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ABSTRACT 

BIOPHYSICAL CHARACTERIZATION OF KATANIN’S REGULATION OF 

MICROTUBULES 

SEPTEMBER 2015 
 

MEGAN E. BAILEY 
 

 B.S., WILLIAMS COLLEGE 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Dr. Jennifer L. Ross 
 

 Microtubules, as an essential part of the cytoskeleton, require proper function as 

well as correct spatial and temporal localization. In order to achieve correct organization, 

microtubule-associated proteins (MAPs) regulate microtubule dynamics. Katanin, a 

known microtubule-severing enzyme from the AAA family of proteins, plays a role in 

regulating microtubules, but the mechanisms of microtubule control and the mechanism 

of severing activity remain to be elucidated.  

 In the following studies I examine mechanisms of katanin-based regulation of 

microtubule dynamics using a single molecule biophysics approach. I use this simplified 

in vitro approach to change specific parameters to investigate how katanin targets 

microtubules with defects, how free tubulin regulates katanin severing activity, and how 

katanin and tau regulate dynamic microtubules. This work provides us with new insights 

as to how katanin targets both stable and dynamic microtubules as well as how katanin 

is regulated by other cellular components. 
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CHAPTER 1 

INTRODUCTION 

1.1 Biophysics 

 Biophysics is an interdisciplinary field that applies the theories and techniques of 

physics to study biological questions. Biophysics is an inherently quantitative field, and 

allows us to provide quantitative answers to questions that have typically been able to 

only be answered with qualitative techniques. The field of biophysics is expanding and is 

currently working on questions in various systems within the cell. One question that can 

be difficult to answer in a crowded cellular environment is how proteins fold, but is more 

feasible in vitro using biophysical techniques. Additional questions about DNA to RNA 

transcription, axonal firing, as well as how motor proteins transport cargo throughout the 

cell are able to be addressed using biophysical techniques and significant progress is 

being made toward understanding the molecular mechanisms of these processes. 

 In this dissertation I aim to describe how I employed biochemical and biophysical 

techniques to better understand regulation of microtubule organization. Microtubule 

severing enzymes are a known family of microtubule-associated proteins (MAPs) that 

regulates both the dynamics and the organization of microtubule cytoskeleton. I 

specifically aim to investigate how these enzymes target microtubules for severing, and 

how they regulate dynamic microtubules. To address these questions, I used purified 

severing enzymes and microtubules to begin to reconstitute this system in vitro. I can 

begin to introduce complexity by changing the type of microtubules, or adding additional 

MAPs to the system to better understand how these unique enzymes may regulate 

microtubules in vivo. This work will hopefully give us a better understanding of the 

mechanisms severing enzymes use and we can begin to answer more complex 
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questions about regulating an entire network of microtubules. 

 

1.2 Microtubules 

 The cell is full of complex machinery that require proteins, enzymes and organelles 

to be in specific places at specific times for proper function. Many of these functions 

require the microtubule network, which is the primary highway system that is used to 

transport materials across the cell, to aid the complex machinery. In addition to 

transport, microtubules are essential for cell motility, cell division, and structural support.  

 Microtubules are hollow tubes, that in vivo are predominately composed of 13 

protofilaments, however, in vitro microtubules can vary in protofilament number from 12-

16 when stabilized with Taxol, and can vary further depending on polymerization 

conditions (Mandelkow et al. 1986; Amos and Schlieper 2005). Each protofilament is 

composed of heterodimers of alpha and beta tubulin (Nogales, Wolf, and Downing 

1998), which self-associate in a head-to-tail manner (Fig 1.1A). Alpha tubulin is always 

at the minus end of the microtubule and beta tubulin is at the plus end (Fan et al. 1996; 

Hirose, Fan, and Amos 1995). The structure of a protofilament has been solved using 

cryo-EM by making crystals from zinc sheets of tubulin. This resulted in anti-parallel 

arrays of protofilaments, which are believed to have similar protofilament structure (Löwe 

et al. 2001). 
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Figure 1.1 Microtubule and Tubulin Structure. 

(A) Diagram of a 13-protofilament microtubule. Red is alpha tubulin and dark red is beta 
tubulin. The CTTs of tubulin extend off the microtubule. In the presence of GTP, tubulin 
will assemble in a head to tail fashion, alpha tubulin at the minus end and beta tubulin at 
the plus end, to form protofilaments and the protofilaments will eventually fold into a 
hollow tube made up of 13 protofilaments. (B) Ribbon diagram of the structure of the 
tubulin dimer. Shows the locations where GTP and Taxol interact with the alpha and 
beta tubulin. Images reproduced with permission from Nogales et al (Nogales1998). (C) 
Diagram of the potential post translational modifications of alpha and beta tubulin. Many 
of the post translational modifications occur on the CTTs of tubulin, with the exception of 
acetylation, which occurs on the lumen side of the alpha tubulin. The charged amino 
acids on each of the tails are labeled. 
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 Microtubules are characterized by a helical structure with lateral (side-to-side) 

interactions between protofilaments predominately with alpha-alpha or beta-beta 

association, also known as B type lattice (Song and Mandelkow 1993). Due to the offset 

of the protofilaments from the helical rotation, there is a seam that runs that length of the 

microtubule, where there are alpha-beta interactions, or A lattice (Fig. 1.1) (Song and 

Mandelkow 1993). The longitudinal interactions (top-to-bottom) between tubulin dimers 

tend to be stronger interactions, since disassembly of microtubules is characterized by 

peeling back of protofilament loops (Mandelkow, Mandelkow, and Milligan 1991). 

 Alpha and beta tubulin are very similar in sequence and only differ along the 

longitudinal axis in structure. Both monomers are approximately 46 x 40 x 65 Å (Nogales 

et al. 1999). Each monomer has three characteristic domains. The N-terminal domain is 

the nucleotide binding domain, a smaller domain in the middle, where stabilizing agents 

tend to bind, and a helical C-terminal domain (Nogales et al. 1999). The C-terminal 

domain, or the C-terminal tail (CTT), is made up of helices H11 and H12, which are 

relatively disordered and is where many microtubule associated proteins (MAPs) dock 

(Nogales, Wolf, and Downing 1998). While tails of alpha and beta tubulin are both acidic 

and negatively charged, their sequence differs, allowing them to be differentially 

modified and for the MAPs to interact specifically with one or the other (Reviewed in 

Janke 2014; Nogales, Wolf, and Downing 1998). 

 Although the alpha and beta subunit both have binding sites for GTP, only the beta 

site is able to be hydrolyzed (Mitchison 1993; Nogales, Wolf, and Downing 1998; 

Nogales et al. 1999). Therefore, two molecules of GTP bind to tubulin dimers, one at the 

non-exchangeable (N-site) on alpha tubulin, embedded within the stable dimer, and 

another at the exchangeable (E site) on beta tubulin (Weisenberg, Deery, and Dickinson 

1976; Nath, Eagle, and Himes 1986). The nucleotide interacts with the next monomer 
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near the longitudinal interface (Nogales, Wolf, and Downing 1998). When the 

microtubule is polymerizing, a new dimer adds to the plus end of the microtubule. Loop 

T7 and helix H8 in alpha tubulin of this dimer interact with the beta tubulin at the end of 

the growing microtubule, acting like an GAP (GTPase Activating Complex) and 

consequently hydrolyzing the GTP on the beta tubulin (Löwe et al. 2001). Since the GTP 

on the new dimer is not actually hydrolyzed yet, there is typically a layer of GTP tubulin 

at the plus ends of the microtubules, called a “GTP cap” (Nogales et al. 1999). Since the 

minus end of the microtubule consists of alpha tubulin, it is unlikely to have a GTP cap 

unless there is a high concentration of free tubulin present (Nogales et al. 1999).  

 GTP hydrolysis can cause protofilaments to bend into the rings that we observe 

when microtubules disassemble. GTP hydrolysis causes the dimers to bend backwards, 

however, if neighboring protofilaments are still bound to the dimer, this association can 

constrain the protofilament so it does not bend (Nogales et al. 1999). Since the lateral 

interaction of GDP-tubulin are weaker, if enough dimers have had GTP hydrolyzed, this 

can cause rapid depolymerization, or peeling back of filaments to release the stored 

energy from the conformational changes (Nogales et al. 1999). The idea of a GTP cap 

was confirmed experimentally years before the crystal structure, by observing 

microtubules that were cut with a UV beam in vitro (Walker, Pryer, and Salmon 1991). 

The microtubule plus ends would rapidly depolymerize, however, the minus ends, 

remained the same length or even elongated (Walker, Pryer, and Salmon 1991).  

1.3 Post-Translational Modifications of Tubulin 

Alpha and beta tubulin are highly conserved. In order to generate diversity to regulate 

the wide variety of functions that microtubules are involved in, there are two mechanisms 

that have been created. First, there are different isoforms of alpha and beta tubulin that 
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can be expressed and second, there are a variety of post-translational modifications 

(PTMs) that can modify alpha and beta tubulin differentially. (Reviewed in Janke 2014). 

PTMs can affect overall tubulin assembly, MAP binding to regulate microtubule 

dynamics, or even microtubule motor motility (Sirajuddin, Rice, and Vale 2014). Some of 

the major PTMs that occur on tubulin are acetylation, detyrosination/tyrosination, 

polyglutamylation, and polyglycylation. 

 Tubulin acetylation involves the addition of an acetyl group onto lysines. This PTM 

is enriched in stable microtubule populations and was first discovered on alpha tubulin 

K40 in Chlamydomonas reinhardtii (L'Hernault and Rosenbaum 1985). It is possible that 

are there more acetylation sites, however they have not been confirmed (Choudhary et 

al. 2009). While acetylation is found more frequently in more stable microtubules, and 

has been shown to be more resistant to drug induced depolymerization (Matsuyama et 

al. 2002), it does not actually affect the structure of the microtubule (Howes et al. 2014). 

K40 is located on the inside of the microtubule and would likely affect binding the 

microtubules to the inside the microtubule. However, it has also been shown to regulate 

intracellular transport by kinesin motors (Reed et al. 2006). Recently it has been also 

shown that an increase in microtubule acetylation decrease the motility of axonemal 

dynein (Alper et al. 2014). 

 Unlike acetylation, detyrosination is known to only occur on alpha tubulin. Alpha 

tubulin has a tyrosine at the C-terminus that can be removed (Hallak et al. 1977). 

Detyrosinated tubulin is found on parts of mitotic spindle microtubules (Gundersen and 

Bulinski 1986) as well as in more stable and older microtubules in neurons (Cambray-

Deakin and Burgoyne 1987; Brown et al. 1993; Robson and Burgoyne 1989). 

Detyrosination increases the stability against MCAK and KIF2 (Peris et al. 2009; 

Sirajuddin, Rice, and Vale 2014). There is also a significant increase in binding affinity 
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and processivity of Kinesin-I and CENP-E, a kinetochore motor, in vitro on detyrosinated 

microtubules {Liao:1998vg, Dunn:2008ig, Konishi:2009ja, Kaul:2014cu, (Barisic et al. 

2015).  

 Polyglutamylation is the addition of a secondary chain of glutamate residues to 

glutamate resides within the alpha or beta tubulin tails. Polyglutamylation is found 

extensively in neuronal microtubules (Audebert et al. 1993; Audebert et al. 1994), as well 

as the axonemes of cilia (Fouquet et al. 1994), and at centrioles (Bobinnec et al. 1998). 

Severing enzymes have been shown to regulate polyglutamylated microtubules (Sharma 

et al. 2007; Lacroix et al. 2010).  

 Polyglycylation involves adding a secondary chain of glycine residues to the CTTs 

of either alpha or beta tubulin. It is still unclear how glycylation regulates microtubules, 

but axonemes without glycylation disassemble soon after assembling (Rogowski et al. 

2009; Bosch Grau et al. 2013). 

1.4 Microtubule dynamics 

 Microtubules are known to be dynamic polymers that grow and shrink and this 

property allows them to perform the diverse functions and dynamic reorganization. 

Microtubule dynamics were first studied in vitro in 1984 when Mitchison and Kirshner 

grew dynamic microtubules off of axonemes. The axonemes were fixed every 10 

seconds and visualized with electron microscopy (Mitchison and Kirschner 1984). These 

experiments were further confirmed using dark field light microscopy and differential 

interference contrast light microscopy (Horio and Hotani 1986; Walker et al. 1988). From 

these studies, they were able to infer kinetics of assembly of dynamic microtubules. This 

work revealed that different microtubules within the same slide were able to 

simultaneously grow and shrink at the same time points, which has been named 
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“dynamic instability” (Mitchison and Kirschner 1984). Even in conditions where the 

tubulin is above the critical concentration microtubules will shrink rapidly, which is called 

a “catastrophe” (Fig. 1.2). When the microtubule begins to grow again, that is called a 

“rescue” (Mitchison and Kirschner 1984).  
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Figure 1.2 Microtubule Dynamics. 

Diagrams of the states a dynamic microtubule can undergo. Microtubules can grow with 
addition of GTP tubulin. The growth will occur predominately on the plus end, however, 
in vitro can also occur on the minus ends of microtubules. When the microtubule loses 
the GTP cap, it can undergo a shrinking event, called a catastrophe. This can also be 
aided by destabilizing MAPs that cause more frequent catastrophes. Catastrophes can 
be rescued, which is a growth event following a catastrophe. This often occurs because 
a stabilizing MAP stabilizes the microtubule by adding additional GTP tubulin to the end. 
Rescues can also occur more frequently in conditions of excess tubulin. 
   

GTP tubulin

GTP tubulin

GDP tubulin

Growing microtubule
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 These dynamic length changes are temperature dependent as well (Caplow, 

Shanks, and Ruhlen 1988). Microtubules will disassemble more rapidly at lower 

temperatures and tend to grow more at higher temperatures. However, they will still 

undergo dynamic events in both conditions. In vivo, microtubules generally grow out 

from an organizing center like the centrosome. In vitro, microtubules can undergo 

dynamic instability on both ends as long as the tubulin concentration is above a critical 

concentration (Schiff, Fant, and Horwitz 1979). 

 While it is generally thought that microtubules in vivo are attached at the minus 

end to centrosomes or another nucleating center and undergo dynamic instability 

primarily on the plus ends, there is evidence that microtubules can undergo dynamic 

instability in the form of treadmilling during interphase and during mitosis (Reviewed in 

Waterman-Storer and Salmon 1997). Treadmilling was originally a phenomenon 

proposed for actin where the filament has a constant on rate of subunits adding to one 

end and disassembly of subunits on the other end (Wegner 1976). Tubulin can treadmill 

in the plus end direction at a rate of 4 µm per hour (Walker et al. 1988). Bulk in vitro 

microtubule assays have demonstrated that microtubules can undergo treadmilling with 

MAPs in vitro, but at a slower rate of 1 µm per hour (Margolis and Wilson 1978). Further, 

microtubules can treadmill in a minus end direction with MAPs (Hotani and Horio 1988). 

These prior results showed that microtubule-associated proteins (MAPs) would likely 

change the kinetic properties of dynamic instability and treadmilling.  

1.5 Microtubule Stabilization 

 There are multiple ways of stabilizing microtubules so that they do not undergo 

growth and shrinkage events. Often paclitaxel (Taxol), a small molecule chemotherapy 

drug, is used to stabilize microtubules made in vitro. It is known through a variety of 
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structural studies that Taxol likely binds to a hydrophobic patch on beta tubulin that is 

next to the core helix and M-loop in beta tubulin on the inside surface of the microtubule 

(Wang and Nogales 2005; Nogales et al. 1999; Snyder et al. 2001). The same location 

on alpha tubulin is blocked due to the extended L-loop. There are several proposed 

mechanisms for how Taxol stabilizes microtubules. One theory is that Taxol holds the M-

loop in place and stabilizes the contacts between protofilaments (Nogales et al. 1999; Li 

et al. 2002). Another possibility is that Taxol can position the domains in an orientation 

that promotes straight protofilaments (Amos and Löwe 1999). There are a variety of 

other microtubule-stabilizing drugs, but many of them bind in the same pocket of beta 

tubulin as Taxol (Haar et al. 1996; Hamel et al. 1999; Long et al. 1998). 

 It is also known that GMPCPP, a GTP analogue, can stabilize microtubules 

(Hyman et al. 1992). GMPCPP replaces an oxygen between the β and γ phosphate with 

a carbon. GMPCPP is a slowly hydrolyzable analog of GTP that can stabilize 

microtubules by keeping beta tubulin in the GTP-bound state. Often, microtubules are 

made in vitro with GMPCPP to simulate GTP bound tubulin. They are also used 

frequently as seeds to help nucleate and polymerize dynamic microtubules. 

1.6 Microtubule-Associated Proteins (MAPs) 

 Microtubule-associated proteins (MAPS) are proteins that are known to interact 

with microtubules and can regulate their stability, target microtubules, or even mediate 

interactions with other cellular proteins. Another way to stabilize microtubules both in 

vivo and in vitro is with MAPs. MAPs can stabilize microtubules by several different 

mechanisms: by preventing catastrophes, rescuing a depolymerizing microtubules, or by 

decreasing the overall shrinking speed. 

 Plus TIPs are a class of MAPS that bind to growing microtubule plus ends and 
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track the TIPs and often can stabilize the microtubules by binding to the cell cortex 

(Schuyler and Pellman 2001; Reviewed in Gundersen, Gomes, and Wen 2004). EB1 

and EB3 are both plus-tip MAPs that stabilize microtubules by preventing catastrophes 

(Komarova et al. 2009). 

 XMAP215 can significantly increase the polymerization speed of microtubules 

(Gard and Kirschner 1987a). It has been shown to increase both the growth and 

shrinkage rates in cells as well (Vasquez, Gard, and Cassimeris 1994; Tournebize et al. 

2000). It can enhance both polymerization and depolymerization by binding to the tubulin 

dimer and promoting incorporation into the growing microtubule (Brouhard et al. 2008). 

 Tau is another MAP that is known to stabilize microtubules by binding along the 

lattice of microtubules. Tau comes in six isoforms, all of which are found in axons. It has 

very little secondary structure (Cleveland, Hwo, and Kirschner 1977; Schweers et al. 

1994), but there are three essential domains: the negatively-charged N-terminal 

projection domain that extends out from the microtubule and spaces out microtubules 

(Chen et al. 1992), the positively charged proline-rich region that interacts with the 

surface of the microtubule (Trinczek et al. 1995; Goode et al. 1997; Brandt and Lee 

1993) and the repeat region that binds to the interior of the microtubules (Chau et al. 

1998; Serrano et al. 1985; Maccioni, Rivas, and Vera 1988). There is some evidence 

that tau does not function as a monomer, but as a dimer, zippering together N-terminal 

regions of tau (Rosenberg et al. 2008). Similar to Taxol, Tau binds and fills the 

hydrophobic pocket of the β-tubulin that interacts with nearby dimers on other 

protofilaments. 

 In addition to stabilizing MAPs, there are also destabilizing MAPs. Destabilizing 

MAPs can destabilize microtubules in several ways. Destabilizers can inhibit 

polymerization, cause more frequent catastrophes, or promote disassembly of the 
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filaments. MCAK, a member of the kinesin-13 family, is an example of a catastrophe-

promoting factor. It has been shown that MCAK is ATP-dependent and causes more 

frequent catastrophes both in cells and in vitro. More recent work has shown that in vitro 

MCAK and EB3 can make microtubule plus ends in vitro more dynamic (Montenegro 

Gouveia et al. 2010). Unlike other depolymerizing kinesins, MCAK does not cause 

catastrophes based on microtubule length, instead it reduces the number of steps it 

takes to catastrophe and promotes more rapid catastrophes (Gardner et al. 2011). Since 

the crystal structure of kinesin-13 motors fits better on curved protofilaments, the 

experimental evidence suggests that MCAK shortens the transition time between growth 

and catastrophe (Ogawa et al. 2004; Shipley et al. 2004). The Kinesin-8 family is also 

known to destabilize microtubules, however, they are sensitive to the length of the 

microtubule and slows growth more on longer microtubules (Gardner et al. 2011). 

 Stathmin is a negative regulator of microtubules, but regulates microtubules by 

causing more depolymerization and sequestering tubulin. However, Stathmin has also 

been reported to be a catastrophe-inducing factor (Belmont and Mitchison 1996). Both 

experimental evidence and the crystal structure of Stathmin shows that it is able to form 

a ternary structure and sequester two alpha-beta tubulin dimers (Jourdain et al. 1997; 

Curmi et al. 1997; Gigant et al. 2000). The N-terminal domain of Stathmin caps the 

alpha-tubulin so that tubulin cannot be added to the ends of the microtubule (Steinmetz 

et al. 2000). 

 Another family of MAPs that destabilizes microtubules is the microtubule severing 

enzyme family. These enzymes are able to sever and depolymerize microtubules from 

both ends. Severing enzymes belong to the AAA (ATPases associated with different 

cellular activities) family of proteins that take advantage of ATP binding and hydrolysis to 

drive conformational changes for proper enzymatic function (Frickey and Lupas 2004). 
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There are three known severing enzymes that are found across many organisms: 

katanin, spastin, and fidgetin.  

1.7 Microtubule Severing Enzymes 

 Microtubule severing enzymes all have a similar C-terminal region that contains 

the AAA domain. This region is involved in the catalytic activity. It contains the canonical 

walker A and walker B motifs and P-loop, which are involved in ATP binding and 

hydrolysis in AAA proteins (Frickey and Lupas 2004). However, the three enzymes differ 

in their N-terminus. Katanin p60, the catalytic subunit of katanin, is known to contain a 

microtubule interacting and trafficking (MIT) domain (Iwaya et al. 2010). This region is 

likely responsible for binding to microtubules. It is known that spastin also contains an 

MIT domain, although this domain does not interact with microtubules like katanin (White 

et al. 2007). The MIT domain of fidgetin has not been identified yet.  

 At the extreme N-terminus of p60 is a domain that interacts with katanin’s partner 

protein, p80 (Fig. 1.3). Katanin p80 is a regulatory protein that is important for regulating 

p60’s severing activity and targeting it to the correct locations in cells. P80 also has 

domains that interact with other MAPs, such as Dynein (Toyo-Oka et al. 2005). The N-

terminus contains WD repeats that can negatively regulate katanin’s severing activity (F. 

McNally 2000). The N-terminus of p80 is also important for targeting to centrosomes (F. 

McNally 2000). The C-terminus of p80 interacts with the N-terminus of p60 to promote 

severing activity (F. McNally 2000). Interestingly, partner regulatory proteins have not 

been identified yet for spastin or fidgetin.  
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Figure 1.3 Katanin Structure and Model. 

(A) Schematic of some of the important domains in p60. The N-terminus is comprised of 
a p80 interacting domain, the microtubule-interacting and trafficking (MIT) domain, as 
well as the putative microtubule binding domain. The C-terminus contains the AAA 
domain, which is responsible for the catalytic activity. (B) Schematic of known p80 
domains. p80 is made up of WD repeats on the N-terminus. This is also the region that 
is known to target the protein and interact with centrosomes. There is a proline-rich 
domain the middle, and con80 on the C-terminus is the minimal section necessary for 
interaction with p60. (C) Based on the structural evidence from spastin, a model has 
been proposed that can be applied to katanin as well since they are similar in sequence 
and function. The severing enzyme forms a hexamer with a pore in the center. The N-
terminal region of the enzyme docks on the microtubules and allowing the CTTs of 
tubulin to interact with the three pore loops in the pore. The pore loops tug on the CTT of 
tubulin and unfold the tubulin. This can cause a cascade of events that will result in a 
severed microtubule. Image reproduced with permission from Roll-Mecak and Vale, 
2008.  
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 Microtubule severing enzymes were discovered two decades ago, when a protein 

in Xenopus egg extracts that used ATP was shown to sever Taxol-stabilized 

microtubules (Vale 1991). Two years later katanin was identified and purified from sea 

urchin eggs (F. J. McNally and Vale 1993). It is hypothesized that severing enzymes 

form a transient hexamer in the presence of ATP to sever microtubules (Hartman et al. 

1998; Hartman and Vale 1999; Roll-Mecak and Vale 2008), however, the mechanism is 

not understood.  

 In the last decade additional information about how these enzymes interact with 

their substrates. Subtilisin-treated microtubules, which are missing the CTTs of tubulin 

are unable to be severed implying that the CTTs are the location for severing enzyme 

binding and activity (F. J. McNally and Vale 1993; Roll-Mecak and Vale 2008; Eckert, Le, 

et al. 2012; White et al. 2007). Interestingly, spastin, can interact with either of the alpha 

or beta CTTs alone or on beads, but prefers to bind to beta tubulin tails (Roll-Mecak and 

Vale 2008; White et al. 2007). Recent evidence suggests that katanin requires both the 

alpha and beta tubulin equally (Johjima et al. 2015). The CTTs of tubulin are thought to 

interact with the pore loops of severing enzyme AAA proteins since mutations in 

spastin’s pore loops, a region of the AAA domain, result in a lack of severing activity 

(Roll-Mecak and Vale 2008; White et al. 2007).  

 Based on the crystal structure of spastin’s AAA domain as well as biochemical and 

biophysical evidence there has been a model proposed for how severing enzymes might 

sever (Roll-Mecak and Vale 2008). The model suggests that the enzymes would 

hexamerize on a microtubule, in the presence of ATP, forming a pore in the middle of 

the hexamer. The N-terminal domains of the enzymes would dock on the sides of the 

microtubule allowing the enzyme to thread the CTTs of tubulin through the pore and 

begin to disassemble the microtubule.  
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 Severing enzymes require ATP to sever microtubules (Hartman and Vale 1999; 

Roll-Mecak and Vale 2008; Eckert, Le, et al. 2012), and microtubules can stimulate the 

ATPase activity (F. J. McNally and Vale 1993; Hartman and Vale 1999). Other steps or 

mechanisms of severing activity are not known. For instance, the order of binding and 

forming a hexamer are still unclear. Recent biochemical and computational work on 

spastin has begun to dissect the ATPase cycle and precisely pinpoint how many 

subunits are required for severing activity (Eckert, Link, et al. 2012; Le, Eckert, and 

Woehlke 2013a). 

 Theoretical and experimental evidence suggests that katanin targets microtubules 

that have defects. It has been theorized that severing enzymes would not be able to 

achieve the severing speeds observed in vitro without specific targeting (Davis et al. 

2002). This has been supported by experimental data that katanin targets the interfaces 

of microtubules that have been annealed together (Díaz-Valencia et al. 2011). However, 

it remains to be elucidated what types of defects katanin actually targets and whether 

the other severing enzymes target defects as well. 

 Severing enzymes are found in many organisms, but have diverse roles. Severing 

enzymes were first discovered in mitotic Xenopus oocyte extracts (Vale 1991). However, 

even prior to this discovery, mei-1 and mei-2 (now known to be katanin homologs) were 

identified in C. elegans during a screen for embryonic lethal mutants (Mains et al. 1990). 

When C. elegans developed null mutations in mei-1 and mei-2, microtubules around the 

chromosomes are disorganized (Clandinin and Mains 1993; Clark-Maguire and Mains 

1994).  Katanin is found to be on meiotic chromosomes and spindle pole and when 

expressed at low levels, results in spindles that are elongated and display orientation 

defects (Fig. 1.6) (Srayko et al. 2006; K. McNally et al. 2006; Clark-Maguire and Mains 

1994; K. McNally et al. 2014). These results have led to the concept that katanin plays a 
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role in generating new small microtubules that act to nucleate new microtubules to 

enhance the microtubule network in spindles (Roll-Mecak and Vale 2006; Srayko et al. 

2006).   
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Figure 1.4 Selected Functions of Katanin. 

Some of the functions that katanin is involved in regulating. (A) Katanin is active in 
mitosis and meiosis. Regulating the kinetochore microtubules at the kinetochores during  
mitosis and regulating microtubule outgrowth at the centrosomes during meiosis. (B) 
Katanin regulates cilia biogenesis. When it is absent, the central axonemal microtubules 
do not form properly. It is also important for disassembling cilia at the start of mitosis, so 
that mitosis can continue properly. (C) Katanin contributes to cortical array alignment. 
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When katanin is missing, there is a lack of organization in cortical arrays. (D) Katanin is 
found in all areas of neurons, however, is most abundant in the axon, where it is thought 
to regulate microtubule length.  
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 Katanin also functions in mitosis in S2 cells (D. Zhang et al. 2007). In fact, all three 

severing enzymes, katanin, spastin and fidgetin are involved in movement of 

chromosomes toward the mitotic spindle (D. Zhang et al. 2007). Spastin and fidgetin are 

found at the centrosomes and stimulate microtubule minus end depolymerization 

(Mukherjee et al. 2012; D. Zhang et al. 2007). Both enzymes are involved in releasing 

gamma γ-tubulin complexes from the minus ends (Mukherjee et al. 2012; D. Zhang et al. 

2007). Interestingly, katanin is found to be primarily a plus-end depolymerizer that works 

on anaphase chromosomes, by releasing the kinetochore microtubules from the 

chromosomes (D. Zhang et al. 2007). X. laevis and X. tropicalis mitotic spindle size is 

highly dependent on katanin activity levels (Loughlin et al. 2011). Specifically, 

phosphorylation in the N-terminal region of X. laevis katanin inhibits depolymerization 

activity resulting in longer spindles (Loughlin et al. 2011; Whitehead, Heald, and Wilbur 

2012).   

 Katanin is also found in the cell body in Chlamydomonas where it regulates 

microtubules in cilia. When the central microtubule pair is missing, the cilia are immotile 

(Dymek, Lefebvre, and Smith 2004; Lohret, McNally, and Quarmby 1998). Interestingly, 

when katanin is mutated in Chlamydomonas or Tetrahymena, the cilia lack the middle 

doublet microtubules immobilizing the cilia. In Chlamydomonas, the cilia are also unable 

to be disassembled before the onset of mitosis (Dymek, Lefebvre, and Smith 2004; 

Lohret, McNally, and Quarmby 1998). It is likely that katanin plays a role in disassembly 

of the cilia by releasing microtubules from the basal body (Sharma et al. 2007; Rasi et al. 

2009; Lechtreck, Gould, and Witman 2013). Recently, katanin has also been shown to 

regulate cilia number in human development (Hu et al. 2014). 

 Katanin has also been implicated in cell migration. In Drosophila, when katanin is 

absent, the migration rates increase (D. Zhang et al. 2011). Katanin is thought to play a 
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role at the cell cortex in regulating microtubule length at the plus ends of microtubules 

(D. Zhang et al. 2011). It has also shown to decrease cell movement in rat epithelial cells 

(Sudo and Maru 2008), but enhances cell movement in prostate cancer (Ye et al. 2011).  

 Katanin is active in plants where it organizes cortical microtubule arrays 

(Nakamura, Ehrhardt, and Hashimoto 2010; Q. Zhang et al. 2013). In plants, 

microtubules are nucleated from gamma-tubulin complexes that bind to the sides of 

already growing microtubules (Reviewed in Kollman et al. 2011). The minus-end is 

released by katanin severing, and the minus end shrinks while the plus-end grows, 

causing a treadmilling of microtubules around the edge of the cell (Reviewed Ehrhardt 

and Shaw 2006). Microtubules inside the plant cells are lined to the cellulose-deposition 

machinery outside the cell. Katanin mutants often result in fragile plants with poorly 

constructed cell walls around the individual cells (Burk et al. 2001). A loss-of-function 

mutation delays formation of the microtubule arrays at the cortex, Katanin 

overexpression causes bundles of microtubules, which eventually depolymerize 

(Stoppin-Mellet, Gaillard, and Vantard 2006; Burk et al. 2001). Katanin has been shown 

to be important for releasing the gamma-tubulin complex from the sides of growing 

microtubules. Katanin mutants showed minus ends of microtubules were not properly 

released form the nucleation sites (Nakamura and Hashimoto 2009).  

