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ABSTRACT

PHYSICAL ACTIVITY CLASSIFICATION WITH CONDITIONAL RANDOM FIELDS

SEPTEMBER 2015

EVAN RAY, B.S., UNIVERSITY OF MASSACHUSETTS, BOSTON

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor John Staudenmayer

In this thesis we develop methods for classifying physical activity using accelerometer record-

ings. We cast this as a problem of classification in time series with moderate to high dimensional

observations at each time point. Specifically, we observe a vector of summary statistics of the

accelerometer signal at each point in time, and we wish to use these observations to estimate the

type and intensity of physical activity the individual engaged in as it changes over time.

Our methods are based on Conditional Random Fields, which allow us to capture temporal

dependence in an individual’s physical activity type without requiring us to model the distribu-

tion of the observed features at each point in time. We develop three novel estimation strategies

for Conditional Random Fields, evaluate their performance on classification tasks through sim-

ulation studies and demonstrate their use in applications with real physical activity data sets.
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C H A P T E R 1

INTRODUCTION

1.1 Introduction

Scientists would like to be able to classify the type and intensity of physical activity that a

person is performing in order to help answer questions about the relationship between physical

activity and health and assess the effectiveness of interventions designed to increase physical

activity levels. One approach to the objective measurement of physical activity that the research

community favors is through the use of an accelerometer worn by the individual that records

acceleration over time. Advantages of accelerometers include their relatively low costs, low

maintenance requirements, and minimal burden on the subject wearing the device. However,

current methods for inferring physical activity type and intensity from accelerometer record-

ings are imperfect. As a result, measurement error is introduced into statistical analyses relating

physical activity type or intensity to health outcomes, potentially masking the relationship be-

tween these variables and causing bias in the estimated model parameters. Similarly, our ability

to assess the effectiveness of interventions is limited.

In this thesis we explore methods for classifying physical activity according to its type or

intensity level using accelerometer data. We classify according to activity type using categories

like Sitting, Standing, Locomotion, and Cycling. The particular set of activity type categories

used varies with the data set; we will describe these data in more detail later. We classify ac-

tivity intensity as either Sedentary, Light, Moderate, or Vigorous activity. These categories are a

commonly used binning of an underlying continuous measure of energy expenditure.

Our models do not use the accelerometer measurements directly. Instead, we divide the

time during which acceleration was recorded into short windows a few seconds in length and

calculate a vector of features for each window that summarizes the accelerometer signal within
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that shorter time span. Our models relate this vector of features to the observed activity type or

intensity in each window. Our overall strategy is to first estimate the model parameters using

data from subjects whose activity type or intensity is known at each point in time, and then use

the fitted models to classify activity in new data where only the accelerometer recordings are

available.

Our proposed methods for activity type and intensity classification are variations on Condi-

tional Random Fields (CRFs). The CRF specifies a conditional distribution for the sequence of

activity types that an individual engages in given the observed accelerometer features in each

window. CRFs were originally formulated in the computer science literature and have been

applied to physical activity classification with accelerometer data in one previous study. They

are useful because they provide a mechanism for capturing temporal dependence in the activ-

ity type without requiring us to specify a model for the accelerometer features, which have a

complex distribution that is difficult to model well.

Our contributions are three new estimation strategies for CRFs. Our first estimation strategy

is based on a parametric specification of the CRF model, and combines bagging of observation

sequences with boosting to estimate the model parameters. Our second strategy uses a non-

parametric specification for the component of the model that relates the accelerometer features

to the activity type labels, and again employs bagging and boosting in the estimation procedure.

Our third strategy is also based on this non-parametric model specification, and uses an estima-

tion algorithm similar to that employed in random forests. In simulation studies and applica-

tions to real physical activity data, we demonstrate that the CRF model can lead to improved

classification performance relative to models that do not account for sequential dependence in

activity types or that attempt to model the distribution of the accelerometer features associated

with each activity type. We also show that two of our three proposed methods consistently offer

good classification performance, while the performance of other approaches to estimating CRFs

and similar models is less consistent.

Throughout this work, we will use capital letters to denote random variables and lower case

letters to denote realizations of those random variables. Bold letters indicate vectors. The train-

ing data for our models consist of N pairs (xi,yi), where yi = (yi,1, . . . , yi,Ti
) is a sequence of

length Ti containing the true class at each time window and xi = (xi,1, . . . ,xi,Ti
) is a sequence of

length Ti containing the observed accelerometer features at each time window. N corresponds to
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the number of subjects in a study, and Ti is the number of windows in the observation sequence

for the ith subject. There are S classes, so that each yi,t ∈ {1, . . . , S}. The feature vectors have

dimension D, so that xi,t = (xi,t,1, . . . , xi,t,D) ∈ RD.

The rest of this paper is organized as follows. In Section 1.2 of this Chapter, we present a

taxonomy of classification models and estimation strategies for those models that will help to

organize our work and describe how our methods fit into the existing literature. In Chapter 2 we

review the literature related to classification methods in general and CRFs in particular, as well

as previous approaches to physical activity classification and energy expenditure estimation. We

then describe the physical activity data that are available to use in training our models in Chapter

3. We conduct two small preliminary simulation studies to motivate the use of CRFs in Chapter

4. We then discuss our proposed estimation strategies for CRF models in Chapter 5. We conduct

a simulation study comparing our methods to several existing approaches in Chapter 6, and then

apply our methods to classification of physical activity type in Chapter 7 and to classification of

physical activity intensity in Chapter 8. Finally, we summarize our contributions, discuss the

limitations of our methods, and offer suggestions for future work in Chapter 9.

1.2 A Taxonomy of Classification Models and Estimation Strategies

In this Section, we present a taxonomy for classification models and estimation strategies

that have been applied with physical activity and similar data. This taxonomy is a set of 7

characteristics of a model and estimation strategy that capture the differences between many of

the methods that have been developed to perform classification in structured data sets. Each of

these 7 characteristics can take one of several values. Thus, any particular model and estimation

algorithm can be viewed as falling into a cell of a factorial design.

We divide this taxonomy into two sections: one describing the model specification, and one

describing the estimation algorithm. The taxonomy for the model specification is as follows:

1. Static vs. Dynamic:

• Static: The model does not account for sequential dependence in the data.

• Dynamic: The model does account for sequential dependence in the data.

2. Joint vs. Conditional (aka Generative vs. Discriminative):
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• Joint: The model specifies the joint distribution for (Y,X). In the classification setting,

these are often referred to as generative models since they specify how the data are

generated.

• Conditional: The model specifies the conditional distribution for Y|X. In the classi-

fication setting, these are often referred to as discriminative models.

3. Parameterization of the Observation Distributions or Feature Functions:

• Restrictive: In generative models, the distributions of the features in each class are

often modeled by a given parametric family, or a mixture of distributions in such a

family with a small number of mixture components (such as a mixture of Gaussians

with only a few mixture components). In the case of discriminative models, feature

functions take the place of the observation distributions. Intuitively, these feature

functions represent how likely an observation is to fall in a particular class given the

observed features X, although their exact interpretation depends on the details of the

model formulation. If the conditional model is derived by conditioning on X in a joint

model for (Y,X) where the observation distributions are in an exponential family, the

feature functions often correspond to the sufficient statistics for the exponential family

and the estimation task reduces to estimating the natural parameters of the family.

However, it is also possible to formulate more general parametric specifications.

• Flexible: A non-parametric form can also be used for either the observation distribu-

tions or the feature functions. For instance, kernel density estimation could be used to

estimate the observation distributions in generative models. In discriminative mod-

els, it is common to use decision or regression trees for the feature functions.

4. Number of Components, M :

• M > 1: The model combines inferences from multiple “component models”. These

are often referred to as ensemble methods. The number of component models, M ,

may be specified manually or selected using a method such as cross-validation. Clas-

sification is performed by combining the inferences from these distinct models; the

following are three methods for combining the component models among many other

possibilities:
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– Logarithmic opinion pools (LOPs)

– Linear opinion pools (LIPs)

– Majority vote

• M = 1: The model consists of a single component model.

We now present our taxonomy for estimation algorithms. In this taxonomy, we focus on

approaches that have been developed for ensemble methods, when M > 1.

1. Independent vs. Dependent Estimation of Component Models:

• Sequential: The component models are estimated sequentially. In each stage, the

parameter values for earlier models are held fixed and the estimates for later mod-

els depend on these earlier estimates. These methods are often referred to as boosting

algorithms, although some authors reserve boosting to refer to a subset of these meth-

ods.

• Backfitting: Backfitting is similar to the sequential estimation strategy described above,

but we iteratively update the parameters for each component model until some crite-

ria are met.

• Independent Estimation: The parameters of the component models are estimated

separately.

2. Feature Subset Selection:

• Manually Selected Subsets Per Component Model: The full set of features is man-

ually divided into subsets. A separate component model is fit using each subset of

features.

• Randomly Selected Subsets Per Component Model: The full set of features is ran-

domly divided into subsets. A separate component model is fit using each subset of

features.

• Randomly Selected Subsets Within Each Component Model: Some estimation strate-

gies use randomly selected feature subsets within the estimation of each component

model. An example of this is random forests, where a possibly different subset of the

features is randomly selected to use in finding a split point in each tree node.
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• All Features Used: All features are used at every stage in the estimation procedure.

3. Bagging:

• Bagging Observation Sequences: Each component model is trained using a ran-

domly selected subset of the observation sequences. Thus, for each observation se-

quence all of the observations are either “in the bag”, meaning that they are used in

estimating the parameters for a given component model, or “out of the bag”, meaning

that they are not used in training that component.

• Bagging Time Point Observations: Each component model is trained using a ran-

domly selected subset of the observations. In each observation sequence, some of the

observations may be “in the bag” and others may be “out of the bag”.

• No Bagging: All observations are used in training each component model.

We note that this taxonomy is not exhaustive and does not seek to uniquely describe every

classification method that has been developed; rather, it provides a useful structure for thinking

about existing classification methods and identifying gaps in the literature that may be fruitfully

filled. In Chapter 2, we review existing methods in the literature and describe how they fit into

this taxonomy. The methods we develop in Chapter 5 represent three promising cells in the

factorial design described by this taxonomy that have not yet been explored.
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C H A P T E R 2

LITERATURE REVIEW

2.1 Introduction

In this Chapter, we review the literature on classification in the presence of sequential de-

pendence and methods that have been proposed for physical activity classification in particular.

We begin with a general discussion of the differences between the generative and discriminative

approaches to classification in Section 2.2. We then discuss Hidden Markov Models (HMMs) in

Section 2.3. The HMM is a generative model that is commonly used to perform classification in

the presence of sequential dependence. We then review two discriminative methods for classi-

fication with sequential dependence in Section 2.4. We discuss some ideas for how estimation

of these models can be performed effectively when we observe a moderate to large number of

covariates at each time point in Section 2.5. In Section 2.6 we discuss ensemble methods, which

combine inferences from many slightly different model fits. Finally, in Section 2.7 we review pre-

vious models that have been used for activity classification and energy expenditure estimation.

2.2 Generative (Joint) vs. Discriminative (Conditional) Modeling

In this Section, we discuss the differences between the generative and discriminative ap-

proaches to modeling, and the circumstances when one or the other of these approaches may be

preferred. We also note that methods combining the generative and discriminative approaches

have been suggested [e.g., Rubinstein, 1998, Raina et al., 2004]. We will not discuss these ideas

further here.

The generative approach proceeds by specifying a joint model for the class Y and covari-

ates X at each time point. These are referred to generative models because they model the
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data generating process. The model parameters θθθ can be estimated in either the frequentist or

Bayesian paradigm. Once the parameters have been estimated, we can perform classification

in a new data set where only X is observed by using Bayes’ rule to compute the probabilities

P (Y = y|X = x; θ̂θθ). We will discuss one common dynamic joint model for (Y,X), the Hidden

Markov Model (HMM) in Section 2.3.

In contrast, the discriminative approach seeks to directly optimize the performance of the

final classifier, which discriminates between different classes based on the values of the observed

covariates x. Often, but not always, this is done by maximizing the likelihood of a conditional

model for Y|X. We will cover some approaches that have been developed for discriminative

modeling in the presence of sequential dependence in Section 2.4.

The classic discussion of the relative merits of generative and discriminative methods centers

on a comparison of normal discriminant analysis (NDA) and logistic regression (LR). NDA is a

generative model for i.i.d. data specifying that the observed covariates X follow a mixture of

normals, with a different normal distribution associated with each class Y . Conditioning on

X in this generative model yields LR, a discriminative model for the distribution of Y|X, the

probabilities of each class. Although both NDA and LR can be specified in terms of the same

parameters, the resulting maximum likelihood parameter estimates are different [Efron, 1975].

Efron [1975] examines the asymptotic behavior of these models in the case where the genera-

tive NDA model is true. He shows that with both models the error rate of the classifier obtained

using the MLEs converges to the Bayes error rate as the training sample size goes to infinity.

However, the asymptotic variance of the classification error rate from NDA is smaller than the

variance of the error rate from LR. Thus, the generative approach is preferred when the joint

model for (Y,X) is accurate.

When the data generating mechanism specified by the joint model for (Y,X) is not accurate,

it is less clear which method is preferred. One point in favor of LR is that it can be obtained by

conditioning on X in a joint model similar to NDA as long as the distribution of X associated

with each class is in an exponential family. For example, if the joint model specifies that the

data follow a mixture of gamma distributions with one mixture component for each class, we

again obtain the LR model by conditioning on X in the joint model. Thus, LR is an accurate

model in a wider range of circumstances than NDA. Also, it can be shown using the theory of

Vapnik-Chervonenkis dimensions that for any generative/discriminative model pair where the
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discriminative model is obtained by conditioning on X in the generative model, the asymptotic

error rate of the discriminative model is no worse than the asymptotic error rate of the gener-

ative model [Ng and Jordan, 2002]. However, Ng and Jordan [2002] show that under certain

conditions NDA approaches its asymptotic error more quickly than LR. They conclude that in

many problems, NDA is preferred when the sample size is relatively small, and LR is a better

approach when the sample size is large.

Similar asymptotic results have been obtained for estimation of parameters in the Hidden

Markov Model (HMM), which specifies a joint model for (Y,X) and captures sequential depen-

dence. Nádas [1983] compares the MLEs of the HMM parameters with the MLEs in the model

for Y|X obtained by conditioning on X in the HMM. He shows that if the HMM is an accurate

model of the data generating process, the MLE from the joint model is asymptotically relatively

efficient in comparison to the MLE from the conditional model. In a later expansion on this work,

Nádas et al. [1988] give an example where the Markov structure in the HMM is misspecified and

demonstrate that the MLE from the conditional model yields a classifier with an asymptotically

lower misclassification rate than the MLE from the joint model.

We can summarize this discussion as follows. In general, if the data generating model is

correctly specified, generative approaches are superior. However, if the joint model is misspec-

ified, discriminative methods are often preferred since they make fewer assumptions. Xue and

Titterington [2008] conclude that

For real world datasets. . . there is no theoretically correct, general criterion for choos-

ing between the discriminative and the generative classifiers; the choice depends on

the relative confidence we have in the correctness of the specification of either p(y|x)

or p(y,x).

In many applications with sequential dependence the HMM is an inadequate representation of

the data generating process, suggesting that discriminative methods may be preferred. We will

discuss this issue in the context of physical activity classification in Chapters 4 and 5.
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Figure 1. A diagram illustrating the HMM. Dependence is shown with arrows. The dis-
tribution of the state at a given time depends on the state at the previous time.
The distribution of the observed data at a given time depends on the state at
that time.

2.3 Hidden Markov Models

In this Section we review the literature about Hidden Markov Models (HMMs). In Subsection

2.3.1 we introduce HMMs and a related model, the Finite Mixture Model (FMM). We review

frequentist inference for HMMs in Subsection 2.3.2 and Bayesian inference in Subsection 2.3.3.

2.3.1 HMM Basics

HMMs have been successfully applied in a wide variety of fields including speech recogni-

tion [Rabiner, 1989], financial time series [Rydén et al., 1998], detection of fraudulent telephone

activity [Scott, 1999], and information extraction from text [Taghva et al., 2005]. The model can

be used when observations are made at regular intervals in space or time. We will refer to obser-

vations made in time since that is our context, but the ideas apply to both settings.

The model is based on the assumption that each observation Xi,t follows a specified paramet-

ric distribution with parameters depending on an unobserved (or hidden) state Yi,t correspond-

ing to that point in time. In the most basic formulation, the state changes over time according

to a Markov process; that is, given the states that occurred up through time t, the probability

distribution for the state at time t + 1 depends only on the state at time t (and not on the earlier

states). The states come from a state space which can be discrete or continuous, and finite or

infinite. We focus on the case of a discrete state space of size S < ∞. In that case, the transition

probabilities for the hidden Markov chain are often organized into an S × S transition matrix Q,

where entry (r, s) is the probability that the state at time t+ 1 is s given the state at time t is r. A

schematic depiction of this model is given in Figure 1.
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Finite mixture models are a related class of model that are also based on the assumption that

the parameters of the observed data distribution are associated with an unobserved state. How-

ever, in FMMs the hidden states are assumed to be i.i.d. with a fixed multinomial distribution

for all observations. It can be seen FMMs are a special case of HMMs where the rows of the

transition matrix are all equal to each other. To see this, note that if we restrict the rows of the

transition matrix of a HMM to be the same, the probability distribution for the state at time t+ 1

is the same no matter what the state is at time t. This restriction therefore removes the depen-

dence of future states on the current state, so that the model is equivalent to a FMM. Many of

the same issues arise when fitting HMMs and FMMs, so we will draw from the literature about

both of these models in this review.

The unknown parameters of the HMM are the distribution of the initial state, the transition

probabilities for moving from one state to another, and the parameters for the observed data

distribution associated with each state in the state space. Depending on the formulation, the

number of states in the state space may also be treated as a model parameter. In different appli-

cations, we may be interested in learning about these model parameters, the unobserved state at

each time point, or both.

Any parametric distribution can be used to model the distribution of the observed data given

the state. One common choice is a multivariate Gaussian distribution, which has been used in

a Bayesian setting by Spezia [2009, 2010] for HMMs, and by Lavine and West [1992], Stephens

[2000a], Zhang et al. [2004], Dellaportas and Papageorgiou [2006], and Komárek [2009], among

many others, for FMMs. In an applied univariate problem, Stephens [2000a] noted that when

a Gaussian distribution was used, extra states may have been included to account for fat tails

in the observed data. To correct for this, he used t distributions. Jasra et al. [2007] have also

used a t distribution in a multivariate setting. Another common option in HMMs, especially

in the speech recognition literature, is to use a multivariate normal FMM for the observation

distribution in each state [e.g., Hain et al., 2003, Dimitrakakis and Bengio, 2004].

An important aspect of our data, which we present in more detail in Chapter 3, is that we

observe a classification at each time point in addition to the feature vector. In other words, we

have labeled data and training the HMM is a supervised learning problem.

There are several common approaches to using HMMs with labeled data. One simple option

is to assume that there is a one-to-one correspondence between the observed classes and states
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in the HMM – that is, the data used to estimate the model parameters contain observations of

the hidden states. An advantage to this approach is that parameter estimation is comparatively

simple. Another alternative is to allow for a group of states within the HMM for each observed

class. This idea has been used in models of physical activity [Pober et al., 2006] as well as speech

recognition [Dimitrakakis and Bengio, 2004] and video segmentation [Xie et al., 2004].

2.3.2 Frequentist Inference for HMMs

If we identify the state with the observed classes yi,t in the training data, we can easily obtain

maximum likelihood estimates of the initial state distribution and the transition matrix using the

observed initial state and number of transitions between each pair of states. Also, the observed

features are conditionally independent given the states, so we can treat the observed feature

vectors from a given state as an i.i.d. sample from the distribution associated with that state

[Frühwirth-Schnatter, 2006]. If these state-specific distributions are modeled by a simple para-

metric form, maximum likelihood estimates for the state-specific distributions are often obtained

easily. On the other hand, if the observation distribution associated with each state is modeled

by a Gaussian FMM, or if we associate multiple states in the HMM with each observed class,

estimation is more involved.

The most common approach to estimating the model parameters when the state member-

ships are not observed is to obtain local maximum likelihood parameter estimates for a fixed

state space size with an EM algorithm. For the special case of a discrete observation vector at

each time point, this algorithm is known as the Baum-Welch algorithm in the HMM literature;

it can be easily extended to handle finite mixtures of continuous distributions (with some re-

strictions on the form of the distribution for each finite mixture component) [Baum et al., 1970,

Rabiner, 1989]. The basic idea of this algorithm is to iteratively re-estimate the model parameters

according to the following procedure:

(1) Estimation step: Based on the current model parameters and the observed data, calculate

(a) the probability of transitions from each state to each other state for every time t, and

(b) the probability that the observation at time t came from the kth mixture component of

the distribution associated with state s, for each time t, state s, and mixture component

k.
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(2) Maximization step: Using the quantities calculated in step (1), update the model parameter

estimates:

(a) the initial state distribution is updated using the probabilities of each state at time 1,

(b) the transition probabilities are updated using the total expected number of transitions

from each state to each other state at all times, and

(c) the parameters of the distribution associated with each mixture component are updated

using the observed data at each time t and the probabilities that the observation at time

t came from each mixture component of the distribution associated with each state.

The calculations in step (1) can be implemented efficiently using a recursion algorithm. The

Baum-Welch algorithm always converges to a local maximum of the likelihood function, but not

necessarily to a global maximum [Rabiner, 1989].

In addition to the fully parameterized covariance matrix, reduced parameterizations of the

covariance matrices for the Gaussian components have been considered. These are common

in high-dimensional settings, where there may not be enough data to estimate all D(D − 1)/2

parameters in each covariance matrix. There are three main ideas here: (1) impose restric-

tions on the spectral decomposition of the covariance matrix [Banfield and Raftery, 1993, Celeux

and Govaert, 1995, Gales, 1999, 2002, Bouveyron et al., 2007], (2) represent the covariance as a

low-rank component capturing most of the variation in the covariates plus a component with

small variance [Tipping and Bishop, 1999, McLachlan et al., 2003, Attias, 1999, Saul and Rahim,

2000], or (3) model the inverse of the covariance, which is often sparse [Dharanipragada and

Visweswariah, 2006, Olsen and Gopinath, 2004, Vanhoucke and Sankar, 2004, Axelrod et al.,

2002, Bilmes, 2000]. EM or forward search algorithms are typically used for inference with these

parameterizations in the frequentist setting. We will discuss other approaches for handling high

dimensions in Section 2.5.

In order to determine the size of the state space, we can perform maximum likelihood es-

timation separately for several candidate sizes and then compare these models with likelihood

ratio tests or information criteria such as AIC and BIC [Rydén et al., 1998]. Another option is to

maximize a penalized likelihood function [Leroux and Puterman, 1992].

Once the model parameters have been estimated, there are several possible methods to per-

form classification in a sequence where the states are unobserved. One option is to calculate the
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probabilities of each state at each time point given the observed data. We obtain a separate vec-

tor of class probabilities for each point in time, averaging over the possible values of the states

at all other times. We may either report these estimated class probabilities, or choose the single

class at each time point with the highest estimated probability. This approach maximizes the

expected number of correctly estimated states, and is therefore optimal under misclassification

loss [Rabiner, 1989]. However, the sequence of states obtained with this method may have a very

low probability of occurring. Another option is to find the most likely sequence of states given

the observed data and the parameter values for the model. This can be done using the Viterbi

algorithm [Forney Jr, 1973]. The choice of which classification procedure to use depends on the

goals of the researcher.

2.3.3 Bayesian Inference for HMMs

In this Subsection we discuss inference for HMMs in a Bayesian setting. We begin by dis-

cussing common choices for prior distributions, and then we review algorithms that have been

developed to sample from the posterior distribution of the model parameters and the distribu-

tion of the sequence of hidden states. Throughout this Subsection, we focus on models in which

a Gaussian or a finite mixture of Gaussians is used for the observation distribution for each state.

Prior Distributions

An important consideration in specifying prior distributions for HMMs is that the direct use

of improper priors for the model parameters can be problematic. This is because it is possible that

one or more of the states could be unrepresented by any of the observations (unless our model

formulation assumes one HMM state for each observed class and the observation distribution

assumes only one Gaussian mixture component for each state). There is an additive term in

the likelihood corresponding to that possibility. When we form the posterior, the observed data

do not contribute any information to our knowledge of the parameters for that state, so the

integral of that term is infinity if the prior is improper. However, improper priors can be used if

done carefully, for instance in a multilevel prior specification or if some dependency is induced

between the parameters for different states [Marin et al., 2005].

There are two common choices for the prior distribution on the size of the state space: a

discrete uniform distribution on the integers from 1 to a chosen maximum, and a truncated
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Poisson distribution. In either case, the cutoff for the maximum size must be large enough that

the true value lies within the support of the prior distribution. Scott [2002] points out that this is

not an onerous condition since we could allow for the possibility that every observation is drawn

from a different distribution by choosing the cutoff to be equal to the number of observations. In

practice, it usually suffices to choose a much smaller number than this.

It is common to take independent Dirichlet priors for each row of the transition matrix, since

the row entries must sum to 1. Most authors take the parameter for the prior to be a vector of

1’s, which results in a uniform distribution on the space of valid transition matrices (i.e., where

all components are non-negative and each row sums to 1).

Cappé et al. [2003] introduce an alternative parameterization in terms of an S × S matrix Ω,

where each entry of Ω is non-negative but may be greater than 1. The transition matrix is ob-

tained from Ω by scaling so that each row sums to 1. They argue that removing the constraint

that each row sums to 1 improves mixing of the MCMC sampler. It also facilitates the devel-

opment of some of the transition moves in some of the MCMC samplers discussed in the next

Subsection. Cappé et al. [2003] use i.i.d. gamma priors for each entry in the Ω matrix, noting that

this results in a Dirichlet prior on each row of the original transition matrix.

Spezia [2010] uses the same parameterization of the transition matrix as Cappé et al. [2003],

but with a more informative prior. This prior places more weight on large values for the diagonal

terms and small values for the off-diagonal terms. This captures the phenomenon that the state

is more likely to remain the same from one time point to the next than to change.

Most authors specify data-driven priors for the mean vectors of the observed data given the

hidden states, following ideas used by Richardson and Green [1997] in the univariate case. The

basic idea is to take the prior mean equal to a measure of the center of the observed data, and the

prior variance and covariance to be functions of the range of observed values for each covariate.

Dellaportas and Papageorgiou [2006] work with centered and scaled data and note that as a

result the prior mean can reasonably be set to 0 in each component.

Spezia [2009] claims that it is possible to achieve a non-informative prior distribution with

this data-driven approach by taking the prior variance to be large relative to the spread of the

observed data. However, Stephens [2000b] observed that estimation of the number of mixture

components in a FMM was sensitive to the prior specification for all parameters. Hierarchical

priors are often used to give less informative prior distributions for the mean and covariance
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parameters [e.g., Robert et al., 2000, Cappé et al., 2003, Richardson and Green, 1997].

The simplest prior for the covariance matrices of the observed data given the state is Inverse-

Wishart (or a Wishart prior on the precision matrix). This specification was used by Spezia

[2010], Stephens [2000a], Dellaportas and Papageorgiou [2006], Jasra et al. [2007], and Komárek

[2009]. However, many other ideas have been suggested, especially when the number of vari-

ables observed at each time point is large. As in the frequentist case, many authors have worked

with reduced parameterizations based on the spectral decomposition of the covariance matrices

[Bensmail et al., 1997, Bensmail and Meulman, 2003, Erar, 2011, Zhang et al., 2004].

Algorithms to Sample from the Posterior Distribution

We now discuss algorithms that can be used to sample from the posterior distribution of the

parameters. We focus on Markov Chain Monte Carlo (MCMC) algorithms. Several other classes

of algorithms have been proposed that can be used to approximate the posterior distribution of

the parameters in HMMs and related models, including particle filtering or Sequential Monte

Carlo [Liu and West, 2001], particle Markov Chain Monte Carlo [Andrieu et al., 2010], and Vari-

ational Bayes [Ji et al., 2006]. We focus on MCMC methods because they have been shown to be

effective in fitting HMMs.

Some considerations in designing MCMC algorithms to use in fitting HMMs and FMMs

include how to handle the unobserved states, ways to improve mixing and escape from local

modes in the posterior distribution, and the method used to explore different state space sizes.

We will review ideas that have been proposed for each of these problems.

One idea for dealing with the hidden states, referred to in the literature as completion, is

to treat them as missing data and sample their values as part of the MCMC sampler. This is

useful because the conditional posterior distributions of the model parameters given the states

generally have simple forms. We can therefore use a Gibbs sampler with some Metropolis-with-

Gibbs steps if non-conjugate priors are used. This method was originally developed by Diebolt

and Robert [1994]; Scott [2002] is a review paper focusing on this technique.

An alternative to completion is to use a more general Metropolis-Hastings algorithm. In

this approach, we evaluate the full likelihood by integrating over the distribution of the state

sequence, rather than sampling one sequence from that distribution at each iteration and then

drawing from the conditional distribution of the parameters given the states. In order to achieve
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reasonable acceptance rates, the high dimensional parameter vector is typically broken into sub-

components with separate proposals made for each. This approach is dependent on the availabil-

ity of an algorithm for calculating the likelihood quickly, since the likelihood must be calculated

for each proposal. A recursion algorithm to do this has been developed in the literature [Scott,

2002, Zucchini and MacDonald, 2009].

Scott [2002] gives several arguments for why using completion may be a better approach.

One consideration is that even using the likelihood recursion, computing the acceptance ratio

for a Metropolis-Hastings move is more computationally expensive than sampling from the full

conditional posterior in the Gibbs sampler. Another advantage to using completion is that some

of the parameters may be highly correlated in the posterior distribution, but have low correlation

conditional on the state sequence. If that is the case, mixing may be improved if we sample the

state sequence as part of the algorithm. Finally, we are often interested in the unobserved states,

so we will have to sample their values at some point anyways.

However, several authors have argued that the more general Metropolis-Hastings algorithm

has faster convergence or better mixing than algorithms using completion and Gibbs steps. One

line of reasoning given by Cappé et al. [2003] is that the sampler will converge faster because

the dimension of the space we must sample from is reduced. Integrating over the distribution

of the state sequence eliminates the stochasticity that would be introduced by sampling from

it. Also, Celeux et al. [2000] and Jasra et al. [2005] have observed that the Gibbs sampler using

completion is more likely to get stuck in a local mode of the posterior distribution because the

sampled states reinforce the current parameter values.

The problem of escaping local modes is a serious consideration for MCMC samplers used for

HMMs and FMMs since the posterior distribution is typically highly multimodal. One way of

escaping local modes in a sampler that doesn’t use completion is tempering. The idea behind

tempering is to generate proposals by making use of a sequence of distributions which are suc-

cessively more “flattened” versions of the true posterior we would like to sample from. One

way of obtaining these flattened distributions is to let them be proportional to a power of the

true posterior, where the powers are at a range of values between 0 and 1. Given the current

parameter value for the chain, a proposal for the next is generated by moving up through these

distributions from the true posterior through the flattened versions, and then back down. The

proposed parameter can make larger moves through this technique and so escape local modes,
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but will still be in relatively high-probability regions of the posterior. This method was first sug-

gested by Neal [1996] and was used in the context of FMMs by Celeux et al. [2000]. A similar

idea known as population Monte Carlo maintains a separate MCMC chain for each of the flat-

tened distributions, and allows transition moves to exchange states between the different chains.

This was used for FMMs by Jasra et al. [2007]. Finally, Scott [2002] has observed that methods

for changing the size of the state space (discussed next) can help to resolve this problem by pro-

viding a mechanism for adding new states with parameters that are not close to the parameter

values for existing states.

Another major consideration for designing a MCMC sampler is how different state space

sizes are explored. The simplest idea is to run a separate sampler for each possible state space

size, keeping the size of the state space fixed within a single sampler. The posterior probability of

a given size S is then approximately proportional to the prior probability of S times the average

likelihood of the parameter values sampled in the corresponding MCMC chain. The propor-

tionality is resolved through the constraint that the posterior probabilities must sum to 1 [Scott,

2002]. It is also possible to use criteria such as Bayes Factors or information complexity mea-

sures to compare these separately-estimated models and select the number of states [Bensmail

and Meulman, 2003, Erar, 2011].

The requirement to run many MCMC samplers is a major drawback since it is computation-

ally burdensome. Several other methods have been proposed that allow the state space size

to vary within a single MCMC sampler. Of these, the most popular is reversible jump MCMC

(RJMCMC); another option is birth-death MCMC (BDMCMC).

Both of these options provide mechanisms for adding and removing states from the state

space. RJMCMC was introduced by Green [1995]; it is a general method applicable to problems

where the dimension of the parameter space varies. The algorithm has been applied to FMMs

by Richardson and Green [1997], Cappé et al. [2003], Jasra et al. [2007], and Dellaportas and

Papageorgiou [2006], and to HMMs by Spezia [2010]. The idea is to augment a standard MCMC

sampler for fixed state space size with additional move types that add or delete a state, split

one state into two, or merge two states into one. In order to ensure that the detailed balance

equations are satisfied and the sampler converges to the desired posterior distribution, these

dimension-changing moves must be reversible in the sense that a move that splits one state into

two can be “undone” by a move that merges those two into one state, and vice versa.
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BDMCMC is another approach that was developed for FMMs by Stephens [2000b] and ex-

tended to HMMs by Cappé et al. [2003]. The basic idea is similar to RJMCMC, but new states

are added and removed in continuous time. In the simplest formulation, “births” of new states

occur according to a Poisson process with a fixed rate parameter. “Deaths” of states occur ac-

cording to independent Poisson processes with rate parameters depending on the likelihood of

the corresponding state parameters; states that do not contribute to explaining the data die at

higher rates than those that do. Cappé et al. [2003] included other types of moves, such as split

and merge moves, within this framework.

2.4 Discriminative Approaches with Sequential Dependence

In this Section, we discuss two discriminative approaches to classification in data with se-

quential dependence. We discuss Conditional Random Fields (CRFs) in Subsection 2.4.1 and a

method for combining discriminative models for i.i.d. data with the time dependence structure

of HMMs in Subsection 2.4.2. There is also an extensive line of research in the speech recog-

nition literature that optimizes functions other than the negative log-likelihood to estimate the

parameters of the HMM in a discriminative fashion. One of these approaches is equivalent to

maximizing the likelihood of the CRF. We will not discuss the others of these methods in detail;

see Jiang [2010] and He et al. [2008] for more thorough reviews of these methods.

2.4.1 Conditional Random Fields

Conditional Random Fields (CRFs) were originally proposed in the computer science litera-

ture by Lafferty et al. [2001] and have been applied to a variety of problems, including part-of-

speech tagging [Lafferty et al., 2001], gene prediction [Bernal et al., 2007] and physical activity

classification [Vinh et al., 2011] among many others. The idea of the CRF is to use a graphical

model for the conditional distribution of Yi|Xi. Estimation of CRF models can be performed in

either a frequentist or Bayesian setting, but Bayesian methods are less well developed; we focus

on frequentist methods in this review.

The model uses a graph G = (V, E) to represent the dependence relationships among the

variables Yi,t. The vertices of the graph are the components of the vector Y and the edges specify
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x1,1 ,... , x1,T 1
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Figure 2. A diagram illustrating the linear chain CRF with a single observation sequence,
i = 1. Random variables are shown with nodes. Boxes are random variables that
we condition on, and circles are random variables that we model. The distribu-
tion of the state Yi,t depends on the states at the adjacent two time points in the
sequence and the feature values at all times. Formulations with more complex
dependence relationships are also possible, and entail adding more edges to the
graph.

the conditional dependence structure of Y|X as follows:

p(Yi,t|X, Yi∗,t∗ , (i, t) 6= (i∗, t∗)) = p(Yi,t|X, Yi∗,t∗ , Yi,t ∼ Yi∗,t∗),

where Yi,t ∼ Yi∗,t∗ indicates that the graph contains an edge connecting Yi,t and Yi∗,t∗ [Lafferty

et al., 2001]. In words, Yi|Xi has the Markov property with respect to the graph.

If the graph has the structure of a chain where Yi,t is connected to Yi,t−1 and Yi,t+1 as illus-

trated in Figure 2, it is common to assume that the conditional distribution has a p.m.f. with the

following form [Sutton and McCallum, 2011]:

f(y|x) =
exp

{∑K
k=1

∑Ti−1
t=1 λkfk(yi,t, yi,t+1,x)

}
∑

y∗i
exp

{∑K
k=1

∑Ti−1
t=1 λkfk(y∗i,t, y

∗
i,t+1,x)

} . (2.4.1)

Here, the index y∗i of the summation in the denominator runs over all possible sequences of

classes. If we have N observation sequences, the joint conditional distribution is a product of

N terms of this form. It can be shown that the conditional model for Y|X that results from

conditioning on X in the first-order HMM is a special case of the CRF that can be achieved

by particular choices of the functions fk in Equation (2.4.1) [Lafferty et al., 2001, Sutton and

McCallum, 2011]. However, the CRF is more general in two ways: first, the graph structure can

be arbitrary, and second, more general functions fk can be used.

The formulation of the CRFs given above specifies a conditional model for the full obser-

vation sequences Yi. Some authors have modified this formulation to give a model for the

individual states Yi,t [Torralba et al., 2004, Taskar et al., 2004].
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Usually, the only parameters that are estimated are the weights λk; the graph structure and

the functions fk are treated as fixed at the time the λk are estimated. However, several authors

use a two-stage estimation strategy in which parameters for these functions are estimated first,

and then the functions are combined through the CRF. We will discuss a special case of this where

each fk is derived from a CRF or HMM in Subsection 2.6.1, and another variation where the fk

are treated as general functions which are estimated non-parametrically in Subsection 2.6.4.

In CRFs with relatively simple graphical structures such as the linear chain model pictured in

Figure 2, recursive algorithms can be used to compute the value of the likelihood function and its

gradient efficiently. We will present these algorithms in detail in Chapter 5. When the graph has a

more complicated structure, exact evaluation of the likelihood is computationally infeasible and

approximate methods must be used. In either case, estimates of the CRF parameters are most

often obtained using general purpose gradient ascent type algorithms; see Sutton and McCallum

[2011] for a general discussion of the application of these methods to CRFs. Several authors have

introduced boosting methods for estimating CRFs; we will discuss these methods in Section

2.6.4.

2.4.2 Discriminative HMMs, McShane et al. [2013]

McShane et al. [2013] take a different approach to discriminative estimation of HMM param-

eters by rewriting the model in a form that replaces estimation of the multivariate density for

Xi,t|Yi,t with the simpler problem of estimating the distribution of Yi,t|Xi,t. With this reparame-

terization, they are able to employ well-developed classification methods that are applicable for

i.i.d. data in order to perform classification with a HMM. This preserves the advantages of the

generative approach in terms of the relative ease of parameter estimation, while gaining some

of the superior classification performance of discriminative approaches when the distribution

Xi,t|Yi,t is difficult to model. This approach can be viewed as a hybrid approach in which the

parameters describing transitions between activity types are estimated by maximum likelihood

in the joint HMM, but the parameters describing the connections between the features X and the

classes Y are estimated discriminatively.
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2.5 Moderate to High Dimensional Observations

When the dimension D of the random vector Xi,t observed at each time point is large, the

basic formulations of the HMM and CRF models discussed above can overfit the training data,

resulting in reduced classification performance on new data. Overfitting can result if the dimen-

sion is large relative to the number of observations because noise in the training data can falsely

indicate differences in the distributions of observed data between states.

In this Section we review ideas that have proposed for addressing this problem with HMMs

and CRFs in both the frequentist and Bayesian frameworks. These strategies generally combine

one or more of the following ideas:

1. an initial dimension-reducing data transformation before fitting the model

2. a reduced number of the observed covariates, either overall or for each state

3. penalized estimation

4. boosting, a method to combine inferences from multiple simplified models

The first of these strategies is more commonly applied with HMMs than with CRFs. However,

variable selection, penalized estimation and boosting have been applied with both HMMs and

CRFs. We review methods for performing an initial dimension reduction in Subsection 2.5.1

and methods for variable selection and penalized estimation in Subsection 2.5.2. We will discuss

boosting in Section 2.6.

2.5.1 Initial Dimension Reduction

One option is to reduce the dimensionality of the data before fitting the classification model.

One way of doing this is through principle components analysis (PCA), which has been rec-

ommended as a first step when fitting FMMs by Dellaportas and Papageorgiou [2006] and Jasra

et al. [2007]. Some other approaches that can be used to perform an initial data reduction include

linear discriminant analysis (LDA) and its extensions. We discuss these ideas in this Subsection.

The idea behind PCA is to create a small set of new variables that are linear combinations of

the originally observed variables and which capture most of the variability in the original data.

PCA does this by projecting the observed data vectors, which lie in RD, onto D′ < D linearly

independent subspaces of RD. These subspaces are generally taken to be those spanned by the
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eigenvectors corresponding to the D′ largest eigenvalues of the sample covariance matrix [Rav-

ishanker and Dey, 2002]. This is illustrated in Figure 3(a) for the case of reducing 2-dimensional

data to 1 dimension.

