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ABSTRACT 

COMPLEX EFFECTS OF UNGULATE BROWSERS ON TREE RECRUITMENT AND 

HERBACEOUS LAYERS IN NEW ENGLAND TEMPERATE FORESTS 

SEPTEMBER 2015 

EDWARD K. FAISON, B.A., CONNECTICUT COLLEGE 

M.S., UNIVERSITY OF VERMONT; M.F.S., HARVARD UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Dr. Stephen DeStefano and Dr. David Foster 

Browsing by ungulates is a leading biotic disturbance in northern forest ecosystems and 

an important determinant of habitat, biodiversity, and ecosystem services.  A large body of work 

has revealed that white-tailed deer (Odocoileus virginianus) at high densities alter forest 

understories in strong and predictable ways; however, less is known about how lower densities of 

deer and the combined effects of  multiple herbivores influence forest understory vegetation, 

particularly in stands following canopy disturbance.  Using fenced exclosures, remote cameras 

and other field observations, I explored the foraging response and browsing effects of low 

densities of deer and moose (Alces alces) on tree recruitment and herbaceous layers (low shrubs, 

herbs, and small trees) in stands disturbed by logging and simulated Hemlock Woolly Adelgid 

(HWA) attack over 4-7 years in Massachusetts, USA.  I also examined the effects of 15 years of 

deer exclusion on an intact hardwood forest in southwestern Connecticut exposed to decades of 

high densities of deer. 

In Massachusetts, large variations in tree densities developed over time in different stand 

disturbance types (simulated HWA attack, logging), altering the foraging response of herbivores 

and mitigating browsing effects.  Still, moose + deer browsing delayed tree recruitment by about 

three years in logged stands, whereas deer alone had relatively minor effects.  Delayed tree 

recruitment by browsers corresponded with reduced abundance of forest indicator herbs and 
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shrubs and greater abundance of open/disturbance indicator plant species in plots browsed by 

deer + moose.  Richness of native herbs and low woody plants also increased with the addition of 

browsers.  Among major tree taxa, pin cherry (Prunus pensylvanica) and oak (Quercus spp.) 

recruitment declined with browsing.  In the Connecticut forest, sedge and exotic species 

abundance and richness generally declined with deer exclusion, whereas forb abundance 

increased.  The direction in which native species richness was altered by deer exclusion depended 

on the plant functional group (i.e., shrub richness increased, but herb richness declined).  My 

results revealed complex effects of herbivory over time on forest understories, highlighting the 

importance of examining ungulate-forest interactions across a range of ungulate densities and 

forest conditions and utilizing ≥3 browser treatments whenever feasible. 
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INTRODUCTION 

  

Large herbivores are leading biotic drivers of forest dynamics worldwide and therefore 

important determinants of habitat, biodiversity, and a host of ecosystem services (Oliver and 

Larson 1996, Diaz et al. 2007, Hegland et al. 2013).  Numerous recolonizations of previously 

extirpated or depleted forest ungulates occurred in the 20th century as a result of conservation 

efforts and changes in land use (Foster et al. 2002, Soule 2003, Kuijper et al. 2010).  A large body 

of work subsequently revealed that ungulates (primarily cervids) dramatically reduce the density, 

height, and species richness of regenerating trees and alter species composition toward browse 

tolerant and unpalatable species (Russell et al. 2001, Cote et al. 2004, Gill 2006, Nuttle et al. 

2013).  Although most ungulate-vegetation research has focused on tree regeneration (Russell et 

al. 2001, Royo et al. 2010), deer herbivory has also been reported to reduce forb abundance, 

height, and reproductive capacity and increase graminoid, fern, and exotic species abundance 

(Cote et al. 2004, Eschtruth and Battles 2009, Rooney 2009, Frerker et al. 2014, Nuttle et al. 

2014).   As a result of this work, it is generalized by many that unregulated (by top predators or 

hunters) cervid browsing has caused widespread tree recruitment failure and forest degradation 

across Eastern North America (e.g., Soule 2003, Estes et al. 2011). 

Most of what is known about ungulate-tree regeneration dynamics comes from 

landscapes with elevated cervid densities (>8.5 deer km-2 or ≥1.5 moose km-2).  The extent to 

which lower cervid densities (i.e., ≤6-7 deer km-2  and <1 moose km-2) – which characterize large 

parts of North America’s Eastern Deciduous Forests (Adams et al. 2009, Bergeron et al. 2011, 

Wattles and DeStefano 2011) – alter tree regeneration and herbaceous layer (herb, shrub, and 

small trees) communities is less understood and may differ from areas with high densities of 

cervids (Royo et al. 2010, Bergeron et al. 2011).  In addition to the paucity of studies capturing 

the lower end of cervid density gradients, limited attention has been paid to the functional 
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response (the rate of consumption in relation to food availability) of cervids (Schmitz and Sinclair 

1997).  Understanding the functional response of ungulates is important because disturbance (e.g., 

logging, insect outbreaks, and blowdowns) – and the different stand structures, understory 

conditions, and forage densities that result – can, in some instances, override “top down” control 

by herbivores (Hunter and Price 1992, McLaren and Peterson 1994). 

Although much of the eastern temperate forest of North America contains a single 

ungulate species – white-tailed deer (Odocoileus virginianus) – in northern regions moose (Alces 

alces) and white-tailed deer overlap, particularly in recent decades when moose recolonized much 

of their former southern range (Boer 1997, Faison et al. 2010).  Few studies have examined the 

combined effects of multiple ungulate species on forest communities (Ritchie and Olff 1999, 

Wisdom et al. 2006).  Two or more herbivore species may either compound (additive) or oppose 

(compensatory) the effects of a single herbivore species on species composition, succession, or 

diversity (Ritchie and Olff 1999, Hester et al. 2006). The extent to which a recolonizing herbivore 

will join an existing herbivore to have additive or compensatory effects is often difficult to 

predict because the addition of the former can initiate diet shifts in the latter (Hester et al. 2006).   

In the late 20th century moose recolonized much of their former southern range in 

Massachusetts and northern Connecticut, creating a two-ungulate system with deer for the first 

time in almost two centuries in this region (Faison et al. 2010).  Almost nothing is known about 

how low densities of moose (<0.5 km-2) interact with other browsers to shape the structure and 

composition of temperate forests.   Deer populations also increased sharply during the 20th 

century after deer were extirpated from large parts of the region in the 19th century (Foster et al. 

2002).  Today, deer densities are low to moderate in Central Massachusetts (~4.2 km -2; 

McDonald et al. 2007), but reach much higher densities in southwestern CT (≥21-24 km-2).  

The recent arrival of moose in southern New England forests coincided with the arrival of 

Hemlock Woolly Adelgid (HWA) into Massachusetts in 1989, which has caused significant 
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mortality to eastern hemlock (Tsuga canadensis; Orwig et al. 2012).  However, the leading forest 

disturbance (not converting forest to a non-forest cover) in the region is timber harvesting, 

predominantly low intensity selective harvesting; while moderately intensive shelterwood and 

intensive patch clear cuts are part of state and private forest management plans (Kittredge et al. 

2003).  Forest ungulates are drawn to disturbed openings, which typically undergo rapid change 

in the herbaceous layer in the first several years after disturbance; thus herbivores frequently have 

strong interactions with vegetation in these environments (Oliver and Larson 1996, Eschtruth and 

Battles 2008, Kuijper et al. 2009, Royo et al. 2010).   

The potential interplay of these novel dynamics combined with the aforementioned 

knowledge gaps in ungulate-forest studies prompted me to explore the following research 

questions for this dissertation: (1) how does variation in forest disturbance (HWA and logging), 

stand structure, and accompanying food supply influence the functional response of two browsers 

over time (Ch. 1)? (2) how do two generalist browsers occurring at low densities influence the 

composition, succession, and diversity of the herbaceous layer in recent patch cut timber harvests 

(Ch. 2)? (3) how do two generalist browsers occurring at low densities influence tree recruitment 

density, richness, and composition during the first several years following canopy removal in 

patch cut harvests (Ch. 3); and (4) how has long-term exclusion of deer in a landscape of high 

deer densities influenced the composition, diversity, and abundance of native and exotic species 

in a suburban hardwood forest (Ch. 4)? 
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CHAPTER 1 

FUNCTIONAL RESPONSE OF UNGULATES IN DISTURBED HEMLOCK FORESTS 

 

1.1 Abstract 

Trophic cascades in predator depleted North American landscapes are believed to be 

causing widespread tree recruitment failures.  However, disturbance and variations in ungulate 

densities are a source of heterogeneity that can buffer ecosystems against herbivory.  Little is 

known about the functional response (the rate of consumption in relation to food availability) of 

ungulates in northern temperate forests, and therefore how “top down” control of vegetation may 

vary within landscapes composed of different disturbance types, intensities, and timing.  I used an 

existing experiment begun in 2005, which simulated severe hemlock woolly adelgid (Adelges 

tsugae) infestation and intensive logging of intact eastern hemlock (Tsuga canadensis) forest, to 

examine the functional response of combined moose (Alces alces) and white-tailed deer 

(Odocoileus virginianus) foraging across contrasting stand structures resulting from different 

disturbances.  I sampled and compared woody regeneration among two disturbance treatments 

(logged and simulated insect attack) and two intact controls (hemlock and hardwood forest) in 

2008 and again in 2012.  I then used Akaike’s Information Criterion (AIC) model selection to 

compare the three major functional response models (Type I, II, and III) of ungulate browsing in 

relation to forage density.  I also examined relative intensity of use of the different stand types by 

comparing pellet group density and remote camera images.  In 2008, total and proportional 

browse consumption (and use) increased with stem density, and peaked in logged plots, revealing 

a Type I (linear) functional response and density-dependent browsing by ungulates.  In 2012, 

stem densities were greatest in girdled plots, but proportional browse consumption (and use) was 

highest at intermediate stem densities in logged plots, exhibiting a Type III (sigmoidal) functional 

response.  Browsing was therefore density dependent at low to moderate stem densities and 
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inverse density dependent at moderate to high stem densities.  My results suggest that the 

functional response of ungulates across the different stand types changed over time, revealing 

shifting top down control by herbivores at different stages of stand recovery from disturbance.  It 

is important for forest managers to understand that cervids have complex, dynamic, and context 

dependent impacts on woody plant regeneration in eastern forests.   

 

1.2 Introduction 

Trophic cascades (i.e., severe herbivore consumption) in predator depleted North 

American forests are hypothesized to be a dominant ecological force leading to recruitment 

failures by unregulated ungulates (Schmitz and Sinclair 1997, Estes et al. 2011).  On the other 

hand, system variability and heterogeneity is believed to buffer terrestrial ecosystems against 

severe trophic cascades (Strong 1992).  Canopy disturbance (e.g., logging, insect outbreaks, 

windstorms, and fire) represent a key source of spatial and temporal heterogeneity in temperate 

forest ecosystems (Oliver and Larson 1996); variations in ungulate densities represent another 

source of variation (Adams et al. 2009, Royo et al. 2010).  Disturbances, in turn, play a critical 

role in determining density and distribution of ungulates and their impacts on vegetation at 

various spatial scales (Struhsaker et al. 1996, Peek 1997, Geist 1998, Persson et al. 2005, Kuijper 

et al. 2009). Hence, the extent to which regenerating vegetation is controlled from the top down 

(by consumers such as ungulates) or from the bottom up (i.e., by abiotic resources) should vary 

and depend on the timing, type, and intensity of disturbance (Pastor et al. 1988, Hunter and Price 

1992, McLaren and Peterson 1994, Sinclair and Krebs 2002).   

Despite the inherent complexities of large herbivore control of vegetation in 

heterogeneous landscapes, limited attention has been paid to the functional response (the rate of 

consumption in relation to food availability) of cervids under different forest stand and 

disturbance conditions (Schmitz and Sinclair 1997).  Predation theory identifies three major 
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functional response models: Type I, II, and III.  A Type I response involves a linear increase in 

consumption rate with increasing prey density and therefore neither density dependent nor inverse 

density dependent predation (Fig. 1).  A Type II response involves an initial increase in 

consumption with prey density followed by a decelerating plateau at higher prey densities, which 

occurs because of satiation and limitations caused by handling time (i.e., searching, pursuing, and 

consuming; Sinclair and Krebs 2002; Begon et al. 2006).  A Type II response therefore shows 

inverse density dependence of prey to predators and therefore bottom up control over prey (Fig. 

1).   A Type III response occurs when predators avoid prey at low densities, consume prey at a 

greater than linear rate at intermediate food densities, and finally reach a plateau of consumption 

akin to the Type II response at high prey densities (Sinclair and Krebs 2002; Begon et al. 2006).  

This model shows initial density dependence or top down control by predators followed by 

bottom up control at higher prey densities (Fig. 1; Sinclair and Krebs 2002). 

In northeastern temperate forests, an exotic forest insect, the hemlock woolly adelgid 

(Adelges tsugae; HWA), is causing significant mortality to eastern hemlock (Tsuga canadensis), 

resulting in stands of young deciduous (predominantly Betula lenta, but also Acer rubrum, 

Prunus spp., Pinus strobus) trees regenerating beneath the dying hemlocks (Orwig et al. 1998, 

2012).  Many landowners in southern New England have responded to this spreading infestation 

by cutting their forests, either pre-emptively or as the trees die (Orwig et al. 2012).  The arrival of 

HWA into Massachusetts in 1989 coincided with increasing white-tailed deer (Odocoileus 

virginianus) densities in many parts of the state, and the recolonization of moose (Alces alces) 

after an almost 200-year absence (Foster et al. 2002, Faison et al. 2010, Wattles and DeStefano 

2011).  The potential interplay of these changing conditions prompted us to assess what effect, if 

any, there would be on the functional response of two forest ungulates to their food supply.  In 

other words, to what extent do spatial and temporal variations in stand structure and understory 

conditions influence the relative importance of top down and bottom up control?  To address this 
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question, I systematically examined the three major functional response models (Type I, II, and 

III) across logged, (simulated) insect killed, and intact stands over time in order to better 

understand the relationships between herbivores and woody plant regeneration across a range of 

stand structures. 

 

1.3 Materials and Methods 

The study was conducted at the Harvard Forest in north-central Massachusetts, (42.478 to 

42.488 N, 72.218 to 72.228 W, 215–300 m a.s.l.) in the white pine-hemlock-hardwoods forest 

region at the transition between maple-birch-beech (Fagus grandifolia) forests to the north and 

oak (Quercus spp.)-red maple-white pine forests to the south (Thompson et al. 2013).  Exotic 

forest insects and pathogens including HWA, beech bark disease (Cryptococcus fagisuga and 

Nectria spp.), chestnut blight (Cryphonectria parasitica), and gypsy moths (Lymantria dispar), 

timber harvesting, and meteorological events (ice and windstorms) are the prevalent disturbances 

in the region (Foster et al. 2004).  Central Massachusetts is close to the southern range limit for 

moose in eastern North America; moose range as far south as the mixed coniferous and deciduous 

forests of the elevated plateaus of northern Connecticut (Wattles and DeStefano 2011). In central 

Massachusetts, moose densities are estimated to be about 0.2 km-2 and white-tailed deer densities 

about 4-6 km-2 (McDonald et al. 2007; USGS Massachusetts Cooperative Research Unit, 

unpublished data). 

The Harvard Forest Hemlock Removal Experiment (HF-HeRE) includes two canopy 

manipulations that simulate structural changes caused either by severe HWA infestation or by 

pre-emptive salvage logging (Ellison et al. 2010).  Two types of control plots include either 

mature hemlock with ≥70% hemlock basal area or younger (~50 year old) mixed hardwood with 

small hemlocks (Ellison et al. 2010).  One block of HF-HeRE occurs on sloping lowland and the 
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other on a north-south trending ridge; one set of the two treatments and two control plots are sited 

within each block (Ellison et al. 2010). 

Each canopy manipulation replicate was applied in a 90 × 90 m (0.81 ha) forest plot with 

at least 70% basal area hemlock.  In the simulated HWA treatment, all hemlock trees, from small 

seedlings to mature trees, were girdled using knives or chainsaws in early May 2005 (Ellison et 

al. 2010).  The girdled trees died over the course of the next two and a half years, a rate similar to 

hemlock mortality from HWA attack in the southern Appalachians, but more rapid than mortality 

rates from HWA infestations in the Northeast (Orwig et al. 2013).  Most of the girdled overstory 

hemlocks remained standing 8 years later, resulting in structural and environmental (temperature, 

moisture) changes similar to that from HWA invasion (Orwig and Foster 1998, Lustenhouwer et 

al. 2012).  In the logged treatment, all hemlocks >20 cm in diameter were cut in February-April 

2005 and removed along with merchantable white pine and hardwoods such as red oak (Quercus 

rubra) in a fashion similar to hemlock harvests observed in the region (Ellison et al. 2010).  

Approximately 60-70% of the basal area was removed in each logging plot (Ellison et al. 2010).   

