid flexibility results in a 45% curtailment of wind 

energy. In the same wind scenario, a 100% flexible grid (zero must-run plants) results in 

only a 7% curtailment of wind energy output. 

 

Figure 17 – Wind Curtailment and Grid Flexibility (Denholm & Hand, 2011) 

Figure 18 shows an analysis of variable renewable energy curtailment with 

various mixes of wind and solar energy, and 100% grid flexibility. Generation mixes with 

a high proportion of wind and with some solar contribution fare the best in terms of 

curtailment. The high-solar scenarios suffer from the geographic concentration of the 

solar plants. The ‘0/100’ curve here is the same at the ‘100% flexibility’ curve in Figure 

17. 
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Figure 18 – Wind and Solar Curtailment by Proportion of Energy from Each (Denholm & 

Hand, 2011) 

Figure 19 shows the effects of storage on curtailment in the 30/70 solar/wind 

scenario. The ‘No Storage’ curve here is the same as the 30/70 curve in Figure 18. 

Storage power capacity is to the average system load and various durations are 

investigated. The first 4 hours of storage capacity have the greatest impact, lowering 

curtailment at 80% penetration from 32% to 18%. The addition of the final 12 hours of 

storage (from 12 to 24 hours) only mitigates 2 percentage points of curtailment. 
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Figure 19 – Wind and Solar Curtailment by Storage Duration (Denholm & Hand, 2011) 

Storage and Curtailment are investigated in Chapter 0 of this dissertation. 

Comparisons to these ERCOT results are made in the conclusion. The following section 

deals with a major motivator to the adoption of wind power in power systems: avoided 

emissions. 
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CHAPTER 4 

WIND POWER AND AVOIDED EMISSIONS 

Avoided emissions are a primary benefit that wind power provides to the 

operation of power systems. The energy produced by wind power plants offsets the 

energy that needs to be produced by conventional generators, reducing fuel use and 

thereby, emissions (Ackermann, 2012). This chapter summarizes the results of some 

wind integrations studies with respect to avoided emissions, and estimates the effects 

of wind penetrations up to 50% in New England on emissions. This overview focuses 

primarily in carbon emissions. 

In 2004, a climate change study was conducted at Princeton, Stabilization 

Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies 

(Pacala & Socolow, 2004). This study originated the often-cited idea of climate 

stabilization wedges. The concept of these wedges is the in order to stabilize CO2 in the 

atmosphere at 500 ppm (the target identified in (Wigley, Richels, & Edmonds, 1996)) 

several strategies must be employed simultaneously, each contributing to lowering 

carbon emissions over the next 50 years toward a rate consistent with 500ppm CO2. 

Each of these wedges, shown in Figure 20 corresponds to 1 Gigaton of carbon in 

2054. The wedges are a way of comparing the effort required to meet this 500 ppm 

target with different mixes of currently-available technology. The top plot shows the 

difference between ‘business as usual’ (BAU) and the 500 ppm stabilization curve  

identified by (Wigley et al., 1996). The bottom plot shows how the stabilization wedges 

each contribute to moving carbon emissions toward the target WRE500 curve. 
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Figure 20 - Climate stabilization wedges (Pacala & Socolow, 2004) 

The caption for Figure 20 from (Pacala & Socolow, 2004) is included here for 

clarity:  

(A) The top curve is a representative BAU emissions path for global carbon 
emissions as CO2 from fossil fuel combustion and cement manufacture: 1.5% per year 
growth starting from 7.0 GtC/year in 2004. The bottom curve is a CO2 emissions path 
consistent with atmospheric CO2 stabilization at 500 ppm by 2125 akin to the Wigley, 
Richels, and Edmonds (WRE) family of stabilization curves described in (Wigley et al., 
1996), modified as described in Section 1 of the SOM text. The bottom curve assumes an 
ocean uptake calculated with the High-Latitude Exchange Interior Diffusion Advection 
(HILDA) ocean model (Shaffer & Sarmiento, 1995) and a constant net land uptake of 0.5 
GtC/year (Section 1 of the SOM text). The area between the two curves represents the 
avoided carbon emissions required for stabilization. (B) Idealization of (A): A stabilization 
triangle of avoided emissions (green) and allowed emissions (blue). The allowed 
emissions are fixed at 7 GtC/year beginning in 2004. The stabilization triangle is divided 
into seven wedges, each of which reaches 1 GtC/year in 2054. With linear growth, the 
total avoided emissions per wedge is 25 GtC, and the total area of the stabilization 
triangle is 175 GtC. The arrow at the bottom right of the stabilization triangle points 
downward to emphasize that fossil fuel emissions must decline substantially below 7 
GtC/year after 2054 to achieve stabilization at 500 ppm. 
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Wind power (replacing coal) is included on a list of 15 technologies, 7 of which 

would be required to hold carbon emissions stable for 50 years. One ‘wedge’ worth of 

wind power consists of 2000 GW of installed capacity, at a 33% capacity factor. This 

framework is included here to provide a context for the importance of reducing 

greenhouse gas emissions in New England.  

4.1 Avoided Emissions in the EWITS Study 

The Eastern Wind Integration and Transmission Study (EWTIS) is described above 

in Section 0. In the EWITS study, 4 wind power build-out scenarios were modelled. 

Three with 20% wind penetration and one (Scenario 4) with 30% penetration (As noted 

above, penetrations in the EWITS study are power penetrations). The first three 

scenarios are distinguished from one-another by the geographical distribution of the 

wind power plants. Figure 21 (Table 1 from the EWITS study) shows the installed 

capacity for each scenario 
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Figure 21 - EWITS Wind Scenarios  (Corbus et al., 2010) 

Figure 22 shows the CO2 emissions avoided in each of the four wind power 

scenarios the rightmost ‘Carbon Sensitivity’ scenario inlcudes a carbon pricing scheme 

which changes the order in which conventional power plants are dispatched, favoring 

lower emissions plants. 

 

Figure 22 - Avoided CO2 emissions in EWITS (Corbus et al., 2010) 
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Table 1 shows the emissions reduction and the wind penetration level for each 

scenario. The Ratio for each scenario is the ratio of these two percentages. These 

percentages and their ratio are the metrics for emissions reduction that are used in this 

chapter to characterize the effect of wind power penetration. The small variations in 

avoided emissions among the first three scenarios are due to the timing of wind power 

production and its effect on the dispatch of fossil plants. The time series of wind power 

output is different in each scenario, so the fossil energy which is being displaced may 

come from different power plants. The large increase in avoided emissions in scenario 4 

is due to the displacement of some energy from carbon-intensive baseload plants. One 

might make the simplistic assumption that avoided emissions would be proportional to 

wind energy production, since each kWh of wind energy displaces a similar amount of 

energy that would otherwise have been produced at a fossil plant. In fact, the avoided 

emission from a kWh of wind power varies as a function which fossil plant is reducing its 

output.  

Table 1 - EWITS scenario emissions reduction 

 
EWTIS scenarios 

 
1 2 3 4 

Penetration [%] 20 20 20 30 

Carbon reduction [%] 4.39 4.49 4.7 18.83 

Ratio [] 0.22 0.22 0.24 0.63 
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4.2 Avoided Emissions in the NEWIS Study 

The New England Wind Integration Study (NEWIS) is described above in Section 

0. The NEWIS investigates emissions reduction in several wind power build-out 

scenarios. Figure 23 shows total emissions of oxides of nitrogen (NOX), oxides of sulfur 

(SOX), and carbon dioxide (CO2).  

 

Figure 23 - NEWIS total Emissions by Scenario 

Figure 24 Show the emissions reduction rate per MWh of wind energy, in each 

scenario. It is notable that the CO2 reduction rate is relatively consistent across all 

scenarios, but the SOX reduction rate increases with wind penetration. This is due to the 

reductions in coal plant output in the higher penetration scenario. 
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Figure 24 - NEWIS emissions reduction per MWh of wind power 

Figure 25 and Figure 26 show power plant dispatch during a week in April in the 

14% and 24% scenarios, respectively. These figures show a much greater reduction in 

the energy output of coal plants during the week in question, for the higher-penetration 

scenario. This explains the increasing SOX reduction rate as wind penetration increases. 