The projection of a high dimensional Gaussian random variable onto a lower dimensional

space also follows a Gaussian distribution. Liu et al. [2003] argue that this provides some jus-

tification for the use of PCA with Gaussian HMMs and FMMs: if the observed data follow a

multivariate Gaussian distribution conditional on the state, the variables created using PCA will

also follow a Gaussian distribution conditional on the state. Thus, the HMM or FMM applies

equally well to the variables obtained through PCA as it did to the original variables.

However, PCA can make it more difficult to distinguish between different classes. An ex-

ample of how this might occur is shown in Figure 3(b). The difficulty here is that observations

from two different Gaussian components are projected to the same place on the axis defined by

the first principle component. As a result, there is no way to tell the observations from different

states apart based on the subspace selected by PCA. If a different projection had been used, we

would have been able to capture the differences between the states in a smaller number of vari-

ables. Liu et al. [2003] have proposed a Bayesian approach that helps to remedy this problem for

FMMs by simultaneously fitting the model and selecting which of the principle components are

most informative for distinguishing between the states.

Linear discriminant analysis (LDA) is another technique that projects the data onto a lower-

dimensional linear subspace, but this method seeks to find the optimal subspace which main-

tains separation among the states. In order to use this method, the data set used to train the

model must include the true state corresponding to each observation. Given this data, the ob-

served features are projected onto the subspace of dimension D′ which maximizes the variance

among the means for the different states relative to the variances for observations within each

state [Hastie et al., 2009].

There are two practical problems with using the standard implementation of LDA for HMMs.

First, it requires that the state be known for the data used to fit the model; often this is not

available. Even when some classification information is available, there may be multiple states in

the HMM corresponding to each observed class. Second, the standard approach is based on the

assumption that the observed features follow multivariate Gaussian distributions with the same

covariance matrix in each state. These problems can both be resolved to some extent through the
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PCA for a Bivariate Normal Distribution
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(a) The diagonal line represents the first
principal component; it indicates the direc-
tion in which the observed data varies the
most. A new variable is created by com-
puting the distance between the data mean
and the projection of each observed (x, y)
onto this line.

PCA for a Bivariate Normal Mixture 
 with 2 States
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(b) The diagonal line again represents the
first principal component. The projection
of the data points onto this line fall into the
same region; the first principal component
does not give us enough information to
distinguish between the two states.

Figure 3. Principle Components Analysis

use of other dimension-reduction methods such as mixture discriminant analysis [Hastie and

Tibshirani, 1996] or local Fisher discriminant analysis [Sugiyama, 2007]. These methods both

extend LDA to the case that the data follow a Gaussian FMM within each class.

2.5.2 Variable Selection and Shrinkage

Another set of ideas focuses on selecting the best subset of the observed variables to use in

fitting the model. Approaches to this task can be divided between variable selection methods

where each variable is either in or out of the model, and shrinkage methods where the influ-

ence of each observed covariate in determining cluster membership is scaled down according

to the amount of information contributed by that covariate. Some shrinkage methods may also

perform variable selection, for instance by shrinking the parameters associated with a partic-

ular variable to 0. Shrinkage methods can often be interpreted either as frequentist estimates

obtained by maximizing a penalized likelihood function or as Bayesian estimates under an in-

formative prior [Hastie et al., 2009]. In this Section we review several approaches for estimation
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with variable selection and shrinkage.

Dy and Brodley [2004] propose a forward search algorithm for feature selection in a Gaussian

FMM. In each step, features are evaluated based on how much they increase the likelihood or a

geometric measure of separability between clusters similar to that used in LDA. Covariates that

lead to better clustering according to one of these measures are added to the model one at a time.

Raftery and Dean [2006] propose a similar algorithm where models are compared using BIC as

an approximation to Bayes Factors. A variable is added (or removed) from the model one at a

time if there is evidence that the variable does (or does not) contribute information about the

clustering given the other variables in the model.

As we mentioned in Subsection 2.5.1, Liu et al. [2003] propose a method to select the prin-

ciple components that are most informative in clustering while fitting a Gaussian FMM in the

Bayesian framework. This can be considered as a variable selection method where the principle

components are selected rather than the originally observed covariates. They achieve this by

marginalizing over the mean and covariance parameters and using a Gibbs sampler that alter-

nates between sampling the mixture component allocation of each observation conditional on

the informative covariates and the value of a vector indicating whether or not each principle

component is informative. This algorithm can be used for clustering, but does not estimate the

parameters for the observation distribution in each state.

Variable selection ideas have also been developed for CRFs. For example, McCallum [2003]

uses an iterative forward search procedure, beginning with a model that does not include any

features and then gradually adding new features and interactions between features that are al-

ready included in the model. In each step, the features that result in the largest increase in the

CRF log-likelihood are added to the model and all coefficients are updated. The model training

process halts when a threshold on the minimum increase in the log-likelihood in each iteration

is reached.

We now turn to shrinkage techniques. One simple approach for shrinkage is used by Car-

bonetto et al. [2003] for Gaussian FMMs. They specify a hierarchical prior distribution for the

mean vector in each state that allows for shrinkage of components of the mean vector corre-

sponding to features that are similar in different states. That is, if an observed covariate has a

similar mean in all states, estimates of those means are shrunk towards each other. One limita-

tion to this method is that it does not apply shrinkage to the variance of the covariates, which
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may be different in different states.

Shrinkage methods have also been suggested for the alternative covariance parameteriza-

tions we mentioned in Section 2.3. Two articles focus on penalized estimation in a simplified

normal FMM where the covariance matrix for each state is assumed to be the same diagonal

matrix. Pan and Shen [2007] work with centered data and find penalized maximum likelihood

estimates subject to an L1 penalty on the means of each covariate in each component of the mix-

ture. Wang and Zhu [2008] introduce two new possibilities for penalization terms, both of which

enforce a grouping on the means. Under these schemes, the means for the same covariate in dif-

ferent mixture components are shrunk towards 0 together. Galimberti et al. [2008] introduce an

L1 penalty in a model related to a mixture of factor analyzers; the penalty has the effect of shrink-

ing the factor loadings toward 0 for factors that are less important in explaining the clustering in

the data.

In applications of CRFs in computer science, there are often hundreds of thousands of model

parameters. In order to reduce the potential to overfit the data, it is very common to introduce

a penalty on the magnitude of the coefficients λk [Sutton and McCallum, 2011, Smith, 2007, Vail

et al., 2007a]. An L2 penalty is used most commonly, since numerical gradient ascent methods

are often used in parameter estimation and the L2 penalty is differentiable. However, methods

to perform estimation with L1 penalties have also been developed [Vail et al., 2007a]. Use of an

L1 penalty can be regarded as a mechanism for performing variable selection, since the penalty

tends to shrink some coefficient estimates to exactly 0.

2.6 Ensemble Methods

In this Section, we discuss approaches for combining several classification models into one

larger model. We begin by reviewing functional forms that have been proposed for combining

the component models in Subsection 2.6.1. In the following three Subsections, we discuss three

specific strategies for obtaining a diverse collection of component models: we cover bagging in

Subsection 2.6.2, the use of different subsets of the features in Subsection 2.6.3, and boosting in

Subsection 2.6.4. Throughout this Section, we will draw from the literature on ensemble meth-

ods for static classification in addition to ensemble methods that have been developed for the

dynamic HMM and CRF models. We will use M to denote the total number of component mod-
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els in the ensemble, and collect the parameters for all of these component models in the vector

θθθ = (θθθ(1), . . . , θθθ(M)).

2.6.1 Functional Forms for Combining Multiple HMMs or CRFs

Many different methods have been suggested for combining multiple classification methods

in order to obtain one overall model. In the context of HMMs and CRFs, one of the first sugges-

tions for achieving this was the Product of HMMs [Brown and Hinton, 2001], which is closely

related to the Logarithmic Opinion Pool of CRFs (LOP) [Smith et al., 2005, Smith, 2007]. The LOP

model is given by

p(yi|xi; θθθ) =
exp

[∑M
m=1 αmlog{p(yi|xi; θθθ

(m))}
]

∑
y′i

exp
[∑M

m=1 αmlog{p(y′i|xi; θθθ
(m))}

] (2.6.1)

Here, the α1, . . . , αM are non-negative model weights with
∑M
m=1 αm = 1, θθθ = (θθθ(1), . . . , θθθ(M))

collects the parameters of the M component CRF models, and p(yi|xi; θθθ(m)) is the conditional

probability of the observation sequence yi|xi from themth CRF. As before, the summation in the

denominator is over all state sequences yi. The Product of HMMs is essentially the same as this

model, but it takes αm = 1∀m = 1, . . . ,M .

The LOP is a particularly convenient method for combining CRFs because by rearranging the

order of summations, we can interpret the resulting combined model as either a CRF where each

feature function fm is the log-probability of the given observation sequence obtained from the

mth component CRF, or as a CRF with parameters equal to a weighted average of the parameters

in the component CRFs [Sutton et al., 2006]. This observation enables fast computation of the

class probabilities at each time point, the model likelihood, and the gradient of the likelihood

using the forward-backward recursions developed for CRFs.

Much of the work that has been done on LOP parameter estimation focuses on introducing

variability into the set of CRFs that are combined in the LOP. Bagging and the use of feature

subsets are two examples of methods that have been suggested to achieve this. This goal can be

motivated by the so-called ambiguity decomposition for LOPs, derived by Heskes [1998]. Let

p(y|x; θθθ) be the conditional probability estimate formed by combining the individual estimates

p(y|x; θθθ(m)) as in Equation (2.6.1). If we denote the true distribution being estimated by q(y|x),
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the ambiguity decomposition states that

K{q(y|x), p(y|x; θθθ)} =

M∑
m=1

αmK{q(y|x), p(y|x; θθθ(m))} −
M∑
m=1

αmK{p(y|x; θθθ), p(y|x; θθθ(m))}

(2.6.2)

Here,K(q, p) is the Kullback-Leibler divergence of p from q. The first term on the right hand side

of Equation (2.6.2) is a measure of the average quality of the individual conditional density esti-

mates. The second term, referred to as the ambiguity, is a measure of how similar the individual

estimates are to the combined estimate. It follows from this decomposition that we can improve

the the quality of the combined estimate by simultaneously

1. minimizing the first term; i.e., ensuring that each individual estimate gives an accurate

representation of the true conditional distribution, and

2. maximizing the second term; i.e., ensuring that the individual estimates are diverse.

The model weights can either be estimated at the same time as the parameters of the com-

ponent models, or in a second stage. However, previous researchers have found that estimating

the model weights does not yield much improvement in classification performance relative to

using uniform weights [Smith and Osborne, 2007, Baldridge and Osborne, 2008, Dietterich et al.,

2004].

Another method that has been suggested for combining multiple models is through a linear

combination of the class probabilities:

p(yi|xi; θθθ) =

M∑
m=1

αmp(yi|xi; θθθ(m))

In this case, we require that the model weights are non-negative and sum to 1 to ensure that the

model gives a valid probability distribution over the space of all sequences yi. Both Sutton et al.

[2006] and Smith [2007] used this form to combine the predictions from CRFs in applications to

text processing, and they found that the resulting models did not perform as well as when a LOP

was used.

Smith [2007] proposed two additional methods, which they refer to as a per-transition prod-

uct of experts and a per-transition mixture. These are analogous to the LOP and the linear com-

bination discussed above, but specify models for p(yi,t|yi,t−1,xi; θθθ) rather than for the full se-

quence yi. Again, they found that these models do not perform as well as the LOP when applied

to real data sets.
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2.6.2 Bagging

Bagging is the idea of combining many models, where the parameters of each model are

estimated using a different sample drawn with replacement from the originally observed data.

In settings with sequential dependence, bagging can be implemented by resampling complete

observation sequences.

Smith and Osborne [2007] employed this approach with a parametric specification of CRFs,

and found that it led to a small improvement in classification performance, though not as large as

was achieved by using a manually constructed subset of the features in each model (we discuss

this approach next). They motivated the use of bagging via the ambiguity decomposition for

LOPs. Bagging is a strategy to obtain a more diverse set of component models.

Bagging has been better studied in combination with static classification methods combined

in linear opinion pools. One approach to explaining the benefits of bagging is to view it as a

mechanism for reducing the sampling variance of the class or regression estimates [Hastie et al.,

2009]. Suppose our classification model has low bias but high sampling variance, in that the

estimated class for a particular input x is very sensitive to the data used to estimate the model

parameters. By combining the predictions from many different training data sets, we can reduce

that variance while maintaining the low bias. Drawing a bootstrap sample from the originally

observed data provides a mechanism for obtaining these different training data sets. Biau et al.

[2008] also examine bagging and prove that the procedure yields a consistent classifier as long

as the original classifier was consistent, and demonstrate that in some cases bagging can create

a consistent classifier even if the original classifier was inconsistent.

Bagging is often applied with classification and regression trees, which have high variance

and therefore benefit from the variance reduction that bagging provides [Hastie et al., 2009]. In

that context, bagging is one of the foundational ideas behind random forests; we will discuss the

other main idea behind random forests, random feature selection, in the next Subsection.

2.6.3 Feature Subsets

Another common way of introducing diversity into the set of component models is by re-

stricting the model estimation process for each component model to use a subset of the observed

features. Smith and Osborne [2007], Smith [2007], and Sutton et al. [2006] implement this strat-

egy with CRFs by manually creating M subsets of the full feature set that they believe will be
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separately informative and training each model using one of these subsets. The predictions from

these separately trained models are then combined in the LOP. In applications, they find that this

combined classifier performs better than a single model trained using the full feature set and is

more robust to differences between the training data set and the test set.

Smith and Osborne [2007] motivate this approach via the ambiguity decomposition for LOPs,

which we discussed in Section 2.6.1. Sutton et al. [2006] discuss a second motivation for using a

diverse group of component models trained with different feature subsets. They observe that of-

ten, a small subset of the covariates used in CRFs is much more individually informative than the

others. If penalized estimation is used to estimate the CRF parameters, this means that the coef-

ficient estimates for those covariates will be large and the coefficients for other model terms will

shrink towards zero, even if those other covariates are jointly informative. This effect, referred

to as weight undertraining, can be problematic for two reasons. First, sometimes there are dif-

ferences between the training and test data sets that mean that covariates that were informative

in the training set are no longer informative in the test set. Second, it may be that the covari-

ates whose coefficients were shrunk were actually jointly more informative than the covariates

with large coefficients. They suggest that these problems can be mitigated by combining several

diverse models.

Static random forests use a similar idea as part of the estimation process. In this case, during

the process of growing the component classification or regression trees, each node split is ob-

tained by searching over a randomly selected subset of the features. The feature in this subset

yielding the largest gain in regression or classification performance is selected.

For random forest algorithms, analysis shows that the performance of the final classifier im-

proves if the quality of the individual trees improves and the correlation between the predictions

of the individual trees is reduced [Breiman, 2000, Amit and Geman, 1997, Breiman, 2001, Hastie

et al., 2009]. This is similar in spirit to the ambiguity decomposition for LOPs. Use of different

random feature subsets in different trees is one way of reducing the correlation between their

predictions.

2.6.4 Boosting to Combine Multiple HMMs or CRFs

In this Subsection we review boosting methods in general and discuss some additional ideas

that have been developed for using boosting to create ensembles of HMMs and CRFs.
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Boosting is a general method for obtaining a strong classifier F (x) by combining several

weaker classifiers fm(x), m = 1, . . . ,M . Depending on the formulation, each base classifier may

map the feature vector x to an estimated class or to a vector of estimated probabilities for each

class. A key idea in boosting is that we fit the base classifiers sequentially, and each new classifier

that is estimated focuses more on cases that were misclassified by earlier classifiers and less on

cases that were classified correctly by earlier classifiers.

One of the most common boosting algorithms is AdaBoost (or adaptive boosting), which was

originally proposed for binary classification problems and has since been adapted to other set-

tings such as multiple classification and regression. In this algorithm, new classifiers are succes-

sively fit to a weighted version of the sample in which observations that were correctly classified

by the previous classifiers are given less weight than those that were not. The final classifier is a

weighted combination of these base classifiers, where the weight for the mth base classifier is a

function of the error rates of the base classifiers obtained in iterations 1 through m [Freund and

Schapire, 1995].

The particular weighting scheme used in the AdaBoost algorithm arises from performing

approximate stagewise additive modeling under an exponential loss function [Friedman et al.,

2000]. That is, the base classifiers are obtained one at a time by approximately minimizing an

exponential loss function while holding previously estimated classifiers fixed. The exponential

loss is a function of a weighted sum of the classification results from each base classifier.

It is often helpful to “slow down” convergence to a minimum of the loss function by shrink-

ing the contribution of each base classifier fm(x) to the overall classifier F (x). This can be done

by multiplying the loss-minimizing weight for the mth base classifier by ν, where 0 < ν < 1.

Hastie et al. [2009] recommend using a value of ν that is “very small (ν < 0.1)”. In general, there

is a tradeoff between the amount of shrinkage used and the number of additive components that

are fit: the smaller ν is, the larger M must be to obtain the same explanatory power. The best

results are often obtained with a small value of ν and a large number of additive components.

Different loss functions can also be used, resulting in variations on the boosting algorithm

[e.g. Hastie et al., 2009, Domingo and Watanabe, 2000]. For binary classification problems, one

alternative loss function is the binomial deviance. Minimizing the binomial deviance is equiva-

lent to maximizing the binomial log-likelihood where the probabilities can be interpreted as the

logistic transform of the value of the weighted sum of base classifiers [Hastie et al., 2009]. Sev-
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eral ways of extending boosting to classification problems with more than 2 classes have been

proposed: using an extension of the exponential loss to multiple classes [Zhu et al., 2009], using

the multinomial likelihood instead of the binomial likelihood [Friedman et al., 2000, Friedman,

2001], and converting the problem into several binary “one vs. the rest” classification problems

[Schapire and Singer, 1999], among others.

It has been shown that the AdaBoost algorithm performs poorly when the Bayes error rate

is large or the data used to train the model have incorrect labels [Hastie et al., 2009, Dietterich,

2000]. Intuitively, this is because the exponential weighting scheme assigns increasingly large

weights to previously-misclassified observations. In the case of mislabeled training data, this

means that the base classifiers that are trained in later boosting iterations focus more on the

mislabeled observations. An advantage of using the binomial deviance loss function is that it

assigns less weight to incorrectly classified observations than the exponential loss. As a result, it

is more robust to mislabeled data and high Bayes error rates [Hastie et al., 2009].

Moreover, it has been proven that in the presence of random misclassification error in the

labels of the training data, any boosting algorithm that proceeds by stagewise additive modeling

under a convex loss function can generate a classifier that misclassifies as often as 50% of the time

[Long and Servedio, 2010]. Alternative boosting algorithms that do not work by optimizing a

convex loss function have been suggested to address this problem in the binary classification

setting [Freund, 2001, Kalai and Servedio, 2003, Long and Servedio, 2008].

In order to select the number of boosting iterations (i.e., the number M of component mod-

els), it is common to use evaluation of the combined model’s performance on a held-out val-

idation data set. This strategy can mitigate problems in terms of overfitting the data. In fact,

it is been shown that some boosting algorithms approximate L1 penalized model estimation,

with the number of boosting iterations corresponding to the magnitude of the penalty parame-

ter [Hastie et al., 2009, Rosset et al., 2004]. For those algorithms, selecting the number of boosting

iterations by validation of model performance on a held-out data set corresponds to performing

cross-validation to select the penalty parameter.

Boosting methods have been adapted for use with HMMs and CRFs by several authors. Ap-

proaches to boosting with HMMs have been based on the setup for training HMMs for classifica-

tion with labeled data in which a separate HMM is fit to observation sequences from each class.

The most direct approach to applying the Adaboost algorithm with this classification model is

32



to simultaneously fit a new HMM for every class in each boosting iteration, thereby obtaining

a new classifer in each iteration. This can be done by drawing a sample with replacement from

the set of all observation sequences using sampling weights derived from the classification er-

ror rates from previously fit classifiers and then fitting a HMM to the sampled sequences for

each class, as in Dimitrakakis and Bengio [2004], Darmanjian et al. [2007], and Darmanjian and

Principe [2008]. Zhang et al. [2005] achieve a similar result by training the new set of HMMs with

a modified EM algorithm where the observed samples are explicitly weighted. In both cases, a

linear combination of the individual classifiers obtained from each boosting iteration is used for

the final classifier, as in the original AdaBoost algorithm.

Foo and Dong [2003] and Foo et al. [2004] take a different approach to boosting with a similar

model. Rather than fitting a new set of HMMs to obtain an additional classifier in each boosting

iteration, they modify the model so that a weighted sum of HMMs is used for each class-specific

model. This weighted sum of HMMs is obtained through a modification of the AdaBoost algo-

rithm, where the individual HMMs in the sum for a given class are fit using a weighted sam-

ple of the training sequences for that class. They build up the class-specific models by adding

one additional HMM at a time, but a single classifier that compares the data likelihood from

each class-specific model is used throughout. Chen and Chen [2009] use a similar approach in

a binary classification problem. With this approach, it would also be possible to combine the

resulting class-specific HMMs into a single larger HMM.

One of the first applications of boosting to training CRFs was proposed by Dietterich et al.

[2004], and uses gradient tree boosting. Rather than specify a linear functional form in known

functions fk as in Equation (2.4.1), they model the conditional distribution of Yi|Xi as

P (yi|Xi = xi; θθθ) =
exp [

∑
t F

yi,t{yi,t−1, wt(x)}]∑
y∗i
exp

[∑
t F

y∗i,t{y∗i,t−1, wt(x)}
] . (2.6.3)

In this expression, wt(xi) is a windowing function that extracts the values of xi occurring in

a window around the time t. They then approximate each of the functions F k with a linear

combination of regression trees that is updated iteratively. In this process, the mth tree is fit so

as to approximate the gradient of the contribution to the log-likelihood from each observation

(yi,t, wt(xi)) with respect to F k, evaluated at the approximation of F k obtained after iteration

m − 1. We will describe this approach in more detail in Section 5.3. In applications to four data

sets, Dietterich et al. [2004] find that their method outperforms the feature search method of
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McCallum [2003], described in Subsection 2.4.1, on two data sets and does worse on the other

two. Variations on this algorithm have since been suggested by Gutmann and Kersting [2007]

and Liao et al. [2007]. Torralba et al. [2004] develop another boosting algorithm in an application

to image segmentation that applies gradient boosting separately to two problems: (1) learning

the local relationship between the covariates at one pixel and that pixel’s label, and (2) learning

the graph structure and relationships between different pixels. This algorithm is unique in that

it does not treat the graph structure as fixed and known.

The boosting method of Dietterich et al. [2004] can be cast as a method for fitting a LOP of

CRFs. If we let F km be the mth regression tree used in the approximation of F k, we can rewrite

the model as follows:

P (yi|Xi = xi; θθθ) =
exp [

∑
t F

yi,t{yi,t−1, wt(x)}]∑
y∗i
exp

[∑
t F

y∗i,t{y∗i,t−1, wt(x)}
]

=
exp

[∑
t

∑M
m=1 αmF

yi,t
m {yi,t−1, wt(x)}

]
∑

y∗i
exp

[∑
t

∑M
m=1 αmF

y∗i,t
m {y∗i,t−1, wt(x)}

]
=

exp
[∑M

m=1 αm
∑
t F

yi,t
m {yi,t−1, wt(x)}

]
∑

y∗i
exp

[∑M
m=1 αm

∑
t F

y∗i,t
m {y∗i,t−1, wt(x)}

]
This is analogous to the LOP model of Equation (2.6.1), where

∑
t F

yi,t
m {yi,t−1, wt(x)} plays the

role of log{p(yi|xi; θθθ(m))}. Edakunni et al. [2012] develop a general boosting algorithm for Prod-

ucts of Experts that builds on this connection.

2.7 Physical Activity Classification

Activity classification and energy expenditure estimation are active areas of research, and

many different methods have been suggested for performing these tasks using accelerometer

data. In the early literature, most approaches were limited by the use of accelerometers that

recorded only a univariate discretization of the acceleration experienced over the course of in-

tervals of one or more seconds in length, known as “counts”. As better technology has become

available that records acceleration along multiple axes at higher frequencies, a wider variety of

methods have been developed to take advantage of those data.

These newer methods generally begin by dividing the acceleration time series into a series of

windows centered at different points in time. A vector of features is then obtained that summa-
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rizes the acceleration signal within each separate window. A statistical classification or machine

learning algorithm is used to relate the features extracted from each window to the activity type

or energy expenditure level for that window. This general approach of dividing a signal into

windows is also commonly used in other fields such as speech recognition [Rosti, 2004, Kumar

and Andreou, 1998].

We will review each of these steps in turn. We discuss some choices related to how the

windows are constructed in Section 2.7.1 and the features that are extracted in Section 2.7.2. We

present models that have been used for activity classification in Section 2.7.3, and models for

energy expenditure in Section 2.7.4. We will also mention some research from related disciplines

that use similar methods.

2.7.1 Windows

One choice to be made when dividing the signal into windows is how long the windows

should be. Window lengths used in previous research have generally varied between 1 and 60

seconds. Several researchers have found that classification accuracy increases as window lengths

become longer. Mannini et al. [2013] fit separate models using data obtained from windows of

sizes 2, 4, and 12.8 seconds and find that classification accuracy is generally better for the models

with longer window lengths. Similarly, Trost et al. [2012] examine window lengths varying

from 10 seconds to 60 seconds. They find that a 10 second window is adequate for classifying

sedentary activity, moderate-to-vigorous household activity, sports, walking, and running, but

a 60 second window is necessary to improve classification rates for light-intensity household

activity. Similar findings have been reported by Bonomi et al. [2009a] and Sasaki [2013].

Although longer windows have been consistently found to lead to superior classification ac-

curacy, they have some drawbacks. One is that in real-time classification settings (e.g., for the

purposes of making health interventions), longer windows lead to greater latency and slower

feedback to the user [Mannini et al., 2013]. Another problem is that using a longer window in-

creases the chances that a single window covers more than one activity class. This is particularly

a problem in free-living data where activities are not performed for known periods of time that

start and end on the minute [Lyden et al., 2014]. Features calculated from a window that covers

multiple activity types may not bear much resemblance to the features that would be observed

from either activity type alone, causing difficulties for the classification algorithm.
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Two studies have examined the possibility of addressing this problem by determining the

start and end points of windows empirically. Anderson [2013] uses statistical change-point al-

gorithms to identify time indices that may mark a boundary between different activity classes.

These algorithms work by comparing the distribution of time series values in an interval before

and after each point in time. If these distributions are different according to a specified measure,

the given point in time is used as the boundary of a window for the classification algorithm. An-

derson [2013] found that the window boundaries obtained through these methods were noisy

and the approach did not perform as well as other options using fixed window size. Lyden et al.

[2014] take a different approach, using specific knowledge of human activity to specify decision

rules for identifying periods of inactivity and activity based on the accelerometer signal. They

then divide periods of activity into windows of length 40 seconds (or greater). This prevents the

windows from including periods of both activity and inactivity, though it is still possible that a

window may include more than one type of activity.

Another option is to incorporate multiple window lengths in one classification procedure.

Zheng et al. [2013] implement this idea by first dividing the time series into windows of length

10 seconds, and then further subdividing each 10 second window into subwindows of varying

lengths from 1 to 10 seconds. They train ten separate models, one for each subwindow length.

The predictions of these models are combined through a majority vote to obtain a single classifi-

cation for each 10 second window. The overall classification accuracy is best with this combined

model, though it is outperformed by one or another of the fixed-window-size models in each

individual activity category. This suggests that patterns in the accelerometer signal that distin-

guish between activity classes may be available at several different time frames. Lester et al.

[2005] also use features from multiple window lengths. In their setup, the window used to cal-

culate each feature continually slides forward, so that it ends at the time the classification is to

be performed.

2.7.2 Features

A wide variety of features have been used to summarize the acceleration signal in each win-

dow, drawing from the time domain, the frequency domain, and wavelet transforms, which

capture both time and frequency domain characteristics. The time domain features used are

standard summary statistics of the observed acceleration within the given window, including
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the mean, standard deviation, percentiles, lag 1 autocorrelation, and so on. For accelerometers

that measure acceleration along 3 axes, it is also possible to calculate features such as the corre-

lation between these axes and the angle of acceleration.

The goal of the frequency domain features is to identify any cyclical trends in the acceleration

time series and determine how much of the variation in the data is explained by those cyclical

trends. In order to do that, they estimate properties of the spectral density, which is defined as

the Fourier transform of the autocovariance function of the underlying stochastic process that

generated the data. Intuitively, the spectral density is a non-negative function of ν that tells us

how much of the lag l autocovariance in the time series is explained by oscillations of frequency

ν, for each lag l [Shumway, 1988]. This also tells us about cyclical variation in the time series

itself, because if the stochastic process that generates the data has periodic oscillations then its

autocovariance function has oscillations of the same frequency [Engelberg, 2007]. The value of

the spectral density function evaluated at ν is referred to as the power of the frequency ν.

The theory of the spectral density is based on the Fourier transform of the autocovariance

rather than the original stochastic process because often the Fourier transform of the stochas-

tic process does not exist, but the Fourier transform of the autocovariance does exist as long as

the process is weakly stationary and satisfies certain other regularity conditions [Bartlett, 1978].

However, when we estimate the spectral density based on a finite sample from a time series, it is

equivalent to work with the discrete Fourier transform of either the observed values or the sam-

ple autocovariance [Shumway, 1988]. An important consideration when working with a finite

sample of size T is that we can only estimate the spectral density at a finite set of frequencies

of the form k
T × (sampling frequency) for k = 1, . . . , T − 1, and only the first bT2 c estimated fre-

quencies will be unique (where bac indicates the greatest integer less than a) [Shumway, 1988].

Commonly used frequency domain features include the frequency and power of the first and

second dominant frequencies (those frequencies with the highest and second-highest power),

the frequency and power of the first and second dominant frequencies restricted to the band of

frequencies from 0.6 to 2.5 Hz, ratios among these quantities, and so on.

2.7.3 Activity Classification

Many different algorithms and models have been applied to classify physical activity, in-

cluding support vector machines [Anderson, 2013, Gyllensten and Bonomi, 2011, Mannini et al.,
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2013, Ravi et al., 2005, Sasaki, 2013, Zhang et al., 2012, Zheng et al., 2013], classification trees [Al-

binali et al., 2010, Anderson, 2013, Bao and Intille, 2004, Bonomi et al., 2009a,b, Gyllensten and

Bonomi, 2011, Mathie et al., 2004, Ravi et al., 2005, Zhang et al., 2012], artificial neural networks

[Anderson, 2013, de Vries et al., 2011, Ermes et al., 2008, Gyllensten and Bonomi, 2011, Sasaki,

2013, Staudenmayer et al., 2009, Zhang et al., 2012], and nearest neighbors [Bao and Intille, 2004,

Foerster et al., 1999, Ravi et al., 2005], among others. Two studies have also looked at combin-

ing inferences from multiple different types of classifiers, with some success [Gyllensten and

Bonomi, 2011, Ravi et al., 2005]. A thorough review can be found in Preece et al. [2009]. These

models routinely achieve classification accuracy in the range of 85 to 95% with laboratory data,

and occasionally higher.

It has been shown repeatedly that classification accuracy suffers when models are trained

with data from the laboratory and applied to perform classification with data gathered in a

free-living environment [Duncan et al., 2011, Foerster et al., 1999, Gyllensten and Bonomi, 2011,

Sasaki, 2013, Lyden et al., 2014]. The primary reason for this is that laboratory data are not

representative of free-living data. These differences arise because people engage in a smaller

variety of activities in the laboratory than they do in real life, and the way that they perform these

activities is different. Only a limited number of activities can be performed in the laboratory; in

most studies, subjects perform in the range of 10 to 20 specific tasks. However, people engage

in a much wider variety of activity in daily life. This means that models trained with laboratory

data are only equipped to recognize a small subset of the activities that people do in free-living

settings [Bao and Intille, 2004, Duncan et al., 2011, Gyllensten and Bonomi, 2011]. It has also

been shown that there are differences in the ways that people perform common activities in the

laboratory and in real life. For example, people may sit up straighter in the laboratory than they

do outside of it, and they may walk at a different or more uniform pace when there are other

people around them [Foerster et al., 1999, Gyllensten and Bonomi, 2011].

Mixed results have been obtained when performing physical activity classification in free-

living data using models that are trained with free-living data. In Bao and Intille [2004], subjects

perform a set of 20 activities that are designed to be representative of daily life. In an effort to

make the subjects more at ease, they are not observed by a researcher; instead, they annotate

the start and end of each activity themselves. Their models achieve classification accuracies in

line with results from laboratory studies. Ermes et al. [2008] employ a study design with two
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components. In the first, subjects complete a supervised routine of activities and their activities

are annotated by the researchers; in the second, participants are not restricted in the activities

they could perform, and they annotate their own activity. Classification models trained and

tested using data from the combined structured and unstructured components attain overall

classification accuracy as high as 89%. Sasaki [2013] obtained data through direct observation

of 15 seniors in a free-living environment for 2-3 hours each. Models using this free-living data

achieve classification accuracy of 70 to 76%.

Overall, it appears that classification of activity gathered in a truly free-living environment is

more difficult than classification of activity in a laboratory setting. This is supported by Gyllen-

sten and Bonomi [2011], who observe that there seems to be more “overlap” among the features

from different categories in free-living data than in laboratory data, suggesting that the classifi-

cation problem is inherently more difficult in the free-living setting.

Two major suggestions have been made regarding changes to the classification models dis-

cussed above that could lead to higher success rates in classification. One is that models might

benefit by taking into account variation between individuals. Mannini et al. [2013] and Bao and

Intille [2004] observe that classification accuracy for some activities is consistently good for all

subjects, while for other activities classification accuracy is very dependent on the subject. Bao

and Intille [2004] show that using subject-specific models has the potential to increase activity

recognition rates.

Another limitation to these models is that, while some temporal dependence may be cap-

tured within each window (e.g., through the computation of frequency-domain features), they

treat each window as independent of the other windows. This discards some useful information,

since there is in fact temporal dependence in activity type. This is because an individual is much

more likely to perform the same activity in adjacent time periods than to change activities. It has

been suggested that a model that accounts for this temporal dependence might have better clas-

sification accuracy than one that does not [Gyllensten and Bonomi, 2011, Mannini and Sabatini,

2010, Bao and Intille, 2004].

Several studies have used HMMs in order to capture temporal dependence in activity classi-

fication data. The most direct way to use HMMs for this purpose is to represent the true activity

class by the hidden state, with the observed acceleration features following a distribution that

depends on the state. Mannini and Sabatini [2010] use this approach and achieve classification
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accuracy of 98.4% with partially simulated data. It should be noted that they use subject-specific

models, and it is not clear how well the methods would translate to non-synthetic data. Pober

et al. [2006] use a HMM that assigns 3 states to each activity class, and obtain overall classifica-

tion accuracy of about 81%.

A second approach to using HMMs is to first use a flexible model that does not incorporate

time dependency to obtain an initial classification, and then use a HMM to smooth those initial

classifications over time. Lester et al. [2005] take this approach, using the AdaBoost algorithm

with decision stumps for the initial classification that does not take time dependence into ac-

count. Class probabilities obtained from this first stage classifer are then used as input for a set

of HMMs, with one HMM for each activity class. In order to obtain a classification for time t in

an observation sequence where the true class is unknown, they apply each class-specific HMM

to the features observed in a window of length ∆ beginning at time t. The estimated class at

time t is that corresponding to the HMM with the highest likelihood value. Anderson [2013]

uses a similar idea, but employs decision trees, support vector machines, or neural networks for

the first stage classifier. He uses a single HMM to represent the full time series, with one state

corresponding to each activity class. The predicted classes from the first stage classifier are the

observed values for the HMM, with the hidden state representing the true activity at each point

in time. The Viterbi algorithm is used to estimate the true activity class when it is unknown.

Vinh et al. [2011] use a variation on the CRF referred to as the semi-Markov CRF to classify

physical activity using accelerometer data. This model formulation relaxes the simple time de-

pendence structures used in many CRF specifications. In addition to features calculated from

the accelerometer recordings, they use time of day as a feature. In similar spirit to the meth-

ods we discussed in the previous paragraph, they perform an initial unsupervised clustering

step, and use the resulting estimated cluster memberships as inputs to the CRF model. Notably,

their objective is to classify activity according to activity categories including commuting, office

work, lunch, and dinner; these activities are quite different from the categories used by health

researchers, which tend to describe postural activities such as sitting or standing. While we are

not aware of other applications of CRFs to physical activity classification with accelerometer

data, CRFs have been employed in similar settings. For example, Vail et al. [2007b] use CRFs to

classify the behavior of robots playing tag; rather than accelerometer data, their inputs are the

positions of the robots over time.
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2.7.4 Energy Expenditure Estimation

In this Section, we discuss methods that have been developed to estimate the intensity of

physical activity from accelerometer data. Energy expenditure is often expressed in units of

Metabolic Equivalent of Task (MET). One MET is the energy used by an individual at rest. The

energy expenditure of other activities is expressed as multiples of this resting rate. For example,

a three MET activity requires three times as much energy as resting. The intensity of physical

activity is also often categorized as sedentary (≤ 1.5 METs), light (> 1.5 and< 3 METs), moderate

(≥ 3 and < 6 METs), or vigorous (≥ 6 METs) [Ainsworth et al., 2011]. Many hypotheses about

the relationship between physical activity and health outcomes, as well as the physical activity

guidelines published by the U.S. Department of Health and Human Services, are given in terms

of the amount of time spent in these categories [U.S. Department of Health and Human Services,

2008].

The most common approach to estimating energy expenditure in early research with ac-

celerometer data uses a linear regression model that relates accelerometer counts to intensity,

as in Freedson et al. [1998]. The difficulty with this approach is that activities with similar in-

tensities may result in quite different counts when recorded with an accelerometer, and simi-

larly, activities with different intensities may yield similar counts [Pober et al., 2006]. Also, these

methods tend to work well only for activities similar to those used in estimating the regression

coefficients. For example, if the data used to train the model focused on ambulatory activities,

the model will typically perform adequately for ambulatory activities but poorly for other types

of activity (and vice versa) [Lyden et al., 2011].

One idea for remedying the problems with linear regression models is to use a more flexible

model for the relationship between the accelerometer signal and the activity intensity. This ap-

proach was taken by Rothney et al. [2007] and Staudenmayer et al. [2009] using artificial neural

networks, and by Sasaki [2013] using support vector regression and random forest regression.

All of these methods represent improvements over linear regression models.

Another common option is to use separate models for different types of activity. With this ap-

proach, in order to estimate energy expenditure we first estimate the physical activity classifica-

tion at each point in time and then apply the appropriate models to estimate energy expenditure

over time.

One of the first implementations of this idea used two regression models to estimate energy
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expenditure based on accelerometer counts. The coefficient of variation of counts in each minute

is examined to determine which model to use. This coefficient of variation was found to distin-

guish between walking/running activities and other activities effectively. The regression models

are therefore targeted to work for these two groups of activities [Crouter et al., 2006]. This ap-

proach improved upon the methods using a single linear regression, but has also been shown to

give inaccurate estimates of energy expenditure in a free-living setting [Lyden et al., 2011].

Lyden et al. [2014] use a decision tree to identify whether a time interval is an interval of

activity or one of four types of inactivity by considering the number of seconds in the interval

with non-zero counts and the duration of the interval. For the inactivity intervals, a MET value

is assigned based on the Compendium of Physical Activities (CPA) [Ainsworth et al., 2011] and

calibration studies. The CPA brings together scientific research that has established the energy

expenditure required to perform a wide variety of physical activities. For activity intervals,

METs are estimated using the neural network published earlier by Staudenmayer et al. [2009].

Pober et al. [2006] simply use a point estimate of the energy expenditure associated with each

estimated activity class obtained from their classification model (described in Subsection 2.7.3).

With this simple approach, they markedly improve the number of minutes correctly placed into

the intensity categories in comparison with the approach of Freedson et al. [1998]. Bonomi et al.

[2009b] use the same idea to estimate total daily energy expenditure, and find that the method

works well. However, Albinali et al. [2010] examine the same method and find that it results

in consistently low estimates of energy expenditure. They also consider using either a subject-

specific regression model for each activity class to relate accelerometer output to METs, or a

model for each activity class relating subject characteristics such as age, height, weight, and rest-

ing heart rate to energy expenditure. They find that both of these methods are better than using

point estimates from the CPA, but the subject-specific method is impractical for many purposes

since it requires measurements of energy expenditure for each subject to fit the regression mod-

els.