In June-July of 2008, I assessed understory woody vegetation and browsing intensity in a 

30 × 30 m (900 m2) plot in the center of each 90 × 90 m treatment and control plot.  In each plot, 

regenerating woody stems ≥0.3 m and < 3 – the approximate height range of stems available to 

deer and moose (Faison et al. 2010) – were recorded and identified in 56 4-m2 (224-m2 total) 

circular subplots arrayed in a systematic grid.  Each stem was assessed for signs of past browsing; 

twigs were considered browsed if they had a torn, ragged appearance characteristic of ungulates 

(McInnes et al. 1992).  In 2012, the subplots were resampled for woody regeneration and 

browsing in each treatment.  Porcupine (Erethizon dorsatum) and lagomorph browsing were 

readily distinguishable from ungulate browsing by the neat 45 degree angle cut of the stems, and 

stems browsed by these smaller herbivores were excluded from analysis. 
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I sampled pellet groups for deer and moose as a comparative index to assess relative 

variation in impact among my experimental stand types: I did not use it to estimate actual moose 

and deer density (cf. Van Dyke and Darragh 2007). I sampled pellet groups in each of the 56 4-m2 

(224-m2) vegetation and browsing subplots in 2008.  Pellet groups were defined as having at least 

15 individual pellets (Eschtruth and Battles 2008).  Despite this relatively large sampling area (cf. 

Kuijper et al. 2009), I still obtained enough zero values that I decided to double the pellet group 

sampling area to 450 m2 in 2012.  A 15 × 30-m area was divided into five 3 × 30-m subplots that 

were systematically searched with two observers walking side by side.  Pellet groups in the 

subplots were pooled for each plot and expressed as number ha-1 to standardize values between 

2008 and 2012.  

In December 2011, I installed a remote camera (Reconyx, Inc., Holmen, Wisconsin) on 

the edge of each plot in which pellet counts were sampled.  The cameras were programmed to 

take repeated pictures of herbivore movement, which enabled us to document the total time spent 

by animals in each field of vision.  Images were compiled from December 2011-April 2013, and I 

calculated the total time spent by moose and deer in each treatment per week (seconds wk-1) 

(Kuijper et al. 2009).  I also calculated a weighted total ungulate visitation time (seconds wk-1) by 

adjusting the time by the mass of the ungulate: (total moose time × 5) + (total deer time × 1). 

I used Shapiro-Wilk tests to check all response variables for normality and used square 

root or log transformations if necessary.  Randomized block ANOVAs were performed on tree 

regeneration density data in 2008 and 2012.  Tukey’s post hoc tests were used for multiple 

comparisons.  Alpha was set equal to 0.05. 

I also compared the three major functional responses of large herbivores to their food 

supply (Type I, II, and III; Sinclair et al. 2006) using Akaike’s Information Criterion (AIC) model 

selection.  I estimated a functional response across all four treatment types (logged, girdled, 

hemlock, and hardwood) of the experiment to enable sufficient variation in browse density.  



 

10 

 

Functional responses were not calculated within each treatment type.  Because moose and deer 

browsing generally are indistinguishable and overlap considerably in height, I examined the 

combined functional response of the animals in the study area, rather than attempting to separate 

them (cf. Soluk 1993).  I used the number of woody stems (0.3-3m in height) in each plot as an 

estimator of forage density, and the total number of individual woody stems (0.3-3 m in height) 

browsed in each treatment plot as an estimator of browse consumption rate.  Other studies have 

used similar estimates of browse removal in functional response studies (White et al. 2003).   

The Type I functional response is a simple linear regression in which number of stems 

browsed increases directly with the number of stems available:  

𝑓(𝑥) = 𝑎 + 𝑏𝑏 

where Y is the number of stems browsed , x = woody stem density, and a and b are intercept and 

slope parameters, respectively 

The Type II response assumes that at a certain density of prey, predator satiation, and 

limitations of handling time (i.e., searching and consuming) will cause a decrease in consumption 

rate and a horizontal asymptote (Sinclair et al. 2006).  For the Type II response, I used a 

Michaelis-Menton function (Bolker 2008): 

𝐹(𝑥) = 𝑎𝑎/𝑏 + 𝑥 

Here, the fitted parameters x = woody stem density and a and b refer respectively to the browsing 

asymptote and the stem density at which browsing intensity reaches half its maximum. 

A Type III response is a sigmoidal curve that shows an initially slow increase in 

consumption rate, followed by a sharp increase in consumption, and finally a slowing down of 

consumption and a horizontal asymptote similar to the Type II response (Sinclair et al. 2002).  

For the Type III response, I used the sigmoidal function (Bolker 2008): 

𝑓(𝑥) = 𝑎𝑥2/𝑏2 + 𝑋^2 
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Here, the parameters x = woody stem density and a and b refer respectively to the asymptote and 

the half maximum point (Bolker 2008). 

For each model, I estimated the parameters and then calculated an AICc value, the 

adjusted AIC recommended for small sample sizes (Burnham and Anderson 2004).   From this 

value, I calculated Δi = AICci−AICcmin using the AICtab function in R (package AICmodavg)  

This transformation results in Δi = 0 for the best model, whereas the other models have positive 

values.  Models with Δi values < 2 apart are generally deemed to be similar, whereas those with 

Δi values >4 are considered distinct (Bolker 2008).  Weights (wi) were then calculated from Δi 

(exp(-0.5×Δi) for each model.  The sum of wi was then normalized to equal 1, and each wi was 

reported as a probability that a model was the best fit, given the data and the candidate models 

(Burnham and Anderson 2004).  Functional response models were analyzed and compared using 

nls2 (non-linear regression with brute force) and AICtab (package AICmodavg) in R (The R 

Foundation for Statistical Computing 2014; R version 2.15.2).   

Lastly, I examined the proportion of stems browsed as a function of stem density (the 

total response) to further compare among the three functional response models (Sinclair et al. 

2006).   A Type I functional response should be a flat line showing no increase or decline in per 

capita consumption with forage density; a Type II functional response should show relatively 

high proportion of stems consumed at low stem densities, with proportion consumed decreasing 

linearly with increasing stem densities; a Type III functional response should show an increasing 

proportions of stems browsed at low stem densities followed by a decline in proportional stem 

consumption at much higher densities (Sinclair et al. 2006; Fig. 1).   

 

1.4 Results 

 In 2008, stem densities (0.3-3 m in height) ranged from 89 to 15,700 ha-1 across the eight 

treatment plots. Mean woody stem densities differed by treatment (P = 0.023; Figs. 2 and 3), with 
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densities highest in logged plots and exceeding those in hemlock controls by a factor of 24.  In 

2012 stem densities also differed by treatment (P = 0.007; Figs. 2 and 3), but densities were 

highest in girdled plots.  Stem densities in girdled plots exceeded densities in logged plots by a 

factor of three, hardwood plots by a factor of eight, and hemlock plots by over two orders of 

magnitude.  Densities in logged plots were also significantly higher than those in hemlock plots 

(Fig. 2 and 3).   

Moose and deer pellet groups were only detected in logged and girdled plots in both 2008 

and 2012.  Moose accounted for 80% of pellet groups sampled in 2008 and 73% of pellet groups 

in 2012.   In 2008, combined moose and deer pellet group densities were highest in the logged 

ridge plot, corresponding with the highest stem density (Fig. 4a).  In 2012, combined pellet group 

densities remained highest in logged plots, corresponding with intermediate stem densities (Fig. 

4b). Total deer time recorded by remote cameras was relatively high in logged (16.7 seconds 

week-1, SD = 0.6), hemlock (19.0 seconds week-1, SD = 22.8, and hardwood (13.7 seconds week-

1, SD = 15.4) plots and low in girdled plots (0.4 seconds per week-1, SD = 0.06).  Total moose 

time recorded by remote cameras was highest at intermediate stem densities in logged plots and 

was low in control and girdled plots (Fig. 5a).  Total weighted ungulate time was also highest at 

intermediate stem densities in logged plots (Fig. 5b).    

Browsing intensity (number of stems browsed ha-1) increased in 2008 with increasing 

stem densities (Fig. 6).  Number of browsed stems (10,400 ha-1) peaked in the most densely 

vegetated logged ridge plot (15,800 stems ha-1).  The linear (Type I) functional response model 

was the best fit for the 2008 data (wi = 0.996; Table 1).  The Type III functional response model 

was the best fit for the 2012 data (wi = 0.86; Fig. 6), although the Type II model had limited 

support (Δi = 3.7, Table 1).  Browsing was absent or low in hemlock and hardwood controls, rose 

sharply with increasing stem densities in logged plots to a peak at ~10,000 stems browsed ha-1 in 

the logged ridge plot, and then reached an asymptote or declined slightly with increasing stem 
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densities in girdled plots.  The proportion of stems browsed as a function of total available stems 

(the total response) showed a linear relationship with increasing stem densities in 2008 (P = 

0.061; Fig. 7).  In 2012, the proportion of stems browsed increased initially at low to moderate 

densities in control and logged plots and then declined sharply at high stem densities in girdled 

plots (P = 0.049; Fig. 7), revealing a characteristic Type III response (Fig. 1). 

 

1.5 Discussion 

Large browsers are strongly associated with young vegetation in regenerating forest 

openings, utilizing disturbed stands 2-7 times more frequently than ambient, undisturbed areas 

(Persson et al. 2005, Kuijper et al. 2009, Wattles and DeStefano 2013).  Moose, in particular, are 

associated with logged areas compared to ambient intact forest (Geist 1998, Persson et al. 2005, 

Wattles and DeStefano 2013).  Despite the well-known connection between large browsers and 

vegetation in regenerating forest openings, relatively little is known about the extent to which 

ungulate functional responses are influenced across a range of stand structures and recently 

disturbed patches in northern temperate forests (Schmitz and Sinclair 1997).  In this study, I used 

a range of canopy treatments and tree regeneration densities associated with disturbance by 

Hemlock Woolly Adelgid (HWA) to estimate the functional response of moose and deer foraging 

in a heterogeneous forested landscape.  My results showed that eastern hemlock stands killed by 

simulated HWA attack diverged in woody plant regeneration over time from those that were 

logged, resulting in different relationships between large herbivores and their food supply at 

different stages of stand regeneration and across different stand structures. 

In this experiment, the hemlock canopy died gradually in the simulated HWA (girdled) 

plots relative to the logged plots.  Lustenhouwer et al. (2012) and Orwig et al. (2013) revealed 

that this difference in timing of canopy death caused initially greater soil and air temperature and 

solar radiation levels in the logged plots and a lag in plant regeneration in the girdled plots.  By 
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2008, three years after disturbance treatment, woody stem densities (0.3-3 m in height) in the 

girdled plots had roughly equaled those in the logged and hardwood control plots and had 

surpassed those in the hemlock control (Fig. 2).  Within the range of woody stem densities among 

treatments in 2008 (89-15,700 stems ha-1), herbivores increased their use and consumption in sites 

with greater stem densities (Fig. 6a), revealing a Type I functional response  Although the Type I 

functional model was by far the best fit (other models Δi = 12.0, 14.5), per capita browsing rates 

revealed that consumption of browse was largely density dependent in 2008 across stand structure 

and disturbance type, suggesting the lower leg of a Type III functional curve (Figs. 1 and 7a). 

By 2012, the  environments of the two disturbance treatments converged with respect to 

soil moisture, available light, and soil and air temperature (Lustenhouwer et al. 2012); but woody 

stem densities in the girdled plots increased substantially relative to the other treatments (Figs. 2 

and 3).  A sigmoidal (Type III) functional response developed in which the herbivores apparently 

ignored or missed woody browse at low densities in the undisturbed stands, or in the case of 

moose, largely avoided the habitats (cf. Sinclair and Krebs 2002).   Deer may also have used the 

undisturbed stands for other purposes (e.g., thermal shelter, acorn foraging, and herbaceous plant 

grazing; cf. DeGraaf and Yamasaki 2001); the relatively high use of the undisturbed plots by deer 

(detected by remote cameras) combined with low browsing pressure in these plots supports this 

notion.  Herbivore use and browse consumption increased sharply with higher stem densities in 

the logged plots, as moose actively used these plots, and deer perhaps switched from foraging on 

acorns and herbaceous plants in the hardwood plots to woody browse in the logged plots.  Peak 

browse consumption in 2012 occurred in the logged ridge plot at roughly the same numbers and 

stem availability as in 2008 (15,000 – 20,000 stems ha-1).  However, with a much greater range of 

stem densities among treatments in 2012 (0-79,000 stems ha-1) than in 2008, herbivore 

consumption was density dependent across low to moderate stem densities (undisturbed and 

logged plots) and inversely density dependent from moderate to  high stem densities (logged and 
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girdled) in 2012.  In other words for the first three years post disturbance, herbivores exerted top 

down control over the vegetation, regardless of stem density and structure; but seven years post 

disturbance, herbivores exerted top down control only at the lower range of stem densities.  

Regeneration was able to escape the “predator pit” (i.e., the sharply density dependent browsing 

at low to moderate densities in 2012) presumably because the high density of regeneration in the 

girdled areas overwhelmed the relatively low density and browsing capacity of the herbivores (cf. 

Pastor et al. 1988, McLaren and Peterson 1994).  In contrast, Healy (1997) reported strong top 

down effects by deer in both thinned and intact oak stands in a nearby watershed forest where the 

herd had been protected for decades.  Greater densities of ungulates (10-17 km-2) combined with 

less intensively disturbed stands that supported lower stem densities in Healy’s (1997) study may 

explain the difference between his results and mine. 

A contributing factor to the inverse density dependent browsing and Type III functional 

response in 2012 was that moose and deer appeared to preferentially use the logged stands with 

intermediate stem densities.  This pattern suggests that once a threshold density of stems (~20,000 

stems ha-1) was reached, given the density of herbivores in my study area, other food related (e.g., 

stem palatability) or non-food related (e.g., thermal environment, cover, and topography) factors 

became more important than additional increases in stem density (Hester et al. 2006, Barret and 

Schmitz 2013).  My results show some parallels with Thompson et al. (1989) who reported 

preferential foraging by moose in balsam fir stands with 2,000 stems ha-1 over stands with 30,000 

stems ha-1.  Greater use of intermediate forage densities has also been observed by elk (Cervus 

elaphus) foraging on grasses, apparently because energy intake is optimized at intermediate stem 

densities (Wilmshurst et al. 1995). 

A number of characteristics of the vegetation in the logged plots may have resulted in 

these plots being more heavily used and proportionally impacted by ungulates.  Basal sprouting 

by hardwoods often leads to greater stem palatability (Moore and Johnson 1967), and sprouts on 



 

16 

 

stumps and trees occurred more frequently in the logged plots than in the girdled and undisturbed 

plots (Ellison and Barker Plotkin 2009).  Sprouts are often thicker in diameter, grow more 

vigorously, and have more extensive branching than seed-origin stems (Kauppi et al. 1990, Bond 

and Midgley 2001); these stem characteristics are particularly desirable to moose and other 

ungulates (Price 1991, Rea and Gillingham 2001, Kuijper et al. 2009).  In addition, red maple, a 

preferred browse species of moose and white-tailed deer (Godin 1977, Faison et al. 2010), was 

the most prolific sprouter in the logged plots (Ellison and Barker Plotkin 2009).  Finally, previous 

browsing changes chemical and morphological properties (e.g., increased nitrogen, larger 

diameters) of stems that can make them more likely to be browsed again (Bergstrom and Danell 

1987, Makhabu et al. 2006).  Because the slowly dying canopy in the girdled plots delayed 

regeneration relative to the logged plots (Orwig et al. 2013), woody stems in the logged plots 

were undoubtedly browsed prior to those in the girdled plots, perhaps increasing the desirability 

of stems in the former in subsequent years relative to the newly emerging stems in the latter. 

My results provide evidence that different relationships between large herbivores and 

their food supply (i.e., both density dependent and inverse density dependent) may develop over 

small spatial and temporal scales across forest stands of different disturbance histories, structures, 

and understory characteristics.  In other words top down control by large herbivores on forest 

regeneration is dynamic and context dependent (Hunter and Price 1992, Schmitz and Sinclair 

1997).  My study also highlights the fact that a system in which the vegetation is controlled, at 

least in part, from the top down by ungulates is not necessarily synonymous with severe impacts 

by herbivores (i.e., a “regeneration failure” Strong 1992).  The most intensively browsed logged 

plots still had almost 20,000 stems ha-1 in 2012 (seven years after harvest), which is more than 

enough to regenerate the stand (Oliver and Larson 1996, Bergeron et al. 2011).   
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 Table 1.1 Comparison of functional response models of combined moose and white-tailed deer 
foraging (number of stems browsed) in relation to woody stem food supply. The lowest AICc 
value (in bold) corresponds with the best model.  Δi = the difference in AICc from the best model. 
wi = AIC weights – the probability that a model was the best fit, given the data.  