 Both katanin and spastin have been shown to have roles in neurons. Katanin is 

found throughout the axon and cell body where it is thought to have an important role in 

breaking up long microtubules into smaller microtubules and dimers to enable dynamic 

reorganization of the microtubule network, including branching and new growth cones 

(Ahmad et al. 1999; Yu et al. 2008). If katanin is inhibited, microtubules are not released 

from the centrosome and the overall length of microtubules increases (Ahmad et al. 

1999; Karabay et al. 2004). Katanin mutations in drosophila also lead to increased 
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dendritic expansion (Mao et al. 2014). Spastin also localizes in axons and is involved in 

axonal branching (Yu et al. 2008). Uncontrolled severing in axons could have 

catastrophic effects. Therefore, it is likely that both katanin and spastin would be tightly 

regulated. Tau, a MAP found in axons has been shown to protect microtubules from 

severing (Qiang et al. 2006). When tau is phosphorylated, it does not bind as well to 

microtubules and could leave microtubules open for katanin severing (Qiang et al. 2010). 

This further contributes to the theory that katanin could be implicated in Alzheimer’s 

diseases (Baas and Qiang 2005; Sudo and Baas 2011). 

 Microtubules severing enzymes need to be regulated to ensure proper cellular 

functioning. Katanin has been shown to be regulated in X. laevis by phosphorylation of 

the N-terminal domain to negatively regulate severing activity (Loughlin et al. 2011; 

Whitehead, Heald, and Wilbur 2012). However, it has not been revealed if there are 

other phosphorylation sites that regulate katanin activity. There is also evidence that 

katanin could be targeted to specific locations on microtubules by post-translational 

modifications of tubulin. Katanin and spastin can both be regulated by polyglutamylation 

and perhaps also by glycylation (Lacroix et al. 2010; Sharma et al. 2007). Additionally, 

acetylation enhances katanin’s severing activity in fibroblasts (Sudo and Baas 2010). 

There are still many open questions surrounding how tubulin post-translational 

modifications can regulate severing activity and whether there are additional 

mechanisms that have yet to be revealed. 

1.8 Broad Relevance/Disease Impacts 

 It is important to study microtubule regulation and in particular regulation of 

severing enzymes because both are essential for cell survival. Uncontrolled microtubule 

severing would likely destroy cells because they would become disorganized, lose their 
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shape, and ultimately be unable to function properly. Spastin is best known for its 

involvement in Hereditary Spastic Paraplegia, which is a neurodegenerative disease that 

causes spasticity in lower limbs and eventual neuron degeneration (McDermott et al. 

2000). Approximately 40% of the cases of Hereditary Spastic Paraplegia have been 

linked to mutations in spastin (McDermott et al. 2000). In prostate cancer, katanin has 

been shown to be overexpressed and actually speeds up cell migration movement and 

may enhance metastasis (Ye et al. 2011). One study has hypothesized that katanin is 

regulated by phosphorylation of tau (Qiang et al. 2010). When tau is phosphorylated, it 

can no longer bind to the microtubule and therefore exposes potential sites for katanin to 

sever. It has also been suggested that katanin can contribute to tauopathies, such as 

Alzheimer’s disease (Baas and Qiang 2005). Fidget mice, with a fidgetin mutation, have 

skeletal, auditory, and ocular defects, likely due to a single retrotransposon (Truslove et 

al.1956; Yang et al. 2006; Cox et al. 2000). Recent evidence has also suggested that 

Fidgetin-Like 2 is involved in wound healing (Charafeddine et al. 2015). Misregulation of 

severing enzymes can lead to severe diseases or lethality across all different types of 

organisms, however, we still do not fully understand how they are regulated or regulate 

microtubule organization. In order to correct misregulation we associate with diseases it 

is essential we be able to fill in gaps in our knowledge about the mechanism that katanin 

uses to regulate microtubule dynamics. 

1.9 Motivation 

 Despite the numerous studies that have been conducted to understand the 

mechanistic details and cellular functions of katanin, there is still a large amount of 

information that remains unknown. While there is evidence to support the proposed 

model of how severing occurs, it has not been proven. More importantly, we do not know 
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how katanin targets microtubules. It is very likely that katanin does have specific modes 

of regulation, since it has been shown to mostly generate a population of short 

microtubules and selectively depolymerize or sever microtubule ends. 

 There has also not been any characterization of how katanin regulates dynamic 

microtubules. Since many of the processes katanin has been shown to be involved in 

require dynamic microtubules, it is likely that katanin will also target these microtubules. 

However, biophysical characterization of these interactions would help us better 

understand how this destabilizing MAP regulates microtubule dynamics.  

 We still do not know how katanin p60 is regulated beyond its partner protein, p80. 

There is some evidence that katanin could be regulated by the neuronal MAP, tau 

(Qiang et al. 2006; Yu et al. 2008; Sudo and Baas 2011) however, there is no direct 

single molecule evidence for how this regulation occurs. In vitro single molecule assays 

would help us better understand how tau may regulate katanin’s interactions with 

microtubules.  

 There are still many remaining open questions about how katanin can regulate 

microtubule dynamics and how katanin itself is regulated. Katanin has been implicated in 

diseases, such as prostate cancer and Alzheimer’s disease. In order to better 

understand these diseases and find realistic solutions for them, it is important to know 

more about the basic science behind the relevant proteins. In this dissertation we hope 

to gain a greater understanding of the basic mechanisms katanin uses to target 

microtubules, both stable and dynamic, and how this unique enzyme is regulated.	  
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CHAPTER 2 

KATANIN TARGETING TO DEFECT MICROTUBULES 

2.1 Introduction 

 Microtubule severing enzymes are essential regulators of the microtubule 

cytoskeleton. They impact the overall organization of the microtubule network. This 

includes axon outgrowth, mitosis, cell migration, and organization of non-centrosomal 

arrays in plants (Ahmad et al. 1999; Karabay et al. 2004; Srayko et al. 2006; K. McNally 

et al. 2006; Nakamura, Ehrhardt, and Hashimoto 2010; D. Zhang et al. 2011). These 

enzymes remodel essential networks, not by destroying microtubules, but by generating 

shorter microtubules that can be used as seeds for a variety of diverse purposes (Roll-

Mecak and Vale 2006; Srayko et al. 2000).  

 Katanin was the first discovered microtubule severing enzyme (Vale 1991). The 

prevailing theory for how katanin severs microtubules is that ATP-bound monomers to 

oligomerize into a hexamer. The hexamer binds to the microtubule by threading the CTT 

(CTT) of tubulin through its pore (Roll-Mecak and Vale 2008). The ATPase activity works 

to pull the tubulin through the pore unraveling and dissociating the tubulin dimer. The 

mechanism is based on the activity of other AAA enzymes, such as Clp proteins, that 

unfold proteins by similar threading mechanisms (Frickey et al. 2004). 

 In addition to severing, we have demonstrated that katanin can end sever, or 

depolymerize microtubules ends in an ATP-dependent manner (D. Zhang et al. 2011; 

Díaz-Valencia et al. 2011). This activity would be especially important when trying to 

regulated the microtubule length, such as in interphase cells, at the cortex, where the 

microtubules should not over grow. In order for the microtubule network to remain intact, 

katanin must be targeted spatially to specific locations, by binding partners, such as its 
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partner protein p80, or by specific signals along microtubule tracks (Hartman et al. 1998; 

F. J. McNally and Thomas 1998; K. P. McNally, Bazirgan, and McNally 2000). Previous 

work has shown that katanin can target defects in microtubules (Davis et al. 2002; Díaz-

Valencia et al. 2011), but it is unknown what types of lattice defects are important for 

targeting. Here, we tested several types of microtubules with a variety of defects to 

probe how well katanin severs each type. We used in vitro reconstitution assays to 

probe whether katanin targets microtubules with protofilaments shifts or that lack the 

CTT of tubulin. Using data from biophysical and biochemistry assays we can determine 

whether katanin preferentially severs these abnormal microtubules and provide a 

possible mechanism for katanin based microtubule depolymerization.  

2.2 Results 

2.2.1 Experimental Set-Up 

 The most direct way to test the mechanism katanin uses to sever and 

depolymerize microtubules is to purify the enzyme and perform in vitro severing assays. 

This approach allows direct observation of microtubule severing and removes many 

additional variables that complicate cellular studies. We made 10 µL flow chambers 

using double stick tape, a coverslip and a slide (Fig. 2.1). We attached microtubules to 

the cover slip by first flowing in rigor kinesin or anti-tubulin antibodies (Fig. 2.1). To 

prevent non-specific interactions we blocked the surface with a BSA wash before adding 

in the microtubules. After microtubules were added, we washed the chamber with 

activity buffer to remove any microtubules that were not stuck to the surface. Next, we 

added katanin to the chamber and imaged in epifluorescence or Total Internal Reflection 

Fluorescence microscopy (TIRF) (Fig. 2.1). 
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Figure 2.1 Chamber Diagram. 

(A) Diagram of flow chamber created with double-stick tape, coverslip, and cover glass. 
We flowed the sample in one side of the chamber and wicked the excess liquid from the 
other end to draw the sample through. (B) Side view of the chamber. (C) Zoom in of the 
side of the flow chamber. We adhered the microtubules to the surface of the chamber 
using kinesin. Once the severing enzyme is added to the chamber, we can image using 
epifluorescence, or Total Internal Reflection Fluorescence (TIRF) microscopy as 
depicted. In TIRF microscopy, the laser is directed in and reflected out of the chamber at 
the same angle allowing for less background fluorescence and better resolution of single 
molecules. (D) Diagrams of the types of microtubules we made to test whether katanin 
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targets specific microtubule defects. Taxol microtubules are our “normal” microtubules 
that typically have 12-13 protofilaments. “High Salt” microtubules are made with 580 mM 
NaCl and typically have 10 protofilaments and more frequent seem defects. Subtilisin-
treated microtubules (“Subtilisin MTs”) are Taxol-stabilized microtubules that have the 
CTTs of tubulin removed.  
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 In order to test the activity of katanin on different types of microtubule defects, we 

created several types of microtubules. “High salt” microtubules are microtubules that are 

nucleated and polymerized in 580 mM NaCl (Fig. 2.1D). These microtubules have been 

shown to have predominantly only 10 protofilaments and more frequent protofilament 

shifts (Bohm et al. 1990). Electron Microscopy evidence revealed that high salt 

microtubules have equal proportions of A and B type lattices and all the microtubules 

analyzed had even numbers of seams (Dias and Milligan 1999). The even number of 

seams ensures that the pseudo-helical tubulin pattern is uninterrupted (Dias and Milligan 

1999). While high salt microtubules are an example of protofilament shift defects, 

“Subtilisin” microtubules are microtubules that are missing the CTTs of tubulin. Subtilisin-

treated microtubules are made by treating Taxol-stabilized microtubules with a protease 

inhibitor, subtilisin, which removes the CTTs of both alpha and beta tubulin (Fig. 2.1D). It 

has been shown that the CTT is essential for severing enzyme activity (Roll-Mecak and 

Vale 2008; White et al. 2007; Roll-Mecak and McNally 2010). We expect that subtilisin-

treated microtubules would not be able to be severed, as has been previously described 

(F. J. McNally and Vale 1993; Eckert, Le, et al. 2012). However, it is also possible that 

katanin could bind to other locations on the microtubule to either sever or depolymerize 

the microtubule. In addition, we made Taxol-stabilized microtubules, which 

predominately have 13 protofilaments and are treated as our “normal” microtubule 

control (Fig. 2.1D). By performing in vitro severing assays with microtubules containing 

defects, we can begin to dissect how katanin regulates microtubules. 

2.2.2 Katanin requires ATP to sever Taxol-stabilized microtubules. 

 First we show that katanin is functioning on Taxol-stabilized microtubules in the 

severing assays, which have been used previously to characterize severing enzymes 
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(Loughlin et al. 2011; Whitehead, Heald, and Wilbur 2012; Eckert, Le, et al. 2012; Le, 

Eckert, and Woehlke 2013b; F. J. McNally and Thomas 1998; K. P. McNally, Bazirgan, 

and McNally 2000; Buster, McNally, and McNally 2002; Stoppin-Mellet, Gaillard, and 

Vantard 2002; Díaz-Valencia et al. 2011; D. Zhang et al. 2011; K. McNally et al. 2014). 

Previous studies have shown that katanin can sever and depolymerize stabilized 

microtubules in vitro (F. J. McNally and Vale 1993; Loughlin et al. 2011; Whitehead, 

Heald, and Wilbur 2012; P. Zhang et al. 2010; Díaz-Valencia et al. 2011; F. J. McNally 

and Thomas 1998). Fig. 2.2 shows that WT-p60 is able to sever microtubules and within 

~100 seconds. In control severing assays without any katanin no microtubule severing 

occurs, since the time series shows that the entire microtubule is present at the end of 

the assay. The walker B mutant, E306Q-p60, a mutant version of katanin that is unable 

to hydrolyze ATP, is also not able to sever microtubules. The time series of the severing 

assay with the E306Q-p60 shows that the entire microtubule is still in tact. This data 

reveals that any microtubule severing we observe is due to katanin severing and the 

enzyme is functioning as previously reported for X. laevis p60 (Xl-p60) (Loughlin et al. 

2011; Whitehead, Heald, and Wilbur 2012). 
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Figure 2.2 Representative Time Series of Severing on Taxol-stabilized 
Microtubules. 

Time series of representative Taxol-stabilized microtubules in a severing assay alone 
(A), with E306Q-Xl-p60 (B), or with WT-Xl-p60 (C). The time between images is as 
stated below each time series and all the scale bars are 5 µm. 
  

B. Rhodamine-MTs + E306Q Xl-p60

C. Rhodamine + WT Xl-p60

A. Rhodamine-MTs 

All scale bars !" #

$""%"&!'"()

$""%"&*'"()

$""%"&+'"()



	  

33	  

 
 We can quantify the severing activity by tracking the mean fluorescence intensity 

of the microtubule over the course of the severing assay and correlate the fluorescence 

with the fraction of microtubule remaining. We plotted the ratio of the fluorescence 

intensity at each frame to the initial frame where WT-Xl-p60 was added to quantify the 

loss of polymer over time (Fig. 2.3A). Quantification of the loss of polymer in severing 

assays with WT-Xl-p60 shows that the microtubules are completely destroyed. The 

walker B mutant katanin, E306Q-Xl-p60, is unable to sever the microtubules and we 

observe no loss polymer from the ends, known as depolymerization. We also observe no 

loss of polymer from severing or depolymerization when there is no enzyme present in 

the assay. We can find the rate of decay by fitting the data with an exponential decay 

function:  

     I(t) = I0 exp (-t/τ),                     Eq. 2.1 

where I is the intensity as a function of time, t, I0 is the amplitude at time zero, and τ is 

the characteristic time constant for the decay (Fig. 2.3B). When there is no katanin in the 

assay the data is best fit by a linear equation:  

     I(t) ~ I0 (1 - (t/τ))        Eq. 2.2 

and has a slow characteristic decay time (Fig. 2.3B). Using these parameters, we found 

that WT-Xl-p60 has a fast decay time with a decay constant of τ = 69.6 s ± 2.72 with the 

goodness of fit: R2 = 0.959. Whereas microtubules alone or microtubules + E306Q p60 

both have slow decay times of τ = 2724.9 s ± 48.293 with the goodness of fit: R2 = 

0.9704 and τ = 4177.9 s ± 75.532 with the goodness of fit: R2 = 0.949 respectively, 

indicating the microtubules remain intact over the time frame of this assay.  
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Figure 2.3 Quantification of Severing on Taxol-stabilized Microtubules. 

(A) Total loss of microtubule polymer over time for each of the conditions. Images were 
collected every 5 seconds for 10 minutes and then ImageJ was used to analyze the 
images. The first three minutes of each movie was used a control to make sure that the 
microtubules were stable and not falling apart due to something other than MBP-katanin 
p60. We quantified loss of polymer for Taxol-stabilized microtubules (light blue, N=33 in 
6 different chambers); purple is Taxol-stabilized microtubules + E306Q-Xl-p60 (purple, 
N=53 6 different chambers); orange is Taxol-stabilized microtubules + WT-Xl-p60 
(orange, N=51 in 8 different chambers). Only chambers with WT-Xl-p60 were completely 
destroyed during the assay. The error bars represent the standard error of the mean. (B) 
The loss of polymer data was fit with either linear equation (Eq. 2.2) or single 
exponential decay (Eq. 2.1). The error bars represent the uncertainty associated with the 
fit parameters. 
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2.2.3 Katanin severs high salt microtubules as efficiently as Taxol-stabilized 
microtubules. 

 We performed severing assays using high salt microtubules to test whether 

katanin severs microtubules with seam defects. Time series of experiments show that 

WT-p60 severs high salt microtubules. Assays with high salt microtubule alone or high 

salt microtubules in the presence of E306Q-p60 show no breaks in the microtubules 

(Fig. 2.4).  
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Figure 2.4 Representative Time Series of Severing on High Salt Microtubules. 

Time series of representative high salt microtubules in a severing assay alone (A), with 
E306Q-Xl-p60 (B), or with WT-Xl-p60 (C). The time between images is as stated below 
each time series and all the scale bars are 5 µm. 
  

B. Rhodamine-MTs + E306Q Xl-p60

C. Rhodamine + WT Xl-p60

A. Rhodamine-MTs 

!""#"$%&"'(

!""#"$)&"'(

!""#"$*&"'( All scale bars %" +



	  

37	  

 
 Quantification of the overall rate of polymer loss confirms that WT-p60 is able to 

completely destroy high salt microtubules over the course of the severing assay (Fig. 

2.5A). There is some minor loss of polymer in severing assays with E306Q-Xl-p60, 

which is likely due to depolymerization. The decay constants show similar trends, where 

WT-p60 has a fast decay time of τ = 53.445 s ± 2.124 with the goodness of fit: R2 = 

0.973 and E306Q-Xl-p60 has a decay time of τ = 2091.8 s ± 37.605 with the goodness 

of fit: R2 = 0.97014 (Fig 2.5B). However, the high salt microtubules depolymerize slightly 

on their own and have an initial fast decay time of τ = 97.207 s ± 9.1879 with the 

goodness of fit: R2 = 0.91551 (Fig. 2.5B).  
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Figure 2.5 Quantification of Severing on High Salt Microtubules. 

(A) This is a plot of the quantification of the total loss of microtubule polymer over time 
for each of the conditions. Images were collected every 5 seconds for 10 minutes and 
then ImageJ was used to analyze the images. The first three minutes of each movie was 
used a control to make sure that the microtubules were stable and not falling apart due 
to something other than MBP-katanin p60. Green is severing assays with high salt 
microtubules and no severing enzyme (N=32 in 2 different chambers); pink is high salt 
microtubules + E306Q-Xl-p60 (N=28 in 6 different chambers); lime green is high salt 
microtubules + WT-Xl-p60 (N=30 in 7 different chambers). Only chambers with WT-Xl-
p60 were completely destroyed during the assay. The error bars represent the standard 
error of the mean. (B) The loss of polymer data was fit with either linear equation (Eq. 
2.2) or an exponential decay (Eq. 2.1). The error bars are the uncertainty associated 
with the fit parameters from quantification and fitting in (A). 
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 To determine if there was any difference in the severing activity between the 

standard Taxol-stabilized microtubules and high salt microtubules, we quantified the 

microtubule remaining on the same plot for each condition. We show that high salt 

microtubules are less stable than Taxol stabilized microtubules because they lose ~20% 

of their length during the severing assays, when there is no severing enzyme present 

(Fig. 2.6A). However, both E306Q-p60 and WT-p60 displayed similar rates of 

deterioration on Taxol-stabilized and high salt microtubules (Fig. 2.6B and C). From this 

data we can infer that high salt microtubules are inherently less stable than Taxol-

stabilized microtubules, but are not preferentially targeted by WT-Xl-p60. 
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Figure 2.6 Comparison of Taxol-stabilized and High Salt Microtubules Loss of 
Polymer. 

In order to compare overall rates of total loss of polymer between standard Taxol-
standardized and the “defective” high salt microtubules we plot the quantification for 
each type of microtubule under the same conditions on the same graph. Blue data is 
Taxol microtubules and purple data is high salt microtubules. All error bars represent the 
standard error of the mean. (A) Quantification of loss of polymer in severing assays 
without any severing enzyme. The N for high salt microtubules is 32 in 2 different 
chambers and for Taxol-stabilized microtubules N=33 in 6 different chambers. (B) 
Quantification of loss of polymer in severing assays with E306Q-Xl-p60. High salt 
microtubules N=28 in 6 different chambers and for Taxol-stabilized microtubules N=53 in 
6 different chambers. (C) Loss of polymer plots for assays on microtubules with WT-Xl-
p60. The number of high salt microtubules measured + WT-Xl-p60 is N=30 in 7 different 
chambers and for Taxol-stabilized microtubules + WT-Xl-p60 it is 51 in 8 different 
chambers. 
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 From our severing assay data we can also determine the total number of 

microtubules severed and the time of the first severing event on each individual 

microtubule. This ensures that the overall severing activity we observed and quantified is 

not in just a small subsection of the microtubule population. First we plotted the total 

number of microtubules severed at least once during the assays (Fig. 2.7A). Even when 

WT-Xl-p60 is in the severing assay there are some microtubules that are not severed, 

however, the majority of microtubules are severed at least once. Microtubules without 

any severing enzyme, or with the ATPase mutant E306QQ-Xl-p60 are not severed at all 

during the assay.  

 We also noted the time it took for the first severing event to occur. It is conceivable 

that under some conditions all microtubules will be severed at least once, but it could 

take significantly longer for that event to occur. Any microtubules that were not severed 

within the movie were calculated as if they took the entire length of the assay, 420 

seconds. The majority of both the Taxol-stabilized and high salt microtubules were 

severed in assay with WT-Xl-p60, but no microtubules were severed under any of the 

other control conditions. All of the above data corroborate that WT-Xl-p60 is required for 

severing of both Taxol-stabilized and high salt microtubules. In addition, Xl-p60 does not 

target high salt microtubules any more frequently than Taxol-stabilized microtubules. 
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Figure 2.7 Quantification of Severing Parameters for Taxol-stabilized and High Salt 
Microtubules. 

(A) Plot of quantification of the percentage of microtubules severed during the severing 
assays. This was calculated by counting the number of microtubules severed at least 
once during the assay. Both Taxol-stabilized and high salt microtubules were only 
severed when WT-Xl-p60 was present. (B) We calculated the time of the first severing 
event by noting the time at which the first break in the microtubule occurred. The time for 
the first severing event was around 100 seconds for both Taxol-stabilized and high salt 
microtubules. The N values are as follows: Taxol-stabilized microtubules N=33; Taxol-
stabilized microtubules + E306Q-Xl-p60 N=53; Taxol-stabilized microtubules + WT-Xl-
p60 N=51; high salt microtubules N=32; high salt microtubules + E306Q-Xl-p60 N=28; 
high salt microtubules + WT-Xl-p60 N=30. Error bars represent the standard error of the 
mean. 
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2.2.4 Katanin Activity on Subtilisin Microtubules 

 We investigated another type of defect microtubule that is missing the CTTs of 

alpha and beta tubulin. We treated Taxol-stabilized microtubules with subtilisin, a serine 

protease, that cleaves off the CTTs of both alpha and beta tubulin. Previous studies 

have shown that katanin is able to bind to subtilisin-treated microtubules and pellet with 

them (F. J. McNally and Vale 1993), but cannot sever such microtubules (F. J. McNally 

and Vale 1993; Eckert, Le, et al. 2012). Eckert et al. observed that at low concentrations 

of katanin there was no binding to microtubules, however, at high concentrations of 

katanin, katanin bound all over subtilisin-treated microtubules. Both the pelleting assays 

and the microscopy evidence suggest that katanin is able to bind to microtubules, 

although likely weakly, through a mechanism that does not involve the CTTs of tubulin.  

 Since it is known that katanin does not sever subtilisin-treated microtubules, we 

wanted to further examine whether the CTT is required for depolymerization, or end 

severing events. The evidence from the time series (Fig. 2.8) indicates that the subtilisin-

treated microtubules alone or with the E306Q-Xl-p60 do not get severed, but may 

depolymerize. As previously reported, there is also no severing in assays with WT-Xl-

p60 either, however, we do observe some depolymerization.  
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Figure 2.8 Representative Time Series of Severing on Subtilisin-Treated 
Microtubules. 

Time series of representative subtilisin-treated microtubules in a severing assay alone 
(A), with E306Q-Xl-p60 (B), or with WT-Xl-p60 (C). The time between images is as 
stated below each time series and all the scale bars are 5 µm. 
  

!""#"$%&&"'(

All scale bars )" *

!""#"$+&"'(

!""#"$+&"'(

B. Rhodamine-MTs + E306Q Xl-p60

C. Rhodamine + WT Xl-p60

A. Rhodamine-MTs 



	  

45	  

 Quantification of the loss of polymer data for subtilisin microtubules shows the 

microtubules themselves are relatively stable. They show no loss of polymer over the 

course of the assay, and have a long characteristic decay time, which would be infinite 

over the time scale of our assays (Fig. 2.9). We observed a small amount of polymer 

loss in assays with E306Q-Xl-p60. This is best represented by the slow decay constant τ 

= 506.08 s ± 189.03 with the goodness of fit: R2 = 0.905 (Fig. 2.9). Assays with WT-Xl-

p60 also lose polymer, and have a relatively fast decay constant τ = 106.47 s ± 8.5026 

with the goodness of fit: R2 = 0.93915 (Fig. 2.9). However, since there is still ~50% of the 

microtubules remaining at the end of the assays, there is a significant vertical offset to 

this exponential decay allowing the decay to level to a non-zero value (Appendix A.1). 

This data can be fit to the equation: 

    I(t) = I0 exp (-t/τ) + I∞,       Eq. 2.3 

Where the parameters are the same as Eq. 2.1 and is the I∞ intensity level at which the 

decay asymptotes as time goes to infinity. 
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Figure 2.9 Quantification of Severing on Subtilisin-treated Microtubules. 

(A) This is a plot of the quantification of the total loss of microtubule polymer over time 
for each of the conditions with subtilisin-treated microtubules. Images were collected 
every 5 seconds for 10 minutes and then ImageJ was used to analyze the images. 
Purple is severing assays with subtilisin-treated microtubules and no severing enzyme 
(N=32 in 4 different chambers); pink is subtilisin-treated microtubules + E306Q-Xl-p60 
(N=27 in 5 different chambers); orange is subtilisin-treated microtubules + WT-Xl-p60 
(N=31 in 10 different chambers). Microtubules were not completely destroyed under any 
of the conditions. The error bars represent the standard error of the mean. (B) The loss 
of polymer data was fit with either linear approximate (Eq. 2.2) or a single exponential 
with a non-zero long-time asymptote (Eq. 2.3) to distinguish the overall decay times. The 
error bars are the uncertainty associated with the decay time fit parameters. 
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We plotted the rates of polymer loss for each condition on the same plot in order to 

compare Taxol-stabilized microtubules and subtilisin microtubules (Fig. 2.10). We found 

that subtilisin microtubules are consistently more stable than Taxol-stabilized 

microtubules under all conditions (Fig. 2.10). With WT-Xl-p60 the subtilisin microtubules 

lose polymer, but not at the same rate as Taxol microtubules. 
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Figure 2.10 Comparison of Taxol-stabilized and Subtilisin-Treated Microtubules 
Loss of Polymer. 

In order to compare overall rates of total loss of polymer between standard Taxol-
standardized and the “defective” subtilisin-treated microtubules, which are missing the 
CTTs of tubulin, we plot the quantification for each type of microtubule under the same 
conditions on the same graph. Blue data is Taxol microtubules and green data is 
subtilisin-treated microtubules. All error bars represent the standard error of the mean. 
(A) Quantification of loss of polymer in severing assays without any severing enzyme. 
The N for subtilisin-treated microtubules is N=32 in 4 different chambers and for Taxol-
stabilized microtubules N=42 in 6 different chambers. (B) Quantification of loss of 
polymer in severing assays with E306Q-Xl-p60. The N for subtilisin-treated microtubules 
is N=27 in 5 different chambers and for Taxol-stabilized microtubules N=31 in 5 different 
chambers. (C) Loss of polymer plots for assays on microtubules with WT-Xl-p60. The 
number of subtilisin-treated microtubules + WT-Xl-p60 is N=31 in 10 different chambers 
and for Taxol-stabilized microtubules + WT-Xl-p60 it is N=37 in 8 different chambers. 
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 From the severing assays we also calculated the total number of microtubules 

severed. We found that only assays with WT-Xl-p60 and Taxol-stabilized microtubules 

are microtubules severed (Fig. 2.11A). This indicates that the loss of polymer for 

subtilisin microtubules that we observed in Fig. 2.9 was due to depolymerization. We 

also quantified the time to the first severing event, which suggested that severing only 

occurred on Taxol-stabilized microtubules with WT-Xl-p60 (Fig 2.11B). This further 

confirms that katanin cannot sever subtilisin-treated microtubules, so any loss of polymer 

we see is due to depolymerization. Since we observe depolymerization in the presence 

of katanin and ATP, that the enzyme is likely using an alternate ATP and katanin 

dependent mechanism to perform depolymerization. 
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Figure 2.11 Quantification of Severing Parameters for Taxol-stabilized and 
Subtilisin-Treated Microtubules. 

(A) Plot of quantification of the percentage of microtubules severed during the severing 
assays. This was calculated by counting the number of microtubules severed at least 
once during the assay. Only Taxol-stabilized microtubules were severed, and they were 
only severed when WT-Xl-p60 was present. (B) We calculated the time of the first 
severing event by noting the time at which the first break in the microtubule occurred. 
The time for the first severing event was around 100 seconds for both Taxol-stabilized 
and subtilisin-treated microtubules. The number of experiments performed are as 
follows: Taxol-stabilized microtubules N=42; Taxol-stabilized microtubules + E306Q-Xl-
p60 N=31; Taxol-stabilized microtubules + WT-Xl-p60 N=37; subtilisin-treated 
microtubules N=32; subtilisin-treated microtubules + E306Q-Xl-p60 N=27; subtilisin-
treated microtubules + WT-Xl-p60 N=31. Error bars represent the standard error of the 
mean. 
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2.2.5 Katanin Activity depends on ATP Concentration. 

 There is no prior microscopic evidence that the microtubule severing activity 

increases with increasing ATP substrate. In order to directly test the severing activity as 

a function of ATP concentration, we performed ATPase assays with 28 µM, 100 µM, 500 

µM, and 2 mM ATP. The time series reveals that microtubules are completely destroyed 

with WT-Xl-p60 and 500 µM or 2 mM ATP over the time frame of our assays (Fig. 2.12).   
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Figure 2.12 Representative Time Series of Severing on Taxol Microtubules with 
Different Concentrations of ATP. 

Time series of representative Taxol-stabilized microtubules in a severing assay with WT-
Xl-p60 and different concentrations of ATP: (A) with 28 µM, (B) 100 µM, (C) 500 µM, (D) 
2 mM. 
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We confirmed the visual results in Fig. 2.12 by quantifying the loss of polymer of the 

range of ATP concentrations and found that the most lost of polymer occurs between 

500 µM-2 mM ATP (Fig. 2.13A). ATP concentrations above or below this range have 

only  ~ 50% of the microtubule destroyed during the assay. The characteristic decay 

times calculated from fitting the data to linear or exponential decays indicated similar 

outcomes. The decay times for 500 µM ATP and 2 mM ATP are τ = 116.16 s ± 5.44 with 

the goodness of fit: R2 = 0.98 and τ = 146.76 s ± 3.87 with the goodness of fit: R2 = 0.99 

respectively (Fig. 2.13B). All other lower ATP concentrations have slow characteristic 

decay times and significant offsets because they do not decay completely (Fig. 2.13B). 
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Figure 2.13 Analysis of Loss of Polymer as a Function of ATP Concentration. 