Another approach to estimating energy expenditure is to estimate the pace of activities such

as walking and cycling; the intensity categorization of these activities is related to their speed

[Ainsworth et al., 2011]. This idea has been used by Bonomi et al. [2009a]. They develop separate

multiple regression models to estimate walking, running, and cycling speeds based on bodily

characteristics and accelerometer features. A limitation of this approach is that the relationship
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between movement speed and energy expenditure depends on the terrain. For example, walking

at the same speed uphill and along flat ground entail different amounts of energy expenditure

[Lester et al., 2009].

Lester et al. [2009] estimate energy expenditure using estimated activity type classifications

along with subject weight, speed of movement, and the grade of movement. Detecting move-

ment grade requires integration with other data sources or sensors such as a barometric pressure

sensor or GPS unit. In their experiments, this system gives estimates of energy expenditure that

are in the range of 79 to 89% of true energy expenditure.
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C H A P T E R 3

DATA

3.1 Introduction

We have recorded data about subjects’ physical activity from two different studies: Mannini

et al. [2013] and Sasaki [2013]. We describe the design of each of these studies and the data that

were collected in Section 3.2. In Section 3.3, we describe the procedures we used in preprocessing

the data. Finally, in Section 3.4 we present some plots and discuss aspects of the data that are

important to consider in the model building process.

3.2 Study Methodologies

In this Section we describe the design of the studies where the data that we will use were

gathered. Table 1 contains descriptive statistics for the participants in these studies.

In the study by Mannini et al. [2013], each participant performed a subset of 26 activities in

the laboratory. These activities were designed to be generally representative of activities people

engage in in real life, but subjects were not allowed to perform multi-tasking behaviors other

Mannini et al.
[2013]

Sasaki [2013]
Laboratory

Sasaki [2013]
Free Living

N 33 35 15
Male/Female 11/22 14/21 6/9

Age Range 18 to 75 65 to 80 65 to 78
Height (mean ± sd) 168.5 ± 9.3 cm 168.6 ± 9.8 cm 169.8 ± 9.8 cm
Weight (mean ± sd) 70.0 ± 15.6 kg 76.4 ± 14.2 kg 74.5 ± 11.4 kg

Table 1. Descriptive Statistics for Study Participants
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than the walking-carrying-a-load activity. The order and duration of activities were determined

by the researchers.

While they performed these activities, the subjects wore Wocket accelerometers on their an-

kle, thigh, wrist, and hip. Only the data from the ankle and the wrist have been made available

to us. These accelerometers recorded acceleration (m/s2) in each of 3 axes at a frequency of 90

Hz. Staff also recorded the start and stop times for each activity that was performed.

The study by Sasaki [2013] focused on the elderly and had two components: one where

participants performed a prescribed set of activities in the laboratory, and one where the subjects

were observed in their daily lives. For the laboratory component, each subject performed one

of two activity routines consisting of a subset of 17 different activities. The subjects performed

each activity for 5 minutes in a specified order, with a resting period of between 2 and 5 minutes

between activities. As in Mannini et al. [2013], staff recorded the start and stop times of each

activity. The subjects’ specific behaviors during the resting periods were not labeled; from a

visual examination of the accelerometer signals, it appears that they spent some time sedentary

and some time moving during these time spans, but we do not have any way to confirm the

specific activity types they engaged in. The subjects wore four accelerometers: ActiGraph GT3X+

accelerometers on the dominant ankle, hip, and wrist that recorded acceleration in 3 axes at a

frequency of 80 Hz, and an activPAL on the leg that recorded a measure of acceleration along

one axis at a frequency of 10 Hz in addition to a measure of the leg’s orientation. We have used

only the data from the ActiGraph accelerometers in our work. The subjects also wore an Oxycon

portable respiratory gas exchange system which records breath-by-breath oxygen consumption

and can be used to determine the intensity of physical activity [Rosdahl et al., 2010].

A subset of the subjects in the laboratory component of the study were recruited to participate

in the free living component as well. These subjects wore the same four accelerometers that were

used in the laboratory component of the study. Staff followed the subjects as they went about

their normal activities and classified the activities in 3 ways: the type of activity performed (15

categories), the location of the activity (Indoors or Outdoors), and a categorical assessment of

the intensity of the activity (Sedentary, Light, Moderate, or Vigorous).
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3.3 Data Preprocessing

Rather than using the raw acceleration data directly in our models, we divide the signal up

into windows several seconds in length and extract several summary statistics describing fea-

tures of the signal within each window for use in the model. This general modeling approach has

been used in every method for classification of physical activity using accelerometer signals that

we are aware of, and has also been used successfully in other fields such as speech recognition.

We use non-overlapping windows of length 12.8 seconds. As we discussed in the literature

review, it has generally been found that windows of length about 10 seconds or longer yield bet-

ter classification results than shorter windows. We follow Mannini et al. [2013] and Zhang et al.

[2012] in using windows of length 12.8 seconds. This particular window length is convenient

because at a sampling frequency of 80 Hz each window contains 1024 observations, facilitating

fast computations of frequency-domain features.

The data preprocessing procedure involves two primary tasks: (1) assign activity type and

intensity labels to each time window, and (2) extract summary features from the accelerometer

signal in each time window. We discuss each of these tasks in turn. We note that the data from

Mannini et al. [2013] were already cleaned when they came to us. However, they performed

many of the same steps that we did; we will describe differences between our preprocessing

methods as appropriate.

In order to assign an activity label to each window, there are five subtasks:

1. adjust the timing of activity type and intensity changes recorded in the direct observation

logs,

2. drop time with missing data,

3. compute the intensity category,

4. combine activity type categories to obtain a reduced set of type categories, and

5. assign category labels to windows.

It is necessary to adjust the transition times between different activity categories that were

recorded in the direct observation logs in order to correct inaccuracies in the logging process. It

takes some time for the direct observers to register that a subject has changed their activity type
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and record that change in the logging software. In addition, there may be some misalignment

and drift in the synchronization of the clocks used in the accelerometers and in the direct ob-

servation logging device. We adjusted the direct observation log times by visually aligning the

transition times with the acceleration vector magnitude obtained from the ankle accelerometer.

We did not notice any appreciable differences in the clocks between the different accelerometers;

separate time adjustments for the specific accelerometer locations were not required.

The recorded transition times in the laboratory data were very accurate, and required only

minimal adjustments. In the free living data, most of our changes to the logged transition times

were between about 0 and 7 seconds. However, we did make a few larger adjustments to the

transition times in the free living data, up to about 40 seconds. These larger adjustments were

generally for transitions from the Moving Intermittently category to the Sedentary or Standing

category; it seems that the direct observer took extra time to register that the subject was no

longer moving intermittently in a few cases. These adjustments corrected many problems in the

direct observation labels, but we believe that there may still be some inaccuracies in the activity

type labels in the free living data. Although we adjusted the locations of existing transition times

that were recorded in the direct observation logs, we did not introduce any new transitions.

The data from Sasaki [2013] contain several time periods where the activity type and intensity

were not recorded. In the laboratory component of the study, this occurs during the time periods

between the prescribed activities. In the free living component of the study subjects were able to

request private time in order to use the restroom, change clothes, and perform similar activities.

During these times we do not know what specific activities the subjects were engaged in. We

have opted to drop these unlabeled time segments. Development of methods for partially la-

beled data would be interesting, and particularly useful in the context of physical activity data,

but that is beyond the scope of our work.

Mannini et al. [2013] also dropped some times from the observation sequences for several

reasons. One problem they encountered was data loss that occurred during wireless transmis-

sion of the acceleration signal from the accelerometers. If more than 20% of the samples in a

given window of 12.8 seconds were missing, they discarded that time window and began a new

window after the missing data. They used linear interpolation to fill in any remaining missing

acceleration values. Rather than manually adjusting transition times to match the acceleration

signal, they addressed the problem of imprecision in the recorded activity labels by discarding
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one window of length 12.8 seconds before and after each recorded transition between different

activity types. Finally, they used recordings from the accelerometer placed at the ankle to detect

times that were mislabeled as ambulation: if the vector magnitude of the acclerometer signal

had a standard deviation of less than 0.1g in any 2 second window, they discarded that time.

In Chapter 8, we will classify physical activity according to its intensity level. As we dis-

cussed in Section 3.2, only the free living data from Sasaki [2013] contain direct annotations of a

categorical intensity level for each subject’s activity over time. The laboratory data from Sasaki

[2013] contain recordings of the subjects’ breath-by-breath oxygen consumption from an Oxycon

portable respiratory gas exchange system. We processed these data to obtain the subjects’ steady

state energy expenditure during minutes 3 - 5 of each activity in units of METs. In calculating

METs, we used a denominator of 3.5 ml O2 · kg−1 ·min−1 for the reference metabolic rate in the

resting state. Use of this population average value can be criticized, particularly with a pool of

elderly subjects as we have in this study [Kozey et al., 2010]. However, we were missing resting

metabolic rate measurements for two of the subjects. We opted to use a consistent measure that

was available for all of our subjects. In general, it takes a few minutes after beginning an activity

for oxygen consumption to reach a steady state. For data gathered in the laboratory where the

intensity of each activity remained fairly constant throughout the activity, it is appropriate to

use the steady state oxygen consumption to represent the intensity of the activity throughout

the entire duration of the activity. After computing energy expenditure in METs, we assigned an

intensity category to each time point using the standard categories and MET cutoffs [Ainsworth

et al., 2011]: Sedentary (≤ 1.5 METs), Light (> 1.5 and< 3 METs), Moderate (≥ 3 and< 6 METs),

and Vigorous (≥ 6 METs).

The data from Mannini et al. [2013] do not contain any direct information about intensity.

However, they do contain a detailed system of physical activity type categorization, breaking

activity type down into 26 different classes. We combined this detailed information about activ-

ity type with the population-average MET values associated with each activity category that are

available in the Compendium of Physical Activities [Ainsworth et al., 2011] to obtain approxi-

mate intensity levels. We then converted these continuous values to categorical intensity levels

using the set of MET cutoffs described above.

Both of the studies by Mannini et al. [2013] and Sasaki [2013] made use of reduced set of

activity type categories for modeling purposes, formed by merging the finer categories together.
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We will use the same category groupings used in those studies. Mannini et al. [2013] used the

following category groupings:

1. Sedentary (lying, sitting, internet search, reading, typing, writing, sorting files, riding an

elevator)

2. Ambulation (natural walking, treadmill walking, carrying a box, stairs up/down),

3. Cycling (indoor and outdoor), and

4. Other Activities (sweeping with a broom, painting with a roller or brush).

Sasaki [2013] used two different groupings of activities with either 3 or 5 categories, which var-

ied slightly between the laboratory and free living settings. In the laboratory setting with 5

categories, the groups were formed as follows:

1. Sedentary (lying down, sitting, crossword puzzles, playing cards)

2. Standing (standing)

3. Locomotion (slow walk, 400m walk, carrying groceries)

4. Moving Intermittently (dusting, gardening, vacuuming, self-care, laundry, organizing the

room)

5. Recreational (tai-chi, simulated bowling)

The system with 3 categories was formed by merging the Standing group with the Sedentary

group and the Recreational Group with the Moving Intermittently group. For the free living

setting with 5 categories, the groups were formed as follows:

1. Sedentary (lying down, sitting, sitting with upper body movement, driving)

2. Standing (standing, standing with upper body movement)

3. Locomotion (walking, walking with a load, walking on an incline, stairs)

4. Moving Intermittently (moving intermittently, household activities)

5. Recreational (aerobic exercise, resistance exercise, balance exercise)
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Again, the classification system with 3 categories was formed by merging the Standing group

with the Sedentary group and the Recreational Group with the Moving Intermittently group.

The final step in the labeling task is assigning activity type and intensity labels to each win-

dow. The issue here is how to address the fact that some windows may cover more than one

activity category. As we mentioned above, Mannini et al. [2013] discarded one window before

and after each transition between different activity types, so this problem does not arise in their

data. In processing the data from Sasaki [2013], we have opted to keep these transition times.

In order to handle transitions between different activity types, we introduced a new Transition

category, which we assigned to windows that contained more than one labeled activity type in

the reduced classification system.

Figures 4 through 7 show how the data cleaning process we have described here impacts

the activity class labels for a typical subject in the laboratory and free living components of the

study from Sasaki [2013]. In Figure 4, we see that the original laboratory data contain annota-

tions of 8 different activity categories, along with several segments of unlabeled activity. Figure

5 shows that after preprocessing, the unlabeled time segments have been dropped, the activity

type categories have been merged into a reduced set of categories, and windows overlapping

two different activity types have been reclassified with the Transition label. With the laboratory

data, only minimal adjustments were required in terms of the start and stop times for each activ-

ity. Figure 6 shows the originally recorded data for subject 9 in the free living component of the

study. The preprocessed data are shown in Figure 7. Here, the transition times were adjusted,

time segments labeled as Private activity have been removed, some of the categories from the

original direct observation logs have been merged together, and windows covering more than

one category in the direct observation logs have been relabeled with the Transition class.

The second stage of preprocessing the data involves extracting a vector of features from the

accelerometer signal in each window. In their study, Mannini et al. [2013] considered several dif-

ferent feature sets, and selected one set of 13 features which they felt achieved an optimal balance

between the time required to compute the features and the resulting classification performance.

In our work with their data set, we use that feature set in order to facilitate comparisons between

the effectiveness of our methods and the support vector machine they employed as a classifier.

These features are listed in Table 2. They consist of time and frequency domain summaries of the

vector magnitude of the accelerometer signal. In our applications to the data from Sasaki [2013],
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Activity Type
Seated
Standing
Lying down
Cards
Laundry
Dusting
Vacuuming
Slow walk
400m walk
Bowling
Unlabeled

Acceleration Vector Magnitude vs. Time and Activity Type
Unadjusted Direct Observation Activity Type Labels

Sasaki Laboratory Ankle Data, Subject 1
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Figure 4. Plot of the acceleration vector magnitude over time for subject 1 in the labora-
tory component of the study by Sasaki [2013]. The background color indicates
the originally recorded activity classification at each point in time before pre-
processing.
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Activity Type
Sedentary/Standing
Moving Intermittently
Locomotion
Transition

Acceleration Vector Magnitude vs. Time and Activity Type
Adjusted Direct Observation Activity Type Labels

Sasaki Laboratory Ankle Data, Subject 1
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Figure 5. Plot of the acceleration vector magnitude over time for subject 1 in the labora-
tory component of the study by Sasaki [2013]. The background color indicates
the adjusted activity classification at each point in time after preprocessing.

we use an expanded set of 77 features, listed in Table 3. We computed these features using the

three individual axes of acceleration recordings and the vector magnitude, polar angle, and az-

imuth angle in a representation of the signal in spherical coordinates. Our choices of features are

similar to those used in previous studies such as Mannini et al. [2013].

3.4 Plots and Discussion

In this Section we discuss some initial plots of the data from Mannini et al. [2013] and make

two main observations: (1) there is temporal dependence in the activity type and intensity level,

and (2) the features extracted from the acceleration data do not follow any simple parametric

distribution. These properties of the data have important implications for our models: in order

to represent the association between the accelerometer signal and the activity classification well,

they should take account of the temporal dependence, and they should be flexible enough to

handle features that have complex distributions. We will also demonstrate that there is a fair

amount of variability between subjects in terms of both the patterns of the accelerometer signal

that are associated with each activity category and the amount of time spent in each activity

category in the free living setting. Ideally, our models would account for this subject-specific
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Activity Type
Driving
Moving Intermittently
Sitting
Sitting, Upper Mvt
Standing
Standing, Upper Mvt
Walking
Walking with Load
Private

Acceleration Vector Magnitude vs. Time and Activity Type
Unadjusted Direct Observation Activity Type Labels

Sasaki Free Living Ankle Data, Subject 9
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Figure 6. Plot of the acceleration vector magnitude over time for subject 9 in the free liv-
ing component of the study by Sasaki [2013]. The background color indicates
the originally recorded activity classification at each point in time before pre-
processing.
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Activity Type
Sedentary/Standing
Moving Intermittently
Locomotion
Transition

Acceleration Vector Magnitude vs. Time and Activity Type
Adjusted Direct Observation Activity Type Labels

Sasaki Free Living Ankle Data, Subject 9
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Figure 7. Plot of the acceleration vector magnitude over time for subject 9 in the free liv-
ing component of the study by Sasaki [2013]. The background color indicates
the adjusted activity classification at each point in time after preprocessing.
Note that the time labeled as Private beginning at about minute 75 in Figure
6 has been removed.
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Domain Feature

Time Domain Mean

Standard deviation

Minimum and maximum

Frequency
Domain

Frequency and power of the first dominant frequency between 0.3 Hz and
15 Hz

Frequency and power of the second dominant frequency between 0.3 Hz
and 15 Hz

Total power between 0.3 Hz and 15 Hz

Ratio of the power of the first dominant frequency between 0.3 Hz and 15
Hz and the total power between 0.3 Hz and 15 Hz

Frequency and power of the first dominant frequency between 0.3 Hz and 3
Hz

Ratio of the frequency of the first dominant frequency between 0.3 Hz and
15 Hz in the current window and in the previous window

Table 2. Features extracted from the accelerometer signal in preprocessing the data from
Mannini et al. [2013]. All features are computed using the acceleration vector
magnitude.

variation as well; however, we will not pursue that line in this work. We will discuss this issue

further in Chapters 7 and 9.

Our first observation, that there is temporal dependence in the activity type and intensity

level, can be seen from the plots in Figures 4 through 7. The key point here is that if an indi-

vidual is sedentary at one point in time then he or she is likely to remain sedentary in the near

future, and similarly for the other activity classes. Thus, the activity type at a given time point is

informative about the activity type at nearby time points.

Our second observation is that the features follow relatively complex distributions. This can

be seen from the plots displayed in Figure 8. Note that these plots show only univariate and

bivariate summaries of these distributions; the higher dimensional densities are even more com-

plicated. It would be difficult to specify a simple parametric model for these data that modeled

their distribution accurately. At the same time, the relatively large number of features we have

extracted means that flexible density estimation methods such as kernel density estimation will

struggle. This is a central challenge that we will seek to address in specifying our model.

Our final observation is that there is a fair amount of variation between subjects. We show

this for the one pair of accelerometer features in Figure 9. This plot can be interpreted as indicat-
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Domain Feature X Y Z VM θ ρ

Time
Domain

Mean Y Y Y Y Y Y

Order Statistics: The 10th, 25th, 50th, 75th,
and 90th percentiles

Y Y Y Y Y Y

Lag 1 autocorrelation Y Y Y Y N N

Entropy: We first obtain a nonparametric
estimate of the distribution of acceleration
values by placing the observed VM values
into 10 bins of equal size and calculating
the proportion falling into each bin,
p1, . . . , p10. The estimated entropy is then
− 1

10

∑10
i=1 pilog(pi)

N N N Y N N

Frequency
Domain

Frequency and power of the first dominant
frequency: The frequency and estimated
power for the frequency with the highest
estimated power

Y Y Y Y N N

Frequency and power of the second
dominant frequency: Same as above, for
the frequency with the second-highest
estimated power

Y Y Y Y N N

Total power: The sum of the estimated
power for all frequencies. Note that this is
equal to T−1

2 times the sample variance of
the observations if T is odd, with a slight
adjustment if T is even.

Y Y Y Y N N

Frequency and power of the first dominant
frequency in the band from 0.3 to 3 Hz

Y Y Y Y N N

Ratio of power of first dominant frequency
in the band from 0.3 to 3Hz to power of
first dominant frequency overall

Y Y Y Y N N

Entropy of the spectral density: After
normalizing the estimated powers so that
they sum to 1, we apply the entropy
calculation above. This is a measure of
how uniformly “distributed” the variance
is among the frequencies considered.

Y Y Y Y N N

Table 3. Features extracted from the accelerometer signal in preprocessing the data from
Sasaki [2013]. The right-hand 6 columns indicate whether the listed feature
was computed for the anteroposterior axis, mediolateral axis, vertical axis, vector
magnitude, polar angle, and azimuthal angle.
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ing that the distribution of the accelerometer features associated with each activity type varies

between subjects. Alternatively, the decision boundaries between classes in the feature space

are subject-dependent. In the free living data, there are also differences in the relative amounts

of time the subjects spend in each activity category, and the probabilities of transitioning from

one activity type to another. We depict these differences among the subjects in Figure 10. This

variation among subjects represents an important aspect of the data that we will not account for

in our models; we will discuss our reasons for this in Chapter 7. However, it is important to be

aware of this between-subject variability.
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Figure 8. Plots showing the observed values and univariate kernel density estimates for
one pair of features with the hip data from the free living component of the
study by Sasaki [2013]. In the lower left panel, each point represents one win-
dow of length 12.8 seconds. The horizontal axis of the plot gives the average
value of the acceleration vector magnitude within the given window. The vec-
tor magnitude includes acceleration due to gravity, so if a subject is stationary
the vector magnitude is 1 g. The vertical axis of the plot gives the 75th percentile
of the azimuthal angle, indicating the relative amounts of acceleration experi-
enced by the accelerometer along the anteroposterior axis and the mediolateral
axis.
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Figure 9. Plots showing the observed values for one pair of features in the hip data from
the free living component of the study by Sasaki [2013]. Each point represents
one window of length 12.8 seconds. Each panel shows the data for one subject.
The features are as described in Figure 8.
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C H A P T E R 4

PRELIMINARY SIMULATION STUDIES

In this Section we conduct two preliminary simulation studies to motivate the models that

we develop in Chapter 5. In Section 4.1, we demonstrate that models that account for temporal

dependence are helpful when the data-generating mechanism includes temporal dependence. In

Section 4.2, we show that discriminative methods can be superior to generative methods when

the observation distributions associated with each state are not modeled well in the generative

model. Variations on these results have already been proved or demonstrated through applica-

tions to real data sets in many different settings. Our simulation studies serve to confirm these

prior results, as well as to offer specific insights related to our area of application.

4.1 Preliminary Simulation 1: Temporal Dependence

As we have seen in Chapter 3, physical activity data exhibit temporal dependence. In this

Section, we describe a simulation study that demonstrates that when the data are temporally

dependent, it is beneficial to account for that dependence in a classification model. Specifically,

we show that when the data are generated from a HMM, HMMs yield higher classification ac-

curacy than FMMs. We begin by describing the simulation study, then we present and discuss

the results.

Our simulation study works with a simplified data generating mechanism so that we can

focus on the effects of temporal dependence on classification accuracy. As we noted in Chapter

3, the strongest indication of temporal dependence in physical activity data is that individuals

tend to engage in activity types for extended times. We capture this in our simulation study

by simulating activity types from a Markov chain that has large entries on the diagonal of the
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transition matrix. That is, the probability of transitioning from a given activity back to the same

activity is large, and the probability of transitioning to a different activity is small.

The simulation study was conducted as follows. In each of 1000 simulations, we generate

independent training and test data sets from the following model with N = 5 and T = 1000:

Yi,t ∈ S = {1, 2}, i = 1, . . . , N, t = 1, . . . , T

P (Yi,1 = 1) = P (Yi,1 = 2) =
1

2
, s ∈ S, i = 1, . . . , N

P (Yi,t = s|Yi,t−1 = r) = qr,s, r, s ∈ S, i = 1, . . . , N, t = 2, . . . , T , where

qr,s =


0.95 if r = s,

0.05 if r 6= s

Xi,t|Yi,t = s ∼ N(µs, 1) s ∈ S, i = 1, . . . , N, t = 1, . . . , T , where

µs =


−0.5 if s = 1,

0.5 if s = 2

The variable Yi,t corresponds to the activity type for subject i at window t, and Xi,t corresponds

to an observation made from an accelerometer for subject i at window t.

We use the training data set to estimate the parameters of the following two models:

Model 1 – FMM:

P (Yi,t = s;πππ) = πs, s ∈ S, i = 1, . . . , N, t = 1, . . . , T , where

0 ≤ π1, π2 ≤ 1 and π1 + π2 = 1

Xi,t|Yi,t = s ∼ N(µs, 1), s ∈ S, i = 1, . . . , N, t = 1, . . . , T

The FMM has parameters θθθ = (πππ, µ1, µ2), where πππ = (π1, π2). These parameters are estimated

using maximum likelihood. The estimate of πs is the observed proportion of the training set

with yi,t = s, and the estimate of µs is the sample mean of the observed xi,t such that yi,t = s.
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Model 2 – HMM:

P (Yi,1 = s;πππ) = πs, s ∈ S, i = 1, . . . , N , where

0 ≤ π1, π2 ≤ 1 and π1 + π2 = 1

P (Yi,t = s|Yi,t−1 = r;Q) = qr,s, r, s ∈ S, i = 1, . . . , N, t = 1, . . . , T , where

0 ≤ qr,s ≤ 1∀r, s and
2∑
s=1

qr,s = 1∀r

Xi,t|Yi,t = s ∼ N(µs, 1), s ∈ S

The HMM has parameters θθθ = (πππ,Q, µ1, µ2), where πππ = (π1, π2) and Q = [qr,s]. We use maxi-

mum likelihood estimates of Q = [qr,s], µ1, and µ2. The estimate of qr,s is

nr,s
nr,1 + nr,2

,

where nr,s is the number of observed transitions beginning in state r and ending in state s. The

estimate of µs is the same as in the FMM. Also as in the FMM, we estimate πππs as the observed

proportion of the sample with yi,t = s; this is not the maximum likelihood estimate, but use of

this estimate is a standard procedure to reduce sampling variance of the estimates.

Finally, we use the estimated model parameters to obtain a predicted value for each yi,t in

the test data set. These predictions are made by using Bayes’ rule to compute estimated class

membership probabilities at each time point, and then selecting the class with highest estimated

probability. This choice minimizes the 0-1 loss.

We now present the results of this simulation study. Figure 11 summarizes the overall pro-

portion correct for the FMM and the HMM in each iteration of the simulation study. Tables 4 and

5 give confidence intervals for the proportion correct in each case as well as for the difference

between these proportions. We see that the classification rates are much higher for the HMM

than for the FMM.

Figure 12 shows how this higher classification rate is achieved. Whereas the FMM enforces a

strict boundary between the classes in the space of values ofXi,t, the HMM allows this boundary

to be crossed if nearby observations are likely to have come from one class or the other. This

explains the horizontal bands of colors in the third column of the plot, where temporally adjacent

observations are assigned to the same class.

These results suggest that when classifying physical activity that include temporal depen-

dence, the statistical model used benefits from accounting for that dependence. We note that
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Figure 11. Preliminary Simulation 1: Boxplots showing the minimum, median, and maxi-
mum classification rates achieved by the FMM and HMM in 1000 simulations.

Proportion Correct
(p̂, approximate 95% CI)

FMM 0.6914 [0.6910, 0.6918]
HMM 0.8842 [0.8840, 0.8845]

Table 4. Preliminary Simulation 1: Estimated proportion correct for each model, with ap-
proximate confidence intervals. The confidence intervals are based on the normal
approximation ignoring serial correlation, with a sample size of Nsims×N ×T =
1000× 5× 1000.
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Difference in Proportion Correct
(p̂HMM − p̂FMM , approximate 95% CI)

HMM - FMM 0.1928 [0.1923, 0.1934]

Table 5. Preliminary Simulation 1: Estimated difference in proportion correct for each
model, with approximate confidence interval. The confidence interval is based
on a paired t test, with a sample size of Nsims = 1000.

−4 −2 0 2 4

●● ●●● ● ●●● ● ●●● ●● ●●● ●●●● ●●●●● ●●● ●●● ● ●●● ●● ●●●● ●●● ●● ● ●●● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●●●● ● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ● ●●●●●● ● ●● ●●● ●●● ● ●●● ●● ●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●● ● ●● ● ● ●●● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●●●● ●●●● ● ●●●● ●●● ●●● ●●●● ● ● ●●●● ●●●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●● ●●
● ●●● ●●● ●●●● ●●●● ●● ● ●●●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ● ●● ●● ●●● ●●●● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●●●● ● ●●● ●●●●● ●● ● ●● ●● ● ●●●●● ●● ●●●● ●●●●● ●● ●● ●●● ● ●●● ● ●● ●●● ●●●● ● ●●● ●●●● ●●●● ●● ●●● ●●●●● ● ●●● ●●●●●● ●●●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●●●●● ●●●● ●● ● ●●●● ●● ●●● ●●●● ● ●● ●●●●● ●●●● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●● ●●●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●●● ● ●●● ● ● ●●●●● ●●●● ●●●● ●●●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●●●● ●● ● ●● ●●●● ● ●●● ● ●● ● ●●●● ●●●● ●● ● ●● ●●●● ● ●● ●● ●●● ●● ●●●●● ● ●●●● ●●● ●●● ●● ●●● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●●●● ● ●●● ●●●●● ●●●●●● ● ●●● ●●● ●●

●●● ● ●● ●●● ●● ●●●● ●●●●● ●● ●● ●●● ● ●● ● ● ●
●● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●●●●● ● ●●● ●●● ●●● ●● ●●●●●●●●● ●● ●●● ● ●● ●● ●●● ●●●● ●●●● ●●●● ● ●●●● ●● ● ● ●●●● ●● ●●●● ● ● ●● ● ●● ● ●● ●● ●●● ●●● ●●●● ● ●● ●●● ●●● ●● ●● ●●

●●●●●●● ●● ● ●●● ●● ●●●●● ● ●● ●● ●● ●●●● ● ● ●● ●● ●●●●● ● ●●● ● ●● ● ●●●● ● ●●● ●● ●●●●● ●●● ●● ●● ●●●●●● ● ●● ●● ●● ● ●●● ●●● ● ●● ● ●● ●● ●● ●●●● ●●● ●● ●● ● ●● ●●●● ●●● ● ● ● ●●● ● ●●●●●● ●● ●●● ●● ●●●● ● ●● ●● ●● ● ●●● ●●● ●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●● ●● ● ●● ●●● ●●● ●●●● ● ●● ●●● ●●●●● ●●● ●●●● ●● ●● ● ●●● ●● ● ●●●● ●●●
●●● ●●● ● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ● ●●● ●●● ●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●●●● ● ● ●● ●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●●● ● ●●●● ●●●●●● ● ●●●● ●●●● ●● ●● ● ●● ●●●● ●●●●● ● ●● ●●●● ●●●● ● ●●● ●● ● ● ●●●● ●●● ● ●●● ● ●●●● ● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●● ●● ●●●● ●●●● ● ●● ●●● ●●●● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●● ●●● ●●●●● ●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ●●●●●●● ●● ●● ●● ●●●●● ●● ●● ●● ●●● ●●●● ●●● ●● ● ●●●● ● ●● ●●● ●●● ●●●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●● ●●●● ●●● ● ●●● ●● ●● ● ●● ●● ●●●●● ●● ●●● ● ●● ●● ●● ●● ● ● ●● ● ●●● ● ●●●●●●● ●●● ● ●● ●●●●● ●●● ●●● ●● ●● ●● ● ●●●● ●●● ● ●●●● ●●●● ●●●● ●●●●● ●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ●● ●●●●●● ●● ●● ● ●●●● ●● ● ●● ●●●● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ●●● ● ● ●●●●●●● ●● ●● ●● ● ●● ●●●● ●●●● ●●●●● ●●●●● ●●●● ●●●●●●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ●●● ●●●●● ● ●●● ●●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●●● ●● ●●●● ● ●● ● ●● ● ●●●●●●●● ● ●●● ●●●● ● ●● ●● ●●●●●●● ●●● ●● ●●● ●●●●●● ● ●●● ● ●●● ● ●● ● ● ●●●●● ● ●● ●● ● ●●●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●●●● ●● ●●●● ● ●● ● ●●●

● ●●●● ●●●● ●● ●●● ● ●●● ●●●●● ●● ●● ●● ●●● ●●● ● ● ●● ●● ●● ● ●● ●● ●● ●●● ● ●●● ●●● ●●●● ● ●●● ● ●●● ● ●● ●●●● ● ●●● ●● ● ●●●●● ●●●● ●● ● ●● ●●●●● ●● ●●●●● ● ●●●●●●●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●●● ●●●●●●●● ● ● ●●● ●●● ●●●● ● ● ●● ●● ●●● ● ● ●●●●● ●●● ●● ●● ●● ●●● ● ●●● ●●● ● ●●●●●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ●● ●● ●●●● ● ●● ● ●●● ●●●●● ●● ●●● ●● ● ●●● ● ●●●● ●● ● ●● ●● ●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●● ●●●●● ●●● ●●
● ●● ●● ●● ●● ●●● ●● ●●●●●●●●●● ● ● ●●● ● ●● ●●●● ●●● ●● ●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●●●●● ●●● ● ●● ●● ● ●● ●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ● ●● ● ●●●● ●●● ● ●●●● ●● ●●●●● ●●● ● ●●● ● ●●● ● ●●● ●● ● ● ●●●●●● ● ●● ●● ● ● ●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●●●● ●●●● ●● ● ●●●●●● ● ●● ● ●● ● ●●●●●●●●● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●●● ●●●

−4 −2 0 2 4
x

−4 −2 0 2 4

●●●●● ●● ● ●●●● ●●● ●●●● ●● ●●●●● ● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●●●● ●●●●● ●●● ●●● ●● ●●●●● ●●●●●●● ●●●●● ●●●● ●●● ●●● ●●●● ●● ●●●●● ●●●● ●● ●●●●●●●●●● ●● ● ●●●● ●●● ●●●●●● ●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●● ● ●●●●●●● ●●● ●● ●● ●●●● ● ●●●● ● ●●●● ●● ●●● ●●●●●●●● ●●● ●●● ●●●● ●●● ●●●● ●●● ●● ●●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●●●● ●●● ●●●●●●●● ●●●●● ●● ● ●●●●●●●● ●● ●●● ●●●●●● ●● ●●● ●● ●● ●● ●●●●● ●●● ●●●● ●● ●●●● ●● ●● ● ●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ●●●●●●● ●●●●● ●●●●●● ●●● ●●●● ●●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●●●●●●●● ●●●● ●● ●●● ●●●●● ●● ● ●●● ●●●● ●●● ●●● ●●● ●● ●● ● ●●●●● ●●●●●● ●●●●● ●● ●●●●●●● ●●● ●● ●●●●●● ●● ●● ●●● ●● ●●● ● ●●●●● ●●●● ●●●● ●●●●● ●●● ●●● ●● ●● ●●●●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●● ●●● ●●● ●● ●● ●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ● ●●●● ●●● ●●●●●● ●●●● ● ●● ● ●● ●●●● ●●● ●●●●● ● ●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●● ●●● ●● ●●●●● ●●●●●●●●● ●● ●●●●●●● ●●● ● ●● ●●● ●●●● ●● ●● ● ●●● ● ●● ●●● ●●●● ●● ●● ●●●● ●●●●●● ●● ●●●●● ●●●● ●● ●● ●●● ●●●●●● ●●● ●●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●● ●●●● ● ●●● ●●●●● ●●● ●● ● ●●● ●● ●● ●●●●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●●●● ●● ● ●● ●●●● ● ●●● ●●● ●● ●●● ●● ●●●● ● ●●●● ●●● ●●●●● ●●●●● ●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●● ● ●●●● ●●●●●●● ●●● ●●● ●● ● ●● ●●●● ●●●●● ●●●● ●● ●●●●●●● ●● ●● ●●●●●● ●● ●●●● ●●●● ●●●●● ●●● ●●●● ●●●●●● ●● ●●●●● ●●● ●●● ●●●●●●●● ●● ●●● ●●● ● ●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●●● ●●●●●●● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ●●● ●●●●● ●●● ●● ●●● ●●● ●●● ● ●● ● ●● ●●●● ● ●●●●●● ●● ● ●● ●● ●●●● ●●●● ●● ● ●●● ●● ●● ●●●● ●●● ●●●●● ● ●●●●●●●●● ● ●●●●●●●● ●●●● ●●● ●●●●● ●●●● ●●●●●●●● ● ●●● ●●● ●● ●●● ●●●●●● ●● ●●●● ●● ● ●●●●● ●●●● ● ●● ●●● ●●● ●●●● ●●●● ●●● ●●●● ●●●● ●●●●●●●●●● ●●● ●● ●●●●● ●● ●●●● ●●●● ●●●●● ●● ●●● ● ●● ●● ●●●●●●● ●●● ●●●● ●●●● ●● ●● ●●●●● ●●● ●●●●● ●●●●● ●●●●● ●●● ●●●●●●●● ● ●●●●●● ●●●● ●●●● ●●●●● ●●● ●● ●● ●●●● ●●● ● ●●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●● ●● ●●● ●●● ●● ● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ● ●●●● ●●● ●● ●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●●●●●●● ● ●●●●● ● ●●● ●●●● ● ●● ●● ●●●●● ●● ●● ● ●●●●●● ●● ●● ● ●●● ●●● ●●● ●●●●● ●●●●● ●●● ●●●●●●● ●●● ●●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ●●●●● ●●●●● ●●● ● ●●●● ●●●● ●●●●●● ● ●●● ● ●●●● ●●●●●●● ●●●●●● ●●●●● ●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●● ●●●●● ●● ●●●● ●●●● ●●●●●● ●● ●●● ●●●●● ●●● ●●● ●● ● ●● ●● ●●● ●●●●●●● ●● ●● ●●● ●● ●●●● ●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●● ●●●● ●●● ●●● ●● ●●● ● ●● ●●●●● ●●●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ●●●●●● ●● ●●● ●●● ●●● ●●●●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●●●●●●● ●●●● ●● ●● ●●●●● ●●● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●●●●●●●● ● ●● ●●● ●●● ● ●● ●● ●●● ● ●●●● ●●● ● ●● ●● ●●●●● ●●● ● ●●●●● ●● ●●● ●●● ●● ●●● ●● ●● ● ●●●● ●●●●●●● ●●● ●●● ● ●●● ●●●●●●● ●●● ●●●● ●● ●● ●●● ●● ● ●●● ●●● ●● ●●●● ●●●●●●● ●●●● ●● ●●●●● ●●●●●●● ●●●● ●● ●●●●●● ●●●● ●● ●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●● ●● ● ●● ●●●●● ●●● ●●●●●●●●● ● ●●● ●●● ●●●●● ●●●● ●●●● ● ●●●● ●●●●● ●●●●●● ●●● ●●●● ●● ●●● ●●●●●●● ●● ● ●● ●●● ●●● ●●●● ● ●● ●●●●●●●●●● ●●●● ●● ●●●●●● ●● ●● ●● ●●● ● ●●●●●● ●● ●● ●● ● ●●●● ●●●● ●● ●●●● ●● ●●● ●●●●●● ●●●● ● ●● ●● ●●●●●●●● ● ●●● ● ●●● ●● ●●●●●●●●● ●● ● ●●● ● ●●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ● ●●●●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●●

−4 −2 0 2 4
x

−4 −2 0 2 4

●●●●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●●● ●●●●● ●●● ●●● ● ●●● ●● ●●●● ●●● ●●● ●● ● ●●● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●●●● ● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●●● ● ●● ●●● ●●● ● ●●● ●● ●●● ●● ●●●● ●● ●● ●●●●● ●● ● ●●● ●●● ● ●● ●●● ● ●● ● ● ●●● ●●● ●● ●●● ●●● ●●● ● ●● ●● ● ●●●●● ●●●● ● ●●●● ●●● ●●● ●●●● ● ● ●●●● ●●● ●●● ●●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●● ●● ● ●● ●●●●●
●●● ●●● ●●●● ●●●● ●● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ●●●● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ● ●●● ●●●●● ●●● ● ●● ●● ● ●●●●●●● ●● ●●●● ●●●●● ●● ●● ●●● ● ●●● ● ●● ●●● ●●●● ● ●●● ●●●● ●●●●● ●● ●●● ●●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●●●●● ●●●● ●● ● ●●●● ●● ●●● ●●●● ● ●● ●●●●● ●●●● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ● ●● ●●● ●● ●● ●●● ●●● ●● ● ●●● ● ● ●●●●● ●●●● ●●●● ●●●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●●●● ● ●●● ● ●● ● ●●●● ●●●● ●● ● ●● ●●●● ● ●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●●● ●●● ●●●● ● ●●●● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●●●● ● ●●● ●●●● ●●●●● ● ●●● ●●● ●●

●●● ●●●●● ●● ●● ●●● ● ●● ● ●
●● ●● ●●● ●●●● ●●● ●●● ●● ●●●●● ● ●●● ●●● ●● ●●●●●●●●● ● ●●●● ●●● ● ●● ●● ●●● ●●●● ●●●● ●●●● ● ●●●● ●● ● ● ●●● ● ● ●● ●● ●● ●●●● ● ● ●● ● ●● ● ●● ●● ●●● ●●● ●●●● ● ●● ●●● ●● ●● ●● ●●●

●● ● ●●●●●●●● ●● ● ●●● ●● ●●●●● ● ●● ●● ●● ●●●● ● ● ●● ●● ●●●●● ● ●●● ● ●● ● ●●● ● ●●● ●● ●●●●● ●●● ●● ●●●●● ● ●● ●● ●● ● ●●● ●●● ● ●● ● ●● ●● ●● ●●●● ●●● ●● ●● ● ●● ●●●● ●●● ● ● ● ●●● ● ● ●●●●● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●●●● ● ●●● ●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●
● ●●● ● ●● ●● ● ●●●● ●●● ● ●● ●●●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ● ●●● ●●● ●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●●● ●● ● ●● ●●●●● ●● ●●●● ●● ●● ●●●● ● ● ●●● ●●●● ●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●●● ● ●●●● ●●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ●●●●● ● ●●
●● ●● ● ● ●●●● ●●● ● ●●● ● ●●●● ●●●●●●● ●●●● ●●●● ●●●● ● ●● ●●● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●●●●● ●● ●● ●●● ●●●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●●●● ●●● ● ●●● ●● ●● ● ●● ●● ● ●● ●●●●● ●● ●●● ● ●● ●● ●● ●● ● ● ●● ● ●●● ● ●●●●●●● ●●● ● ●● ●●●●● ●●● ●●● ●● ●● ●● ● ●●●● ●●●● ● ●●●● ●●●● ●●● ● ●●● ● ●●●● ● ● ●●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ● ●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●●●●● ●

●●●● ●●●● ●●●●● ●●●●● ●●●● ●●●●●●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ●● ●● ●●●●●● ●●● ●● ●●● ●●●●●● ●● ●● ●●● ● ●● ● ● ●●●●● ● ●● ●● ● ●●●● ●●● ●●● ● ●● ●●●●●● ● ●● ●● ●●●● ●● ●●●● ● ●● ● ●●● ●● ●
● ●●●●●●● ●●●● ●● ●●● ● ●●● ●●●●● ●● ●● ●● ●●●● ●●●● ●●● ● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●●●● ● ●●● ● ●●● ● ●● ●●●● ● ●●● ●● ●●●● ●●●● ●● ● ●● ●●●●●● ●●● ●● ●● ●●●●● ● ●●●●●●●● ●●●●● ●● ●● ● ●●● ●●● ●●● ● ●●● ●●●●●●●● ● ● ●●● ●●● ●●●● ● ● ●● ●● ●●● ● ● ●●●●● ●●● ●● ●● ●● ●●● ● ●●● ●●● ● ●●●●●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ●● ●● ●●●● ● ● ●● ●●● ●●● ● ●●● ●●●● ●● ●● ●●● ●● ● ●●● ● ●●●● ●● ● ●● ●● ●● ●●●●●●●●● ●●● ●●●●● ●●●●● ●●●● ●● ●●●●● ●●● ●●

●● ● ●● ●● ●● ●●● ●● ●●●●●●●●●● ● ● ●●● ● ●● ●●●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ● ●●● ●●●●●●● ●●● ● ●● ●● ● ●● ●●● ● ●● ●● ●●● ●● ●●● ●● ● ●●● ●●● ●●● ●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●● ● ●●●● ●●● ●●●●●● ●●● ● ●●● ● ●●● ● ●●● ●● ●●●● ● ●● ●● ● ● ●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●●●● ●●●● ●● ● ●●●●●● ● ●● ● ●● ● ●●●●●●●●● ●● ●●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●●●● ●●●● ●●●

−4 −2 0 2 4
x

Comparison of Estimation Methods
True Values Finite Mixture Model Hidden Markov Model

O
bs

er
va

tio
n 

D
is

tr
ib

ut
io

ns

f(
x)

Te
st

 D
at

a 
C

la
ss

ifi
ca

tio
ns

O
bs

er
va

tio
n 

S
eq

ue
nc

e 
an

d 
T

im
e

S
eq

. 1
S

eq
. 2

S
eq

. 3
S

eq
. 4

S
eq

. 5

Figure 12. Preliminary Simulation 1: A detailed look at the results from one simulation.
The top left panel shows the true observation distributions used in generating
the data, and the lower left panel shows the true xi,t values and classifications
for the simulated test data set. The center and right panels show the estimated
observation distributions and predicted classes for the test data obtained from
the FMM and HMM, respectively.