 2008 2012 

Functional 
Response 
Model 

AICca Δi
 df wi AICc Δi d

f 
wi 

Type Ib 155.1 0 3 1 164.1 9.0 3 0.01 
Type IIc 167.1 12.0 3 0 158.8 3.7 3 0.13 

Type IIId 169.6 14.5 3 0 155.1 0 3 0.86 
           a adjusted Akaike’s Information Criterion recommended for small sample sizes 
 b 𝑓(𝑥) = 𝑎 + 𝑏𝑏 

                     c𝑓(𝑥) = 𝑎𝑎/𝑏 + 𝑥 
             d𝑓(𝑥) = 𝑎𝑥2/𝑏2 + 𝑥^2  
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Figure 1.1  Three major functional responses plotted as the proportion of prey eaten relative to 
forage density.  Modified from Sinclair et al. (2006). 
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Figure 1.2  Comparison of woody stem densities (0.3-3 m in height) by treatment in 2008 and 
2012.  Densities differed by treatment in both 2008 (F3,4 = 16.56; P = 0.023) and in 2012 (F3,4 = 
38.95; P = 0.007).  Treatment means with the same letter do not differ significantly. Bars 
represent mean ± SE. 
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Figure 1.3  Comparative photos of three canopy treatments and understory vegetation response.  
Photos A-C are of girdled, logged, and hemlock control respectively in 2008.  Photos D-F are of 
the same plots in 2012.  Hardwood control photos not shown. Photos by Aaron Ellison 
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Figure 1.4  Ungulate pellet group densities in relation to woody stem densities in 2008 (a)  and  
2012 (b).  Moose comprised 70-80% of pellet groups in both years. 
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Figure 1.5  Total moose visitation time (a) and weighted ungulate visitation time (b) 
recorded by remote cameras in the eight treatment plots from Dec 2011-April 2013.  
Weighted ungulate time =  (moose time x 5) + (deer time x 1), which corresponds with 
the approximate mass and forage consumption ratio of the two animals. 
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Figure 1.6  Functional response of ungulates in 2008 (top) and 2012 (bottom).  In 2008, the Type 
1 (linear model) was the best fit.  In 2012, the Type III (sigmoidal) model was the best fit when 
compared with other functional response models with AIC. (see Table 1). 
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Figure 1.7  Per capita browse consumption by ungulates in 2008 and 2012.  2008 data show a 
linear increase with increasing stem densities (R2 = 0.47; P = 0.06); 2012 data show a linear 
piecewise response characteristic of a Type III functional response (R2 = 0.83; P = 0.049).  See 
Fig. 1 for comparison.   Woody stems included all upright woody plants 0.3-3m in height. 
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CHAPTER 2 

TWO UNGULATE BROWSERS DELAY SUCCESSION AND PROMOTE 

HERBACEOUS LAYER DIVERSITY IN LOGGED TEMPERATE FORESTS 

 

2.1 Abstract 

Large herbivores are leading drivers of plant communities in northern forests.  Yet, few 

studies have examined the effect of two ungulate species on forest herbaceous layers where most 

of the diversity in a forest occurs – particularly in recently disturbed areas.  Two or more 

herbivores can have additive (compounding) or compensatory (opposing) effects on plant 

communities.  I examined the extent to which a recolonizing ungulate (moose [Alces alces]) and a 

long established one (white-tailed deer [Odocoileus virginianus]) – both occurring at low 

densities – influence herbaceous layers (shrubs, herbs, and small trees) in patch cut timber 

harvests in Massachusetts, USA.  I established three combinations of ungulates using fenced 

exclosures – (none (full exclosure), deer (partial exclosure), and deer + moose (control) – and 

examined the effect of treatment on herbaceous and woody species composition, abundance, 

richness, and succession after 5-6 years. 

Species composition diverged significantly among browsing treatments, and changes 

were generally additive.  Woody plant abundance above 2 m in height was reduced with the 

addition of herbivores, and herb and shrubs assemblages characteristic of forests were more 

abundant in the relatively densely canopied no-ungulate and deer plots than in the more open 

grown moose + deer plots.  In contrast, herb and shrubs characteristic of open/disturbed habitats 

increases with the addition of browsers.  I further documented greater herbaceous species richness 

(plot scale; 169 m2) and woody species richness (subplot scale) in deer + moose plots compared 

to the other treatments.  My results suggest that low densities of moose + deer have the capacity 

to both delay forest succession and increase herbaceous layer richness in young stands following 
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complete canopy removal from logging. This study highlights the fact that two  large browsers at 

low densities can have unpredictable effects on forest herbaceous layers, stressing the importance 

of investigating ungulate impacts across the range of herbivore densities and with multiple 

browser treatments.   

 

2.2 Introduction 

Large herbivores are leading drivers of terrestrial plant communities and therefore 

important determinants of habitat, biodiversity, and a host of ecosystem services (Oliver and 

Larson 1996, Diaz et al. 2007, Royo et al. 2010, Hegland et al. 2013).  Despite their 

acknowledged importance, the effects of herbivores are notoriously complex and difficult to 

generalize and may be mediated by disturbance and site productivity, as well as the density and 

assemblage of herbivores (Ritchie and Olff 1999; Hester et al. 2006, Royo et al. 2010).  Until 

recently, most research on ungulate-forest relationships focused on tree regeneration, with little 

attention paid to the herbaceous layer flora (shrubs and herbs) where most of the diversity in a 

forest occurs (Russell et al. 2001, Gilliam 2007, Royo et al. 2010).  Even less well studied are 

ungulate impacts on herbaceous layer floras in stands recovering from recent disturbances such as 

logging, fire, and insect outbreaks (but see Kraft et al. 2004 and Royo et al. 2010).  Because 

forest ungulates are drawn to disturbed openings, which typically undergo rapid change and 

witness intense competition in the herbaceous layer in the first several years after disturbance, 

herbivores would be expected to have strong interactions with shrubs and herbaceous plants in 

these environments (Oliver and Larson 1996, Eschtruth and Battles 2008, Kuijper et al. 2009, 

Gilliam 2007, Royo et al. 2010).   

Although many ecosystems have more than one ungulate species, few studies have 

specifically examined the combined direct and indirect effects of multiple herbivore species on 

vegetation communities (Ritchie and Olff 1999, Wisdom et al. 2006).  The effects of two or more 
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animals on composition may be additive or compensatory, depending on whether the animals 

consume the same plant species (Ritchie and Olff 1999).  Additive effects occur when multiple 

herbivores consume primarily the same plant species and therefore alter the community in the 

same direction as a single herbivore (Ritchie and Olff 1999).  Compensatory effects occur if the 

herbivore species consume primarily different plant species so that their individual effects on 

species’ relative abundance balance each other out, resulting in little net effect on community 

composition (Ritchie and Olff 1999).  The extent to which a recolonizing herbivore will join an 

existing herbivore to have additive or compensatory effects is difficult to predict because the 

addition of the former can initiate diet shifts in the latter (Hester et al. 2006).  

In the late 20th century moose recolonized much of their former southern range in the 

northeastern deciduous forest region (except for Pennsylvania; Faison et al. 2010, Wattles and 

DeStefano 2011), creating a two-ungulate system with deer for the first time in almost two 

centuries in some landscapes.  Both animals occur at low densities in Central New England at the 

moose’s southern range limit (moose - 0.2/km2; deer – 4-5/km2), suggesting the possibility that 

their effects on forest understories could differ from areas with higher densities of herbivores 

(Royo et al. 2010, Goetsch et al. 2011). Because moose and deer are generalist browsers that 

consume many of the same woody plants they might be expected to have additive effects on plant 

communities (Boer 1997, Renecker and Schwartz 1997, Ritchie and Olff 1999).  For example, 

during stand initiation additive effects by browsers consuming dominant pioneer trees may retard 

succession and increase herbaceous layer plant diversity and abundance by reducing competition 

(Ritchie and Olff 1999).  Alternatively, focused herbivory on browse sensitive and inferior 

competitors can lead to declines in individual species and overall richness (Ritchie and Olff 1999, 

Hester et al. 2006).  Despite broadly similar foraging strategies of the two animals, deer consume 

a higher proportion of herbaceous plants in their diet (40%) than do moose (10%); and the two 

animals’ woody plant diets are reported to overlap by about 40% with respect to the frequency 
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with which different plant species are consumed (Ludewig and Bowyer 1985, Renecker and 

Schwartz 1997).  Hence, moose + deer foraging on plant composition could be compensatory in 

some cases.  The paucity of studies on ungulate interactions with herbaceous layers in disturbed 

forests combined with the uncertainties regarding the effects of foraging by multiple browsers 

prompted this study.  Here I examine the effects of two large browsers occurring at low densities 

on the composition, succession, and diversity of herbaceous layers 5-6 years after canopy 

removal from logging. 

 

2.3 Materials and Methods 

The physiography of Central Massachusetts is characterized by rolling plateaus with hills, 

and the climate is humid with warm summers and cold winters (Brouillet and Whetstone 1993, 

US EPA 2015).  Mean annual precipitation ranges from 97 to 127 cm per year, and mean 

temperature ranges from -12 to -0.5ºC in January and 14 to 28°C in July.  Mature forest 

vegetation is characterized by transition hardwood forests – (mixed oak (Quercus spp.), red 

maple (Acer rubrum), black birch (Betula lenta), and beech (Fagus grandifolia) – with significant 

components of eastern hemlock (Tsuga canadensis) and white pine (Pinus strobus; Foster et al. 

2004, USDA 2015).  In addition to timber harvesting, exotic forest insects and pathogens 

including hemlock woolly adelgid (Adelges tsugae), beech bark disease (Cryptococcus fagisuga 

and Nectria spp.), chestnut blight (Cryphonectria parasitica) and gypsy moths (Lymantria 

dispar); and meteorological events (ice and windstorms) are the prevalent disturbances in the 

region (Foster et al. 2004).  Patch cuts are a less common form of timber harvest in the region 

than selective harvests (Kittredge et al. 2003), but are still an important part of many forest 

management plans (Kyker-Snowman 2007).    

Moose ranged as far south as northwestern Connecticut, southern New York, and 

Pennsylvania before European settlement (Reeves and McCabe 1997). After being extirpated 
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from Massachusetts in the early 19th century, moose recolonized central Massachusetts in the late 

20th century (Faison et al. 2010), creating a two-ungulate system with deer for the first time in 

almost two centuries.  Today, the southern range limit for moose in the eastern United States is 

41.66 degrees latitude in northern Connecticut (Wattles and DeStefano 2011).  Densities are 

estimated to be about 0.2 km-2 in north central Massachusetts, which is similar to densities in 

southern and central Vermont and southern New Hampshire; but much lower than densities in 

Northern Maine and Northern New Hampshire and Vermont (1-1.7 km-2; USGS Massachusetts 

Cooperative Research Unit, unpublished data, Wattles and DeStefano 2011).  White-tailed deer 

were common in presettlement New England, were extirpated from much of Massachusetts by the 

mid-19th century, and recovered their former range and abundance during the 20th century 

(McCabe and McCabe 1984, Foster et al. 2002).  Today, deer densities are estimated at ~4.2 km-2 

for north central Massachusetts, which is on the low end of reported densities of 0.8 to 23+ km-2 

across the New England and Eastern Deciduous Forest region (Kantar 2007, McDonald et al. 

2007, Adams et al. 2009, Kilpatrick 2009). 

In 2007-2008, experimental exclosures were established in six mixed conifer-hardwood 

stands that had been clearcut within the past 3-6 months at the Harvard Forest and the Quabbin 

and Ware River Watershed forests in Central Massachusetts (Table 1; Fig. 1).  At the start of the 

experiment no woody stems above 1.5 m in height occurred in any of the plots, and virtually all 

remaining woody stems were less than 1 m.   Four of the sites were former conifer plantations 

[larch (Larix spp., red pine (Pinus resinosa), or spruce (Picea spp.)] with mixed native 

hardwoods, and the other two were red oak (Quercus rubra)-white pine dominated stands with 

red maple in the understory (Table1).  The experimental design was a randomized block with 

three levels of large herbivores – no-ungulates (full exclosure), deer (partial exclosure), and deer 

+ moose (control).  A fourth treatment that excluded deer but was open to moose was not 

feasible.  This inability to utilize a full-factorial design does not pose a problem to the subsequent 
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analysis and interpretation (Ritchie and Olff 1999, Manier and Hobbs 2007).  Blocks were at least 

1 km apart from one another.  The 2.5-m tall exclosures were made of high-tension wire game 

fence with 15 cm grid mesh.  The full exclosure was a fenced to the ground; the partial exclosure 

had a 60 cm opening between the bottom of the fence and the ground surface that excluded 

moose but allowed access to deer and all other wildlife; and the control plot was unfenced and 

open to both browsers (Fig. 1).  The 15 cm wire mesh of the fence enabled access to small 

mammals including lagomorphs and rodents. 

 Exclosure and control plots were 20 x 20 m in size and separated by 10-40 m.  In 2013, 

5-6 years after treatment, I established 13, 1 m2 grid plots in a systematic grid in the center of 

each plot.  Five rows were established with 3 subplots on the outer and middle rows and two 

subplots in the second and fourth rows.  Subplots were positioned 6 m apart within the same row 

and 4.5 meters apart between rows.  At each 1 x 1 m subplot, all vascular plants in the forest floor 

layer were recorded by a single observer (original field data collected by Glenn Motzkin archived 

at Harvard Forest).  I defined “herbaceous layer” as all plants (herbs, shrubs, and trees) <2 m in 

height (Oliver and Larson 1996, Carson et al. 2014). Percent cover was estimated for each species 

and for each plant group (i.e., woody plants, graminoids, and forbs) in one of 7 cover classes (1 = 

<1%, 2 = 1-5%, 3 = 6-15%; 4 = 16-25%, 5 = 26-50; 6 = 51-75%, 7 = 76-100%).  Because many 

of the woody stems had recruited above 2 m by the time of sampling, I also estimated the percent 

cover of woody plants ≥ 2 m in height.   In addition I performed a 20 minute “meander” survey 

throughout the central 13 x 13 m of each plot and recorded the presence of all woody and 

herbaceous plant species that did not occur in the subplots (Huebner 2007, Goetsch et al. 2011).  

All data were collected in June and July of 2013, and treatments within a block were sampled in 

the same week.  Nomenclature followed Cullina et al. (2011).  

To test the integrity of the experimental design for the presence of the different ungulate 

species, remote cameras (Reconyx, Inc. [Holmen, Wisconsin] and Cuddeback, Inc. (Greenbay, 
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Wisconsin) were mounted inside each partial exclosure and toward each control plot between 

2008 and 2011 (mention of trade names does not constitute an endorsement from the U. S. 

Government).  Cameras were discontinued after 2011 because the vegetation had grown to a 

height that effectively blocked the camera’s ability to detect animals.  All plots in each block had 

the same type of camera set to the same delay specifications, and were used to calculate the 

weekly frequency of visits by each species (Augustine and Frelich 1998).  A minimum of 5 

minutes of elapsed time between each image was used to separate visits. Ungulate pellet groups 

were counted in 2012 in 25-4m2 vegetation subplots and again in 2013.  Because I encountered a 

number of 0 values in 2012, I increased the sampling area of pellet counts from 100 m-2 to 400 m-

2 in 2013 and standardized two year mean values by converting counts to number ha-1.  Pellet 

groups were defined as having at least 15 individual pellets to avoid over-counts from scattered 

individual pellets (Eschtruth and Battles 2008). 

 I used percent cover as my measure of vegetation abundance.  I first converted cover 

classes to percent cover midpoints, and then calculated the mean percent cover for species and 

growth form groups (i.e., ferns, forbs, graminoids, woody plants) across the 13, 1 x 1 m subplots 

in each plot.  To examine the potential effects of ungulate browsing on forest succession I 

calculated the combined abundance of herb and shrub species characteristic of forest habitats in 

each plots and the combined abundance of herb and shrub species characteristic of open/disturbed 

habitats.  Forest and open species were selected from 51 species that occurred in at least two of 

the 18 study plots.  I used habitat descriptions from the New England Wildflower Society (2015) 

and Haines (2011) to categorize species into different habitat/successional groups (Table 2).  

Forest indicator species were: (1) required to be listed as occurring in forests, and (2) could not 

be listed as occurring in anthropogenic or disturbed habitats, marshes, or meadows and fields.  

Open/disturbed habitat species (1) could not be listed as occurring in forests; and were (2) 
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required to be listed as occurring in anthropogenic or disturbed habitats, marshes, or meadows 

and fields (Table 2).  

 I examined species richness for herbs and woody plants at two scales in each plot: 

subplot scale (mean number of species per 13, 1m-2 quadrats) and plot scale (number of species 

169m-2).  Although these measurements are technically species density (Gotelli and Colwell 

2001), I hereafter refer to species density as “species richness” for the sake of clarity.  I used 

linear mixed effects models (package lmer, R Statistical software) with ungulate treatment as 

fixed effect and block as random effect to examine species richness, abundance of forest and open 

indicator species, and abundance of different growth form groups to three levels of browsers.  I 

also examined models including variation in herbivore abundances across the blocks (using pellet 

count indices) as a covariate, but in no instance did these models fit the data better than the basic 

treatment model when compared by AIC.  I used either a Gaussian or Gaussian with log link (log 

normal) distribution for each response variable after examining the residuals to determine the best 

fit.  For hypothesis tests of treatment effects, I used likelihood ratio tests (LRTs).  For significant 

results (P <0.05) of treatment, I performed pairwise comparisons between the three treatment 

pairs by simulating the posterior distribution 10000 times to calculate 95% confidence intervals 

and approximate P-values for the fixed effects (Bagchi et al. 2011, Rapp et al. 2013).  This test 

further validated the results obtained from the LRT.  Alpha was set = 0.05.   