(A) Quantification of overall loss of polymer in severing assays as a function of ATP 
concentrations. This is plotted as the fraction of microtubule remaining over time by 
comparing the intensity of the microtubule at each time point to the intensity of the 
microtubule at the first frame WT-p60 is added. The error bars represent the standard 
error of the mean. The N values for each condition is as follows: light green is Taxol-
stabilized MTs + 2 mM ATP (N=50); grey is Taxol-stabilized MTs + E306Q-p60 + 2 mM 
ATP (N=33); dark red is Taxol-stabilized MTs + WT-p60 + 0 mM ATP (N=36); pink is 
Taxol-stabilized MTs + WT-p60 + 28 µM ATP (N=42); orange is Taxol-stabilized MTs + 
WT-p60 + 100 µM ATP (N=35); lime green is Taxol-stabilized MTs + WT-p60 + 500 µM 
ATP (N=53); green is Taxol-stabilized MTs + WT-p60 + 2 mM ATP (N=55). Microtubules 
were destroyed fastest and most completely in the presence of 500 µM and 2 mM ATP. 
Error bars represent the standard error of the mean. (B) Each data set in (A) was fit to a 
linear (Eq. 2.2) or single exponential decay (Eq. 2.1, 2.3). The representative decay 
times are plotted in seconds by their time scale. Fast time scales are on the left and slow 
time scales are on the right. The characteristic decay times reflect the data in (A) and 
show that the fastest decay occurs with 500 µM and 2 mM ATP. All other decay times 
are significantly longer. The error bars represent the error associated with the decay 
time. All fit parameters are found in Appendix A.8. 
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 We also quantified the total number of microtubules severed for each ATP 

concentration. There is a peak in the total number of microtubules severed around 2 mM 

ATP, which drops significantly at lower concentrations of ATP (Fig. 2.14A). The time of 

the first severing event also depends on ATP concentration. The lowest average time to 

first severing event is between 500 µM-2 mM ATP. The time it takes to achieve the first 

severing event increases for ATP concentrations below this range (Fig. 2.14B). At ATP 

concentrations where there is not a complete loss of polymer, there is still only 50% of 

the microtubule remaining, regardless of the number of microtubules severed. Therefore, 

we can infer that the loss of polymer occurring is due to depolymerization and it does not 

appear to not depend on ATP concentration. 
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Figure 2.14 The Total Microtubules Severed and ATP Turnover Rates are 
Dependent on ATP Concentration. 

(A) The total number of microtubules severed at least once was quantified to show that it 
was not one subsection of the population showing the trends we observe. The highest 
percentage of microtubules severed was with 500 µM and 2 mM ATP. The percentages 
decrease when the ATP concentration is raised or lowered. The error bars represent the 
standard error of the mean. The number of experiments preformed for each condition is 
as follows: light green is Taxol-stabilized MTs + 2 mM ATP (N=50); grey is Taxol-
stabilized MTs + E306Q-p60 + 2 mM ATP (N=33); dark red is Taxol-stabilized MTs + 
WT-p60 + 0 mM ATP (N=36); pink is Taxol-stabilized MTs + WT-p60 + 28 µM ATP 
(N=42); orange is Taxol-stabilized MTs + WT-p60 + 100 µM ATP (N=35); lime green is 
Taxol-stabilized MTs + WT-p60 + 500 µM ATP (N=53); green is Taxol-stabilized MTs + 
WT-p60 + 2 mM ATP (N=55). Error bars represent the standard error of the mean. (B) 
The time to the first severing event is plotted as a function of ATP concentration. The 
time of the first severing event is shortest with 500 µM and 2 mM ATP. All other ATP 
concentrations were severed at long time points. If the microtubules were not severed at 
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all we plotted this as 420 seconds, the longest time point in our assays. The data reflect 
the same trends as Figure 2.13. (C) is quantification of the kobs for 2 µM WT-p60 and 2 
µM WT-60 + 1 µM MTs. This was calculated by using the Vmax to calculate the kobs. The 
equation we used is Vmax(sec-1) = kob * [WT-p60 in µM]. Each data set was repeated at 
least three times. The error bars represent the standard error of the mean. 
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 Previous work has shown that ATP is required for severing activity, however, it is 

unknown how much ATP is needed for optimal severing or depolymerization activity. 

McNally et al., measured the ATPase rate in the presence of 100 µM ATP and 50 µg/mL 

S. purpuratus katanin p81-p60 as 160 nM PO4 min/mg (F. J. McNally and Vale 1993). 

Hartman et al. performed similar assays with 0.04 µM S. purpuratus p60 and found that 

the ATPase rate increased as a function of microtubule concentration until 2 µM 

microtubules, where it hydrolyzed a maximum of 3 ATP/katanin/second (Hartman et al. 

1998). More recently, Whitehead et al. revealed that with X. laevis p60 the ATPase rate 

increased with increasing microtubule concentration as well as ATP concentration to 5 

mM ATP (Whitehead, Heald, and Wilbur 2012). To correlate the severing activity we 

observe in our severing assays with the ATPase activity, we chose two concentrations of 

ATP: 100 µM and 1 mM, and measured the ATPase rate of 2 µM p60 with 1 µM of 

Taxol-stabilized microtubules. We observed that under these conditions, katanin has 

peak basal ATPase at 1 mM (Fig. 2.14C). In ATPase assays with 100 µM ATP, we 

observe a 4-fold increase in ATPase activity when p60 is microtubule stimulated. 

However, at 1 mM ATP, we observe minimal microtubule stimulation. These results 

show that the ATPase rate correlated well with the severing activity that we observe 

since we see a peak around 1 mM ATP.  We can infer that the severing activity is highly 

dependent on both ATP and microtubule concentration. 

2.3 Discussion 

 There are both theoretical and experimental evidence for katanin targeting defects 

in microtubules (Davis et al. 2002; Díaz-Valencia et al. 2011). Here we have presented 

two different types of defect microtubules which katanin targets in different ways. We 

show that: (1) katanin does not prefer microtubules with protofilament shifts and seam 
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defects, (2) Subtilisin-treated microtubules cannot be severed, but are depolymerized at 

a faster rate than either Taxol-stabilized or high salt microtubules, (3) Severing activity is 

dependent on ATP concentration, but depolymerization requires only minimal ATP. We 

propose that katanin can bind along the length of the filament, likely through interactions 

with the CTT, and can cause dimers to be removed (Fig. 2.15). However, katanin can 

also act at the end of filaments to enhance the rates of dimer dissociation. 

 Previously it has been proposed that severing enzymes bind to microtubules and 

can sense the curvature of the microtubule in order to sever (Roll-Mecak and Vale 

2008). However, both in our previous work where katanin severs GMPCPP 

microtubules, which typically have 14-15 protofilaments (Diaz-Valencia 2011), and this 

study where we observed high salt microtubules, with 9-10 protofilaments, we observe 

similar rates of severing as with normal Taxol-stabilized microtubules. Therefore, it is 

unlikely that katanin is sensing a curvature since all three types of microtubules have a 

different characteristic curvature. However, it is possible that p60 is able to sense a 

broad range of curvatures. In the case of polarity-marked microtubules being severed 

more frequently at seams, it is more likely that katanin is recognizing a hole in the 

microtubule, since these microtubules are known to have gaps where the ends anneal 

(unpublished data). Therefore, katanin would be targeting a hole in the lattice and 

positively regulate severing activity at that location. 
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Figure 2.15 Model of Katanin-Dependent Depolymerization. 

This is a model for katanin-dependent depolymerization. (A) Taxol-stabilized 
microtubules will naturally undergo a very low rate of depolymerization (B) When katanin 
is added to Taxol microtubules, it can either sever microtubules in the middle, or 
depolymerize microtubules from the ends. The severing activity likely requires formation 
of a hexamer, while depolymerization may not. (C) When katanin is added to subtilisin-
treated microtubules it is unable to sever microtubules. However, when ATP is present, it 
does depolymerize microtubules. There are several possible mechanisms for how this 
depolymerization activity could be achieved. First, it could enhance the inherent 
fluctuations of the dimers so that occur at a faster rate. Second, katanin could cause a 
conformational change in the tubulin dimers so that is less likely to bind to its neighbors. 
Finally, katanin could drive a wedge between the dimer and its neighbor and dislodge it 
from the end of the microtubule. Additionally, it could be enhancing depolymerizing 
activity by some combination of these mechanisms. 
  

Taxol MTs without Katanin Subtilisin-treated MTs (+Taxol)
with Katanin

Taxol MTs with Katanin
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 In our model for how katanin can both sever and depolymerize microtubules, we 

know that Taxol is used to stabilize microtubules, however we observe a low rate of 

dimer dissociation from the ends. In our severing assays the overall background 

concentration of tubulin is low and although Taxol is stabilizing the microtubules, there is 

a chemical potential gradient of dimer loss. This rate of dimer loss is slightly faster with 

the high salt microtubules, suggesting that they may be less stable (Fig. 2.5). In the case 

of both Taxol-stabilized microtubules and high salt microtubules the rate of dimer loss 

remains the same when the ATPase mutant katanin is added, but due to the nature of 

our assays it is hard to deconvolve the depolymerization from the severing activity with 

WT-katanin (Fig. 2.6). Interestingly, subtilisin-treated microtubules have a lower rate of 

loss of polymer on their own and also with the ATPase mutant katanin, but the loss 

increases with WT katanin (Fig. 2.9). Since subtilisin-treated microtubules cannot be 

severed, the rates of loss of polymer can be attributed to depolymerization. Therefore, it 

is reasonable to suggest that katanin is acting through a mechanism that does not 

involve the CTTs of tubulin to depolymerize microtubules. We propose that katanin acts 

as a hexamer on the dimers on the end to enhance dissociation by one of these 

mechanisms: (1) katanin binding enhances the fluctuations of these dimers, (2) katanin 

binding causes a conformational change in the tubulin that lowers the affinity of the 

dimers for its neighbors, or (3) katanin binding simply drives a wedge between the end 

dimers and the filament. These possible, and not necessarily mutually exclusive, 

mechanisms rely both on katanin binding and a low level of ATP hydrolysis.  

 Our proposed mechanism is similar to how actin-severing enzymes act to cut 

without ATP. ADF-cofilin can bind to the side of the filament and loosen the bonds 

between neighboring monomer ultimately cutting the filament (McCullough et al. 2008; 

McCullough et al. 2011). This mechanism is less likely to work for microtubule severing, 
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because there are six times as many protofilaments in a microtubule to cut through to 

sever. The most vulnerable place for this type of mechanism is at the microtubule ends, 

where the barrier to removing a dimer is much lower, due to the lack of longitudinal and 

possibly lateral neighbors. Even without severing enzyme, we observe a very low rate of 

depolymerization that is likely due to thermal fluctuations. 

 Our lab and others have previously shown that katanin does depolymerize 

microtubules in an ATP dependent manner (Díaz-Valencia et al. 2011; Eckert, Le, et al. 

2012), however, we believe that ATP only enhances the binding of katanin to the 

microtubules. Other groups have also shown that ATP can enhance katanin’s affinity for 

microtubules (F. J. McNally and Vale 1993; Hartman and Vale 1999; Díaz-Valencia et al. 

2011). If even small amounts of ATP are able to increase katanin binding, then it seems 

likely that the rate of depolymerization would also increase. Our data support that ATP 

can enhance katanin’s severing activity within a certain range of ATP. We found that 

katanin had the most severing activity when the assays were supplemented with 500 µM 

- 2 mM ATP, and if there is less ATP the severing activity decreased (Fig. 2.12 and Fig. 

2.14). However, interestingly over all ATP concentrations outside the optimal range, 

there was a 50% decrease in polymer mass during the severing assay, which is likely 

due to depolymerization (Fig. 2.13 and Fig. 2.14). Therefore, we believe that the 

depolymerization activity is increased by ATP, but is not dependent on the ATP 

concentration. Previous work from other groups has shown that katanin is sensitive to 

microtubule concentration. If there are too many microtubules present, the ATPase 

activity actually decreases for both p60 and p60/p80 (Hartman et al. 1998). Recent 

studies on spastin’s chemical activity have suggested that spastin needs at least two 

wild type monomers to interact, and likely as neighbors, in order to achieve normal levels 

of ATPase activity (Eckert, Link, et al. 2012). Since the Hill coefficient is increased in the 
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presence of microtubules, it is likely that microtubules could help stimulate the 

cooperative interactions of the monomers (Eckert, Link, et al. 2012). Further, increasing 

concentrations of mutant spastin affects the turnover rate and suggests that the subunits 

likely exert an allosteric effect on each other (Eckert, Link, et al. 2012). Modeling of this 

cooperativity has proved difficult as we are still uncertain of all the states involved (Le, 

Eckert, and Woehlke 2013a) Future work will need to focus on determining mechanistic 

details of how the ATPase cycle works and how the cycle is connected to severing and 

depolymerization activity. 

	  
Conclusions 
 
 We have revealed some new insights on how katanin may target microtubules for 

both severing and depolymerization activity and that these activities may be 

mechanistically different. We have further showed that data from ATPase assays seems 

to mirror severing activity. We have provided a model for how katanin may depolymerize 

microtubules in an ATP-dependent manner. However, more in depth studies need to be 

performed to dissect the validity of this model. 

2.4 Methods 

2.4.1 Protein Purification 

We received the pMAL-c5x-X. laevis p60 from the Heald lab. We used an IPTG inducible 

expression system was used for expression and purification. The plasmid was 

transformed into BL21 Competent E. coli (New England BioLabs). An LB starter culture 

was grown overnight and added to a 500mL culture the next day. This culture was grown 

at 37°C until it reached an OD of 0.8 and then it was induced with 1 mM IPTG. The 

culture was allowed to continue to grow at 16°C for 16 hours. The cells were lysed in 

resuspension buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% glycerol, 
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0.25 mM ATP) via sonication. The lysate was incubated with amylose resin (New 

England BioLabs) for 1-2 hours. The lysate/resin mixture was added to the column and 

allowed to enter the column completely. Once excess lysate had passed through the 

column, the column was washed twice with 20 mL of resuspension buffer (20 mM Hepes 

pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% glycerol, 0.25 mM ATP). Then the protein is 

eluted in elution buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% 

glycerol, 0.25 mM ATP, 10 mM Maltose). The approximate concentration was measured 

by a Bradford assay. 

2.4.2 Taxol-stabilized Microtubule Polymerization 

Taxol-stabilized microtubules were made by combining a 1:3-1:20 ratio of labeled 

rhodamine tubulin (Cytoskeleton) or homemade Dylight 649 (Thermo Scientific) tubulin 

with home purified unlabeled tubulin. The unlabeled tubulin was purified from porcine 

brains using the method described in (Peloquin et al., 2005). Both the unlabeled and 

labeled tubulin were resuspended in PEM-100 (100 mM K-Pipes, pH 6.8, 2 mM MgSO4, 

2 mM EGTA) to a concentration of 5 mg/mL. Both were incubated on ice for 10 minutes. 

Then the labeled and unlabeled tubulin was combined and spun at 366,000 xg, 4°C for 

10 minutes. To polymerize the microtubules 1 mM GTP was added to the tubulin and it 

was incubated at 37°C for 20 minutes. To further stabilize the microtubules, 50 µM Taxol 

was added and they were incubated for 20 minutes at 37°C. The microtubules were 

centrifuged at 16,200 xg, 27°C for 10 minutes. The pellet was resuspended in PEM-100 

and 50 µM Taxol.  

2.4.3 High Salt Taxol-stabilized Microtubule Polymerization 

High Salt Taxol-stabilized microtubules were polymerized by the same procedure as 

Taxol-stabilized Microtubules, but during the polymerization step 580 mM NaCl was 
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added in addition to the GTP. 

2.4.4 Subtilisin-treated Taxol-stabilized Microtubule Polymerization 

Subtilisin-treated Taxol-stabilized microtubules were polymerized by the same procedure 

as Taxol-stabilized Microtubules, with several additional steps. Once the microtubules 

are polymerized, they are incubated with 100 mg/mL subtilisin for 45 minutes. The 

reaction is stopped using 2 mM PMSF. The microtubules were centrifuged for 30 

minutes at 16,200 xg 27°C for 30 minutes and the pellet was resuspended in PEM-100 

and 1 mM GTP.  

2.4.5 In vitro assays 

I made a 10 µL flow chamber with double stick tape (3M), a coverglass (fisherbrand) and 

a silanized coverslip (fisherbrand). The coverslips were biologically cleaned (Dixit and 

Ross 2010). Coverslips assembled into chambers were coated with 2% 

dimethyldichlorosilane (GE Healthcare) to block the surface and prevent proteins from 

sticking to the surface of the coverslips. I first incubated 2% (w/v) MAB1864 tubulin 

antibody in Katanin Activity Buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 mM MgCl2) for 

5 minutes. Next I added 5% (w/v) Pluronic F-127 in Katanin Activity Buffer (20 mM 

Hepes pH 7.7, 10% glycerol, 2 mM MgCl2) to additionally block the surface. Then 

rhodamine or dylight 649 microtubules were incubated in the chamber for 5 minutes. To 

remove excess microtubules, complete Katanin Activity Buffer (20 mM Hepes pH 7.7, 

10% glycerol, 2 mM MgCl2, 2 mM ATP, 0.025 mg/mL BSA, 0.05% F-127, 10 mM DTT, 

15 mg/mL glucose, 0.15 mg/mL catalase, 0.05 mg/mL glucose oxidase) was washed 

through the chamber. After 3 minutes of imaging, motility mix with p60 (20 mM Hepes 

pH 7.7, 10% glycerol, 2 mM MgCl2, 2 mM ATP, 0.025 mg/mL BSA, 0.05% F-127, 10 mM 

DTT, 15 mg/mL glucose, 0.15 mg/mL catalase, 0.05 mg/mL glucose oxidase, 100nM 
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gfp-p60). 

2.4.6 ATPase Assays 

ATPase assays were performed as described in (Whitehead, Heald, and Wilbur 2012). I 

incubated 100 µM p60 and microtubules ranging from 0.5-5 µM in Katanin Activity Buffer 

(20 mM Hepes pH 7.7, 10% glycerol, 2 mM MgCl2) with additional 1 mM DTT, 1 mM, 

MgCl2, 6.5 µM Taxol in a 384 well plate (Corning), at 340 nm, 30°C with an ATPase mix 

containing 1 mM ATP, PEP, LDH/PK for 10 minutes. Using this data I found the Vmax  

(maximum rate of ATP hydrolysis) and used this rate to plot the overall kobs (rate of 

observed ATP hydrolysis) 

 

      kobs =Vmax/[p60]                   Eq 2.4 

 

2.4.7 Loss of Polymer Data Analysis 

Loss of polymer analysis was performed in ImageJ. First I used the line tool to draw a 

segmented line, 3 pixels wide, over the length of the microtubule. I used the macro 

“measure stacks” to measure the mean intensity of the line for each frame of the movie. 

The line was moved to a piece of background near the microtubules to measure the 

mean intensity of the background. To find the amount of microtubule remaining at each 

frame, the background intensity was subtracted from the mean microtubule intensity. 

Then the intensity was normalized to the first frame in focus after p60 was added to the 

chamber. 

2.4.8 Percentage of Microtubules Severed Analysis 

The percentage of microtubules severed analysis was performed by counting the total 
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number of microtubules in the movie and the number of microtubules that were severed 

at least once during the course of the movie.  

2.4.9 Time to First Severing Event Analysis 

The time to first severing event analysis was performed by noting the frame that we first 

see a break in the microtubule for each microtubule that was severed at least one time 

during the movie. 
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CHAPTER 3 

FREE TUBULIN INHIBITS KATANIN ACTIVITY 

3.1 Introduction 

 Microtubules are essential, rigid biopolymers that form part of the cytoskeleton 

used to support and organize the interior of cells. Along with their associated proteins 

and enzymes, microtubules are essential for a variety of processes including mitosis, cell 

migration, and intracellular transport. Since microtubules are involved in diverse 

processes, it is important for them to be dynamically organize and rearrange based on 

the state of the cell. It has long been known that microtubules have intrinsic dynamics 

termed dynamic instability, wherein the filaments grow and shrink stochastically (Desai 

and Mitchison 1997). Microtubules will undergo dynamic instability spontaneously in 

vitro, and microtubule associated proteins (MAPs) have been shown to modify the 

dynamics to regulate how these cytoskeletal filaments are remodeled. It is assumed that 

alteration of microtubule dynamics by MAPs allows for better spatial and temporal 

control in the cell.  

 There are a plethora of MAPs in the cell including MAPs that stabilize 

microtubules, aiding in nucleation of filaments, and allowing microtubules to grow, as 

well as destabilizing MAPs that depolymerize microtubules, cause more frequent 

catastrophes, or even sever microtubules. A novel family of enzymatic MAPs used to 

sever microtubules is termed microtubule severing enzymes family. Microtubule severing 

enzymes are members of the (ATPases Associated with various cellular Activities) AAA+ 

enzyme family that hexamerize and utilize ATP to perform their function (Frickey and 

Lupas 2004).  Microtubule severing enzymes use their catalytic activity to dismantle 

microtubules both in vitro and in vivo (Hartman et al. 1998; Hartman and Vale 1999). 
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Within the family of microtubule-severing enzymes, there are three known members: 

katanin, spastin, and fidgetin.  

 Katanin was the first discovered microtubule severing enzyme, and it is unique 

because katanin is composed of a 60 kD catalytic subunit, p60, and a 80 kD regulatory 

subunit, p80 (F. J. McNally and Vale 1993; Hartman et al. 1998). Katanin has been 

shown to be crucial for a variety of functions in several different types of cells. Katanin 

was discovered as a component of a Xenopus mitotic extract egg extract that caused the 

destruction of Taxol-stabilized microtubules (Vale 1991) and later purified from sea 

urchin embryos and identified (F. J. McNally and Vale 1993). Katanin-p80 works as a 

regulatory protein that targets p80 to the centrosomes via the WD40 domains in the N-

terminal region (K. P. McNally, Bazirgan, and McNally 2000; Hartman et al. 1998). In 

egg extracts, katanin controls the spindle length in X. tropicalis and X. laevis, which in X. 

laevis is regulated by N-terminal phosphorylation (Loughlin et al. 2011; Whitehead, 

Heald, and Wilbur 2012). Katanin has also been shown to be involved in regulating 

microtubule length and releasing microtubules from centrosomes in neurons for proper 

neuronal development to occur (Ahmad et al. 1999). Katanin mutants are responsible for 

fragile plant defects affecting patterning of cell wall deposition materials (Murata et al. 

2005; Nakamura and Hashimoto 2009), loss of motile function of cilia in ciliary diseases 

(Dymek, Lefebvre, and Smith 2004; Sharma et al. 2007), and longer than normal meiotic 

spindles in C. elegans meiosis, which eventually lost their biorientation (K. McNally et al. 

2014; K. McNally et al. 2006). Recently, we have shown that katanin regulates 

microtubule length at the cortex of S2 cells and affects cell migration (D. Zhang et al. 

2011). 

 Despite katanin having been discovered almost 25 years ago, there are many 

open questions about its biochemical and biophysical mechanisms. Katanin is an 
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ATPase that has been reported to be stimulated by the presence of the microtubule 

substrate, requires ATP to oligomerize, and is inhibited by high concentrations of 

microtubules (F. J. McNally and Vale 1993; Hartman et al. 1998; Stoppin-Mellet, 

Gaillard, and Vantard 2002). The active site for severing is likely the carboy-terminal tail 

(CTT) of the tubulin dimer, since katanin is unable to sever microtubules treated with 

subtilisin to cleave the CTT  (F. J. McNally and Vale 1993; Eckert, Le, et al. 2012). 

Katanin requires ATP to oligomerize similar to NSF, anther known AAA enzyme 

(Hartman and Vale 1999). In vitro work combined with modeling has shown indirectly 

and directly that katanin targets to microtubule defects (Davis et al. 2002; Díaz-Valencia 

et al. 2011).  

 Much of our understanding of katanin is based on information we know about the 

other severing enzymes. Both spastin and katanin require ATP and the CTT of tubulin to 

function (Roll-Mecak and Vale 2005; Roll-Mecak and Vale 2008; Eckert, Le, et al. 2012). 

It has also been shown that spastin severing is inhibited by CTTs and all three pore 

loops in spastin’s AAA domain are crucial for severing activity (Roll-Mecak and Vale 

2008; White et al. 2007). Based on the crystal structure of spastin, a model of how it 

severs was proposed. In the presence of ATP, the severing enzyme docks on the 

microtubule using the N-terminal microtubule binding domains. The monomers form a 

hexameric ring, however, it is unclear whether this occurs before or after docking on the 

microtubule. The center of the ring forms a pore with three pore loops that are thought to 

interact with the CTTs of tubulin and tug the tails to unfold the tubulin and ultimately 

cause microtubule breakdown (Roll-Mecak and Vale 2008). Recent work on spastin has 

begun to dissect the ATPase cycle and precisely pinpoint how many subunits are 

required to have ATP in order to sustain severing (Eckert, Link, et al. 2012; Le, Eckert, 

and Woehlke 2013a). Despite the mechanistic details that have been uncovered, there is 
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very little that is known about how severing enzymes interact with other individual MAPs, 

or even tubulin itself. 

3.2 Results 

3.2.1 Experimental Set-up 

 In the following studies we used a purified GFP-labeled human version of katanin 

p60 to perform quantitative measurements of katanin binding and severing activity on 

microtubules.  We find that tubulin is a potent inhibitor of katanin severing activity, even 

low levels of free tubulin can inhibit katanin-based severing of Taxol-stabilized 

microtubules. Performing direct imaging of GFP-katanin binding, we show that the free 

tubulin competes with the microtubule filament for binding and that even the CTTs can 

effectively compete for binding to cause severing inhibition. Using such CTT constructs, 

we show that different isoforms of tubulin are more or less potent at inhibiting severing 

with beta-tubulin CTTs being the most effective and detyrosinated alpha tubulin CTTs 

being the least inhibitory. Our studies shed new light on possible inhibitory feedback 

mechanism of katanin that might function in the cell to shut down katanin activity so that 

it does not destroy all the microtubules of the cell. 

3.2.2 Human p60 is as effective as X. laevis p60. 

 Microtubule severing assays have been performed previously to characterize 

severing enzymes (Loughlin et al. 2011; Whitehead, Heald, and Wilbur 2012; Eckert, Le, 

et al. 2012; Eckert, Link, et al. 2012; F. J. McNally and Thomas 1998; K. P. McNally, 

Bazirgan, and McNally 2000; Buster, McNally, and McNally 2002; Stoppin-Mellet, 

Gaillard, and Vantard 2002; Díaz-Valencia et al. 2011; D. Zhang et al. 2011; K. McNally 

et al. 2014; Johjima et al. 2015). First, in order to show that our purified katanin is 



	  

72	  

functioning we performed microtubule-severing assays in vitro on Taxol-stabilized 

microtubules. We compared our new GFP-labeled human version of p60 (Hu-p60) to a 

previously characterized p60 from X. leaves (Xl-p60) (Loughlin et al. 2011; Whitehead, 

Heald, and Wilbur 2012). Qualitatively, we find that severing by Hu-p60 is as fast as by 

Xl-p60, a majority of the microtubules are severed by the third frame in the series ~100 

s, as seen in the representative time series (Fig. 3.1A-B).   
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Figure 3.1 Representative Time Series of X. laevis p60 and Human p60.	  

(A) Example time series of severing assays with X. laevis p60 (XI-p60). The severing 
assays were 10 minutes long with a frame taken every 5 seconds. The times series 
depicts a frame every 10 seconds. The scale bars are 5 µm. Time series of Dylight649 
microtubules (MTs) in a severing assay with Xl-p60. By the end of the movie the 
microtubules are completely destroyed. The first frame is bright and out of focus due to 
the enzyme being flowed into the chamber. (B) Example time series of severing assays 
with human-p60 (GFP-Hu-p60). (i) Time series of Dylight649-MTs in a severing assay 
with GFP-Hu-p60. Microtubules are completely destroyed by the end of the assay. The 
first frame is bright and out of focus due to the enzyme being flowed into the chamber. 
(ii) Time series of the same assay in (i) of the GFP channel showing GFP-Hu-p60 
binding along the microtubules. The GFP-Hu-p60 was added during the first frame in the 
time series and within two frames is completely decorating the microtubules. (iii) A 
merge of (i) and (ii). Red is the microtubules and cyan is GFP-Hu-p60. The severing 
assays were 10 minutes long with a frame taken every 5 seconds. The times series 
depicts a frame every 10 seconds. The scale bars are 5 µm. 
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 Similar to other methods of tracking microtubule severing, we used the average 

fluorescence intensity of the microtubule to plot the fraction of microtubule remaining 

over time (Loughlin et al. 2011; Whitehead, Heald, and Wilbur 2012; K. P. McNally, 

Bazirgan, and McNally 2000; Buster, McNally, and McNally 2002; Stoppin-Mellet, 

Gaillard, and Vantard 2002; K. P. McNally, Buster, and McNally 2002; K. McNally et al. 

2014) or the total number of microtubules remaining over time (F. J. McNally and 

Thomas 1998). Using fluorescence intensity of the microtubule signal as a read-out for 

the microtubule remaining, we quantified the loss of polymer over time (Fig. 3.2A). We 

found the rate of decay by fitting the data with an exponential decay function of the form:  

      I(t) = I0 exp (-t/τ),      Eq. 3.1 

where I is the intensity as a function of time, t, I0 is the amplitude at time zero, and τ is 

the characteristic time constant for the decay (Fig. 3.2B). If it does not decay to zero, we 

can use a vertical offset, to the equation:  

      I(t) = I0 exp (-t/τ) + I∞,     Eq. 3.2 

where I∞ is the intensity asymptote at infinity. In some data sets, we needed a double 

exponential decay to best fit the data: 

     I(t) = I1 exp (-t/τ1) + I2 exp (-t/τ2),    Eq. 3.3 

When there is no katanin present, the data has a single, long characteristic decay time, 

and can basically be fit to a linear approximation for an exponential decay:  

      I(t) ~ I0 (1 - (t/τ)),                  Eq. 3.4 
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Figure 3.2 Human p60 is as Effective as X. laevis p60. 

(A) Plot of quantification of fraction of microtubule remaining over the course of the 
severing assay for Dylight649-MTs + Xl-p60, Dylight649-MTs + Hu-p60 and Dylight649-
MTs without any severing enzyme. Each of the data sets are fit to a line, single, 
exponential decay, or double exponential decay. Fit parameters are in Appendix A.3. 
The N values for these assays are as follows: Xl-p60 + MTs (N=55), Hu-p60 + MTs 
(N=73), MTs (N=56). The error bars for the data sets represent the standard error of the 
mean. (B) Graph of the characteristic decay time for each condition. This plot was made 
by fitting each data set from part (A) with a line, single exponential decay, or double 
exponential decay. On the left side the fast decay times are plotted and on the right side 
are the slow decay times. Error bars represent the error associated with the decay time. 
(C) Plot of background subtracted fluorescence intensity of GFP-Hu-p60 over the course 
of a severing assay. The dotted line represents Imax, the maximum fluorescence intensity, 
which corresponds to maximum Hu-p60 binding to microtubules. The N values for these 
assays are as follows: Hu-p60 + MTs (N=73), MTs (N=52). (D) The bar chart of the 
maximum fluorescence intensity of GFP-Hu-p60 and the MTs control. All error bars 
represent the standard error of the mean. Using this fit, we find the decay constant, tau 
to be: 2143.6  ± 36.96 with a goodness of fit of R2 = 0.983. When Xl- p60, is added to the 
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severing assays, the data is best fit by a single exponential curve, Eq. 3.2. Using these 
parameters, we find the decay constant is τ1 = 42.967 ± 0.4042, with an R2 = 0.998. 
Interestingly, when Hu-p60 is present, a double exponential decay is required for the 
best fit, Eq. 3.3. suggesting that there are two different phases in the data. There is a 
fast phase initially which is characterized by a steep slope and a characteristic decay 
time of τ1 = 30.743 ± 0.7491 followed by a slow phase with a long decay time τ2 = 471.04 
s ± 40.035 with the goodness of fit: R2 = 0.997. It is especially intriguing that Xl-p60 and 
Hu-p60 follow distinctly different decay behavior. This could suggest that are working in 
different in different ways mechanistically. The fit parameters can be found in Appendix 
A.3. 
  