65



this simulation study has examined only the most obvious form of temporal dependence found

in physical activity data, the high chance that an individual will continue doing their present

activity type in the near future rather than switching to a new activity type. In fact, physical

activity data also exhibit many other forms of temporal dependence. For example, some transi-

tions between different activity types are more likely than others, and the dependence may have

higher order dynamics. Classification models would probably also benefit from being able to

model these forms of dependency.

4.2 Preliminary Simulation 2: Generative Model Misspecification

A second important characteristic of the physical activity data we displayed in Section 3.4 is

that the distribution of feature values associated with each activity type is complex. It would

be difficult to specify an accurate parametric model for these distributions, and flexible non-

parametric approaches such as kernel density estimation perform poorly in the moderate to

high dimensions present in these data. A common middle path used with generative HMMs

approximates the observation distributions with mixtures of normal distributions. This can lead

to an arbitrarily good approximation of the true density as the number of components in the

mixture increases, but in practice with a finite sample size this approach entails some level of

model misspecification. In this Section, we present a simulation study illustrating the fact that

if the observation distribution is misspecified in the generative model, discriminative methods

can provide superior classification performance.

The simulation study was conducted as follows. In each of 1000 simulations, we generate
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independent training and test data sets from the following model with N = 5 and T = 1000:

Yi,t ∈ S = {1, 2}, i = 1, . . . , N, t = 1, . . . , T

P (Yi,1 = 1) = P (Yi,1 = 2) =
1

2
, s ∈ S, i = 1, . . . , N

P (Yi,t = s|Yi,t−1 = r) = qr,s, r, s ∈ S, i = 1, . . . , N, t = 2, . . . , T , where

qr,s =


0.95 if r = s,

0.05 if r 6= s

Xi,t|Yi,t = 1 ∼ N(0, 1)

Xi,t|Yi,t = 2 ∼ Exp(0.5)

We use the training data set to estimate the parameters of the following two models:

Model 1 – HMM:

P (Yi,1 = s;πππ) = πs, s ∈ S, i = 1, . . . , N , where

0 ≤ π1, π2 ≤ 1 and π1 + π2 = 1

P (Yi,t = s|Yi,t−1 = r;Q) = qr,s, r, s ∈ S, i = 1, . . . , N, t = 1, . . . , T , where

0 ≤ qr,s ≤ 1 ∀r, s and
2∑
s=1

qr,s = 1∀r

Xi,t|Yi,t = s ∼ N(µs, σ
2), s ∈ S

This is the same model that was used in the simulation study of Section 4.1, except that we now

treat the common variance σ2 as an unknown parameter rather than fixing it to be equal to 1. As

before, we estimate the model parameters via maximum likelihood, aside from the distribution

of the initial state.

Model 2 – CRF:

P (Yi = yi|Xi; θθθ) =
πyi,1

∏Ti

t=2 qyi,t−1,yi,t

∏Ti

t=1 exp(βyi,t,0 + βyi,t,1xi,t)∑
y∗i
πy∗i,1

∏Ti

t=2 qy∗i,t−1,y
∗
i,t

∏Ti

t=1 exp(βy∗i,t,0 + βy∗i,t,1xi,t)

We fix β2,0 = β2,1 = 0 so that the parameters are identifiable. As illustrated in Sutton and

McCallum [2011], this model can be obtained from the HMM above by conditioning on Xi. We

estimate the parameters via maximum likelihood using numerical optimization methods. As

with the HMM, in order to estimate the class memberships in the test data, we calculate the

marginal class membership probabilities P (Yi,t = s|xi; θ̂θθ) and select the class with the highest

probability.
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Proportion Correct
(p̂, approximate 95% CI)

HMM 0.9211 [0.9208, 0.9213]
CRF 0.9415 [0.9413, 0.9417]

Table 6. Preliminary Simulation 2: Estimated proportion correct for each model, with ap-
proximate confidence intervals. The confidence intervals are based on the normal
approximation ignoring serial correlation, with a sample size of Nsims×N ×T =
1000× 5× 1000.

Difference in Proportion Correct
(p̂CRF − p̂HMM , approximate 95% CI)

CRF - HMM 0.0204 [0.0200, 0.0208]

Table 7. Preliminary Simulation 2: Estimated difference in proportion correct for each
model, with approximate confidence interval. The confidence interval is based
on a paired t test, with a sample size of Nsims = 1000.

Figure 13 and Tables 6 and 7 summarize the results of this simulation. We see here that on

average, the classification accuracy of the discriminative model is about 2% higher than that of

the generative model. As we discussed in the literature review, the difference in performance

between the generative and discriminative approaches depends on relative quality of the gener-

ative and discriminative models. The simulation study we conducted in this Subsection is not an

exhaustive study of this behavior; instead, it serves to motivate our modeling approach by giv-

ing a simple example demonstrating that discriminative methods can offer better performance

than generative methods in some settings. We will conduct a more thorough simulation study

in Chapter 6 and apply several methods to physical activity data in Chapters 7 and 8.
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Figure 13. Preliminary Simulation 2: Boxplots showing the minimum, median, and max-
imum classification rates achieved by the CRF and HMM in 1000 simulations.
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C H A P T E R 5

CONDITIONAL RANDOM FIELD MODELS

In this Chapter we present three novel estimation strategies for the linear chain CRF model.

We begin with a general introduction to our methods and a discussion of the elements they

have in common in Section 5.1. We then discuss the methods in more detail in Sections 5.2, 5.3,

and 5.4. In Section 5.5, we discuss how we perform classification given values for the model

parameters. In Section 5.6, we review algorithms that have been developed in the literature

for fast computation of the model likelihood and its gradient. These computational methods

underlie Sections 5.2 through 5.5.

5.1 Introduction

The methods we present here are all based on the linear chain CRF. As we discussed in the

literature review, the CRF specifies the conditional distribution of Y|X using a graphical model.

Formally, the model uses a graph G = (V, E) to represent the conditional independence relation-

ships among the variables Yi,t given X = x. The vertices of the graph are the components of the

vector Y and the edges specify the conditional dependence structure of Y|X as follows:

p(Yi,t|X, Yi∗,t∗ , (i, t) 6= (i∗, t∗)) = p(Yi,t|X, Yi∗,t∗ , Yi,t ∼ Yi∗,t∗),

where Yi,t ∼ Yi∗,t∗ indicates that the graph contains an edge connecting Yi,t and Yi∗,t∗ [Lafferty

et al., 2001]. In words, Y|X has the Markov property with respect to the graph: given x and

the graph nodes that Yi,t is connected to, Yi,t is conditionally independent of all of the nodes

it is not connected to. Although we condition on the realized values x and do not model their

distribution, it is conceptually helpful to include the xi,t in the graph to show that Yi,t depends

on them.
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Observed
Features, 

Sequence 1

Y 1, t−1 Y 1, t Y 1, t+1

x1,1 ,... , x1,T 1

Y 2, t−1 Y 2, t Y 2, t+1

x 2,1 , ... , x2, T 2
Observed
Features, 

Sequence 2

State, 
Sequence 1

State, 
Sequence 2

Figure 14. A diagram illustrating the CRF in the general case. Random variables that
we model are shown in circles and random variables that we condition on are
shown in rectangles. Conditional independence relationships are shown with
node edges: conditional on the nodes that Yi,t is connected with, it is indepen-
dent of the variables that it is not connected to. In the graph structure shown
here each node is connected to all other nodes. Thus, the distribution of the
state Yi,t depends on the observed features in all observation sequences and
the states Yi∗,t∗ in all other observation sequences and time points.

In the general case, the activity type at each time t may depend on the activity types at all

other times and the full vector x. This is illustrated in Figure 14, where there are edges in the

graph connecting each node Yi,t with each other Yi∗,t∗ , and with each xi∗ , i
∗ = 1, . . . , N .

We adopt a considerably less complex variation of the CRF model that makes several sim-

plifying assumptions. First, we assume that the activity sequences for different subjects are

conditionally independent given x, and furthermore that xi∗ does not contain any information

about Yi for i 6= i∗. This allows us to express the conditional probability of the state sequences

Yi, i = 1, . . . , N as a product of N separate CRFs:

p(Y1, . . . ,YN |x1, . . . ,xN ; θθθ) =

N∏
i=1

p(Yi|xi; θθθ), (5.1.1)

where each term p(Yi|xi; θθθ) is modeled by a CRF with parameters θθθ. In terms of the graph, this

assumption eliminates any connections between Yi,t and Yi∗,t∗ or xi∗,t∗ for i 6= i∗, as depicted in

Figure 15.

The assumption of independence between the observation sequences seems plausible for
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Figure 15. A diagram illustrating the use of a separate CRF for each sequence. Within
each sequence, the distribution of the state Yi,t at each time depends on the
states at all other times in that sequence and the feature values at all other
times in that sequence.

the free living data from Sasaki [2013], where the subjects were observed separately and did not

perform the same activities together, and there is only one observation sequence for each subject.

In the laboratory setting, the subjects performed one of a small number of prescribed routines

with a fixed order and duration of activity types. It is therefore conceivable that the observed

accelerometer signal for one subject could contain information about the activity that another

subject is performing at the same point in the routine. However, we do not wish to make use of

this information in performing classification since this sort of connection between individuals is

not generally available in the free living setting.

A second assumption is implicit in Equation (5.1.1): the CRF parameter vector θθθ is the same

for all subjects. As we will see, this means that the relative frequency of each activity class, the

probabilities of transitioning from one activity type to another, and the compatibility of particu-

lar values of the accelerometer feature vector with each activity type do not vary with the subject.

We saw evidence in Figures 9 and 10 in Chapter 3 that this assumption is not accurate: in fact,

there appear to be variations between subjects in the frequencies of different activity types and

the pattern of accelerometer features associated with each activity type. We do not model this

variability between subjects because of the relatively limited size of our data sets. In particular,

72



for the free living setting, we have data for only 15 subjects performing a relatively limited range

of activities for about 2 hours each. In Figure 9, it is not clear which of the apparent differences

in the distributions of the observed features are due to differences in the movement patterns

between subjects and which are due to the fact that the subjects performed different types of ac-

tivities during the limited periods when they were observed. We believe that more data would

be required to reliably model the variations between subjects.

We further simplify our model by assuming that within each activity sequence, the condi-

tional dependence relations follow a first-order Markov structure:

p(Yi,t|xi, Yi,t∗ , t 6= t∗) = p(Yi,t|xi, Yi,t−1, Yi,t+1),

This simpler dependence structure corresponds to the linear chain graph depicted in Figure 16.

We do not believe that changes in physical activity type over time really obey these first order

Markov dynamics. However, we are wary of constructing complex models for the order and

duration of activity types in the laboratory setting, since these were determined by the experi-

menters rather than the subjects. A complex model for time dependencies with the laboratory

data might artificially inflate classification rates by capturing the specific order and duration of

activities that were used for all subjects in the laboratory setups. In fact, we will consider an

even further restricted parameterization of the model in our applications to the laboratory data

in Chapter 7 in order to address this concern.

We have opted to focus on methods that are applicable to all three of our data sets, and

have therefore used only models with the first-order dependence structure described above.

However, we believe that relaxing this assumption could lead to improved classification perfor-

mance in the free living setting. We will discuss possibilities for future work with more flexible

dependence structures in Chapter 9.

Our final simplification to the structure of the CRF is depicted in Figure 17. Here, the condi-

tional distribution for the state at time t depends only on the feature values at that time, rather

than on the entire sequence of feature values. Our primary reason for making this restriction

to the CRF model is to enable simpler comparison of the CRF estimation strategies we pro-

pose below with alternatives such as HMMs and static RFs, which typically only make use of

the features at a single time point. However, we believe that estimation of a model where the

distribution of the state at time t depends on the feature values in several adjacent windows
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Figure 16. A diagram illustrating the use of a separate CRF for each sequence and first
order Markov dependence. Within each sequence, the distribution of the state
Yi,t at each time depends on the states at the adjacent two time points in the
sequence and the feature values at all other times in that sequence.

t− δ, . . . , t, . . . , t+ δ would be feasible with our data and could lead to improvements in classifi-

cation performance. Again, we will discuss this idea more in our conclusions in Chapter 9.

It is common to assume that the probability mass function for the linear chain CRF model

illustrated in Figure 17 has the following form:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
Ti∑
t=2

K∑
k=1

Ψk(yi,t−1, yi,t,xi,t; θθθ)

}
. (5.1.2)

Here the Ψk are functions depending on parameters θθθ, and Z(xi; θθθ) is a normalization constant

ensuring that the conditional distribution of Yi|Xi = xi sums to 1. We work with a simplified

variation of this model:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
S∑
s=1

I{s}(yi,1)ζs +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωr,s

+

Ti∑
t=1

S∑
s=1

I{s}(yi,t)Ψs(xi,t; ξξξ)

}
(5.1.3)

Here, ζζζ = [ζ1, . . . , ζS ], ΩΩΩ = [ωr,s], and ξξξ are parameters that are included in θθθ. Sutton and

McCallum [2011] show that this CRF specification arises as the model for Yi|Xi obtained by

conditioning on Xi in a first-order HMM. The term involving ζζζ corresponds to the initial state

distribution of the HMM, the term involving ΩΩΩ corresponds to the state transition probabilities of
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Figure 17. A diagram illustrating the use of a separate CRF for each sequence with fist
order Markov dependence structure and dependence only on the observed fea-
tures at a single time point. Within each sequence, the distribution of the state
Yi,t at each time depends on the states at the adjacent two time points in the
sequence and the feature values at that time.

the HMM, and the term involving Ψs corresponds to the observation distributions of the HMM.

In the context of the CRF, these terms can be interpreted as giving the relative chances of observ-

ing an initial state of s, a transition between states r and s, and the feature vector xi,t if the state

at time t is s; however, unlike the HMM, they do not directly specify conditional probabilities

for these events. We leave the functions Ψs unspecified for now; our primary contributions in

the following Sections are new estimation strategies for Ψs.

In order to understand how our work fits into the existing literature, it is helpful to consider

where each of our methods falls into the taxonomy of models and estimation strategies we out-

lined in the Chapter 1. We characterize the methods in general terms here, and discuss them in

more detail in the following Sections.

All of the methods we propose share several qualities in common. As is clear from the dis-

cussion above, our methods are based on dynamic models that account for the sequential depen-

dence in the activity types. We can also see from Equation (5.1.3) that our models are conditional

models for the individuals’ activity types Yi over time given the observed features Xi from the

accelerometer signal.

The decision to use dynamic models that condition on Xi is motivated by the discussion and
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preliminary simulation study results outlined in Chapter 4. We saw there that dynamic models

are helpful in the presence of sequential dependence, and conditional models are helpful when it

is difficult to specify an accurate model for the distribution of Xi that can feasibly be estimated.

The combination of the complexity of the distribution of accelerometer features as illustrated in

Figure 8 and the fairly large number of features makes it difficult specify a model for the features

that will perform well. The complexity of the feature distributions means that simple parametric

models will be a poor representation of the true distribution, while the high dimension limits

the effectiveness of more flexible approaches such as kernel density estimation.

Our methods are also similar to each other in that they are ensemble methods that use a

logarithmic opinion pool to combine many component models and they make use of random

feature subset selection in the parameter estimation process. However, the specific mechanics

for obtaining the component model fits and selecting the feature subsets differ between our

three approaches.

The method we discuss in Section 5.2 combines boosting and bagging at the level of observa-

tion sequences with a parametric specification of Ψs; we refer to this approach as BB-Par-CRF.

The method we introduce in Section 5.3 also uses boosting and sequence bagging in the estima-

tion process, but employs a non-parametric variation on the model by using regression trees for

Ψs. We refer to this method as BB-Nonpar-CRF. Our third approach, discussed in Section 5.4,

combines the estimation methods used for static random forests with the CRF model. We pro-

pose two variations on this third estimation strategy. In the first method, we perform bagging

by resampling complete observation sequences. We refer to this approach as RF-seq-CRF. In the

second method, we perform bagging at the level of individual time points within observation

sequences. We refer to this method as RF-CRF. In each Section we give the model formulation,

outline our proposed estimation strategy, and discuss the reasoning behind the decisions we

have made in formulating the estimation algorithm.

5.2 CRF Model 1: BB-Par-CRF

In this Section we introduce the first of our three estimation strategies for the CRF model.

We adopt a parametric specification for the Ψs functions in Equation (5.1.3); to connect with the

common notation in generalized linear models, we allow Ψs to depend on parameters βββ. The
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full parameter vector is then θθθ = (ζζζ,ΩΩΩ, βββ). Conditional on the observed features xi, the state

sequences Yi are assumed to be independent with the following distribution:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
S∑
s=1

I{s}(yi,1)

M∑
m=1

ζms

+

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)
M∑
m=1

ωmr,s +

Ti∑
t=1

S∑
s=1

I{s}(yi,t)Ψs(xi,t;βββ)

}
, where

(5.2.1)

Ψs(xi,t;βββ) =

M∑
m=1

βms,0 +

D∑
d=1

(
M∑
m=1

βms,d

)
xi,t,d, and (5.2.2)

Z(xi; θθθ) =
∑
y∗i

exp

{
S∑
s=1

I{s}(y∗i,1)

M∑
m=1

ζms +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(y∗i,t−1)I{s}(y∗i,t)
M∑
m=1

ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(y∗i,t)Ψs(xi,t;βββ)

}
. (5.2.3)

The index y∗i of the summation in the expression for Z(xi; θθθ) varies over all possible sequences

of states. IA(x) is the indicator function, taking the value 1 if x ∈ A and 0 otherwise.

The parameters in this model are not identifiable for two reasons. First, we can permute the

parameter values among the m indices without affecting the value of the likelihood function.

However, this is not a problem for the particular estimation algorithm we develop. Another

issue is that if we add any vector δδδ of length D + 1 to each βββms , the conditional probability of

Yi|Xi is unchanged since δδδ cancels out of the numerator and denominator of Equation (5.2.1).

Similar problems arise for the ζms and ωmr,s parameters. We resolve these problems by fixing

ζmS = 0, ωmS,S = 0, and βββmS = 0
¯

for all m.

Equations (5.2.1) through (5.2.3) present the model as a single CRF, but it is also possible to

view it as a combination of M separate CRFs in a LOP by rearranging the order of the summa-
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tions:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

[
S∑
s=1

I{s}(yi,1)

M∑
m=1

ζms

+

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)
M∑
m=1

ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(yi,t)

{
M∑
m=1

βms,0 +

D∑
d=1

(
M∑
m=1

βms,d

)
xi,t,d

}]

=
1

Z(xi; θθθ)
exp

[
M∑
m=1

{
S∑
s=1

I{s}(yi,1)ζms +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(yi,t)

(
βms,0 +

D∑
d=1

βms,dxi,t,d

)}]
exp{−

∑M
m=1 logZ(xi; θθθ

m)}
exp{−

∑M
m=1 logZ(xi; θθθ

m)}

=
1

Z(xi; θθθ) exp{−
∑M
m=1 logZ(xi; θθθ

m)}
exp

{
M∑
m=1

log p(Yi = yi|Xi = xi; θθθ
m)

}
(5.2.4)

Here, p(Yi = yi|Xi = xi; θθθ
m) is the conditional probability of the state sequence yi from a CRF

with parameters ζζζm, ΩΩΩm = [ωmr,s], and βββm, and Z(xi; θθθ
m) is defined analogously to Equation

(5.2.3). By performing the same steps in the denominator that we showed above for the numer-

ator, we obtain

p(Yi = yi|Xi = xi; θθθ) =
exp

{∑M
m=1 log p(Yi = yi|Xi = xi; θθθ

m)
}

∑
y∗i

exp
{∑M

m=1 log p(Yi = y∗i |Xi = xi; θθθ
m)
} , (5.2.5)

which is a combination of the conditional state sequence probabilities from M separate CRFs in

the form of a LOP.

The log-likelihood for the model parameters θθθ based on a training data set comprising N
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observation sequences is:

`(θθθ|y,x) =

N∑
i=1

log{p(Yi = yi|Xi = xi; θθθ)}

=

N∑
i=1

[
M∑
m=1

{
S∑
s=1

I{s}(yi,1)ζms +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(yi,1)

(
βms,0 +

D∑
d=1

βms,dxi,t,d

)}
− log{Z(xi; θθθ)}

]

=

N∑
i=1

 M∑
m=1

{
ζmyi,1 +

Ti∑
t=2

ωmyi,t−1,yi,t +

Ti∑
t=1

(
βmyi,t,0 +

D∑
d=1

βmyi,t,dxi,t,d

)}

− log

∑
y∗i

exp

(
M∑
m=1

{
ζmy∗i,1 +

Ti∑
t=2

ωmy∗i,t−1,y
∗
i,t

+

Ti∑
t=1

(
βmy∗i,t,0 +

D∑
d=1

βmy∗i,t,dxi,t,d

)})
 (5.2.6)

We now discuss our estimation strategy for this model. At a general level, the algorithm em-

ploys both bagging and boosting. In the bagging step we generate many different training data

sets by drawing observation sequences with replacement from the full set of all observation se-

quences. The boosting step then produces a separate collection of component model fits for each

of these training data sets. These collections of component models are independent in the sense

that the parameter estimates for component models obtained using one bagged training data set

do not depend on the parameter estimates for component models based on a different bagged

training data set. However, within each of these collections, the component models are esti-

mated sequentially: in each iteration of the boosting step, a new component model is estimated

with parameter estimates that depend on the parameter estimates for previous component mod-

els. At the end of this process, all of the resulting component models are combined in a LOP.

This overview of the algorithm is illustrated in Figure 18. Algorithm 5.1 gives a step-by-step

description of the procedure.

We have two reasons for using bagging in our estimation procedure. First, as we saw in the

literature review, bagging can reduce the generalization error of classifiers. In an application

of parametric CRF models to text processing, Smith and Osborne [2007] explored the idea of

using bagging and combining the resulting models with a LOP and found that this led to a small

increase in classification performance. Our methods differ from theirs in that we use boosting

to estimate the component models based on each bagged data set, while they used unpenalized
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Algorithm 5.1. BB-Par-CRF Estimation Algorithm
Method: bag boost par LCCRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , N}
Outputs: Bagged and boosted model parameter estimates.

1. Initialize component models = {}.

2. For b = 1, . . . ,Mbag , repeat the following:

(a) Draw a sample ofN observation sequences with replacement from the full set of all observation
sequences. Collect these sequences in Bb. Collect the unsampled sequences in Ob.

(b) Set new component models = boost par LCCRF(Bb,Ob).

(c) Set component models = component models
⋃
new component models.

3. For each component in component models, divide the estimates ζ̂ms , ω̂mr,s, and β̂ββ
m

s by Mbag .

4. Return component models.

Method: boost par LCCRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , Ntrain} and {(yi,xi), i = 1, . . . , Nvalidation}.
Outputs: Boosted model parameter estimates.

1. Initialize component models = {}, m = 0, and val prop correct[0] = −∞.

2. Repeat the following until the largest element of val prop correct is not within the last
M search threshold values stored in val prop correct:

(a) Set m = m+ 1, attempt num = 0, and val prop correct[m] = −∞.

(b) Repeat the following until val prop correct[m] > val prop correct[m − 1] or
attempt num = max attempts:

i. Set attempt num = attempt num + 1.
ii. Randomly select the set Am ⊂ {1, . . . , D} of active features for the mth component

model. The coefficients βms,d are fixed equal to 0 for d /∈ Am.

iii. If m = 1, initialize ζ̃ms = log( ns

nS
) and ω̃mr,s = log(

nr,s

nS,S
) for all r, s = 1, . . . , S. Here, ns

is the number of occurrences of state s and nr,s is the number of transitions from state r to
state s in the training data set. If m > 1, initialize ζ̃ms = ω̃mr,s = 0 for all r, s = 1, . . . , S.

iv. Initialize β̃ββ
m

s,d for s = 1, . . . , S − 1, d ∈ {0}
⋃
Am by fitting a multinomial logistic

regression model with offsets equal to(
m−1∑
l=1

ζlyi,1

)I{1}(t)(m−1∑
l=1

ωlyi,t

)(1−I{1}(t))

+

m−1∑
l=1

(
βls,0 +

D∑
d=1

βls,dxi,t,d

)
.

v. Using a numerical optimization routine, update ω̃mr,s and β̃ββ
m

to the constrained local
maximum likelihood estimates based on the training data, holding the parameter estimates
for previous components and elements of β̂ββ

m

s not in the active set fixed.
vi. Using all component fits up through component m, predict the values of yi for the

validation data set. If the proportion of time points at which the prediction was cor-
rect is greater than val prop correct[m], store it in val prop correct[m] and set
ζ̂ζζ
m

= ζ̃ζζ
m

, Ω̂ΩΩ
m

= Ω̃ΩΩ
m

, and β̂ββ
m

= β̃ββ
m

.

(c) Set component models = component models
⋃
{(ζ̂ζζ

m
, Ω̂ΩΩ

m
, β̂ββ

m
)}.

3. Return component models.
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Figure 18. A diagram illustrating the estimation process for the BB-Par-CRF model. We
begin by drawing the bagged data sets Bb, b = 1, . . . ,Mbag ; these define the
corresponding out of bag data sets Ob. Each bagged data set is used separately
as the input to the boosting procedure, which produces a collection of compo-
nent model estimates. These component models are then combined to obtain
the final model estimate.

maximum likelihood.

A second benefit to bagging is that we can think of it as a mechanism for approximating an

exhaustive leave-p-out cross-validation procedure in which all subsets of size p are used as the

validation set in the boosting step. As we will discuss in more detail shortly, the boosting step

relies on the use of a validation procedure to determine the number of boosting iterations to

perform. Often, boosting methods use a single partition of the observed data into training and

validation subsets [Hastie et al., 2009]. However, the performance of the resulting classifier can

be sensitive to the choice of which observations are in the training and validation sets. We can

mitigate this problem by combining the results from many different assignments of observations

to the training and validation sets. Bagging and combining the results with a LOP is one way

to achieve this since each bagged training data set naturally defines a corresponding validation

data set: the collection of all observation sequences that were not included in the bagged training

set.

The number Mbag of bagged training data sets is a user-supplied parameter. A common rec-

ommendation for bagging is that Mbag should be large enough that the resulting predictions are

similar to what they would be if a value of Mbag/2 were used [e.g., Liaw and Wiener, 2002].

When a two-stage procedure is used in which the component model parameters are estimated

separately before combining them with a LOP, it is beneficial to scale the component model pa-

rameters using non-negative weights that sum to 1. As we discussed in the literature review,
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previous researchers have found that allowing for assignment of unequal weights to the compo-

nent models does not result in appreciable gains in predictive performance. We save computa-

tion time by using equal weights of 1/Mbag .

The boosting step of Algorithm 5.1 can be interpreted as a random block coordinate ascent

algorithm converging to the maximum likelihood parameter estimates based on the given train-

ing data set, but with early stopping used to reduce overfitting. In each boosting iteration, we

estimate the parameters of a new CRF with parameters θθθm. This new CRF uses only a randomly

selected subset of the observed features; the coefficients βms,d for the remaining features are set

to 0. Roughly, we estimate these parameters by maximizing the likelihood within the affine

subspace of the parameter space that is spanned by the new parameter updates:

θ̂θθ
m

= argmax
θθθm

`

(
m−1∑
l=1

θ̂θθ
l
+ θθθm|(yi,xi), i = 1, . . . , Ntrain

)
(5.2.7)

Here, the likelihood function ` is based on a particular bagged training data set and the index

l runs over the parameter estimates obtained in all previous boosting iterations using the same

training set. We hold these previous parameter values fixed at the time that we estimate θθθm.

The fact that some of the βββms,d coefficients are fixed to 0 means that parameter vectors of the form∑m−1
l=1 θ̂θθ

l
+ θθθm do not include the full parameter space. The inclusion of the previous parameter

estimates
∑m−1
l=1 θ̂θθ

l
as an offset means that each update searches over an affine subspace of the

parameter space.

Our algorithm deviates from the rule specified by Equation (5.2.7) in one way: we do not

update the estimates of ζζζ in the boosting process. Instead, we fix ζζζ = log( ns

Ttrain
)− log( nS

Ttrain
) =

log( ns

nS
), where ns is the number of observations from state s in the training data set. We do

not use the maximum likelihood estimates for ζζζ because most of the information about ζζζ in

the likelihood function is contained in the first observation from each sequence. Since we do

not have many observation sequences, the maximum likelihood estimates of these parameters

would have high sampling variance. We therefore take a strategy that is commonly used in

estimation of HMMs and base our estimates on the overall frequency of each observed class.

The particular values we use correspond to the estimates that are often used for HMMs in the

sense of the connection between HMMs and CRFs that we described in Section 5.1.

Random coordinate descent algorithms have been examined for a variety of optimization

problems and shown to converge to local minima under regularity conditions on the objective
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function [Shalev-Shwartz and Tewari, 2011, Richtárik and Takáč, 2014]. The motivation for us-

ing random coordinate descent in these papers is different from ours, however. It has been

observed that in many applications of CRFs, the maximum likelihood parameter estimates over-

fit the training data, so that classification performance on a new data set is lower than it was on

the training data. This problem is particularly common in settings where the dimension of the

feature space is large. One solution to this is to perform estimation by maximizing a penalized

likelihood function that effectively limits the magnitude of some of the coefficients.

Our algorithm represents an alternative approach in which we regularize the CRF model

by gradually moving towards the maximum likelihood parameter estimates, but stopping the

estimation process before we have begun to overfit the training data. The stopping point is

selected by evaluation of the classifier’s performance on a validation data set. When the pro-

portion of time points classified correctly in the validation set starts to decrease, we stop the

boosting procedure. The particular validation data set we use is the out-of-bag data that were

not drawn in creating each particular training data set in the bagging step. In our applications

in Chapters 7 and 8, we use leave-one-subject-out cross validation to evaluate performance of

our estimation algorithm. When we do that, we will embed the bagging procedure within the

leave-one-subject-out cross validation, so that separate validation data sets are used to evaluate

model performance and select the stopping point in the boosting process. We will describe these

procedures in more detail in the applications Chapters.

The use of randomized coordinate ascent to search the parameter space can be viewed as

a mechanism for slowing down convergence to the maximum likelihood parameter estimates.

This results in a larger number of potential stopping points that may yield good performance on

the validation data set. Similar mechanisms for slowing down the convergence of the param-

eter estimates are common in boosting algorithms; examples include shrinkage of coefficient

estimates or limiting the number of leaves in regression trees [Hastie et al., 2009].

The proportion correct in the validation set can fluctuate, particularly near the beginning

of the boosting process. In order to handle this, Algorithm 5.1 allows for a user-specified search

threshold, M search threshold. The boosting process continues as long as the first occurrence of

the maximum proportion correct was within the last M search threshold iterations. The value

of M search threshold can be selected by examining plots of the proportion correct as a function

of the boosting iteration; in our applications of the method, we have set M search threshold =
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100. Figure 19 illustrates this search strategy.

Within each boosting iteration, we obtain the estimates ΩΩΩm and βββm through numerical op-

timization of the log-likelihood function. If we are in the first boosting iteration for a partic-

ular training data set, we initialize ω̂mr,s = log(
nr,s

Ttrain−N ) − log(
nS,S

Ttrain−N ) = log(
nr,s

nS,S
) for all

r, s = 1, . . . , S, where nr,s is the number of observed transitions from state r to state s in the

training data set. These initial values correspond to the estimates that would be obtained from a

HMM by maximum likelihood. If we are past the first boosting iteration, we initialize ω̂mr,s = 0

for all r, s = 1, . . . , S. Effectively, this amounts to re-using the value of ΩΩΩ that was obtained after

the previous boosting iteration.

We initialize βββm by fitting a multinomial logistic regression model with offset terms for each

observation. This procedure can be motivated by considering estimation for a simplified version

of the model where all rows of ΩΩΩm are the same: ωmr,s = ωms ∀r = 1, . . . , S. With this simplification

the model no longer accounts for temporal dependence in the labels yi,t, and we can rewrite the
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Illustration of Stopping Point Selection for Boosting Algorithm

Figure 19. Selection of the stopping point in the boosting step. The horizontal axis rep-
resents the boosting iteration and the vertical axis shows the proportion of
windows classified correctly in the validation data set. The search threshold
is set to 100 iterations. The boosting process halts when the first occurrence of
the maximum proportion correct in the validation set was not within the last
100 iterations. In this example, the first occurrence is on iteration 98, indicated
in the plot with a solid circle. This maximum is reached again at iteration 101,
indicated with an unfilled square. The boosting process halts after iteration
199. This example is taken from the fit to the hip data from subject 1 in the free
living data from Sasaki [2013], which we describe in more detail in Chapter 7.
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restricted log-likelihood for βββm (holding fixed ζζζ, ΩΩΩ, and βββl, l = 1, . . . ,m− 1) as follows:

`(βββm;y,x, ζζζ,ΩΩΩ, βββl, l = 1, . . . ,m− 1) (5.2.8)

=

N∑
i=1

ζyi,1 +

Ti∑
t=2

m∑
l=1

ωlyi,t−1,yi,t +

Ti∑
t=1

m∑
l=1

(
βlyi,t,0 +

D∑
d=1

βlyi,t,dxi,t,d

)

− log

∑
y∗i

exp

(
ζy∗i,1 +

Ti∑
t=2

m∑
l=1

ωly∗i,t−1,y
∗
i,t

+

Ti∑
t=1

m∑
l=1

(
βly∗i,t,0 +

D∑
d=1

βly∗i,t,dxi,t,d

))


=

N∑
i=1

ζyi,1 +

Ti∑
t=2

m∑
l=1

ωlyi,t +

Ti∑
t=1

m∑
l=1

(
βlyi,t,0 +

D∑
d=1

βlyi,t,dxi,t,d

)

− log

∑
y∗i

exp

(
ζy∗i,1 +

Ti∑
t=2

m∑
l=1

ωly∗i,t +

Ti∑
t=1

m∑
l=1

(
βly∗i,t,0 +

D∑
d=1

βly∗i,t,dxi,t,d

))


=

N∑
i=1

 Ti∑
t=1

ζI{1}(t)yi,1

(
m∑
l=1

ωlyi,t

)(1−I{1}(t))

+

m∑
l=1

(
βlyi,t,0 +

D∑
d=1

βlyi,t,dxi,t,d

)
− log

∑
y∗i

exp

 Ti∑
t=1

ζI{1}(t)y∗i,1

(
m∑
l=1

ωly∗i,t

)(1−I{1}(t))

+

m∑
l=1

(
βly∗i,t,0 +

D∑
d=1

βly∗i,t,dxi,t,d

)})}]

=

N∑
i=1

 Ti∑
t=1

{
Fm−1(yi,t,xi,t, t) + βmyi,t,0 +

D∑
d=1

βmyi,t,dxi,t,d

}

− log

∑
y∗i

Ti∏
t=1

exp

(
Fm−1(y∗i,t,xi,t, t) + βmy∗i,t,0 +

D∑
d=1

βmy∗i,t,dxi,t,d

)


=

N∑
i=1

 Ti∑
t=1

{
Fm−1(yi,t,xi,t, t) + βmyi,t,0 +

D∑
d=1

βmyi,t,dxi,t,d

}

− log


Ti∏
t=1

S∑
y∗i,t=1

exp

(
Fm−1(y∗i,t,xi,t, t) + βmy∗i,t,0 +

D∑
d=1

βmy∗i,t,dxi,t,d

)


=

N∑
i=1

Ti∑
t=1

Fm−1(yi,t,xi,t, t) + βmyi,t,0 +

D∑
d=1

βmyi,t,dxi,t,d

− log


S∑

y∗i,t=1

exp

(
Fm−1(y∗i,t,xi,t, t) + βmy∗i,t,0 +

D∑
d=1

βmy∗i,t,dxi,t,d

)
 (5.2.9)

Equation (5.2.9) is the log-likelihood of a multinomial logistic regression with offsets of

Fm−1(s,xi,t, t) = ζ
I{1}(t)
yi,1

(
m∑
l=1

ωlyi,t

)(1−I{1}(t))

+

m−1∑
l=1

(
βls,0 +

D∑
d=1

βls,dxi,t,d

)
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for each observation index (i, t) and class s = 1, . . . , S. Using these initial values saves compu-

tation time by reducing the number of times that the full CRF likelihood must be evaluated.

We use the “L-BFGS-B” method of Byrd et al. [1995] to perform the optimization. This

method takes the model log-likelihood and its gradient as inputs. We now show that the partial

derivatives of the log-likelihood with respect to ωm
∗

r∗,s∗ and βm
∗

s∗,d∗ for particular values of r∗, s∗,

d∗, and m∗ can be expressed in terms of the marginal class probabilities p(Yi,t = s∗|Xi = xi; θθθ)

and p(Yi,t−1 = r∗, Yi,t = s∗|Xi = xi; θθθ). These relationships have been derived previously [e.g.,

Sutton and McCallum, 2011], and are helpful because techniques for relatively fast computation

of these marginal class probabilities are available. We will discuss these methods in Section 5.6.

We consider the partial derivatives of the log-likelihood at stage m∗ of the boosting process

based on one of the bagged training samples. For convenience, we re-index the observation

sequences in the bagged sample by i = 1, . . . , Ntrain, as in the boost par LCCRF method of

Algorithm 5.1. To simplify the notation, we set

A(xi,yi; θθθ) = ζyi,1 +

Ti∑
t=2

m∗∑
l=1

ωlyi,t−1,yi,t +

Ti∑
t=1

m∗∑
l=1

(
βlyi,t,0 +

D∑
d=1

βlyi,t,dxi,t,d

)
.