 

 

 

Figure 25 - NEWIS power plant dispatch, 14% Energy Best Sites Onshore 
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Figure 26 - NEWIS power plant dispatch, 24% Energy Best Sites Onshore 

Table 2 shows the emissions reduction percentage and the wind power 

penetration percentage for each scenario. It is noteworthy that the ratio of CO2 

reduction percentage to wind penetration percentage is greater than one for all 

scenarios; the percentage of CO2 emissions avoided is greater than the percentage of 

energy generated by wind power. This is possible because of the large fraction of energy 

that is produced by nuclear and hydro power in New England. Since the energy that is 

displaced is entirely from fossil fuel plants, and the total system CO2 emissions rate 

(kTons per MWh) is reduced by the presence of nuclear and hydro plants, this result is 

possible. 
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Table 2 – NEWIS scenario emissions reduction 

 
NEWIS Scenarios 

Penetration [%] 0 2.5 9 14 20 24 

kTons Carbon 52.69 51.15 47.69 43.08 39.62 37.31 

Carbon reduction 
[%] 0.00 2.92 9.49 18.25 24.82 29.20 

Ratio [] - 1.17 1.05 1.30 1.24 1.22 

 

The next two figures are from ISO New England’s 2013 Electric Generator Air 

Emissions Report (ISO-NE, 2014b). Figure 27 shows the energy generated in New 

England in 2004 and 2013, by fuel type. Taken together, hydro and nuclear power 

produced 33% of energy in 2004, and 39% in 2013. This is enough to substantially affect 

the system wide CO2 rate. Wind power grew from 0% to 2% of annual energy during this 

period. 

 

Figure 27 – New England energy generation by fuel type: 2004 and 2013 (ISO-NE, 2014a) 

Figure 28 (Table 1-1 in the Air Emissions Report) shows the 2012 and 2013 

emissions and emissions rates. 
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Figure 28 - 2012 and 2013 New England system emissions and rates 

4.3 Avoided Emissions and the Hull Offshore Wind Project 

In a 2008 MIT study, the emissions benefits of a proposed offshore wind farm in 

Hull, Massachusetts were investigated (Rached, 2008). Figure 29 shows the 

methodology used. This method assumes that the wind plant output is small compared 

to the system load, and does not change the mix of power plants dispatched in any 

given hour. Power plant emissions are based on hourly data reported to the EPA. The 

marginal power plant (the one whose output would be offset by energy produced by the 

Hull wind plant) is identified be recognizing load-following behavior in its output time 

series. The avoided emissions are then calculated for each hour based on the predicted 

energy output from the Hull Offshore Wind Project and the emissions characteristics of 

the marginal fossil fuel plant. 
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Figure 29 – Hull Study methodology 

Figure 30 show a table of avoided emissions for the Hull Project, based on three 

scenarios: high, medium and low wind. These scenarios correspond to 0.28, 0.31 and 

0.36 capacity factory for the wind plant respectively.  
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Figure 30 – Hull Avoided emissions 

Figure 31 shows the range of avoided emissions for the Hull Offshore project 

over a period of years, and for the three representative high, medium and low wind 

years. The avoided emissions are split up seasonally for each year. It is interesting to 

note that the avoided NOX and SOX emissions for 2004 2005 and 2006 are lower due to 

the effect of the Clean Air Act on the Generator Fleet. Also, the largest share of avoided 

emissions occurs in the winter, even thou the highest loads occur in the summer. 
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Figure 31 – Range of Annual avoided emissions for the Hull Project 
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4.4 Regional Variations in Avoided Emissions 

A 2013 study from the University of Washington, Seattle investigated the 

emissions effect of placing a 1 MW wind turbine at various places in the United States. 

This study used the EWITS wind data and information about regional power plant mixes 

and dispatch to evaluate the regional variation in avoided emissions (Siler-Evans, 

Azevedo, Morgan, & Apt, 2013). 

Figure 32 shows the dollar value of the marginal emissions of the ERCOT power 

system, at various system output levels. These dollar values are an estimate of the 

social, health, and environmental damage done by the various pollutants. The marginal 

emissions rate at low power output is high because the base load plant which are on the 

margin at this power level are coal plants which are CO2 and SO2 intensive. The plants 

which are on the margin at 40 GW have the lowest marginal impact, and the peaking 

plants which are called upon to cover loads above 40 GW have a higher impact. Wind 

power output at times when the system load is near 40 GW will have a smaller effect on 

emissions than at times when it would be displacing energy from plants with higher 

emissions. This effect is important when predicting the avoided emissions at various 

wind penetration levels. The energy being displaced by wind may be from a different 

fuel type depending on the marginal power plants at the times in question. 
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Figure 32 - Marginal damages from electricity generation, ERCOT (Siler-Evans et al., 2013) 

Figure 33 is a map of the locational results for this geographic study. This map 

shows that a wind turbine in the northern and central United States would have a larger 

effect on CO2 emissions than one located elsewhere. This is due to the combination of 

factors. The excellent wind resource in this region leads to more energy production and 

the conventional generation displaced by that energy production are more carbon 

intense than those in other regions. The CO2 emissions avoided in New England are 

comparatively small. While the wind resource in New England is fairly good, the energy 

produced by wind plants in this region tends to displace natural gas energy, which has a 

smaller carbon effect. 
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Figure 33 - Avoided CO2 emissions from a wind power plant, by location (Siler-Evans et al., 

2013) 

This substantial variation in carbon displacement performance across the United 

States indicates that avoided emissions results from outside of New England are poor 

predictors of carbon effects in New England. The emission results from the NEWIS are 

likely to be the most relevant to this study of wind power in New England. The results of 

the NEWIS can be considered representative of emissions performance of wind power in 

New England with penetrations perhaps as high as 30%. At higher penetrations, the 

nature of the generator fleet required to cover the load-net-wind might be quite 

different, and have different emissions characteristics. 
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CHAPTER 5 

AN ILLUSTRATIVE EXAMPLE OF AN ELCC CALCULATION USING LOLE  

Since LOLE and ELCC calculations are central to this project, a concrete example 

of these calculations will be helpful. The following is an example of wind plant capacity 

value capacity value calculation using ELCC and LOLE. Figure 34 shows the structure of 

an ELCC calculation using LOLE as reliability metric. 

Wind Data Wind Plant Model System Load
System Reliability 

Data

LOLE Calculation

Ideal Plant 

CalculationComparison LOLE with ideal plantLOLE with wind plant

Wind Plant ELCC

 

Figure 34 - Data flow in an ELCC calculation with LOLE 

5.1 Model Input Data 

This section describes the data used in this example to assess the capacity value 

of the many EWITS data sites in New England. 
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The wind data used in these calculations are synthesized data 

from the EWITS study. These data (described in greater detail below in 

section 0) are the results of a mesoscale atmospheric model, with boundary conditions 

set by historical measurements. Data from 2004, 2005, and 2006 were used for all of the 

EWITS sites in New England.  

Wind farm power output is provided as part of the EWITS 

data. These power data were calculated by AWS Truepower using a 

composite power curve based on the IEC class of each individual site. Array and 

electrical losses are considered. These data were provided in 10-minute intervals and 

needed to be combined into hourly averages to fit the hourly system load data.  

Historical system load data were provided by ISO New England 

for the years 2004, 2005, and 2006. Since this project is a study of New 

England system adequacy, only the total New England load is considered. It is important 

to note that these load data are concurrent with the wind data being used. This is 

important because wind and electrical demand are both driven by weather, and are not 

independent of one another. Transmission between the sub-areas of the New England 

region is assumed to be adequate to move power to where it is consumed. The time 

series of system load data is shown in Figure 35. One can see that the highest loads 

occur generally in the summer. The same data are shown in a duration curve (ordered 

by magnitude rather than time), in Figure 36. Displaying the data this way emphasizes 

the important fact that the highest loads occur for only a small fraction of the time. 

Wind 

Data

Wind 

Plant 

Model

System 

Load
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Figure 35 - System load time series 



59 

 

Figure 36 – System load duration curve 

In order to calculate the LOLP for each hour of the three years 

used in this calculation, a function was constructed that gives the 

probability of inadequate generation as a function of demand: the Cumulative Density 

Function (CDF) of available power. This is a function of the size of each power plant on 

the system and its reliability. Since reliability information about the individual power 

plants are not publicly available, industry averages for each technology type were used. 

There are 696 power plants in New England. The mix of plant technologies is shown in 

Figure 37. 

System 

Reliability 

Data
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Figure 37 - New England generation mix 

For the purpose of constructing the CDF of available power, a CDF of the power 

available from each power plant was assumed, based on the plant’s capacity and the 

industry-wide average forced outage rate for plants with its fuel type. The total-system 

CDF was calculated by taking the convolution of the individual power plant CDFs 

(Billinton & Allan, 1984). The CDF of available power is shown in Figure 38. This CDF 

serves as the reliability model for the entire power system. It gives the probability of un-

served load as a function of the hourly demand.  
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Figure 38 - Probability of un-served load vs power demand 

 The base-system LOLE was calculated by calculating the LOLP for each hour in 

the data set. The demand for that hour is combined with the CDF of available power to 

arrive at the LOLP for that hour. The average LOLP is the LOLE, shown in this equation. 

There is the number of years of data used. T is not usually included since it is generally 

assumed that one year of data is used. 