	  

77	  

 
 Since the human construct is GFP-labeled, it provided us with additional 

information about how and when katanin binds to microtubules over the course of the 

severing assay (Fig. 3.1B). Plotting the average intensity of GFP-Hu-p60 fluorescence 

on the microtubule over time correlates with Hu-p60 severing microtubules (Fig. 3.2C), 

and showed that the peak of katanin binding occurs as severing began. As severing 

proceeded to completion, the fluorescence intensity associated with binding also 

dropped rapidly. To best portray the data, we chose to represent the binding data as the 

point of maximum fluorescence intensity or binding (Fig. 3.2D). The loss of polymer and 

GFP-intensity metrics will be used throughout to represent severing assays under differ 

conditions. 

3.2.3 Total Time for Katanin to Complete Severing is Concentration Dependent. 

 To determine how the severing rate depends on Hu-p60 concentration, we 

performed severing assays with high temporal resolution and increasing concentrations 

of katanin. Severing activity is fast and tightly coupled to katanin binding (Fig. 3.1). In 

order to characterize the fast kinetics, we imaged continuously in the GFP Hu-p60 

channel at approximately 25 frames per second. An example of the time series of the 

severing assay is depicted in Fig. 3.3. From these assays we determined the time-

dependent activities including: association time, time to first severing event, total 

severing time, and severing activity time (Fig, 3.3). 
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Figure 3.3 Representative Time Series of Concentration Dependence. 

Example time series of GFP-Hu-p60 binding and severing. We highlight the initial frame 
where the GFP-Hu-p60 is added (green box), the GFP intensity if maximum (blue box), 
the first resolvable severing event (yellow box), and the frame at which the microtubule 
is completely lost to katanin activity (red box). The time between the insertion of p60 and 
the maximum intensity is the association time. The time between the maximum intensity 
and the first resolvable severing event is the time to first severing event. The time 
between the first severing event and the complete loss of microtubule signal we call that 
severing activity time. The total time for severing is the time from the maximum intensity 
and the complete loss of microtubule. 
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 The association time is the time is takes for the protein to bind to the microtubule 

after being injected into the flow chamber. We defined the association time as the time 

between the frame when the GFP-Hu-p60 was added to the chamber and the frame 

displaying the maximum intensity of GFP fluorescence (Fig. 3.2C). We were careful to 

image microtubules in a region of the chamber that were a similar distance from the 

edge of the chamber (approximately 10 mm) where protein was injected, so as to not 

affect the results due to flow. The association rate data is fit to a hyperbolic function 

equation of the form:   

           Eq 3.5 

where k(c) is the association rate, kmax is the maximum association rate at infinite katanin 

concentration, k1/2 is the characteristic concentration of katanin at which the rate is half 

and [c] is the concentration of the katanin. The best fit had  ka,max = 0.145 ± 0.008 1/s, 

k1/2 = 50 ± 10 nM, and a goodness of fit of 0.91 and !2 = 0.0003. The k1/2 = 50 ± 10 nM 

could be used as an estimate of the affinity, KD, of the katanin for the microtubule.  

!" = !!"#
$#%

!&'( +$#%
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Figure 3.4: Fast Katanin Severing Activities Are Concentration Dependent. 

(A) Quantification of the association rate as a function of GFP-Hu-p60 concentration with 
fit to equation 5. The number of experiments performed are as follows for (A)-(E): 50 nM 
(N=7), 100 nM (N=54), 200 nM (N=45), 300 nM (N=53), 400 nM (N=33), 500 nM (N=10). 
Error bars represent the standard error of the mean.  (B) Quantification of the time to 
first severing rate as a function of GFP-Hu-p60 concentration with fit. Error bars 
represent the standard error of the mean. (D) Quantification of the total severing rate as 
a function of GFP-Hu-p60 concentration. Error bars represent the standard error of the 
mean. (E) Ratio of the severing activity rate to the rate of first severing. Error bars 
represent aggregated uncertainties from both the severing activity rate and the first 
severing rate added in quadrature. In the range of concentrations used, the mean is 
about 1 (solid line) with a standard deviation of about 0.2 (shaded region). (F) Maximum 
intensity of katanin in the GFP channel as a function of added katanin concentration with 
fit to equation 5. The N values are as follows: 50 nM (N=36), 100 nM (N=54), 200 nM 
(N=45), 300 nM (N=53), 400 nM (N=33), 500 nM (N=10). Error bars represent the 
standard error of the mean. Fit parameters are found in Appendix A.4. 
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 We quantified the time to first severing as the time between the max intensity 

frame and the first clear severing event distinguishable (Fig. 3.3). Again, we examine the 

inverse of this time, the first severing rate (Fig. 3.4B). This rate also depends on the 

amount of katanin added and is Michaelis-Menten-like. The best fit had  kfirst,max = 0.17 ± 

0.05 1/s, k1/2 = 300 ± 160 nM, and a goodness of fit of 0.89 and !2 = 0.0005. Comparing 

this data to the association rate data, we can see that it takes 6 times as much 

concentration to sever (300 nM) as it does to bind (50 nM). Interestingly, that fits 

perfectly with the 6-fold oligomerization stoichiometry for katanin, which is thought to be 

a hexamer. This data supports a model where individual monomers of katanin can bind 

to microtubules independently, but hexamerization is required for severing. 

 We quantified the severing activity time and the total severing time. The severing 

activity time is the time is takes for the microtubule to be completely destroyed once 

severing has initiated (Fig. 3.4C). The total severing time is the sum of the time to first 

sever and the severing activity time (Fig. 3.4D). Inverting these times, and plotting as a 

function of katanin concentration, we find that both rates increases with the 

concentration of katanin added, with a best fit using Eq. 3.5. For the severing activity, the 

best fit parameters are ksevering,max = 0.10 ± 0.01 1/s, k1/2 = 80 ± 40 nM, and a goodness of 

fit of 0.77 and !2 = 0.0004. For the total severing, the best fit parameters are ksevering,max = 

0.057 ± 0.006 1/s, k1/2 = 130 ± 40 nM, and a goodness of fit of 0.93 and !2 = 0.00005. 

Interestingly, we noticed a similarity in the data for the first severing rates and the 

severing activity rates. Indeed, when we calculated the ratio of these two data for each 

concentration, the ratio was about one (Fig. 3.4E). This implies that the first severing and 

severing activity rates are likely measures of the same activity of hexamerization and 

removal of dimers. 
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 Finally, we could also quantify the maximum GFP fluorescence of katanin binding 

during severing with the background fluorescence intensity removed (Fig. 2G). We fit the 

data to a binding curve (Supp. Table 2). Using the average maximum value of intensity, 

and the fit, we can find that the half-maximum intensity occurs at 80 ± 20 nM, giving an 

estimate for the KD value for katanin binding. This is in agreement (within uncertainty) 

with the value found from the both the severing activity and the association rate data 

implying that these concentrations are probably similar and measuring the affinity of the 

enzyme for the microtubule (Fig. 2B). 

 

3.2.4 Free Tubulin Inhibits Katanin Binding to Microtubules. 

 Many microtubule associated proteins (MAPs) are able to distinguish between 

microtubules and free tubulin and will selectively bind to one or the other. For example, 

the N-terminus of doublecortin cannot bind soluble tubulin, whereas the C-terminus 

binds to both microtubules and soluble tubulin (Kim et al. 2003). Both Stu2p, a member 

of the XMAP215 family and E-like can sequester tubulin dimers (Al-Bassam et al. 2006; 

Bartolini 2005). Some evidence that severing proteins may not bind selectively to 

microtubules is that spastin is inhibited by tubulin CTTs in severing assays (White et al. 

2007; Roll-Mecak and Vale 2008). Further, both spastin and katanin do not sever 

subtilisin-treated microtubules. Pelleting assays with free tubulin and microtubules has 

shown that katanin severing activity is inhibited by tubulin (Vale 1991; F. J. McNally and 

Vale 1993; Eckert, Le, et al. 2012; Roll-Mecak and Vale 2005). Therefore, since these 

enzymes are very similar, it would not be surprising if katanin severing was also inhibited 

by tubulin.  

 To test the hypothesis that free tubulin can inhibit severing of filaments, we added 

free tubulin to the severing assays with Hu-p60 or Xl-p60 katanin. Surprisingly small 
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concentrations of free tubulin (50 nM) showed significant reduction of severing, and any 

concentration of free tubulin above 500 nM was completely inhibitory to severing (Fig. 

3.5).  
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Figure 3.5 Representative Time Series of Katanin’s Severing Activity Inhibited by 
Free Tubulin. 

Example time series of severing assays with katanin +/- free tubulin at concentrations 
from 50nM to 10 µM. The severing assays were 10 minutes long with a frame taken 
every 5 seconds. The time series are frames every 50 seconds as stated in figure A. The 
scale bars are 5 µm. 
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Examination of the GFP-Hu-p60 shows that the inhibition of severing is due to a loss of 

katanin binding to microtubules (Fig. 3.5). We quantified and plotted the fraction of 

microtubule remaining as a function of tubulin concentration (Fig. 3.6A,B). Even at the 

lowest concentration of free tubulin (50 nM) there is significant inhibition of the severing 

and depolymerization activity of katanin (Fig. 3.6A,B).  
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Figure 3.6 Quantification of Katanin’s Severing Activity Inhibited by Free Tubulin. 

 (A) This is a plot of representative tubulin concentrations quantifying the fraction of 
microtubules. The plot shows that a majority of the microtubule is remaining at the end 
the severing assay when there is any tubulin added to the assay. The data was fit to 
exponential decay lines to find additional information about the characteristic decay 
times. The color key is as follows: pink is katanin, purple is katanin + 50 nM free tubulin, 
dark blue is 500 nM free tubulin, light blue is katanin + 1 µM free tubulin, dark green is 
katanin + 6 µM free tubulin, light green is katanin + 10 µM free tubulin. From the fits we 
were able to also find the fraction of microtubule remaining, which is plotted in (B). The 
fit parameters are in Appendix A.5. (C) is the characteristic decay times from the fits. 
Only when there is no free tubulin are there multiple decay constants. (D) This is a plot 
of the peak GFP fluorescence for free tubulin concentrations of 50nM to 10 µM. When 
there is any free tubulin is in the severing assay, the average GFP fluorescence 
decreases to half the overall fluorescence intensity of the control assay, which has no 
free tubulin in the chamber. The exponential decay fit shows the dependence of katanin 
binding on the free tubulin concentration. 
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We quantified the loss of polymer and fit the data to single decays, linear 

approximations, or double exponential decays, depending on the best fit (fit parameters 

with uncertainties and goodnesses of fit can be found in Appendix A.5). Using the fit 

parameters we quantified the fraction of polymer remaining to find that as more tubulin is 

added, the fraction of microtubule increased to 1 (Fig. 3.6A), implying that all the 

polymer was remaining and no severing or depolymerization was occurring. Further, the 

characteristic decay times also increased, showing that the loss of polymer that did exist 

took longer to be lost (Fig. 3.6D).    

 We also quantified the maximum fluorescence of GFP-Hu-p60 binding and found a 

significant decrease in katanin binding with increasing concentrations of free tubulin (Fig. 

3.5 and Fig. 3.6D). There is an initial rapid decrease in severing activity when even small 

concentrations of free tubulin (50 nM) are added. We plotted the max intensity as a 

function of added free tubulin and find that it decreases monotonically with increasing 

concentration of inhibitory tubulin. We fit the data to an exponential decay (Eq 1) to 

determine the characteristic decay concentration of 3.1 ± 0.9 µM. This concentration 

represents a critical concentration of inhibition, Ki. For comparison, the critical 

concentration of tubulin alone is about 1.8 µM, but the critical concentration for Taxol-

stabilized microtubules is 0.08 µM (Schiff, Fant, and Horwitz 1979; Shelanski, Gaskin, 

and Cantor 1973). This explains why Taxol-stabilized microtubules that have very little 

free tubulin in the background are easily severed. On the other hand, dynamic 

microtubules will be much more difficult to sever, because the free tubulin in the 

background will inhibit severing at equilibrium.  Interestingly, the concentration of free 

tubulin in a cell is thought to be between 20-24 µM (Gard and Kirschner 1987b), adding 
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more mystery to the activity of katanin in cells. 

 The same pattern of severing inhibition held true for the unlabeled X. laevis 

construct (Fig. 3.7) suggesting that the severing activity is similarly affected by the 

presence of free tubulin. 
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Figure 3.7 X. laevis Katanin is Inhibited by Free Tubulin. 

(A) Plot of the quantification of the fraction of microtubule remaining for Xl-p60. The error 
bars represent the standard error of the mean. Each condition is fit to a linear or single 
exponential decay. The fit parameters are found in appendix A.2. The number of 
experiments for each condition are as follows: MTs (N=4), MTs + 10 µM tubulin (N=10), 
MTs + Xl-p60 (N=55), MTs + Xl-p60 + 500 nM free tubulin (N=17), MTs + Xl-p60 + 1 µM 
free tubulin (N=14), MTs + Xl-p60 + 6 µM free tubulin (N=10), MTs + Xl-p60 + 10 µM 
free tubulin (N=15). (B) Plot of the decay times found from the fits in (A). The fast decay 
times are plotted on the left and the slow decay times are plotted on the right. The error 
bars represent the error associated with the fit. 
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3.2.5 Katanin has a Higher Affinity for Free Tubulin than Microtubules in Severing 
Assays. 

 We have shown that free tubulin can inhibit binding of katanin when the free 

tubulin and katanin are added simultaneously (Fig. 3.5-3.6). In the experiments 

described in figures 3.5 and 3.6, katanin and tubulin are pre-mixed before addition to the 

imaging chamber. Thus, the katanin could be binding to the free tubulin before being 

added to the assay. In order to directly test if free tubulin can compete with microtubule 

polymer for binding, we created a flow-in experiment to directly observe if katanin bound 

to the microtubule can be competed off by free tubulin. We pre-bound the GFP-Hu-p60 

to the microtubules with ATPɣS, a slowly hydrolyzable analog of ATP that allows katanin 

to bind to microtubules but not sever. Then we added 0 nM (buffer only), 50 nM, 500 nM, 

1 µM, 6 µM, and 10 µM free tubulin to the chamber and monitored the GFP fluorescence 

on the microtubules over time (Fig. 3.8). 
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Figure 3.8 Representative Time Series of Free Tubulin Flow Through Experiments. 

Example time series of assays with katanin +/- free tubulin at concentrations of 0 nM, 
50nM 1 µM and 10 µM free tubulin. The data was taken by imaging continuously for 
several minutes. The time between frames in the time series is 4 seconds. Katanin was 
pre-bound to microtubules with ATPγS prior to starting imaging, allowing the enzyme to 
bind, but not sever microtubules. The tubulin was added as indicated in the third frame 
of the time series. The scale bars are 5 µm. 
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  We quantified the GFP fluorescence over time and could fit the loss of GFP 

fluorescence to a double exponential decay equation (Eq. 3.3, Fig. 3.9A). For all 

concentrations of free tubulin, the double exponential decay fit best (fit parameters, 

uncertainty, and goodnesses of fit can be found in Appendix A.6). From the image data 

and the quantification, it is clear that the loss of overall fluorescence increases as a 

function of free tubulin (Fig. 3.9B). We plotted the short and long decay times from the 

double exponential fits to determine their physical meaning (Fig. 3.9B). The short time 

data had no dependence on the amount of free tubulin added and was about 18 ± 2 s. 

Since the same time scale was observed for the buffer control, has no dependence on 

the amount of tubulin added, and was fast, we conclude that the fast time scale is due to 

flow alone. Some of the background fluorescence will be swept away with the flow, and 

that will be fast and the same for all data sets.  
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Figure 3.9 Katanin Has a Higher Affinity for Free Tubulin than Microtubules. 

(A) Quantification of the average GFP fluorescence remaining on the microtubules after 
free tubulin was added to the assay. Error bars represent the standard error of the 
mean. The data shows there is a significant decrease in GFP fluorescence on the 
microtubules when there is any free tubulin added to the assay. Each data set was fit to 
an exponential decay curve. The parameters can be found in Appendix A.6. (B) Plot of 
the characteristic decay times for each condition. The short decay times are on the left 
and the long decay times are on the right. The long decay times are fit to an exponential 
decay curve and can be related to the off rate of katanin as a result of tubulin 
competition. The number of experiments for each condition are as follows: katanin 
(N=20), katanin + 50 nM free tubulin (N=23), katanin + 500 nM free tubulin (N=22), 
katanin + 1 µM free tubulin (N=25), katanin + 6 µM free tubulin (N=25), katanin + 10 µM 
free tubulin (N=11). 
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 The long decay times show a dependence on the amount of free tubulin added 

and decreases with increasing amounts of free tubulin. The long time decay time 

represents the dissociation of free tubulin due to both depletion of background GFP-Hu-

p60 during the flow and competition between the microtubule filament and free tubulin 

for GFP-Hu-p60 binding. The long decay time has a dependence on the amount of free 

tubulin added and can be fit with a single exponential decay of the form:  

               !([c]) = Aexp(-[c]/c*) + !∞,     Eq. 3.6 

where A is the amplitude, [c] is the concentration of tubulin, c* is the characteristic 

concentration, and !∞ is the high concentration limit of the long time. The best fit 

parameters are A = 140 ± 20 s, c* = 1.4 ± 0.7 µM, !∞ = 70 ± 10 s, with a goodness of fit 

of 0.98 and a !2 = 320. From these fits, we can surmise that the characteristic 

concentration for tubulin competition, c*, is similar to the critical concentration of tubulin 

for dynamic microtubules, implying again that severing dynamic microtubules is unlikely. 

The data asymptotes at high concentrations to a time of about 70 s, implying that this is 

the minimal time for competition to occur.  

 It is interesting to point out that even the control with buffer only and no free tubulin 

had a long time decay constant (Fig. 3.9B). This is because the background 

concentration of GFP-Hu-p60 was reduced during the flow. The slower loss of 

fluorescence from the microtubule is due to dissociation that re-establishes the dynamic 

equilibrium and reinstates the background concentration of unbound GFP-Hu-p60. From 

the data, it is clear that 200 s is enough time to establish the final equilibration level, 

which is similar before and after the flow (Fig. 3.9A,B), and implies a high affinity for 

microtubule substrate in the ATP-state. The ability of the free tubulin to compete off the 

GFP-Hu-p60 implies that katanin has an even higher affinity for free tubulin - even in the 

ATP-state. 
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3.2.6 Katanin Recognizes Sequence of CTT of Free Tubulin. 

 Katanin-p60 has been proposed to have two possible microtubule-binding sites: 

the microtubule interacting and trafficking (MIT) site at the N-terminus of p60 and the 

pore loop region in the AAA domain that binds to the tubulin carboxy-terminal tail. In 

human katanin the MIT has been mapped to amino acids 55-180, and the AAA pores 

are amino acids 197-88 (F. J. McNally and Thomas 1998; Eckert, Le, et al. 2012; 

Johjima et al. 2015).  Next, we wanted to distinguish whether katanin was binding to the 

free tubulin due to it recognizing and therefore binding to the specific shape or folded 

structure of the free tubulin or whether katanin was recognizing a specific sequence of 

tubulin, most likely through the CTT. To address this question, we unfolded free tubulin 

using acid denaturation and brought the samples back to neutral pH to use in the assay 

(please see the methods for more information). Since tubulin requires a chaperone to 

fold, the neutralized protein is likely improperly folded or unfolded. In order to specifically 

probe if the CTT was needed, we also made denatured free tubulin with the CTTs 

cleaved off by treating microtubules with the protease, subtilisin, prior to denaturing the 

microtubules. We performed the same experiment where we added GFP-Hu-p60 with 

free tubulin at 50 nM, denatured tubulin at 50 nM, or subtilisin-treated denatured tubulin 

at 50 nM. We monitored both the microtubule signal to inspect severing and polymer 

loss and the GFP-channel to quantify katanin binding (Fig. 3.10). As is clear from the 

time series (Fig. 3.10), both free tubulin and denatured tubulin are able to effectively 

inhibit katanin’s severing activity and binding. However, the subtilisin-treated denatured 

tubulin did not inhibit severing and allowed for more GFP-Hu-p60 to bind microtubules.   
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Figure 3.10 Representative Time Series of Katanin Inhibited By Denatured-Tubulin 
and Denatured Subtilisin-Treated Tubulin. 

Example time series of severing assays with GFP-Hu-p60 +/- free tubulin, denatured 
tubulin, or denatured subtilisin-treated tubulin (denatured s-tubulin). The severing assays 
were 10 minutes with a frame taken every 5 seconds. (i) Time series of the Dylight649-
MTs for each of the conditions. The time series are frames every 20 seconds or 50 
seconds as stated in figure A. The scale bars are 5 µm. (ii) Time series of GFP-Hu-p60 
for each of the conditions. The time series are frames every 20 seconds or 50 seconds 
as stated. The scale bars are 5 µm. 

  

Time Series

+GFP-Hu-p60

+ tubulin
+ denatured

tubulin
+ denatured

s-tubulin
!
"#$
%&
#'
(

!
"#$
%&
#'
(

!
"#$
)&
#'
(

!
"#$
)&
#'
(

i. DyLight650-MTs

+ tubulin
+ denatured

tubulin
+ denatured

s-tubulin

!
"#$
%&
#'
(

!
"#$
%&
#'
(

!
"#$
)&
#'
(

!
"#$
)&
#'
(

ii. GFP-Katanin

)# *All scale bars

+GFP-Hu-p60! !



	  

97	  

 For experiments with denatured tubulin, we quantified the fraction of microtubules 

remaining over time and fit each data set to the exponential decays (Fig. 3.10, 3.11A,B, 

fit parameters in Appendix A.7).  Microtubules in the presence of either the free tubulin 

or denatured tubulin lose very little polymer (Fig. 3.10, 3.11A,B). Interestingly, when 

subtilisin-treated denatured free tubulin is present the severing activity is almost 

completely recovered to the same level as the control assays without free tubulin 

present implying that the CTTs are needed for inhibition. We can fit the data to 

exponential decays or linear approximations to exponential decays to find decay rates 

for each data set. The decay time is initially fast for severing in the absence of free 

tubulin τ1 = 28.189  ± 0.7861 s followed by a slow phase with a long decay time τ2 = 

735.61  ± 167.36 s, as before, but is significantly slower when folded free tubulin τ1 = 

51.127  ± 2.2252 s, or denatured free tubulin is added τ1 = 2855.4  ± 75.727 s. When the 

tubulin is subtilisin-treated before denaturing, the rate of severing is again fast  τ1 = 

32.705  ± 1.0343 s followed by a slow phase with a long decay time τ2 = 482.33  ± 

36.938 s (Fig. 3.11B).  
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Figure 3.11 Katanin is Effectively Inhibited by Denatured Tubulin But Not 
Subtilisin-Treated Denatured Tubulin. 

 (A) Quantification of the fraction of the microtubule remaining over time for each of the 
following conditions: Dylight649-MTs + GFP-Hu-p60, Dylight649-MTs + GFP-Hu-p60 + 
50 nM tubulin, Dylight649-MTs + GFP-Hu-p60 + 50 nM denatured free tubulin,  
Dylight649-MTs + GFP-Hu-p60 + 50 nM denatured subtilisin-treated free tubulin. This 
plot shows that the denatured free tubulin and free tubulin are the best inhibitors, while 
the subtilisin-treated free tubulin only slightly reduced the severing activity. Each data set 
is fit to a line, single exponential decay, or double exponential decay. Parameters for the 
fits are in Appendix A.7. The error bars on the data set represent the standard error of 
the mean. (B) Each data set from (A) was fit with an exponential decay curve. The two 
plots are of the characteristic decay times both fast (left) and slow (right) for each data 
set. Error bars represent the error associated with the decay time. (C) For each data set 
we counted the total number of microtubules severed at least once during the severing 
assays. We plotted the fraction of the total number of microtubules that were severed at 
least once. This corresponds with the data from A-B, suggesting that the denatured 
tubulin was the best inhibitor of severing activity. (D) Plot of the peak GFP fluorescence 
for each condition. The highest GFP fluorescence peak was severing assays with Hu-60 
with no tubulin or CTTs present in the assay. The lowest peak fluorescence was when 
denatured tubulin was in the severing assay, suggesting that it prevents katanin from 
binding to the microtubules. This corresponds with the data in A-C suggesting that the 
denatured tubulin is the most effective inhibitor of severing activity. The N values for 
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each condition are as follows: GFP-Hu-p60 (N=50), GFP-Hu-p60 + 50 nM free tubulin 
(N=57), GFP-Hu-p60 + 50 nM denatured tubulin (N=42), GFP-Hu-p60 + 50 nM 
denatured subtilisin-treated tubulin (N=46). Error bars represent the standard error of the 
mean. 
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 We also quantified the total number of microtubules that displayed at least one 

severing event (Fig. 3.10). The denatured tubulin inhibits severing the best, whereas 

when subtilisin-tubulin is present, almost all the microtubules are severed (Fig. 3.11C). 

The time series of the GFP-katanin shows a decrease in fluorescence intensity when 

free tubulin, denatured free tubulin, or the subtilisin-treated denatured free tubulin are 

present. Quantification of the maximum GFP fluorescence demonstrates that the lack of 

severing activity is due to a lack of katanin binding to the microtubules (Fig. 3.11D) and 

is directly proportional to the overall loss of polymer (Fig. 3.11A). Combining these 

results, we can infer that katanin does not recognize the shape of the folded tubulin. 

Rather, the binding of katanin to the CTT is required for effective inhibition of binding and 

severing.  

3.2.7 Katanin has a Higher Affinity for Beta than Alpha Tubulin CTT. 

 We have demonstrated that the CTT of microtubules is essential for effective 

inhibition of severing activity (Fig. 3.10, 3.11). Each tubulin dimer has two CTTs, one 

alpha and one beta. We sought to investigate which CTT tail is a better inhibitor of 

katanin and thus a better competitor for the katanin binding. To address these questions 

we created peptide sequences of the alpha and beta CTTs from human tubulin type 

beta-1. Using click chemistry (Kolb, Finn, and Sharpless 2001), we covalently bound the 

CTT constructs to BSA protein to make CTT-BSA chimeras (Rostovtseva et al. 2008). A 

background concentration of BSA protein already exists in our assays, so the addition of 

BSA is controlled. 

 We added the CTT-BSA chimeras to severing assays to test the effect of the alpha 

or beta CTTs on the binding and severing of GFP-Hu-p60. We observed distinct 

differences in the ability to sever depending if the CTT constructs were alpha or beta. 
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Specifically, very few severing events occurred when the beta tails were present (Fig. 

3.12). When the alpha tails were present we saw severing events and some loss of 

polymer from the ends of filaments, suggesting that the alpha tails are not as effective at 

inhibiting the severing activity (Fig. 3.12).  
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Figure 3.12 Representative Time Series of Severing Assays with Tubulin CTTs. 

Example time series of severing assays with human p60 +/- free tubulin. (i) Time series 
of Dylight649-MTs in severing assays for Dylight649-MTs + GFP-Hu-p60, Dylight649-
MTs + GFP-Hu-p60 + 50 nM tubulin, Dylight649-MTs + GFP-Hu-p60 + 50 nM beta 
tubulin CTT constructs, Dylight649-MTs + GFP-Hu-p60 + 50 nM alpha tubulin CTT 
constructs, or Dylight649-MTs + GFP-Hu-p60 + 50 nM alpha tubulin CTT constructs 
minus the last tyrosine. (ii) Example time series of GFP-Hu-p60 in severing assays for 
Dylight649-MTs + GFP-Hu-p60, Dylight649-MTs + GFP-Hu-p60 + 50 nM tubulin, 
Dylight649-MTs + GFP-Hu-p60 + 50 nM beta tubulin CTT constructs, Dylight649-MTs + 
GFP-Hu-p60 + 50 nM alpha tubulin CTT constructs, or Dylight649-MTs + GFP-Hu-p60 + 
50 nM alpha tubulin CTT constructs minus the last tyrosine. The severing assays were 
10 minutes with a frame taken every 5 seconds. The time series are frames every 20 
seconds or 50 seconds as stated. The scale bars are 5 µm. 
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 The quantified data indicated that beta tails were better inhibitors the severing than 

alpha tails (Fig. 3.13A).  For severing inhibition experiments, we can also quantify the 

fraction of microtubules that displayed at least one severing event. The trend was 

identical to the total loss of polymer and confirms that the beta tubulin CTT inhibits better 

than alpha CTT (Fig. 3.13C).We also quantified binding of the GFP-Hu-p60 to 

microtubules from our images in the GFP-channel. The maximum GFP fluorescence for 

katanin binding follows the exact same trend as total polymer loss (Fig. 3.13D) and 

filaments severed (Fig. 3.13C), again demonstrating that binding is directly proportional 

to and required for severing (Fig. 3.13D).  
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Figure 3.13: Katanin is Most Effectively Inhibited by Beta Tubulin CTTs. 

 (A) Plot of the fraction of the microtubule remaining over time for each of the following 
conditions: Dylight649-MTs + GFP-Hu-p60, Dylight649-MTs + GFP-Hu-p60 + 50 nM 
tubulin, Dylight649-MTs + GFP-Hu-p60 + 50 nM beta tubulin CTT constructs, 
Dylight649-MTs + GFP-Hu-p60 + 50 nM alpha tubulin CTT constructs, or Dylight649-
MTs + GFP-Hu-p60 + 50 nM alpha tubulin CTT constructs minus the last tyrosine. The 
error bars represent the standard error of the mean. Each data set was fit with a line, 
single exponential decay, or double exponential decay. Parameters for the fit equations 
are in Appendix A.8. This plot shows that the beta tubulin CTTs are the most effective 
inhibitors of severing activity, followed by alpha CTTs and alpha CTTs minus the last 
tyrosine. (B) Each data set from (A) was fit with a line or exponential decay curve. This 
is a plot of the characteristic decay constants for each data set. On the left is the fast 
decay times, and on the right is the slow decay times. The error bars represent the error 
associated with the decay times. (C) For each data set we counted the total number of 
microtubules severed at least once during the severing assays. We plotted the fraction 
of the total number of microtubules that were severed at least once. This corresponds 
with the data from A-B, suggesting that beta tubulin CTTs are the best inhibitors of 
severing. (D) This is a plot of the peak GFP fluorescence for each condition. The highest 
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GFP fluorescence peak was with no tubulin or CTTs present in the assay. The lowest 
peak was with the beta tubulin CTTs in the severing assay, suggesting that the beta 
tubulin CTTs are preventing katanin from binding to the microtubules. This corresponds 
with the data in A-C suggesting that the beta tails are the most effective inhibitors of 
severing activity. The N values for each condition are as follows: GFP-Hu-p60 (N=50), 
GFP-Hu-p60 + 50 nM free tubulin (N=57), GFP-Hu-p60 + 50 nM beta CTT constructs 
(N=40), GFP-Hu-p60 + 50 nM alpha CTT constructs (N=59), GFP-Hu-p60 + 50 nM alpha 
CTT constructs minus the last CTTs (N=33). Error bars represent the standard error of 
the mean. 
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3.2.8 Katanin has Lower Affinity for Detyrosinated Alpha Tubulin. 
 
 Using the same CTT polypeptide to BSA chimeras, we were able to make a 

version of the alpha CTT with the final tyrosine missing. Such detyrosinated tubulin is 

typically a marker of reduced microtubule dynamics in cells (Kreis 1987). We added the 

detyrosinated alpha CTT-BSA chimeras to severing assays and found that the 

microtubules were still severed (Fig. 3.12), but the overall rate of severing and overall 

loss of polymer was reduced compared to controls with GFP-Hu-p60 alone (Fig. 3.13B-

D). The total polymer lost, percentage of filaments severed, and amount of GFP-Hu-p60 

binding were also directly proportional again showing that the inhibition of severing was 

again due to a reduction in katanin binding in the presence of detyrosinated alpha tubulin 

CTT-BSA chimeras. 