  Lastly to test for significant differences in community composition among treatments I 

used adonis (package vegan), the analysis of variance of distance measures (Bray), grouped by 

block (1000 permutations; Oksanen et al. 2015)   Species abundances (% cover) were entered into 

the multivariate test.  Rare species that occurred in only 1 of the 18 treatment plots (5.5%) were 

removed prior to analysis (McCune and Grace 2002).  Data were analyzed using R ( The R 

Foundation for Statistical Computing 2014; R version 2.15.2). 

 



 

33 

 

 
2.4 Results 

Two year mean deer pellet groups were similar in partial exclosure (216.7 groups ha-1; SE 

= 94.4) and control plots (187.5 group ha-1; SE = 70.0; Wilcoxon signed rank test: V = 13, P = 

0.67).  Moose pellet groups (two year mean: 202.1 groups ha-1; SE = 82.9) were detected only in 

control plots.  Remote cameras detected deer in partial exclosures (0.31 visits wk-1; SE = 0.13); 

and control plots (0.61 visits wk-1; SE = 0.20; Wilcoxon signed rank test: V = 12, P = 0.31) at 

each block; and moose were detected only in control plots (0.56 visits wk-1; SE = 0.18).   

 Browsing by deer + moose significantly reduced woody plant abundance  above 2 m in h

eight (P <0.0001; Fig. 2) and simultaneously increased woody plant cover below 2 m in height rel

ative to deer browsing alone and ungulate exclusion (P = 0.001; Fig. 2).  Across the 18 plots in 6 

blocks, 124 native vascular plant taxa were recorded to species or genus below 2 m in height, incl

uding 8 ferns, 31 forbs, 25 graminoids, and 60 woody plants (tree, shrubs, and lianas).  Exotic spe

cies comprised 12 species (10% of the flora) and occurred in 7 of the 18 plots.  Sixty three species 

of trees, shrubs, and herbs were common, occurring in at least two of the 18 plots.  Analysis of ec

ological distance revealed a significant difference among treatments (F = 0.68; R2 = 0.08; P = 0.0

24).   

 Forb abundance and graminoid abundance did not differ among treatments (Table 3), but 

fern abundance (mostly eastern hay-scented fern [Dennstaedtia punctilobula]; 50%) and evergree

n wood fern [Dryopteris intermedia]; 44%) was higher in deer plots and no-ungulate plots than in 

deer + moose plots (LRT χ2 = 7.1; df = 2; P = 0.028; Table 3).  Deer and no-ungulate plots did not 

differ in fern cover.  Total Rubus abundance was greater in deer + moose plots than in no ungulat

e plots (LRT χ2 = 8.98; df = 2; P = 0.01; Table 3).  Other treatment combination did not differ sig

nificantly.  Deer + moose plots supported less than half the abundance of forest herb and shrub in

dicator species, on average, than did no-ungulate and deer plots (LRT = χ2 =  9.81; df =  2 ; P = 0.
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007; Fig. 3).  In contrast, abundance of herb and shrub species characteristic of open/disturbed ha

bitats was almost twice as high in deer + moose plots compared to no-ungulate plots (LRT χ2 = 9.

20; df = 2; P = 0.010; Fig. 3).  Open/disturbed indicator species were also significantly more abun

dant in deer than in no ungulate plots (Fig. 3). 

Deer + moose significantly increased woody species richness relative to areas with just 

deer or no-ungulates (P = 0.006; Fig. 4A).  The presence of deer alone had little effect on woody 

richness relative to areas without ungulates.  Total native species averaged about one species 

fewer in no-ungulate (7.1 species m-2; SE = 0.70) and deer (7.3 species m-2; SE = 0.4) than in deer 

+ moose plots (8.2 species m-2; SE = 0.48; LRT χ2 = 4.59; df = 2; P = 0.10).  Native herbaceous 

and forb density were similar among treatment plots. 

 Plots browsed by deer + moose had three more native species (combined woody and 

herbaceous) on average than plots without ungulates and one more species than plots browsed by 

deer; but these differences were not significant (LRT = 4.25, df = 2, P = 0.119)  Native 

herbaceous plant richness (combined number of forbs, ferns, and graminoid species) was greater 

by 3 and 4 species, on average, in deer + moose plots than in deer and no-ungulate plots 

respectively (P = 0.013; Fig. 4B).  Graminoid species richness was higher in deer + moose plots 

(7.5 species; SE = 1.8) and deer plots (5.2 species; SE = 0.79) than in no-ungulate plots (4.5 

species; SE = 1.8; LRT χ2 = 11.99; df = 2; P <0.002).  Neither forb nor woody species richness 

differed among treatments. 

 

2.5 Discussion 

Two ungulate browsers had strong additive effects on the structure and composition of 

temperate forest herbaceous layers 5-6 years after complete canopy removal from logging.  The 

addition of a second large herbivore species (moose) reduced the abundance of tall woody plants, 

altered species composition, and promoted woody richness (subplot scale) and herbaceous 
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richness (plot scale).  Plots browsed by low densities of white-tailed deer (≤4 km-2) were 

generally more similar to ungulate excluded plots (cf. Holladay et al. 2006), but frequently 

diverged from plots browsed by moose + deer.  My results highlight the straightforward and 

unpredictable effects that large browsers at low densities can have on forest herbaceous layers in 

disturbed habitats (cf. Royo et al. 2010). 

The divergence of species composition among browser treatments reveals the important 

role that ungulates play in the initial stages of forest succession following clearcut logging when 

much of the vegetation is within the browsing zone of the animals (cf. Oliver and Larson 1996).  

A suite of 13 herbs and shrubs characteristic of undisturbed forest habitats had more than twice 

the combined abundance in the relatively densely canopied no-ungulate and deer plots than in the 

more open grown deer + moose plots.  At the same time, herbs and low shrubs (< 2m in height) 

associated with open/disturbed habitats had almost twice the abundance in moose + deer plots 

compared to no-ungulate plots.  Herbivory-induced reductions of dominant woody plants (above 

2 m in height) were likely one mechanism driving these divergent herb and low shrub 

communities (Fig. 2; cf. Persson et al. 2000, Royo et al. 2010, Roberts and Gilliam 2014). 

Additionally, much greater trampling effects by the heavier moose along with deer in the control 

plots may have resulted in greater soil compaction and damage to some of the more delicate 

forest herbs and shrubs, furthering altering composition (Persson et al. 2000, Hester et al. 2006, 

Heckel et al. 2010).  Direct effects of herbivory by deer in the control plots may also have 

contributed to the shift in composition, as at least three of the forest indicator herb species – 

partridge-berry (Mitchella repens), Indian cucumber root (Medeola virginiana), and sessile-

leaved bellwort (Uvularia sessilifolia) – are sensitive to herbivory by deer (Webster et al. 2005, 

Frerker et al. 2014).   

 Interestingly, fern abundance was significantly lower in plots browsed by moose + deer 

than in the other two treatments, which contrasts with a number of studies linking increased deer 
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browsing intensity with fern abundance in recently disturbed stands (Horsley et al. 2003, Royo et 

al. 2010).  A number of factors may have contributed to the different pattern in my study area.  

First, one of the co-dominant fern species, evergreen wood fern, along with the less abundant 

New York fern (Parathelypteris noveboracensis) are indicators of undisturbed primary forests 

and thus would be expected to be associated with more developed tree canopies found in the deer 

and no-ungulate plots (Flinn 2014).  Second, evergreen wood fern has declined in heavily 

browsed forests relative to less browsed areas (Rooney 2009, Frerker et al. 2013), suggesting 

some sensitivity to ungulate activity, whether by trampling or herbivory.  Third, eastern hay-

scented fern, the other co-dominant species in my study area, tends to decline with increased 

abundance of Rubus spp. in clearcuts (Horsley and Marquis 1983).  Rubus abundance was highest 

in deer + moose plots, perhaps limiting fern cover.  Deer at high densities typically reduce Rubus, 

allowing hay-scented fern to proliferate (Horsley and Marquis 1983).  In my study area, however, 

where deer occurred at low densities and moose generally avoided Rubus (cf. Telfer 1967), this 

light-demanding taxon thrived in the relatively open grown control plots. 

Browsing by deer + moose resulted in higher (native) herbaceous plant richness at the 

plot scale than in all six no-ungulate plots and five of the six deer plots.  Graminoids, which are 

relatively resistant to herbivory because of their basal meristems and often thrive in high-light 

environments (Haines 2011, Waller 2014), were particularly species-rich in deer + moose plots.  

An increase in graminoid richness and cover with browsing has been noted by several other 

authors (e.g., Putman et al. 1989, Rooney 2009, Waller 2014).  Graminoid abundance was 

generally higher in deer + moose plots in my study, but did not differ significantly among 

treatments (P = 0.14).  The increase in herb richness by moose + deer foraging also points to 

overall additive effects by the two browsers on community composition (i.e., the two herbivores 

generally selected the same dominant woody competitors, thereby “rescuing” shorter statured 

herbaceous plants from competitive exclusion; Ritchie and Olff 1999, Hester et al. 2006).  In 
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addition to reductions of tall woody plants, other contributing factors to increased herbaceous 

species richness may have been increased soil disturbance, spatial heterogeneity, and germination 

sites resulting from additional trampling by the larger moose (Olff and Ritchie 1998, Hester et al. 

2006).  

Increased herbaceous richness and diversity with herbivory has been documented in other 

temperate forest habitats ranging from disturbed open to woodland to old growth forest 

(Schreiner et al. 1996, Royo et al. 2010, Perrin et al. 2011, Hegland et al. 2013).  These authors 

also pointed to the reduction of tall woody plant layers by browsing as important drivers of 

increased herbaceous diversity.  Declines in herbaceous richness with deer herbivory have also 

been reported in undisturbed temperate forests in regions with long histories of high deer 

densities (Rooney et al. 2003, Webster et al. 2005, Goetsch et al. 2011).  To what extent my 

results differed from these studies because of lower ungulate densities, the addition of moose, or 

logging disturbance is unclear. 

Reductions in tall woody plant cover by browsers was also associated with significant 

increases in woody plant cover and woody species richness below 2 meters in height (at the 

subplot scale) in deer + moose plots.  Woody richness changed little in response to foraging by 

deer alone, but increased sharply in response to foraging by deer + moose.  Increased diversity 

and cover of low woody plants resulting from browsing has been noted by other authors in 

northern forests (e.g., Risenhoover and Maass 1987).  Because my study sites were in clearcuts 

with abundant light, woody plants in the herbaceous layer were generally not eliminated by 

browsing – as often occurs in shaded environments – but rather became reduced in height (cf. 

Tilghman 1989, Gill 2006).   

Two important and related questions emerged from these results.  (1) To what extent 

were effects by moose + deer in the control plots influenced by the larger herbivore? (2) What 

explains the strong compounding effect on tree recruitment by the addition of very low densities 
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of moose (~0.2 km-2) that typically have unimportant effects on forest regeneration (Abaturov and 

Smirnov 2002, Bergeron et al. 2011)?  Remote camera visitation rates and pellet group densities 

suggest similar rates of visitation by the two herbivores in the control plots.  Hence moose 

appeared to play a very important role – perhaps 5-6X that of deer given that moose are heavier 

than deer by that factor (Godin 1977, Forsythe 1985, Renecker and Schwartz 1997) – in areas 

exposed to both herbivores.  The similar visitation rates recorded by the indices was surprising 

given that reported densities of deer (~4.5 km-2) exceed those of moose (0.2 km-2) by over 20-fold 

in central Massachusetts (Massachusetts Cooperative Fish and Wildlife Research Unit 

Unpublished Data, McDonald et al. 2007).  However, estimated regional densities of moose 

likely underestimate the local densities that occurred in these patch clearcuts.  My indices 

(cameras and pellet counts) and studies of moose movements suggest that local densities of 

moose in logged areas are at least twice the ambient densities in uncut forests (Faison et al. 

Unpublished Data; Wattles and DeStefano 2013).  In contrast deer tend to use logged and 

unlogged forests more evenly (Degraaf and Yamasaki 2001).  

The current study reveals the ecological and conservation effects of a recolonizing 

browser on temperate forest herbaceous layers during the first 5-6 years after complete canopy 

removal.  In a region where existing deer densities are low, the addition of low densities of moose 

resulted in largely additive effects on the vegetation: delaying succession of tall woody plants and 

maintaining open habitat shrub and herb communities (e.g., Rubus spp.).  By slowing down 

succession, moose and deer reduced competition from tall woody plants, resulting in greater 

richness of herbaceous and woody plant species below 2 m in height.  Hence, the arrival of moose 

to areas where deer densities are relatively low may slow forest growth but prove beneficial, in 

some cases, to plant diversity during the initial stages of stand development following logging. 
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Table 2.1  Characteristics of study site blocks in central Massachusetts, USA. 

Block  Location Previous overstory 

composition 

Exclosures 

Built 

Age of Plot 

(yrs.) 

Dana Quabbin 

Reservation  

oak-red maple-black 

birch 

Nov. 2007 5.6 

Fisher Harvard 

Forest 

red pine-white pine, 

black birch-red maple 

July 2008 4.9 

Locust  Harvard 

Forest 

red pine-red maple-red 

oak 

June 2008 5.1 

Prescott Quabbin 

Reservation  

oak-red maple-black 

birch 

Nov.2007 5.7 

Prospect Harvard 

Forest 

spruce-black cherry- 

red maple 

October 2008 4.8 

Ware Ware River 

Reservation  

pine-larch-hardwoods December 

2007 

5.6 
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Table 2.2  Herb and shrub species associated with forest and open/disturbed habitats used in 
species composition analysis.  Species selected from 51 common species that occurred in at least 
two treatment plots.  Habitat associations determined from Haines (2011) and New England 
Wildflower Society (https://gobotany.newenglandwild.org/). 

 
Forest herbs Open/disturbed 

herbs 
Forest 
shrubs 

Open/disturbed 
shrubs 

Aralia nudicaulis Aralia hispida Corylus 
cornuta 

Comptonia 
peregrina 

Carex swanii Carex vestita Sambucus 
racemosa 

Prunus 
virginiana 

Dryopteris intermedia Carex normalis Swida 
alternifolia 

Rhus hirta 

Lysimachia borealis Carex lurida Vaccinium 
corymbosum 

Rubus 
allegheniensis 

Medeola virginiana Carex scoparia Viburnum 
nudum 

Rubus flagellaris 

Mitchella repens Danthonia 
compressa 

 Rubus hispidus 

Parathelypteris noveboracensis, Fragaria 
virginiana 

  

Uvularia sessilifolia.   Juncus effusus   
 Lysimachia 

quadrifolia 
  

 Potentilla simplex   
 Solidago rugosa.   
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Table 2.3  Mean abundance of common plant species and growth form groups in the herbaceous 
layer (<2m in height) by ungulate browser treatment in 2013.  Only species that occurred in at 
least 4 of the 18 treatment plots were included.  Standard errors are in parentheses.  Total growth 
form groups were compared among treatments using Likelihood Ratio Tests.  See Fig. 2 for 
results of woody plants. * P <0.05. 