The partial derivative with respect to ωm
∗

r∗,s∗ can then be rewritten as follows:

∂

∂ωm
∗

r∗,s∗
`(θθθ|y,x) =

N∑
i=1

∂

∂ωm
∗

r∗,s∗
log{p(Yi = yi|Xi = xi; θθθ)}

=

N∑
i=1

∂

∂ωm
∗

r∗,s∗
[A(xi,yi; θθθ)− log{Z(xi; θθθ)}]

=

N∑
i=1

[
Ti∑
t=2

I{r∗}(yi,t−1)I{s∗}(yi,t)

− 1

Z(xi; θθθ)

∑
y∗i

exp {A(xi,y
∗
i ; θθθ)}

Ti∑
t=2

I{r∗}(y∗i,t−1)I{s∗}(y∗i,t)


=

N∑
i=1

Ti∑
t=2

{
I{r∗}(yi,t−1)I{s∗}(yi,t)− p(Yi,t−1 = r∗, Yi,t = s∗|Xi = xi; θθθ)

}
(5.2.10)
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For βm
∗

s∗,d∗ , we have:

∂

∂βm
∗

s∗,d∗
`(θθθ|y,x) =

N∑
i=1

∂

∂βm
∗

s∗,d∗
log{p(Yi = yi|Xi = xi; θθθ)}

=

N∑
i=1

∂

∂βm
∗

s∗,d∗
[A(xi,yi)− log{Z(xi; θθθ)}]

=

N∑
i=1

[
Ti∑
t=1

I{s∗}(yi,t)xi,t,d∗

− 1

Z(xi; θθθ)

∑
y∗i

exp {A(xi,y
∗
i )}

Ti∑
t=1

I{s∗}(y∗i,t)xi,t,d∗


=

N∑
i=1

Ti∑
t=1

xi,t,d∗
{
I{s∗}(yi,t)− p(Yi,t = s∗|Xi = xi; θθθ)

}
In order to simplify this expression, we have augmented the observed feature vector xi,t =

(xi,t,1, . . . , xi,t,D) with the value xi,t,0 = 1, corresponding to the intercept terms βms,0.

5.3 CRF Model 2: BB-Nonpar-CRF

Our second model and estimation strategy are very similar to the methods we discussed

in Section 5.2, but here we use regression trees for Ψs. To fit with the common notation for

regression trees, we now allow the functions Ψs to depend on parameters τττ ; the full parameter

vector is now θθθ = (ζζζ,ΩΩΩ, τττ). Our revised model is as follows:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
S∑
s=1

I{s}(yi,1)

M∑
m=1

ζms

+

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)
M∑
m=1

ωmr,s +

Ti∑
t=1

S∑
s=1

I{s}(yi,t)Ψs(xi,t; τττ)

}
, where

(5.3.1)

Ψs(xi,t; τττ) =

M∑
m=1

Jm
s∑

j=1

ρms,jIRm
s,j

(xi,t), and (5.3.2)

Z(xi; θθθ) =
∑
y∗i

exp

{
S∑
s=1

I{s}(y∗i,1)ζs +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(y∗i,t−1)I{s}(y∗i,t)
M∑
m=1

ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(y∗i,t)Ψs(xi,t; τττ)

}
. (5.3.3)

In the expression for Ψs, the Rms,j are the terminal regions of a binary regression tree that parti-

tions the domain of Xi,t into disjoint regions and assigns a regression constant to each region.
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The parameters for this tree are τττms = (φφφms , ρρρ
m
s ), where φφφms specifies the variables and split points

used in forming the regions Rms,j and ρρρms gives the regression constant associated with each re-

gion. Jms denotes the number of leaf nodes in the regression tree for component model m and

state s. We collect all of the model parameters in the vector θθθ = (ζζζ,ΩΩΩ, τττ) This model has the same

interpretation as a LOP of CRFs that we discussed for the parametric formulation in Section 5.2.

The model also suffers from the same problems with identifiability that the parametric version

of the model had. We resolve these problems by fixing ζmS = 0, ωmS,S = 0, and ρρρmS = 0
¯

for all m.

The log-likelihood for the model parameters based on N observation sequences is:

`(θθθ|y,x) =

N∑
i=1

log{p(Yi = yi|Xi = xi; θθθ)}

=

N∑
i=1

[
S∑
s=1

I{s}(yi,1)

M∑
m=1

ζms +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)
M∑
m=1

ωmr,s

+

Ti∑
t=1

S∑
s=1

I{s}(yi,t)Ψs(xi,t; τττ)− log{Z(xi; θθθ)}

]

=

N∑
i=1

 M∑
m=1

ζmyi,1 +

Ti∑
t=2

ωmyi,t−1,yi,t +

Ti∑
t=1

Jm
yi,t∑
j=1

ρmyi,t,jIRm
yi,t,j

(xi,t)


− log


∑
y∗i

exp

 M∑
m=1

ζmy∗i,1 +

Ti∑
t=2

ωmy∗i,t−1,y
∗
i,t

+

Ti∑
t=1

Jm
y∗
i,t∑

j=1

ρmy∗i,t,jIRm
y∗
i,t

,j
(xi,t)






(5.3.4)

We use this model as the foundation for the approaches discussed in this Section and the

next; the difference between the two methods lies in the estimation strategies we use. Our

first estimation algorithm for this model is given in Algorithm 5.2. It is very similar to the

algorithm we presented for the parametric model in Section 5.2 in that it combines bagging

and boosting. The bagging step is essentially unchanged from the procedure in Algorithm 5.1:

we draw Mbag samples of size N with replacement from the set of all observation sequences

{(yi,Xi), i = 1, . . . , N} and fit a collection of component models using each bagged data set.

With the nonparametric formulation, rather than dividing estimated coefficients β̂ms by Mbag as

in step 3 of the bag boost par CRF method, we now divide the estimated regression constant

ρms,j in each region by Mbag .

The boosting step requires more substantial changes to adapt to the nonparametric model

specification. Each iteration of our boosting method proceeds in two stages. First we use a gra-
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Algorithm 5.2. BB-Nonpar-CRF Estimation Algorithm
Method: bag boost nonpar CRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , N}
Outputs: Bagged and boosted model parameter estimates.

1. Perform 10-fold cross-validation to select the tree depth.

2. Initialize component models = {}.

3. For b = 1, . . . ,Mbag , repeat the following:

(a) Draw a sample ofN observation sequences with replacement from the full set of all observation
sequences. Collect these sequences in Bb. Collect the unsampled sequences in Ob.

(b) Set new component models = boost nonpar CRF(Bb,Ob).

(c) Set component models = component models
⋃
new component models.

4. For each component in component models, divide the estimates ζ̂ms , ω̂mr,s, and ρ̂ρρms,j by Mbag .

5. Return component models.

Method: boost nonpar CRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , Ntrain} and {(yi,xi), i = 1, . . . , Nvalidation}.
Outputs: Boosted model parameter estimates.

1. Initialize component models = {}, m = 0, and val prop correct[0] = −∞.

2. Repeat the following until the largest element of val prop correct is not within the last
M search threshold values stored in val prop correct:

(a) Set m = m+ 1, attempt num = 0, and val prop correct[m] = −∞.

(b) For each state s, create the set of regression examples{(
xi,t,

∂`(ΨΨΨ|y,x; ζζζ,ΩΩΩ)

∂Ψs(xi,t; τττ)

∣∣∣∣
ΨΨΨ=Ψ̂ΨΨ

m−1

)
, i = 1, . . . , N, t = 1, . . . , Ti

}
.

(c) Repeat the following until val prop correct[m] > val prop correct[m − 1] or
attempt num = max attempts:

i. Set attempt num = attempt num + 1.
ii. Randomly select the set Am ⊂ {1, . . . , D} of active features for the mth component

model. Only splits using these features will be used in the regression trees.
iii. If m = 1, initialize ζ̃ms = log( ns

nS
) and ω̃mr,s = log(

nr,s

nS,S
) for all r, s = 1, . . . , S. If

m > 1, initialize ζ̃ms = ω̃mr,s = 0 for all r, s = 1, . . . , S.
iv. For each state s, use the CART algorithm to grow a regression tree with parameters

(φ̃φφ
m
, ρ̃ρρm) using the data set for that state that was created in step 2b.

v. Update ω̃mr,s to the constrained local maximum likelihood estimates based on the training
data, holding fixed all other parameter estimates.

vi. Using all component fits up through component m, predict the values of yi for the
validation data set. If the proportion of time points at which the prediction was cor-
rect is greater than val prop correct[m], store it in val prop correct[m] and set
ζ̂ζζ
m

= ζ̃ζζ
m

, Ω̂ΩΩ
m

= Ω̃ΩΩ
m

, φ̂φφ
m

= φ̃φφ
m

, and ρ̂ρρm = ρ̃ρρm.

(d) Set component models = component models
⋃
{(ζ̂ζζ

m
, Ω̂ΩΩ

m
, φ̂φφ

m
, ρ̂ρρm)}.

3. Return component models.
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dient tree boosting approach based on the work of Dietterich et al. [2004] to update our estimates

of Ψs, s = 1, . . . , S. Then we find maximum likelihood updates for ΩΩΩ, holding the Ψs fixed at

their current estimates.

It will be helpful to introduce some notation in order to facilitate our discussion of the gra-

dient tree boosting method. We use the bold ΨΨΨ to denote the vector of values Ψs(xi,t; τττ) for

all combinations of states s and observations xi,t. We denote the vector of estimated values

after stage m of the boosting process by Ψ̂ΨΨ
m

; a single element of this vector is Ψ̂m
s (xi,t; τττ

l, l =

1, . . . ,m) =
∑m
l=1

∑Jl
s
j=1 ρ

l
s,jIRl

s,j
(xi,t).

The main idea behind gradient tree boosting is that the component regression trees are ob-

tained as a series of approximate functional gradient ascent steps. In estimating the regression

trees, the objective that we seek to maximize is the log-likelihood regarded as a function of the

values ΨΨΨ, holding fixed the values of ζζζl and ΩΩΩl obtained from earlier components:

`(ΨΨΨ|y,x; ζζζl,ΩΩΩl, l = 1, . . . ,m− 1) =

N∑
i=1

log{p(Yi = yi|Xi = xi; ΨΨΨ, ζζζl,ΩΩΩl, l = 1, . . . ,m− 1)}

=

N∑
i=1

m−1∑
l=1

ζlyi,1 +

Ti∑
t=2

m−1∑
l=1

ωlyi,t−1,yi,t +

Ti∑
t=1

Ψyi,t(xi,t; τττ)

− log

∑
y∗i

exp

(
m−1∑
l=1

ζly∗i,1 +

Ti∑
t=2

m−1∑
l=1

ωly∗i,t−1,y
∗
i,t

+

Ti∑
t=1

Ψy∗i,t
(xi,t; τττ)

)


In stage m of the boosting process, we wish to increase this log-likelihood function by up-

dating our current estimates Ψ̂m−1
s (xi,t; τττ

l, l = 1, . . . ,m − 1) =
∑m−1
l=1

∑Jl
s
j=1 ρ

l
s,jIRl

s,j
(xi,t) with

a new regression tree for each s = 1, . . . , S. In order to do this, we note that the gradient of

the log-likelihood with respect to ΨΨΨ at the current estimate Ψ̂ΨΨ
m−1

indicates how much the log-

likelihood can be improved by making a small change in the value that Ψ̂m−1
s takes at each

observation. Where the gradient is positive, we can increase the likelihood by increasing the

value of Ψ̂m−1
s (xi,t; θθθ), and similarly when the gradient is negative. Our strategy for obtaining

the new regression tree for state s is therefore to fit the tree to the pairs{(
xi,t,

∂`(ΨΨΨ|y,x; ζζζ,ΩΩΩ)

∂Ψs(xi,t; τττ)

∣∣∣∣
ΨΨΨ=Ψ̂ΨΨ

m−1

)
, i = 1, . . . , N, t = 1, . . . , Ti

}
, (5.3.5)

treating the partial derivative of the log-likelihood as the dependent variable to be estimated as a

function of xi,t. In order to estimate the tree parameters, we use the CART algorithm of Breiman

et al. [1984], as suggested by Friedman [2001] and Dietterich et al. [2004].
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The partial derivatives in Equation (5.3.5) can be expressed in terms of the estimated class

membership probabilities after stage m − 1. This relationship can be shown as follows, where

we differentiate with respect to the term for a particular state s∗, subject i∗, and time point t∗:

∂`(ΨΨΨ|y,x; ζζζ,ΩΩΩ)

∂Ψs∗(xi∗,t∗ ; τττ)

∣∣∣∣
ΨΨΨ=Ψ̂ΨΨ

m−1

=

N∑
i=1

∂

∂Ψs∗(xi∗,t∗ ; τττ)

m−1∑
l=1

ζlyi,1 +

Ti∑
t=2

m−1∑
l=1

ωlyi,t−1,yi,t +

Ti∑
t=1

Ψyi,t(xi,t; τττ)

− log

∑
y∗i

exp

(
m−1∑
l=1

ζly∗i,1 +

Ti∑
t=2

m−1∑
l=1

ωly∗i,t−1,y
∗
i,t

+

Ti∑
t=1

Ψy∗i,t
(xi,t; τττ)

)
∣∣∣∣∣∣

ΨΨΨ=Ψ̂ΨΨ
m−1

= I{s∗}(yi∗,t∗)−
1

Z(xi∗ ; θθθ)

∑
{y∗

i∗ :y
∗
i∗,t∗=s

∗}

exp

(
m−1∑
l=1

ζly∗
i∗,1

+

Ti∗∑
t=2

m−1∑
l=1

ωly∗
i∗,t−1

,y∗
i∗,t

+

Ti∑
t=1

Ψy∗
i∗,t

(xi∗,t; τττ)

)∣∣∣∣∣
ΨΨΨ=Ψ̂ΨΨ

m−1

= I{s∗}(yi∗,t∗)− p̂(Yi∗,t∗ = s∗|xi∗ ; θθθl, l = 1, . . . ,m− 1)

A similar derivation is given in Dietterich et al. [2004]. This expression in terms of the estimated

class membership probabilities is convenient because fast computation techniques are available

to calculate these probabilities, as we will see in Section 5.6. It also offers an intuitively appealing

interpretation of the boosting process: in each stage, the new regression trees are estimated using

the residuals from the previous stage.

As with other boosting algorithms, it can be helpful to regularize the individual component

models in order to reduce the potential to overfit the training data. Friedman [2001] and Diet-

terich et al. [2004] recommend achieving this by limiting the number of leaves in each tree. We

follow a similar idea by limiting the depth of each tree. We use 10-fold cross-validation to choose

the tree depth, selecting the depth that yields the highest proportion of time points classified cor-

rectly in the validation data sets. However, it is too computationally expensive to reproduce the

entire bagging and boosting process within each fold of the cross-validation procedure. Instead,

we further sub-partition the cross-validation training data sets into training and validation sub-

sets which are passed to the boosting routine. This does not give us a completely accurate picture

of how the performance of our bagging and boosting method varies with tree depth, but it offers

a large reduction in computation time. Figure 20 illustrates this process.

As in the parametric boosting algorithm, we also regularize the component models by al-
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41 2 5 6 7 8 9 10(b) 3

(c)

Full data set, partitioned into 10 subsets.

Training set Validation set

Training set Validation set

Figure 20. A diagram illustrating the cross-validation process used to select the tree depth
in estimation of the BB-Nonpar-CRF model. There are two layers of cross val-
idation: one to select the tree depth, and one to select the number of iterations
performed in the boosting step when training the models. In the figure, step
(a) shows the full labeled training data set, with the observation sequences
partitioned into 10 disjoint subsets of approximately equal size. For each can-
didate value of the tree depth, we train 10 separate CRFs. In estimating the
kth CRF, we hold the kth partition from step (a) out of the training data set.
Step (b) shows this for k = 3. We evaluate the classification performance of
the resulting model using the held-out observation sequences. The boosting
process requires the use of a validation set to determine the number of boost-
ing iterations. In step (c), the training data in step (b) are further partitioned
into training and validation sets for the boosting procedure. A full replication
of the model training procedure would use bagging at step (c) to obtain many
different training and validation sets, but this is time consuming.

93



lowing each component model to use only a random subset of the features. In theory, we could

also use cross-validation to select the number of features used in each component model. Again,

this would be computationally expensive. Instead, we have simply fixed the size of the feature

subsets to 3 in our applications of the method.

In addition to slowing the rate of convergence of the boosting procedure by restricting the

flexibility of the regression trees in each step, this also regularizes the final model by eliminating

high-order interactions between the features. Following the discussion in Chapter 6 of Hastie

et al. [2009], consider the ANOVA-style decomposition of Ψs(xi,t):

Ψs(xi,t) = α+
∑
d1

Ψs,d1(xi,t,d1) +
∑
d1<d2

Ψs,d1,d2(xi,t,d1 ,xi,t,d2) + · · ·

Here α is an overall offset, Ψs,d1 is a function capturing the “main effects” of component d1 ∈

{1, . . . , D} of the feature vector xi,t, Ψs,d1,d2 is a function capturing pairwise interactions, and so

on. Our restriction that each component model uses only three of the observed features elimi-

nates all interactions of order 4 or higher from this decomposition. This reduces the flexibility of

the overall model, and in turn its potential for overfitting the training data.

After fitting the new regression trees we estimate ΩΩΩm through constrained maximum likeli-

hood, holding fixed the regression tree parameters as well as all parameters from earlier boosting

iterations. This estimation is performed through numerical optimization of the likelihood func-

tion. The gradient calculations are the same as those we presented in Section 5.2. As with the

parametric boosting algorithm in Section 5.2, we use the out of bag sample to select the number

of boosting iterations to perform. The procedure is the same as we described for Algorithm 5.1,

choosing the value of m that corresponds to the highest proportion of correctly classified time

points in the out of bag sample.

The method we have described here for estimating Ψs follows the gradient tree boosting

algorithm of Dietterich et al. [2004] closely, with three changes. First, we have integrated the

method with bagging by fitting a separate collection of component models to each bagged data

set and using the out of bag data to select the number of boosting iterations to perform. Diet-

terich et al. [2004] suggested using cross-validation to choose the number of boosting iterations,

although they did not specify the details of how this would be done. In similar procedures,

Hastie et al. [2009] suggest using a single partition of the observed data into training and vali-

dation subsets. As we discussed in Section 5.2, the resulting classifier can be sensitive to which
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observation sequences are in the training and validation sets. Bagging and combining the result-

ing model estimates in a LOP can reduce this dependence on the selection of the validation set.

A second change from the methods of Dietterich et al. [2004] is our use of a randomly selected

subset of features in each component model. This offers another mechanism for regularizing the

component models in addition to limiting the number of leaves in the regression trees.

Finally, Dietterich et al. [2004] based their method on a more flexible model specification in

which the Ψ functions include not only xi,t, but also the values of xi,t∗ in a window of time

points t∗ around t and the state yi,t−1 at the previous time point. Our primary reason for using

a less flexible specification for Ψs is simply to put the method on a more level footing with the

other approaches we will compare our methods to in Chapters 6, 7 and 8. This allows us to

compare more directly how different treatments of Ψs affect the classification results. We note

that our fundamental contributions of integrating bagging with boosting and regularizing the

component models through variable subset selection could be applied equally as well with a

more flexible specification of Ψs than we have used.

5.4 CRF Model 3: RF-CRF

Our third estimation strategy for CRFs is based on essentially the same non-parametric spec-

ification for Ψs that we used for the BB-Nonpar-CRF model in the previous Section. We restate

the model here with some minor modifications to the notation to reflect changes in the estimation

strategy that we will discuss below:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
S∑
s=1

I{s}(yi,1)ζs

+

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωr,s +

Ti∑
t=1

S∑
s=1

I{s}(yi,t)Ψs(xi,t; τττ)

}
, where (5.4.1)

Ψs(xi,t; τττ) =

M∑
m=1

Jm∑
j=1

ρms,jIRm
j

(xi,t), and (5.4.2)

Z(xi; θθθ) =
∑
y∗i

exp

{
S∑
s=1

I{s}(y∗i,1)ζs +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(y∗i,t−1)I{s}(y∗i,t)ωr,s

+

Ti∑
t=1

S∑
s=1

I{s}(y∗i,t)Ψs(xi,t; τττ)

}
.
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This model statement differs in two ways from that given in Equations (5.3.1) through (5.3.3).

First, we no longer have separate values of ζζζ and ΩΩΩ for each component model m. Second, the

regions Rmj no longer have a subscript for the state s. This reflects the fact that in the algorithm

for parameter estimation that we develop below, the same variables and split points will be used

for the trees for all states within each component model. The regression constant ρms,j in each

region does still depend on the state, however.

The estimation methods we present in this Section combine the static random forest algo-

rithm of Breiman [2001] with the CRF model. As we discussed in the literature review, random

forests are static classification or regression models that have been successful in many appli-

cations. The random forest comprises a collection of classification or regression trees that are

estimated in a process that includes one or more sources of randomness. The two most com-

mon methods for introducing randomness to the estimation procedure are through bagging and

random selection of the variables used to split the tree nodes. Algorithms 5.3 and 5.4 give step-

by-step descriptions of methods that incorporate these ideas for estimating random forests with

the dynamic CRF model.

One challenge in adapting the RF estimation method for use with CRFs is how to handle

bagging. The bagging procedure used in estimation of static RFs entails resampling individual

observations. In our case, these individual observations are the time points within sequences of

interdependent values. This poses a problem if a particular observation is not included in the

bagged sample, but another observation in the same sequence is: we cannot drop the observation

that was not sampled from the likelihood calculations without affecting the contribution to the

likelihood from the observation that was sampled.

We propose two variations on the bagging algorithm to address this problem. In the first

variation, we perform bagging by resampling complete observation sequences with replacement

from the set of all observed sequences. This is the approach to bagging that we used in the

previous two Sections, and which has been used in the literature previously. We refer to the

method using bagging at the level of complete sequences as RF-seq-CRF.

In our second bagging strategy, we perform the sampling in two stages. First, we draw com-

plete observation sequences with replacement to obtain the setBmseq of bagged sequences that will

be used in estimating the mth component model. Second, we select a subset of the observations

in each sampled sequence that will count “more heavily” toward the likelihood computation for
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Algorithm 5.3. RF-seq-CRF Estimation Algorithm
Method: RF seq CRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , N}
Outputs: Model parameter estimates.

1. Initialize component models = {}.

2. Initialize ζ̂s = log( ns

nS
) and ω̂r,s = log(

nr,s

nS,S
) for all r, s = 1, . . . , S.

3. For m = 1, . . . ,M , repeat the following:

(a) Draw a sample of η observation sequences with replacement from the full set of all observation
sequences. Collect these sequences in Bmseq .

(b) Fit a static random classification tree using all of the individual observations in Bmseq as the
training data set. This tree is grown using the mechanism for random selection of split vari-
ables in the algorithm of Breiman [2001], but without any additional bagging of the training
data set. The tree has parameters (φφφmclass, ρρρ

m
class), where φφφmclass specifies the variables and split

points used in splitting the tree nodes and ρρρmclass specifies the estimated class in each leaf node.

(c) For each state s = 1, . . . , S, set φ̂φφ
m

s = φφφmclass and ρ̂s,j = max[−100, log{I{s}(ρmclass,j)}] −
max[−100, log{I{S}(ρmclass,j)}].

(d) Set component models = component models
⋃
{(φ̂φφ

m
, ρ̂ρρm)}.

4. Repeat the following until the largest change between consecutive iterations in the class membership
probabilities across all observations in the original data set based on the combined CRF with all
component models is less than a specified tolerance, or a maximum number of parameter update
iterations has been reached:

(a) For m = 1, . . . ,M , update the values of ρ̂ms,j assigned to each leaf node by numerically maxi-
mizing the log-likelihood based on the observation sequences in Bmseq .

(b) Update Ω̂ to the constrained local maximum likelihood estimates based on the original (un-
bagged) training data, holding fixed all other parameter estimates.

5. For each component in component models, divide the estimates ρ̂ms,j by M .

6. Return ζ̂ζζ, ω̂ωω, and component models.
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Algorithm 5.4. RF-CRF Estimation Algorithm
Method: RF CRF
Inputs: Labeled sequence data {(yi,xi), i = 1, . . . , N}
Outputs: Model parameter estimates.

1. Initialize component models = {}.

2. Initialize ζ̂s = log( ns

nS
) and ω̂r,s = log(

nr,s

nS,S
) for all r, s = 1, . . . , S.

3. For m = 1, . . . ,M , repeat the following:

(a) Draw a sample of η observation sequences with replacement from the full set of all observation
sequences. Collect these sequences in Bmseq .

(b) Draw a sample of ν individual observations (yi,t,xi,t) without replacement from the set of
all observations included in Bmseq . Collect these observations in Bmpoint and the remaining
observations that were included in Bmseq but not Bmpoint in Ompoint.

(c) Fit a static random classification tree using Bmpoint as the training data set. This tree is
grown using the mechanism for random selection of split variables in the algorithm of Breiman
[2001], but without any additional bagging of the training data set. The tree has parameters
(φφφmclass, ρρρ

m
class), where φφφmclass specifies the variables and split points used in splitting the tree

nodes and ρρρmclass specifies the estimated class in each leaf node.

(d) For each state s = 1, . . . , S, set φ̂φφ
m

s = φφφmclass and ρ̂s,j = max[−100, log{I{s}(ρmclass,j)}] −
max[−100, log{I{S}(ρmclass,j)}].

(e) Set component models = component models
⋃
{(φ̂φφ

m
, ρ̂ρρm)}.

4. Repeat the following until the largest change between consecutive iterations in the class membership
probabilities across all observations in the original data set based on the combined CRF with all
component models is less than a specified tolerance, or a maximum number of parameter update
iterations has been reached:

(a) For m = 1, . . . ,M , update the values of ρ̂ms,j assigned to each leaf node by numerically max-
imizing a modified version of the log-likelihood based on the observation sequences in Bmseq
where the value of Ψs is taken to be the score from the mth tree if the observation is in Bmpoint,
and the average score across all trees other than the mth if the observation is not in Bmpoint.

(b) Update Ω̂ to the constrained local maximum likelihood estimates based on the original (un-
bagged) training data, holding fixed all other parameter estimates.

5. For each component in component models, divide the estimates ρ̂ms,j by M .

6. Return ζ̂ζζ, ω̂ωω, and component models.
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( y3,7 , X 3,7)) ,

( y2,5 , X 2,5)) ,

Figure 21. A diagram illustrating the two stage bootstrap sampling process for a single
bagging index m in the RF-CRF model. We begin by drawing a sample of size
η with replacement from the set of all observed sequences; η = 6 in this exam-
ple. Within each sampled sequence, we then select a subset of the time points
which will contribute the most to the likelihood for the parameters in the mth
component model. The parameter ν specifies the total number of observations
in the time point bagged data set, which may be distributed unequally among
the bagged sequences; ν = 14 in this example.

the parameters in the mth component model. We discuss our method for computing the likeli-

hood in order to achieve this below. We collect the observations at these time points in Bmpoint.

If a particular sequence was drawn multiple times in the first stage of sampling, each copy of

that sequence in Bmseq may yield a different set of individual observations in the second stage

of sampling. This is illustrated in Figure 21. With this procedure, the final set of observations

that that will contribute the most to our likelihood computations may include duplicates, since

the first stage involves sampling with replacement. We refer to the model using this two stage

bagging procedure as RF-CRF.

This sampling procedure requires us to specify the number η of observation sequences that

will be drawn in the first stage and the number ν of individual time points that will be drawn in

the second stage. In our applications of the method, we have used η = 2 ∗ N and ν = |Bmseq|/2,

where |Bmseq| denotes the number of individual observations in Bmseq across all sequences. We

selected these values because when the number of time points in each observation sequence is

balanced, the resulting marginal distribution for the number of times each observation is in-

cluded in the bag is similar to the marginal distribution that arises from the usual method of

sampling individual observations with replacement, which has proven effective in many classi-

fication problems. This is illustrated in Figure 22. We have not explored the effects of using other
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values for η and ν or sampling from some sequences with higher probability than others.

When we use the two stage bagging procedure, we also use an altered scheme for computing

the CRF likelihood so that the in-bag observations contribute more to the likelihood for the pa-

rameters than the out-of-bag observations. In order to motivate our method, consider the usual

method for performing bagging with static models. After drawing the bootstrap sample Bm for

the mth bag, we form the log-likelihood based on only the observations in the bag:

`(τττm|Bm) =
∑

(yi,t,xi,t)∈Bm

log{p(Yi,t = yi,t|xi,t; τττm)}

For the purposes of estimation of the parameters for the mth tree, the out-of-bag observations

do not enter the likelihood. However, we could add the terms for the out-of-bag observations

back into the likelihood computation without affecting estimation of τττm, as long as those terms

depend on a different parameter vector τττ∗ 6= τττm:

`(τττm|Bm) =
∑

(yi,t,xi,t)∈Bm

log{p(Yi,t = yi,t|xi,t; τττm}+
∑

(yi,t,xi,t)/∈Bm

log{p(Yi,t = yi,t|xi,t; τττ∗}

We apply this idea to estimation of the regression trees in our CRF specification. We estimate

the parameters for the trees in the mth model by maximizing a likelihood function that is based

on the observation sequences that were sampled in the first bag sampling stage. Terms corre-

sponding to observations that were selected in the second stage of bag sampling depend on the

parameters τττm that are currently being estimated. Terms for out-of-bag observations do not de-

pend on τττm; instead, we use the average value from all other component models l 6= m. Holding

the remaining model parameters fixed, the log-likelihood we maximize in order to estimate τττm

is as follows:

`(τττm|y,x; ζζζ,ΩΩΩ, τττ l, l 6= m) =

η∑
i=1

log{p(Yi = yi|Xi = xi; ζζζ,ΩΩΩ, τττ)}

=

η∑
i=1

[
S∑
s=1

I{s}(yi,1)ζs +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωr,s

+
∑

{t:(yi,t,xi,t)∈Bm
point}

Ψyi,t(xi,t; τττ
m) +

∑
{t:(yi,t,xi,t)/∈Bm

point}

Ψyi,t(xi,t; τττ
l, l 6= m)

− log{Z(xi; θθθ)}

]
(5.4.3)

In this computation, i indexes sequences in Bmseq . We perform the computations of the terms in

Z in a similar manner, so that only components corresponding to observations in Bmpoint depend

on τττm.
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Sampling Method

● One Stage Static

One Stage Sequence

Two Stage

Marginal Distributions for the Number of Occurrences
 of Each Observation in the Bagged Sample

Figure 22. Marginal distributions for the number of times each individual observation is
included in the bagged data set. The two stage sampling method is the method
we describe in this Subsection, in which we first sample observation sequences
with replacement and then select a subset of observations in each sequence
that was sampled in the first stage. This distribution was calculated using a
sample size of η = 2 ∗N for the first stage and ν = η ∗ T/2 in the second stage.
Note that the maximum value for k is 2 ∗N ; we show only the first 10 values in
these plots. The one stage sampling method is the usual boostrapping method
used for static models, where a sample of sizeN ∗T is drawn with replacement
from the set of all individual time point observations. We show the distribu-
tions for two sample sizes for the original data set. In both cases, all sequences
have the same length T . Note that although the marginal distributions for the
number of times each individual observation is sampled are similar, the joint
distributions for the number of times all observations are sampled are differ-
ent. In the two stage procedure, observations in the same sequence are more
likely to be sampled together.
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Unlike the example we discussed above with a static model, the parameter estimates ob-

tained by maximizing (5.4.3) do depend on the terms corresponding to the out-of-bag observa-

tions because of the sequential dependence captured by ΩΩΩ. This means that the estimate for τττm

also depends on the parameter values for ζζζ, ΩΩΩ, and τττ l, l 6= m used in computing the likelihood.

Our solution to this is to use an iterative parameter estimation procedure, alternately updating

our estimates for ΩΩΩ and τττm, m = 1, . . . ,M . Although it would be possible to re-estimate the split

variables and split points in the regression trees on each iteration of this parameter updating

procedure, that would be very slow. Instead, we fix the split points for the trees and only update

the regression constants ρρρ. As with our earlier models, we hold ζζζ fixed at its initial estimate.

We initialize this iterative process using the estimates for Ω corresponding to the maximum

likelihood estimates from a HMM, which we also used for the models discussed in earlier Sec-

tions. We obtain initial estimates for the regression trees by fitting a classification random for-

est with our bagged data. For each component model m, the regression trees for all states

use the same split variables and split points as the mth tree in the classification random for-

est. The initial estimates for the regression constants are ρ̂ms,j = max[−100, log{I{s}(ρmclass,j)}] −

max[−100, log{I{S}(ρmclass,j)}], where ρmclass,j is the estimated class in leaf j of the classification

tree. These values yield an estimated class probability close to 1 for the class that was selected

by the mth classification tree. Our initial values for ρρρ are bounded below by −100 so that the

probabilities of the other classes are non-zero; this is necessary for the gradient calculations used

in updating these parameter values.

As with the estimation algorithms we introduced in Sections 5.2 and 5.3, the initial values

of the parameter estimates are updated using numerical optimization routines. The gradient of

the log-likelihood with respect to the elements of ΩΩΩ can be expressed in terms of the class prob-

abilities p(Yi,t−1 = r, Yi,t = s|Xi = xi; θθθ) just as we saw in Section 5.2. The partial derivatives

with respect to ρms,j can be rewritten in terms of the marginal class probabilities. To simplify the

notation, we set

A(xi,yi; θθθ) =

S∑
s=1

I{s}(yi,1)ζs +

Ti∑
t=2

S∑
r=1

S∑
s=1

I{r}(yi,t−1)I{s}(yi,t)ωr,s

+
∑

{t:(yi,t,xi,t)∈Bm
point}

Ψyi,t(xi,t; τττ
m) +

∑
{t:(yi,t,xi,t)/∈Bm

point}

Ψyi,t(xi,t; τττ
l, l 6= m).

The partial derivative of the likelihood in Equation (5.4.3) with respect to ρms,j can then be rewrit-
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ten as follows:

∂

∂ρms,j
`(θθθ|y,x) =

N∑
i=1

∂

∂ρms,j
log{p(Yi = yi|Xi = xi; θθθ)}

=

η∑
i=1

∂

∂ρms,j
[A(xi,yi; θθθ)− log{Z(xi; θθθ)}]

=

η∑
i=1

[
Ti∑
t=2

I{s}(yi,t)IRm
j

(xi,t)

− 1

Z(xi; θθθ)

∑
y∗i

exp {A(xi,y
∗
i ; θθθ)}

Ti∑
t=2

I{s}(yi,t)IRm
j

(xi,t)


=

η∑
i=1

Ti∑
t=2

{
I{s}(yi,t)IRm

j
(xi,t)− p(Yi,t = s|Xi = xi; θθθ)

}
(5.4.4)

This result is the same for the partial derivatives of the ordinary log-likelihood used in the RF-

seq-CRF algorithm.

5.5 Classification

The previous three Sections described estimation procedures for models for the conditional

distribution of the sequence of activity types Yi given the feature values Xi. These estimation

procedures take as input a set of “labeled” sequences (yi,xi) where the true activity type is

observed. Our ultimate objective is to use the estimated models to perform classification in

sequences where the activity type is not known. In the boosting algorithms of Sections 5.2 and

5.3, classification is also performed as an intermediate step in the estimation procedure.

Each set of parameter values for the CRF model determines a distribution on the space of all

state sequences yi ∈ {1, . . . , S}T−i. However, this distribution is too complex to be of direct use

in most cases. Several simpler summaries of this distribution are in common use.

In many settings, such as natural language processing, it is appropriate to summarize this

distribution using the modal state sequence or the top few most probable sequences. Using these

estimates ensures that the estimated classes at consecutive time points are compatible. In our

setting, it is less critical that consecutive labels are compatible. Instead, we seek to maximize the

expected number of windows that are labeled correctly, or equivalently, minimize the expected

number of windows that are labeled incorrectly. More formally, we wish to select the values of
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ŷi that minimize the following loss function:

L(ŷi;xi) = EYi|xi

{
Ti∑
t=1

1− I{Yi,t}(ŷi,t)

}

= Ti −
Ti∑
t=1

EYi|xi

{
I{Yi,t}(ŷi,t)

}
= Ti −

Ti∑
t=1

P (Yi,t = ŷi,t|xi)

≈ Ti −
Ti∑
t=1

P̂ (Yi,t = ŷi,t|xi) . (5.5.1)

In the last line, we have replaced the true conditional probability for the state at time t with

the estimated probability based on a CRF with parameters θθθ. The contribution to the loss at each

time t is equal to negative the estimated conditional probability that the estimated class ŷi,t is the

true state. This term is minimized by selecting the class with the largest estimated conditional

probability at time t:

ŷi,t = argmax
s

P̂ (Yi,t = s|xi) (5.5.2)

We will discuss methods for computing these conditional probabilities in Section 5.6.

Although we will perform classification according to Equation (5.5.2) throughout the major-

ity of our work, other estimates may be more appropriate in some applications. For example,

the set of estimated probabilities for all classes s = 1, . . . , S at each time point may be of interest,

and we will make use of these quantities in Chapter 8. In other studies, researchers may be more

interested an estimate of the total time spent in each physical activity category in a given time

span, such as a day.

5.6 Computation

Throughout the previous four Sections, we have omitted some computational details which

we now present. The estimation algorithms in Sections 5.2, 5.3, and 5.4 require repeated compu-

tation of the likelihood and its gradient. We have shown that the gradient computations can be

expressed in terms of the marginal class probabilities at each time t and each pair of consecutive

times (t− 1, t). These marginal class probabilities are also used in the classification methods we

discussed in Section 5.5. We begin by demonstrating that direct computation of the likelihood
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and the marginal class membership probabilities is computationally expensive. Then we present

a recursion procedure that can be used to calculate the likelihood and the marginal class prob-

abilities much more quickly than the direct computations. All of the results we discuss in this

Section have been developed in the literature previously [e.g., Sutton and McCallum, 2011]; we

present them here for the sake of completeness.

For the presentation in this Section, we focus on the computations for a single observation

sequence. This is justified because of the assumption made in our model formulation that there is

no dependence between different observation sequences. As a consequence of this assumption,

the likelihood is a product of separate terms for each observation sequence and the computations

of marginal class probabilities required for classification can be performed separately for each

sequence. It will be helpful to rewrite the log-likelihood function for the parameters based on

one observation sequence in the following general form, which applies for all of the linear chain

CRF models we presented in Sections 5.2, 5.3, and 5.4:

L(θθθ|yi,xi) =
1

Z(xi; θθθ)
A1(yi,1,xi,1)

Ti∏
t=2

At(yi,t−1, yi,t,xi,t), where (5.6.1)

A1(yi,1,xi,1) = exp{ζyi,1 + Ψyi,1(xi,1; θθθ)},

At(yi,t−1, yi,t,xi,t) = exp{ωyi,t−1,yi,t + Ψyi,t(xi,t; θθθ)} for t ≥ 2, and

Z(xi; θθθ) =
∑
y∗i

A1(y∗i,1,xi,1)

Ti∏
t=2

At(y
∗
i,t−1, y

∗
i,t,xi,t).

In Equation (5.6.1), the numerator is straightforward to compute. However, the normalizing

term Z(xi; θθθ) consists of a sum over all possible sequences of classes. Direct computation of this

normalizing term is of order O(TiS
Ti), which is not computationally feasible except for small

values of S and Ti.

The conditional probability that Yi,t = s can be obtained by marginalizing over the states at

all other time points:

P (Yi,t = s|xi; θθθ) =
∑

{y∗i :y∗i,t=s}

P (Yi = y∗i |xi; θθθ)

=
∑

{y∗i :y∗i,t=s}

[
1

Z(xi; θθθ)
A1(y∗i,1,xi,1)

Ti∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

]
. (5.6.2)
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Similarly, the conditional probability that Yi,t−1 = r and Yi,t = s can be found as follows:

P (Yi,t−1 = r, Yi,t = s|xi; θθθ) =
∑

{y∗i :y∗i,t−1=r,y
∗
i,t=s}

P (Yi = y∗i |xi; θθθ)

=
∑

{y∗i :y∗i,t−1=r,y
∗
i,t=s}

[
1

Z(xi; θθθ)
A1(y∗i,1,xi,1)

Ti∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

]
. (5.6.3)

Again, it is not computationally feasible to calculate these quantities directly; now we have to

contend with calculation of not only Z(xi; θθθ), but also the summations in the numerators.