3.3 Discussion 

 We used quantitative methods to analyze a human version of the enzymatic 

portion of the microtubule severing enzyme, katanin. The methods allow us to analyze 

both the severing activity and the binding activity individually, for the first time. We find 

that binding is tight and directly proportional to severing activity. Further, inhibition of 

severing, as we report and as has been reported previously for a similar protein, spastin, 

is completely due to inhibition of binding to severing enzymes to the microtubule 

substrate. Our analysis provides more detailed information on the activity of katanin than 

ever allowed before.  

 Our results demonstrate that katanin is effectively inhibited by free tubulin in vitro 

at tubulin concentrations well below the cellular concentration. The cellular concentration 

of tubulin has been estimated to be at approximately 2 mg/ml (18 µM) (Gerhard and 

Weber 1978). Even if half of the tubulin is in the form of microtubules, there is still 10 µM 
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of free tubulin available in cells. We observed that katanin’s severing activity was 

inhibited even at 50 nM free tubulin (Fig. 3.5, 3.6). Our assays typically used 50 - 100 

nM katanin, so the lowest concentration was effectively 1:1 tubulin to katanins. This is a 

much lower concentration than previously probed as the p60-p80 complex was shown to 

bind to microtubules over free tubulin when there was a 1:5 ratio of p60-p80 to tubulin 

(F. J. McNally and Vale 1993). Spastin severing was inhibited by 10-fold molar excess of 

tubulin tails (White et al. 2007). In addition, 0.5 mM beta tail peptide significantly 

inhibited spastin severing activity (Roll-Mecak and Vale 2008). Our results imply you 

would need at least as much katanin as free tubulin to cause any type of severing or 

microtubule regulation in a live cell. In our prior work, we showed that Drosophila katanin 

was highly enriched at the cell cortex and it acted there to keep microtubules short in S2 

cells (D. Zhang et al. 2011). Thus activity of katanin in living cells will require a relatively 

high concentration of katanin or a relatively low concentration of free tubulin. Depending 

on the cell type and developmental stage, different cells could display either. For 

instance, the S2 cells specifically localized the katanin to the cortex to increase the local 

concentration (D. Zhang et al. 2011). On the other hand, the concentration of free tubulin 

is relatively low in locations with mostly stable microtubules, such as neuronal axons, 

where altering the microtubule dynamics is enough to alter the polarity of the neuron 

(Witte, Neukirchen, and Bradke 2008; reviewed in Conde and Cáceres 2009). Overall, 

our work suggests that the ratio of katanin to free tubulin is an effective means to 

regulate katanin’s activity in cells. Since you would only want to locally destroy 

microtubules, localizing high concentrations of katanin about a threshold ratio of katanin 

to free tubulin would allow such activity. 

  We found that katanin has a higher affinity for free tubulin regardless of whether 

katanin is in solution or pre-bound to microtubules (Fig. 3.8, 3.9). This is surprising given 
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that severing proteins were originally discovered by adding mitotic extracts to Taxol-

stabilized microtubules, which presumably have a high concentration of free tubulin. In 

extracts, severing was observed within minutes (Vale 1991). It was previously shown 

that in microtubule pelleting assays with 200 µg/ml microtubules, 200 µg/ml free tubulin 

and 40 µg/ml p60-p80, katanin still pelleted with the microtubule polymers and not with 

the soluble tubulin (F. J. McNally and Vale 1993). This suggests that in this assay 

katanin has a higher affinity for microtubules than free tubulin. However, there is also 

p80 present in these assays making it difficult to directly compare directly to our 

experiments. 

 There are several possible explanations for how katanin can continue to function in 

cells despite being inhibited by free tubulin. The first explanation is that p80, the 

regulatory subunit of katanin, is helping to target katanin to the microtubules. It has been 

shown that katanin is targeted to centrosomes by p80 in both sea urchin embryos (F. J. 

McNally et al. 1996) and in fibroblasts (Hartman et al. 1998). Additionally, p80’s WD-40 

repeats are sufficient to target GFP to centromeres (Hartman et al. 1998). The C-

terminal domain of p80 is required for microtubule binding and interacting with p60, while 

the N-terminal WD-40 domains are required for correct localization of the complex and 

can negatively regulate severing activity (K. P. McNally, Bazirgan, and McNally 2000). It 

is also known that the p80 subunit enhances the affinity of p60 for microtubules in vitro 

as shown by microtubule pelleting assays (K. P. McNally, Bazirgan, and McNally 2000). 

In vivo, a fully functional set of p60 and p80 subunits are required for efficient targeting 

and severing activity (K. P. McNally, Bazirgan, and McNally 2000). Therefore, it is likely 

that katanin p60 could be targeted to microtubules in the presence of its partner protein, 

p80. This evidence provides one plausible explanation for how katanin can sever 

microtubules in vivo despite displaying a high affinity for free tubulin in vitro. Future in 
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vitro experiments with both p60 and p80 should be performed to determine if the katanin 

heterodimer can overcome the inhibition by the free tubulin heterodimer or alter/enhance 

localization of katanin to the microtubule lattice. 

 Another possible mechanism for how katanin could function in vivo is if other 

MAPs are bound to the free tubulin making it inaccessible to katanin. There are several 

examples of MAPs that bind to tubulin monomers. Many, but not all, of these MAPs are 

involved in stabilizing microtubules or contribute to growing microtubules by recruiting 

tubulin dimers to the growing end of the microtubule. Tau is known to bind to soluble 

tubulin dimers and binds even more tightly to tubulin when there are disease mutations 

in tau (Elbaum-Garfinkle et al. 2014). Stathmin, a microtubule catastrophe factor, also 

binds to free tubulin dimers (Belmont and Mitchison 1996) and may even sequester 

them (Howell et al. 1999). Stu2p, a member of the XMAP215 family, is also known to 

sequester free tubulin (Al-Bassam et al. 2006). E-like, a novel protein similar to the 

chaperone cofactor E, causes depolymerization of microtubules by sequestering and 

even degrading the free tubulin pool (Bartolini 2005). CLASP, another stabilizing MAP 

similar to XMAP215, also is able to bind free tubulin dimers directly. Further, it can bind 

to the microtubule polymer itself and the free tubulin at the same time to recruit tubulin to 

the growing ends of microtubules (Al-Bassam et al. 2010). If most of the free tubulin 

available in the cell is bound up and sequestered by other MAPs, it is conceivable that 

katanin severing activity would not be inhibited by the tubulin because the tubulin would 

be inaccessible. 

 Phosphorylation is a way that many mitotic proteins are controlled. X. laevis p60 

has been shown to have an N-terminal phosphorylation site that can regulate severing 

activity (Loughlin et al. 2011; Whitehead, Heald, and Wilbur 2012). However, this site 

negatively regulates severing, by causing a down-regulation of severing near 



	  

110	  

kinetochores and chromatin (Loughlin et al. 2011). This site has also only been shown in 

the X. laevis p60 and does not occur in the human version of p60. There are other 

possible phosphorylation sites, however, no other confirmed sites in human p60 so far. 

 A final possible mechanism for katanin’s functionality in the cells is that katanin is 

found mostly in areas cells where there is less free tubulin. Katanin is highly expressed 

in embryonic tissue, when there is high cell proliferation and axons are being formed (Yu 

et al. 2005). Katanin p80 and p60 are most highly expressed in the CNS, but the levels 

of p60 are higher than that of p80 (Yu et al. 2005). Katanin is also expressed in non-

neuronal tissues at lower levels than in neuronal tissues, but the ratio of p60 to p80 is 

much higher (Yu et al. 2005). In cultured neuronal cells, p80 is enriched predominately in 

the cell body, and p60 is found at higher levels in axons (Yu et al. 2005). In cultured 

neurons, the early axons were not as susceptible to severing as other parts of the 

neuron (Yu et al. 2005). This data suggests that katanin p60’s severing activity is tightly 

regulated in time and space and is likely regulated by other proteins, such as p80. Since 

p80 is not found in the exact same location as p60, it is unlikely that targeting p60 is its 

only role, but it also suggests that there are other factors regulating p60 so that severing 

in controlled. It is likely that katanin is also regulated by MAPs that bind to microtubules 

and protect them from severing activity (Qiang et al. 2006). Given all this information and 

the data we have collected, how can katanin sever microtubules? Katanin is needed for 

axonal outgrowth and for branching in the processes as well as to control the overall 

length of microtubules. Therefore, it must be regulated by some variety of factors to 

ensure that severing occurs only at the precise time and locations needed. In axons the 

microtubules tend to be more stable and less dynamic than in other cells. It is likely that 

since the microtubules tend to be more stable, there is also less free tubulin present in 

these areas. Katanin would therefore not be affected nearly as much by free tubulin and 
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in fact may be the source of tubulin dimers to produce the new processes. 

 We demonstrated that the katanin enzyme is more effectively inhibited by 

denatured tubulin (Fig. 3.10, 3.11). We can infer from this result that katanin is not 

recognizing the overall shape of tubulin, but part of the protein sequence. This inhibition 

is abolished when the CTTs are removed from tubulin (Fig. 3.10, 3.11). Previous work 

has shown that katanin and spastin are both unable to sever subtilisin-treated 

microtubules (F. J. McNally and Vale 1993; Eckert, Le, et al. 2012; Roll-Mecak and Vale 

2005). Many AAA proteins recognize the carboxy terminus of their substrate and thread 

them through the central pore of the hexamer (Gottesman et al. 1998; Hoskins et al. 

1998; Ishikawa et al. 2001). In the proposed model for how severing enzymes function, 

katanin would form a hexamer on the microtubules via the CTT of tubulin and, with the 

ATP as an energy source, proceed to thread the tubulin through the hexameric pore 

unfolding and destroying the dimer in the process (Roll-Mecak and Vale 2008). Our 

results imply that the inhibition and thus binding of katanin is not aided by a secondary 

binding site mediated through the MIT domain or other katanin structure.   

 Given the results we have shown that tubulin can compete with katanin prior to it 

binding to microtubules. We propose a model, diagrammed in figure 3.14, in which we 

can describe katanin inhibition as Ki . Under uninhibited conditions Hu-p60 (E) will bind 

to microtubules (S) to create ES and then will proceed with severing. The product (P) of 

this reaction is a mixture of microtubules and tubulin bound to p60. We have found that 

there are two separate inhibition schemes. First, katanin can be inhibited by free tubulin 

(I) prior to binding to microtubules. In this case the tubulin-bound katanin (EI) prior to ES 

formation. We have also shown that tubulin will competitively compete for binding after 

Hu-p60 binds to microtubules, and inhibit binding. Since the transition for ES to EI is 

rapid and we do not have a direct readout for ESI vs. EI, we can only report on the rate 
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the entire reaction takes to complete. We do not see any recovery of microtubule binding 

after it has bound tubulin, either so it seems to be working as an irreversible inhibitor, 

under the conditions in our assay. 
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Figure 3.14 Model of Katanin’s Inhibition by Free Tubulin. 

We can represent to microscopy results we observe in terms of enzyme kinetics. In the 
uninhibited reaction, the severing enzyme (E) binds to the microtubules (S) to create 
(ES) and severs microtubules leaving a mixture of microtubule pieces and tubulin dimers 
(P). Katanin can be inhibited in two ways. If katanin interacts with the free tubulin (I) 
before binding to microtubules this can cause inhibition. Or if the katanin is bound to the 
microtubules and then free tubulin is added, this can also cause inhibition. Because the 
transition from ES to EI occurs rapidly and we have no direct readout for ESI vs. EI, we 
can only report the rate that the entire reaction takes to complete. 
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 Katanin severing activity is inhibited by constructs containing just the CTTs of 

tubulin. Our results demonstrate that the sequence of the CTT alters the ability to inhibit 

where the beta sequence is the most inhibitory, the alpha sequence is the next best, and 

the detyrosinated tubulin, while still able to inhibit severing, is the least effective (Fig. 

3.12, 3.13). Our results are consistent with prior results reported for spastin where CTT 

peptides were able to bind spastin (White et al. 2007) and CTT peptides could inhibit 

spastin severing (Roll-Mecak and Vale 2008). Interestingly, we find distinct differences in 

our results with katanin compared to prior work with spastin. First, previous studies 

showed that spastin did not bind to free tubulin, only tails alone or microtubules (White et 

al. 2007). Further, prior studies showed that only relatively high concentrations (500 µM) 

of beta-tubulin CTT peptide could inhibit spastin severing, but the same concentration of 

alpha CTTs could not (Roll-Mecak and Vale 2008). In contrast, we have clearly 

demonstrated that katanin can bind to free tubulin of both alpha and beta. Further, alpha 

and beta are both able to inhibit severing noticeably at fairly low concentrations of CTTs 

(50 nM). Our results imply that katanin is easier to “switch off” in the cell through a direct 

interaction with free tubulin than spastin. This could be because spastin is actually a 

membrane-associated protein, so it is sequestered on cellular membranes and likely not 

as capable of interacting with microtubules (White et al. 2007). 

 We showed that detyrosination of the alpha tubulin CTT is less inhibitory than 

unmodified alpha (Fig 3.12, 3.13). Our results could imply that detyrosinated tubulin is a 

less attractive substrate for katanin binding. Katanin is clearly distinct from spastin, 

which bound tyrosinated and detyrosinated tubulin CTTs equally well (White et al. 2007). 

Spastin, however, was not detectably inhibited by alpha-Tyr CTT constructs, but there 

was some inhibition with an anti-Glu antibody (Roll-Mecak and Vale 2008). Although our 

work does not directly test if katanin can bind to different types of tubulin, the inhibition is 
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mediated by a direct competition with the microtubule substrate. Our results imply that 

katanin binds somewhat to detyrosinated tubulin, but better to tyrosinated tubulin. If this 

result holds for katanin binding to tubulin in the microtubule lattice, it would imply that 

katanin would target tyrosinated tubulin over detyrosinated tubulin, and could be a 

mechanism to improve the stability of detyrosinated (Glu) microtubules. On the other 

hand, this mechanism would be less effective, since katanin clearly preferentially binds 

to beta tubulin CTTs and could target to all beta CTTs over either type of alpha CTT. 

 Post-translational modifications of tubulin can act as road signs for many different 

MAPs and can allow the microtubules to be differentially regulated based on the 

modification type and location. For example, detyrosinated microtubules are less 

dynamic and slower to incorporate new tubulin than tyrosinated microtubules (Kreis 

1987). There are many MAPs that do not bind as well to tubulin in this form. In neurons, 

microtubules are both tyrosinated and detyrosinated. The plus end tips of growing 

microtubules in axons are enriched in tyrosinated tubulin, while the main body of the 

microtubule that remains more stable, is made up primarily of detyrosinated tubulin 

(Wloga and Gaertig 2010; Janke and Kneussel 2010; Hammond, Cai, and Verhey 2008; 

Fukushima et al. 2009). It is known that MCAK prefers to depolymerize tyrosinated 

tubulin, but when overexpressed will depolymerize detyrosinated tubulin (Peris et al. 

2009). Other motors like KIF5 (kinesin-1) can also be regulated by tyrosination. When 

tubulin tyrosination is inhibited, kinesin-1 becomes distributed throughout dendrites and 

axons as it can no longer distinguish between dendrites and axons (Konishi and Setou 

2009). Even stabilizing MAPs, such as CLIP-170, can be sensitive to tyrosination as this 

particular MAP will only localize at the ends of tyrosinated microtubules (Peris et al. 

2006). 

 There are many other types of post-translational modifications of tubulin that can 
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regulate how MAPs bind to microtubules. Most modifications occur on the CTTs 

including detyrosination, poly-glutamylation and poly-glycylation. Acetylation of tubulin 

occurs on the lumen surface. Each type of post-translational modification has been 

shown to affect the activity of severing enzymes both in vivo (Sharma et al. 2007; 

Lacroix et al. 2010; Sudo and Baas 2010) and in vitro (F. J. McNally and Vale 1993; 

Roll-Mecak and Vale 2005; White et al. 2007; Eckert, Le, et al. 2012). Given this 

evidence, it is likely that post-translational modifications of tubulin play a role in 

regulation of katanin. It is still unclear whether this regulation is direct, by serving as 

targets for enhanced severing, or indirect by inhibition of katanin or influencing the 

binding of other MAPs that may inhibit or enhance katanin severing activity. Future 

studies using the CTT-BSA constructs with other engineered modified CTTs that mimic 

native post-translational modifications will begin to unravel these signals.  

 

Conclusions 

 Our results conclude that katanin’s severing activity is concentration dependent. It 

is inhibited by free tubulin and specifically and differentially by the CTTs of tubulin. 

Future studies need to be performed to address how katanin is regulated by p80 in vitro 

and whether this activity changes the severing activity and inhibition we report here. 

Overall, the regulation of microtubules and severing enzymes is complicated and still not 

well understood. 

3.4 Methods 

3.4.1 Protein Purification 

We received the pMAL-c5x-X. laevis p60 from the Heald Lab, and it was purified as 

previously described (Loughlin 2011). We also made an optimized human p60 construct 
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with an, MBP-GFP-p60. An IPTG inducible expression system was used for expression 

and purification. The plasmid was transformed into BL21 Competent E. coli (New 

England BioLabs). An LB starter culture was grown overnight and added to a 500 mL 

culture the next day. This culture was grown at 37°C until it reached an OD of 0.8 and 

then it was induced with 1 mM IPTG. The culture was allowed to continue to grow at 

16°C for 16 hours. The cells were lysed in resuspension buffer (20 mM Hepes pH 7.7, 

250 mM NaCl, 0.5 mM BME, 10% glycerol, 0.25 mM ATP) via sonication. The lysate 

was incubated with amylose resin (New England BioLabs) for 1-2 hours. The lysate/resin 

mixture was added to the column and allowed to enter the column completely. Once 

excess lysate had passed through the column, the column was washed twice with 20 mL 

of resuspension buffer. The protein is eluted in elution buffer (20 mM Hepes pH 7.7, 250 

mM NaCl, 0.5 mM BME, 10% glycerol, 0.25 mM ATP, 10 mM Maltose). The approximate 

concentration was determined by a bradford assay. 

3.4.2 Taxol-stabilized Microtubule Polymerization 

Taxol-stabilized microtubules were made by combining a 1:3-1:20 ratio of labeled 

rhodamine tubulin (Cytoskeleton) or homemade Dylight 649 (Thermo Scientific) tubulin 

with home purified unlabeled tubulin. The unlabeled tubulin was purified from Porcine 

brains using a previously described method (Peloquin et al., 2005). Both the unlabeled 

and labeled tubulin were resuspended in PEM-100 (100 mM K-Pipes, pH 6.8, 2 mM 

MgSO4, 2 mM EGTA) to a concentration of 5 mg/mL. Both were incubated on ice for 10 

minutes. Then the labeled and unlabeled tubulin were combined and spun at 366,000 

xg, 4°C for 10 minutes. To polymerize the microtubules 1 mM GTP was added to the 

tubulin and it was incubated at 37°C for 20 minutes. To further stabilize the microtubules, 

50 µM Taxol was added and they were incubated for 20 minutes at 37°C. The 
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microtubules were centrifuged at 16,200 xg, 27°C for 10 minutes. The pellet was 

resuspended in PEM-100 and 50 µM Taxol.  

	  3.4.3 Denatured Tubulin 

The denatured tubulin was made by adding 1M HCl to the tubulin. Then the tubulin was 

brought back up to pH 6.8 using KOH. 

3.4.4 Subtilisin-treated Denatured Tubulin 

Subtilisin-treated Taxol-stabilized microtubules were polymerized by the same procedure 

as Taxol-stabilized Microtubules, with several additional steps. Once the microtubules 

are polymerized, they are incubated with 100 µg/mL subtilisin for 45 minutes. The 

reaction is stopped with 2 mM PMSF. The microtubules are centrifuged for 30 minutes at 

16,200 xg 27°C for 30 minutes and the pellet is resuspended in PEM-100 and 1 mM 

GTP. The subtilisin-treated denatured tubulin was made by adding 1 M HCl to the 

subtilisin-treated microtubules. Then the tubulin was brought back up to pH 6.8 using 

KOH. 

3.4.5 In vitro assays 

We made a 10 µL flow chamber with double stick tape (3M), a coverglass (fisherbrand) 

and a silanized coverslip (fisherbrand). The coverslips were biologically cleaned (Dixit 

and Ross 2010) and coated with 2% dimethyldichlorosilane (GE Healthcare) to block the 

surface and prevent proteins from sticking to the surface of the coverslips. We first 

incubated 2% (w/v) MAB1864 tubulin antibody in Katanin Activity Buffer (20 mM Hepes 

pH 7.7, 10% glycerol, 2 mM MgCl2) for 5 minutes. Next we added 5% (w/v) Pluronic F-

127 in Katanin Activity Buffer to additionally block the surface. Then rhodamine or dylight 

649 microtubules were incubated in the chamber for 5 minutes. To remove excess 
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microtubules, motility mix (20 mM Hepes pH 7.7, 10% glycerol, 2 mM MgCl2, 2 mM ATP, 

0.025 mg/mL BSA, 0.05% F-127, 10 mM DTT, 15 mg/mL glucose, 0.15 mg/mL catalase, 

0.05 mg/mL glucose oxidase) was washed through the chamber. After 3 minutes of 

imaging, motility mix with p60 was flowed into the chamber (20 mM Hepes pH 7.7, 10% 

glycerol, 2 mM MgCl2, 2 mM ATP, 0.025 mg/mL BSA, 0.05% F-127, 10 mM DTT, 15 

mg/mL glucose, 0.15 mg/mL catalase, 0.05 mg/mL glucose oxidase, 100 nM GFP-p60). 

3.4.6 Loss of Polymer Data Analysis 

Loss of polymer analysis was performed in ImageJ. First, we used the line tool to draw a 

segmented line, 3 pixels wide, over the length of the microtubule. We used the macro 

“measure stacks” to measure the mean intensity of the line for each frame of the movie. 

The line was moved to a piece of background near the microtubules to measure the 

mean intensity of the background. To find the amount of microtubule remaining at each 

frame, the background intensity was subtracted from the mean microtubule intensity. 

Then the intensity was normalized to the first frame in focus after p60 was added to the 

chamber. 

3.4.7 Percentage of Microtubules Severed Analysis 

The percentage of microtubules severed analysis was performed by counting the total 

number of microtubules in the movie and the number of microtubules that were severed 

at least once during the course of the movie.  

3.4.8 Maximum GFP Fluorescence  

The maximum GFP fluorescence was performed in ImageJ. We used the line tool to 

draw a segmented line, 3 pixels wide, over the length of the microtubule in the GFP 

channel. I used the macro “measure stacks” to measure the mean intensity of the line for 
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each frame of the movie. The line was moved to a piece of background near the 

microtubules to measure the mean intensity of the background. To find fluorescence 

intensity of katanin on the microtubules, the background intensity was subtracted from 

the mean GFP fluorescence intensity. The maximum GFP fluorescence was found from 

the maximum point on this plot. 
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CHAPTER 4 

KATANIN’S REGULATION OF DYNAMIC MICROTUBULES 

4.1 Introduction 

 Microtubule length control is crucial in cells because of their involvement in many 

essential processes. Microtubule length is regulated by microtubule-associated proteins 

(MAPs) that can both stabilize and destabilize filaments. While there have been several 

studies on the affects of stabilizers on dynamic microtubules in vitro (selected 

publications: Levy et al. 2005; Vitre et al. 2008; Lopus et al. 2012; Manna et al. 2008; 

Zanic et al. 2013), there are only a few on how destabilizing MAPs interact with dynamic 

microtubules (Gardner et al. 2011; Montenegro Gouveia et al. 2010).  

 Microtubule severing enzymes are a class of enzymes that are known to 

disassemble microtubules by severing and depolymerization in vitro (Vale 1991; F. J. 

McNally and Vale 1993; Díaz-Valencia et al. 2011; D. Zhang et al. 2011). Katanin is 

known to have two subunits, p60, the catalytic subunit and p80, the regulatory subunit 

(F. J. McNally and Vale 1993; Hartman et al. 1998). Katanin is important for regulation of 

spindle length (Loughlin et al. 2011), microtubules at the cortex during interphase (D. 

Zhang et al. 2011), and neuronal outgrowth (Ahmad et al. 1999; Karabay et al. 2004). 

Yet, how katanin regulates dynamic microtubules in vitro has not been studied. In vivo, it 

is likely that katanin coordinates with stabilizing MAPs to regulate microtubules.  

 To understand how katanin may regulate dynamic microtubules we performed two 

sets of experiments on dynamic microtubules. First, we performed experiments with 7 

µM, 10 µM, 20 µM tubulin to test how katanin (p60), regulates microtubules by itself. 

Second, we performed dynamic instability experiments with 7 µM tubulin and both 

katanin and tau, a known microtubule stabilizer, to test how they may work together to 
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regulate microtubule dynamics. 

4.2 Results 

4.2.1 Dynamic Instability of Microtubules in vitro 

In order to explore how katanin regulates dynamic microtubules in conjunction with 

stabilizing MAPs, we used vitro dynamic instability assays imaged directly using total 

internal reflection fluorescence (TIRF) microscopy (Fig. 4.1). We used a similar 

experimental procedure as described in previous chapters, except, we coated the slides 

with PLL-PEG-Biotin (Fig. 4.1A-C). This layer of polymers coated the slide, to help 

eliminate non-specific interactions with the glass slides, and allowed for biotin labeled 

microtubule seeds to be immobilized on the surface with a streptavidin (Fig. 4.1B). After 

the microtubules seeds were immobilized to the surface, we added tubulin dimers and 

GTP to promote microtubule growth and dynamics. Additional MAPs, such as the 

katanin or tau can be added in addition to dimers. We purified WT-MBP-katanin (p60) 

and tau 4RL from bacteria to perform in vitro assays (see Materials and Methods section 

4.4). This set up allowed us to evaluate specific controllable conditions, such as different 

tubulin concentrations or enzyme concentrations. It also provides us with a system to 

monitor the changes of individual microtubules over time. 
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Figure 4.1 Chamber Diagram and Kymograph Analysis. 

A) Diagram of flow chamber created with double-stick tape, coverslip, and glass slide. 
We flowed the sample in one side of the chamber and wicked the excess liquid from the 
other end to draw the sample through. (B) Side view of the chamber. (C) Zoom in of the 
side of the flow chamber. We adhered the microtubules to the surface of the chamber 
using an antibody to biotin. Once the severing enzyme is added to the chamber, we can 
image using epifluorescence, or Total Internal Reflection Fluorescence (TIRF) 
microscopy as depicted. In TIRF microscopy, the laser is directed in and reflected out of 
the chamber at the same angle allowing for less background fluorescence and better 
resolution of single molecules. (D) Example kymograph of a dynamic microtubule. The 
kymograph is a space-time plot with distance in the x direction and time in the y 
direction. The origin is at the top, left corner. Examples of growth, catastrophe and 
rescue events are depicted on the kymograph. The scale bars are 60 seconds in the y 
direction and 1 µm in the x direction. 
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4.2.2 Dynamic instability with destabilizing MAPs 

 In previous chapters we explored katanin’s regulation of stabilized microtubules. 

However, many microtubule in vivo are required to be dynamic in order to perform 

necessary functions. To investigate how katanin regulates dynamic microtubules, we 

performed microtubule dynamic instability assays with 7 µM, 10 µM, 20 µM free tubulin 

and 0 nM - 1 µM katanin (p60). These assays provide information about how katanin and 

tubulin concentration change microtubule dynamics by measuring specific parameters 

(Fig. 4.1C). The measurements are made from kymographs, which are space-time plots. 

The x direction portrays the distance parallel to the dynamic filament, and the y direction 

is the time axis (Fig. 4.1C). Layering successive images of the filament next to each 

other over time reveals when the microtubule polymerized and depolymerized. The 

origin of the kymograph is located at the top, left corner.  

 From the kymographs, it is simple to directly measure the growth rates, time spent 

growing, shrinking, paused, and the amount of polymer added during growth or lost 

during shrinkage (Fig. 4.1D). We can also quantify the number of catastrophes and 

rescues per second to get a “catastrophe frequency” or a “rescue frequency” (Fig. 4.1D). 

Rescues are only defined as when a shrinking microtubule begins to grow again before 

shrinking all the way back to the seed (Fig. 4.1D). All this information together can yield 

answers about how dynamic the microtubules are under different conditions. Even prior 

to making measurements, qualitatively, we can see differences between kymographs in 

conditions with different amounts of tubulin and katanin (Fig. 4.2). It is clear from the 

kymographs that when there is more tubulin present in the dynamic instability assay 

there are more growth and catastrophe events and the microtubules tend to be more 

dynamic overall. However, it is less clear, quantitatively, how katanin affects changes in 

dynamics in this assay. 
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Figure 4.2 Representative Time Series of Dynamic Microtubules with Katanin. 

Time series of representative dynamic microtubules at tubulin concentration of 7 µM, 10 
µM, 20 µM with increasing concentrations of katanin. The kymograph is a space time 
plot with space in the x direction and time in the y direction. The scale bars are 60 
seconds in the y direction and 1 µm in the x direction. 
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 The first parameter we measured was the overall growth rate of each of the 

microtubule ends. We find that microtubules are dynamic at both ends and can display 

different behavior on each end. The difference between the plus-end and the minus-end 

is the plus end has faster growth rates, than the minus end over all tubulin 

concentrations (Fig. 4.3). However, since it can be difficult to distinguish which end is the 

plus end under some conditions, we plotted the average of all microtubule ends, as well 

as the average of all minus ends and all plus ends separately. Initially, for the average 

growth rates, 7 µM tubulin has a slightly higher growth rate than higher concentrations of 

tubulin (Fig. 4.3A). This is true for the “plus end” (Fig. 4.3B), the more dynamic end, and 

the “minus end” (Fig. 4.3C). However, in assays with p60, the 7 µM tubulin growth rate 

decreases both overall and at each of the respective ends. The qualitative evidence from 

the kymographs (Fig. 4.2) agree with this measurement. In fact, there are fewer growth 

events overall when more p60 is added to 7 µM tubulin dynamic assays. However, in 

assays with 10 µM or 20 µM tubulin the growth rate actually increases when increasing 

concentrations of p60 are added to the assays. This effect is most prominent on the plus 

ends of the microtubules, however, there is still an increase in the growth rate on the 

minus ends as well. Interestingly, there is only a slight increase in 10 µM assays, while 

the rate is increased to a greater extent in assays with 20 µM tubulin. In conditions with 

high concentrations of p60, but no ATP, there is still an increase in growth rate at 20 µM 

tubulin, however, at lower tubulin concentrations of 10 µM or 7 µM, the growth rates are 

the same or decreased. These results suggest that both p60 and tubulin concentration 

can alter the growth rate of dynamic microtubules. Under the minimal polymerization 

conditions, where microtubules are less dynamic, p60 causes a decrease in growth rate. 

As the tubulin concentration is increased, p60 causes an increase in the overall growth 

rates. 
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Figure 4.3 Growth Rates of Dynamic Microtubules with Katanin. 