Species No-ungulates Deer  Deer + 
Moose 

Trees    
Acer rubrum 3.50 (0.42) 4.0 (1.35) 5.43 (1.10) 
Betula lenta 0.29 (0.18) 1.40 (0.70) 3.0 (1.67) 
Betula papyrifera 0.31 (0.21) 0.17 (0.17) 0.49 (0.32) 
Fraxinus americana 0.13 (0.15) 0 0.99 (0.59) 
Pinus strobus 0.88 (0.62) 0.15 (0.13) 1.00 (0.83) 
Prunus pensylvanica 0.59 (0.55) 1.14 (0.42) 0.81 (0.39) 
Prunus serotina 0.82 (0.41) 0.54 (0.31) 1.88 (1.0) 
Quercus rubra 0.97 (0.41) 2.18 (1.64) 1.20 (0.57) 
Quercus velutina 1.05 (0.54) 0.17 (0.13) 0.04 (0.04) 
Shrubs and lianas    
Amelanchier spp. 0.17 (0.14) 0.27 (0.17) 0.14 (0.13) 
Comptonia peregrina 0.26 (0.29) 0.63 (0.49) 2.55 (1.61) 
Gaylussacia baccata 1.36 (1.44) 0.66 (0.66) 2.16 (1.62) 
Ilex verticillata 0.17 0 0.60 (0.38) 
Rubus allegheniensis 10.51 (6.32) 17.31 (4.39) 23.06 (8.7) 
Rubus flagellaris 0 0.66 (0.52) 3.91 (3.86) 
Rubus hispidus 10.82 (7.0) 17.47 

(10.11) 
12.31 (8.16) 

Rubus idaeus 7.07 (4.0) 4.22 (1.68) 7.28 (2.66) 
Rubus total* 28.41 (5.02) 39.66 (6.64) 46.55 (6.73) 
Vaccinium angustifolium 3.70 (2.17) 2.28 (1.46) 2.1 (1.73) 
Vaccinium carymbosum 1.15 (0.59) 0.97 (0.62) 0.30 (0.26) 
Vaccinium pallidum 1.49 (1.58) 0.02 (0.02) 1.99 (1.83) 
Vitis labrusca 0.17 (0.14) 0.01 (0.01) 0.01 (0.01) 
Forbs 14.93 (0.74) 18.67 (3.81) 13.21 (2.97) 
Aralia hispida 0.01 (0.01) 0.74 (0.74) 0.40 (0.35) 
Aralia nudicaulis 1.36 (1.01) 5.0 (2.89) 0.59 (0.54) 
Lysimachia borealis 0.83 (0.70) 0.68 (0.38) 0.45 (0.20) 
Lysimachia quadrifolia 0.43 (0.27) 1.12 (0.70) 0.95 (0.66) 
Maianthemum canadense 5.30 (0.93) 3.66 (0.79) 3.24 (2.17) 
Medeola virginiana 0.04 (0.04) 0.01 (0.01) 0.05 (0.04) 
Mitchella repens 0.13 (0.09) 0.04 (0.04) 0.04 (0.03) 
Potentilla simplex 0.15 (0.17) 0.33 (0.29) 1.41 (1.05) 
Rumex acetosella 0.01 (0.01) 0.06 (0.04) 0.01 (0.01) 
Solidago rugosa 0.26 (0.29) 0.14 (0.13) 0.19 (0.19) 
Uvularia sessilifolia 0.23 (0.15) 0.16 (0.14) 0.02 (0.02) 
Graminoids 4.9 (2.01) 2.56 (0.56) 7.59 (3.0) 
Carex debilis 0.08 (0.06) 0.23 (0.17) 0.64 (0.60) 
Carex pensylvanica 2.35 (2.42) 1.0 (0.33) 5.36 (3.02) 
Carex scoparia 0.32 (0.35) 0.01 (0.01) 0.46 (0.33) 
Carex swanii 0.28 (0.28) 0.31 (0.31) 0.47 (0.31) 
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Carex vestita 1.43 (1.04) 0.03 (0.03) 1.15 (1.15) 
Danthonia compressa 0.01 (0.01) 0.04 (0.04) 0.06 (0.05) 
Ferns* 7.0 (1.96) 9.19 (4.31) 5.27 (3.35) 
Dennstaedtia punctilobula 5.55 (2.75) 6.78 (4.65) 4.37 (3.38) 
Dryopteris intermedia 1.39 (0.61) 2.28 (1.36) 0.74 (0.55) 
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Figure 2.1  Photos of experimental treatments. (A) Full exclosure plot, Locust Block 2008; (B) 
partial exclosure plot, Prescott Block 2007; (C) deer foraging inside partial exclosure, Fisher 
Block 2009; (D) moose foraging in control plot, Locust Block 2010.  Photo credits: A by Audrey 
Barker-Plotkin; B by Justin Compton 
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Figure 2.2  Effect of browsers on the abundance of woody plants above the herbaceous layer (≥ 2 
m in height; LRT χ2 =  23.2; df=  2; P <0.0001) and within the herbaceous layer (<2 m in height; 
LRT χ2 = 13.78; df = 2; P = 0.001).  Bars represent mean ± SE.  Treatment means with the same 
letter do not differ significantly. 
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Figure 2.3  Effect of browsers on the combined abundance of 13 herb and shrub species affiliated 
with undisturbed/forest habitat (P = 0.007) and 18 herb and shrub species associated with 
disturbed/open habitats (P = 0.010).  Bars represent mean ± SE.  Treatment means with the same 
letter do not differ significantly.  Aralia nudicaulis was the dominant forest species (26% of total 
abundance), and Rubus allegheniensis the dominant open species (47% of total abundance).  See 
Table 2 for complete list of indicator species. 
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Figure 2.4  Effect of browsers on (A) native woody plant richness at the subplot scale (mean no. 
of species of trees, shrubs, and lianas in 13, 1m2 in each plot (LRT χ2 = 10.21; df = 2; P = 0.006); 
and (B) native herbaceous species richness at the plot scale (no. species of forbs, graminoids, and 
ferns 169 m-2; LRT = χ2 = 8.6; DF = 2; P = 0.013). Bars = mean ± SE.  Treatment means with the 
same letter do not differ significantly. 

 

 



 

47 

 

 
CHAPTER 3 

EFFECTS OF UNGULATE BROWSERS ON TREE RECRUITMENT IN LOGGED 

TEMPERATE FORESTS 

 

3.1 Abstract 

Large herbivores at high densities are major drivers of tree recruitment in northern 

forests.  However, few studies have examined the combined effects of multiple ungulate 

species at low densities in structuring temperate forests.  Low densities of herbivores may alter 

the vegetation in unexpected ways, and the effects of two or more herbivore species are difficult 

to predict because their combined foraging may be compensatory (opposing) or additive 

(compounding).  I explored the effects of two ungulates (moose [Alces alces] and white-tailed 

deer [Odocoileus virginianus]) occurring at low densities on tree recruitment over 6-7 years in 

recently logged patch cuts of Massachusetts, USA. I established three combinations of ungulates 

using two types of fenced exclosures –  (none (full exclosure), deer (partial exclosure), and deer + 

moose (control) -- and examined the response of tree density, basal area, species composition, 

and diversity (≥2 m in height) to browser treatments in 2011 and 2014.   

The addition of browsers had strong additive effects on tree recruitment.  Stem densities 

and basal area in deer + moose plots were reduced by 2-3-fold in 2014 relative to no-ungulate 

plots.  Deer alone had relatively minor effects on density and basal area that did not differ 

significantly from ungulate exclusion.  Moose + deer reduced the density of Prunus pensylvanica 

and Acer rubrum in 2011 and P. pensylvanica and Quercus spp. in 2014.  The addition of 

browsers initially suppressed species richness and diversity in 2011, but moose + deer increased 

or maintained diversity and richness in 2014.  In contrast, less intensive but more selective 

browsing by deer alone reduced richness in both time periods.  My results revealed that low 
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densities of two ungulate species had both straightforward and complex effects on regenerating 

forests in the first several years following canopy removal from logging.  Examining browsing 

impacts at low densities of herbivores and by multiple levels of browsers is a critical piece in 

understanding ungulate-forest interactions. 

 

3.2 Introduction 

Numerous recolonizations and population increases of previously extirpated or depleted 

forest ungulates occurred in the 20th century as a result of conservation efforts and changes in 

land use (Foster et al. 2002, Cote et al. 2004, Kuijper et al. 2010a).  Over the past several decades, 

a large body of research has documented that ungulates (primarily cervids) dramatically reduce 

the density, height, composition and species richness of regenerating trees (Tilghman 1989, 

McInnes et al. 1992, Thompson et al. 1992, Russell et al. 2001, Horsley et al. 2003, Gill 2006, 

Nuttle et al. 2013).  However, most of these studies occurred in landscapes with elevated cervid 

densities (i.e, >8 deer km-2; or ≥1.5 moose km-2).  The extent to which lower cervid densities (i.e., 

≤6-7 deer km-2  and <1 moose km-2) – characteristic of large parts of North America’s Eastern 

Deciduous Forests (Adams et al. 2009, Bergeron et al. 2011, Wattles and DeStefano 2011) – alter 

tree regeneration is less understood and may differ substantially from areas with high densities of 

cervids (Royo et al. 2010, Bergeron et al. 2011).  For instance, low to moderate densities of 

browsers could potentially enhance tree diversity in forest openings by controlling dominant 

woody plants within reach of the browsers and “rescuing” inferior competitors from competitive 

exclusion (Gill 2006, Hester et al. 2006, Borer et al. 2014). This hypothesis however remains 

largely untested for tree regeneration.  Understanding herbivory impacts across the range of 

ungulate densities is essential to accurately assessing and generalizing vegetation changes that are 

critical for habitat and ecosystem services. 



 

49 

 

In addition to the paucity of studies capturing the lower end of cervid density gradients, 

few studies have examined the combined effects of multiple ungulate species on forest 

regeneration (Ritchie and Olff 1999, Wisdom et al. 2006).  The effects of two or more herbivores 

on plant communities may either compound (additive) or offset (compensatory) the effects of a 

single herbivore species, although vegetation biomass is generally reduced in either scenario 

(Ritchie and Olff 1999). Additive effects occur when multiple herbivores consume primarily the 

same plant species and therefore alter the community in the same direction as a single herbivore 

(Ritchie and Olff 1999).  Compensatory effects occur if the herbivore species consume primarily 

different plant species so that their individual effects on plant species balance each other out 

(Ritchie and Olff 1999).  The extent to which a recolonizing herbivore will join an existing 

herbivore to have additive or compensatory effects is difficult to predict because the addition of 

the former can initiate diet shifts in the latter (Hester et al. 2006). 

In the late 20th century moose (Alces alces) recolonized much of their former southern 

range in the northeastern deciduous forest region (Faison et al. 2010, Wattles and DeStefano 

2011), creating a two-ungulate system with white-tailed deer (Odocoileus virginianus) for the 

first time in almost two centuries in some landscapes.  Almost nothing is known about how low 

densities of moose (<0.5 km-2) interact with other browsers to shape the structure and 

composition of temperate forests (but see Kuijper et al. 2010b).  Because moose and deer are 

generalist browsers that consume many of the same woody plants, they might be expected to have 

additive effects on plant communities (Boer 1997, Renecker and Schwartz 1997; Ritchie and Olff 

1999).  However, deer consume a higher proportion of herbaceous plants (40%) than do moose 

(10%), and the two animals’ woody plant diets are reported to overlap by only about 40% with 

respect to the frequency with which different plant species are consumed (Ludewig and Bowyer 

1985, Renecker and Schwartz 1997).  Hence, deer + moose foraging could be compensatory in 

some cases.   
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Foraging by moose and deer at low densities could have implications for one of the most 

important and enigmatic dynamics across the temperate forest: the long-term recruitment failure 

of oaks (Quercus) – a valuable timber tree, and critical source of food for wildlife (McShea and 

Healy 2002) – and replacement by maple (Acer), birch (Betula), and other shade tolerant 

hardwoods (Gill 2006, Vera et al. 2006, McEwan et al. 2011).  Oaks are generally reduced by 

deer browsing (Gill 2006), but some evidence suggests that low to moderate browsing may 

benefit oaks via competitive release (Eschtruth and Battles 2008).  Moreover, deer sometimes 

have even greater effects on red maple (Acer rubrum) than on oaks (Abrams and Johnson 2012, 

Nuttle et al. 2013).  Moose appear to prefer red maple over oaks, but are still known to suppress 

oaks in some areas (Godin 1977, Abaturov and Smirnov 2002, Faison et al. 2010).  Thus 

uncertainty exists about the extent to which the recent addition of moose and low densities of deer 

have influenced oak-red maple dynamics in northeastern temperate forests. 

Here I explore the role of moose + deer in structuring temperate forest communities in 

the first 6-7 years following canopy removal from logging.  Ungulates are drawn to disturbed 

openings and often exert strong interactions in these sites where most or all of the vegetation must 

pass through the ungulate browsing zone (Eschtruth and Battles 2008, Kuijper et al. 2009).  

Specifically, I asked: (1) To what extent would low densities of moose + deer browsing have 

significant additive (negative) effects on stem density and basal area? (2) Would the addition of 

moose have additive or compensatory effects on species composition, and how would these 

interactions affect species richness and diversity? (3) How would the addition of moose influence 

oak-maple-birch dynamics? (4) Finally, to what extent would low densities of deer alone alter 

stem density, species composition, and diversity?   

 

3.3 Materials and Methods 
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The physiography of Central Massachusetts is characterized by rolling plateaus with hills, 

and the climate is permanently humid with warm summers and cold winters (Brouillet and 

Whetstone 1993, US EPA 2015).  Mean annual precipitation ranges from 97-127 cm per year, 

and mean temperature ranges from -12 – -0.5ºC in January and 14-28°C in July.  Mature forest 

vegetation is characterized by transition hardwood forests – (mixed oak, red maple, black birch 

(Betula lenta), and beech (Fagus grandifolia) – with significant components of eastern hemlock 

(Tsuga canadensis) and white pine (Pinus strobus; Foster et al. 2004, USDA 2015).  In addition 

to timber harvesting, exotic forest insects and pathogens including hemlock woolly adelgid 

(Adelges tsugae), beech bark disease (Cryptococcus fagisuga and Nectria spp.), chestnut blight 

(Cryphonectria parasitica) and gypsy moths (Lymantria dispar); and meteorological events (ice 

and windstorms) are the prevalent disturbances in the region (Foster et al. 2004).  Patch cuts are a 

less common form of timber harvest in the region than selective harvests (Kittredge et al. 2003), 

but patch cuts are still an important part of some forest management plans on public land and 

timber company lands (Kyker-Snowman 2007).    

Moose historically ranged as far south as northwestern Connecticut, southern New York, 

and Pennsylvania before European settlement (Reeves and McCabe 1997). After being extirpated 

from Massachusetts in the early 19th century, moose recolonized central Massachusetts in the late 

20th century (Faison et al. 2010).  Today, the southern range limit for moose in the eastern United 

States is in northern Connecticut (Wattles and DeStefano 2011).  Densities are estimated to be 

about 0.2 km-2 in central Massachusetts (USGS Massachusetts Cooperative Research Unit, 

unpublished data).  White-tailed deer were common in presettlement New England, were 

extirpated from much of the state of Massachusetts by the mid-19th century, and recovered their 

former range and abundance during the mid to late 20th century (McCabe and McCabe 1984, 

Foster et al. 2002).  Today, deer densities are estimated at 3.9-5.8 km-2 for north-central 

Massachusetts (McDonald et al. 2007, D. Stainbrook pers. comm). 
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In 2007-2008, experimental exclosures were established in six mixed conifer-hardwood 

stands (≤6 ha in size) 3-6 months after being clearcut at the Harvard Forest and the Quabbin and 

Ware River Watershed forests in Central Massachusetts (Table 1).  Four of the sites were former 

conifer plantations with mixed native hardwoods, and the other two were naturally grown oak-

pine-hardwood stands (Table 1).  The experimental design was a randomized block with three 

levels of large herbivores – complete ungulate exclusion (hereafter no-ungulate plots), moose 

exclusion (hereafter deer plots), and no exclusion (hereafter deer + moose plots).  A fourth 

treatment that excluded the smaller deer but was open to moose was not feasible, but other studies 

have successfully utilized similar additive, non-factorial designs (Ritchie and Olff 1999, Manier 

and Hobbs 2007).  Blocks were at least 1 km apart from one another.  The exclosures were made 

of high tension wire game fence with 15 cm grid mesh and 2.5 m in height.  The full exclosure 

was fenced to the ground, the partial exclosure had a 60 cm opening around the bottom of the 

fence that excluded moose but allowed access to deer and other wildlife, and the control plot was 

unfenced and open to both browsers.  The 15cm wire mesh of the full exclosure fence enabled 

access to small mammals, including lagomorphs and rodents.   

Exclosure and control plots were 20 x 20 m in size and located at least 10 m apart from 

each other.  In 2008, a 5 x 5 sampling grid of 4 m2 circular subplots was established in the center 

of each plot, (4 m from plot edge and 3 m from each other), totaling a 100 m² sampling area.  At 

each of the subplots, tree seedlings were sampled and measured for height.  At the start of the 

experiment, no residual trees were present in the three treatments, and virtually all advance 

regeneration or sprouts were < 1m in height; no woody regeneration was >2 m in height.  

Baseline sampling revealed there were no significant initial differences in species composition or 

stem density among treatments.  In 2012, stems 0.5-2 m in height were assessed for past browsing 

on the leading shoot in each treatment plot (Kuijper et al. 2010a).   
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Tree regeneration data presented in this paper were collected in June-August of 2011 (3-4 

years after treatment) and again in July 2014, 6-7 years after treatment.  Twenty-five of the 

subplots were sampled in 2011 (100m-2), and 13 of the original subplots were resampled (i.e., 

every other subplot, totaling a 52 m2 sampling area) in 2014 because the stem density of the plots 

had grown enormously.  To standardize comparisons between the two time periods, I analyzed 

only the 13 subplots from 2011 that were also sampled in 2014.  At each of the subplots, all tree 

and shrub species ≥2 m in height were recorded, and in 2014 the diameter at breast height (DBH) 

of each stem was measured.  I chose the 2 m height minimum because it corresponded with the 

upper limit of the herbaceous or forest floor layer (Oliver and Larson 1996, Gilliam 2014), as 

well as the upper limit of the predominant browsing zone for eastern North American forest 

ungulates (Frerker et al. 2013).  My study therefore focused on the composition, diversity, and 

density of tree recruitment that was able to successfully pass through the browsing filter into the 

next forest stratum (cf. Kuijper et al. 2010b)   

To test the integrity of the experimental design for maintaining different diversities of 

herbivores, Reconyx, Inc. (Holmen, Wisconsin) and Cuddeback, Inc. (Greenbay, Wisconsin) 

remote cameras were mounted inside each partial exclosure and toward each control plot between 

2008 and 2011 (mention of trade names does not constitute an endorsement from the U. S. 

Government).  Cameras were discontinued after 2011 because the vegetation had grown to a 

height that effectively blocked the camera’s ability to detect animals.  Control and partial 

exclosure plots in each block had the same type of camera set to the same delay specifications, 

and I calculated the frequency of visits by deer and moose (week-1; Augustine and Frelich 1998).  

A minimum of 5 minutes of elapsed time between the last image taken of an animal and the 

arrival of a new animal (or the same animal returning at a later time) was used to separate visits.   