A set of recursions has been developed in the literature that can be used to reduce the com-

putational complexity of the likelihood and marginal class probability calculations to O(S2Ti)

for each sequence. The recursions have two steps. First we obtain the forward variables ai,t =

[ai,t,1, . . . , ai,t,S ], where

ai,t,s =
∑

y∗i,1:t−1

[
At(y

∗
i,t−1, s,xi,t−1)A1(y∗i,1,xi,1)

t−1∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

]
(5.6.4)

=
∑
y∗i,t−1

[
At(y

∗
i,t−1, s,xi,t−1)

×
∑

y∗i,1:t−2

At−1(y∗i,t−2, y
∗
i,t−1,xi,t−1)A1(y∗i,1,xi,1)

t−2∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)


(5.6.5)

=
∑
y∗i,t−1

At(y
∗
i,t−1, s,xi,t)ai,t−1,y∗i,t−1

.

The summation in line (5.6.4) is over all sequences of states for the first t− 1 time points. In line

(5.6.5), we factor that summation into two pieces: one summation over all possible values for the

state at time t− 1, and the second summation over all sequences of states for the first t− 2 time

points. We initialize these recursions by setting ai,1,s = A1(s,xi,1) for all s = 1, . . . , S.
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Separately, we calculate the backward variables bi,t = [bi,t,1, . . . , bi,t,S ], where

bi,t,s =
∑

y∗i,t+1:Ti

At+1(s, y∗i,t+1,xi,t+1)

Ti∏
t∗=t+2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗) (5.6.6)

=
∑
y∗i,t+1

[
At+1(s, y∗i,t+1,xi,t+1)

×
∑

y∗i,t+2:Ti

At+2(y∗i,t+1, y
∗
i,t+2,xi,t+2)

Ti∏
t∗=t+3

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

 (5.6.7)

=
∑
y∗i,t+1

At+1(s, y∗i,t+1,xi,t+1)bi,t+1,y∗i,t+1
. (5.6.8)

We initialize these recursions by setting bi,Ti,s = 1 for all s = 1, . . . , S.

These recursions have exactly the same form as those used for inference with HMMs, but the

interpretation of the forward and backward variables in terms of conditional probabilities is not

available in the context of CRFs. In order to avoid numerical difficulties, in practice we work

with the logarithms of the forward and backward variables. Once the forward and backward

variables have been calculated, we can easily compute the desired quantities. In the formula for

the likelihood of Equation (5.6.1), the numerator can be calculated directly and the normalizing

factor can be computed as

Z(xi; θθθ) =
∑
y∗i

A1(y∗i,1,xi,1)

Ti∏
t=2

At(y
∗
i,t−1, y

∗
i,t,xi,t)

=
∑
y∗i,Ti

 ∑
y∗i,1:Ti−1

{
ATi(y

∗
i,Ti−1, y

∗
i,Ti

,xi,Ti)A1(y∗i,1,xi,1)

Ti−1∏
t=2

At(y
∗
i,t−1, y

∗
i,t,xi,t)

}
=

S∑
s=1

ai,Ti,s.

For the marginal class probabilities in Equation (5.6.2), the numerator is given by

∑
{y∗i :y∗i,t=s}

A1(y∗i,1,xi,1)

Ti∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

=
∑

y∗i,1:t−1

{
At(y

∗
i,t−1, s,xi,t)A1(y∗i,1,xi,1)

t−1∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

}

×
∑

y∗i,t+1:Ti

{
At+1(s, y∗i,t+1,xi,t+1)

Ti∏
t∗=t+2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

}

= ai,t,s bi,t,s.
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For the pairwise marginal class probabilities in Equation (5.6.3), we have

∑
{y∗i :y∗i,t−1=r,y

∗
i,t=s}

A1(y∗i,1,xi,1)

Ti∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

=
∑

y∗i,1:t−2

{
At−1(y∗i,t−2, r,xi,t−1)A1(y∗i,1,xi,1)

t−2∏
t∗=2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

}

×At(r, s,xi,t)

×
∑

y∗i,t+1:Ti

{
At+1(s, y∗i,t+1,xi,t+1)

Ti∏
t∗=t+2

At∗(y
∗
i,t∗−1, y

∗
i,t∗ ,xi,t∗)

}

= ai,t−1,r At(r, s,xi,t) bi,t,s.
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C H A P T E R 6

SIMULATION STUDY

6.1 Introduction

We conducted a simulation study to compare the performance of our new classification meth-

ods to that of existing methods. We describe the design of the simulation study in Section 6.2

and present the results in Section 6.3.

6.2 Methods

The objective of the simulation study we describe in this Section is to understand how the

three new classification methods developed in Chapter 5 perform relative to several existing

methods that are commonly used when there is sequential dependence in the class labels. The

relative performance of these methods depends on the characteristics of the particular classifi-

cation task at hand. In our simulation study we focus on just two of these characteristics. We

begin this Section by briefly outlining the previous approaches that we compare our methods

to. We then discuss the characteristics of the classification problem that vary in the simulation

study design and state the model used to generate the data in the simulation study.

As discussed in the literature review, many methods have been applied to perform classi-

fication in the presence of sequential dependence. We include a representative subset of these

methods in our simulation study. In addition to the three new methods we developed in Chapter

5, we evaluate the following classification methods:

1. RF: A static random forest. We use the implementation in the randomForest package

[Liaw and Wiener, 2002] for R [R Core Team, 2013], with the default options for number of
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trees, node size, and number of variables considered for each split. This is the only classifier

in our simulation study that does not explicitly account for sequential dependence.

2. Gaussian-mixt-HMM: A HMM with a mixture of Gaussians for the observation distri-

butions. We estimate the model parameters by maximum likelihood. For the observation

distributions, we use R’s mclust package [Fraley et al., 2012] to estimate the Gaussian mix-

ture component parameters. This package allows for a number of possible restrictions on

the parameterizations of the Gaussian component covariance matrices. It uses an EM algo-

rithm to obtain local maximum likelihood estimates of the Gaussian component parame-

ters, and BIC to select the covariance parameterization and number of components. Before

fitting the Gaussian-mixt-HMM model, we apply the Yeo-Johnson transformation [Yeo

and Johnson, 2000] to each covariate. This is a transformation to approximate normality

similar to the Box-Cox transformation. In estimating the parameters of the transformation,

we work with the residuals of a regression of the observed feature values in the training

data on indicators of class membership. This effectively allows the transformation to ac-

count for a class-specific mean for the feature values. We use the implementation of this

transformation that is available in the car package [Fox and Weisberg, 2011] in R. Infor-

mal experiments revealed that using this data transformation led to a small improvement

in the proportion of windows classified correctly by the Gaussian-mixt-HMM method.

3. Par-CRF: A parametric specification of the linear chain CRF. We use the following model:

p(Yi = yi|Xi = xi; θθθ) =
1

Z(xi; θθθ)
exp

{
S∑
s=1

Ψ1(s, yi,1) +

Ti∑
t=2

S∑
r=1

S∑
s=1

Ψ2(r, s, yi,t−1, yi,t)

+

Ti∑
t=1

S∑
s=1

Ψ3(s, yi,t,xi,t)

}
, where

(6.2.1)

Ψ1(s, yi,1) = I{s}(yi,1)ζs,

Ψ2(r, s, yi,t−1, yi,t) = I{r}(yi,t−1)I{s}(yi,t)ωr,s,

Ψ3(s, yi,t,xi,t) = βs,0 +

D∑
d=1

βs,dxi,t,d.

Here Z(xi; θθθ) is a normalizing factor. In order to resolve problems with identifiability, we

fix ζS = 0, ωS,S = 0, and βS,d′ = 0 ∀d′ = 0, . . . , D. We estimate the model parameters via

maximum likelihood.
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4. gradient-tree-CRF: A linear chain CRF where the component of the model specifying com-

patibility between the class label at a time point t and the features at that time is estimated

via gradient tree boosting. This method is similar to both the gradient tree boosting method

of Dietterich et al. [2004] and the BB-Nonpar-CRF method we developed in Chapter 5. It

differs from the method of Dietterich et al. [2004] in two ways. We introduced both of these

changes to their methods to facilitate comparisons with the other approaches in the simula-

tion study. Our first change is that we use maximum likelihood to estimate the parametric

forms for Ψ1 and Ψ2 as in Equation (6.2.1). We only use gradient tree boosting to replace

the estimation of Ψ3. This is less flexible than the implementation of Dietterich et al. [2004];

their method can be viewed as using gradient tree boosting to estimate a more general

non-parametric function combining Ψ1, Ψ2, and Ψ3. The second difference between our

implementation of gradient tree boosting and that of Dietterich et al. [2004] is that we only

allow Ψ3 to depend on the class labels and feature values at a single time point t. Diet-

terich et al. [2004] allow Ψ3 to make use of the feature values occurring within ±w time

points of t. Their approach is more flexible, but means that classification at the beginning

and end of the observation sequence cannot be performed easily. Our implementation al-

lows us to perform classification at all time points, as with the other classification methods

in our comparison. The gradient-tree-CRF method is also similar to the BB-Nonpar-CRF

method we developed in Chapter 5, but does not use a LOP to combine CRF models ob-

tained from bagging the training data set or regularize the regression trees by restricting

the set of variables they can use in node splits. Dietterich et al. [2004] recommend using

internal cross-validation to select the number of boosting iterations, but do not detail an

exact procedure for this. In similar boosting algorithms, Hastie et al. [2009] suggest the

use of a single partition of the data into training and validation subsets, with classification

performance on the validation subset used to select the number of boosting iterations. We

follow this recommendation, using the same procedure we described for the BB-Nonpar-

CRF method in Chapter 5 to select the stopping point. In order to evaluate the extent to

which performance of the method depends on how the data are partitioned when form-

ing these training and validation subsets, we partitioned the training data into 10 disjoint

subsets and fit 10 models, holding out one subset at a time for use as the validation data.

We report the median score and the worst score among the ten resulting model fits un-
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der the headings of gradient-tree-CRF-median and gradient-tree-CRF-worst respectively.

This gives an indication of the central tendency and worst case performance of the method

with respect to how the data are partitioned into training and validation sets.

5. MLR-HMM and RF-HMM: McShane et al. [2013] propose a method for combining a static

classification model that does not account for sequential dependence with a HMM. We

implement this idea using multinomial logistic regression (MLR) or a random forest (RF)

for the static classification model and a first-order HMM.

We examine how the performance of the above classification methods varies as a function of

the following two characteristics of the classification task:

1. whether the distributions for the feature vectors at each time point are relatively simple or

more complex, and

2. the Bayes error rate.

There are many other characteristics of classification problems that likely affect the performance

of the methods under consideration, such as the sample size, the dimension of the observed

feature vectors at each time point, the number of classes, the relative frequencies of each class, the

frequency of mislabeled observations in the training data, and so on. We focus on the complexity

of the emission distributions and the Bayes error rate because we believe they are the most useful

in helping to explain variation in the performance of classification methods when applied to real

physical activity data.

We use a factorial design to study the relationship between the problem characteristics listed

above and the performance of the classification methods. For each combination of factor level

settings in the design, we conduct 50 simulations with training and test data sets generated with

parameter values specific to that cell of the design. Each training and test data set is generated

independently, and consists ofN = 50 sequences of length T = 200. We fix the number of classes

to S = 3 and the dimension of the observed feature vectors to D = 50.

For each combination of factor levels, the data (yi,xi) ∈ {1, . . . , S}T ×RD·T , i = 1, . . . , N , are
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generated from a first-order HMM as follows:

p(Yi,1 = s|πππ) = πs for s ∈ S, where 0 ≤ πs ≤ 1 ∀s ∈ S and
∑
s∈S

πs = 1, (6.2.2)

p(Yi,t+1 = yi,t+1|Yi,1:t = yi,1:t;Q) = p(Yi,t+1 = yi,t+1|Yi,t = yi,t;Q)

= qyi,t,yi,t+1 , where Q = [qr,s], 0 ≤ qr,s ≤ 1 ∀r, s ∈ S and
∑
s∈S

qr,s = 1, (6.2.3)

f(xi,t|Yi,t = s) =

Ms∑
m=1

ws,mfs,m(xi,t; θθθs,m), where (6.2.4)

0 ≤ ws,m ≤ 1 ∀m and
Ms∑
m=1

ws,m = 1.

The form of the distribution fs,m(xi,t; θθθs,m) depends on the complexity level of the emission

distributions.

For the parameters governing transitions among the classes, we set

πππ =

(
1

3
,

1

3
,

1

3

)
and

Q =


4
5

1
10

1
10

1
10

4
5

1
10

1
10

1
10

4
5

 .
With these parameter values, the stationary distribution of the Markov chain for the class at each

time point is ( 1
3 ,

1
3 ,

1
3 ).

For the distributions of the observed features we partition the feature vector, which has

dimension D = 50, into several smaller groups and specify the distribution for each of these

groups. We partition the feature vector as follows:

• (Xi,t,1, Xi,t,2, Xi,t,3)′ are dependent on each other, and are independent of all other Xi,t,d,

d ≤ 20.

• (Xi,t,4, Xi,t,5, Xi,t,6)′ are dependent on each other, and are independent of all other Xi,t,d,

d ≤ 20.

• (Xi,t,7, Xi,t,8)′ are dependent on each other, and are independent of all other Xi,t,d, d ≤ 20.

• (Xi,t,9, Xi,t,10)′ are dependent on each other, and are independent of all otherXi,t,d, d ≤ 20.

• (Xi,t,11, . . . , Xi,t,20)′ follow the same distribution as (Xi,t,1, . . . , Xi,t,10)′, but are indepen-

dent of (Xi,t,1, . . . , Xi,t,10)′.
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• (Xi,t,21, . . . , Xi,t,50)′ = A(Xi,t,11, . . . , Xi,t,20)′+ε, where ε ∼ Gaussian(0
¯
, I) andA is a fixed

matrix.

In the cases with simple emission distributions, each smaller group follows a mixture of

Gaussian distributions. Thus, in those cases the data are sampled from the Gaussian-mixt-HMM

model with specified parameter values. In the cases with more complex emission distributions,

we draw each feature from a location family of a Gamma distribution where the location, shape,

and scale parameters are all obtained as a linear combination of the draws for the lower dimen-

sions. We illustrate these distributions for the first 10 dimensions in the cases with low Bayes

error rate in Figures 23 through 30. The distributions for the cases with high Bayes error rate are

similar, but have less separation between the distributions associated with different classes.

We computed three statistics summarizing the performance of the classification methods in

each trial of the simulation study. First, we computed the proportion of time points classified

correctly. This quantity varies between 0 and 1, with 1 indicating that all time points were clas-

sified correctly. Second, we computed the macro F1 score [Sokolova and Lapalme, 2009]. The

macro F1 score is defined as the mean of the F1 scores for each individual class. This statistic

combines information about the precision and recall for all classes. It varies between 0 and 1,

with 1 indicating perfect classification performance. The third summary statistic we computed

is the MSE of the class probability estimates relative to the indicators of the true class labels.

More formally, we define

MSE =

N∑
i=1

Ti∑
t=1

S∑
s=1

{
P̂ (Yi,t = s|xi)− I{s}(yi,t)

}2

/Ti,

where P̂ (Yi,t = s|xi) is the estimated probability that the state at time t is s given the observed

features at all times. This measure is bounded below by 0; a value of 0 indicates that all of the

estimated class probabilities matched the true class memberships exactly.

6.3 Results and Discussion

We now present the results of our simulation study. Figures 31 through 33 display box plots

summarizing the results. As expected, in every case the Bayes-Rule offers the best classification

performance as measured by the proportion of time points classified correctly, the macro F1
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Figure 23. Pairwise contour plots of components 1 through 3 of the observation distribu-
tions used in the simulation study for the case with simple observation distri-
butions and low Bayes error rate.
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Figure 24. Pairwise contour plots of components 4 through 6 of the observation distribu-
tions used in the simulation study for the case with simple observation distri-
butions and low Bayes error rate.
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Figure 25. Pairwise contour plots of components 7 and 8 of the observation distributions
used in the simulation study for the case with simple observation distributions
and low Bayes error rate.
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Figure 26. Pairwise contour plots of components 9 and 10 of the observation distributions
used in the simulation study for the case with simple observation distributions
and low Bayes error rate.
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Figure 27. Pairwise contour plots of components 1 through 3 of the observation distri-
butions used in the simulation study for the case with complex observation
distributions and low Bayes error rate.
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Figure 28. Pairwise contour plots of components 4 through 6 of the observation distri-
butions used in the simulation study for the case with complex observation
distributions and low Bayes error rate.
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Figure 29. Pairwise contour plots of components 7 and 8 of the observation distributions
used in the simulation study for the case with complex observation distribu-
tions and low Bayes error rate.
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Figure 30. Pairwise contour plots of components 9 and 10 of the observation distributions
used in the simulation study for the case with complex observation distribu-
tions and low Bayes error rate.
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score, and the MSE of the estimated class probabilities relative to the true class membership

indicators.

When the data are drawn from the Gaussian-mixt-HMM model as in the cases with simple

observation distributions, the Gaussian-mixt-HMM model offers the best classification perfor-

mance as measured by the proportion of time points classified correctly and the macro F1 score.

The RF-HMM has a lower MSE when the Bayes error rate is high, but the Gaussian-mixt-HMM

still does fairly well by this measure. However, when the emission distribution is more complex,

the Gaussian-mixt-HMM method has close to the worst performance among all of the meth-

ods we have compared. In the case with complex emission distributions and a low Bayes error

rate, only the static RF method has a lower proportion correct or macro F1 score, or a higher

MSE than the Gaussian-mixt-HMM. In the case with complex emission distributions and a high

Bayes error rate, the only alternative method with a higher MSE than the Gaussian-mixt-HMM

is the RF-seq-CRF, and the only method with a lower proportion correct or macro F1 score than

the Gaussian-mixt-HMM is the worst-case performance of the gradient-tree-CRF method with

respect to the partition of the data into training and validation subsets.

Together, these results confirm the general results we discussed the literature review regard-

ing the relative performance of generative methods that specify a joint model for the class labels

and features and discriminative methods that specify a conditional model for the class given the

features. In short, the relative performance of these methods depends on how accurate the joint

model for the class labels and the features specified by the generative model is. When the joint

model is accurate, the generative approach is superior; when the joint model is misspecified, the

discriminative approach is superior. Of course, the picture is a little more complex than this, and

our simulation study has not examined all of the relevant factors. Misspecification is not an all

or nothing property of a model; instead, a model may be misspecified to varying extents. For

instance, it is likely that if the feature emission distributions exhibited only minor departures

from a mixture of Gaussians with a small number of components, the Gaussian-mixt-HMM

would still offer superior performance relative to the CRF-based models. With flexible models

such as a mixture of Gaussians, another important factor is likely the size of the sample relative

to the dimension of the feature vector. If the sample size were large in relation to the dimension,

the Gaussian-mixt-HMM might not suffer as much in settings where the feature emission dis-

tributions are complex, since the method would be able to add more Gaussian components to
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the mixture and thereby model the emission distributions more accurately. We believe that the

settings in our simulation study with complex emission distributions are a reasonably accurate

representation of the conditions that we face with real physical activity data, and indicate that

methods that condition on the accelerometer features may have an advantage over methods that

attempt to model them.

Our simulation study also offers insights into the performance of the static RF method. When

the Bayes error rate is low, so that most time points are classified correctly, the RF method has

the worst classification performance as measured by the proportion of time points classified

correctly and the macro F1 score, and close to the worst performance as measured by the MSE.

However, when the Bayes error rate is large, so that more time points are classified incorrectly,

the RF method actually outperforms several of the dynamic methods and the difference from

the other dynamic methods is reduced. One possible explanation explanation for this behavior

is that when the Bayes error rate is large, we are less certain about the estimated class at each

individual time point. Thus, dynamic methods benefit less from borrowing information about

the class at nearby times. However, even in this case several of the dynamic methods outperform

the RF.

Among the remaining methods, all of which are dynamic models with discriminative esti-

mation of at least some of the model parameters, the RF-HMM consistently achieves the best

classification performance. Performance of the remaining methods is less consistent. For exam-

ple, the RF-CRF method does better than the BB-Nonpar-CRF method in the cases with a high

Bayes error rate, worse than the BB-Nonpar-CRF method in the case with low Bayes error rate

and simple feature emission distributions, and about the same as the BB-Nonpar-CRF method

in the case with low Bayes error rate and complex feature emission distributions.
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Figure 31. Box plots showing the proportion of time points classified correctly in the sim-
ulation study. A separate box plot is displayed for each combination of the
complexity level of the feature emission distributions, the Bayes error rate,
and the classification method. Each point corresponds to a combination of dis-
tribution complexity, Bayes error rate, classification method, and simulation
index.
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Macro F1 Score by Complexity Level of the Feature Emission Distributions
Bayes Error Rate, and Classification Method

Simulation Study

Figure 32. Box plots showing the macro F1 score combining precision and recall across
all three classes in the simulation study. A separate box plot is displayed for
each combination of the complexity level of the feature emission distributions,
the Bayes error rate, and the classification method. Each point corresponds to a
combination of distribution complexity, Bayes error rate, classification method,
and simulation index.
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by Location and Classification Method

Simulation Study

Figure 33. Box plots showing the mean squared error of the estimated class membership
probabilities at each time point relative to the true class memberships in the
simulation study. A separate box plot is displayed for each combination of
the complexity level of the feature emission distributions, the Bayes error rate,
and the classification method. Each point corresponds to a combination of dis-
tribution complexity, Bayes error rate, classification method, and simulation
index.
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C H A P T E R 7

APPLICATIONS TO PHYSICAL ACTIVITY TYPE

CLASSIFICATION

7.1 Introduction

In this Chapter, we apply the classification methods we developed in Chapter 5 and several

competitor methods to classification of physical activity type in the three physical activity data

sets we described in Chapter 3. We discuss our methods in Section 7.2, present the classification

results for each of our three data sets in Sections 7.3 through 7.5, and conclude with a summa-

rizing discussion in Section 7.6.

7.2 Methods

We gave a detailed description of the procedures we used to pre-process the data in Chapter

3. As a reminder, for each of our three data sets, the following factors describe how the data were

gathered and preprocessed:

• accelerometer location: In the study by Mannini et al. [2013], accelerometers were placed

on the subjects’ dominant ankle and wrist. In the study by Sasaki [2013], accelerometers

were placed on the subjects’ dominant ankle, hip, and wrist.

• number of categories: In the data from Mannini et al. [2013], activities are grouped into

4 categories not including transitions; the 12.8 seconds before and after each transition

were discarded. In the data from Sasaki [2013], we have two groupings of activities: one

with 4 classes, and one with 6 classes. The activities that subjects performed are grouped
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into either 3 or 5 “primary” activity categories, plus an additional “transition” category

assigned to windows that included more than one activity type.

Our goal is to understand how classification performance depends on these factors and the clas-

sification method used. We apply the same classification methods we used in the simulation

study of Chapter 6 to classify the subjects’ physical activity type in each time window. These

methods are as follows:

1. BB-Par-CRF

2. BB-Nonpar-CRF

3. RF-CRF

4. RF-seq-CRF

5. RF

6. RF-HMM

7. MLR-HMM

8. Gaussian-mixt-HMM

9. gradient-tree-CRF

10. Par-CRF

In addition, we applied a support vector machine (SVM) to the data from Mannini et al. [2013]

since this is the classifier they used.

The study by Mannini et al. [2013] included N = 33 subjects. The laboratory component of

the study conducted by Sasaki [2013] includedN = 35 subjects, although we have ankle data for

only 34 subjects. The free living component of the study included N = 15 subjects.

For each combination of classifier and the factors describing the data gathering process, we

used a leave-one-subject-out design to gauge the success of the classifier: for each subject, we

train the classification method with the observed data for all of the other subjects and use the

resulting trained model to predict the activity type in each window for the held-out subject.

We summarize these predictions with the same three statistics that we used in the simulation

study: the proportion correct, the macro F1 score, and the mean squared error of the estimated
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class probabilities relative to the labeled class. We do not calculate the MSE statistic for the SVM

method since that method does not directly yield estimates of the class membership probablities.

The gradient-tree-CRF method uses a partition of the observation sequences into a training

set and a validation set used to select the number of boosting iterations. As in the simulation

study, we partitioned the training data into 10 disjoint subsets and fit 10 models, holding out

one subset at a time for use as the validation data in the boosting step. This partitioning in the

model estimation process occurs after the first stage of partitioning for the leave one subject out

cross validation used to evaluate the model performance. We report the median score and the

worst score among the ten resulting model fits under the headings of gradient-tree-CRF-median

and gradient-tree-CRF-worst respectively. This gives an indication of the central tendency and

worst case performance of the method with respect to how the data are partitioned into training

and validation sets.

7.3 Mannini et al. Data

We begin with a discussion of plots summarizing the results of the application to the data

from Mannini et al. [2013] before turning to a description using linear mixed effects models. Fig-

ures 34 through 36 display box plots summarizing the results. We can draw several conclusions

from these plots. First, we see that all of the classification methods perform better when the

accelerometer is placed on the ankle than when it is on the wrist. Second, we can see that when

the accelerometer is placed on the ankle, the static RF and SVM models do not perform as well

as the models that account for temporal dependence. It is difficult to distinguish much of a dif-

ference between the performance of the remaining models based on the results from the ankle

data. When the accelereometer is on the wrist, the RF, SVM, and MLR-HMM models do not

perform as well as the other models. It also seems that the dynamic methods based on random

forests, RF-CRF, RF-seq-CRF, and RF-HMM, offer slightly better performance than the other

dynamic models. The performance of the gradient-tree-CRF method varies with the choice of

which observation sequences are included in the training and validation sets; this effect is par-

ticularly strong when using the wrist data. The median performance level is similar to the other

dynamic methods, but the worst case performance is worse. All of these findings are consistent

whether we look at the proportion correct, the macro F1 score, or the MSE.
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Proportion Correct by Accelerometer Location and Classification Method

Mannini Data

●● ●●●●●
●● ●●● ●●●●●

●
●●
●●

●●

●●●

●

●●●● ●●● ●●●●●●●●●●● ●●●

●

●
●

●●●●

●

●●●●● ●● ●● ●●

●

●●●●● ●●● ●●● ●●

●

●
●
●●●● ●●

●

●●●●●●● ●●

●

●●●●●●

●

●●

●●

●●● ●

●

●● ●

●

●●
●

●●●
●

●●●
●

●● ●● ●● ●
●

●● ●
● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●
● ●

●

●
●

●● ●

●

●●
●

●

●● ●
● ●

● ●

● ●● ●● ●
●

●● ● ●●● ●●●●●● ●●●● ●●●●●
●

●●●

●
●

●
●

●● ●●● ●●

●
● ●

● ●●
●

● ●
●●

●
●●

● ●

●

●

●
●

●●

●
●

●
●
●

●

●
●

●● ●
●● ●

●●
●●
●●

●●

●

●●
●●

●

●

●

●

●●
● ●●

●
●

●

● ●
●

●●
●●

●

●● ●●● ●● ●●● ●● ●●●●●●●

●

●● ●●● ●●● ●● ● ●

●

●●● ●● ●
●
●● ●● ●●

●
●●●

●●
●●

●●●
●
● ●●● ● ●●

●

●
●

●●●●
●

●● ●●●●

●

●●
●

●●●●●

●

●

●

●●●●●

●

●

●

●

● ●●

●
●●

●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●
●

● ●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●
●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

Ankle

Wrist

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

B
B

−P
ar

−C
R

F
B

B
−N

on
pa

r−
C

R
F

R
F−

C
R

F

R
F−

se
q−

C
R

F
gr

ad
ie

nt
−t

re
e−

C
R

F−
w

or
st

gr
ad

ie
nt

−t
re

e−
C

R
F−

m
ed

ia
n

P
ar

−C
R

F

R
F−

H
M

M

M
LR

−H
M

M R
F

S
V

M
G

au
ss

ia
n−

m
ix

t−
H

M
M

Classification Method

P
ro

po
rt

io
n 

C
or

re
ct

Figure 34. Box plots showing the proportion of windows classified correctly in the data
from Mannini et al. [2013] using a leave-one-subject-out procedure. A separate
box plot is displayed for each combination of accelerometer location and clas-
sification method. Each point corresponds to a combination of accelerometer
location, classification method, and subject.
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Figure 35. Box plots showing the macro F1 score combining precision and recall across
all four physical activity type categories in the data from Mannini et al. [2013],
using a leave-one-subject-out procedure. A separate box plot is displayed for
each combination of accelerometer location and classification method. Each
point corresponds to a combination of accelerometer location, classification
method, and subject.
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Mean Squared Error of Estimated Class Probabilities

by Location and Classification Method

Mannini Data
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Figure 36. Box plots showing the mean squared error of the estimated class membership
probabilities relative to the labeled class memberships in the data from Man-
nini et al. [2013], using a leave-one-subject-out procedure. A separate box plot
is displayed for each combination of accelerometer location and classification
method. Each point corresponds to a combination of accelerometer location,
classification method, and subject.
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Predicted Class

Labeled Class Sedentary Ambulation Cycling Other

Sedentary 2766 38 180 0

Ambulation 68 2173 154 38

Cycling 153 79 800 1

Other 3 43 16 891

Table 8. Confusion matrix for the BB-Par-CRF classification method applied to the wrist
data from Mannini et al. [2013], all subjects combined.

Predicted Class

Labeled Class Sedentary Ambulation Cycling Other

Sedentary 2779 24 146 35

Ambulation 28 2202 145 58

Cycling 26 27 979 1

Other 9 69 22 853

Table 9. Confusion matrix for the RF-CRF classification method applied to the wrist data
from Mannini et al. [2013], all subjects combined.

Figure 37 displays the proportion correct for just the BB-Par-CRF, RF-CRF, RF, and Gaussian-

mixt-HMM methods with the wrist data. We selected these four methods for the display to give

a representative view of how model performance varies with the subject without overcrowding

the plot. We can see that there is considerable variability in classifier success between subjects.

In general, the methods all do relatively well on the same subjects and relatively poorly on the

same subjects. Overall, the static RF model tends to do worse than the other methods, but no

method achieves a higher proportion of time points classified correctly than the other methods

for every subject.

Tables 8, 9, 10, and 11 show confusion matrices aggregated across all subjects for the BB-Par-

CRF, RF-CRF, RF, and Gaussian-mixt-HMM methods with the wrist data. We show only a few

confusion matrices for the sake of brevity. We can see that for all of the classification methods,

time spent in the Sedentary and Ambulation categories is most likely to be misclassified as Cy-

cling, time in the Cycling category is most likely to be misclassified as Sedentary or Ambulation,
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Proportion Correct by Subject and Classification Method

Wrist Location, Mannini Data
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Figure 37. Proportion of time windows classified correctly by subject in the data from
Mannini et al. [2013], using a leave-one-subject-out procedure. We show these
values for just four classification methods applied to data collected from ac-
celerometers placed at the wrist location.
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Predicted Class

Labeled Class Sedentary Ambulation Cycling Other

Sedentary 2755 25 133 71

Ambulation 63 2193 109 68

Cycling 259 64 683 27

Other 72 83 13 785

Table 10. Confusion matrix for the RF classification method applied to the wrist data from
Mannini et al. [2013], all subjects combined.

Predicted Class

Labeled Class Sedentary Ambulation Cycling Other

Sedentary 2852 26 66 40

Ambulation 69 2088 165 111

Cycling 178 54 790 11

Other 20 30 4 899

Table 11. Confusion matrix for the Gaussian-mixt-HMM classification method applied to
the wrist data from Mannini et al. [2013], all subjects combined.

and time in the Other category is most likely to be misclassified as Ambulation.

We fit the following linear mixed effects model to the classification results:

pc,l,i = βc,l + γi + εc,l,i, where (7.3.1)

γi
i.i.d.∼ N(0, σ2

subj) (7.3.2)

εc,l,i
i.i.d.∼ N(0, σ2

l,i)

Here, pc,l,i is the proportion of windows classified correctly using classifier c and the data gath-

ered with the accelerometer placed at location l on subject i. The parameters βc,l are fixed effects

representing the mean proportion correct for classifier method c and accelerometer location l, γi

are random effects representing subject-specific offsets to the mean proportion correct, and εc,l,i

are error terms with variance specific to the combination of accelerometer location and subject.

The use of a separate mean for each combination of accelerometer location and classifier

method can be justified by the box plots in Figure 34. For example, we can see that an additive

structure for the mean proportion classified correctly is insufficient to capture the fact that the

MLR-HMM method does as well as the other dynamic classification methods with the data

collected at the ankle, but worse than those methods with the data collected at the wrist. The use
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of a subject-specific random effect can be justified by Figure 37, where we saw that the different

classification methods tended to do relatively well or relatively poorly on the same subjects. The

heteroskedastic structure of the error term is clear from the diagnostic plots in Figure 38.

Although we focus our discussion on this model, we also considered several other variations

on the model such as using transformations of the proportion correct as the outcome variable, an

additive structure without interactions for the fixed effects, random effects for the combination of

subject and location, and a heteroskedasticity structure that depended on only the accelerometer

location. We selected this model for discussion because it strikes a balance between parsimony,

faithfulness to the data, and interpretability. However, the qualitative conclusions are similar us-

ing all of these variations on the model, and they match the conclusions we drew from the plots

above. We also considered models for the macro F1 score, which give very similar qualitative

conclusions; we focus on a model for the proportion correct here since it is more interpretable

than the macro F1 score.

Figures 39, 40, 41, and 42 display point and interval estimates for the βc,l parameters and

sets of contrasts between them. We calculated the confidence intervals using the multcomp

package [Hothorn et al., 2008] in R. We caution against a strict interpretation of the confidence

intervals due to the minor departures from normality of the residuals indicated in Figure 38 and

the fact that these are approximate intervals based on asymptotic normality of the parameter

estimates. However, the intervals serve to give a general indication of the level of uncertainty in

our estimates of effect size.

The estimates displayed in Figure 40 give us another view of our earlier observation that

all of the classification methods achieved a higher classification rate when using data from ac-

celerometers placed on the ankle than they did when using data from accelerometers placed on

the wrist. The size of the change in the proportion of windows classified correctly depends on

the classifier being used, but the point estimates for these differences range from about 0.03 to

0.13. This is equivalent to an improvement of between about 30 minutes and 2 hours if we ex-

trapolate to a 16 hour day while maintaining the same composition of the relative amount of

time spent in each physical activity category.

The estimates in Figure 41 show that when applied to the ankle data, all of the dynamic meth-

ods performed better than the static RF and SVM classifiers, but there is not much of a difference

between the dynamic methods. The estimated gain from using a dynamic classifier instead of a
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Residual Diagnostic Plots for Model (7.3.1), Mannini Data
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(a) Residuals vs. fitted values.
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(b) Standardized residuals vs. fitted values.
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(c) Marginal density estimates for residuals.
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Figure 38. Diagnostic plots for model (7.3.1).
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Estimated Average Proportion Correct by

Accelerometer Location and Classification Method

Mannini Data
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Figure 39. Point and interval estimates for the fixed effects parameters in model (7.3.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 39, 40, 41, and 42.
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Estimated Change in Proportion Correct from

Placing the Accelerometer on the Ankle Instead of the Wrist

for each Classification Method, Mannini Data
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Figure 40. Point and interval estimates for the difference in performance between the an-
kle and wrist accelerometer locations for each classification method, based on
model (7.3.1). The inner marks indicate endpoints for individual 95% confi-
dence intervals; the outer marks indicate endpoints for familywise 95% confi-
dence intervals for all intervals in Figures 39, 40, 41, and 42.
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Estimated Change in Proportion Correct from

Changing the Classification Method

Ankle Location, Mannini Data
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Figure 41. Point and interval estimates for the difference in performance between each
pair of classification methods using data from an accelerometer placed at the
ankle, based on model (7.3.1). The inner marks indicate endpoints for individ-
ual 95% confidence intervals; the outer marks indicate endpoints for family-
wise 95% confidence intervals for all intervals in Figures 39, 40, 41, and 42.

139



Estimated Change in Proportion Correct from

Changing the Classification Method

Wrist Location, Mannini Data
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Figure 42. Point and interval estimates for the difference in performance between each
pair of classification methods using data from an accelerometer placed at the
wrist, based on model (7.3.1). The inner marks indicate endpoints for individ-
ual 95% confidence intervals; the outer marks indicate endpoints for family-
wise 95% confidence intervals for all intervals in Figures 39, 40, 41, and 42.
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static classifier is an increase of about 0.02 to 0.03 in the proportion correct, or roughly 20 to 30

minutes in a 16 hour day. When the gradient-tree-CRF method is used with data from the ankle,

the performance of the method is fairly stable with respect to how the data are partitioned into

training and validation sequences. The estimated average proportion correct achieved in the

worst case is only smaller than the median proportion correct by about 0.006, or about 6 minutes

in a 16 hour day.

The estimates in Figure 42 indicate that on the wrist, where classification is more difficult,

changing the classification method used can lead to larger gains in classification performance.

Here again the dynamic classification methods tend to outperform the static methods, with the

exception of the dynamic MLR-HMM method. The estimated gain in the proportion of windows

classified correctly from using a dynamic method based on random forests such as the RF-HMM

or RF-CRF methods instead of a static classifier is in the range of about 0.04 to 0.11, which is on

the order of the increases that can be achieved by placing the accelerometer on the ankle instead

of the wrist. Using the wrist data, the performance of the gradient-tree-CRF method is more

sensitive to how the data are partitioned into training and validation sets. Here, the estimated

difference between the median proportion correct and the worst case proportion correct is about

0.05, or about 50 minutes in a 16 hour day.

One possible criticism of the results we have presented in this Section is that the dynamic

models may allow for more complex temporal dependencies than are warranted by the data.

With data collected in the laboratory, the duration of each activity and the transitions between

different activity types were determined by researchers, not the subjects. Although the sequences

of activities performed were not exactly the same for all subjects, they were similar. Thus, meth-

ods that model the transition probabilities between different activity types may have artificially

high classification rates since they share information across subjects about the order of activities.

In order to address this criticism, we considered a reduced parameterization of the dynamic

models with only a single parameter governing transitions in activity types. For the Gaussian-

mixt-HMM model, we used a transition matrix Q with the following form:

Q = [qr,s], where

qr,s =


q if r = s

(1− q)/(S − 1) if r 6= s
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In words, the probability that the subject’s activity type is the same in window t + 1 as it is in

window t is q, and this probability is the same for all activity types. Also, the probability of

transitioning to a different activity type is the same for all pairs of activity types, and is equal to

(1 − q)/(S − 1). We also used the corresponding one-parameter parameterization of Ψ2 in the

CRF specifications of Equations (5.2.1), (5.3.1), (5.4.1), and (6.2.1).

We display the results obtained using these reduced model parameterizations in Figures 43

through 48. We can see that with the reduced parameterizations, the RF and SVM methods are

no longer the worst-performing methods; instead, they now outperform a few of the dynamic

models. However, the RF-CRF, RF-seq-CRF, and RF-HMM methods, which can be interpreted

as methods that add sequential dependence structures to the RF, still outperform the RF and

SVM by quite a bit. Thus, it appears that adding even a minimal model for sequential depen-

dence to the static RF model improves its classification performance. In practice, we would

expect the performance of the dynamic models to be closer to the performance under the full pa-

rameterization than to the performance with the reduced parameterization we have considered

here. This is because some activity types do occur with higher frequency than others, but this is

not captured by the reduced parameterization.

7.4 Sasaki Laboratory Data

Again, we begin with a discussion of plots summarizing the results and present a linear

mixed effects model for these results later in the Section. Figures 49, 50, and 51 display box plots

summarizing the results of the application to the laboratory data from Sasaki [2013]. We can

draw several conclusions from these plots. First, we see that classification was more difficult

with 6 classes than with 4. We can also see that the BB-Par-CRF and BB-Nonpar-CRF methods

offer the most consistently high performance among the classification methods we have com-

pared. The ParCRF, RFHMM, and MLRHMM methods do well overall, but suffer from lower

performance with 6 classes and the hip data. The RFCRF and RFseqCRF methods also tend to

do well, but suffer from large drops in performance with 6 classes and the accelerometer placed

on the ankle or hip. The median performance of the gradient-tree-CRF method with respect to

the partitioning of the data into training and validation sets is quite good, but the worst case per-

formance is much worse than the other methods with 6 classes and the ankle data. The RF and
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Proportion Correct by Accelerometer Location and Classification Method

Reduced Parameterization, Mannini Data
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Figure 43. Box plots showing the proportion of windows classified correctly with a re-
duced parameterization for the dynamic methods in the data from Mannini
et al. [2013] using a leave-one-subject-out procedure. A separate box plot is
displayed for each combination of accelerometer location and classification
method. Each point corresponds to a combination of accelerometer location,
classification method, and subject.
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Figure 44. Box plots showing the macro F1 score combining precision and recall across
all four physical activity type categories with a reduced parameterization for
the dynamic methods in the data from Mannini et al. [2013], using a leave-one-
subject-out procedure. A separate box plot is displayed for each combination
of accelerometer location and classification method. Each point corresponds to
a combination of accelerometer location, classification method, and subject.
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Mean Squared Error of Estimated Class Probabilities

by Location and Classification Method

Reduced Parameterization, Mannini Data
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Figure 45. Box plots showing the mean squared error of the estimated class membership
probabilities relative to the labeled class memberships with a reduced parame-
terization for the dynamic methods in the data from Mannini et al. [2013], using
a leave-one-subject-out procedure. A separate box plot is displayed for each
combination of accelerometer location and classification method. Each point
corresponds to a combination of accelerometer location, classification method,
and subject.
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Estimated Average Proportion Correct by

Accelerometer Location and Classification Method

Reduced Parameterization, Mannini Data
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Figure 46. Point and interval estimates for the fixed effects parameters in model (7.3.1)
for the classification results with a reduced parameterization for the dynamic
methods. The inner marks indicate endpoints for individual 95% confidence
intervals; the outer marks indicate endpoints for familywise 95% confidence
intervals for all intervals in Figures 46, 47, and 48.
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Estimated Change in Proportion Correct from

Changing the Classification Method

Ankle Location, Reduced Parameterization, Mannini Data
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Figure 47. Point and interval estimates for the difference in performance between each
pair of classification methods using data from an accelerometer placed at the
ankle, based on model (7.3.1) for the classification results with a reduced pa-
rameterization for the dynamic methods. The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 46, 47, and
48.
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Estimated Change in Proportion Correct from

Changing the Classification Method

Wrist Location, Reduced Parameterization, Mannini Data
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Figure 48. Point and interval estimates for the difference in performance between each
pair of classification methods using data from an accelerometer placed at the
wrist, based on model (7.3.1) for the classification results with a reduced pa-
rameterization for the dynamic methods. The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 46, 47, and
48.
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Gaussian-mixt-HMM methods consistently underperform relative to the other methods with

all accelerometer locations and classification schemes. All of these results are consistent whether

we look at the proportion of windows classified correctly, the macro F1 score, or the MSE of the

estimated class probabilities.