𝐿𝑂𝐿𝐸 = ∑ 𝑝(𝑋𝑡

𝑡

< 𝑑𝑡 − 𝑟𝑡)/𝑇 
10 

Figure 39 shows a histogram of power demand plotted against the same CDF 

One can see that the value of the CDF is very close to zero for power demand up to 
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about 27 GW, and rises steeply before 30 GW. Almost all of the contribution to LOLE 

happens during the relatively rare events in this interval.  

 

Figure 39 CDF of available power with system load distribution 

The ELCC of each of the theoretical wind plant in the EWITS data set was 

calculated by subtracting its power output from the 3 years of system load data and 

recalculating the LOLE. This change in LOLE was compared to the change in LOLE from 

the addition of ideal power plants of several sizes, to find the ideal plant that made an 

equivalent reliability contribution. The size of this ideal plant, as a percentage of the 

nameplate capacity of the wind plant in question is the ELCC of that wind plant.  The 

ELCC of each of the EWITS wind farms in New England is shown in Figure 40, separated 
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by region. ELCC is plotted against capacity factor, to show how the reliability 

contribution of each wind plant compares to its energy contribution. 
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Figure 40 - ELCC vs. capacity factor 

One can see in Figure 40 that many of the offshore sites have a very high ELCC, 

up to about 68%. It is very hard to believe that any wind plant would have such a high 

capacity value. Since the ELCC is based on the performance of each wind plant during 

the several peak hours of the three years of data used, the metric is very sensitive to the 

peculiarities of the years used in its calculation. Using a different period of time in the 
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calculation could lead to a substantially different ELCC result. An investigation of this 

problem is described in the next section. 

5.2 Long-term investigation 

In order to be sure that we have characterized the real long-term capacity value 

of a wind plant, many years of wind and load data would need to be used in the ELCC 

calculation. Such volume of data is often unavailable at a wind project site, so it is 

desirable to find a reliable capacity value metric with less stringent data requirements. 

The following describes an initial investigation of the inter-annual variability of capacity 

value. 

Two sets of wind data were found of at least ten years in length, both from the 

National Atmospheric and Oceanic Administration’s (NOAA’s) National Data Buoy 

Center. These two sites are the buoy, B44013, and the platform, Buzm3. These two sites 

are shown in Figure 41. They are outlined in purple on the map. 
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Figure 41 - Long term wind data sites (photographs from (NDBC)) 

 

A simple wind plant model was developed for this investigation. This model is 

designed to produce results similar to the model used by AWS Truepower to produce 

the EWITS data. A piecewise curve was fit to a set of wind speed and power data from a 

few offshore sites in the EWTIS set. Gaussian scattering was added to produce a spread 

similar to the EWTIS data. This curve and a simulation with scatter are shown in Figure 

42 and Figure 43. The EWITS data are shown in blue, and my reverse-engineered model 

results are shown in red.  
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Figure 42 - Curve fit to EWITS offshore wind farm power curve 

 

Figure 43 - Power curve with Gaussian scatter 

This wind plant model was applied to the wind speed data from each of the two long-

term sites to produce a power output time series for a theoretical wind farm at each 

site. After de-trending 11 years of system load data concurrent with the wind data 

available from these sites, an ELCC calculation was performed for each year, for each 
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site. The capacity value results are shown in Figure 44.

 

Figure 44 – ELCC by year 

It is plain that the ELCC/LOLE metric is highly sensitive to the year of data that 

was used in its calculation. ELCC values for Buzm3 vary between 0.05 and 0.37, 

depending on the year. The fact that the LOLE each year is dominated by a few peak 

hours means that the statistical uncertainty in the ELCC calculation based on a single 

year is large. This presents a double problem. It is difficult to know the long-term 

average capacity value of a wind power plant based on one year (or a few years) of data. 

Additionally, even given the long-term average capacity value of a wind plant, its actual 

behavior will be quite variable year-to-year, and very hard to predict in advance. 
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 It is proposed that the long-term average ELCC of a wind plant should be taken 

as its actual capacity value, and any proposed capacity value metric should be judged by 

its ability to approximate this long term value. Chapter 0 describes an effort to compare 

4 capacity value metrics in this fashion, and to characterize the inter-annual variability 

of wind power plants, particularly in New England.   
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CHAPTER 6 

THE INTER-ANNUAL VARIABILITY OF WIND POWER CAPACITY VALUE 

This chapter describes a study of capacity value metrics and the inter-annual 

variability of wind power capacity value, using the New England power system as an 

example. Characterizing the variability in wind power capacity value is critical for system 

planning in systems with increasing wind penetration. This chapter includes two 

investigations: a long-term investigation and a high penetration investigation. 

The long term-investigation, described in Section 0, investigates the capacity 

value of a few wind plants over several years. These calculations are based on measure 

data, and are designed to identify how many years of data are necessary for each metric 

to produce a consistent result. 

The high-penetration investigation, described in Section 0, uses synthesized data 

representing a large number of wind power plants in New England to identify trends in 

capacity value results related to wind penetration level. 

6.1 Capacity Value Metrics used in this Study 

A subset of the capacity value metrics described in Chapter 0 were used for this 

investigation. They were chosen based on their applicability to wind power, ease of use, 

and effectiveness with limited data.  The following four capacity value metrics were 
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compared in terms of their accuracy at predicting the long-term capacity value of wind 

power plants and their volatility year-to-year. 

1. Effective Load Carrying Capability (ELCC) is the metric by which other metrics 

were judged. It is described in detail in Section 0. 

2. The ISO New England Peak Period Method (ISONE) is described in Section 0. It is 

based on average power plant performance during hours which tend to have 

high load. 

3. The Annual Peak Method (TLH) is described in Section 0. It was applied in this 

study using the 1% of hours with the highest load each year. 

4. The Linear Fit Method (LINFIT) is a novel method developed during this 

investigation. It is intended to predict wind plant performance during a small 

number of peak hours based on data from a much larger number of similar 

hours. Being a novel method, it is not described in Chapter 0. It is described 

instead in the following section. 

6.1.1 The Linear Fit Method 

In choosing a metric with which to approximate capacity value of a variable 

resource such as wind power, there is a trade-off to be managed. Metrics such as ISO 

New England’s peak period method include plant performance during a significant 

fraction of the year. The inclusion of this much data reduces the statistical variability of 

the metric result year-to-year, but this large subset of the data includes many hours 
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during which demand is not especially high. Including these hours in the capacity value 

estimate may not be appropriate. This may lead to inaccurate estimates of capacity 

value. 

The annual peak method might be based on one hour or several hours of system 

load and plant output data. Characterizing the performance of the plant during these 

critical hours is the goal of a capacity value calculation, but basing the metric on so few 

hours of data leads to a high statistical variability and a large importance placed on 

which year or years of data are chosen for the calculation. 

A novel method for the prediction of wind plant capacity value was investigated 

in this study. This method uses wind plant performance during a significant fraction of 

the year to predict performance at peak times. The method, herein referred to as the 

linear fit method, consists of dividing a concurrent wind power and load time series into 

a large number of load bins. The size of each of these load bins was chosen such that 

they each contain an equal number of hours of data. The mean power output of the 

wind plant in each of these bins was calculated.  

A linear least-squares fit is made to the top several bin means. This linear 

equation is intended to characterize the varying behavior of the plant in question with 

respect to load during times of high load. 

This linear fit is used to estimate the average plant performance during the times 

of peak load. 

In this study the following parameters were chosen for this method:  
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 The wind power output and load time series was divided evenly into 100 bins by 

load 

 The top 10 bins were used in producing the linear fit. 

 This linear fit was used to predict average performance during the top 1% of load 

hours 

This metric is referred to below as the linear fit method or LINFIT. 

Figure 45 shows visualization of this method as used this study. It shows the 

mean wind power output for a wind plant at Thompson Island for each percentile bin of 

load. The thick black line shows the linear fit to the top 10% of load hours. This linear fit 

is used to predict the wind plant performance during the top 1% of load hours. Power 

output is given on a per unit (p.u.) basis: as a fraction of the plant’s nameplate capacity. 
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Figure 45 - Linear Fit Method Example 

6.2 Comparing and evaluating capacity value metrics 

In order to compare the effectiveness of various wind power metrics, a 

comparison framework was developed based on how well each capacity value metric 

approximates the long-term ELCC for any site.  

Taking the long-term ELCC to be the target value for any capacity value estimate, 

a diagnostic variable, R, was used as a simple indicator of the accuracy of any capacity 

value metric given the years of data used. 

𝑅 =
𝐶𝑉(𝑚𝑒𝑡𝑟𝑖𝑐, 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎)

𝐸𝐿𝐶𝐶𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚
 

11 
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Values of R close to unity indicate an effective metric. High values indicate an 

overestimation. Low values indicate an underestimation. 