Ungulate pellet groups were counted in 2012 in 25 4-m2 vegetation subplots and again in 2013.  

Because I encountered a number of 0 values in 2012, I increased the sampling area of pellet group 
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counts from 100 m-2 to 400 m-2 in 2013 and standardized two year mean values by converting 

counts to number ha-1.  Pellet groups were defined as having at least 15 individual pellets to avoid 

over-counts from scattered individual pellets (Eschtruth and Battles 2008). 

 I used linear mixed effects models (package lmer, the R Foundation for Statistical 

Computing 2014; R version 2.15.2) with ungulate treatment as fixed effect and block as random 

effect to determine the response of tree recruitment density, basal area, species richness, and 

diversity to three levels of ungulate browsers.  I also examined models that included variation in 

herbivore abundance (from pellet count indices) across the blocks as a covariate, but in no 

instance did these models fit the data better than the basic treatment model when compared with 

AIC.  Because my study sites were logged at slightly different times (age since harvest ranged 

from 5.8-6.7 years), I also examined the effects of time since harvest on tree regeneration 

characteristics and found time to be an unimportant factor. 

 For species richness I examined both species density (no. species/52 m2) and rarefied 

species richness (Gotelli and Colwell 2001).  Hereafter I refer to species density as “species 

richness” to avoid confusion with stem density and herbivore density.  For rarefied richness I 

constructed individual based rarefaction curves and used non-overlapping 95% confidence 

bounds as the criterion for significant differences among treatments (Gotelli and Ellison 2013). 

For diversity, I used effective number of species defined as exp(Shannon diversity Index) (Jost 

2006, Nuttle et al. 2013).   

 I used either a Gaussian or Gaussian with log link (log normal) distribution for all 

response variables after examining the residuals to determine the best fit.  For hypothesis tests of 

treatment effects, I used likelihood ratio tests on nested null and treatment models.  For 

significant effects (P ≤ 0.05) of treatment, I performed pairwise comparisons between treatment 

pairs by simulating the posterior distribution 10,000 times to calculate 95% confidence intervals 

and approximate P-values for the fixed effects (Bagchi et al. 2011, Rapp et al. 2013).  To 
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compare individual species density among treatments, I used Friedman tests with post hoc tests 

(package agricolae), because the data were frequently heterogenous.  To test for significant 

differences in community composition among treatments I used adonis (package vegan), the 

analysis of variance of distance measures (Bray), grouped by block (1,000 permutations; Oksanen 

et al. 2015)   The stem density for each species was entered into the multivariate test, and rare 

species that occurred in only 1 of the 18 treatment plots (5.5%) were removed prior to analysis 

(McCune and Grace 2002).   

 I examined browsing preferences and overall selectivity by deer in the partial exclosure 

and by moose + deer in the control plot.  I analyzed the 10 most common tree species using 

IVLEV’s electivity index (Ivlev 1961, Tanentzap et al. 2009) using the equation: 

𝐼𝑖= 𝑟𝑖−𝑝𝑖𝑟𝑖+𝑃𝑖
 

where r =  the frequency of browsed stems of a species/the total number of browsed stems of all 

tree species, and p = the frequency of available stems of a species/the total number of available 

stems of all tree species. I values range from -1 to 1, with positive values denoting species 

browsed in greater proportion to their availability and negative values species browsed in lower 

proportion to their availability.   

 

3.4 Results 

 Two year mean deer pellet groups were similar in partial exclosure (216.7 groups ha-1; SE 

= 94.4) and control plots (187.5 group ha-1; SE = 70.0; Wilcoxon signed rank test: V = 13, P = 

0.67).  Moose pellet groups (two year mean: 202.1 groups ha-1; SE = 82.9) were detected only in 

control plots.  Remote cameras detected deer in partial exclosures (0.31 visits wk-1; SE = 0.13) 

and control plots (0.61 visits wk-1; SE = 0.20; Wilcoxon signed rank test: V = 12, P = 0.31) at 

each block; and moose were detected only in control plots (0.56 visits wk-1; SE = 0.18).  
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Percentage of stems with leading shoot browsed was much higher in moose + deer plots (58%; 

SE = 8) than in deer only plots (16%; SE = 3). 

Nine of 10 tree species had higher electivity indexes in deer-only plots compared to deer 

+ moose plots (Table 2).  Pin cherry (Prunus pensylvanica) and white ash (Fraxinus Americana) 

had the highest electivity index in deer plots, and red maple had the highest electivity index in 

deer + moose plots. White pine had the lowest electivity index in both plots. 

 Deer + moose browsing in control plots reduced stem density (≥2 m in height) by almost 

5-fold in 2011 (LRT χ2 = 17.04; df = 2; P = 0.0002) and by almost half in 2014 relative to 

ungulate excluded areas (LRT χ2 = 8.48; df = 2; P = 0.014; Figs. 1 and 2).  Deer alone caused 

relatively minor reductions in stem density that did not differ significantly from ungulate 

exclusion in either time period (P> 0.10).  Results were similar but more pronounced for basal 

area in 2014, as deer + moose reduced the cross sectional area of stems above 2 m by 2.5-3-fold 

relative to no-ungulate and deer plots (LRT χ2 = 21.91; df =  2; P<0.0001; Figs. 1 and 2). Again, 

deer alone had relatively minor and non-significant effects on basal area. 

A total of 34 tree and shrub species ≥2 m were recorded in the 18 plots of the six blocks; 

92% of the stems sampled were tree species.  Four species (12%) were exotic, including glossy 

false buckthorn (Frangula alnus), Morrow’s honeysuckle (Lonicera morrowii), and European 

buckthorn Rhamnus cathartica, and European mountain-ash (Sorbus accuparia), which occurred 

in three (one of each of the three treatments) of the 18 plots. Community composition did not 

differ significantly among treatments in 2011 (Adonis F = 0.94; R2 = 0.11; P = 0.255) or in 2014 

(Adonis F = 0.57; R2 =  0.07; P = 0.294), as the same three species – pin cherry, red maple, and 

black birch – dominated the three treatment plots in both time periods.  In 2011, two species 

declined significantly with the addition of browsers: pin cherry (Friedman χ2 = 8.59; df = 2; P = 

0.014), and red maple (Friedman χ2 = 5.83; df = 2; P = 0.054; Figs. 1 and 3).  Pin cherry declined 
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in both deer and deer + moose treatments relative to ungulate exclusion, whereas red maple 

declined only in moose + deer plots relative to ungulate exclusion.  

In 2014, pin cherry (Friedman χ2 = 8.67; df = 2; P = 0.013) and oaks (combined red 

[Quercus rubra, white [Q. alba], and black [Q. velutina]; Friedman χ2 = 6.64; df = 2; P = 0.036; 

Fig. 3) differed significantly among treatments.  Both taxa were reduced in deer + moose plots 

relative to the other treatments, which did not differ from one another (Fig. 3).  Red maple 

recovered to some extent in the control plot in 2014 and no longer differed significantly among 

treatments (P = 0.11).  Black birch increased sharply in the deer + moose plot compared to 2011, 

becoming the only taxa with a higher density of stems in the control plot than the other 

treatments.  Both red maple and black birch became more dominant in terms of relative 

abundance with the addition of browsers, and oaks became less abundant.  

Species richness (LRT χ2 = 16.56; df = 2; P = 0.0003) and diversity (LRT χ2 = 12.23; df = 

2; P = 0.002) differed significantly by ungulate treatment in 2011 (Fig. 3).  All treatment 

combinations differed significantly in richness, whereas deer + moose plots differed from the 

other two treatments with respect to diversity (Fig. 4).  In 2014, species richness still differed by 

treatment (χ2 = 8.18; df = 2; P = 0.017), with deer effects lower than in no-ungulate plots, but 

moose + deer plots no longer differed significantly from the other treatments (P = 0.06; Fig. 4).  

Diversity did not differ by treatment in 2014 (Friedman χ2 = 2.87; df = 2; P = 0.238).  In 2011, 

rarefied richness was lowest in deer + moose plots, and this treatment diverged from deer plots at 

approximately 35 stems (Fig. 5).  In 2014 rarefied richness was highest in deer + moose plots and 

diverged from deer plots at approximately 190 stems (Fig. 5).   

 

3.5 Discussion 

My results revealed both straightforward and complex effects by two ungulate browsers 

at low densities on regenerating temperate forests, 6-7 years after canopy removal from logging.  
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The addition of moose reduced tree recruitment and individual tree taxa to a much greater extent 

than deer alone, but foraging by deer + moose had fluctuating and complex effects on diversity 

and richness.  Deer browsing alone had relatively minor effects on stem density and basal area, 

but browsing by the smaller herbivore more consistently reduced measures of diversity than did 

more intensive browsing by moose + deer.  

Greater consumption of woody plants by two generalist browsers had additive (negative) 

effects on density and basal area of stems ≥ 2 meters in height.  Moose + deer plots diverged 

quickly from the other treatments with respect to stem density after the first 3-4 years and 

remained different after 6-7 years.  By 2014, stem densities in deer + moose plots had equaled 

densities in no-ungulate plots in 2011, suggesting a three year delay in recruitment by the two 

herbivores.  Consistent with other studies examining impacts by low to moderate densities (3.7-

7.0 km-2) of deer (Tilghman 1989, Holladay et al. 2006), browsing by deer (~4-5 km-2) alone had 

relatively minor effects on stem density and basal area that did not differ from ungulate excluded 

plots.  What explains the strong compounding effect on tree recruitment by the addition of very 

low densities of moose (~0.2 km-2) – densities that typically have unimportant effects on forest 

regeneration (Abaturov and Smirnov 2002, Bergeron et al. 2011)?  First, reported regional 

densities of moose probably underestimate the local densities of moose that occurred in these 

patch clearcuts.  My indices (cameras and pellet counts) along with studies of moose movements 

suggest that local moose densities in logged areas may be at least twice the ambient densities in 

uncut forests (Faison et al. Unpublished Data; Wattles and DeStefano 2013).  A second possible 

explanation is the relatively small size of the patch clearcuts in my study area (≤6 ha), which tend 

to concentrate browsing impacts by moose (Faison et al. 2010).  Very large clearcuts and burns in 

boreal forests that are several orders of magnitude larger than my study sites can overwhelm 

moose with available forage, rendering browsing impacts relatively unimportant (McLaren and 

Peterson 1994, Pastor et al. 1988, Delong and Tanner 1996, Hunter 1996).  A third reason is that 



 

59 

 

moose browsing could result in greater per capita impact by deer than when deer forage alone.  

By reducing the height of vegetation, a larger herbivore can maintain the vegetation within the 

browsing zone of a smaller herbivore for a longer period of time; and previous browsing often 

increases the palatability of shoots and therefore the probability that they will be browsed again 

(Bergstrom and Danell 1987, Makhabu et al. 2006).   

Early reductions in stem density by deer + moose coincided with reduced species 

richness and diversity in 2011, as would be expected, given the close relationship between species 

richness and number of individuals sampled (Gotelli and Colwell 2011).  However reductions in 

species richness appeared to exceed that which would be expected by stem densities alone, as 

rarefied richness in deer + moose plots diverged from deer plots and perhaps from no-ungulate 

plots (Fig. 4).  That deer alone reduced species richness relative to no-ungulate plots (Fig. 4), 

revealed that even low densities and browsing intensities by deer can reduce the number of 

species recruiting above the browsing zone (Alverson and Waller 1988).  Thus, in the first 3-4 

years, ungulate browsing (at all levels) appeared to act mainly as a filter through which only a 

limited number of individual species could pass (cf. Kuijper et al. 2010b).   

In 2014, patterns of richness and diversity among treatments changed markedly, as all 

diversity and richness metrics increased sharply in deer + moose plots.  Diversity no longer 

differed significantly among treatments.  Richness remained significantly lower in deer plots, but 

the addition of moose had no additional effect; in fact, deer + moose plots no longer differed 

significantly from no-ungulate plots (P > 0.05).  Rarefied richness in deer + moose plots was 

highest and diverged significantly from deer plots, but not from no-ungulate plots, suggesting 

compensatory effects by the two browsers (Ritchie and Olff 1999, Hester et al. 2006).  After 6-7 

years of growth, deer + moose browsing appeared to change from a suppressive filter to a process 

reducing competition via the reduction of dominant plants (Hester et al. 2006, Borer et al. 2014). 

Divergence in (rarefied) richness between deer and moose + deer plots can perhaps be explained 
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by the vegetation in deer plots exposed to two important limiting factors: competition from a 

dominant overstory left mostly intact by deer (Fig. 2) and relatively selective browsing (Table 2).  

In contrast, the vegetation in no-ungulate plots was exposed to only competition.  By 2014, deer + 

moose plots appeared to have neither limiting factor, with competition significantly reduced by 

browsing and relatively unselective foraging dispersing browsing impacts more evenly across 

many species (Edenius 1991, Ritchie and Olff 1999). 

Moose + deer browsing had clear additive effects on oaks, reducing this important tree 

taxon sharply compared to the other treatments.  Reductions in plant competition by moose + 

deer revealed no detectable benefits for oaks, failing to offset the suppressive effects of browsing.  

Relatively high abundance of thorny Rubus spp. in the control plots compared to the other 

treatments also appeared to provide little benefit or protection to oaks (cf. Vera et al. 2006; Faison 

et al. unpublished data).  Oaks did show some tolerance to low intensity browsing by deer alone 

(cf. Healy 1997), as they remained unchanged in stem density in deer plots relative to ungulate 

excluded plots.  Red maple and black birch, however, showed greater resilience to browsing by 

deer + moose.  Black birch recruitment was suppressed early by browsing in 2011, but recovered 

strongly in 2014.  Red maple, despite being the most preferred browse species by moose + deer 

and reduced in 2011, still increased in relative abundance that year.  In other words red maple 

benefitted from intensive herbivory by being more browse tolerant than other taxa such as oaks., 

pin cherry, and paper birch (Betula papyrifera).  My results at this stage of forest development (6-

7 years post treatment), though admittedly limited in scope, suggest that deer + moose foraging in 

harvested areas favors the continued long-term transition of oak to maple-dominated composition 

in the region (Fei et al. 2011, McEwan et al. 2011).  Still, it is important to consider the transient 

nature of these developing stands and the changes that could occur to oaks and other tree taxa as 

stems grow above the reach of ungulates.  For instance, mature red oaks develop larger diameters 
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in heavily browsed, open grown environments with reduced stem competition than in areas 

protected from browsing (Lucas et al. 2013). 

Browsing induced declines in stem density, basal area, and individual taxa also revealed 

relatively short-term successional dynamics.  Pin cherry, which declined sharply with the addition 

of browsers in both 2011 and 2014, is often the dominant species for the first 10-15 years after 

major disturbances in northern and transition hardwood forests of northeastern North America 

(Marks 1974; Hibbs 1983).  Thus the response of this pioneer species to browsing in my study 

area suggests that deer + moose may reduce the duration of its dominance and accelerate the 

transition of tree species toward more shade tolerant red maple and black birch.  However, the 

much reduced stem density and basal area in deer + moose plots, resulting in a more open-grown 

structure, suggests an overall slowing down of forest succession from browsing (Oliver and 

Larson 1996).   

The current study reveals the ecological and conservation effects of a recolonizing large 

herbivore on tree recruitment in temperate forest communities during the first 6-7 years after 

canopy removal from logging.  Effects by moose + deer appeared to be additive, in terms of 

reducing the density and basal area of tree recruitment and the density of important pioneer (pin 

cherry) and later successional (oak) tree taxa.  In contrast, browser effects on species richness and 

diversity were more complex over time, initially showing additive reductive effects in 2011 and 

later showing compensatory effects in 2014.  My results highlight the predictable and complex 

effects of two large herbivores at low densities on regenerating temperate forests and stress the 

importance of investigating ungulate impacts across the range of herbivore densities and (when 

feasible) with multiple browser treatments.   
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Table 3.1 Characteristics of study site blocks in central Massachusetts, USA  

Block  Location Previous 
Overstory 
Composition 

Dominant 
Regeneration 
Species 

Exclosure
s Built 

Age 
of 
Plot 
(yrs.) 

Dana Quabbin 
Reservat
ion  

oak-red maple-
black birch 

Acer rubrum 
Betula lenta, 
Pinus strobus  

Nov. 2007 6.7 

      
Fisher Harvard 

Forest 
red pine-white 
pine, black 
birch-red maple 

Prunus 
pensylvanica, 
Acer rubrum, 
Betula lenta  

July 2008 6.0 

Locust  Harvard 
Forest 

red pine-red 
maple-red oak 

Acer rubrum, 
Betula 
papyrifera, 
Prunus 
pensylvanica 

June 2008 6.1 

Prospect  Harvard 
Forest 

spruce-black 
cherry- red 
maple 

Prunus 
pensylvanica, 
Prunus 
serotina, Acer 
rubrum 

October 
2008 

5.8 

Prescott Quabbin 
Reservat
ion  

oak-red maple-
black birch 

Acer rubrum 
Betula lenta, 
Quercus rubra 

Nov.2007 6.7 

 
Ware 

 
Ware 
River 
Reservat
ion  

 
pine-larch-
hardwoods 

 
Acer rubrum, 
Prunus 
serotina, 
Quercus rubra, 
Fraxinus 
americana 

 
December 
2007 

 
6.6 
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Table 3.2. Browsing selectivity by deer alone and moose + deer combined on the 10 most 

common tree species.  The Ivlev index (Ivlev 1961) ranges from -1 to 1.  Species with positive 

values were browsed in greater proportion to their availability and those with negative values in 

lesser proportion to their availability. 