Figure 52 displays the proportion correct for just the BB-Par-CRF, RF-CRF, RF, and Gaussian-

mixt-HMM methods with the wrist data. The story is similar to what we saw with the data from

Mannini et al. [2013]: there is considerable variation in classifier performance across subjects,

and no classifier achieves the highest proportion of windows classified correctly for all subjects.

However, the BB-Par-CRF method is consistently among the best of these four methods.

Tables 12, 13, 14, and 15 show confusion matrices for these results aggregated across all sub-

jects. We can see that the BB-Par-CRF method performs very well, and the majority of the errors

involve the Transition class. The RF-CRF method also does fairly well for most classes, but it

mislabels a large number of windows where the true class is Moving Intermittently as Recre-

ational. In the laboratory data, the Moving Intermittently class was formed by merging the

Dusting, Gardening, Vacuuming, Self-Care, Laundry, and Organizing the Room sub-categories.

The windows that were labeled as Moving Intermittently and misclassified as Recreational ac-

tivity were distributed fairly evenly across these sub-categories. The confusion matrices for the

RF and Gaussian-mixt-HMM methods indicate that those methods had trouble distinguishing

among the Moving Intermittently, Ambulation, and Recreational categories.

We fit the following linear mixed effects model to the classification results:

pc,l,k,i = βc,l,k + γi + εc,l,k,i, where (7.4.1)

γi ∼ N(0, σ2
subj) (7.4.2)

εc,l,k,i ∼ N(0, σ2
l,i)

Here, pc,l,k,i is the proportion of windows classified correctly using classifier c and the data

gathered with the accelerometer placed at location l on subject i when there were k classes. The

parameters βc,l,k are fixed effects representing the mean proportion correct for accelerometer

location l and classifier method c with k classes, the γi are random effects representing subject-

specific offsets to the mean proportion correct, and εc,l,k,i is an error term with variance specific

to the combination of accelerometer location and subject. This model is similar to the one we

used for the results from Mannini et al. [2013]; the only difference is that we now have the index
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Figure 49. Box plots showing the proportion of windows classified correctly in the lab-
oratory data from Sasaki [2013] using a leave-one-subject-out procedure. A
separate box plot is displayed for each combination of accelerometer location,
classification method, and number of classes. Each point corresponds to a com-
bination of accelerometer location, classification method, number of classes,
and subject.
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Figure 50. Box plots showing the macro F1 score combining precision and recall across
all physical activity type categories in the laboratory data from Sasaki [2013],
using a leave-one-subject-out procedure. A separate box plot is displayed for
each combination of accelerometer location, classification method, and number
of classes. Each point corresponds to a combination of accelerometer location,
classification method, number of classes, and subject.
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Mean Squared Error of Estimated Class Probabilities
by Accelerometer Location, Number of Classes, and Classification Method

Sasaki Lab Data

Figure 51. Box plots showing the mean squared error of the estimated classification prob-
abilities relativ to the labeled class memberships in the laboratory data from
Sasaki [2013], using a leave-one-subject-out procedure. A separate box plot
is displayed for each combination of accelerometer location, classification
method, and number of classes. Each point corresponds to a combination of
accelerometer location, classification method, number of classes, and subject.
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Proportion Correct by Subject and Classification Method

Hip Location, 6 Classes, Sasaki Lab Data
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Figure 52. Proportion of time windows classified correctly by subject in the data from
Sasaki [2013] with 6 classes, using a leave-one-subject-out procedure. We show
these values for just four classification methods applied to data collected from
accelerometers placed at the hip.
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Predicted Class

Labeled
Class Se
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Sedentary 932 1 0 0 0 5

Standing 6 28 0 0 0 0

Moving
Intermittently 9 0 2420 0 0 4

Ambulation 0 0 0 1624 0 4

Recreational 0 1 0 3 794 9

Transition 8 0 8 11 0 144

Table 12. Confusion matrix for the BB-Par-CRF classification method applied to the lab
hip data from Sasaki [2013] with 6 classes, all subjects combined.
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Sedentary 858 1 0 2 66 11

Standing 21 12 0 0 1 0

Moving
Intermittently 15 1 1398 0 1008 11

Ambulation 0 0 1 1612 2 13

Recreational 0 0 69 0 729 9

Transition 30 0 13 9 16 103

Table 13. Confusion matrix for the RF-CRF classification method applied to the lab hip
data from Sasaki [2013] with 6 classes, all subjects combined.
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Predicted Class

Labeled
Class Se
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Sedentary 857 6 41 0 34 0

Standing 28 4 0 0 2 0

Moving
Intermittently 61 1 2140 33 197 1

Ambulation 0 0 81 1540 7 0

Recreational 46 1 409 5 338 8

Transition 4 0 91 9 25 42

Table 14. Confusion matrix for the RF classification method applied to the lab hip data
from Sasaki [2013] with 6 classes, all subjects combined.

Predicted Class

Labeled
Class Se
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Sedentary 855 0 43 0 0 40

Standing 32 0 2 0 0 0

Moving
Intermittently 79 0 2179 15 0 160

Ambulation 0 0 198 1128 166 136

Recreational 42 0 191 0 529 45

Transition 4 0 23 3 7 134

Table 15. Confusion matrix for the Gaussian-mixt-HMM classification method applied to
the lab hip data from Sasaki [2013] with 6 classes, all subjects combined.
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k representing the number of classes used.

The considerations in formulating this model are similar to those we discussed in Section

7.3. We omit the diagnostic residual plots; they show similar issues to what we saw in the

earlier model, with the distribution of residuals exhibiting a heavy left tail with several low

outliers. As before, we view this model as a descriptive tool only; we do not advocate for a strict

interpretation of the confidence intervals obtained from it. The qualitative results were the same

with a range of similar models for both the proportion correct and the macro F1 score.

We display point and interval estimates for the average proportion correct for each combi-

nation of classifier, accelerometer location, and number of classes, along with sets of contrasts

between these quantities in Figures 53, 54, 55, 56, 57, and 58. These estimates confirm the obser-

vations we made from the box plots above.

The estimates in Figure 54 show that with four classes, there is essentially no difference in

the classification rates achieved with data from the ankle, hip, or wrist. With six classes, the

performance of some of the methods starts to degrade when the accelerometer is on the hip.

This is most prominent with the RF-CRF and RF-seq-CRF methods, but also affects the RF and

Gaussian-mixt-HMM methods.

Figures 55, 56, and 57 show that with four classes, the RF and to a lesser extent the Gaussian-

mixt-HMM model tend to underperform relative to the other classification methods. This is also

true for the case when there are six classes, except for the RF-CRF and RF-seq-CRF methods,

which do not do well in that case. Point estimates for the gain in the proportion correct from

using a dynamic classifier instead of a static RF vary from about 0.02 to 0.13 depending on the

classifier used, the accelerometer location, and the number of classes. This translates to roughly

20 minutes to 2 hours if we extrapolate to a 16 hour day while maintaining the relative amounts

of time spent in each activity class. The estimated gain from using a dynamic model that con-

ditions on the accelerometer features instead of the Gaussian-mixt-HMM is smaller, but ranges

from about 0.01 to 0.1, or about 10 to 100 minutes in a 16 hour day.

7.5 Sasaki Free Living Data

Again, we begin with a discussion of plots summarizing the results before discussing a linear

mixed effects model describing the results. Figures 59, 60, and 61 display box plots summarizing
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Estimated Proportion Correct for Each Combination of

Classifier, Accelerometer Location, and Number of Classes

Sasaki Lab Data

4 Classes 6 Classes
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Figure 53. Point and interval estimates for the fixed effects parameters in model (7.4.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 53, 54, 55, 56, 57, and 58.
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Estimated Improvement in Proportion Correct

From Changing the Accelerometer Location

Sasaki Lab Data

4 Classes 6 Classes
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Figure 54. Point and interval estimates for the difference in performance between each
pair of accelerometer locations, holding fixed the classification method and the
number of classes. The confidence intervals are based on model (7.4.1). The
inner marks indicate endpoints for individual 95% confidence intervals; the
outer marks indicate endpoints for familywise 95% confidence intervals for all
intervals in Figures 53, 54, 55, 56, 57, and 58.
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Estimated Improvement in Proportion Correct

From Using One Classifier Instead of Another

Ankle Location, Sasaki Lab Data

4 Classes 6 Classes
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Figure 55. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the ankle.
The estimates are based on model (7.4.1). The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 53, 54, 55,
56, 57, and 58.
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Estimated Improvement in Proportion Correct

From Using One Classifier Instead of Another

Hip Location, Sasaki Lab Data

4 Classes 6 Classes
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Figure 56. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the hip. The
estimates are based on model (7.4.1). The inner marks indicate endpoints for
individual 95% confidence intervals; the outer marks indicate endpoints for
familywise 95% confidence intervals for all intervals in Figures 53, 54, 55, 56,
57, and 58.
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Estimated Improvement in Proportion Correct

From Using One Classifier Instead of Another

 Wrist Location, Sasaki Lab Data

4 Classes 6 Classes
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Figure 57. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the wrist.
The estimates are based on model (7.4.1). The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 53, 54, 55,
56, 57, and 58.
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Estimated Improvement in Proportion Correct

From Using 4 Classes Instead of 6

Sasaki Lab Data
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Figure 58. Point and interval estimates for the difference in the average proportion of
windows classified correctly between the cases where 4 and 6 classes are used.
The estimates are based on model (7.4.1). The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 53, 54, 55,
56, 57, and 58.
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the results of the application to the free living data from Sasaki [2013]. Our first observation is

that performance is much worse than it was with the laboratory data. This is consistent with

previous work that has found classification to be more difficult in the free living setting than in

the laboratory setting. We can also see that classification is more difficult with the data from the

wrist than with data from the ankle or hip. This effect is more pronounced with 6 classes than

with 4.

As with the previous data sets, there is a great deal of overlap in the box plots within each

combination of the accelerometer location and the number of classes. The Gaussian-mixt-HMM

method consistently achieves a slightly lower proportion correct than the other methods, as does

the worst-case performance of the gradient-tree-CRF method. The Par-CRF method also suffers

from poor performance with the wrist data and 6 classes. From the plots of the proportion of

time points classified correctly and the macro F1 score, it also appears that the RF method may

offer slightly lower performance than the best of the other methods when there are 6 classes.

However, the plot of MSE values offers an interesting counterpoint to this observation: the RF

method gives a smaller range of MSE values that are roughly in line with the best of the other

methods. Thus, if our objective is to minimize the worst-case difference between the estimated

class probabilities and the true class labels, it appears that the RF method would be a reasonable

choice.

Figure 63 displays the proportion correct for just the BB-Par-CRF, RF-CRF, RF, and Gaussian-

mixt-HMM methods with the free living wrist data. We observe similar patterns to what we saw

with the laboratory data and the data from Mannini et al. [2013], with a great deal of variability

in the proportion correct achieved across different subjects.

Tables 16, 17, 18, and 19 show confusion matrices for these data aggregated across all subjects.

Recreational activity was consistently difficult to distinguish from the other activity types. One

explanation for this is simply that the free living data include a limited number of observations

in this category. Of the 15 subjects who participated in the free living component of the study,

only three engaged in activity that was categorized as Recreational, with a combined total of

about 2 hours and 15 minutes spent in this activity category. Since we used a leave-one-subject-

out procedure to train the models and some of the estimation procedures further subdivide the

data into training and validation sets, the number of observations in the Recreational category

used for estimating the model parameters could be quite small. Further, the Recreational cate-
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4 Classes 6 Classes
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Figure 59. Box plots showing the proportion of windows classified correctly in the free
living data from Sasaki [2013] using a leave-one-subject-out procedure. A sep-
arate box plot is displayed for each combination of accelerometer location, clas-
sification method, and number of classes. Each point corresponds to a combi-
nation of accelerometer location, classification method, number of classes, and
subject.

164



4 Classes 6 Classes

●
●

●
●

●

●●
●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●
●

●
●
●

●

●●

●

●

●
●

●
●●●
●

●●
●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
● ●●

●

●

●
● ●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●●

●

●●

●

●
●

●

●●

●●●

●

●
●

●●

●

●

●

●●
●●

●
●

●●●●

●
●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●
●●
●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●
●

●

●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●●●●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●●

●

●
● ●●

●●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●●
●● ●

●
●

● ●●
●● ●

●

●● ●

●
●

●

●●
●

●
●

● ●
● ●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●
●

●

●
●
●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●
● ●● ●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●
●●●

●

●

●

●
●●●

●

●

●

●

●
●●
●

●●

●
●

●
●

●
●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●
●●
●●●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●●●●

●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●●

●

●●●●

●
●

●

●●●
●

●

●
●

●

●●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
nkle

H
ip

W
rist

B
B

−P
ar

−C
R

F
B

B
−N

on
pa

r−
C

R
F

R
F−

C
R

F
R

F−
se

q−
C

R
F

gr
ad

ie
nt

−t
re

e−
C

R
F−

w
or

st

gr
ad

ie
nt

−t
re

e−
C

R
F−

m
ed

ia
n

P
ar

−C
R

F
R

F−
H

M
M

M
LR

−H
M

M R
F

G
au

ss
ia

n−
m

ix
t−

H
M

M
B

B
−P

ar
−C

R
F

B
B

−N
on

pa
r−

C
R

F
R

F−
C

R
F

R
F−

se
q−

C
R

F

gr
ad

ie
nt

−t
re

e−
C

R
F−

w
or

st

gr
ad

ie
nt

−t
re

e−
C

R
F−

m
ed

ia
n

P
ar

−C
R

F
R

F−
H

M
M

M
LR

−H
M

M R
F

G
au

ss
ia

n−
m

ix
t−

H
M

M

Classification Method

M
ac

ro
 F

1 
S

co
re

Macro F1 Score by Accelerometer Location
Number of Classes, and Classification Method

Sasaki Free Living Data

Figure 60. Box plots showing the macro F1 score combining precision and recall across all
four physical activity type categories in the free living data from Sasaki [2013],
using a leave-one-subject-out procedure. A separate box plot is displayed for
each combination of accelerometer location, classification method, and number
of classes. Each point corresponds to a combination of accelerometer location,
classification method, number of classes, and subject.
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Figure 61. Box plots showing the mean squared error of the estimated classification prob-
abilities relative to the labeled class memberships in the free living data
from Sasaki [2013], using a leave-one-subject-out procedure. A separate box
plot is displayed for each combination of accelerometer location, classification
method, and number of classes. Each point corresponds to a combination of
accelerometer location, classification method, number of classes, and subject.

166



●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

Wrist

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subject

P
ro

po
rt

io
n 

C
or

re
ct

Classification Method

● BB−Par−CRF

RF−CRF

RF

Gaussian−mixt−HMM

Proportion Correct by Subject and Classification Method

Wrist Location, 6 Classes, Sasaki Free Living Data

Figure 62. Proportion of time windows classified correctly by subject in the free living
data from Sasaki [2013] with 6 classes, using a leave-one-subject-out proce-
dure. We show these values for just four classification methods applied to data
collected from accelerometers placed at the wrist location.
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gory was formed by combining the Aerobic Exercise, Resistance Exercise, and Balance Exercise

sub-categories. These sub-classes entail fairly different types of movement resulting in different

patterns in the accelerometer signal. We believe that classification rates for this category could

be improved with more training data.

For all of the classification methods, the Sedentary, Standing, and Moving Intermittently cat-

egories are often confused for each other. The Sedentary and Standing categories have proven to

be difficult to distinguish using accelerometer data in previous studies as well, simply because

these activity types can both entail limited movement and similar accelerometer orientations.

However, we also believe that some of these disagreements between the labeled class and the

estimated class may be due to mislabeled windows. Figure 63 presents some evidence for this.

The figure shows the labeled and estimated classes along with the vector magnitude from the

accelerometer placed at the ankle for subject 8 in the free living component of the study. In

this figure, many windows that are labeled as Moving Intermittently are classified as Sedentary,

Standing, Locomotion, or Transition. We cannot be sure of what the subject was doing during

these time spans, but the predicted classes seem plausible in many cases. For example, there are

several periods of length ranging from about 30 seconds to several minutes where the accelerom-

eter recorded minimal movement at the ankle and the labeled class was Moving Intermittently.

It seems possible that the subject was sedentary or standing still during these time periods. Sim-

ilarly, Moving Intermittently could entail short periods of walking. Thus, it could be that for

some of the windows when the labeled class if Moving Intermittently but the predicted class is

Locomotion, the predicted class is an accurate description of the subject’s behavior.

We fit the following linear mixed effects model to the classification results:

pc,l,k,i = βc,l,k + γi + εc,l,k,i, where (7.5.1)

γi ∼ N(0, σ2
subj) (7.5.2)

εc,l,k,i ∼ N(0, σ2
l,i)

This is the same model that we employed for the laboratory data. As with the models we dis-

cussed in the earlier Sections, diagnostic residual plots show that the distribution of residuals

has a heavy left tail with several low outliers. Again, we primarily view this model as a descrip-

tive tool to complement the box plots above, and the qualitative results were the same with a

range of similar models for both the proportion correct and the macro F1 score.
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Sedentary 1696 408 189 0 0 4

Standing 262 685 493 3 0 11

Moving
Intermittently 79 224 1115 52 0 54

Ambulation 0 2 256 1298 0 14

Recreational 154 233 57 168 0 32

Transition 64 154 410 94 0 98

Table 16. Confusion matrix for the BB-Par-CRF classification method applied to the free
living hip data from Sasaki [2013] with 6 classes, all subjects combined.
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Sedentary 1597 528 108 0 18 46

Standing 290 637 379 0 52 96

Moving
Intermittently 119 148 1025 26 20 186

Ambulation 2 3 230 1202 16 117

Recreational 84 165 103 142 95 55

Transition 77 63 338 63 12 267

Table 17. Confusion matrix for the RF-CRF classification method applied to the free liv-
ing hip data from Sasaki [2013] with 6 classes, all subjects combined.
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Predicted Class

Labeled
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Sedentary 1614 577 55 0 33 18

Standing 332 731 249 0 108 34

Moving
Intermittently 185 278 755 69 65 172

Ambulation 6 3 144 1247 30 140

Recreational 91 170 92 144 119 28

Transition 94 110 358 93 33 132

Table 18. Confusion matrix for the RF classification method applied to the free living hip
data from Sasaki [2013] with 6 classes, all subjects combined.

Predicted Class
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Class Se
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Sedentary 1608 444 44 0 42 159

Standing 281 619 189 1 118 246

Moving
Intermittently 97 254 410 95 49 619

Ambulation 2 0 143 999 1 425

Recreational 115 135 31 108 113 142

Transition 49 89 124 95 5 458

Table 19. Confusion matrix for the Gaussian-mixt-HMM classification method applied to
the free living hip data from Sasaki [2013] with 6 classes, all subjects combined.
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Ankle Location, 6 Classes, Subject 8, Sasaki Free Living Data

Time (minutes)

V
ec

to
r 

M
ag

ni
tu

de
 (

g)

0
2
4
6
8

0 5 10 15 20

0
2
4
6
8

20 25 30 35 40

0
2
4
6
8

40 45 50 55 60

0
2
4
6
8

60 65 70 75 80

0
2
4
6
8

80 85 90 95 100

0
2
4
6
8

100 105 110 115 120

Figure 63. A plot showing the labeled class and the predicted class from the RF-CRF
method for Subject 8 in the free living data from Sasaki [2013], using the an-
kle data with 6 classes. The background color indicates the labeled class in
the bottom half of each panel and the predicted class in the top half of each
panel. The black line indicates the vector magnitude of the accelerometer sig-
nal. No windows were classified as Recreational activity by either the direct
observation labels or the classifier’s predictions for this subject.
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We display point and interval estimates for the average proportion correct for each combi-

nation of classifier, accelerometer location, and number of classes, along with sets of contrasts

between these quantities in Figures 64, 65, 66, 67, 68, and 69. These estimates confirm the obser-

vations we made from the box plots above.

Among all of the factors considered here, the largest boost in the proportion correct is achieved

by using data from an accelerometer placed on the ankle or hip instead of an accelerometer

placed on the wrist. With 6 classes, point estimates for the increase in the proportion correct

from changing the accelerometer location range from about 0.04 to 0.21, or between about 40

minutes and 3 and a half hours in a 16 hour day, depending on the classification method used.

The gains are smaller if we consider only 4 classes.

As we saw from the box plots, the Par-CRF method had poor classification performance

when using the wrist data and 6 classes. This is reflected in the estimates displayed in Figures

66, 67, and 68 comparing the classification methods to each other. However, the other dynamic

discriminative methods consistently yield small improvements in performance relative to the

Gaussian-mixt-HMM method for all combinations of the accelerometer location and number of

classes, and relative to the RF method in the cases with 6 classes. The point estimates for these

improvements range from about 0.01 to about 0.08; these gains correspond to as much as about

75 minutes if we extrapolate to a 16 hour day.

7.6 Discussion

In this Section we tie together the results of the applications to classification of physical ac-

tivity type in our three data sets. There are many factors related to how the data are collected,

preprocessed, and analyzed that can each affect the performance of the resulting classifier. In

this work, we have focused on the effects that the data collection setting (i.e., in the laboratory

vs. free living), the accelerometer location, the number of classes, and the model and estimation

strategy have on classification performance.

As in previous studies, we found that classification performance decreased noticeably when

we used free living data instead of data collected in the laboratory. For instance, with 6 classes

and data from accelerometers placed at the ankle, the overall average proportion correct achieved

by the most successful methods dropped from about 0.97 in the lab data from Sasaki [2013] to

172



4 Classes 6 Classes

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

gradient−tree−CRF−worst

Par−CRF

Gaussian−mixt−HMM

RF

gradient−tree−CRF−median

BB−Par−CRF

BB−Nonpar−CRF

RF−CRF

MLR−HMM

RF−seq−CRF

RF−HMM

gradient−tree−CRF−worst

Par−CRF

Gaussian−mixt−HMM

RF

gradient−tree−CRF−median

BB−Par−CRF

BB−Nonpar−CRF

RF−CRF

MLR−HMM

RF−seq−CRF

RF−HMM

gradient−tree−CRF−worst

Par−CRF

Gaussian−mixt−HMM

RF

gradient−tree−CRF−median

BB−Par−CRF

BB−Nonpar−CRF

RF−CRF

MLR−HMM

RF−seq−CRF

RF−HMM

A
nkle

H
ip

W
rist

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Estimated Average Proportion Correct

C
la

ss
ifi

ca
tio

n 
M

et
ho

d

Estimated Proportion Correct for Each Combination of

Classifier, Accelerometer Location, and Number of Classes

Sasaki Free Living Data

Figure 64. Point and interval estimates for the fixed effects parameters in model (7.5.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 64, 65, 66, 67, 68, and 69.
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Figure 65. Point and interval estimates for the difference in performance between each
pair of accelerometer locations, holding fixed the classification method and the
number of classes. The confidence intervals are based on model (??). The inner
marks indicate endpoints for individual 95% confidence intervals; the outer
marks indicate endpoints for familywise 95% confidence intervals for all in-
tervals in Figures 64, 65, 66, 67, 68, and 69.
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Figure 66. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the ankle.
The estimates are based on model (7.5.1). The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 64, 65, 66,
67, 68, and 69.
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Figure 67. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the hip. The
estimates are based on model (7.5.1). The inner marks indicate endpoints for
individual 95% confidence intervals; the outer marks indicate endpoints for
familywise 95% confidence intervals for all intervals in Figures 64, 65, 66, 67,
68, and 69.
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 Wrist Location, Sasaki Free Living Data

Figure 68. Point and interval estimates for the difference in average proportion of win-
dows classified correctly for each pair of methods using data from the wrist.
The estimates are based on model (7.5.1). The inner marks indicate endpoints
for individual 95% confidence intervals; the outer marks indicate endpoints
for familywise 95% confidence intervals for all intervals in Figures 64, 65, 66,
67, 68, and 69.
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Figure 69. Point and interval estimates for the difference in performance between the
cases where 4 and 6 classes are used. The estimates are based on model (7.5.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 64, 65, 66, 67, 68, and 69.
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about 0.7 in the free living data. This drop in performance may be partially due to the fact that

the classification problem is fundamentally more challenging in the free living setting and par-

tially due to limitations of the particular free living data set we are working with. We will discuss

these issues in more depth in Chapter 9.

The three new estimation procedures for CRFs that we introduced in Chapter 5 had vary-

ing levels of success. The BB-Par-CRF method was among the best performing methods in all

cases. It was matched by the Par-CRF method, which uses a much simpler and faster maximum

likelihood estimation procedure, in every case but two: the lab hip data from Sasaki [2013] with

6 classes and the free living wrist data from Sasaki [2013] with 6 classes. In the first case, the

estimated difference in the average proportion correct achieved by the two methods was about

0.04; in the second case, it was about 0.08. It appears that our bagging and boosting estimation

strategy can reduce the potential for maximum likelihood estimation of the CRF model to overfit

the training data in some cases. Another method that has a similar structure to our BB-Par-CRF

is the MLR-HMM method of McShane et al. [2013]. The MLR-HMM consistently had lower

classification performance than the BB-Par-CRF method.

Our BB-Nonpar-CRF method was also among the best performing methods in all cases. As

we discussed in Chapter 5, this method makes two main modifications to the estimation strat-

egy used in the gradient-tree-CRF method: we bag the observation sequences to create many

training data sets and combine the resulting fits in a LOP, and we randomly select a subset of

the features to use in each boosting iteration as a strategy for regularizing the model. It ap-

pears that of these two modifications, the first was more useful. In all cases, the performance

of our BB-Nonpar-CRF method was about the same as the median performance achieved by

the gradient-tree-CRF method across different partitions of the data into training and valida-

tion sets used to select the stopping point for boosting. The BB-Nonpar-CRF method did better

than the worst case performance of the gradient-tree-CRF with respect to this partitioning of

the data. Experiments not reported in detail here revealed that we could also stabilize the clas-

sification results of the gradient-tree-CRF method at about the median value by combining the

results from the 10-fold cross validated fits in a LOP. In other words, in the applications to our

data sets the main improvement offered by our method was not due to bagging or random selec-

tion of feature subsets, but instead the reduction in the Monte Carlo variability of the classifier

performance that is achieved by combining the fits from multiple training sets in a LOP. This
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benefit can be achieved equally well and with reduced computation time by using 10 fold cross

validation instead of bagging with a large number of bags.

Our remaining methods, the RF-CRF and closely related RF-seq-CRF, offered inconsistent

performance. In many cases, they were among the best performing methods. However, in other

cases they suffered large drops in performance. We do not have a satisfying explanation for this

behavior. The most similar methods in our comparison were the RF-HMM and BB-Nonpar-

CRF methods; both of those approaches outperformed the RF-CRF method in many cases. Ad-

ditionally, our scheme for bagging at the level of individual time points did not improve the

performance of the method relative to bagging at the level of complete observation sequences.

The performance of the RF-CRF and RF-seq-CRF methods was similar in all cases.

The RF, which does not account for temporal dependence, had among the lowest proportion

of windows classified correctly for all accelerometer locations in the data from Mannini et al.

[2013] and the lab data from Sasaki [2013]. We only applied the static SVM method to the data

from Mannini et al. [2013], but it was the method with the worst performance on that data set.

On these laboratory data sets, the estimated increase in the average proportion correct that could

be realized by using one of the RF-HMM, BB-Par-CRF, or BB-Nonpar-CRF methods instead of

a RF ranges from about .02 to 0.14, depending on the data set, the accelerometer location, and

the number of classes used. This is equivalent to an increase of between about 20 minutes and

about 2 hours and 15 minutes in a 16 hour day.

With the free living data from Sasaki [2013], the difference in performance levels between the

RF method and the other methods is smaller. With 4 classes, the RF classifier did about as well as

the other methods. With 6 classes the RF method was always among the three methods with the

smallest average proportion of windows classified correctly, but the differences from the other

methods were small. One possible explanation for this is the finding in the simulation study

of Chapter 6 that the differences in performance between the static RF and dynamic models are

lower when the Bayes error rate is high than when the Bayes error rate is small. Intuitively, when

the Bayes error rate is high, the dynamic methods have less to gain from sharing information

about activity type across nearby time points. If this explanation is correct, we would expect

the performance gap between the static RF and the dynamic models to increase if we could

improve the classification rates in the free living data. We will discuss ideas for how this could be

achieved in Chapter 9. Regardless, the combined results across all three data sets offer evidence
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that accounting for sequential dependence in activity types can lead to improved classification

performance.

The Gaussian-mixt-HMM did fairly well with the data from Mannini et al. [2013]. However,

it was at or near the bottom of the pack for all but one of the combinations of factors in the two

data sets from Sasaki [2013]; the one case where it did relatively well here was with the ankle

accelerometer location with 6 classes in the free living data. With 4 classes, the estimated im-

provement from using one of the RF-HMM, BB-Par-CRF, or BB-Nonpar-CRF methods instead

of the Gaussian-mixt-HMM ranged from about 0.05 to 0.1, or between about 48 and 96 minutes

in a 16 hour day. Outside of the case where the Gaussian-mixt-HMM performed about as well

as the other methods, with 6 classes the point estimates for the gain in the average proportion

correct that is achieved by using one of the RF-HMM, BB-Par-CRF, or BB-Nonpar-CRF meth-

ods ranged from about 0.01 to 0.09. While the Gaussian-mixt-HMM did well in some cases, the

overall pattern was that it was among the methods with the worst performance.

The placement of the accelerometer can also have a large impact on classification perfor-

mance. In all three data sets, the best classification performance was achieved using data from

accelerometers placed at the ankle. Both Mannini et al. [2013] and Sasaki [2013] made this obser-

vation previously for static classification methods. Our contribution is an extension of this result

to a wider range of classification models.

The relative success of classification using data from the other locations was less consistent. In

the data from Mannini et al. [2013] and the free living data from Sasaki [2013], classification was

more difficult using recordings from accelerometers placed at the wrist than it was using data

from the ankle. However, in the laboratory component of the study by Sasaki [2013] classification

performance was about the same using data from the wrist or the ankle. In both components of

the study by Sasaki [2013], the performance of most methods was similar in the ankle and the

hip. For those methods that did exhibit a difference in performance between these locations,

performance was worse using the hip data than it was using the ankle data. Classification was

easier with the wrist data than the hip data in the laboratory setting, but in the free living setting

classification was easier with the hip data than the wrist data. The study by Mannini et al. [2013]

did not include accelerometers at the hip.

The size of the gain in classification performance that could be achieved by switching to the

ankle location varied quite a bit with the classification method used. As we observed above,
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some classification methods were less robust to the accelerometer location than others. For in-

stance, in the data from Mannini et al. [2013], the proportion correct from the RF-HMM method

only improved by about 0.03 when the accelerometer was placed on the ankle instead of the

wrist, while the proportion correct from the Gaussian-mixt-HMM improved by about 0.08 and

the proportion correct from the RF improved by about 0.09. A similar relationship holds in the

data from Sasaki [2013]. Overall, the Gaussian-mixt-HMM method most consistently exhibited

large differences in performance from one accelerometer location to another across all three data

sets. Additionally, the MLR-HMM, RF-CRF, RF-seq-CRF, and Par-CRF methods, which did

well in most cases but experienced large drops in performance in some of the harder cases, had

large differences in performance across different accelerometer locations for some of the data

sets. However, even the most stable of methods often experienced large jumps in performance

when the accelerometer was placed on the ankle. For example, in the free living data from Sasaki

[2013] with 6 classes, the proportion correct improved by at least 0.11 for all methods when the

accelerometer was placed on the ankle instead of the wrist.
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C H A P T E R 8

APPLICATIONS TO PHYSICAL ACTIVITY INTENSITY

CLASSIFICATION

8.1 Introduction

In this Chapter, we apply the classification methods we developed in Chapter 5 and several

competitor methods to classification of physical activity intensity in the three physical activity

data sets we described in Chapter 3. Our goal is to understand how classification performance

depends on the accelerometer location, the classification method used, and the treatment of in-

formation about an individual’s activity type in estimating activity intensity.

As we discussed in the literature review, physical activity intensity is a continuous quantity,

measured in METs. One MET corresponds to the energy used sitting at rest, and other energy

expenditure levels are defined relative to that value. However, in this work we focus on cate-

gorization of intensity as either Sedentary (< 1.5 METs), Light (≥ 1.5 and < 3 METs), Moderate

(≥ 3 and ≤ 6 METs), or Vigorous (> 6 METs) activity.

Our primary reason for pursuing classification rather than regression is that the direct obser-

vation data from the free living component of Sasaki [2013] include annotations of the categorical

intensity level, but not records of numeric METs. We have focused on methods that are appli-

cable to those data since our ultimate goal is to develop methods for use with free living data.

These intensity categories are also of direct interest to researchers. Many hypothesized relation-

ships between physical activity levels and health outcomes are stated in terms of time spent in

these categories. Similarly, the Physical Activity Guidelines published by the U.S. Department

of Health and Human Services [U.S. Department of Health and Human Services, 2008] are given

in terms of time spent in these categories, so a measure of time spent in each intensity category

is of interest to researchers studying the impacts of public policy.
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Two general approaches to physical activity intensity estimation have been proposed in the

literature, distinguished by whether or not physical activity type is estimated as a first step before

estimating the intensity. In applications with linear models relating a simple univariate summary

of the accelerometer signal in each second (“counts”) to METs, Albinali et al. [2010] demonstrate

that the two stage procedure can yield improved results relative to the one stage procedure for

estimation of continuous MET values. To our knowledge, a careful comparison of the relative

merits of these approaches has not been conducted for more flexible models that directly model

activity intensity using a richer summary of the accelerometer recordings. We will discuss the

differences between our work and the study of Albinali et al. [2010] in more detail in Section 8.6.

In order to gain some intuition into the two-stage procedure, it may be fruitful to cast esti-

mation of physical activity intensity as a missing data problem. In addition to the accelerometer

signal, some observation sequences are annotated with activity type labels and some are not.

Typically, those sequences in the data sets used to estimate the model parameters do include

activity type annotations, and new sequences where we wish to perform classification do not

include activity type. When the activity type is available, intuition suggests that the activity

type may provide useful information that we can use in estimating the intensity. One interpreta-

tion of two-stage procedures is that they proceed by imputing the activity types for observation

sequences where the activity type at each time point is not available.

In this Chapter, we will investigate two questions related to the treatment of the activity type

in estimating activity intensity:

1. When the activity type is available, does it provide extra information about the intensity

that was not already available from the accelerometer signal?

2. When the activity type is not available, do the imputed values contain extra information

about the intensity that was not available from the accelerometer signal?

We emphasize that these questions are different from the question of whether the true or im-

puted activity types provide any information at all about activity intensity; we are specifically

interested in whether they provide information about intensity above and beyond the informa-

tion that is present in the accelerometer signal. We believe that the answers to these questions

likely depend on several factors, including the set of activity type categories that is used, the

vector of features that are extracted from the accelerometer signal, and the classification method.
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For instance, it seems likely that if the activity type classification provides a fine level of detail

about what an individual is doing and the set of features extracted from the accelerometer is

fairly limited, the activity type would be a useful input to a classification algorithm. On the

other hand, if we use a limited set of activity classes and a richer set of features describing the

accelerometer signal, the activity type may not provide any information about intensity that was

not already contained in the accelerometer features. Our investigation will focus on the particu-

lar categorization schemes, features, and classification methods we have introduced previously.

The rest of this Chapter is organized as follows. We discuss our methods in Section 8.2,

present the classification results for each of our three data sets in Sections 8.3 through 8.5, and

conclude with a summarizing discussion in Section 8.6.

8.2 Methods

We gave a detailed description of the procedures we used to preprocess the data in Chapter

3. As a reminder, the windows were labeled as either Sedentary, Light, Moderate, or Vigorous

physical activity, or as a Transition if the window contained more than one labeled intensity

level. There are no windows with the Transition label in the data from Mannini et al. [2013]; the

12.8 seconds immediately before and after each transition were discarded.

In the free living data from Sasaki [2013] the intensity category at each time point was recorded

in the direct observation logs. In the laboratory data from Sasaki [2013] we calculated the steady-

state average energy expenditure in minutes 3 through 5 of each activity using recordings of

breath-by-breath oxygen usage from an Oxycon metabolic cart, and then converted the result-

ing continuous MET values to the corresponding discrete intensity categories. In the data from

Mannini et al., we combined the fine-grained categorizations of physical activity type recorded

in the direct observation logs with the population average intensity level associated with each

activity type as published in the Compendium of Physical Activities [Ainsworth et al., 2011] to

obtain continuous MET values for each window, and then converted these to the corresponding

discrete intensity categories.

We apply the same classification methods we used in the simulation study of Chapter 6 and

the application to classification of activity type in Chapter 7 to classify the subjects’ physical

activity intensity in each time window. These methods are as follows:
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1. BB-Par-CRF

2. BB-Nonpar-CRF

3. RF-CRF

4. RF-seq-CRF

5. RF

6. RF-HMM

7. MLR-HMM

8. Gaussian-mixt-HMM

9. gradient-tree-CRF

10. Par-CRF

As in Chapter 7, we use a leave-one-subject-out design to gauge the success of the classifiers:

for each subject, we train the classification methods with the observed data for all of the other

subjects and use the resulting trained models to predict the activity type in each window for

the held-out subject. We summarize these predictions with the same statistics that we used

in Chapter 7: the proportion correct, the macro F1 score, and the mean squared error of the

estimated class probabilities relative to the true class indicator. We also use the same treatment of

the gradient-tree-CRF method that we employed in Chapter 7, reporting the median and worst-

case results for the model fits obtained with 10 different partitions of the data into training and

validation subsets.

We explored three approaches to using information about activity type in our models for

activity intensity. Throughout this Chapter, we will refer to these approaches as our estimation

strategies. In the first, we use a one stage procedure that makes no use of information about

the activity type. In this case, the feature vectors used in the model are exactly the same as the

features used for the models in Chapter 7.

Our second estimation strategy is also a one stage procedure, but now we use the observed

activity type included in our labeled data sets as an input to estimating activity intensity. The

exact way that we use the type information depends on the model parameterization. For the
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parametric models, Par-CRF and BB-Par-CRF, we introduce a separate set of coefficients for

each activity type label:

βββs = (βββ′s,1, . . . , βββ
′
s,K)′, (8.2.1)

where βββs is the vector of coefficients associated with intensity class s, which is partitioned into

a separate group of coefficients βββs,k for each activity type class k. We also modify the feature

vectors, setting

xi,t = (x′i,t,1, . . . ,x
′
i,t,K)′ where (8.2.2)

x′i,t,k is the vector of features extracted from the accelerometer (including a leading 1 correspond-

ing to the intercept coefficient) in window t, subject i if the activity type at that time is class k,

and x′i,t,k = 0
¯

if the activity type at time t is not k.

For the remaining models, we simply augmented the feature vectors with indicator variables

giving the activity type class membership:

xi,t = (x̃′i,t, zi,t,1, . . . , zi,t,K)′ where (8.2.3)

x̃i,t is the vector of features that were extracted from the accelerometer in window t, subject i

(without a leading 1, as there isn’t an intercept term in these models) and zi,t,k = 1 if the activity

type at time t is class k and 0 otherwise. All of our nonparametric CRF models use flexible

classification or regression trees that allow for conjunctions between the indicator variables zi,t,k

and the accelerometer features. We also expected that the Gaussian-mixt-HMM method would

be flexible enough to handle this parameterization; as we will see later, this may not be the case.