When judging the fitness of a capacity value metric, that metric is applied to 

several subsets of the input data, each with the same number of years. The statistics of 

the various R values produced by this process are the primary indicators of the 

effectiveness of the metric. The mean squared error of these R results is an indicator of 

the accuracy of the metric. The standard deviation of the values is a measure of the 

variability within the set of results.   

In order to model power system reliability in this project many simplifying 

assumptions were made. Several of the more important assumptions are detailed here. 

 Wind power plants have 100% mechanical availability. Since the 

variability of wind power output due to wind variations is large compared 

to the effect of mechanical failure, and in order to treat wind plants simply 

in LOLE calculations, mechanical unavailability of wind power plants was 

not modelled. This is common in capacity value studies of variable, 

renewable generation (Michael Milligan, 2011). 

 Power Transmission is unconstrained. This project is a study of system 

adequacy. The intent was to characterize the effect of wind power plant on 

the adequacy of the New England generator fleet. Modelling transmission 

constraints and transmission failures is outside the scope of this project. 
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 Energy Storage is not included in the model. For simplicity, existing energy 

storage within New England was excluded from system operation. A power 

system with 50% wind penetration would need to include a large amount 

of energy storage in order to avoid curtailment. Study of the effect of this 

level of storage is left for the analysis in Chapter 0. 

 Scheduled power plant outages (routine maintenance) are not 

considered. All load events in this study which have a system adequacy 

impact occur in the summer months. Power scheduled power plant 

maintenance can be conducted at times of the year in which they will not 

have an impact on system adequacy. 

 Seasonal variations in thermal and hydro power plant output are 

excluded. Since the summer months account for all of the times of interest 

to system adequacy, the summer power rating for all thermal power plants 

was used in all cases. Energy constraint of hydro power plant due to 

seasonal variations in water flow was also not considered. 

 

The following two sections describe the use of this fitness framework in two 

contexts. Section 0 describes a long-term study based on measured data from several 

sites to characterize the behavior of each capacity value metric with various lengths of 

input data. Section 0 describes a high-penetration study based on synthesized data from 
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a large number of sites to investigate the changes in capacity value and its variability in 

systems with high wind penetration. 

6.3 Long-Term Capacity Value Study 

A long-term study was undertaken to characterize the efficacy of various 

capacity value metrics at predicting the long term capacity value (ELCC) of a wind power 

facility based on limited data. The goal was to investigate the behavior of these capacity 

value metrics as a function of the number of years of wind power output and load data 

used.  

Measured wind data from several sites in Massachusetts were used to produce 

wind power output time series. 

6.3.1 Wind Data 

The wind data used in this study were measured data from seven sites in 

Massachusetts, shown in Figure 46. The wind data were taken during the years 2000 to 

2010. 
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Figure 46 - Long-Term Wind Data Sites 

The sites used are maintained by two organizations: The Wind Energy Center at 

the University of Massachusetts, Amherst (WEC), and the National Data Buoy Center 

(NDBC). These organizations are responsible for the maintenance of the wind 

monitoring equipment at these sites and for making the data available to the public. The 

organization responsible for each site is listed below in Table 3 under Source. The Height 

column gives the height of the highest wind speed sensor at each site, in meters. Data 

are available from (NDBC) and (WEC). 

In order to accurately characterize the system adequacy contribution of a wind 

plant during any given year, the plant output during peak load hours must be known. 

Toward that end, years of data from these long-term sites were only used when there is 

at least 90% data availability during the top 1% of load hours. That is, if there are not 

wind data available for at least 79 hours out of the 88 hours with the highest load during 
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each year, that year was excluded from the analysis for that site. The number of years 

which passed this quality test for each site is listed below in Table 3 under Good Years. 

Table 3 – Long-Term Wind Data Sites 

Site Name 
Map 

Letter 
Good 
Years 

Height 
[m] Source 

Bishop & Clerks A 7 15 WEC 

Thompson 
Island B 9 39 WEC 

Buoy 44013 C 11 5 NDBC 

Buoy 44018 D 7 5 NDBC 

Paxton E 7 78 WEC 

Buzm3 F 9 24.8 NDBC 

Mt Tom G 7 37 WEC 

 

6.3.2 Analysis 

The measured wind speed time series for each site was used to produce a wind 

power output time series for that site. This transformation consists of two steps: 

applying wind shear to get a hub-height wind speed, and applying a power curve to get 

power output. 

The log law for wind shear was used with a surface roughness length appropriate 

to each site. Each wind speed time series was transformed to represent a wind speed 

time series at 100 m. The log law is described in (Manwell, McGowan, & Rogers, 2010). 

Figure 47 shows the power curve used to produce wind power output from the 

hub-height wind speed time series. It is a composite power curve designed to represent 

a wind farm rather than a single turbine. Due to array losses, intra-farm electrical losses, 
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and the improbability of all turbines producing at rated power at the same time, wind 

plant power output in this model is never 100% of the rated power. This power curve is 

the same curve used in the EWITS study data synthesis that is used in the following 

chapter.  

 

Figure 47 - Wind Farm Power Curve 

These wind speed time series are used in conjunction with concurrent system 

load data to carry out capacity value calculations using each capacity value metric. 

In order to investigate the effect of the number of years of data used in a capacity value 

calculation on the accuracy and variability of the result, the data from each site was 
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divided into several subsets. Each subset consisted of an integral number of years of 

data. As an example of this subsetting and analysis, Figure 48 shows the results of a set 

of these calculations for a single site (Thompson Island) organized by the number of 

years of data used. Each blue circle represents an ELCC calculation based on a number of 

years of data, N, indicated by its position along the x axis. The horizontal black line 

represents the long-term ELCC value for the Thompson Island site. This figure shows the 

nature of the convergence of ELCC calculations as N increases. Using 1 year of data, 

ELCC values range from 0.07 to 0.48. Using 4 years of data, this interval has decreased to 

0.21 to 0.33: a much tighter interval around the long-term value of 0.26. 

 

Figure 48 - ELCC Calculation for each Subset of Data by Number of Years of Data Used 
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The following section shows the results of a set of calculations which compare 

the accuracy and variability of the various capacity value metrics with respect to N. 

6.3.3 Results of Long-Term Capacity Value Study 

This section describes the results of the long-term capacity value study for each 

metric across all sites. These results reflect the effectiveness of each capacity value 

metric as a function of the number of years of data used. The results given here are 

limited to N=7 years since all the sites studied have at least that much data available. 

The mean squared errors of the R values for each capacity value metric were 

calculated as a function of N. These mean squared errors indicate the accuracy of each 

metric given the number of years of data used as an input. Figure 49 shows the results 

of this accuracy calculation. The ISO New England peak period metric (ISONE, in green), 

has a much higher mean squared error for all N than the other metrics. This is due to the 

inclusion of many hours of off-peak wind power output in the calculation.  

Of the remaining three metrics the short-term ELCC calculation (shown in dark 

blue) has relatively high mean-squared error for low N, due to the volatility of a metric 

which includes so few hours, and converges to very low error at high N. The remaining 

two metrics have fairly consistent accuracy for all N investigated. 



83 

 

Figure 49 - Mean Squared Error of R Metric 

Figure 50 shows the standard deviation of R with increasing N, as a measure of 

volatility. It shows that the ISO New England method does lead to consistent results, 

with variability similar to the TLH and LINFIT methods. The ELCC method has the highest 

variability for N<5 years. 
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Figure 50 - Standard Deviation of R Metric 

In conclusion, there is a general trade-off between the low volatility of methods 

which use a large fraction of the time series to calculate capacity value (e.g. ISONE), and 

the higher accuracy of methods which concentrate on the highest load hours (e.g. ELCC 

and TLH). It’s fairly clear from its performance in this study that the ISONE metric is not 

accurate enough for its low volatility to be of much help. In the above scenarios, the TLH 

method has the best overall performance among the metrics studied, especially for N<4 

years. For N> 4 years, short-term ELCC (naturally) becomes the best predictor of long-

term ELCC. 
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The following section describes a study of these 4 metrics and their effectiveness 

under conditions of increasing wind penetration. 

6.4 High-Penetration Capacity Value Study 

A high-wind-power-penetration study of capacity value and capacity value 

metrics was undertaken to evaluate the way that capacity value and the inter-annual 

variability of capacity value change and wind power makes up a larger and larger part of 

the generator fleet. A large number of wind power sites were needed to reach the 

target of 50% penetration of wind power by energy. Synthesized data from the EWTIS 

study (Corbus et al., 2010) were used for this purpose. 