Species  Deer Moose + Deer 
Acer rubrum -0.015  0.12 

Amelanchier spp. -0.18 -0.01 

Betula lenta -0.347 -0.03 

Betula papyrifera -0.18 -0.04 

Fraxinus americana 0.297 -0.14 

Pinus strobus -1.0 -0.81 

Populus tremuloides 0.16  0.03 

Prunus pensylvanica 0.35 -0.02 

Prunus serotina -0.52 -0.19 

Quercus rubra -0.5 -0.09 
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Figure 3.1 . Photos of tree recruitment. (A) full exclosure plot in 2008; and (B) the same 

plot 6 years later in 2014, with moose + deer browsed area in foreground; (C) Dominant 

Prunus pensylvanica in bloom inside full exclosure plot (in background) and largely 

suppressed or absent in foreground area browsed by moose + deer in 2012. 

B A 

C 



 

65 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Effects of browsers on (A) woody stem density and (B) basal area for stems ≥ 2 m in 
height from 2008 to 2014.  Differences among treatments were significant for density in both 201
1 (P = 0.0002) and 2014 (P = 0.014) and for basal area (only measured in 2014; P < 0.0001) as de
termined by likelihood ratio tests.  Treatment means with the same letter do not differ significantl
y.  Pairwise comparisons for density were the same in 2011 and 2014. Bars represent mean ± SE. 
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Figure 3.3 Effect of browsers on the recruitment density of common tree taxa above 2 m 
in height in 2011 (top) and 2014 (bottom).  Prunus pensylvanica differed significantly by 
treatment in both years (P = 0.01), Acer rubrum differed significantly in 2011 (P = 0.05) 
and Quercus spp. (combined Q. rubra, Q. velutina, and Q. alba) differed significantly in 
2014 (P = 0.04) as determined by Friedman rank tests.  Bars represent mean ± SE. Treat
ment means with the same letter do not differ significantly.   
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Figure 3.4 Effect of browsers on (A) species richness and (B) diversity of tall woody stems (≥2 
m) in 2011 and in 2014.  Richness differed significantly by treatment in 2011 (P = 0.0003) and in 
2014 (P = 0.04), and diversity differed by treatment only in 2011 (P = 0.002).  Bars represent 
mean ± SE. Treatment means with the same letter do not differ significantly.   
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Figure 3.5 Individual based rarefaction curves (rarefied richness) by browser treatment in 2011 (l
eft) and 2014 (right).  Vertical lines represent number of individual stems at which one treatment 
diverged from another as determined by non-overlapping 95% confidence intervals (Gotelli and E
llison 2013). 
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CHAPTER 4 

LONG-TERM DEER EXCLUSION HAS COMPLEX EFFECTS ON DIVERSITY AND 

COMPOSITION IN A SUBURBAN HARDWOOD FOREST 

 

4.1 Abstract 

Deer herbivory is one of the leading biotic disturbances on forest herbaceous layers (i.e. 

herbs, small shrubs, and small tree seedlings).  A large body of research has reported declines in 

height, abundance, and reproductive capacity of forbs and woody plants coupled with increases in 

abundance of graminoids, ferns, and exotic species from deer herbivory.  Less clear is the extent 

to which (and the direction in which) deer alter herbaceous layer diversity, where much of the 

plant diversity in a forest occurs.  We examined the effect of 15 years of deer exclusion on the 

understory of a suburban hardwood forest in Connecticut exposed to decades of intensive 

herbivory by white-tailed deer (Odocoileus virginianus).  We used a block design with two 

treatments (fenced and unfenced) to compare species richness (at subplot and plot scale), 

abundance, structure, and composition between browsed and unbrowsed plots.     

Forbs were more than twice as abundant in fenced than in unfenced plots, whereas sedges 

were 28 times more abundant and total exotic cover generally higher in unfenced than exclosure 

plots.  Native and exotic species richness were both higher in grazed than ungrazed plots at the 

subplot scale, and native herbaceous richness was higher in grazed plots at both spatial scales; in 

contrast, native shrub richness increased with deer exclusion at the plot scale.  My results suggest 

that deer exclusion has contrasting effects on species richness depending on plant functional 

group (i.e. low herbs vs taller shrubs), but that overall richness of both exotic and native plants 

declined with deer exclusion in this suburban hardwood forest.  Neither high densities of deer, 
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nor the absence of deer, can be assumed to have uniformly “negative” or “positive” effects on 

forest understories.   

 

4.2 Introduction 

It is well established that intensive herbivory by cervids has powerful effects on 

herbaceous layers (i.e. herbs, small shrubs, and small tree seedlings) in northern forests (Cote et 

al. 2004; Waller 2014).  Browsing induced declines in height, abundance, and reproductive 

capacity of forbs and woody plants coupled with increases in abundance of graminoids, ferns, and 

exotic species have been reported by many authors (Cote et al. 2004, Eschtruth and Battles 2009, 

Rooney 2009, Frerker et al. 2014, Nuttle et al. 2014).  Less clear is the extent to which (and the 

direction in which) deer alter herbaceous layer diversity, where much of the plant diversity in 

forests occur (Gilliam 2007).  This uncertainty is due in part to the relatively few studies that have 

examined cervid effects on herbaceous plants (Royo et al. 2010, Roberts and Gilliam 2014), but 

also to the varied results that have been reported.  Studies from regions with long histories of high 

deer densities reported declines in diversity from herbivory (Putman et al. 1989, Rooney et al. 

2003, Webster et al. 2005, Goetsch et al. 2011).  Other authors reported increases in diversity 

with cervid herbivory (Royo et al. 2010, Perrin et al. 2011, Hegland et al. 2013, Roberts and 

Gilliam 2014).  Still others reported no significant effect by white-tailed deer on diversity or 

richness (Webb et al. 1956, Kraft et al. 2004, Rooney 2009).  Given that global loss of 

biodiversity is of critical concern today and that herbivory by large herbivores is one of the most 

important biotic disturbances influencing vegetation composition and structure (Hegland et al. 

2013, Borer et al. 2014), a better understanding of how forest herbaceous layer diversity is shaped 

by cervids is needed.  

The direction in which cervids drive diversity appears in some cases to be determined by 

animal density and forest disturbance.  Low to moderate deer densities (5-8 deer km-2) interacting 
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with forest disturbance (treefall gaps and ground fire) resulted in greater herbaceous plant 

diversity (Royo et al. 2010), whereas high deer densities (≥10-15 deer km-2) in intact forests 

resulted in declines in diversity (Goetsch et al. 2011).  However, in other intact forests exposed to 

even greater animal densities (18-82 deer km-2), herbaceous layer diversity increased with 

browsing (Perrin et al. 2011).  Other studies suggest that the direction in which diversity is altered 

by herbivory depends on plant functional group and height.  Ungulates may reduce the diversity 

of relatively tall woody plants (i.e., shrubs and tree saplings), but increase the diversity of small 

herbs and small tree seedlings by reducing competition, creating spatial heterogeneity through 

trampling and excreta, and dispersing seeds (Risenhoover and Maass 1987, Hester et al. 2006, 

Kuijper et al. 2010, Hegland et al. 2013).  Although deer are known to facilitate the invasion of 

certain exotic species and increase overall exotic plant abundance (Eschtruth and Battles 2009, 

Frerker et al. 2014), the extent to which deer impact exotic plant diversity either directly or 

indirectly (e.g., by reducing native diversity) is not well documented.  Collectively these results 

suggest that the direction in which cervids are apt to drive native and exotic diversity in a 

particular forest is complex and difficult to predict.   

Here we examine the effects of 15 years of white-tailed deer (Odocoileus virginianus) 

exclusion on the herbaceous layer of a small suburban forest patch in southwestern, CT, USA.  

Severe browse lines have been noted for several decades in this landscape, suggesting strong 

reductive effects by deer on the understory flora.  Because significant reductions in plant biomass 

from browsing do not necessarily correspond with a decline in diversity (Ritchie and Olff 1999) – 

indeed diversity and woody plant biomass are often inversely related (Royo et al. 2010, Roberts 

and Gilliam 2014) – we asked the following questions: (1) has long-term exclusion of deer 

reduced or increased the diversity of native and exotic species in this temperate forest patch; (2) 

has deer exclusion had opposing effects on native diversity in which shorter plant functional 
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groups declined and larger functional groups increased (Hegland et al. 2013)? (3) How has deer 

exclusion altered overall herbaceous layer composition, structure, and abundance?  

 

4.3 Materials and Methods 

The study was conducted at Highstead, a 60 hectare woodland preserve in southwestern 

Connecticut.  Deer densities in southwestern CT (SWCT) have been high since the mid to late 

1980s, and for the past three decades SWCT has supported the highest deer densities in the state 

and among the highest densities in Southern New England (Gregonis 2000, Adams et al. 2009, 

Kilpatrick 2009, SCWDS 1982).  Estimates of 21-24 deer km-2 were reported near Highstead 

between 2009 and 2013 (Kilpatrick 2013).  Observations by preserve staff members from 1998-

2009 suggest that local deer densities at Highstead may have previously been higher, with crude 

estimates ranging from 33-49 deer km-2.   

The study was located in a red maple (Acer rubrum)-white ash (Fraxinus americana) 

forest with the shrub and herb layer dominated by Japanese barberry (Berberis thunbergii), 

northern spicebush (Lindera benzoin), and various graminoid species including sweet wood-reed 

(Cinna arundinacea), white cut grass (Leersia virginica), and sedges (Carex spp.).  Over the past 

8-10 years the exotic Japanese stiltgrass (Microstegium vimineum) has rapidly invaded the 

woodland and has become one of the dominant herbaceous species.  Tree sapling recruitment 

above 30 cm in height is very sparse from decades of herbivory, but very small tree seedlings 

below this height remain common, especially white ash.  The site is positioned below a prominent 

drumlin that rises 35-40 m in elevation approximately 400 m to the east.  The topography is 

gently sloping, and the fine sandy loam soils range from wet to mesic (poorly to moderately well-

drained) and are acidic (pH: 4.5-5; Faber 2008).  This forest was cleared historically for pasture in 

the 18th and 19th centuries, and the land reverted back to forest in the early to mid-20th century.  
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The combination of past land use history, moist soils, and proximity to residential development 

has resulted in a forest heavily invaded by exotic species (cf. DeGasperis and Motzkin 2007). 

One large deer exclosure, 2.1 meters high, 0.40 ha in size (120 x 35 m) was erected in 1998.  

The upslope half of the exclosure and adjacent unfenced area were located on level ground with 

poorly drained soils (hereafter “wet” block), whereas the lower half of the fence and control plot 

were positioned on gently sloping and moderately well drained soils (hereafter “mesic block”).  

The two blocks have distinct forest ages, due to different timing of pasture abandonment.  The 

wet block stand is about 50-55 years old and the mesic block stand approximately 80-90 years 

old.  The wet block is located approximately 50-75 meters from the edge of a large meadow on 

the drumlin.  Because the exclosure was originally constructed for demonstration purposes, no 

baseline herbaceous layer data were gathered.   Given the size of the exclosure and the discrete 

environments at opposite ends of the fence, we decided to use a two-replicate block design with 

deer exclusion as treatment and soil type/forest age as block to examine the vegetation in the 

fenced and unfenced area after 15 years of deer exclusion.  Although technically this constituted 

pseudoreplication because replicates within the single large exclosure were not independent 

(Hurlburt 1984), my plots in the two blocks were located 75-100 m apart and thus functioned 

more as independent replicates.  We chose to apply a relatively conservative approach using an N 

= 2 rather than treating many subplots from the single exclosure as replicates (cf., Goetsch et al. 

2011). 

In 2013, we established 13 1-m2 subplots along five successive parallel transect lines 

within larger 20 x 20 m treatment plots (cf. Frerker et al. 2014).  Plots (both exclosure and 

control) were positioned 5-6 meters from the fence edge at the upper and lower ends of the 

exclosure.  Three subplots were positioned on the two outer and middle rows, and two subplots in 

the 2nd and 4th rows.  Subplots were 6 m apart within the same row and 4.5 meters apart between 

rows.  At each 1 x 1 m subplot, all vascular plants in the herbaceous layer were recorded by the 
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first author and a botanical expert in the region, William Moorhead.  We defined “herbaceous 

layer” as all plants <2 m in height (Oliver and Larson 1996; Carson et al. 2014).  Percent aerial 

cover was estimated for each species and for each plant group (i.e., woody plants, graminoids, 

and forbs) in one of 7 cover classes (1 = <1%, 2 = 1-5%, 3 = 6-15%; 4 = 16-25%, 5 = 26-50; 6 = 

51-75%, 7 = 76-100%).  In addition we performed a 15 minute “meander” survey throughout the 

entire 400 m2 area of each plot and recorded the presence of all woody and herbaceous plant 

species that did not occur in the subplots (Huebner et al. 2007, Goetsch et al. 2011).  

Nomenclature followed Haines (2011).    

 We used linear mixed effects models (package lmer, R Statistical software) with 

ungulate treatment as fixed effect and block as random effect to examine the response of species 

richness, composition, and abundance to deer herbivory.  Before analysis, we converted cover 

classes to percent cover midpoints, and then calculated the mean percent cover for species and 

species group across the 13 1-m2 subplots in each plot as my measure of abundance.  We 

examined species richness at two scales in each plot: subplot (mean number of species per 13 1-

m2 quadrat) and plot (number of species 400 m-2).  Although these measurements are technically 

species density (Gotelli and Colwell 2001), we hereafter refer to species density as “species 

richness.”    

  For each response variable we examined the residuals for normal and log normal 

models and selected the model that fit the data best (Zuur 2009).  For hypothesis tests of 

treatment effects, we simulated the posterior distribution 10,000 times to calculate 95% 

confidence intervals and approximate P-values for the fixed effects (Bagchi et al. 2011, Rapp et 

al. 2013).  To test for significant differences in community composition between treatments we 

used adonis (package vegan), the analysis of variance of distance measures (Bray), grouped by 

block (1000 permutations; Oksanen et al. 2015)   Percent cover abundance for each species was 

entered into the multivariate test, and rare species that occurred in only 1 of the 4 treatment plots 
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were removed prior to analysis (McCune and Grace 2002).  Data were analyzed using R 

statistical software, and alpha was set = 0.05. 

 

4.4 Results 

 Across the four plots in two blocks, 112 native vascular plant species were recorded, of 

which 85 were native and 27 exotic.  Growth forms included 6 ferns, 37 forbs, 28 graminoids, 15 

trees, 20 shrubs, and 6 lianas.  Fifty-four species were common to both treatments; 27 species 

were found only in the fenced plots and 31 species were found only in the unfenced plots.  

Species composition did not differ significantly by treatment as determined by multivariate 

analysis (Adonis: F = 1.412 R2 = 0.41; P = 0.5).  Still, important compositional and structural 

differences emerged between treatments after 15 years.  Forbs were more than twice as abundant 

in fenced than unfenced plots (Treatment = -0.06; 95% CI = -0.103 to -0.015; P = 0.031), and 

ferns were 12 times more abundant in fenced than unfenced plots.  Ferns only occurred in the 

mesic block, precluding statistical comparison.  White wood-aster (Eurybia divaricata) and 

jewelweed (Impatiens capensis) were dominant forbs in the wet block exclosure plot, and broad-

leaved enchanter’s-nightshade (Circaea canadensis) was the dominant forb in the mesic block 

exclosure plot.  In contrast, sedges (Carex spp.) were 28 times more abundant in grazed than 

exclosure plots (Treatment = 3.78; 95% CI = 1.2 to 6.48; P = 0.023).  Graceful sedge (Carex 

gracillima) was the dominant sedge in the lower block control plot, and eastern star sedge (C. 

radiata) the dominant sedge in the wet block control plot. Total graminoid abundance also 

trended higher in unfenced plots (by a factor of 8; P = 0.12).  Total woody plant abundance 

(combined native and exotic) was similar between treatments (Table 1), but native woody 

abundance (P = 0.13) was almost twice as high in fenced compared to grazed plots.  Tree seedling 

abundance was also more than twice as high, on average, in exclosure plots compared to grazed 
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plots (P = 0.15; Table 1).  Total native plant abundance remained similar between the two 

treatments (Table 1).   

Total exotic plant abundance was marginally higher in unfenced than fenced plots (P = 

0.06).  Over 70% of exotic species abundance was comprised of Japanese barberry, which was 

approximately three times more abundant in grazed than fenced plots (P = 0.08).  Japanese stilt 

grass was the second most important exotic in the grazed plots, comprising 14% of the exotic 

flora abundance; this species was absent from exclosure plots.  Two major exotic species trended 

higher inside the fences.  Asian bittersweet (Celastrus orbiculatus; P = 0.15), was almost four 

times more abundant and burning-bush (Euonymus alatus; P = 0.095) approximately 12 times 

more abundant in plots protected from browsing (Table 1).   