(A) Plot of total growth rates of both ends of the microtubules combined for each tubulin 
and katanin concentration. The growth rate is represented as µm/min. Red diamonds are 
7 µM tubulin growth rates +/- katanin. N values are as follows: 7 µM tubulin (N=67), + 50 
nM p60 (N=40), + 500 nM p60 (N=41), + 5 µM p60 (N=72). Orange circle is 7 µM + 5 µM 
p60 with no ATP (N=16). Dark blue diamonds are 10 µM tubulin growth rates +/- katanin. 
N values are as follows: 10 µM tubulin (N=72), + 1 nM p60 (N=76), + 10 nM p60 (N=76),  
+ 100 nM p60 (N=147), + 1 µM katanin (N=55). Blue circles is 10 µM + 5 µM p60 with no 
ATP (N=172). Dark green diamonds are 20 µM growth rates +/- katanin. N values are as 
follows: 20 µM tubulin (N=144), + 1 nM p60 (N=39), + 10 nM p60 (N=39), + 100 nM p60 
(N=83), + 1 µM p60 (N=206). Light green is 20 µM tubulin + 1 µM p60 with no ATP 
(N=39). (B) Quantification of the growth rates at the plus end/faster growing end of the 
microtubule. N values are as follows: 7 µM tubulin (N=21), + 50 nM p60 (N=24), + 500 
nM p60 (N=38), + 5 µM p60 (N=70), 7 µM + 5 µM p60 with no ATP (N=16), 10 µM 
tubulin (N=67), + 1 nM p60 (N=60),  + 10 nM p60 (N=70), + 100 nM p60 (N=134), + 1 
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µM katanin (N=49), 10 µM + 5 µM p60 with no ATP (N=116), 20 µM tubulin (N=96), + 1 
nM p60 (N=17), + 10 nM p60 (N=27), + 100 nM p60 (N=49), + 1 µM p60 (N=136), 20 µM 
tubulin + 1 µM p60 with no ATP (N=23). (C) Quantification of the growth rates at the 
minus end of the microtubule. N values are as follows: 7 µM tubulin (N=46), + 50 nM p60 
(N=16), + 500 nM p60 (N=3), + 5 µM p60 (N=2), 7 µM + 5 µM p60 with no ATP (N=10), 
10 µM tubulin (N=40), + 1 nM p60 (N=36), + 10 nM p60 (N=31), + 100 nM p60 (N=56), + 
1 µM katanin (N=25), 10 µM + 5 µM p60 with no ATP (N=56), 20 µM tubulin (N=47), + 1 
nM p60 (N=21), + 10 nM p60 (N=12), + 100 nM p60 (N=33), + 1 µM p60 (N=66), 20 µM 
tubulin + 1 µM p60 with no ATP (N=15). The error bars represent the standard error of 
the mean. 
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 We can also measure the length in µm of each growth event. This would provide 

information about whether the microtubules were growing fast for short amounts of time, 

or even possibly if there was a constraint on the overall growth lengths. The growth 

lengths of microtubules without p60 are similar across all three tubulin concentration of 7 

µM, 10 µM, and 20 µM (Fig. 4.4A).  Similar to the growth rate data, we find that there is a 

decrease in the growth length on both ends of the microtubule at low tubulin 

concentrations (Fig. 4.4B-C). Dynamic instability with 10 µM tubulin only resulted in a 

slight increase in growth length at high levels of p60. However, like the growth rates, 

dynamic instability with 20 µM tubulin had an increase in the growth lengths with 

increasing p60 on both ends of the microtubule. This evidence shows that microtubules 

have similar growth lengths overall all tubulin concentrations without any p60. When p60 

is added to the assays, it causes a decrease in growth length at low tubulin 

concentrations and a slight increase in growth length at 10 µM tubulin and a significant 

length increase at 20 µM tubulin.  
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Figure 4.4 Growth Length of Dynamic Microtubules with Katanin. 

(A) Plot of total growth length of both ends of the microtubules combined for each tubulin 
and katanin concentration. The growth length data is represented as µm. Red diamonds 
are 7 µM tubulin growth rates +/- katanin. N values are as follows: 7 µM tubulin (N=67), 
+ 50 nM p60 (N=40), + 500 nM p60 (N=41), + 5 µM p60 (N=72). Orange circle is 7 µM + 
5 µM p60 with no ATP (N=16). Dark blue diamonds are 10 µM tubulin growth lengths +/- 
katanin. N values are as follows: 10 µM tubulin (N=72), + 1 nM p60 (N=76), + 10 nM p60 
(N=76), + 100 nM p60 (N=147), + 1 µM katanin (N=55). Blue circles is 10 µM + 5 µM 
p60 with no ATP (N=172). Dark green diamonds are 20 µM growth rates +/- katanin. N 
values are as follows: 20 µM tubulin (N=144), + 1 nM p60 (N=39), + 10 nM p60 (N=39), 
+ 100 nM p60 (N=83), + 1 µM p60 (N=206). Light green is 20 µM tubulin + 1 µM p60 
with no ATP (N=39). (B) Quantification of the growth lengths at the plus end/faster 
growing end of the microtubule. N values are as follows: 7 µM tubulin (N=21), + 50 nM 
p60 (N=24), + 500 nM p60 (N=38), + 5 µM p60 (N=70), + 5 µM p60 with no ATP 
(N=16),10 µM tubulin (N=67), + 1 nM p60 (N=60), + 10 nM p60 (N=70), + 100 nM p60 
(N=134), + 1 µM katanin (N=49), + 5 µM p60 with no ATP (N=116), 20 µM tubulin 
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(N=96), + 1 nM p60 (N=17), + 10 nM p60 (N=27), + 100 nM p60 (N=49), + 1 µM p60 
(N=136), + 1 µM p60 with no ATP (N=23). (C) Quantification of the growth lengths at the 
minus end of the microtubule. N values are as follows: 7 µM tubulin (N=46), + 50 nM p60 
(N=16), + 500 nM p60 (N=3), + 5 µM p60 (N=2), + 5 µM p60 with no ATP (N=10), 10 µM 
tubulin (N=40),  + 1 nM p60 (N=36), + 10 nM p60 (N=31), + 100 nM p60 (N=56), + 1 µM 
katanin (N=25), + 5 µM p60 with no ATP (N=56), 20 µM tubulin (N=47), + 1 nM p60 
(N=21), + 10 nM p60 (N=12), + 100 nM p60 (N=33), + 1 µM p60 (N=66), + 1 µM p60 
with no ATP (N=15). The error bars represent the standard error of the mean. 
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 The shrinkage rate is often too fast to measure, so we cannot accurately quantify 

this rate. However, a related parameter is the shrinkage length. This provides us 

information about the average distance a microtubule shrinks back. Initially, the 

shrinkage distance is longest under 20 µM tubulin conditions without any katanin, both 

on average and for both individual ends of the microtubules (Fig. 4.5A). 7 µM and 10 µM 

tubulin have similar shrinkage lengths. When 1 nM to 1 µM p60 is added to the dynamic 

instability assays with 20 µM tubulin, the shrinkage length doubles (Fig. 4.5A). This is 

true for each individual end of the microtubule as well (Fig. 4.5B-C). Interestingly, this 

rate is even longer than the growth lengths. This would suggest that perhaps there are 

multiple growth events before the microtubule begins to shrink back. In dynamic assays 

with 10 µM tubulin, the average shrinkage length increases slightly. The shrinkage 

length on the plus ends of the microtubule remain similar across all p60 concentrations, 

however, the minus end displays an increase in shrinkage length with increasing 

enzyme concentrations. 7 µM tubulin dynamic assays on average and on both ends 

displayed a decrease in shrinkage length, although decrease was more prominent at the 

minus ends of the microtubules. Under all tubulin conditions, the shrinkage lengths were 

shorter without any ATP.  
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Figure 4.5 Shrinkage Length of Dynamic Microtubules with Katanin. 

(A) Plot of total shrinkage length of both ends of the microtubules combined for each 
tubulin and katanin concentration. The shrinkage length data is represented as µm. Red 
diamonds are 7 µM tubulin shrinkage lengths +/- katanin. N values are as follows: 7 µM 
tubulin (N=43), + 50 nM p60 (N=20), + 500 nM p60 (N=29), + 5 µM p60 (N=35). Orange 
circle is 7 µM + 5 µM p60 with no ATP (N=7). Dark blue diamonds are 10 µM tubulin 
shrinkage lengths +/- katanin. N values are as follows: 10 µM tubulin (N=72), + 1 nM p60 
(N=76), + 10 nM p60 (N=76), + 100 nM p60 (N=147), + 1 µM katanin (N=55). Blue 
circles is 10 µM + 5 µM p60 with no ATP (N=96). Dark green diamonds are 20 µM 
shrinkage lengths +/- katanin. N values are as follows: 20 µM tubulin (N=72), + 1 nM p60 
(N=13), + 10 nM p60 (N=24), + 100 nM p60 (N=29), + 1 µM p60 (N=102). Light green is 
20 µM tubulin + 1 µM p60 with no ATP (N=16). The error bars represent the standard 
error of the mean. (B) Quantification of the shrinkage lengths at the plus end/faster 
growing end of the microtubule. N values are as follows: 7 µM tubulin (N=11), + 50 nM 
p60 (N=15), + 500 nM p60 (N=26), + 5 µM p60 (N=32), + 5 µM p60 with no ATP (N=7), 
10 µM tubulin (N=37), + 1 nM p60 (N=46), + 10 nM p60 (N=21), + 100 nM p60 (N=103), 
+ 1 µM katanin (N=40), 10 µM + 5 µM p60 with no ATP (N=75), 20 µM tubulin (N=57), + 
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1 nM p60 (N=9), + 10 nM p60 (N=21), + 100 nM p60 (N=19), + 1 µM p60 (N=76), + 1 µM 
p60 with no ATP (N=13). The error bars represent the standard error of the mean. (C) 
Quantification of the shrinkage lengths at the minus end of the microtubule. N values are 
as follows: 7 µM tubulin (N=32), + 50 nM p60 (N=5), + 500 nM p60 (N=3), + 5 µM p60 
(N=3), 7 µM + 5 µM p60 with no ATP (N=0), 10 µM tubulin (N=35), + 1 nM p60 (N=30), + 
10 nM p60 (N=24), + 100 nM p60 (N=44), + 1 µM katanin (N=15), + 5 µM p60 with no 
ATP (N=21), 20 µM tubulin (N=14), + 1 nM p60 (N=3), + 10 nM p60 (N=3), + 100 nM 
p60 (N=9), + 1 µM p60 (N=25), + 1 µM p60 with no ATP (N=3). The error bars represent 
the standard error of the mean. 
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 Catastrophe frequency is a measure of the number of times the microtubule 

shrinks all the way back to the seed. Often times, destabilizers will cause microtubules to 

catastrophe more frequently (Vaart, Akhmanova, and Straube 2009). The overall 

number of catastrophes at 20 µM tubulin is higher initially than 7 µM or 10 µM tubulin 

(Fig. 4.6A). The number of catastrophes decreases with low p60 concentration, 

however, at higher concentrations the catastrophe frequency is similar to the control (Fig 

4.6A). This pattern holds for both the average number of catastrophes and each 

individual end (Fig. 4.6B-C). The catastrophe frequency increases in 10 µM assays on 

the plus ends, but decreases on the minus end (Fig 4.6B-C). 7 µM tubulin assays also 

have fewer catastrophes initially, and the number decreases with increasing p60 on both 

the plus and minus ends. The total number of catastrophes likely decreases with 7 µM 

tubulin because there are fewer dynamic events overall with more p60 (Fig. 4.2). From 

the kymographs, it is clear that dynamic assays with 10 µM tubulin displayed more 

dynamic events on the plus ends (Fig. 4.2). 
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Figure 4.6 Frequency of Catastrophes on Dynamic Microtubules with Katanin. 

(A) Plot of frequency of catastrophes on both ends of the microtubules combined for 
each tubulin and katanin concentration. The catastrophe frequency data is represented 
as # of catastrophes/10 minutes. N values are as follows: 7 µM tubulin (N=22), + 50 nM 
p60 (N=8), + 500 nM p60 (N=44), + 5 µM p60 (N=45), 7 µM + 5 µM p60 with no ATP 
(N=22), 10 µM tubulin (N=107), + 1 nM p60 (N=97), + 10 nM p60 (N=101), + 100 nM 
p60 (N=190), + 1 µM katanin (N=73), + 5 µM p60 with no ATP (N=172), 20 µM tubulin 
(N=50), + 1 nM p60 (N=12), + 10 nM p60 (N=16), + 100 nM p60 (N=22), + 1 µM p60 
(N=66), + 1 µM p60 with no ATP (N=14). (B) Quantification of the catastrophe frequency 
at the plus end/faster growing end of the microtubule. N values are as follows: 7 µM 
tubulin (N=11), + 50 nM p60 (N=4), + 500 nM p60 (N=22), + 5 µM p60 (N=22), + 5 µM 
p60 with no ATP (N=11), 10 µM tubulin (N=37), + 1 nM p60 (N=19), + 10 nM p60 
(N=21), + 100 nM p60 (N=41), + 1 µM katanin (N=13), 10 µM + 5 µM p60 with no ATP 
(N=26), 20 µM tubulin (N=25), + 1 nM p60 (N=6), + 10 nM p60 (N=8), + 100 nM p60 
(N=11), + 1 µM p60 (N=33), + 1 µM p60 with no ATP (N=7). (C) Quantification of the 
catastrophe frequency at the minus end of the microtubule. N values are as follows: 7 
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µM tubulin (N=11), + 50 nM p60 (N=4), + 500 nM p60 (N=22), + 5 µM p60 (N=23), + 5 
µM p60 with no ATP (N=11), 10 µM tubulin (N=22), + 1 nM p60 (N=19), + 10 nM p60 
(N=21), + 100 nM p60 (N=41), + 1 µM katanin (N=13), 10 µM + 5 µM p60 with no ATP 
(N=26), 20 µM tubulin (N=25), + 1 nM p60 (N=6), + 10 nM p60 (N=8), + 100 nM p60 
(N=11), + 1 µM p60 (N=33), + 1 µM p60 with no ATP (N=7). The error bars represent the 
standard error of the mean. 
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 The last parameter we measured is the frequency of rescue. We defined a rescue 

as an event where, after a shrinking event, the microtubule begins to grow again before 

it reaches the seed (Fig.4.1D). The overall number of rescues over all tubulin 

concentrations is higher on the plus end than the minus end (Fig. 4.7B-C). The average 

of both ends as well as each end individual microtubule end has a decrease in the 

number of rescues with p60 regardless of tubulin concentration (Fig. 4.7A-C). At 7 µM 

tubulin, there are no rescues without p60, which does not change as p60 is added. This 

is not surprising given that there are fewer dynamic events with 7 µM tubulin. 
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Figure 4.7 Frequency of Rescues on Dynamic Microtubules with Katanin. 

(A) Plot of frequency of rescues on both ends of the microtubules combined for each 
tubulin and katanin concentration. The rescue frequency data is represented as # of 
rescues/10 minutes. Red diamonds are 7 µM tubulin rescue frequencies +/- katanin. N 
values are as follows: 7 µM tubulin (N=22), + 50 nM p60 (N=8), + 500 nM p60 (N=44), + 
5 µM p60 (N=45), + 5 µM p60 with no ATP (N=22), 10 µM tubulin (N=72),+ 1 nM p60 
(N=76), + 10 nM p60 (N=76), + 100 nM p60 (N=147), + 1 µM katanin (N=55), + 5 µM 
p60 with no ATP (N=96), 20 µM tubulin (N=50), + 1 nM p60 (N=12), + 10 nM p60 
(N=16), + 100 nM p60 (N=22), + 1 µM p60 (N=66), + 1 µM p60 with no ATP (N=14).  (B) 
Quantification of the rescue frequency at the plus end/faster growing end of the 
microtubule. N values are as follows: 7 µM tubulin (N=11), + 50 nM p60 (N=4), + 500 nM 
p60 (N=22), + 5 µM p60 (N=22), + 5 µM p60 with no ATP (N=11), 10 µM tubulin (N=22), 
+ 1 nM p60 (N=19), + 10 nM p60 (N=21), + 100 nM p60 (N=41), + 1 µM katanin (N=13), 
+ 5 µM p60 with no ATP (N=28), 20 µM tubulin (N=25), + 1 nM p60 (N=6), + 10 nM p60 
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(N=8), + 100 nM p60 (N=11), + 1 µM p60 (N=33), + 1 µM p60 with no ATP (N=7). (C) 
Quantification of the rescue frequency at the minus end of the microtubule. N values are 
as follows: 7 µM tubulin (N=11), + 50 nM p60 (N=4), + 500 nM p60 (N=22), + 5 µM p60 
(N=22), 5 µM p60 with no ATP (N=11), 10 µM tubulin (N=22), + 1 nM p60 (N=19), + 10 
nM p60 (N=21), + 100 nM p60 (N=41), + 1 µM katanin (N=13), + 5 µM p60 with no ATP 
(N=26), 20 µM tubulin (N=25), + 1 nM p60 (N=6), + 10 nM p60 (N=8), + 100 nM p60 
(N=22), + 1 µM p60 (N=33), + 1 µM p60 with no ATP (N=7). The error bars represent the 
standard error of the mean. 
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 The percentage of time spent growing, shrinking, and paused provides more 

information about the overall dynamics of the microtubules. As expected from the other 

parameters we measured, and from previous studies, we observed that when there is 

more free tubulin in the assays the microtubules are more dynamic. In the control 

dynamic instability assays, the microtubules growing with 20 µM tubulin spent more time 

both growing and shrinking than at 10 µM, or 7 µM tubulin (Fig. 4.8). This was true for 

both the minus and the plus ends of the microtubules. When katanin was added into the 

assay, there was little effect at the higher tubulin concentrations of tubulin, however, at 7 

µM tubulin, there was an increase in the time spent growing and shrinking with 50 nM 

katanin. Any higher concentrations of katanin resulted in similar dynamics to the control. 

At the minus ends of microtubules grown with 7 µM tubulin we observed a different 

pattern. With 50 nM katanin, there was a decrease in the amount of time spent shrinking, 

but at 500 nM and 5 µM katanin, there was almost no time spent growing or shrinking. 

This is consistent with the other parameters we measured as well, because we observed 

few catastrophes and no rescues under higher katanin concentrations (Fig. 4.6 and 4.7). 
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Figure 4.8 Time Spent Growing, Shrinking, or Paused. 

Quantification of the fraction of overall time spent growing shrinking, or paused. N values 
are as follows: 7 µM tubulin (N=11), + 50 nM p60 (N=4), + 500 nM p60 (N=22), + 5 µM 
p60 (N=23), + 5 µM p60 with no ATP (N=10), 10 µM tubulin (N=22), + 1 nM p60 (N=19), 
+ 10 nM p60 (N=21), + 100 nM p60 (N=41), + 1 µM katanin (N=13), + 5 µM p60 with no 
ATP (N=28), 20 µM tubulin (N=23), + 1 nM p60 (N=6), + 10 nM p60 (N=8), + 100 nM 
p60 (N=11), + 1 µM p60 (N=32), + 1 µM p60 with no ATP (N=7).  
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4.2.3 Stabilizing MAPs on Taxol-stabilized microtubules 

 Our end goals was to explore microtubule dynamics with stabilizing MAPs, such as 

tau 4RL, and destabilizing MAPs, like katanin. We showed that katanin can cause 

microtubules to become more dynamic. Dynamic instability assays have been performed 

with tau previously (Levy et al. 2005). It has been hypothesized that katanin’s severing 

activity could be inhibited by tau, as a result of studies done in neurons (Qiang et al. 

2006). However, there has not been any exploration of tau and katanin’s interactions on 

microtubules in vitro. Therefore, we set up severing assays with Taxol-stabilized 

microtubules, p60, and increasing amounts of tau 4RL. Qualitatively, we can see that 

severing assays with just tau on microtubules, does not produce any breaks in the 

microtubules (Fig. 4.9A). In the control severing assays with only p60, the microtubules 

were completely destroyed in less than a minute. However, when p60 + 5 nM, 25 nM, 

100 nM, 500 nM, 1 µM, or 1.5 µM tau were added to severing assays, there were few 

detectable severing events, and the microtubules were not completely destroyed by the 

end of the assay (Fig. 4.9A). This visual evidence is confirmed by loss of polymer 

quantification. We compared the fluorescence intensity of the microtubules at the 

beginning of the assay to the fluorescence of the microtubules at each frame. This 

provided us with information about the fraction of the microtubule remaining over the 

course of the assay. The loss of polymer data shows that katanin completely destroys 

microtubules, but tau can effectively inhibit this severing activity. Even at low 

concentrations of 5 nM tau, the severing activity is effectively inhibited (Fig. 4.9B). When 

the loss of polymer data is fit to a line or exponential decay, we can find the 

characteristic decay time for each condition. This characteristic decay time corresponds 

to how long it would take for microtubules to be completely destroyed. All conditions with 

tau had relatively long decay times that were beyond the length of the assay (Fig. 4.9C). 
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This fits well with both the loss of polymer data and the qualitative evidence. 
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Figure 4.9 Loss of Polymer on Taxol-stabilized Microtubules with Tau and Katanin.	  

(A) Representative time series of Taxol-stabilized microtubules with katanin and 0 nM, 5 
nM, 25 nM, 100 nM, 500 nM, 1 µM, 1.5 µM tau 4RL. The scale bars are as indicated. (B)  
Quantification of overall loss of polymer over time. The data is fit is fit to exponential 
decay, or linear functions. N values are as follows: Taxol-stabilized MTs (N=40), Taxol-
stabilized MTs + 1.5 µM Tau (N=34), Taxol-stabilized MTs + p60 (N=89), Taxol-
stabilized MTs + p60 + 5 nM tau (N=28), Taxol-stabilized MTs + p60 + 25 nM tau 
(N=64), Taxol-stabilized MTs + p60 + 100 nM tau (N=27), Taxol-stabilized MTs + p60 + 
500 nM tau (N=36), Taxol-stabilized MTs + p60 + 1 µM tau (N=56), Taxol-stabilized MTs 
+ p60 + 1.5 µM tau (N=65). Error bars represent the standard error of the mean. (C) 
Quantification of the characteristic decay times. The times were found from the fits to 
data in (B). The error bars represent the error associated with the fit. 
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4.2.4 Dynamic Instability with 7 µM tubulin + katanin + tau 

 We have shown that katanin destroys Taxol-stabilized microtubules, and tau has a 

stabilizing effect on microtubules. Katanin can cause dynamic microtubules at 10 µM or 

20 µM tubulin concentrations to be more dynamic and tau can cause an increase in 

microtubule growth length as well as a decease in the number of catastrophes (Levy et 

al. 2005). However, the interactions of tau and katanin on dynamic microtubules have 

not been characterized yet. Therefore, we designed a set of experiments to test their 

interactions. We polymerized dynamic microtubules with a low concentration of tubulin, 7 

µM, in order to better distinguish the effects of the MAPs on the microtubule dynamics. 

We added katanin concentrations of 50 nM, 500 nM, and 5 µM as well as 25 nM and 100 

nM tau in different combinations. The tau concentrations are substantially lower than 

concentrations used previously in dynamic assays because we wanted to ensure that if 

there was competition between p60 and tau, we would be able to distinguish changes in 

the microtubule dynamics. In figure 4.9, we observed that there was a substantial 

decrease in the effectiveness of katanin severing on Taxol-stabilized microtubules at tau 

concentrations of 5 nM.  

 Interestingly, we observed a qualitative difference when just tau was added to the 

assays. The microtubules are more dynamic on both ends (Fig. 4.10). When just p60 is 

added to the 7 µM tubulin, as previously described, we observed more dynamics at 50 

nM p60, but virtually no dynamics at 500 nM or 5 µM p60 (Fig 4.10). In dynamic 

instability assays with tau and p60 the microtubules were more dynamic than 7 µM 

tubulin alone, however, the dynamics decreased with increasing concentration of p60 

(Fig 4.10). We observed no growth events and both depolymerization and severing at 

higher concentrations of p60 when combined with 100 nM tau, however, we observed no 

severing under any of the other conditions. 
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Figure 4.10 Representative Time Series of Dynamic Microtubules with Katanin and 
Tau. 

Time series of representative dynamic microtubules at tubulin concentration of 7 µM and 
0 nM, 50 nM, 500 nM, or 5 µM katanin and 0 nM, 25 nM or 100 nM tau. The kymograph 
is a space time plot with space in the x direction and time in the y direction. The scale 
bars are 60 seconds in the y direction and 1 µm in the x direction. 
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 We can compare the parameters that are measured from the kymographs, in order 

to distinguish how tau and katanin can work together to regulate dynamic microtubules. 

The first parameter we measured was the growth rate. We quantified the average growth 

rates (Fig. 4.11A), the growth rates for the plus end (Fig. 4.11B), and the minus end (Fig. 

4.11C). The growth rates with tau are lower both on average as well as on both ends of 

the microtubules (Fig. 4.11A). However, the rates increase with higher tau 

concentrations. When 25 nM tau and p60 are both added to the assays, the growth rate 

decreases and is similar to the rate with p60 alone (Fig. 4.11A). The rates are lower than 

p60 alone on the plus ends (Fig. 4.11B) of the microtubules and slightly higher than p60 

alone on the minus ends of microtubules (Fig. 4.11C). When the tau concentration is 

increased to 100 nM, the growth rates are still lower than the 7 µM control, but the 

remain unchanged when 50 nM p60 is added. We also observed that with 100 nM tau 

there seems to be little change to the growth rates. 
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Figure 4.11 Growth Rates of Dynamic Microtubules with Katanin and Tau. 

(A) Plot of total growth rates of both ends of the microtubules combined for each katanin 
and tau concentration with 7 µM tubulin. The growth rate is represented as µm/min. Red 
diamonds are 7 µM tubulin growth rates +/- katanin. N values are as follows: Taxol-
stabilized MTs (N=67), 50 nM p60 (N=40), 500 nM p60 (N=41), 5 µM p60 (N=72). 
Orange circle is 5 µM p60 + no ATP (N=16). Light purple square is 25 nM tau +/- p60: 25 
nM tau (N=297), 25 nM tau + 50 nM p60 (N=269), 25 nM tau + 500 nM p60 (N=173), 25 
nM tau + 5 µM p60 (N=65). Purple square is 100 nM tau +/- p60: 100 nM tau (N=500), 
100 nM tau + 50 nM p60 (N=125). (B) Quantification of the growth rates on the plus 
ends of the microtubules. Taxol-stabilized MTs (N=21), 50 nM p60 (N=24), 500 nM p60 
(N=38), 5 µM p60 (N=70), 5 µM p60 + no ATP (N=16), 25 nM tau (N=104), 25 nM tau + 
50 nM p60 (N=155), 25 nM tau + 500 nM p60 (N=154), 25 nM tau + 5 µM p60 
(N=63),100 nM tau (N=196), 100 nM tau + 50 nM p60 (N=114). (C) Quantification of the 
growth rates on the minus ends of the microtubules. Taxol-stabilized MTs (N=46), 50 nM 
p60 (N=16), 500 nM p60 (N=3), 5 µM p60 (N=2), 5 µM p60 + no ATP (N=10), 25 nM tau 
(N=193), 25 nM tau + 50 nM p60 (N=115), 25 nM tau + 500 nM p60 (N=19), 25 nM tau + 
5 µM p60 (N=2),100 nM tau (N=304), 100 nM tau + 50 nM p60 (N=11). Error bars 
represent the standard error of the mean. 
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 The growth length with 25 nM tau is slightly decreased from the 7 µM tubulin 

control (Fig. 4.12A). 100 nM tau does not change the average growth length from the 7 

µM tubulin control on average or at either end of the microtubule. Katanin p60 on its own 

decreases the growth lengths with increasing amounts of the enzyme. When tau and 

p60 are added to dynamic microtubules together, the length of microtubule growth 

shortens (Fig. 4.12A-C). However, the length still remains above the 7 µM tubulin control 

on the minus end. Interestingly, 25 nM tau + 50 nM p60 causes an increase in 

microtubule growth lengths. This result agrees with the kymographs, which show there 

are longer growth events at these concentrations (Fig. 4.10). The results suggest that 

there are shorter growth events with p60 or with p60 + tau. 
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Figure	  4.12	  Growth	  Lengths	  of	  Dynamic	  Microtubules	  with	  Katanin	  and	  Tau.	  

(A)Plot of total growth lengths of both ends of the microtubules combined for each 
katanin and tau concentration with 7 µM tubulin. The growth length is represented in 
µms. Red diamonds are 7 µM tubulin growth length +/- katanin. N values are as follows: 
Taxol-stabilized MTs (N=67), 50 nM p60 (N=40), 500 nM p60 (N=41), 5 µM p60 (N=72). 
Orange circle is 5 µM p60 + no ATP (N=16). Light purple square is 25 nM tau +/- p60: 25 
nM tau (N=297), 25 nM tau + 50 nM p60 (N=269), 25 nM tau + 500 nM p60 (N=173), 25 
nM tau + 5 µM p60 (N=65). Purple square is 100 nM tau +/- p60: 100 nM tau (N=500), 
100 nM tau + 50 nM p60 (N=125). (B) Quantification of the growth lengths on the plus 
ends of the microtubules. Taxol-stabilized MTs (N=21), 50 nM p60 (N=24), 500 nM p60 
(N=38), 5 µM p60 (N=70), 5 µM p60 + no ATP (N=16), 25 nM tau (N=104), 25 nM tau + 
50 nM p60 (N=155), 25 nM tau + 500 nM p60 (N=154), 25 nM tau + 5 µM p60 
(N=63),100 nM tau (N=196), 100 nM tau + 50 nM p60 (N=114). (C) Quantification of the 
growth lengths on the minus ends of the microtubules. Taxol-stabilized MTs (N=46), 50 
nM p60 (N=16), 500 nM p60 (N=3), 5 µM p60 (N=2), 5 µM p60 + no ATP (N=10), 25 nM 
tau (N=193), 25 nM tau + 50 nM p60 (N=115), 25 nM tau + 500 nM p60 (N=19), 25 nM 
tau + 5 µM p60 (N=2),100 nM tau (N=304), 100 nM tau + 50 nM p60 (N=11). Error bars 
represent the standard error of the mean. 
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  Similar to the growth length, the shrinkage length can provide information about how 

far the microtubules are shrinking back after growth events. This information could 

distinguish whether there are multiple growth events prior to the shrinkage events. This 

could be the case if the average shrinkage length is longer than the average growth 

length. However, our results indicate that the lengths are similar to that of the growth 

lengths (Fig. 4.12 and Fig. 4.13). Dynamic instability with 25 nM tau causes shorter 

shrinking lengths on average than the 7 µM tubulin control. 100 nM tau displayed similar 

lengths as the 7 µM control. The shrinkage lengths decreased with 25 nM tau and p60, 

with the exception of 50 nM p60, which displayed an increase in length with respect to 

both the 7 µM control and 25 nM tau alone. 100 nM tau + 50 nM p60 did not display any 

significant change in shrinkage length with respect to 100 nM tau alone or the 7 µM 

tubulin control.  
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Figure 4.13 Shrinkage Lengths of Dynamic Microtubules with Katanin and Tau. 

(A) Plot of total shrinkage lengths of both ends of the microtubules combined for each 
katanin and tau concentration with 7 µM tubulin. The shrinkage length is represented in 
mms. Red diamonds are 7 µM tubulin shrinkage length +/- katanin. N values are as 
follows: Taxol-stabilized MTs (N=43), 50 nM p60 (N=20), 500 nM p60 (N=29), 5 µM p60 
(N=35). Orange circle is 5 µM p60 + no ATP (N=7). Light purple square is 25 nM tau +/- 
p60: 25 nM tau (N=113), 25 nM tau + 50 nM p60 (N=120), 25 nM tau + 500 nM p60 
(N=72), 25 nM tau + 5 µM p60 (N=22). Purple square is 100 nM tau +/- p60: 100 nM tau 
(N=193), 100 nM tau + 50 nM p60 (N=78). (B) Quantification of the shrinkage lengths on 
the plus ends of the microtubules. Taxol-stabilized MTs (N=11), 50 nM p60 (N=15), 500 
nM p60 (N=26), 5 µM p60 (N=32), 5 µM p60 + no ATP (N=7), 25 nM tau (N=48), 25 nM 
tau + 50 nM p60 (N=89), 25 nM tau + 500 nM p60 (N=62), 25 nM tau + 5 µM p60 
(N=21),100 nM tau (N=108), 100 nM tau + 50 nM p60 (N=65). (C) Quantification of the 
shrinkage lengths on the minus ends of the microtubules. Taxol-stabilized MTs (N=32), 
50 nM p60 (N=5), 500 nM p60 (N=3), 5 µM p60 (N=5), 5 µM p60 + no ATP (N=10), 25 
nM tau (N=65), 25 nM tau + 50 nM p60 (N=31), 25 nM tau + 500 nM p60 (N=10), 25 nM 
tau + 5 µM p60 (N=1),100 nM tau (N=85), 100 nM tau + 50 nM p60 (N=13). Error bars 
represent the standard error of the mean. 
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 The catastrophe frequency changes significantly with the addition of the either tau 

or p60. 25 nM or 100 nM tau increased the catastrophe frequency, 100 nM to a greater 

extent than 25 nM tau. This was true of both ends of the microtubule. Previously, we 

showed that katanin could both increase or decrease the catastrophe frequency 

depending on the tubulin concentration (Fig. 4.6). At 7 µM tubulin we observed that the 

catastrophe frequency is decreased with respect to the no katanin control with the 

exception of the lowest katanin concentration (Fig. 4.6). The catastrophe frequency with 

25 nM tau and p60 remains constant on the plus end above p60 concentrations of 50 nM 

(Fig. 4.14B). However, on the minus ends, the catastrophe frequency decreases with 

p60 concentration (Fig. 4.14C). When we increased the tau concentration to 100 nM in 

combination with p60, the catastrophe frequency decreased at both ends of the 

microtubules (Fig. 4.14B-C).  
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Figure 4.14 Catastrophe Frequencies of Dynamic Microtubules with Katanin and 
Tau. 