6.4.1 EWITS data 

The Eastern Wind Integration and Transmission Study (EWITS) is a study that was 

finished in 2009. It is a study of the effects and requirements of getting 20% of electrical 

energy from wind power in the eastern United States. As mentioned in Section 0, one of 

the major components of the study is a large amount of synthesized wind data for 

thousands of sites in the Eastern US. The data set for each site contains a wind speed 

time series for the years 2004, 2005 and 2006, as well as a time series of power output 

for a theoretical wind farm at the site, based on a simple plant model. This synthesized 

wind speed and wind power output data is publicly available (NREL). 
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These synthesized data are available for 696 sites in New England both on- and 

offshore. The locations of these sites are shown in Figure 51, color coded by capacity 

factor. These data are the results of a mesoscale atmospheric model, with boundary 

conditions set by historical measurements. Data from all three years were used in this 

capacity value investigation for all of the EWITS sites in New England. 

 

Figure 51 - The EWITS sites in New England (NREL) 

6.4.2 Wind Power Build-Out Scenarios 

For clarity and concision in this analysis, the EWITS sites were grouped into five 

sets, herein referred to as quintiles.  Each quintile includes wind plants whose total 

energy output is 10% of the system load over the three years for which data are 

available. 
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The wind plants were grouped by capacity factor, with the highest capacity 

factor sites in Quintile 1, and the lowest in Quintile 5. A result, the wind plants in higher-

numbered quintiles have a higher total nameplate capacity in order to produce the 

same total energy. Statistics for each of these quintiles are shown in Table 4. 

Table 4 - Wind Quintile Characteristics 

Quintile 1 2 3 4 5 

Capacity Factor 0.48 0.47 0.47 0.44 0.34 

Nameplate Capacity [MW] 3360 3340 3360 3922.1 4457.1 

 

Increasing wind penetration was modeled by adding each quintile to the system, 

one after another, starting with quintile 1. Figure 52 shows the load-net-wind (the 

power demand for each our minus the wind power output for that hour) for a week of 

October 2004. The top curve is the total demand, and each lower curve represents the 

addition of another 10% wind power. By the time 50% wind penetration is reached the 

daily and weekly load shapes have been altered significantly. 
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Figure 52 - Load-net-wind time series, by quintile 

Figure 53 shows the average energy output of each quintile by month. Each 

quintile has the same annual shape: more output in the winter and less in the summer. 

The first three quintiles are dominated by offshore sites, and have very similar monthly 

averages. 
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Figure 53 - Wind power monthly average output, by Quintile 

Figure 54 shows the diurnal average output for each quintile. Again, the offshore 

sites in quintiles 1, 2 and 3 are clustered tightly together. Quintiles 4 and 5 show a lower 

afternoon output and a much higher output in the early morning. 
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Figure 54 - Wind power diurnal average output, by Quintile 

As the wind penetration in the power system increases the variability of load-

net-wind also tends to increase. Figure 55 shows the trend in the standard deviation of 

load-net-wind with increasing penetration. The total variability almost doubles between 

0% and 50% penetration. 
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Figure 55 - Load-net-wind standard deviation, vs Quintile 

This framework of 5 quintiles up to 50% energy was  used to study the effect of 

increasing penetration of the capacity value of wind power: both its magnitude and its 

inter-annual variability. 

6.4.3 Load Net Wind Calculation 

Each quintile of wind plants was added to the power system sequentially, to 

represent increasing penetration of wind power. After the first, the reliability 

contribution of each quintile was modelled using the system load minus the power 

output of the previous quintiles in place of the system load in capacity value 

calculations. This is analogous to the (𝑑𝑡 − 𝑟𝑡) expression in Equations  
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As discussed previously, this difference is referred to as the load-net-wind or 

LNW. Figure 56 shows the duration curves the total system load of load-net-wind for 

each quintile.  The fact that the curves close together in the highest load hours and they 

spread out as load decreases indicates that the wind plants make a relatively small 

contribution at times of high demand. 

 

Figure 56 - Load-Net-Wind Duration Curves  

Figure 58 gives a series of charts each displaying the mean LNW for each month 

of the year and each hour of the day. Each chart represents a level of wind penetration 

starting at 0% and increasing to 50%. The hours in the year with the highest mean load 

(summer afternoons) have a relatively small change in LNW with increasing penetration. 
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Winter evenings, another time of relatively high load, show substantial decrease in LNW 

as penetration increases. 

 

Figure 57 - Mean Load by Time of Year shows the mean system load for each month of 

the year, for each hour of the day. It is a larger copy of the upper-left chart in Figure 58 

(the others are shown smaller to keep them on one page for easier comparison). The 

load is highest on summer afternoons, with relatively high loads on winter evenings. As 

wind penetration increases, the LNW decreases generally, while remaining high on 

those summer afternoons. The addition of wind power is affecting these peak times less 

than most other times. It can be seen that the winter evening peaks are substantially 

reduced by to time 50% penetration is reached in the lower-right chart of Figure 58. 

 

Figure 57 - Mean Load by Time of Year 
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Figure 58 - Mean Load-Net-Wind by Time of Year 

6.4.4 Results of High-Penetration Capacity Value Study 

Figure 59 shows the capacity value of each quintile of wind plants. The solid, 

blue Increasing Penetration line represent the capacity value of each quintile on a power 
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system that includes the lower numbered quintiles (for example, the ELCC of Quintile 3 

is calculated using a power system model which already includes the contribution from 

Quintiles 1 & 2). The dotted, green Zero Penetration line represents the capacity value 

of each quintile of wind plants on a power system with no other contribution from wind 

power. 

Both of the analyses shown in Figure 59 present a strong downward trend in 

capacity value in the higher numbered. This can only mean that the wind plants in 

Quintiles 4 and 5 have poorer performance at times of high load. In the Increasing 

Penetration analysis, there is an additional effect. The substantial presence of wind 

previously added to the system tends to shift the times of high net load away from 

windy days, meaning that the newly added plants will tend to make smaller reliability 

contributions. The remainder of the analysis described in this section reflects the 

scenarios with increasing penetration. 
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Figure 59 - Capacity Value by Quintile 

R, in this high-penetration study was calculated by comparing one-year 

estimates of capacity value to the ELCC value based on all three years of data available. 

Figure 60 shows the standard deviation of R for the four metrics, as a measure of each 

metric’s variability as a function of penetration. The variability seems to be highest for 

quintiles 2 and 3. The fact that standard deviation is low for quintiles 1, 4 and 5 suggests 

that this variability is not strongly influenced by the degree of wind penetration. The 

fact that the standard deviation of R for ELCC is sometimes near or above one implies 

that the annual capacity value for these wind plants often varies by 100% of its long 

term value from year to year. 18.4 GW of wind make up the 50% energy scenario. With 
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an average ELCC of 19%, that’s equivalent to 3.4 GW of perfect capacity (in an average 

year). This means that the year-to year variability in the capacity contribution of this 

fleet of wind plants is about 3.4 GW, or 12% of the maximum system load. 

 

Figure 60 - Standard Deviation of Capacity Value Estimates, By Quintile 

Figure 61 shows the mean squared error for each metric and quintile. Quintile 3 

has the worst accuracy, especially with the ISO New England Metric. The accuracy of 

capacity value estimation does not seem to increase or decrease monotonically with 

wind penetration. 
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Figure 61 - Mean Squared Error of Capacity Value Estimates, By Quintile  

The increased variability and decreased accuracy of all metrics in the middle 

quintiles is likely due to the variability of the particular wind farms making up those 

quintiles, rather than any generalizable effects around 30% wind penetration. 

This section detailed a study of the capacity value of a large number of 

theoretical wind farms in New England. This investigation characterized the 

effectiveness of two existing capacity value metrics and two novel metrics at 

approximating the long-term ELCC of wind power plants based on limited data. These 

metrics were also evaluated at wind energy penetrations of up to 50%. It was 

demonstrated that the capacity value of wind power plants decreases severely by 50% 
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penetration of wind power. It was found that capacity value estimation accuracy and 

variability are not strongly affected by the level of wind penetration in the power 

system. In the long term study, the ISO New England metric displayed the poorest 

performance. The ELCC metric performed well for long data sets. The linear fit method 

and the top load hours method performed relatively well for short data sets. 

The metrics which relied on small amounts of on-peak wind power output data 

(ELCC and TLH) had good accuracy at predicting the long-term ELCC, but had higher 

variability between years. The ISONE metric which uses a large fraction of the time 

series, with equal weight, was less sensitive to annual fluctuations, but did a poor job of 

accurately predicting the long-term ELCC. The LINFIT method did as well as any method 

in accuracy, and was second only to the ISONE method in reducing inter-annual 

variability.  
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CHAPTER 7 

WIND POWER CAPACITY VALUE AND ENERGY STORAGE 

This chapter presents a study of the New England power system with wind 

power penetration increasing to 50%. Additionally, the power system was modelled 

with and without energy storage sufficient to mitigate wind curtailment at times of low 

power demand and high wind power output. Table 5 shows the occurrence of 

curtailment for each of the 5 wind power scenarios from Chapter 0. Wind curtailment 

begins occurring at 40% penetration, and by 50% penetration, a significant amount of 

wind energy is being lost to curtailment. Due to the timing of wind power output, some 

available energy cannot be used to serve the load. This lost energy will not offset fossil 

fuel consumption, and reduces the value of the wind power plants.   