Effect on species richness- plot scale (400m2) 

Total species richness trended higher in unfenced (62 species; SE = 4) than fenced plots 

(54.5 species; SE = 9.5), but the difference was not significant (P = 0.318).  Almost 10 more 

native species, on average, were sampled in unfenced than fenced plots, a marginally significant 

difference (P = 0.066; Fig. 2).  Native herbaceous richness was significantly higher in unfenced 

plots, with 12 more species on average, than in fenced plots (Treatment = 12; 95% CI = 7.54 to 

16.58; P = 0.007; Fig. 2).  In contrast, native shrub richness was lower in grazed plots by almost 3 

species, on average, compared to exclosure plots (Treatment = -0.25; 95% CI = -4.71 to -0.42; P 

= 0.036; Fig. 2).  Exotic species richness, native forb richness and native woody richness did not 

differ between treatments (P> 0.10; Fig. 2).   

Effect on species richness-subplot scale (1m2) 

Total species richness was lower in deer excluded plots (7.7 species; SE = 0.43) than in 

unfenced plots (10.8 species; SE = 0.31; Treatment = 0.33; 95% CI = 0.06 to 0.59; P = 0.031).  

Both native species (Treatment = 2.27; 95% CI = -0.11 to 4.52; P = 0.053) and exotic species 

richness (Treatment = 0.615; 95% CI = 0.22 to 1.01; P = 0.020) were significantly greater in 
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unfenced than fenced plots (Fig. 3).  Grazed plots had over two more native herbaceous species, 

on average, than did deer excluded plots (Treatment = 0.55; 95% CI = 0.38 to 0.715; P = 0.004; 

Fig. 3).  Native forb richness also trended higher in unfenced than fenced plots (P = 0.094).  

Neither native woody nor native shrub richness differed between treatments. P>0.10; Fig. 3). 

 

4.5 Discussion 

Fifteen years of white-tailed deer exclusion resulted in both predictable and complex 

effects on plant diversity, composition, abundance, and exotic plant dynamics in the herbaceous 

layer of a red maple-white ash forest.  Overall, species richness of native and exotic plants was 

lower in deer excluded plots; however, deer exclusion had opposing effects on the richness of 

different plant functional groups (cf. Hegland et al. 2013).  Native herbaceous richness was lower 

with deer exclusion at both the plot (400m2) and subplot (1m2) scale, whereas native shrub 

richness increased with deer exclusion at the plot scale.  My results suggest that relatively diverse 

communities of both native and exotic plants may coexist under high deer densities (≥21-24 km-2) 

in this suburban forest, and that native herb richness may decline (and shrub richness increase) 

when herbivory is removed (cf. Perrin et al. 2011, Goetsch et al. 2011, Hegland et al. 2013).   

Many of my results from this local study corroborated broad-scale and well documented 

deer-forest relationships.  Long-term exclusion of deer resulted in greater forb abundance and 

much lower sedge abundance compared to areas intensively grazed by deer (cf. Rooney 2009, 

Waller 2014).  Deer exclusion also resulted in reduced exotic species richness at the subplot scale 

and perhaps reduced exotic abundance at the plot scale (P = 0.06), including a three-fold 

reduction in abundance of the shrub, Japanese barberry, and the absence of the grass, Japanese 

stiltgrass, relative to grazed plots (Fig. 1; cf. Eschtruth and Battles 2009, Frerker et al. 2014).  

Interestingly, however, greatly reduced sedge abundance and exotic species richness with 

deer exclusion were associated with lower richness of native herbaceous plants compared to 
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grazed areas.  Greater exotic species and graminoids are generally assumed to result in lower 

herbaceous richness (Baiser et al. 2008, Waller 2014); however, my results corroborate recent 

studies that show little negative effect by graminoids, Japanese barberry, and other exotic plants 

on native plant richness (Rooney 2009, Flinn et al. 2014, Thomas and Palmer 2015).  Indeed, 

native and exotic plant richness may simultaneously increase in response to similar environmental 

gradients (Gilbert and Lechowitz 2005).  In my study area, heavy grazing and activity by deer 

appeared to create the open niches, reduced competition, and disturbed soil – and perhaps 

disperse the seeds – for a relatively high number of both native herbaceous and exotic plant 

species to germinate and become established (Olff and Ritchie 1998, Myers et al. 2004, Hester et 

al. 2006).  Although deer exclusion seems more apt to reduce herbaceous layer richness in areas 

with low to moderate cervid densities in disturbed (e.g., logging, fire, and treefall gaps) habitats – 

and promote richness in landscapes with high deer densities in undisturbed habitats (Royo et al. 

2010; Nuttle et al. 2014, Goetsch et al. 2011) – my results suggest that under certain conditions 

deer exclusion can also reduce plant richness in intact stands with high deer densities (cf. Perrin 

et al. 2011).   

One of the reasons for the relatively high herbaceous richness in the grazed plots was the 

presence of a large diversity of sedge species rather than a single dominant species.  Nine species 

of Carex occurred in grazed plots that did not occur in fenced plots.  Sedges are generally 

resistant to herbivory and trampling by ungulates because of continuous growth from basal 

meristems; they are also less preferred forage for deer than are forbs, and many sedge species 

thrive in high-light environments (Renecker and Schwartz 1997, Haines 2011, Waller 2014).  

Indeed, sedges were almost completely absent below the densely shaded spicebush subcanopy in 

the mesic block fenced plot.  Reduced native herb richness with deer exclusion did not appear to 

be driven exclusively by sedges, however, as native forb richness also trended lower with deer 

exclusion at the subplot scale (P = 0.09). 
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In contrast to reduced native herbaceous richness in deer excluded plots was greater 

native shrub richness (~3-fold) at the plot scale with deer exclusion.  Uncommon species such as 

round-leaved dogwood (Swida rugosa), gray dogwood (Swida racemosa), black elderberry 

(Sambucus nigra), and nannyberry (Viburnum lentago) were found only inside the exclosures.  

This result is consistent with the literature that intensive cervid herbivory may have opposing 

effects on the richness of different plant functional groups (i.e., small herbs and tall shrubs; 

Hegland et al. 2013).  Tree species richness below 2 m was notably unaffected by deer exclusion 

in my study area and may be explained by the fact that my sampling lumped tree seedlings of all 

sizes < 2m together.  Opposing effects on tree richness can occur on different size classes (i.e., 

richness or diversity of larger tree saplings is reduced and richness of smaller tree seedlings 

sometimes increases (Kuijper et al. 2010, Hegland et al. 2013).  Additional sampling that we 

conducted on tree sapling recruitment (stems 30 cm–2 m in height) appeared to support this 

notion, as deer excluded plots contained 2.5X the number of tree species, on average, as grazed 

plots (Faison et al. Unpublished Data). 

Despite the reductive effects of deer exclusion on exotic species richness and perhaps 

abundance, the relationship between deer exclusion and exotic species was not straightforward.  

Two dominant exotic shrubs/lianas, burning-bush and Asian bittersweet, had much higher 

(though non-significant) abundances inside exclosures than in grazed plots (Table 1); in fact, 

these two species were the dominant woody plants in the wet block exclosure plot.  Thus, some 

palatable exotic species appear to benefit from deer exclusion, while other unpalatable/browse 

tolerant ones such as Japanese barberry, Japanese stiltgrass, and garlic mustard (Alliaria 

petiolata) tend to benefit from deer grazing (Eschtruth and Battles 2009).  Exotic richness was 

clearly reduced by deer exclusion at the subplot scale but was unaffected at the plot scale.  The 

latter result can be explained by a number of uncommon and apparently browse-sensitive exotic 

woody plants that were found only in the exclosure plots, including sweet cherry (Prunus avium), 
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Norway maple (Acer platanoides), and autumn-olive (Eleagnus umbellata).  These results 

suggest that deer exclusion can provide protection for some exotic species in heavily browsed 

forests that would otherwise be eliminated or greatly reduced by herbivory.  In contrast, herbivore 

exclusion – perhaps by reducing small scale soil disturbance, niche openings, and seed dispersal 

on the forest floor by deer – can reduce exotic richness at smaller spatial scales. 

My results revealed the powerful ecological effects of 15 years of deer exclusion on the 

herbaceous layer of a suburban forest exposed to decades of intensive deer herbivory.  Deer 

exclusion generally reduced species richness of both exotic and native species, but increased 

native shrub richness, revealing contrasting effects of herbivore exclusion on the richness of 

different plant functional groups.  Deer exclusion also had predictable and complex effects on 

composition, structure, and exotic species dynamics at different spatial scales in this woodland.  

In other words the effects of deer exclusion were both “positive” and “negative” on this plant 

community; and therefore deer, even at high densities, cannot be assumed to have uniformly 

negative impacts on forest understories.   
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Table 4.1 Mean abundance of common plant species and growth form groups in the herbaceous 
layer (<2m in height) by treatment in 2013.  Only species that occurred in at least 2 of the 4 
treatment plots are included.  Standard errors are in parentheses. *P ≤0.05 

Species Native Fenced Unfenced 
Woody plants  36.1 (2.6) 32.3 (0.02) 
Trees  5.6 (2.9) 2.1 (1.4) 
Acer rubrum N 0 0.10 (0.02) 
Fraxinus americana N 2.73 (0.27) 1.94 (1.4) 
Liriodendron tulipifera N 0.79 (0.79) 0.02 (0.02) 
Prunus serotina N 1.44 (1.2) 0 
Shrubs and lianas    
Berberis thunbergii E 6.4 (0.73) 20.8 (4.2) 
Celastrus orbiculatus E 8.2 (3.88) 2.1 (0.5) 
Euonymus alatus E 4.5 (2.1) 0.42 (0.38) 
Ilex verticillata N 0.25 (0.02) 0.06 (0.06) 
Lindera benzoin N 8.1 (7.9) 4.0 (3.96) 
Parthenocissus quinquifolia N 0.56 (0.29) 1.36 (1.3) 
Rosa multiflora E 0.13 (0.10) 0.37 (0.14) 
Rubus flagellaris N 0.64 (0.64) 0.52 (0.29) 
Rubus phoenicolasius E 0.56 (0.25) 0.12 (0.12) 
Toxicodendron radicans N 0.56 (0.52) 0.11 (0.04) 
Vitis nova angliae N 0.12 (0.12) 0.17 (0.10) 
Graminoids  3.0 (2.97) 24.3 (17.3) 
Carex total*  0.6 (0.54) 16.8 (10.7) 
Carex gracillima N 0 1.1 (0.67) 
Carex intumescens N 0 0.42 (0.38) 
Carex laxiculmis N 0 0.77 (0.27) 
Carex radiata N 0.54 (0.54) 12.8 (11.7) 
Carex swanii N 0.02 (0.01) 0.69 (0.12) 
Cinna arundinacea N 1.2 (1.2) 2.1 (1.62) 
Dactylis glomerata E 0.12 (0.12) 0.02 (0.02) 
Glyceria striata N 0.14 (0.14) 0.40 (0.40) 
Leersia virginica N 0.40 (0.40) 0.12 (0.12) 
Microstegium vimineum E 0 3.94 (3.9) 
Forbs*   11.0 (1.42) 5.1 (0.39) 
Arisaema triphyllum N 0.63 0.50 (0.46) 
Circaea canadensis N 2.1 (2.1) 0.12 (0.12) 
Eurybia divaricata N 3.1 (3.0) 0.6 (0.1) 
Galium triflorum N 0 0.15 (0.08) 
Geum spp. N 0 0.13 (0.10) 
Impatiens capensis N 1.8 (1.8) 0.14 (0.14) 
Maianthemum canadense N 0.52 (0.52) 0.65 (0.04) 
Mitchella repens N 0 0.13 (0.10) 
Oxalis stricta N 0.08 (0) 0.06 (0.06) 
Persicaria longiseta E 0.06 (0.06) 0.11 (0.08) 
Persicaria sagittata N 0.06 (0.06) 0.93 (0.93) 
Ranunculus recurvatus N 0.02 (0.02) 0.04 (0.02) 
Trillium erectum N 0.27 (0.27) 0.02 (0.02) 
Viola sororia N 0.02 (0.02) 0.68 (0.67) 
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Ferns  6.3 (6.3) 0.52 (0.52) 
Polystichum acrostichoides N 2.25 (2.25) 0.5 (0.52) 
Exotic total   21.4 (6.9) 28.7 (8.8) 
Native total  35.1 (6.25) 33.4 (8.35) 
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Figure 4.1 Photos of the four treatment plots in 2013. (A) Wet block unfenced plot dominated by 
graminoids (Microstegium vimineum and Carex radiata) and Berberis thunbergii; (B) wet block 
fenced plot dominated by Eurybia divaricata-Impatiens capensis and shrub layer of Celastrus 
orbiculatus and Euonymus alatus (C) Mesic block unfenced plot with sparse herb layer and 
Berberis thunbergii-Lindera benzoin shrub layer; and (D) mesic fenced plot dominated by dense 
Lindera benzoin shrub layer.  
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Figure 4.2 Contrasting effects of deer exclusion on species richness <2 m in height at the plot 
scale (no. species/400m2).  Native herbaceous richness was higher in unfenced plots, and native 
shrub richness was higher in fenced plots.  Bars represent mean ± SE.  Treatment means with the 
same letter do not differ significantly at P ≤0.05. 
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Figure 4.3 Effects of deer exclusion on native and exotic species richness <2 m in height at the 
subplot scale (mean no. of species in 13, 1m2 subplots in each plot).  Bars represent mean ± SE.  
Treatment means with the same letter do not differ significantly at P ≤0.05. 
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CONCLUSION 

Ungulate browsers had both predictable and complex effects on the regeneration and 

composition of New England temperate forests.  Herbivores, regardless of density or number of 

species, generally reduced tree regeneration abundance and recruitment (Chs. 3 and 4; cf. Gill 

2006).  However, large variations in tree densities that developed over time in different stand 

disturbance types (simulated HWA attack, logging, intact forest), altered the functional response 

of herbivores and mitigated browsing effects (Ch.1; cf. McLaren et al. 1994, Schmitz and Sinclair 

1997).  The effects of herbivores on tree richness were complex and depended on the timing and 

growth stage of the regeneration and the number and selectivity of the browser species (Chs. 3 

and 4).   

In logged forests, moose + deer reduced the abundance of a dominant pioneer species 

(pin cherry [Prunus pensylvanica]) and a later successional dominant taxon (oaks [Quercus spp.]; 

Ch. 3).  By reducing the former species, browsers appeared to accelerate the transition of pioneer 

toward more shade tolerant tree species (Ch. 3).  By reducing the latter taxon, moose + deer 

appeared to favor more browse tolerant species such as black birch (Betula lenta) and red maple 

(Acer rubrum).  Overall, browsers, by reducing tree recruitment, slowed down succession in 

logged stands, reducing the abundance of herbs and shrubs associated with forest habitat and 

maintaining shrubs and herbs associated with open/disturbed habitats (Ch. 2). 

Browsers generally increased herbaceous plant richness in both logged and unlogged 

forest, although low levels of herbivory by deer (≤4-5 deer km-2) in logged forests had little effect 

(Chs. 2 and 4; cf. Olff and Ritchie 1999).  Forb cover declined significantly with high deer 

densities in intact forest, but remained unchanged in response to low densities of deer + moose in 

recently logged forest.  Sedge abundance and richness generally increased with browsing across 

all stand and herbivore assemblages.  Somewhat unexpectedly, fern abundance was generally 

higher with protection from herbivores in both logged and intact stands (Chs. 2 and 4), although 
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this pattern has been noted by other authors (Rooney 2009).  Shrub richness and abundance (<2 m 

in height) increased with the addition of a second herbivore in disturbed patch cuts, but native 

shrub richness declined with intensive herbivory in intact forest (Chs. 2 and 4).  The direction in 

which species richness was altered by browsing in the intact forest depended on the plant 

functional group (i.e., shrub richness declined, but herb richness increased; cf. Hegland et al. 

2013).  Exotic species richness and abundance was also higher in areas exposed to deer in the 

intact forest, but certain exotic shrubs appeared to benefit from protection by browsers (Ch. 4).  

Probable mechanisms driving increased plant richness in the presence of herbivores include 

reduced plant competition and increased available light from browsing along with increased soil 

disturbance, spatial heterogeneity, and germination sites from herbivory and trampling (Olff and 

Ritchie 1998, Hester et al. 2006. Royo et al. 2010).   

My results highlight the importance of examining browsing impacts across a broad range 

of ungulate densities, and (when feasible) with multiple browser treatments, in order to accurately 

assess and generalize vegetation changes that are important for habitat and ecosystem services 

(Oliver and Larson 1996, Diaz et al. 2007).  Effects of ungulates on certain aspects of vegetation 

composition (e.g., increased sedge abundance, reduced tree recruitment, decline in oak 

regeneration) appear to be predictable and generalizable under most circumstances.  However, 

complex and unexpected effects of browsing occurred on other aspects of the vegetation (e.g., 

species richness, fern, and Rubus abundance) making broad generalizations about certain 

ungulate-vegetation relationships problematic.  A broad range of “positive” and “negative” 

outcomes on plant communities should be expected by large browsers at low densities in 

temperate forests.   
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