(A) Plot of total catastrophe frequencies of both ends of the microtubules combined for 
each katanin and tau concentration with 7 µM tubulin. The catastrophe frequency is 
represented in # of catastrophes/min. Red diamonds are 7 µM tubulin catastrophe 
frequency +/- katanin. N values are as follows: Taxol-stabilized MTs (N=22), 50 nM p60 
(N=8), 500 nM p60 (N=44), 5 µM p60 (N=45). Orange circle is 5 µM p60 + no ATP 
(N=22). Light purple square is 25 nM tau +/- p60: 25 nM tau (N=43), 25 nM tau + 50 nM 
p60 (N=25), 25 nM tau + 500 nM p60 (N=50), 25 nM tau + 5 µM p60 (N=20). Purple 
square is 100 nM tau +/- p60: 100 nM tau (N=64), 100 nM tau + 50 nM p60 (N=36). (B) 
Quantification of the catastrophe frequencies on the plus ends of the microtubules. 
Taxol-stabilized MTs (N=11), 50 nM p60 (N=4), 500 nM p60 (N=22), 5 µM p60 (N=22), 5 
µM p60 + no ATP (N=11), 25 nM tau (N=22), 25 nM tau + 50 nM p60 (N=13), 25 nM tau 
+ 500 nM p60 (N=25), 25 nM tau + 5 µM p60 (N=10), 100 nM tau (N=32), 100 nM tau + 
50 nM p60 (N=18). (C) Quantification of the catastrophe frequencies on the minus ends 
of the microtubules. Taxol-stabilized MTs (N=11), 50 nM p60 (N=4), 500 nM p60 (N=22), 
5 µM p60 (N=23), 5 µM p60 + no ATP (N=11), 25 nM tau (N=21), 25 nM tau + 50 nM 
p60 (N=12), 25 nM tau + 500 nM p60 (N=25), 25 nM tau + 5 µM p60 (N=10),100 nM 
tau(N=32), 100 nM tau + 50 nM p60 (N=18). Error bars represent the standard error of 
the mean. 
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 We showed the rescue frequency was affected by tubulin concentration (Fig. 4.7). 

The rescue frequency decreased with increasing p60 concentration at tubulin 

concentrations of 10 µM and 20 µM (Fig. 4.7). In dynamic assays with 7 µM tubulin we 

observed virtually no rescues in the control or with p60 (Fig. 4.7). With 25 nM or 100 nM 

tau in dynamic assays, there was a slight increase in the rescue frequency on average 

and on the plus end (Fig. 4.15A-B). When p60 was added in combination with tau, there 

was an increase in the rescue frequency (Fig. 4.15A-B). The most significant change 

was on the plus end with 50 nM p60.  
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Figure 4.15 Rescue Frequencies of Dynamic Microtubules with Katanin and Tau. 

(A) Plot of total rescue frequencies of both ends of the microtubules combined for each 
katanin and tau concentration with 7 µM tubulin. The rescue frequency is represented in 
# of rescues/min. Red diamonds are 7 µM tubulin rescue frequency +/- katanin. N values 
are as follows: Taxol-stabilized MTs (N=22), 50 nM p60 (N=8), 500 nM p60 (N=44), 5 
µM p60 (N=45). Orange circle is 5 µM p60 + no ATP (N=22). Light purple square is 25 
nM tau +/- p60: 25 nM tau (N=43), 25 nM tau + 50 nM p60 (N=25), 25 nM tau + 500 nM 
p60 (N=50), 25 nM tau + 5 µM p60 (N=20). Purple square is 100 nM tau +/- p60: 100 nM 
tau (N=64), 100 nM tau + 50 nM p60 (N=36). (B) Quantification of the rescue 
frequencies on the plus ends of the microtubules. Taxol-stabilized MTs (N=11), 50 nM 
p60 (N=4), 500 nM p60 (N=22), 5 µM p60 (N=22), 5 µM p60 + no ATP (N=11), 25 nM 
tau (N=22), 25 nM tau + 50 nM p60 (N=13), 25 nM tau + 500 nM p60 (N=25), 25 nM tau 
+ 5 µM p60 (N=10), 100 nM tau (N=32), 100 nM tau + 50 nM p60 (N=18). (C) 
Quantification of the rescue frequencies on the minus ends of the microtubules. Taxol-
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stabilized MTs (N=11), 50 nM p60 (N=4), 500 nM p60 (N=22), 5 µM p60 (N=23), 5 µM 
p60 + no ATP (N=11), 25 nM tau (N=21), 25 nM tau + 50 nM p60 (N=12), 25 nM tau + 
500 nM p60 (N=25), 25 nM tau + 5 µM p60 (N=10),100 nM tau (N=32), 100 nM tau + 50 
nM p60 (N=18). Error bars represent the standard error of the mean. 
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 Despite having all these parameters to measure, it is difficult to determine how tau 

and p60 alter the microtubule dynamics. A better measure of the changes that occur 

may be the overall dynamicity. We chose to plot this as percentage of time the 

microtubules spent growing, shrinking, or paused, as this would show us if there were 

changes in overall time spent in each state. Figure 4.16 portrays this data and may give 

a clearer understanding of how each of the MAPs are altering the dynamics. 

Microtubules grown with 7 µM tubulin spend most of their time at both ends paused. The 

addition of 25 nM or 100 nM tau significantly increases the amount of time both growing 

and shrinking at both ends of the microtubule, consistent with the kymographs, where 

we observed more dynamic events (Fig. 4.10). 50 nM katanin also results in an increase 

in the time growing and shrinking on the plus ends of microtubules, but also causes the 

microtubule to become less dynamic on the minus end and spend more time paused. 

Adding 500 nM or 5 µM katanin to the assay causes the dynamics to be similar to the 7 

µM tubulin control on the plus end, however, virtually abolishes any dynamic events on 

the minus end. Combining tau and katanin results in significantly more time growing and 

shrinking on the plus end than in the control. However, the minus end becomes mostly 

paused with katanin concentrations above 50 nM. As we showed previously, 100 nM tau 

+ 500 nM p60 or 5 µM p60 resulted in depolymerization and severing. These results 

suggest that both katanin and tau can cause microtubules to become more dynamic at 

this tubulin concentration, however, it is highly dependent on the concentration of the 

MAPs in the assays. Overall, the microtubules spend more time growing and shrinking 

on the plus end and more time paused on the plus end, with katanin or a combination of 

katanin and tau. 
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Figure 4.16 Fraction of Time Spent Growing, Shrinking, or Paused. 

Quantification of the fraction of time spent growing, shrinking, or paused. N values are 
as follows: 7 µM tubulin control (N=11), 50 nM p60 (N=4), 500 nM p60 (N=22), 5 µM p60 
(N=23), 5 µM p60 + no ATP (N=10), 25 nM tau (N=22), 25 nM tau + 50 nM p60 (N=13), 
25 nM tau + 500 nM p60 (N=25), 25 nM tau + 5 µM p60 (N=10),100 nM tau (N=29), 100 
nM tau + 50 nM p60 (N=18). 
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4.3 Discussion 

 In this chapter we have confirmed that tubulin concentration affects all of the 

parameters of dynamic instability. An increase in tubulin concentration causes an 

increase in growth rate, growth length, and shrinkage length (Fig. 4.3, 4.4, 4.5). Higher 

tubulin concentrations can result in higher catastrophe and rescue frequencies as well 

(Fig. 4.6, 4.7). Increasing the tubulin concentration causes microtubules to be more 

dynamic and causes the microtubules to spend a larger fraction of time growing and 

shrinking, and less time paused. 

 Adding katanin into dynamic instability assays caused an increase in growth rate 

and length, as well as shrinkage length (Fig. 4.3, 4.4, 4.5). However, katanin had 

different effects on the catastrophe and rescue rates at different tubulin concentrations. 

At 7 µM tubulin, there were very few catastrophes and rescues regardless of the katanin 

concentration (Fig. 4.6). At 10 µM tubulin, there was an increase in catastrophes at the 

plus end and decrease at the minus end (Fig. 4.7). Katanin in assays with 20 µM tubulin 

on the contrary resulted in a decrease in the catastrophe frequency. The rescue 

frequency on average decreased overall for both 10 µM and 20 µM tubulin assays with 

katanin. However, there was not a significant change in the fraction of time spent 

growing and shrinking except at the 7 µM tubulin concentration (Fig. 4.8). At 7 µM, there 

was an increase in fraction of time growing and shrinking with 50 nM katanin, but this 

fraction decreased on both ends above this katanin concentration. 

 Previously, tau has been described as a stabilizing MAP. We found that adding tau 

to severing assays resulted in a decrease in the overall loss of polymer, even at low 

concentrations of tau (Fig. 4.9). This suggests that tau is able to protect microtubules 

from p60. It has been shown previously in dynamic assays with 15 µM tubulin, that tau 

increases growth rates and decreases the catastrophe frequency at concentrations of 
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0.27 µM and above (Levy et al. 2005). We chose to do experiments with tau at lower 

concentrations and found that tau makes microtubules more dynamic. We found that tau 

decreased the growth rate slightly, however, the growth and shrinkage lengths remained 

similar to the control (Fig. 4.11, 4.12, 4.13). There was also an increase in both the 

catastrophe and rescue frequencies at the concentrations used (Fig. 4.14, 4.15) and the 

fraction of time and growing and shrinking was significantly increased with respect to the 

controls (Fig. 4.16).  

 To understand how stabilizing and destabilizing MAPs may work together to 

regulate microtubule dynamics, we performed dynamic instability assays with tau and 

katanin as well. Overall, we observed an increase in dynamics with 50 nM katanin and 

tau, however, as the katanin concentration increased, there were fewer dynamic events 

and less time spent growing and shrinking (4.10, 4.16). 

 

Conclusions 

 Our results are not as conclusive as previous studies with destabilizing MAPs that 

clearly stopped growth off of microtubules completely, or caused more frequent 

catastrophes (Gardner et al. 2011; Montenegro Gouveia et al. 2010). In cells, katanin is 

found in places with dynamic microtubules, especially mitosis and meiosis, and it likely 

plays a part in regulating microtubule dynamics (Vale 1991; Buster, McNally, and 

McNally 2002; K. McNally et al. 2006; K. McNally et al. 2014). There are several reasons 

why we may not have observed a large effect on microtubule dynamics. In chapter 3, we 

demonstrated that katanin severing activity is greatly inhibited by free tubulin. The 

concentrations of tubulin required for inhibition are far below the critical concentrations of 

tubulin (Schiff, Fant, and Horwitz 1979; Shelanski, Gaskin, and Cantor 1973). Therefore, 

it is difficult to test whether the tubulin is causing a decrease in effect. Another option is 
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that p80, katanin p60’s partner protein, could play a role in targeting p60 to microtubules 

for effective regulation. This possibility seems highly probably since it is necessary for 

targeting p60 to the correct locations in cells. In the future it would be interesting to 

further explore how p80 may change p60’s regulation of microtubules.  

4.4 Methods 

4.4.1 Katanin Purification. 

We received the pMAL-c5x-X. laevis p60 from the Heald lab. We used an IPTG inducible 

expression system was used for expression and purification. The plasmid was 

transformed into BL21 Competent E. coli (New England BioLabs). An LB starter culture 

was grown overnight and added to a 500mL culture the next day. This culture was grown 

at 37°C until it reached an OD of 0.8 and then it was induced with 1 mM IPTG. The 

culture was allowed to continue to grow at 16°C for 16 hours. The cells were lysed in 

resuspension buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% glycerol, 

0.25 mM ATP) via sonication. The lysate was incubated with amylose resin (New 

England BioLabs) for 1-2 hours. The lysate/resin mixture was added to the column and 

allowed to enter the column completely. Once excess lysate had passed through the 

column, the column was washed twice with 20 mL of resuspension buffer. Then the 

protein is eluted in elution buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 

10% glycerol, 0.25 mM ATP, 10 mM Maltose). The approximate concentration was 

obtained by a Bradford assay. 

 

4.4.2 Tau Purification 

We purified tau using an IPTG inducible expression system. The plasmid was 
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transformed into BL21 Competent E. coli (New England BioLabs). An LB starter culture 

was grown overnight and added to a 500mL culture the next day. This culture was grown 

at 37°C until it reached an OD of 0.6, and then it was induced with 1 mM IPTG for 4-6 

hours. The cells were lysed in PEM-100 by sonication. The lysates were boiled with 500 

mM NaCl in PEM-100 for 30 minutes and pelleted to remove all precipitated proteins. 

The supernatant, containing tau, was buffer exchanged into PEM-100 and the 

approximate concentrations was obtained by a gel. 

4.4.3 GMPCPP Stabilized Seeds 

To perform dynamic instability in vitro, we require a seed to nucleate microtubule growth 

is a particular location. We made seed from 1:1:10 rhodamine:biotin:unlabeled tubulin 

dimers in PEM-100. We spun down the solution remove aggregates. We polymerized 

tubulin in the presence of 1 mM GMPCPP at 37°C for 30 minutes. Then the microtubules 

were centrifuged again and resuspended in GMPCPP and warm PEM-100. The seeds 

were sheared four times and left at 37°C until they were used.  

4.4.4 Dynamic Instability Assays 

 All assays will be performed in a flow chamber with ethanol cleaned slides and 

coverslips biologically cleaned with an acid wash as previously described (Appendix B.2) 

(Montenegro Gouveia et al. 2010).  

 Similar to the procedure previously used (Montenegro Gouveia et al. 2010), we 

first added 0.2 mg/mL PLL-PEG-Biotin to the chamber and incubated for 5 minutes. 

Next, we washed with PEM-100 and added 1 mg/mL streptavidin for 5 minutes. Then 

0.125 mg/mL(1:400 dilution) of biotinylated rhodamine seeds was flowed into the 

chamber and incubated for 5 minutes. The chamber was blocked for non-specific 

interactions with 1 mg/mL K-casein in PEM-100. Finally, the elongation mix was added 
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(4.7 mM GTP, 0.048 mM DTT, 0.2 mg/mL K-casein, 0.28% methyl cellulose, 14.29 

µg/µL glucose, 0.5 mg/ml glucose oxidase, 0.5 mg/mL catalase) in PEM-100 with tubulin 

dimers at 10 µM, 15 µM, or 20 µM, depending on the experiments. This will be added to 

the chamber right before imaging. 

4.4.5 Data Analysis 

The data was analyzed from kymographs generated in ImageJ using the multiple 

kymograph plugin. From the kymographs properties such as growth rate, and length, 

shrinkage length, catastrophe, and rescue frequency were calculated. 
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CHAPTER 5 

CLOSING REMARKS AND FUTURE DIRECTIONS 

5.1 Closing Remarks 

 Regulation of microtubules is essential in order for microtubules to undergo the 

changes necessary for diverse cellular functions. It has been previously shown that 

katanin is necessary for regulation of microtubules in a variety of organisms because 

when it is mutated some abnormalities that occur are: elongated spindles in meiosis 

(Buster, McNally, and McNally 2002; K. McNally et al. 2006; K. McNally et al. 2014), 

cortical arrays are not organized properly (Nakamura, Ehrhardt, and Hashimoto 2010; Q. 

Zhang et al. 2013), and neuronal development does not proceed properly (Ahmad et al. 

1999; Yu et al. 2008). Despite the characterization of katanin thus far, it is still unclear 

how katanin targets microtubules for severing, and how this severing activity is regulated 

by other factors in the cell.   

 In this dissertation we use in vitro single molecule approaches to further elucidate 

how katanin regulates microtubules in vitro. The information we have gathered in these 

experiments should help inform future studies both in vitro and vivo, so we can better 

elucidate the complex regulatory network of both microtubules and its regulators. 

5.1.1 Katanin’s Regulation of Microtubule Defects. 

 We hypothesized that katanin targeted microtubules with defects based on 

previous theoretical and experimental evidence (Davis et al. 2002; Díaz-Valencia et al. 

2011). We created “high salt” microtubules, which are characterized by fewer 

protofilaments (thinner width, and higher curvature) with more protofilament shifts and 

seam defects. We also made microtubules that were missing the CTTs of tubulin. We 

performed severing assays on both types of microtubules, as well as our “normal” 
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microtubules, Taxol-stabilized microtubules, and analyzed the overall loss of polymer for 

each. We were able to conclude that: (1) Katanin does not have a preference for 

microtubules with seam defects. Further, katanin is not sensitive to the width or 

curvature of the microtubules. (2) Katanin cannot sever microtubules without the CTTs of 

tubulin, however, it is capable of depolymerizing these microtubules in an ATP-

dependent manner. (3) Katanin’s severing and ATPase activity is ATP-concentration 

dependent. The depolymerization activity requires minimal ATP, and is not ATP-

concentration dependent. 

5.1.2 Katanin’s Severing Activity is Inhibited by Tubulin. 

 There has been very little work characterizing katanin’s interactions with other 

cellular components. Previous work has shown that spastin is inhibited by both tubulin 

and the CTTs of tubulin (White et al. 2007; Roll-Mecak and Vale 2008). We 

hypothesized that katanin may also be inhibited by tubulin and tubulin CTTs. In order to 

test this hypothesis, we performed severing experiments with katanin and tubulin as well 

as with the beta and alpha CTTs. We were able to conclude: (1) Katanin is inhibited by 

free tubulin. (2) Katanin recognizing the sequence and not the shape of tubulin. (3) The 

CTTs of beta are more effective than free tubulin at inhibiting severing. Alpha tubulin 

tails are less effective than beta tails. (4) Detyrosinated-alpha tubulin is not as effective 

at inhibiting severing, which suggests possible regulation of severing by tubulin post-

translational modifications. These findings open new directions to explore in terms of 

regulating severing activity. 

5.1.3 Dynamic Microtubule Regulation by Katanin p60 and Tau. 

 Regulation of dynamic microtubules requires both stabilizers and destabilizers in 

vivo. Tau’s regulation of katanin severing activity on stable or dynamic microtubules has 
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yet to be shown in vitro. We performed severing assays with tau and katanin and 

showed that even low concentrations of tau were able to substantially inhibit severing 

activity. We found that katanin’s regulation of dynamics was complicated and not 

conclusive. Katanin made microtubules more dynamic at low concentrations, and 

eliminated most dynamic events at high concentrations. However, we observed no 

severing events by katanin on dynamic microtubules. When katanin and tau were added 

together to dynamic assays, we again observed more dynamics at low concentrations of 

katanin and tau, fewer dynamic events at higher concentrations of the MAPs. We did 

observe depolymerization and severing with 100 nM tau and 500 nM - 5 µM katanin. We 

were able to conclude that tau does regulate severing activity on stable microtubules. 

We also observed that at low concentration of katanin or tau and katanin the 

microtubules were more dynamic, however, further work needs to be done to 

conclusively determine how these MAPs work together to regulate dynamic 

microtubules. 

5.2 Future Directions 

 Using an in vitro system with microtubules characterized by more frequent seam 

defects I have shown that katanin does not prefer to sever this type of defect. However, I 

believe that katanin must have a targeting mechanism. In the future it would be 

interesting to explore further what katanin is targeting. While it could be difficult to create 

other microtubules with defects, such as holes in the lattice, this is a likely target for 

microtubule severing enzymes as it would be a weaker area of the microtubule. We 

could also utilize microtubules with post-translational modifications. There is some 

published evidence that katanin targets microtubules with specific post-translational 

modifications (Sharma et al. 2007; Lacroix et al. 2010; Sudo and Baas 2010). Creating 
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these microtubules and using them in severing assays could indicate whether katanin 

indeed targets post-translation modifications. This could also give further information 

about katanin is regulated in cells. Since most tubulin we purify from pig brains has a 

mixture of alpha and beta isoforms and post-translational modifications (Alexander et al. 

1991), katanin could be targeting modifications and not defects specifically. However, 

this would not account for the more frequent severing at locations where microtubules 

have end-to-end annealed. Future work needs to be done to further differentiate 

katanin’s targeting mechanism on Taxol-stabilized microtubules, and how this would 

translate in vivo. 

 We have also shown that katanin p60 severing activity on Taxol-stabilized 

microtubules is effectively inhibited by low concentrations of free tubulin due to katanin 

preferentially binding to the free tubulin over the microtubule. Of the CTTs we tested, 

beta-tubulin CTT constructs are the best inhibitors of this severing activity, and 

detyrosinated alpha-tubulin CTT constructs are the least effective. However, there are 

many open questions remaining. The first question that needs to be addressed, is how 

katanin can remain functional in cells if it is so sensitive to free tubulin. We have 

suggested several possible explanations that need to be explored further. First, the 

regulatory partner protein p80 could target p60 to microtubules. Since p80 has been 

shown previously to enhance severing activity and is known to be targeted to 

centrosomes, this could be one plausible explanation (K. P. McNally, Bazirgan, and 

McNally 2000). In the future, it is important to further characterize the p60/p80-

microtubule interaction with free tubulin. Other important experiments would be to further 

characterize post-translational modifications of p60 itself, as well as how post-

translational modifications may modify p60’s targeting mechanisms. It is very plausible 

that phosphorylation of katanin could modify its severing activity. It has been shown 
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previously to negatively regulate severing activity in some species of Xenopus and there 

are additional predicted modification sites that have not been confirmed yet (Whitehead, 

Heald, and Wilbur 2012). In addition to phosphorylation of p60, post-translational 

modification of tubulin could also regulate the severing activity. This is especially 

interesting since katanin was not as inhibited as effectively by the detyrosinated tubulin 

tail constructs. It would be interesting to test the katanin’s severing activity on fully 

detyrosinated microtubules in vitro. Since other post-translational modifications have 

been suggested to enhance katanin severing activity (Sharma et al. 2007; Lacroix et al. 

2010; Sudo and Baas 2010), acetylated and polyglutamylated microtubules should also 

be tested individually in severing assays. 

 Our dynamic instability experiments with p60 and tau have showed that both MAPs 

can make microtubules more dynamic, and these dynamics are enhanced at low 

concentrations of both together. However, these experiments have shown that there is 

still uncertainty about how katanin regulates dynamic microtubules. We observed that 

katanin was not able to sever dynamic microtubules. Since the severing activity we 

observe in vitro is robust on Taxol-stabilized microtubules, this was surprising. In the 

dynamic instability assays we used 7 µM- 20 µM tubulin, and we showed in chapter 3 

that katanin was inhibited by free tubulin so this could be one reason we observed this 

phenomenon. Similar experiments with p80 and p60 need to be performed on dynamic 

microtubules to further characterize the interactions of katanin with dynamic 

microtubules. It is likely, that p60 is binding to the free tubulin instead of the microtubules 

and therefore is unable to sever the microtubules. P80 could help target p60 to the 

microtubules and will likely change the severing activity we were observing. Adding tau 

or other MAPs, such as Map4, could also provide additional information about regulation 

of dynamic microtubules. It is also possible that katanin acts as a microtubule 
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depolymerizer in vivo and therefore would not sever the dynamic microtubules. There is 

no direct evidence of microtubules being severing in vivo, the evidence for severing is 

the appearance of many short microtubules (Srayko et al. 2006). If katanin p60 is still 

unable to sever dynamic microtubules with p80 present, its role as a depolymerizer 

would be a very attractive theory. 

 The studies presented in this dissertation have begun to address how katanin 

regulates microtubule dynamics on both stable and dynamic microtubules. Despite the 

progress that we have made towards understanding how katanin targets microtubules, 

there are many questions that remain unanswered. The experiments outlined here would 

further out understanding of how katanin regulates microtubule dynamics, and begin to 

address how stabilizers and destabilizers work together to regulate dynamics in the cell. 
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APPENDIX A 

TABLES OF FIT PARAMETERS 

	  

	  

	  

Table A.1 Fits for Data in Chapter 2 
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Table A.2 Fits for Data in Figure 3.7 
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Microtubules Alone, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 0.998 ± 0.002 τ = 2140 ± 50 s   χ2 = 0.0052 R2 = 0.97 

MTs + Xl-p60, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 2.32 ± 0.03 τ = 0.022 ± 0.001 s I∞ = 43.0 ± 0.4  χ2 = 0.0028 R2 = 0.999 

MTs + GFP-Hu-p60, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 3.7 ± 0.1 τ1 = 30.7 ± 0.7 s I2 = 0.191 ± 0.001 τ2 = 470 ± 40 s χ2 = 0.0065 R2 = 0.997 
	  

Table A.3 Fits for Data in Figure 3.2 
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Association Rate, fit equation: 
!!
" #!" #$( ) = ""#$ #!" #$

$%&' + #!" #$
 

kmax = 0.145 ± 0.008 1/s C1/2 = 50 ± 10 nM χ2 = 0.00025 R2 = 0.91 

First Severing Rate, fit equation: 
!!
" #!" #$( ) = ""#$ #!" #$

$%&' + #!" #$
 

kmax = 0.17 ± 0.05 1/s C1/2 = 300 ± 160 nM χ2 = 0.00051 R2 = 0.89 

Severing Activity Rate, fit equation: 
!!
" #!" #$( ) = ""#$ #!" #$

$%&' + #!" #$
 

kmax = 0.10 ± 0.01 1/s C1/2 = 80 ± 40 nM χ2 = 0.00046 R2 = 0.77 

Total Severing Rate, fit equation: 
!!
" #!" #$( ) = ""#$ #!" #$

$%&' + #!" #$
 

kmax = 0.057 ± 0.006 1/s C1/2 = 130 ± 40 nM χ2 =  0.000047 R2 = 0.93 
Ratio of Severing  Activity Rate to First Severing Rate (average) 
average = 1.0 Standard deviation = 0.2   

Maximum GFP-Katanin Intensity, fit equation: 
!!
" #!" #$( ) = ""#$ #!" #$

$ %+ #!" #$
 

Imax = 1000 ± 600  C* = 80 ± 20 χ2 = 970000 R2 = 0.95 

Table A.4 Fits for Data in Figure 3.4 
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Microtubules + p60, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 0.7 ± 0.1 τ1 = 18 ± 5 s I2 = 0.40 ± 0.06 τ2 = 360 ± 80 s χ2 = 1.1 R2 = 0.69 

Microtubules + p60 + 50 nM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 0.50 ± 0.01 τ = 220 ± 12 s I∞ = 0.52 ± 0.01  χ2 = 0.01 R2 = 0.99 

Microtubules + p60 + 500 nM tubulin, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 1.032 ± 0.004 τ = 4600 ± 300 s   χ2 = 0.018 R2 = 0.75 

Microtubules + p60 + 1 µM tubulin, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 0.979 ± 0.002 τ = 3700 ± 100 s   χ2 = 0.0037 R2 = 0.94 

Microtubules + p60 + 6 µM tubulin, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 0.150 ± 0.005 τ = 190 ± 20 s I∞ = 0.870 ± 0.007  χ2 = 0.0054 R2 = 0.94 

Microtubules + p60 + 10 µM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 0.079  ± 0.005 τ = 130 ± 30 s I∞ = 0.927 ± 0.005  χ2 = 0.0074 R2 = 0.76 

Maximum GFP-Katanin Intensity, fit equation: 
!!
" #!" #$( ) = "% "#$ &

#!" #$
$ %

'

(
)

*

+
,  

I0 = 3400 ± 300 C* = 3100 ± 900 nM χ2 = 350000 R2 = 0.96 
	  

Table A.5 Fits for Data in Figure 3.6 
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Microtubules + p60, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 4800 ± 100 τ1 = 14.2 ± 0.4 s I2 = 900 ± 20 τ2 = 390 ± 30 s χ2 = 140000 R2 = 0.99 

Microtubules + p60 + 50 nM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 180 ± 70 τ1 = 20 ± 1 s I2 = 370 ± 40 τ2 = 210 ± 30 s χ2 = 100000 R2 = 0.98 

Microtubules + p60 + 500 nM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 420 ± 10 τ1 = 27 ± 2 s I2 = 160 ± 10 τ2 = 500 ± 100 s χ2 = 110000 R2 = 0.98 

Microtubules + p60 + 1 µM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 1170 ± 30 τ1 = 17.2 ± 0.7 s I2 = 240 ± 20 τ2 = 140 ± 10 s χ2 = 150000 R2 = 0.994 

Microtubules + p60 + 6 µM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 990 ± 30 τ1 = 12.8 ± 0.5 s I2 = 160 ± 10 τ2 = 87 ± 5 s χ2 = 5000 R2 = 0.995 

Microtubules + p60 + 10 µM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 1000 ± 30 τ1 = 19.6 ± 0.9 s I2 = 80 ± 40 τ2 = 60 ± 10 s χ2 = 4000 R2 = 0.998 

Maximum GFP-Katanin Intensity, fit equation: 
!!
! ""# $%( ) = !" #$% &

""# $%
# &

'

(
)

*

+
, +!-  

τ0 = 1000 ± 30 s C* = 1400 ± 700 nM τ∞ = 70 ± 10 s  χ2 = 320 R2 = 0.98 
	  

Table A.6 Fits for Data in Figure 3.9 
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Microtubules alone, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 0.984 ± 0.002 τ = ∞ s   χ2 = 0.0035 R2 = 0.427 

Microtubules + p60, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 3.5 ± 0.2 τ1 = 28.2 ± 0.8 s I2 = 0.084 ± 0.007 τ2 = 700 ± 200 s χ2 = 0.003 R2 = 0.996 

Microtubules + p60 + 50 nM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 0.52 ± 0.03 τ = 51 ± 2 s I∞ = 0.755 ± 0.001  χ2 = 0.0028 R2 = 0.98 

Microtubules + p60 + 50 nM tubulin denatured tubulin, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 1.031 ± 0.002 τ = 2860 ± 80 s   χ2 = 0.0036 R2 = 0.95 
Microtubules + p60 + 50 nM tubulin denatured subtilisin-treated tubulin,  

fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 3.2 ± 0.2 τ1 = 33 ± 1 s I2 = 0.3 ± 0.01 τ2 = 480 ± 40 s χ2 = 0.0050 R2 = 0.997 
	  

Table A.7 Fits for Data in Figure 3.11 
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Microtubules alone, fit equation: 
!!
" #( ) = "" #! # "( )  

I0 = 0.984 ± 0.002 τ = ∞ s   χ2 = 0.0035 R2 = 0.427 

Microtubules + p60, fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 3.5 ± 0.2 τ1 = 28.2 ± 0.8 s I2 = 0.084 ± 0.007 τ2 = 700 ± 200 s χ2 = 0.003 R2 = 0.996 

Microtubules + p60 + 50 nM tubulin, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 0.52 ± 0.03 τ = 51 ± 2 s I∞ = 0.755 ± 0.001  χ2 = 0.0028 R2 = 0.98 

Microtubules + p60 + 50 nM βCTT-BSA, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I0 = 0.101 ± 0.007 τ = 130 ± 20 s I∞ = 0.877 ± 0.005  χ2 = 0.0032 R2 = 0.85 

Microtubules + p60 + 50 nM αCTT-BSA, fit equation: 
!!
" #( ) = "" #$% ! #

"( )+ "#  

I1 = 0.39 ± 0.01 τ = 86 ± 4 s I∞ = 0.661 ± 0.003  χ2 = 0.0029 R2 = 0.98 
Microtubules + p60 + 50 nM ΔY-αCTT-BSA,  

fit equation: 
!!
" #( ) = "" #$% ! #

""

#
$%

&
'(
+ "&#$% ! #

"&

#
$%

&
'(

 

I1 = 1.8 ± 0.2 τ1 = 26 ± 1 s I2 = 0.646 ± 0.004 τ2 = 1270 ± 40 s χ2 = 0.0018 R2 = 0.995 
	  

Table A.8 Fits for Data in Figure 3.13 
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APPENDIX B 

PROTOCOLS 

B.1 Silanization of Coverslips 

*It is important to clean the racks and glass containers thoroughly before silanization. 
*Do not let anything that is not dry come in contact with the silane. 
*Rinse container 3X with water then 3X with ddH2O for each step. 
 