Table 5 - Wind Curtailment by Penetration 

Wind Penetration [] 10% 20% 30% 40% 50% 

Total Energy from Wind [MWh] 3.6E+08 3.2E+08 2.8E+08 2.39E+08 1.99E+08 

Wind Curtailment [MWh] 0 0 0 999268.9 6009257 

Percent of Wind Energy Curtailed [%] 0.00% 0.00% 0.00% 0.42% 3.02% 

 

In order to operate the power system at 50% wind penetration without 

curtailment of wind power output, some grid scale energy storage is required. In this 

project, storage was modelled in a simple, technology agnostic fashion. ‘Storage’ here 

could refer to and mechanism by which the load could be shifted within a day. This 

could be accomplished by means of actual energy storage, such as pumped hydro or 

compressed air energy storage. It could refer of demand response or other load 

deferment. Various benefits of storage to a power system are discussed in Section 0 
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Research into the operation of power systems with significant storage is a large 

and active field, with many avenues of investigation. In this dissertation, storage is 

investigated for its effect on peak load shape (and thus, LOLE), and on wind power 

curtailment.  

7.1 Power System Modelling 

This aim of this project was to assess the effects of the addition of a large 

amount of wind power and energy storage to the New England power system on the 

adequacy of that system. Several aspects of the power system needed to be modelled: 

1. The load on the power system 

2. A large number of wind power plants  

3. The conventional generator fleet 

4. Energy storage for daily load shifting 

These models are based on the existing New England power system. When 

historical data were used, these data were taken from the years 2004, 2005 and 2006. 

Concurrent wind and load data were used to preserve the statistical relationship 

between these phenomena. Five wind power build-out scenarios were considered: one 

each at 10%, 20%, 30%, 40% and 50% penetration. 
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Capacity value in this study was assigned using ELCC, with LOLE as a system 

adequacy metric. The following sections describe the details of the various data and 

models used in this project. 

7.1.1 System Load 

Historical hourly load data from the New England power system were used. 

These are hourly data from the years 2004, 2005 and 2006. These data are available to 

the public at the ISO New England website (ISO-NE, 2014b). These years were chosen to 

coincide with the EWITS wind data, described below. 

It may be useful to understand the size of the New England power system. The 

maximum annual energy output occurred in 2005 and was 136,335 GWh. The maximum 

hourly demand occurred in 2006 and was 28,130 MW. 

7.1.2 The Conventional Generator Fleet 

Using the characteristics of the current conventional generators on the power 

system in New England, a capacity outage probability table (COPT) was constructed. This 

process consisted of finding the probability of inadequate generation (the loss of load 

probability, or LOLP) as a function of demand, based on capacity and the forced outage 

rate of each power plant. The process of building a COPT is described in (Garver, 1966). 

For each wind power penetration scenario, an appropriate COPT was used, such 

that the initial loss of load expectation for the system was close to 1 day in 10 years. 
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This was done by retiring of power plants to reflect a plausible future generator fleet (as 

wind plants are added to the system, the number of conventional power plants required 

to maintain system adequacy will decrease). 

An expanded explanation of the system adequacy calculations used in this 

project is included in Appendix A. 

7.1.3 Wind Power Output 

Wind power output data in this part if the study are taken form the EWITS data 

described in Section 0. These synthesized data are used to create plausible wind power 

build-out scenarios up to 50% penetration. The same wind power scenarios that were 

used in Chapter 0 were also used here. 

7.1.4 Energy Storage 

The primary benefit of storage on high-wind-penetration power systems 

(meaning 40-50% penetration) is the reduction of wind curtailment (Ackermann, 2012). 

Storage has the greatest impact on system performance when it is operated to address 

the net system demands rather than paired to increase the effectiveness on any one 

technology, such as wind or nuclear power (Holttinen et al., 2009).  

Storage operation can be of benefit to the system on several timescales, 

depending on the energy capacity available. In decreasing order of energy capacity, here 

are several time scales of interest to power system operation (Ackerman, 2012). 
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o Long-term seasonal storage shifts load from peak seasons to off peak 

seasons this requires weeks or months’ worth on energy capacity and 

might be accomplished by large, conventional hydro plants. 

o Daily time-shifting storage operation serves to reduce daily peaks by 

shifting demand to off peak hours. This requires several hours’ worth of 

energy capacity. 

o Management of uncertainty: this mode of storage operation requires 

about 6 hours of energy capacity. It is the use of storage to mitigate 

errors in wind and load forecasting. 

o Transmission curtailment reduction is the operation of storage to reduce 

curtailment of wind plants due to transmission constraints. 

o Reduction of short-term fluctuations: seconds to minutes of storage, 

operated to support power quality 

o Grid frequency support: approximately 1 hour of storage, operated to 

control grid frequency at times of power mismatch. 

The time scale of interest for this study is daily load-shifting. This is the longest 

time scale of load shifting feasible with technology available in New England. 

While the analysis in the project is storage-technology agnostic, a short summary 

of storage technologies appropriate to this application may interest the reader.  Figure 

62 shows the time and power scales offered by many different storage technologies. 

Pumped hydro and compressed-air energy storage could provide the energy and power 

requirements of daily load shifting in New England. Some batteries also approach the 

size required. It may make sense to include hydrogen as an energy storage method, 

based on its versatility. Hydrogen can be used as a fuel or stored over the long term and 

converted back into electricity.  
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Figure 62 – Storage technologies and their capacities (Eckroad & Gyuk, 2003) 

Of interest for this application are: 

 Round trip efficiency 

 Power capacity 

 Energy Capacity 

 Cost 

7.1.5 Pumped storage 

Pumped Hydro energy storage stores energy by pumping water from a lower 

reservoir to an upper reservoir during off-peak times and extracting that potential 

energy with turbines during times of peak demand. Pumped storage is by far the most 

common type of grid-scale energy storage in use today. There are approximately 1600 
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MW of pumped storage in the New England power system today, and about 22 GW 

nationwide. Expansion of this storage resource is limited by the availability of 

appropriate sites. Round-trip efficiency (energy produced/energy consumed) of pumped 

hydro plants is in the range of 80 to 85% (Eckroad & Gyuk, 2003).  

7.1.6 Batteries 

Lead acid batteries are another storage technology with a long service history. 

There are also newer battery technologies which may be suitable for grid-scale 

application, including: lithium-ion batteries and Sodium Sulfur batteries. While these 

batteries vary widely in cost and specific energy (kWh/kg), each technology delivers a 

round-trip efficiency of around 80%. Battery Storage facilities could be built with size on 

the order of megawatts (Hittinger, Whitacre, & Apt, 2012). 

7.1.7 Demand Response 

Demand Response is a system which allows energy consumption to be deferred 

from one time period to another, in order to ease the operation of the power system. 

Typically, this is accomplished by agreements between industrial energy consumers and 

the system operator. The consumer receives power at a lower cost, and is expected to 

reduce consumption during times of high demand, when instructed to do so. There are 

currently about 2400 MW of demand-response resources in New England (ISO-NE, 

2014b). 
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While it is not a storage technology, demand response is included here because 

is serves a similar function: lowering peak demand by moving energy consumption to 

off-peak time periods. With the assumption that this deferral of consumption does not 

result in a net increase in energy consumption, demand response can be represented in 

the power system model as storage with a round-trip efficiency of 100%. 

7.1.8 Compressed Air Energy Storage (CAES) 

Compressed air energy storage functions by pumping air into large reservoirs 

(usually underground cavities) and releasing it through turbines to produce energy, or 

using the compressed air as an input to a gas turbine generator to increase its fuel 

efficiency. Compressed air energy storage facilities might be built with power capacities 

of tens or hundreds of MWs (Hadjipaschalis, Poullikkas, & Efthimiou, 2009) and round-

trip efficiencies of 25 to 70% (Eckroad & Gyuk, 2003). 