Clean Coverslips: 
1. Immerse the coverslips in 100% acetone for 1 hour. 
2. Immerse the coverslips in 100% ethanol for 10 minutes. 
3. Rinse 3X in ddH2O for 5 minutes each. 
4. Immerse the coverslips in 0.1M KOH for 15 minutes (prepare just before use). 
5. Rinse 3X in ddH2O for 5 minutes each. 
6. Air Dry Coverslips. 
 
Silanization of Coverslips: 
1. Once cleaned coverslips have dried completely, immerse in 2% DDS 

(dimethyldichlorosilane) for 5 minutes. 
2. Use a funnel to pour the silane solution back into the bottle to reuse.  
3. Immerse the coverslips in 100% ethanol for 5 minutes. 
4. Immerse the coverslips in another 100% ethanol for 5 minutes. 
5. Rinse 3X in ddH2O for 5 minutes each. 
6. Air Dry. 
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B.2 Acid Washed Coverslips 

Use this method of cleaning coverslips for dynamic instability if coating with PLL-PEG-
BIOTIN. It came from (Montenegro Gouveia et al. 2010). 
 
1. Place coverslips in thoroughly cleaned racks and place the racks in the clean glass 

container.  
2. Add Isopropanol to the glass container and cover completely with parafilm. 
3. Sonicate in the water bath sonicator for 20 minutes. 
4. Wash 3Xwith ddH2O for 5 minutes each. 
5. Add 1M KCl and cover the container with parafilm completely. 
6. Sonicate in the water bath sonicator for 20 minutes. 
7. Wash 3X with ddH2O for 5 minutes each.	    
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B.3 Nitrocellulose Coverslips 

*Nitrocellulose coverslips are used for the gliding assays with actin and microtubules. 
These should be made fresh each week, and/or if possible kept in a humidor. 
 

1. Wash a 2 L beaker thoroughly with soap and water. Rinse the beaker 3X with 
water then 3X with ddH2O. 

2. Fill the beaker with ddH2O to about ¾ full. 
3. Add 300 µL of nitrocellulose. Make sure to eject the liquid as fast as possible 

below the surface of the water. 
4. Allow a layer of nitrocellulose film to completely form on the surface of the water. 

This will take 20-30 minutes.  
5. Adhere coverslips to 10 mM plate (like used for bacterial plates) with a drop of 

water. About 7 square coverslips will fit on the surface. 
6. Once the film has formed, place the plate, coverslip side down, on the film and 

quickly turn it over to avoid double layers of nitrocellulose (involves pushing one 
side under the water). 

7. Let the coverslips dry in a covered location. 
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B.4 Tubulin Purification 

Stock Solutions:  PM Buffer (200mL)   PMG Buffer (200mL) 
200mM PIPES  100mL     76mL 
200mM EGTA   2mL     2mL 
100mM MgSO4  2mL     2mL 
Glycerol (from bottle)  -------     116mL 
 
 
    Super PMG (200mL) 
1M PIPES   16mL 
1M MgSO4   2mL 
200mM EGTA   2mL 
13.7M Glycerol  175.2mL 
 
*When brains arrive, bring these items cold room: PM and 10 ultra centrifuge tubes (red 
caps) on ice, kimwipe, gloves, bag for brain junk, funnel, 1L beaker. 
*Make sure the ultra centrifuge and 50.2 Ti rotor are cooling to 2oC.  

 
1X Pellets: 
 
1. Clean pig brains (We usually use 3) and put in pre-tared 1L beaker. 
 Remove meniscus, etc. (use kimwipe to help clean) 
2. Weigh cleaned brains: _______g 
3. Add brain parts into the blender. 
 Add 0.5mL PM buffer per 1g of brain.  Volume of PM: ______mL 
4. Pulse blender until brains are homogenized.  

(~5 seconds/pulse to prevent mixture from heating up) 
5. Pour homogenized brains into ultra centrifuge tubes.  

(Bring over 8-10 to the cold room) 
6. Balance tubes. 
7. Centrifuge at 100,000 xg for 45 minutes at 2oC with 50.2 Ti rotor. 

*If too much brain material, you may need to do a second spin. Leave the 
centrifuge tubes with brains on ice until done with spins. 

8. Pour supernatant into 500mL graduated cylinder.  
*Use pasteur pipette to get all the supernatant. 

 Volume of sup: ________mL 
9. Add same volume of PMG to the supernatant (1:1 PMG:supernatant ratio) 
 *If supernatant volume is greater than 100mL, add ½ volume of sup as super 
PMG 
10. Add GTP to final concentration of 1mM. 
 ______mL of 100mM GTP stock 
11. Cover graduated cylinder with parafilm and mix by inverting. 
12. Put sup into new ultra centrifuge tubes and balance. 
13. Polymerize MTs for 45 minutes at 37oC in water bath. 
14. Set ultra centrifuge to 37oC, place T865 rotor in 37oC incubator to warm up. 
15. Centrifuge at 100,000 xg in T865 rotor for 45 minutes at 37oC. 
 

 (can drop freeze and store at -80oC or continue) 
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2X Pellets: 

 
1. Add PM to pellets using 1/5 volume of original homogenate (1X pellets, step 3) 
 Volume of PM Buffer added: ______mL 
2. Using a thin, pointed spatula, scrape pellet off side of centrifuge tube and into PM 
buffer 
 Lightly shake tube to make sure pellet is loose 
 Quickly dump PM buffer + pellet into 15mL dounce in ice slurry 
 Repeat for each pellet 
3. Homogenize pellets in ice cold dounce until no large chunks seen (will be cloudy) 
 Homogenize on ice every 2-3 minutes, for a total of 30 minutes (avoid excessive 
            bubbling) 
4. Put homogenized tubulin into ultra (T865) centrifuge tubes 
5. Centrifuge 100,000 xg for 30 minutes at 2oC 
6. Pour sup into graduated cylinder and approximate volume 
 Volume of supernatant: ________mL 
7. Add PMG buffer 1:1 with supernatant 
 Add ______mL PMG 
8. Add GTP to final concentration of 1mM 
 Add ______µL 100mM GTP stock 
9. Parafilm cylinder and mix by inverting 
10. Put supernatant into new ultra T865 centrifuge tubes and incubate 45 minutes at 
37oC in water bath 
11. Centrifuge at 37oC for 45 minutes at 100,000 xg 
12. Remove most of sup, leaving a small amount to cover pellets 
13. Drop freeze pellets in liquid nitrogen and store at -80oC 
 

 
High Salt Purification: 

 
1. Quickly thaw 2X pellets in 37oC water bath. 
2. Remove excess supernatant that froze with pellet 
3. Take 2X pellets (should be 2) and homogenize with dounce in 5mL PM buffer for 30 
minutes on ice. Homogenize on ice every 2-3 minutes, for a total of 30 minutes, avoid 
excessive bubbling. 
4. Spin at 100,000 xg at 4oC (T865 rotor) for 30 minutes 
5. Save supernatant and add: 0.5 M PIPES 
     10% DMSO 
     1 mM GTP 
     2 mM EGTA 
     1 mM MgSO4 
6. Incubate at 37oC for 10 minutes. 
7. Spin 20 minutes at 20,000 xg at 37oC (T865 rotor). 
 *Turn on the small ultra centrifuge to cool down. 
8. Using dounce, homogenize pellet in 4mL PEM-100 on ice for 30 minutes 
9. Spin 30 minutes at 100,000 xg at 4oC in the small ultra centrifuge. 
10. Save supernatant as high salt purified tubulin. 
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*Depending on the gel of the purification, the high salt purification may need to be done 
more than once. 
11. Bring tubulin to 5 mg/mL using PEM-100. 
12. Aliquot and drop freeze in liquid nitrogen, store in -80oC. 
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B.5 Tubulin Labeling 

BUFFERS: 
 
5X BRB-80   High pH Cushion   Labeling Buffer 
400 mM PIPES  0.1 M NaHEPES, pH 8.6  0.1 M NaHEPES, pH 
8.6 
5 mM MgCl2   1 mM MgCl2    1 mM MgCl2 
5 mM EGTA   1 mM EGTA    1 mM EGTA 
pH 6.8 with KOH  60% (v/v) glycerol   40% (v/v) glycerol 
 
 
Quench   Low pH Cushion   PEM-100 
2X BRB-80   60% (v/v) glycerol   100 mM Na-PIPES 
100 mM K-Glutamate  in 1X BRB-80    1 mM MgSO4 
40% (v/v) glycerol       1 mM EGTA 

pH 6.8 
 
1. Thaw high salt purified tubulin:  _______mg in ________mL. 
2. Add MgCl2 to 4 mM: __________µL of 1M stock. 
3. Add GTP to 1 mM: ____________µL of 100 mM stock. 
4. Incubate on ice for 5 minutes. 
5. Warm to 37oC in the water bath.  

*Use ultra centrifuge tubes. 
6. Add DMSO to 10% final concentration: _________µL. 
 *Add in 2 steps, mix gently but thoroughly. 
7. Incubate at 37oC (water bath) for 45 minutes. 
8. Warm 15mL high pH cushion in a 25 mL centrifuge tube to 37oC. 
9. Layer MTs onto cushion (with cut 1mL pipette tip). 
10. Spin for 35 minutes in T865 rotor at 53,000 rpm (285,500 xg) at 37oC. 
11. Dissolve 1mg of dye into 50µL DMSO.  
 (We usually use DyLight 650 NHS Ester, Prod #62265, Thermo Scientific). 
12. Warm 3 mL Labeling Buffer to 37oC. 
13. After spin, remove the supernatant above the cushion. 
14. Rinse supernatant-cushion interface 2 times (1mL each) with warm Labeling Buffer. 
15. Remove cushion. 
16. Resuspend pellet in 600µL warm Labeling Buffer using cutoff large pipette tip. 
 *Keep tubulin warm during resuspension. 

*Continue resuspending until no chunks of tubulin are visible. 
17. Add the dye to the tubulin (should be 10-20 fold molar excess of dye to tubulin) 

*Can estimate tubulin concentration by assuming 70% recovery of starting 
tubulin. We usually use all the dye. 

18. Incubate at 37oC for 45 minutes. 
*Gently vortex mixture every 2-3 minutes during labeling reaction. There will be 
bubbles. Try to minimize as much as possible. 

19. Warm 1mL Quench to 37oC and warm 5mL Low pH cushion in 10mL centrifuge tube 
to 37oC. 

20. Add equal volume of Quench to labeling reaction and mix well. 
21. Incubate 5 minutes at 37oC. 
22. Layer labeling reaction onto low pH cushion. 
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23. Centrifuge 35 minutes at 50,000 rpm (225,600 xg) in 50Ti rotor at 37oC. 
24. Warm 3 mL 1x BRB-80 to 37oC, 
25. Remove the supernatant from above the cushion. 
26. Rinse the supernatant-cushion interface 2 times with 1 mL warm 1x BRB-80. 
27. Remove cushion. 
28. Rinse pellet with 1 mL warm 1x BRB-80. 
29. Resuspend pellet in 800µL of ice cold PEM-100 using cutoff large pipette tip. 
30. Transfer resuspended chunks of the pellet to a small ice cold dounce (1-2mL 
volume) in an ice cold water bath. 
31. Resuspend pellet by gentle douncing until suspension is uniform. 
 *Continue douncing every 2-3 minutes for total time of 30 minutes. 
32. Spin depolymerized tubulin for 20 minutes at 71,000 rpm (227,000 xg) in small ultra 

at 4oC. 
33. Transfer supernatant to a new tube and estimate volume: __________µL. 
34. Add:  BRB-80 to 1x:    __________µL of 5x stock 
     MgCl2 to 4 mM: _________µL of 1M stock 
     GTP to 1 mM:    _________µL of 100 mM stock 
35. Incubate on ice for 5 minutes. 
36. Warm to 37oC for 2 minutes. 
37. Add ½ volume of glycerol (33% v/v final) and mix well. 
38. Incubate 45 minutes at 37oC. 
39. Warm 5 mL Low pH cushion in 10 mL centrifuge tube to 37oC. 
40. Layer MTs onto cushion. 
41. Spin 35,000 rpm (110,600 xg) in 50Ti rotor at 37oC for 35 minutes. 
42. Warm 4 mL 1x BRB-80 to 37oC. 
43. After spin, remove supernatant above the cushion. 
44. Rinse the supernatant-cushion interface 2 times with 1 mL 1x BRB-80. 
45. Remove the cushion. 
46. Rinse pellet 2 times with 1 mL 1x BRB-80 to remove residual glycerol. 
47. Resuspend pellet in 300µL ice cold PEM-100 using cut large pipette tip. 
 *Pellet should resuspend easily. 
48. Transfer to dounce and homogenize in ice water slurry for 20-30 minutes. 
49. Transfer to small ultra centrifuge tubes. 
50. Spin for 15 minutes at 144,400 xg in small ultra at 4oC. 
51. Recover supernatant and bring to 5 mg/mL final concentration. 
52. Aliquot and drop freeze in LN2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

188	  

Calculate Protein Concentration:  
 
                  [A280 - (Amax x CF)]    
Protein Concentration (M) =  ____________________________  x  dilution factor 

εprotein 

 
εtubulin @ 280nm  = 115,000 M-1 cm-1 

CF = A280 of fluorophore / Amax of fluorophore 
 
Calculate Degree of Labeling: 
 
              Amax of labeled protein x dilution factor 
Moles dye per mole protein =    ______________________________________________________________ 
         εfluor x protein concentration (M) 
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B.6 SF9 Katanin Purification 

Notes:  
*Use 10 % protease-free sucrose in the whole process to stabilize the protein.  
*Before elution use cheap ATP from Fisher, but for elution, buffer exchange and assays 
use ATP for enzyme dynamics analysis from calbiochem.  
*There are two severing buffers. Buffer I is for buffer exchange only, Buffer II is for scope 
or pellet assays.  
 
Resuspension Buffer I (make up at least 600 mL): 
50   mM  Tris 
250 mM  NaCl 
5     mM  MgCl2 
10   %  Sucrose 
20   mM  Imidazole 
50	  	  	  	  µM	   ATP*	  
1     mM PMSF* 
7     mM bME* 
 
* pH to around 7.0 using HCL before adding ATP, PMSF, bME. Add ddH2O to 600 ml.  
*Add just before use to 90 mL of Resuspension buffer to make it complete. 
 
Resuspension Buffer II/Severing Buffer (used for imaging): 
20   mM Hepes 
100 mM NaCl 
3     mM  MgCl2 
10   %  Sucrose 
 
*pH to 7.0 
 
1. Pellet cells at 5000 rpm for 15 min at 4oC. 
2. Resuspend cells in 20 mL Resuspension Buffer (+ATP 50 µM + bME + PMSF). For 

500 mL culture make 600 mL RB. 
3. Homogenize cells using a french press- three passes. (Bring to Tom Maresca’s lab: 

pipette gun, 10 ml pipette, isopropanol, Resuspended cells, Buffer +ATP, Parafilm, 
ddH2O, paper towels.) Centrifuge at 30,000 xg for 45 minutes at 4 oC. 

4. Separate the super and add washed Ni+ Agarose beads. Incubate for 2 hrs at 4 oC 
with rocking.  

5. Pellet beads.  
6. Prepare Wash Buffer (100 mL RB+ ATP 200 µM +50 µL bME). Wash bound beads 

2x with 20 mM Imidazole and 5x with 40 mM Imidazole, for the last wash transfer to 
a column.  

7. Make Elution Buffer – 10 ml (Add Imidazole to final concentration of 0.5 M + 9 ml RB 
+ 5 µL bME + 100 µL PMSF + 7 µL ATP from Calbiochem.) 

8. (In column) Elute the protein with 0.5 M EB (0.5 ml-1 ml fractions, ~3 elutions). 
Incubate 5-10 min. before the first elution at 4 oC.  

9. Do a dot blot and pool elutions with protein.  
10. Buffer exchange eluted protein fraction into severing buffer I (20 mM Hepes, PH7, 

300 mM NaCl, 3 mM MgCl2, 5 mM DTT, 50 µM ATP, 10 % sucrose) in buffer 
exchange columns. Minimize the volume to about 50 µL. Check the concentration. 	    
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B.7 Bacterial Katanin Purification 

Resuspension Buffer:        Katanin Activity Buffer (KAB): 
20 mM     Hepes pH 7.7     20 mM   Hepes pH 7.7 
250 mM   NaCl       2   mM   MgCl2 
10%         glycerol      10 %      glycerol 
*0.5 mM   BME      
*0.25 mM Mg*ATP (pH 7!) 
*1 mM      PMSF 
*Protease inhibitors:  
 2 mg/mL Aprotinin  
 2 mg/mL Pepstatin  
 2 mg/mL Leupeptin      
* Add Day of to 50 mL of Resuspension buffer 
 
 
Day 1: 
7. Transform p60 into BL21 cells. Plate on Amp plates. 
 
 
Day 2: 
7. Pick 3 colonies and start 3 overnight start cultures with Ampicillin and   

Chloramphenicol. 
8. Make up 3x 400 mL of LB. 
 1 L LB:  
  10 g NaCl 
  10 g  tryptone 
  5 g yeast extract 
 
 
Day 3: 
1. Add Ampicillin and Chloramphenicol to flasks of LB. Antibiotics are made up for a 
1:1000 dilution into cultures. 
2. Add starter cultures to flasks of LB. Should be 1:100 dilution so for 1 L add 10 mL of 
starter culture. 
3. Grow cultures in shaking incubator at 37 C until it reaches an O.D. of 0.8. This usually   
takes about 6 hours. 
4. Add 1 mM IPTG (1 M stock) to the culture. Bring the culture to Tom Maresca’s Lab 
and grow in the shaker at 16 C for 15-18 hours. Lab code: 7995 
 
Day 4: 
1. Pellet bacteria at 5,000 rpm for 15 min. DO NOT FREEZE.  
2. Make up 50ml of resuspension buffer. 
  *Remember to add Protease inhibitors as well. 
1. Resuspend pellets in 15 ml of Resuspension Buffer.  
2. Lyse cells using the sonicator every 20 seconds for 20 seconds for a total of 3 

minutes. 
3. Transfer sonicated lysate to red capped centrifuge tube. 
4. Centrifuge in T865 at 13,000 rpm for 30 minutes. 
5. Incubate lysate with ~1 ml bed volume of amylose resin for ~1.5-2 hours at 4C. 
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  *Wash resin before in column/resuspension buffer 3x. 2x with water, 1x  
   with resuspension buffer at 3,000 RPM for 5 minutes each. 
6. Pour lysate into column and wash with ~20 mL of resuspension buffer. 
7. Elute with 10 mM Maltose in resuspension buffer (50 µL of 1 M maltose to 5mL of 
completed resuspension buffer). 
8. Perform bradford to get concentration.	  



	  

192	  

B.8 Tau Purification 

Day 1:  
Transform Tau into Rosetta cells. 
 
Day 2:  
Set up overnight culture. 
 
1. Take plate out of 37°C incubator, parafilm and store in the deli case fridge. 
2. Set up 5 mL starter culture (5 mL LB + 5 µL AMP + colony from plate). 
3. Leave in 37°C incubator overnight to grow. 
4. Make 400 mL 2xYT in 1 L flask and autoclave. 
 
Day 3:  
Start growing culture and Induce.  
 
1. Add 5 mL starter culture to 400 mL of 2xYT in 1L Flask. 
2. Grow culture until it reaches an O.D. of 0.6-1.0 
3. Take gel sample- “Uninduced sample” 
4. Add 1 M IPTG (final concentration: 1 mM). 
5. Incubate for 3-4 hours at 37°C. 
6. Take gel sample- “Induced sample”. 
11. Centrifuge cultures in 500 mL centrifuge bottles at 5,0000 RPM for 15 minutes, 

4°C. 
12. Resuspend pellet in 5-10 mL of PEM-100 + 1 mM PMSF. The pellet can be stored 

in 50mL conical in the freezer at this point. 
 
Day 4:  
Purification.  
 
1.    Thaw pellets on ice. 
2.    Sonicate 3x for 1 minute each at power level 3, rest for 1 minute. 
3.    Centrifuge in tabletop centrifuge at top speed for 10 minutes.  
4.    Place supernatant in a new microcentrifuge tube. 
5.    Take “lysed” sample for gel. 
6.    Add 500 mM NaCl to supernatants. 
1.  Boil samples for 20 minutes in heat block by gel station. Poke holes in tops of the 

tubes so they don’t “pop”. 
2.   Take “boiled” sample for gel. 
3.   Centrifuge samples at 13,000 RPM in the tabletop centrifuge for 30 minutes at 4°C. 
10. Take sample of supernatant for gel. 
11.  Buffer exchange samples with NAP-5 column to remove salt. (May need to 

concentrate with spin column after.) 
12.  Freeze in aliquots in -80°C. 
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Day 5:  
Gels for concentration and to check purity. 

(A) Run gels of samples from purification steps. 
(B) Run gel with BSA standards to get concentration of Tau. 

 
Experiments to test protein: 

(A) Test whether Tau bundles microtubules and over what concentration range. 
(B) Pelleting assays with microtubules to make sure that Tau is binding to 

microtubules as it should.	    
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B.9 Taxol-stabilized Microtubule Polymerization 

1. Mix labeled tubulin with unlabeled tubulin. (I have been using microtubules that 
are 20% labeled). 

2. Centrifuge at 90,000 rpm for 10 minutes at 4°C.  

3. Transfer supernatant to 1.5mL tube.  

4. Add GTP (stock is at 100 mM) to 1 mM.  

5. Incubate at 37°C in the incubator for 20 minutes.  

6. Add 50	  µM Taxol (stock is at 2 mM).	  

7. Incubate at 37°C in the incubator for 20 minutes.  

8. Centrifuge 10 minutes in tabletop centrifuge at 14,000 rpm, room temp.  

9. Resuspend pellet in original volume of PEM + 50 µM Taxol. 

 
We usually use the microtubules at a 1:100 dilution. 
 
1:100 Microtubule Dilution 
 

98 µL PEM-100 
1 µL 2 mM Taxol 
1 µL 5mg/mL polymerized microtubules 
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B.10 High Salt Microtubule Polymerization 

1. Mix labeled tubulin with unlabeled tubulin. (I have been using microtubules that 
are 20% labeled). 

2. Centrifuge at 90,000 rpm for 10 minutes at 4°C.  

3. Transfer supernatant to 1.5mL tube.  

4. Add GTP (stock is at 100 mM) to 1 mM and NaCl to 580 mM (stock is at 5M).  

5. Incubate at 37°C in the incubator for 20 minutes.  

6. Add 50	  µM Taxol (stock is at 2 mM).	  

7. Incubate at 37°C in the incubator for 20 minutes.  

8. Centrifuge 10 minutes in tabletop centrifuge at 14,000 rpm, room temp.  

9. Resuspend pellet in original volume of PEM + 50 µM Taxol. 
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B.11 Subtilisin-Treated Taxol-stabilized Microtubule Polymerization 

	  
1. Mix labeled tubulin with unlabeled tubulin. (I have been using microtubules that 

are 20% labeled). 
2. Centrifuge at 90,000 rpm for 10 minutes at 4°C.  

3. Transfer supernatant to 1.5mL tube.  

4. Add GTP (stock is at 100 mM) to 1 mM.  

5. Incubate at 37°C in the incubator for 20 minutes.  

6. Add 50	  µM Taxol (stock is at 2 mM).	  

7. Incubate at 37°C in the incubator for 20 minutes.  

8. Add 4 mg/mL subtilisin. 

9. Incubate at 37°C for 45 minutes. 

10. Add 4 mM PMSF. 

11. Incubate at room temperature for 15 minutes. 

12. Centrifuge for 30 minutes, 27°C, at 16,000 xg. 

13. Resuspend pellet in original volume of PEM + 50 µM Taxol + 1 mM GTP. 

 

*It is best to use these microtubules within a few days of making them. 
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B.12 Severing Assay 

* Chambers are assembled on glass slides that have been washed with 70% ethanol. 
Use doublestick tape to make a chamber with a silanized coverslip. 
 
1. Flow in 2% anti-tubulin antibody (0.4 µL YL1/2 tubulin antibody + 9.6 µL PEM-100. 
Incubate 5 minutes. 
2. Flow in 5% F-127. Incubate for 5 minutes. 
3. Flow in 1:100 MTs. Incubate 5-7 minutes. 
4. Flow in KAB-rxn #1 buffer. 
5. Image 3 minutes. 
6. Flow in Katanin in KAB-rxn buffer #2 (1:10 katanin:rxn buffer).	  	  
	  
KAB-rxn Buffer 1: 
2 µL       0.5% F-127 
1 µL     DTT (1 M stock) 
1 µL   BSA (100 mg/mL stock) 
0.5 µL   Taxol (2 mM stock) 
0.8 µL    ATP (50 mM stock)  
1 µL      glucose (300 mg/mL stock) 
1 µL  deoxy 
12.7 µL KAB 
20 µL TOTAL	  	  
	  
KAB-rxn Buffer 2: 
2 µL       0.5% F-127 
1 µL     DTT (1 M stock) 
1 µL   BSA (100 mg/mL stock) 
0.5 µL   Taxol (2 mM stock) 
0.8 µL    ATP (50 mM stock)  
1 µL      glucose (300 mg/mL stock) 
1 µL  deoxy 
2 µL  Katanin (10x stock) 
10.7 µL KAB 
20 µL TOTAL 	    
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B.13 Dynamic Instability Assay 

Microtubule seeds: 
43 µL unlabeled tubulin 5mg/mL 
3 µL rhodamine tubulin (resuspended in 4 µL Pem-100 initially) 
4 µL biotin tubulin (resuspended in 4 µL of PEM-100 initially) 
 
1. Centrifuge in microultra for 10 min. at 4C, 90,000 RPM 
2. Take off supernatant and put in a new 1.5mL centrifuge tube and add 5uL of 10mM 

GMPCPP. 
3. Incubate at 37°C for 30 minutes. 
4. Pellet seeds in tabletop centrifuge at 14,000 RPM for 15 minutes at 35°C. 
5. Remove supernatant and resuspend in warm GMPCPP + PEM-100 (heat in 37°C 

water bath during previous step). (45uL PEM-100 + 5uL GMPCPP) 
6. Shear seeds 4 times with hamilton syringe. 
7. Store at 37C until ready to use. 
 
Elongation Mix: -start after seeds are ready 
29 µL of 5 mg/mL unlabeled tubulin  
1L 5 mg/mL rhodamine tubulin 
 
1. Centrifuge at 90,000 RPM for 10 minutes, 4°C. 
2. Transfer to a 1.5 mL tube because ultra tubes sink to the bottom of the ice bucket! 
 
Lasts about 4-5 hours. 
 
Chambers: 
-Use acid washed coverslips. 
 
Experiments: 
3. Flow in 7 µL of 0.2 mg/mL PLL-PEG-Biotin. Incubate for 5 minutes. 
4. Wash chamber with PEM-100. 
5. Flow in 7 µL 1 mg/mL streptavidin. 
6. Add 7 µl of 1:400 seeds. Shear 2x before using. Incubate for 5 minutes. 
7. Flow in 7 µL 1 mg/mL κ-casein. 
8. Flow in elongation 1 (without any MAPs). Image. 
9. Flow in elongation 2 (with MAPs). Image. 
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Example Elongation:  
_____  tubulin (   µM) 
_____  PEM-100 
1µL      0.1M GTP 
1µL   1M DTT 
0.4µL   10mg/mL K-casein 
0.5µL   2M KCl 
3µL      2% methyl cellulose 
1µL      300 mg/mL glucose 
1µL      deoxy 
0.42µL 0.1M ATP 
0.5µL   0.1M PC 
1.75µL 1 mg/mL CPK 
_____  katanin 
_____  MAP 
21ul total 
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B.14 ATPase Assays 

	  
ATPase mix for 25 reactions: 
10 µL  100 mM ATP (pH 7.0) 
5 µL   100 mM PEP 
10 µL   LDH/PK (stock from bottle) 
1 µL   100 mM NADH 
224 µL  KAB 
250 µL TOTAL 
 
 

1. Make up a 2x solution of katanin + MTs in KAB. 
 

2. Add 10 µL of the katanin solution to each well of the plate. Make sure to have a 
20 µL buffer control and a 10 µL buffer control to test the ATPase mix is working 
properly. 

 
3. Make up the ATPase mix with everything except for the NADH.  

 
4. Incubate the plate in the plate reader at 30°C and the ATPase mix at 30°C as 

well. 
 

5. Add the NADH to the ATPase mix. 
 

6. Use a repeat pipetter to put 10 µL of the ATPase mix into each of the wells. 
 

7. Start reading the plate at 340 nm every 5 seconds. 
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B.15 Actin/MT Gliding Assay 

Buffers: 
 
Actin Buffer (10x):       Myosin Buffer (10x): 
250 mM Imidazole     3 M        KCL 
250 mM KCl      250 mM Imidazole 
40 mM   MgCl2      10 mM   EGTA 
10 mM   EGTA      40 mM   MgCl2 
*pH to 7.4       * Add 1mM DTT to 1x before experiments 
 
1:100 MTs:      Chamber Wash: 
1 µL   MTs      45 µL  PEM-100 
1 µL   2mM Taxol    2.5 µL BSA (100 mg/mL stock) 
98 µL PEM-100     1.5 µL Taxol (2 mM stock) 
       1 µL    DTT (1 M stock) 
 
1. Make a 10 µL flow chamber on nitrocellulose coated coverslips. 
2. Flow in 10 µL of 1:9 kinesin:myosin mixture. Incubate for 5 minutes. 
3. Flow in 10 µL wash buffer: 45 µL 1x Actin Buffer + 2.5 mg/mL BSA (100 mg/mL) + 1.5 

µL Taxol (2 mM stock) + 1 µL DTT (1 M stock). 
4. Flow in 10 µL of microtubules. 
5. Flow in 10 µL wash buffer: 45 µL 1x Actin Buffer + 2.5 mg/mL BSA (100 mg/mL) + 1.5 

µL Taxol (2 mM stock) + 1 µL DTT (1 M stock). 
6. Flow in 10 µL of actin. 
7. Flow in motility mix: 
 
Motility Mix: 
3 µL      3% methyl cellulose 
1 µL      DTT (1 M stock) 
0.5 µL   BSA (10 mg/mL stock) 
1 µL      glucose (300 mg/mL stock) 
0.5 µL   Taxol (2 mM stock) 
0.4 µL    ATP (100 mM stock) 
0.5 µL    PC (100 mM stock) 
1.75 µL  CPK (1 mg/mL stock) 
1 µL    Deoxy 
10.35 µL Actin Buffer 
20 µL TOTAL 
 
8. Image- 500 msec exposure, every 5 seconds for 5 minutes. 
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