7.1.9 Hydrogen Energy Storage 

Energy could be stored on a grid scale in the form of hydrogen. Hydrogen is 

produced by electrolysis and converted back to electricity using fuel cells. While less 

cost and energy efficient than batteries, hydrogen as a storage medium has the 

advantage that it could be used for a fuel rather than only being converted directly back 

into electricity for the grid. Also, with hydrogen storage systems, power capacity is 

largely independent of energy capacity. 
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Round trip efficiency for hydrogen energy storage is about 32% (Barton & Infield, 

2004) 

7.1.10 Storage Algorithm 

The storage algorithm used in this study is one which acts on the load-net-wind 

(LNW) in each scenario to limit the maximum load during each day by shifting demand 

to the lowest demand hours in that day. The algorithm assumes perfect knowledge of 

the LNW 24 hours in advance. Figure 63 Shows and example of storage operation during 

one week of July 2004. The data shown are for the 50% wind penetration scenario. One 

can see that the LNW falls below zero at times. These are times when total wind power 

output is greater that the system load. The algorithm acts to flatten each daily peak and 

lowers the maximum load each day as low as is possible within its energy and power 

constraints. The storage is refilled during periods of low demand and raises the daily 

minimum as far as possible within its power and energy constraints. This operation will 

serve to reduce wind curtailment in high-wind-penetration scenarios. 
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Figure 63 - Load Net Wind and Storage Operation 

The following section details the simplifying assumptions made for the 

development of the power system model 

7.2 Wind Power and Storage Build-out Scenarios 

Wind Power and Storage additions to the power system are considered 

independently.  The intention was to identify the individual contributions of these 

systems rather than their combined effect. 

7.2.1 Wind Power Scenarios 

This power system study with storage uses the same wind power build-out 

scenarios used in Chapter 0: Wind power plants sufficient to provide 50% of the annual 

load were divided in to 5 quintiles by capacity factor. These quintiles were added to the 
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power system sequentially resulting in 5 scenarios from 10% penetration to 50% 

penetration. These scenarios are described in more detail in Section 0. 

7.2.2 Storage scenarios 

Two storage scenarios were defined based on mitigating high peak loads and 

wind curtailment in the two highest-penetration scenarios.  Storage operation was 

modelled for Quintiles 4 and 5 with a range of storage power capacity and energy 

capacity.  Figure 64 and  

Figure 65 show the effects of including various amounts of storage in the power 

system with 40% wind penetration. To go with this wind power scenario, a storage 

scenario of 3000 MW power capacity and 4 hours’ worth of energy capacity (12,000 

MWh) was chosen. This amount of storage is enough to reduce wind curtailment to near 

zero, and to reduce LOLE to near the minimum achievable with daily load-shifting 

storage in this wind scenario.  
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Figure 64- Effect of Storage on LOLE, Quintile 4 

 

Figure 65- Effect of Storage on Wind Curtailment, Quintile 4 
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Figure 66 and  

Figure 67 show the effects of various amount of storage on LOLE and wind 

curtailment. The storage scenario chosen to fit this level of wind penetration has 6000 

MW of power capacity and 6 hours of energy capacity. These figures show that most of 

the wind curtailment avoidance and reliability benefit achievable by daily load-shifting 

storage is reached by this level of storage. 

 

Figure 66- Effect of Storage on LOLE, Quintile 5 
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Figure 67- Effect of Storage on Wind Curtailment, Quintile 5 

Table 6 shows the three storage scenarios used in this study. Each scenario is 

characterized by its maximum power output and its total energy capacity. Storage 

duration is the number of hours that the storage system can be run at full power before 

exhausting its stored energy supply. This is included as an intuitive description of the 

size of the system. 

Table 6 - Storage Scenarios 

Scenario 
Storage 
Power 
[MW] 

Storage 
Duration 
[Hours] 

Storage 
Energy 
[MWh] 

Scenario 0 0 0 0 

Scenario 1 3000 4 12000 

Scenario 2 6000 6 36000 

 



114 

As will be discussed in the next section, reliability (LOLE) calculations were done 

for each level of wind penetration with each storage scenario. The capacity value (ELCC) 

of each storage scenario and was calculated in conjunction with each wind scenario. 

That is: the two storage scenarios developed above (together with the zero-storage 

scenario) were each combined with the 6 wind scenarios described in Section 6.4.2

 Wind Power Build-Out Scenarios (5 Quintiles and the zero-wind scenario), for a 

total of 18 combinations. This allowed the calculation of the reliability benefit to adding 

wind or storage under various conditions by comparing scenarios with and without the 

system (wind or storage) in question, while holding the rest of the system equal. 

7.3 Results of Storage Study 

As stated above, the capacity value of additions of wind plants and energy 

storage to the power system were considered separately. The capacity value of any new 

system addition can be heavily dependent on the system to which it is being added. It is 

of interest to investigate the way in which the capacity value of storage changes with 

increasing wind penetration, and the dependence of wind plant capacity value on the 

level of storage available.  

The capacity value of each storage scenario was calculated by comparing the 

LOLE of each wind scenario with no storage to the LOLE of the same wind scenario with 

storage included. Similarly, the capacity value of each wind quintile was calculated by 

comparing the LOLE of the system with and without that quintile included, with storage 

kept constant. 
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Figure 68 shows the capacity value (ELCC) of each wind and storage scenario. 

The blue and green lines at the top represent the capacity value of storage scenarios 1 

and 2 respectively, as a function of wind penetration. Storage Scenario 2 has higher 

ELCC because it represents 6 hours’ worth of storage instead of 4. The ELCC of the 

storage scenarios is not strongly affected by wind penetration but does increase slightly 

with increasing wind power. 

 

Figure 68 - Capacity Values of Wind and Storage with Increasing Wind 

Penetration 

The lower three curves in  
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Figure 68 represent the capacity value of each quintile of wind as they are added 

sequentially to the system. It can be seen here that the presence of storage has a small 

positive effect on wind power ELCC for most quintiles. Capacity value tends to decrease 

as wind penetration increases. This decrease is due to a combination of reasons. Some 

of the dominant effects are listed here: 

 The lower numbered quintiles have the highest capacity factor sites. These sites 

have higher energy production generally and tend to have better performance at 

times of high load. 

 The lower numbered quintiles contain mostly offshore sites. These sites have 

relatively good power output on summer afternoons. Inland sites in New 

England tend to have poor performance at these times. 

 As wind penetration increases, the hours which have the largest effect on LOLE 

change. Hours which have high wind power output region-wide have a lower 

load-net-wind, and thus a low LOLP. The hours which still have high LOLP in the 

higher-penetration scenarios will tend to correspond with lower performance 

from the wind plants being added to the system. 

It may be surprising that the presence of storage has such a small effect of the 

ELCC of wind plants in this study. This counter-intuitive result is explained by a couple of 

observations. The days in the three year period of this study which contain the highest 

loads tend to have poor performance in the high-numbered quintiles for the entire day. 

This means that even in the presence of storage, the addition to the power system of 
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these wind plants has a small effect on system adequacy. The limited energy capacity, 

and the method of operation of the daily, load-shifting storage investigated in this study 

does not allow for wind energy produced days before the annual peak hours to be 

applied to those peaks. 

Figure 69 shows the effect of wind and storage on load-net-wind in the highest 

wind scenarios. It can be seen here that the addition of the fifth quintile has a 

substantial effect on the total energy required of the conventional generator fleet over 

the three year period, but a much smaller effect during the peak load hours (at the far 

left of the figure).The red and cyan curves show the system LNW with no storage. The 

difference between these two curves represents the effect of adding the fifth wind 

quintile to a system with no storage. The blue and green curves show the system LNW 

with storage (storage scenario 2). The difference between these two curves represents 

the effect of adding the fifth wind quintile to a system including storage.  
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Figure 69 - Load-Net-Wind Duration Curves 

Figure 70 shows the same curves as Figure 69, but shows only the top 100 hours 

of the three-year period of the study. It is clear that the addition of the fifth quintile of 

wind here has a small effect on LNW in the presence or absence of storage, but the 

storage itself has a relatively large effect at either wind penetration level. This result is 

consistent with the ELCC summaries in  

Figure 68. 
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Figure 70 - Load-Net-Wind Duration Curves, Peak Hours 

 

7.4 Summary 

An investigation was performed of the New England power system with wind 

penetrations of up to 50% and some daily load-shifting energy storage. The capacity 

values calculated for the first wind plants added to the power system in this study were 

relatively high because these plants were at offshore sites with high energy production 

and excellent power output during hot summer afternoons when the demand for 

electricity was high.  As penetration was increased the wind plants being added tended 

to be onshore sites with poorer performance especially during these peak hours. The 

capacity values calculated for these sites were substantially lower. This and other effects 

resulted in a drastic decrease in wind power capacity value as penetration approached 

50%. Wind power capacity values were near 50% at low penetration and decreased to 
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near 10% at higher penetration.  The ELCC of daily load shifting storage tended to be 

between 65% and 85%, increasing slightly with increasing wind power build-out. The 

inclusion of energy storage had a small, positive effect on wind power capacity value at 

all levels of penetration. 

7.5 Long-Term Storage and Higher Wind Penetrations (up to 100%, and above) 

This section is a conceptual exercise demonstrating the storage levels required 

to run a power system with a small conventional generator fleet and a large amount of 

wind power. These simulations were done without regard to capacity value, simply to 

calculate the storage power and energy that would be required to run the New England 

power system at various wind penetrations with only a given amount of conventional 

generation capacity. Wind penetrations between 50% and 200% were investigated in 

this way. Penetrations above 100% indicate that the total available energy from wind 

power over the course of a year is larger than the total energy demand. These scenarios 

necessarily include some curtailment of wind (or some alternative use of this extra 

energy, such as producing hydrogen for fuel). 

Operating the power system in these scenarios requires storage on a longer time 

scale than the daily load-shifting storage modelled earlier in this chapter. The long–term 

storage algorithm used here takes a load-net-wind time series and restricts the 

maximum load to a given value, without constraints on storage power or energy 

capacity. The algorithm logs the energy stored and used by the storage system and finds 

the storage power and energy that are required to maintain the maximum net load at 
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the given value. This is not an optimization. There may be much smaller amounts of 

storage that could achieve similar results. This algorithm simply calculates the amount 

of storage required the keep the load ceiling at a given level. 

 

 

Figure 71 - Long Term Storage Operation, 50% Penetration 

Figure 71 shows the operation of long-term storage on a load-net wind time 

series at 50% penetration, in blue. The net load after storage operation is shown in 

green. The storage algorithm has restricted to maximum net load to 12 GW (down from 

16 GW).  

Figure 72 represents the storage capacities required to restrict the maximum net 

load to various values from 15.8 GW down to 12 GW. It can be seen that the amount of 
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storage power and duration required increase fairly linearly as the power ceiling is 

lowered. 
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Figure 72 - Long-Term Storage Capacities, 50% penetration 
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Figure 73 - Long-Term Storage Capacities, 100% Penetration 

 

Figure 73 and Figure 74 show the results for this algorithm operating at wind 

penetrations of 100% and above. It is important to note here that the efficiency of this 

theoretical storage system is assumed to be perfect. To the extent that there are energy 

losses in any real wind-only system, energy from wind will need to exceed energy 

supplied to the load in order provide for those losses. 

 

Figure 73 Shows the power and energy requirements to achieve a ceiling as low 

as 10 GW. The right-hand axis now shows storage energy rather than duration as in  
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Figure 72. This is why the green curve is less linear. Figure 74 shows the amount 

of storage required to run a system at various wind penetrations with a net power 

ceiling of zero. This is the condition under which no other generators are required. 100% 

wind penetration entails nearly all of the EWITS sites being included in the wind power 

output time series. To simulate wind penetrations higher than this the total wind time 

series is simply scaled up by scalar multiplication. It can be seen in Figure 74 that the 

storage power required decreases linearly with wind penetration. This is due to the 

height of the maximum of the load-net-wind time series decreasing as the wind power 

time series is scaled up. The required storage energy decreases quickly for wind 

penetrations up to around 140% and then begins to level off. The storage power and 

energy required to run a wind-only system with 150% wind penetration are 

approximately 20 GW and 700 GWh respectively .This corresponds to 35 hours of 

storage, and a power capacity 71% of the maximum system load. This is much more 

than the larger storage scenario from the previous section, designed to accommodate 

50% wind penetration (6 GW and 36 GWh). 
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Figure 74 - Long-Term Storage Capacities for Wind-Only System, 100% - 200% Penetration 

The meaning of capacity value in scenarios such as these less clear than in the 

lower penetration situations described in earlier sections. In the absence of 

conventional generators, the entire system can be energy constrained. This means that 

the capacity value of storage and wind generation are harder to separate here, than at 

lower penetrations. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

This study consisted of modelling the New England power system with wind 

penetrations increasing to 50%. This was undertaken to estimate the capacity value of 

wind power plants under these conditions, and the variability of that capacity value 

year-over-year. 

Four capacity value metrics were compared in two similar but separate 

investigations: a long-term study and a high-wind-penetration study.  These four metrics 

were compared in their accuracy at estimating long term capacity value based on 

limited data and at the inter-annual variability of their estimates.  

The long-term study of the capacity value of a few wind power plants, based on 

measured data was conducted to investigate the long term characteristics of capacity 

value calculations. All metrics increased in accuracy as the length of data used to inform 

them was increased. The ISO New England metric was found to be by far the least 

accurate at estimating capacity value (but had the lowest variability). The ELCC metric 

outperformed all other metrics when it was given four or more years of data to work 

with. The Top Load Hours metric and the Linear Fit method performed similarly to one-

another, and were the most accurate metrics when applied to three or fewer years of 

data. The large inter-annual variability of wind power CV has two important converse 

implications.  
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1. It is hard to estimate the  long-term value of capacity value of a prospective 

plant based on the one or two years of wind data that might be taken to 

characterize the wind resource at a site  

2. Even if one knows the long term average capacity value for a wind plant or a 

group of wind plants, the actual capacity performance of these plants may vary 

widely from year to year, making reliability difficult to achieve. 

The high-penetration study investigated the effectiveness of the same four 

metrics as wind penetrations increased to 50%. This study was based on synthesized 

wind power output data from the EWITS study. Capacity values ranged from 0.47 for the 

lowest at low penetration down to 0.08 at 50% penetration. This decrease in capacity 

value was explained by two main factors:  

1. The lower capacity factor wind sites added to the system later in the process 

tended to be onshore sites with poor summer output. 

2. At higher penetration, the high LOLP hours which dominate the ELCC/LOLE 

calculation were shifted toward times when it was not windy, region-wide. 

The penetration level was not a strong predictor of the variability of capacity 

value metrics.  

The effect of storage on this system model was investigated by including a 

simple, technology-agnostic, daily load-shifting storage model. The capacity value of the 

wind power plants and the energy storage were considered independently as both were 

added to the system in increasing amounts. The storage was found to have an ELCC of 

65% to 85% of its nameplate capacity, with a tendency to increase slightly in value as 
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wind penetration increased. The presence of storage had a small, positive effect on 

wind plant capacity value across all penetration levels. 

Wind curtailment at 50% penetration in the absence of storage was found to be 

about 3%. This number is slightly less than half of the 7% curtailment at 50% wind 

penetration reported in (Denholm & Hand, 2011). This can be attributed to differences 

in the temporal alignment of wind and load in New England as opposed to ERCOT 

(influenced by the large fraction of offshore wind in the EWITS scenarios used in this 

dissertation). Storage scenarios used in the ERCOT study had larger power capacity, and 

similar duration to the storage scenarios investigated above, in Chapter 0. Benefits to 

wind curtailment at 50% penetration were similar. Changes in peak load and effects on 

LOLE were not investigated in the ERCOT study. 

Energy storage has the capacity to change the load shape and reduce LOLE, but 

in systems with very high penetration of variable renewable energy and large-scale 

storage, a new framework may be required to ensure system adequacy and to credit 

those system components with their capacity value in a way that is clear, fair and 

effective. Energy storage systems obviously do not provide net energy, and only provide 

capacity value when they are in the presence of generators. 

In power systems which include very high wind penetration (above 50%) or 

similar penetrations of other variable, renewable energy, system adequacy calculations 

may need to take a different form. The ELCC calculation, based on LOLE, is not well-

equipped to handle systems with generators whose output varies hour-to hour, 

especially if the variability is not independent of the load (as is the case with wind and 
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solar). With high wind penetration the mechanical availability of wind power plants 

becomes a factor. Considering wind power output as ‘negative load’ in these situations 

does not address this concern. 

A framework for ensuring system adequacy in systems with a very high 

penetration of variable renewable generation should do the following: 

1. Characterize system adequacy in power systems with little or no conventional 

generation 

2. Consider system flexibility, as in (Denholm & Hand, 2011), whether that is the 

ability of the conventional generator fleet to cover fluctuations in net load, or 

the capacity of storage to accomplish this 

3. Identify risks associated with the inter-annual variability of the capacity value of 

variable renewable generation 

4. Credit storage systems and generators appropriately for their capacity 

contributions 

5. Take into account the mechanical availability of renewable generators 

In future renewable-heavy power systems, new challenges and opportunities will 

arise. High penetrations of multiple, diverse variable renewable sources will be easier to 

integrate than wind alone (Denholm & Hand, 2011).In their planning and operation,  

very high-penetration power systems may grow to resemble large-scale versions of 

hybrid power systems (McGowan & Manwell, 1999)  more than conventional power 

grids. Use of electrical energy to run vehicles (either electric vehicles, or with some 

electrically produced fuel (Morgan, 2013)), can change the characteristics of electricity 
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consumption and add flexibility to the grid. As fossil fuel plants are phased out, the 

functions that renewables must perform on the grid will increase.  Studies of system 

adequacy will need to remain up-to-date to be effective as the way we produce and 

consume electricity changes. 
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