Our third estimation strategy is a two-stage procedure in which we impute the activity type

labels in the first stage, and then use those imputed values in our model for activity intensity. In

previous work with such two-stage procedures, it has been most common to perform a “hard”

classification of activity type in the first stage of the estimation process and use a separate model

for each activity type to map the accelerometer features to intensity estimates in the second stage.

However, we prefer to capture the uncertainty in the estimated class membership from the first

stage by using the estimated class membership probabilities obtained from the activity type

classifier instead of indicators of the estimated class. For the parametric models, the coefficient

vector has the same form as in Equation (8.2.1). However, we now define the feature vector as
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follows:

xi,t = (p̂i,t,1x̃
′
i,t, . . . , p̂i,t,K x̃′i,t)

′.

Here, p̂i,t,k is the estimated probability from the first stage that the activity type at time t is

class k and x̃i,t is the vector of features extracted from the accelerometer signal in window t,

augmented with a 1 corresponding to an intercept term for each activity type class. We can

consider this model formulation as a CRF where the final coefficient values are an observation-

specific weighted sum of the coefficients from type-specific models: β(i,t)
s,d =

∑K
k=1 p̂i,t,kβs,k,d.

The coefficient weights are the class membership probabilities for the observation at time t from

the first stage of modeling. In the non-parametric models, we augment the observed feature

vectors with the estimated class membership probabilities for each class. We will sometimes

refer to these estimated activity type probabilities as the imputed types.

We must take special care in estimating the parameters for this two stage procedure. When

we apply the model fit to a new data set, both the activity type and the activity intensity are

unobserved. The second stage model relates the accelerometer features and the imputed activity

type class estimates to the intensity categories. Importantly, those imputed class memberships

are obtained from a first stage model that never saw the true class labels in the new data set.

In order to replicate this in training the two-stage models, we use a leave one subject out

procedure during the estimation of the first-stage classifier. The overall estimation procedure is

as follows:

1. For each subject i,

(a) Use all observation sequences except for the ith to estimate a first-stage model that

uses accelerometer features to classify activity type.

(b) Use this model fit to obtain estimated activity type class membership probabilities for

subject i.

2. Use the accelerometer features and the activity type class membership probabilities from

step 1 to estimate the second stage model that classifies according to intensity category.

In order to evaluate the success of the methods, this entire process is embedded within leave one

subject out cross validation.
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The nested cross validation procedure we described above is very time consuming, so we

have only implemented the two stage estimation strategy for four of the classification meth-

ods: BB-Par-CRF, BB-Nonpar-CRF, RF-CRF, and RF-HMM. These are the three methods we

proposed in Chapter 5, and the competetitor method that was the most successful in the appli-

cations of Chapter 7. For the data from Sasaki [2013], we focused on first-stage classifiers that

worked with the four-class system of categories. We chose this set of classes because we saw in

Chapter 7 that classification rates were higher using four classes than they were using six classes.

8.3 Mannini et al. Data

Figures 70 through 72 display box plots summarizing the results of the application to inten-

sity level classification with the data from Mannini et al. [2013]. As with classification according

to physical activity type, most methods achieved a higher proportion correct using data from

the ankle than they did using data from the wrist. If we consider the proportion of windows

classified correctly, the CRF-based models all perform about as well as each other and the static

RF algorithm. These methods all outperform the Gaussian-mixt-HMM method and the MLR-

HMM method, as well as the RF-HMM method with the ankle data. It is interesting that the

Gaussian-mixt-HMM method outperformed the RF method in classifying according to activity

type with the data from Mannini et al. [2013], but the RF method did better when classifying

according to intensity.

The plot of the macro F1 scores shows that although the RF-HMM method classified a lower

proportion of time points correctly and had higher MSE than the other methods when using the

ankle data, it had a higher F1 score. The confusion matrices in Tables 20 through 25 explain why.

The majority of windows had a true class of either Sedentary or Moderate intensity. Methods

such as BB-Par-CRF are therefore able to achieve a high proportion correct by classifying most

time points as either Sedentary or Moderate activity. This means that many Light and Vigorous

windows are misclassified, resulting in a lower F1 score. The RF-HMM makes a different trade-

off, misclassifying some Sedentary and Moderate activity, but also getting more of the Light and

Vigorous windows right. This results in an overall lower proportion correct, but a higher F1

score. A choice of which method to use must take into account a prioritization of how impor-

tant it is to achieve correct classification for each of the different intensity categories. It is also
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interesting to note that most misclassification that does occur is between Sedentary and Light

activity, or between Moderate and Vigorous activity. However, when the true activity type is

unknown the BB-Par-CRF method misclassifies about 5% of windows where the true intensity

is Moderate as Sedentary activity, a more serious error.

The final observations we can make from the plots in Figures 70 through 72 relate to the

strategy for handling activity type when estimating activity intensity. Using the true activity

type is generally beneficial if it is available. This holds for every classification method except for

the Gaussian-mixt-HMM, which actually had lower performance when using the true activity

type. It is possible that the Gaussian-mixt-HMM method would have performed better if we

had used the activity type information differently. For that model, we simply augmented the

observed feature vectors with indicator variables giving the estimated class membership. An

alternative would be to use the same parameterization that we used for the BB-Par-CRF and

Par-CRF methods, described in Section 8.2 above.

When the activity type is unknown, it appears that using a two-stage procedure that imputes

the activity type can lead to small improvements in performance. The performance of the two-

stage procedure generally falls inbetween the performance of the one stage method that does not

use any information about the activity type and the one stage method that uses the true activity

type. We can see this more clearly in the plots of Figure 73, which break the results down by

subject. For the data from the ankle, the two-stage estimation strategy yields performance that

is almost as good as when the activity type is known. This is perhaps because classification

according to type was so effective: with the ankle data, the imputed activity types obtained

in the first step are often very close to the true activity types. The story is less clear when we

look at the wrist data. While the BB-Par-CRF and RF-CRF methods tend to do better with an

imputed estimate of the activity type than without it, the performance of the BB-Nonpar-CRF

and RF-HMM methods is about the same whether or not the type is imputed in a first stage.

We fit the following linear mixed effects model to the classification results:

pc,e,l,i = βc,e,l + γi + εc,e,l,i, where (8.3.1)

γi ∼ N(0, σ2
subj) (8.3.2)

εc,e,l,i ∼ N(0, σ2
l,i)

Here, pc,e,l,i is the proportion of windows classified correctly using classifier c, estimation strat-
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Figure 71. Box plots showing the macro F1 score combining precision and recall across
all physical activity intensity categories in the data from Mannini et al. [2013],
using a leave-one-subject-out procedure. A separate box plot is displayed for
each combination of accelerometer location, classification method, and estima-
tion strategy. Each point corresponds to a combination of accelerometer loca-
tion, classification method, estimation strategy, and subject.
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Figure 72. Box plots showing the mean squared error of the estimated class member-
ship probabilities relative to the labeled class memberships in the data from
Mannini et al. [2013], using a leave-one-subject-out procedure. A separate box
plot is displayed for each combination of accelerometer location, classification
method, and estimation strategy. Each point corresponds to a combination of
accelerometer location, classification method, estimation strategy, and subject.
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Figure 73. Proportion of time windows with intensity level classified correctly by subject
in the data from Mannini et al. [2013], using a leave-one-subject-out procedure.
We show these values for just the BB-Par-CRF, BB-Nonpar-CRF, RF-CRF, and
RF-HMM classification methods applied to data collected from accelerometers
placed at the wrist location. These are the four classification methods where
we used all three estimation strategies.
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Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2463 158 5 0

Light 25 333 0 0

Moderate 1 2 3677 412

Vigorous 0 0 117 210

Table 20. Confusion matrix for the RF-HMM classification method applied to the wrist
data from Mannini et al. [2013] with a one stage estimation strategy where the
true activity type is known for each window, all subjects combined.

Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2398 171 50 7

Light 25 333 0 0

Moderate 93 36 3559 404

Vigorous 0 0 115 212

Table 21. Confusion matrix for the RF-HMM classification method applied to the wrist
data from Mannini et al. [2013] with a one stage estimation strategy where the
true activity type is unknown for each window, all subjects combined.

Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2355 196 69 6

Light 25 333 0 0

Moderate 35 10 3507 540

Vigorous 0 0 113 214

Table 22. Confusion matrix for the RF-HMM classification method applied to the wrist
data from Mannini et al. [2013] with a two stage estimation strategy where the
unobserved activity type is imputed for each window, all subjects combined.

Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2340 123 163 0

Light 152 204 2 0

Moderate 233 3 3856 0

Vigorous 0 0 327 0

Table 23. Confusion matrix for the BB-Par-CRF classification method applied to the wrist
data from Mannini et al. [2013] with a one stage estimation strategy where the
true activity type is known for each window, all subjects combined.
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Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2331 121 174 0

Light 142 213 3 0

Moderate 228 3 3861 0

Vigorous 0 0 327 0

Table 24. Confusion matrix for the BB-Par-CRF classification method applied to the wrist
data from Mannini et al. [2013] with a one stage estimation strategy where the
true activity type is unknown for each window, all subjects combined.

Predicted Class

Labeled Class Sedentary Light Moderate Vigorous

Sedentary 2364 86 176 0

Light 117 222 19 0

Moderate 173 2 3917 0

Vigorous 0 0 327 0

Table 25. Confusion matrix for the BB-Par-CRF classification method applied to the wrist
data from Mannini et al. [2013] with a two stage estimation strategy where the
unobserved activity type is imputed for each window, all subjects combined.

egy e, and the data gathered with the accelerometer placed at location l on subject i. The pa-

rameters βc,e,l are fixed effects representing the mean proportion correct for classifier method

c and accelerometer location l, γi are random effects representing subject-specific offsets to the

mean proportion correct, and εc,e,l,i are error terms with variance specific to the combination of

accelerometer location and subject. The considerations in formulating the model are similar to

those we discussed for the models in Chapter 7.

Figures 74 through 79 display point and interval estimates for the βc,l parameters and sets of

contrasts between them. As before, we caution against a strict interpretation of the confidence

intervals; however, they do give a rough sense of the uncertainty in the point estimates.

The estimates displayed in Figure 75 show that unlike activity type classification, classifica-

tion of intensity is not necessarily easier with data from the ankle or the wrist. Some methods,

such as MLR-HMM, do better with the ankle data and others, such as RF-HMM, do better with

wrist data. However, in the cases where the activity type is unknown or we use the two stage

estimation strategy and impute the type, the point estimates indicate that for most classification

methods a small improvement in the proportion correct can be achieved by using data from the
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Estimated Average Proportion Correct by

Accelerometer Location and Classification Method

Intensity Estimation, Mannini Data
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Figure 74. Point and interval estimates for the fixed effects parameters in model (8.3.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 74, 75, 76, 77, 78, and 79.
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Figure 75. Point and interval estimates for the difference in performance between the an-
kle and wrist accelerometer locations for each classification method, based on
model (8.3.1). The inner marks indicate endpoints for individual 95% confi-
dence intervals; the outer marks indicate endpoints for familywise 95% confi-
dence intervals for all intervals in Figures 74, 75, 76, 77, 78, and 79.
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Figure 76. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is known, based on model (8.3.1). The inner
marks indicate endpoints for individual 95% confidence intervals; the outer
marks indicate endpoints for familywise 95% confidence intervals for all in-
tervals in Figures 74, 75, 76, 77, 78, and 79.
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Figure 77. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is unknown, based on model (8.3.1). The
inner marks indicate endpoints for individual 95% confidence intervals; the
outer marks indicate endpoints for familywise 95% confidence intervals for all
intervals in Figures 74, 75, 76, 77, 78, and 79.
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Figure 78. Point and interval estimates for the difference in performance between each
pair of classification methods using a two stage estimation strategy where the
activity type in each window is estimated in the first stage and that estimate is
used as an input to intensity estimation in the second stage, based on model
(8.3.1). The inner marks indicate endpoints for individual 95% confidence in-
tervals; the outer marks indicate endpoints for familywise 95% confidence in-
tervals for all intervals in Figures 74, 75, 76, 77, 78, and 79.
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Figure 79. Point and interval estimates for the difference in performance between each
pair of estimation strategies, based on model (8.3.1). The inner marks indicate
endpoints for individual 95% confidence intervals; the outer marks indicate
endpoints for familywise 95% confidence intervals for all intervals in Figures
74, 75, 76, 77, 78, and 79.
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ankle instead of the wrist. This improvement ranges from about 0.01 to 0.04, depending on the

classification method. This is equivalent to an improvement of between about 10 and 40 min-

utes if we extrapolate to a 16 hour day while maintaining the same composition of the relative

amount of time spent in each intensity category.

The estimates in Figures 76 and 77 confirm that when applied to the ankle data with a one

stage estimation strategy, the Gaussian-mixt-HMM, RF-HMM, and MLR-HMM methods had

the lowest proportion correct. Using data from the wrist, the MLR-HMM and Gaussian-mixt-

HMM methods did the worst. The improvement in the proportion correct that could be realized

by switching away from one of these methods to one of the other methods ranged from about

0.08 to about 0.17, or between about one hour and 15 minutes and 2 hours and 45 minutes in a

16 hour day. We remind the reader that these results are for the overall proportion of time points

classified correctly, and the story would be somewhat different if we had examined the macro

F1 score instead.

The estimates in Figure 78 show that with the two stage estimation strategy and data from the

ankle, the RF-HMM had an average proportion correct that was lower than the other methods

by about 0.1. With the wrist data, the two-stage methods are essentially indistinguishable from

each other.

The estimates in Figure 79 demonstrate that with the ankle data, the gains from including

information about activity type in estimating intensity that we observed in the boxplots above

are for the most part too small to detect with our linear model. All of the confidence intervals

overlap 0 except for the one for the Gaussian-mixt-HMM, and that method did worse when

it used information about activity type. The wrist data make a slightly stronger case for using

information about activity type. When the true type is known, several methods showed gains

in the proportion correct when they used that information. However, only the RF-CRF method

showed an appreciable gain in the proportion correct when the class memberships were unob-

served and had to be imputed.

8.4 Sasaki Laboratory Data

Figures 80, 81, and 82 display box plots summarizing the results of the application to inten-

sity classification with the laboratory data from Sasaki [2013]. In this data set, the difference in
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Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 959 45 23 2

Light 55 2007 541 12

Moderate 0 376 1549 3

Transition 2 31 24 44

Table 26. Confusion matrix for intensity classification with the RF-HMM method and one
stage estimation strategy with physical activity type unknown, applied to the
lab wrist data from Sasaki [2013], all subjects combined.

proportion correct and mean squared error achieved by the first stage classifiers with and with-

out use of the activity type labels is much less apparent than it was in the data from Mannini

et al. [2013]. Overall, it does seem that using the observed activity type labels may improve

estimates of intensity if that information is available, but the improvement is small. The differ-

ences in F1 score are slightly larger however, and show that using the activity type in classifying

activity intensity is helpful. Similarly, the two stage procedure does not seem to offer much of

an advantage over the one-stage procedure that doesn’t use any information about the activity

type when we consider the proportion correct and mean squared error, but it does yield a small

improvement in the F1 score. The lack of a major difference in the estimation strategies is con-

firmed in Figure 83, where we see that for many subjects, all three estimation strategies resulted

in exactly the same proportion correct.

The confusion matrices in Tables 26 through 31 yield similar conclusions. Including activity

type information leads to only minor changes in the confusion matrices, suggesting that the

activity type is not contributing much to the class estimates. The activity type adds very little

information about intensity that was not already available in the accelerometer signal.

It appears that all of the classification methods achieve about the same proportion correct,

with the exception of the Gaussian-mixt-HMM method with the one-stage estimation strategy

using the true activity type and the Par-CRF method with data from the ankle or wrist. There is

a little more variation in the F1 scores and MSE. According to the F1 score, the BB-Par-CRF, RF-

CRF, RF-seq-CRF, RF-HMM, and MLR-HMM seem to offer better performance than the other

methods. As we saw in the applications to activity type prediction, although the RF had a lower

F1 score than the other methods, its MSE is in line with the other methods and is less variable.
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Proportion Correct by Accelerometer Location and Classification Method

Intensity Estimation, Sasaki Lab Data
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Figure 80. Box plots showing the proportion of windows classified correctly in the data
from Sasaki [2013] using a leave-one-subject-out procedure. A separate box
plot is displayed for each combination of accelerometer location, classification
method, and estimation strategy. Each point corresponds to a combination of
accelerometer location, classification method, estimation strategy, and subject.
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Figure 81. Box plots showing the macro F1 score combining precision and recall across
all physical activity intensity categories in the data from Sasaki [2013], using
a leave-one-subject-out procedure. A separate box plot is displayed for each
combination of accelerometer location, classification method, and estimation
strategy. Each point corresponds to a combination of accelerometer location,
classification method, estimation strategy, and subject.
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Figure 82. Box plots showing the mean squared error of the estimated class membership
probabilities relative to the labeled class memberships in the data from Sasaki
[2013], using a leave-one-subject-out procedure. A separate box plot is dis-
played for each combination of accelerometer location, classification method,
and estimation strategy. Each point corresponds to a combination of accelerom-
eter location, classification method, estimation strategy, and subject.
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Figure 83. Proportion of time windows with intensity level classified correctly by sub-
ject in the data from Sasaki [2013], using a leave-one-subject-out procedure.
We show these values for just the BB-Par-CRF, BB-Nonpar-CRF, RF-CRF, and
RF-HMM classification methods applied to data collected from accelerometers
placed at the wrist location.
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Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 960 45 23 1

Light 23 2033 546 13

Moderate 0 359 1564 5

Transition 0 29 16 56

Table 27. Confusion matrix for intensity classification with the RF-HMM method and one
stage estimation strategy with physical activity type known, applied to the lab
wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 960 45 23 1

Light 46 1991 563 15

Moderate 0 374 1547 7

Transition 5 32 23 41

Table 28. Confusion matrix for intensity classification with the RF-HMM method and two
stage estimation strategy with physical activity type imputed in the first stage,
applied to the lab wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 954 51 23 1

Light 72 1764 772 7

Moderate 23 529 1376 0

Transition 13 34 37 17

Table 29. Confusion matrix for intensity classification with the BB-Par-CRF method and
one stage estimation strategy with physical activity type unknown, applied to
the lab wrist data from Sasaki [2013], all subjects combined.

209



Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 960 45 23 1

Light 23 1924 656 12

Moderate 0 530 1390 8

Transition 0 33 21 47

Table 30. Confusion matrix for intensity classification with the BB-Par-CRF method and
one stage estimation strategy with physical activity type known, applied to the
lab wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Transition

Sedentary 936 68 23 2

Light 68 1761 786 0

Moderate 23 576 1329 0

Transition 4 35 35 27

Table 31. Confusion matrix for intensity classification with the BB-Par-CRF method and
two stage estimation strategy with physical activity type imputed in the first
stage, applied to the lab wrist data from Sasaki [2013], all subjects combined.
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We fit the same linear mixed effects model to the classification results that we used in Sec-

tion 8.3 for the results of intensity classification with the data from Mannini et al. [2013]. We

display point and interval estimates for the average proportion correct for each combination of

classifier, accelerometer location, and number of classes, along with sets of contrasts between

these quantities in Figures 84 through 89. These estimates confirm the observations we made

from the box plots above. The estimates in Figure 85 show that in this data set, there is not an

appreciable benefit from changing the accelerometer location. Figures 86, 87, and 88 show that

most classification methods perform about as well as each other, except for the Gaussian-mixt-

HMM method and the Par-CRF method for some combinations of accelerometer location and

the estimation strategy. Figure 89 shows that if the true class were available it could provide

information about physical activity intensity that is not in the accelerometer data from the wrist,

but the activity type does not contain information about intensity that is not already available

in the accelerometer signal if we use data from the ankle or the hip. In any case, when the true

activity type is unknown, using an imputed activity type in a two-stage procedure does not lead

to appreciable gains in the proportion correct.

8.5 Sasaki Free Living Data

Figures 90, 91, and 92 display box plots summarizing the results of the application to inten-

sity classification with the free living data from Sasaki [2013]. As we saw with classification of

activity type, the overall classification rates are lower with data from accelerometers placed at

the wrist than they are with accelerometers at the ankle or hip. Also, the classification rates are

lower with the free living data than they were with the lab data sets. In these plots we can see that

if it is available, using the true activity type makes an appreciable improvement in classification

of intensity with every classification method other than the Gaussian-mixt-HMM. However, the

two stage methods that use imputed class memberships do about as well as the one stage meth-

ods that do not use the activity type. Figure 93 breaks down performance by subject, and shows

in more detail that while using the true activity type is helpful if it is available, imputing the

type does not lead to gains in performance. In terms of comparisons among the different classi-

fication methods, it appears that the BB-Par-CRF and BB-Nonpar-CRF methods offer the most

consistently high performance, and the Gaussian-mixt-HMM method is consistently among the
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Estimated Average Proportion Correct by

Accelerometer Location, Classification Method, and Estimation Strategy

Sasaki Lab Data
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Figure 84. Point and interval estimates for the fixed effects parameters in model (8.3.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 84, 85, 86, 87, 88, and 89.
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Ankle − Hip Ankle − Wrist Hip − Wrist
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Figure 85. Point and interval estimates for the difference in performance between the an-
kle and wrist accelerometer locations for each classification method, based on
model (8.3.1). The inner marks indicate endpoints for individual 95% confi-
dence intervals; the outer marks indicate endpoints for familywise 95% confi-
dence intervals for all intervals in Figures 84, 85, 86, 87, 88, and 89.
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Figure 86. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is known, based on model (8.3.1). The inner
marks indicate endpoints for individual 95% confidence intervals; the outer
marks indicate endpoints for familywise 95% confidence intervals for all in-
tervals in Figures 84, 85, 86, 87, 88, and 89.
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Figure 87. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is unknown, based on model (8.3.1). The
inner marks indicate endpoints for individual 95% confidence intervals; the
outer marks indicate endpoints for familywise 95% confidence intervals for all
intervals in Figures 84, 85, 86, 87, 88, and 89.
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Figure 88. Point and interval estimates for the difference in performance between each
pair of classification methods using a two stage estimation strategy where the
activity type in each window is estimated in the first stage and that estimate is
used as an input to intensity estimation in the second stage, based on model
(8.3.1). The inner marks indicate endpoints for individual 95% confidence in-
tervals; the outer marks indicate endpoints for familywise 95% confidence in-
tervals for all intervals in Figures 84, 85, 86, 87, 88, and 89.
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Figure 89. Point and interval estimates for the difference in performance between each
pair of estimation strategies, based on model (8.3.1). The inner marks indicate
endpoints for individual 95% confidence intervals; the outer marks indicate
endpoints for familywise 95% confidence intervals for all intervals in Figures
84, 85, 86, 87, 88, and 89.
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Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1585 451 2 1 16

Light 603 2540 65 68 169

Moderate 49 318 1007 511 73

Vigorous 0 5 51 10 1

Transition 59 467 88 45 125

Table 32. Confusion matrix for intensity classification with the RF-HMM method and one
stage estimation strategy with physical activity type unknown, applied to the
free living wrist data from Sasaki [2013], all subjects combined.

worst-performing methods. However, most of the methods perform about as well as each other.

These results are the same with all three summary statistics (proportion correct, F1 score, and

MSE).

The confusion matrices in Tables 32 through 37 reveal interesting behavior of the RF-HMM

method. The free living component of the study included only 67 windows of vigorous intensity

activity. As before, the RF-HMM method makes a trade-off in favor of improved recall rates in

classes representing a lower proportion of the data overall, at the expense of lower precision.

As a result, the RF-HMM method misclassifies a large number of points (including between 15

and 42% of windows where the true activity intensity is Moderate) as Vigorous activity. Using

the true activity helps this situation somewhat. However, the estimation strategy using imputed

values for physical activity type does much worse in terms of misclassifying Moderate activity

as Vigorous activity than the strategy that ignores the activity type altogether. Although this

issue with Vigorous activity does not arise with the BB-Par-CRF, we can see a similar pattern in

terms of an overall increase in misclassification rates when we use the imputed activity types.

Of the five on-diagonal entries in the confusion matrix, four decrease and the fifth remains fixed

at 0 when we move from a one-stage model that ignores activity type to a two-stage model

that imputes activity type. Thus, the overall proportion correct aggregated across all subjects

decreased or stayed fixed at 0 for every intensity category when we moved from a one-stage

process ignoring activity type to a two-stage process using imputed activity types.

We fit the same linear mixed effects model to the classification results that we used in Sec-

tions 8.3 and 8.4. We display point and interval estimates for the average proportion correct for
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Proportion Correct by Accelerometer Location and Classification Method

Intensity Estimation, Sasaki Free Living Data
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Figure 90. Box plots showing the proportion of windows classified correctly in the free
living data from Sasaki [2013] using a leave-one-subject-out procedure. A sep-
arate box plot is displayed for each combination of accelerometer location, clas-
sification method, and estimation strategy. Each point corresponds to a com-
bination of accelerometer location, classification method, estimation strategy,
and subject.
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Figure 91. Box plots showing the macro F1 score combining precision and recall across all
physical activity intensity categories in the free living data from Sasaki [2013],
using a leave-one-subject-out procedure. A separate box plot is displayed for
each combination of accelerometer location, classification method, and estima-
tion strategy. Each point corresponds to a combination of accelerometer loca-
tion, classification method, estimation strategy, and subject.
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Figure 92. Box plots showing the mean squared error of the estimated class membership
probabilities relative to the labeled class memberships in the free living data
from Sasaki [2013], using a leave-one-subject-out procedure. A separate box
plot is displayed for each combination of accelerometer location, classification
method, and estimation strategy. Each point corresponds to a combination of
accelerometer location, classification method, estimation strategy, and subject.
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Proportion Correct by Subject and Estimation Strategy

Intensity Estimation, Wrist Location, Sasaki Free Living Data
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Figure 93. Proportion of time windows with intensity level classified correctly by sub-
ject in the free living data from Sasaki [2013], using a leave-one-subject-out
procedure. We show these values for just the BB-Par-CRF, BB-Nonpar-CRF,
RF-CRF, and RF-HMM classification methods applied to data collected from
accelerometers placed at the wrist location.
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Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1906 148 0 0 1

Light 696 2521 20 84 124

Moderate 3 250 1381 298 26

Vigorous 0 6 48 11 2

Transition 24 258 34 29 439

Table 33. Confusion matrix for intensity classification with the RF-HMM method and one
stage estimation strategy with physical activity type known, applied to the free
living wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1769 258 0 0 28

Light 928 2266 44 60 147

Moderate 48 337 680 825 68

Vigorous 0 5 48 13 1

Transition 70 471 71 66 106

Table 34. Confusion matrix for intensity classification with the RF-HMM method and two
stage estimation strategy with physical activity type imputed in the first stage,
applied to the free living wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1182 861 9 0 3

Light 693 2483 249 0 20

Moderate 26 437 1489 0 6

Vigorous 0 5 62 0 0

Transition 60 558 153 0 13

Table 35. Confusion matrix for intensity classification with the BB-Par-CRF method and
one stage estimation strategy with physical activity type unknown, applied to
the free living wrist data from Sasaki [2013], all subjects combined.
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Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1532 523 0 0 0

Light 584 2714 49 0 98

Moderate 0 327 1618 0 13

Vigorous 0 11 56 0 0

Transition 13 289 31 0 451

Table 36. Confusion matrix for intensity classification with the BB-Par-CRF method and
one stage estimation strategy with physical activity type known, applied to the
free living wrist data from Sasaki [2013], all subjects combined.

Predicted Class

Labeled
Class Sedentary Light Moderate Vigorous Transition

Sedentary 1127 921 6 0 1

Light 868 2329 238 0 10

Moderate 68 488 1399 0 3

Vigorous 0 5 62 0 0

Transition 91 559 131 0 3

Table 37. Confusion matrix for intensity classification with the BB-Par-CRF method and
two stage estimation strategy with physical activity type imputed in the first
stage, applied to the free living wrist data from Sasaki [2013], all subjects com-
bined.
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each combination of classifier, accelerometer location, and number of classes, along with sets of

contrasts between these quantities in Figures 94 through 99. These estimates confirm the obser-

vations we made from the box plots above.

The estimates in Figure 95 show that classification was easier with the ankle and hip data

than it was with the wrist data. The average improvements in the proportion correct from using

the ankle or hip instead of the wrist vary, but are as large as about 0.21. Figures 96, 97, and 98

show that most classification methods achieved about the same average proportion correct, ex-

cept for the Gaussian-mixt-HMM method. Figure 99 shows that if the true class were available

it could provide information about physical activity intensity that is not in the accelerometer sig-

nal. However, using a two-stage procedure is ineffective, and does not lead to increased success

in classifying activity intensity.

8.6 Discussion

In this Section, we tie together the results of the applications to classification of physical ac-

tivity intensity in our three data sets. We have focused here on how the accelerometer location,

classification method, and strategy for using information about activity type impact classifica-

tion performance.

Our results regarding the impact of the accelerometer location on classification of physical

activity intensity are very similar to the results we saw in Chapter 7 when classifying according

to activity type. For both the free living data from Sasaki [2013] and the lab data from Mannini

et al. [2013], we saw that the accelerometer location can have a large impact on classification

success, with classification generally being more difficult with data from the wrist than it is with

data from the ankle or hip. The improvement that can be realized by switching away from the

wrist ranged from about 0.03 to 0.21 in the proportion correct, and was larger in the free living

data than it was in the data from Mannini et al. [2013]. Surprisingly, we did not observe an effect

of accelerometer location on classification performance when classifying according to intensity

level in the laboratory data from Sasaki [2013]. However, the direction of the improvement was

consistent in the other two data sets, and consistent with the pattern we saw with classification

according to activity type in Chapter 7.

We saw less variability among the different classification methods when classifying accord-
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Figure 94. Point and interval estimates for the fixed effects parameters in model (8.3.1).
The inner marks indicate endpoints for individual 95% confidence intervals;
the outer marks indicate endpoints for familywise 95% confidence intervals
for all intervals in Figures 94, 95, 96, 97, 98, and 99.
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Figure 95. Point and interval estimates for the difference in performance between the an-
kle and wrist accelerometer locations for each classification method, based on
model (8.3.1). The inner marks indicate endpoints for individual 95% confi-
dence intervals; the outer marks indicate endpoints for familywise 95% confi-
dence intervals for all intervals in Figures 94, 95, 96, 97, 98, and 99.
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Figure 96. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is known, based on model (8.3.1). The inner
marks indicate endpoints for individual 95% confidence intervals; the outer
marks indicate endpoints for familywise 95% confidence intervals for all in-
tervals in Figures 94, 95, 96, 97, 98, and 99.
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Figure 97. Point and interval estimates for the difference in performance between each
pair of classification methods using a one stage estimation strategy where the
true activity type in each window is unknown, based on model (8.3.1). The
inner marks indicate endpoints for individual 95% confidence intervals; the
outer marks indicate endpoints for familywise 95% confidence intervals for all
intervals in Figures 94, 95, 96, 97, 98, and 99.

229



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ankle Hip Wrist

BB−Par−CRF − BB−Nonpar−CRF

RF−CRF − RF−HMM

BB−Nonpar−CRF − RF−CRF

BB−Par−CRF − RF−CRF

BB−Nonpar−CRF − RF−HMM

BB−Par−CRF − RF−HMM

−0.2 −0.1 0.0 0.1 −0.2 −0.1 0.0 0.1 −0.2 −0.1 0.0 0.1

Estimated Difference in Proportion Correct:
First Method − Second Method

C
la

ss
ifi

ca
tio

n 
M

et
ho

d 
C

on
tr

as
t

Estimated Change in Proportion Correct from

Changing the Classification Method

Two Stage − Type Imputed Estimation Strategy

Intensity Estimation, Sasaki Free Living Data

Figure 98. Point and interval estimates for the difference in performance between each
pair of classification methods using a two stage estimation strategy where the
activity type in each window is estimated in the first stage and that estimate is
used as an input to intensity estimation in the second stage, based on model
(8.3.1). The inner marks indicate endpoints for individual 95% confidence in-
tervals; the outer marks indicate endpoints for familywise 95% confidence in-
tervals for all intervals in Figures 94, 95, 96, 97, 98, and 99.
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Figure 99. Point and interval estimates for the difference in performance between each
pair of estimation strategies, based on model (8.3.1). The inner marks indicate
endpoints for individual 95% confidence intervals; the outer marks indicate
endpoints for familywise 95% confidence intervals for all intervals in Figures
94, 95, 96, 97, 98, and 99.
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ing to intensity level than we did when classifying according to activity type. However, we did

consistently observe lower performance from the Gaussian-mixt-HMM method than we had

with the other methods. The Par-CRF, MLR-HMM, and RF-HMM methods also had incon-

sistent performance, generally doing well but with a much lower proportion correct in a few

cases. As we saw in the applications to activity type classification in Chapter 7, the performance

of the gradient-tree-CRF method is sensitive to how the data are partitioned into training and

validation data sets. The median performance of the method with respect to this partitioning is

in line with the best of the other methods, but the worst case performance is much lower. The

remaining methods, including the three methods we proposed in Chapter 5 and the static RF, all

did about as well as each other.

We also compared several approaches to using information about the type of activity an

individual is engaged in when classifying that activity according to its intensity level. In the

data from Mannini et al. [2013] and the free living data from Sasaki [2013], we found that if

the true activity type labels were observed, using them in models for intensity could lead to

improved classification performance. Plots of the results of the application to the lab data from

Sasaki [2013] indicated that a similar effect was likely present with those data, but the effect size

was very small.

However, it is less clear whether it is useful to impute the activity type for use in an intensity

classification model if it is not observed. Of all the applications of the two-stage estimation

procedure across three data sets and multiple accelerometer locations with four classification

methods, only one combination of these factors resulted in an appreciable performance gain

relative to the one-stage procedure that did not use any information about activity type. The

proportion correct achieved by the RF-CRF method using the wrist data from Mannini et al.

[2013] improved by about 0.04. All other point estimates for the change in the proportion correct

that is realized by using the two stage method instead of ignoring the activity type are less than

0.025 and have (approximate) confidence intervals that include 0. In fact, with the free living

wrist data and the BB-Par-CRF method, the estimated effect size is about -0.07 – indicating that

using the two stage procedure actually resulted in worse classification results.

There are several differences between our work and the work of Albinali et al. [2010] that

could explain why we found that the two stage procedure results in little to no improvement in

estimation of intensity while they found that the two stage procedure was better than the one
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stage procedure. The differences between our studies are as follows:

1. Data sets used for model estimation and evaluation: A major limitation of the study

by Albinali et al. [2010] is that in their work, the two-stage intensity estimation model is

trained on the same data set on which it is evaluated, while the one-stage methods are

trained on different data sets than the one that is used to evaluate their performance. They

are careful to use cross-validation to evaluate the performance of classification methods,

but this cannot control for the fact that the models were trained with data from different

studies with different data collection protocols and different sets of activities performed

by the subjects. This means that in their results, the impact of using a two-stage proce-

dure is confounded with the impact of training the model on the same data set that it

is evaluated with rather than training the model and evaluating it using different data

sets. Our analysis resolves this problem by more systematically comparing models that do

and do not use information about activity type, using the same data sets to estimate the

model parameters and evaluate performance for all models and estimation strategies with

a leave-one-subject-out procedure.

2. Model flexibility: The study by Albinali et al. [2010] also confounds model flexiblity with

the use of imputed activity types in estimating activity intensity. The one-stage intensity

estimation procedures they use consist of a single linear regression model relating a uni-

variate summary of the signal from a single accelerometer in each second to intensity lev-

els. On the other hand, their two-stage procedure uses a flexible decision tree to perform

the stage 1 classification based on a set of several time and frequency domain features using

information from all three axes of the recordings from three different accelerometers. They

then fit a separate linear model analogous to that used in the one stage procedure for each

activity type. The resulting two-stage model is much more flexible and uses much more

information from the accelerometers than the one-stage procedure did. With this design,

it is impossible to say how much of the observed improvement in intensity estimation is

due to the use of imputed activity types, and how much is due to the increased modeling

flexibility and use of a richer set of features from more accelerometers. Again, our work

resolves these problems by fitting essentially the same models with and without imputed

activity type information, thereby isolating the impact of using estimated activity types on

233



intensity estimation performance.

3. Data collection setting: Here we are referring to the distinction between the laboratory

and free living settings. Subjects in the study by Albinali et al. [2010] performed one of

two routines with specified activities in a fixed order. Although these routines included a

component “in the field”, data collection is still more similar to the laboratory data collec-

tion of Mannini et al. [2013] and Sasaki [2013] than the free living component of the study

by Sasaki [2013]. This is important because we found in Chapter 7 that classification of

physical activity type was much more successful with laboratory data than it was with

free living data. In our results, the two stage procedure offered the largest gains relative

to the one stage procedure in the laboratory data from Mannini et al. [2013]. In that case,

all point estimates for the difference between these estimation strategies were positive. On

the other hand, with the free living data from Sasaki [2013], in every case the difference in

performance between the two estimation strategies was small; in several cases, the point

estimates for these differences indicated that the two stage procedure did worse than the

one stage procedure. One possible explanation for this behavior is that the first stage classi-

fication results are much better with laboratory data than they are with free living data, and

therefore offer more in the way of useful information when estimating activity intensity.

4. First stage classification categories: Albinali et al. [2010] used a much finer system of

activity type categories than we did. It therefore stands to reason that their first stage

classification is more informative about intensity than ours. However, a finer system of

first stage classification also makes implementation in the free living setting that much

more difficult. First stage classification rates were very low in the free living data even

with our more limited set of 4 categories.

5. Problem solved: Albinali et al. [2010] focused on regression models estimating numeric

kilocalories, while we developed classification models for intensity. It may be that the

information provided by imputed activity types yields larger performance gains for re-

gression than it does for classification.

Unfortunately, these differences between our studies are confounded, so we cannot deter-

mine which of them is most important in explaining the differing conclusions drawn from our

results and those of Albinali et al. [2010] regarding the merits of using the two stage procedure.
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However, in our opinion, the limitations of the work of Albinali et al. [2010] discussed in points

1 and 2 above are very important and make it essentially impossible to draw the conclusion

that imputed activity types are informative about intensity from their results. To be clear, we

think their methods are interesting; the results they present simply do not allow us to isolate the

impact of using a two stage procedure on intensity estimation. Our view is that the remaining

factors discussed above combine to tell a consistent story: If we could improve the first stage

classifiers sufficiently that we could achieve high first-stage classification rates with a detailed

system of activity type classes in a free living setting, we might be able to achieve small gains

in estimation of intensity by using a two stage procedure. However, with the current state of

the art, activity type classification rates are too low in the free living setting and the two stage

procedure may actually yield worse performance with free living data.
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C H A P T E R 9

CONCLUSION

In this work, we have discussed methods for classification of physical activity according to

activity type or intensity level using CRF models. Our primary contributions to the statistical

literature are three new estimation algorithms for CRF models. Our primary contributions to

the literature on classification of physical activity using accelerometer data are evidence that

models like CRFs can provide improved classification performance relative to other models in

some settings, and a careful study of the impact of the treatment of activity type in estimation of

activity intensity. We review these contributions, their limitations, and opportunities for future

work addressing these limitations in this Chapter. We begin with a discussion of our model and

estimation strategies in Section 9.1, and then review what we have learned about the impact of

other factors such as the data collection setting, accelerometer placement, and the use of two-

stage classification procedures on classification of physical activity in Section 9.2.

9.1 Discussion of Model and Estimation Strategies

We developed three new estimation procedures for linear chain CRFs. Of these, the BB-Par-

CRF and BB-Nonpar-CRF methods performed well relative to the other methods we compared

in our simulation study and applications to classification of physical activity type and intensity.

The performance of the third approach, represented by the RF-CRF and closely related RF-seq-

CRF methods, was less consistent.

Our most successful approach was the BB-Par-CRF method, in which we used a parametric

model specification and combined bagging and boosting to estimate the model parameters. In

many cases, this method had similar classification performance to the Par-CRF method, which
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used the same parametric model specification and obtained parameter estimates via maximum

likelihood. However, the BB-Par-CRF did outperform the Par-CRF in several cases for classifica-

tion of both activity type and intensity. Although we do not have a formal proof that our estima-

tion procedure acts as a regularizing technique, this is one way of interpreting similar boosting

algorithms: the parameter estimates slowly converge to the maximum likelihood estimates, but

we use early stopping with evaluation of classification performance on a validation subset to halt

the estimation process before the maximum likelihood estimates have been reached and we have

overfit the data. This view of our bagging and boosting procedure could explain the differences

in performance between our method and the method using maximum likelihood estimation.

Our comparisons did not include an L2 regularized parametric CRF, which is another com-

mon approach to reducing overfitting in CRF models. We do not necessarily believe that the BB-

Par-CRF would outperform an L2 regularized CRF in terms of classification performance, but

boosting does offer the potential for reduced computation time. Estimation with an L2 penalty

requires selection of the penalty factor. This is usually done through cross validation. This can

be very slow. Our boosting procedure also uses cross validation to select a tuning parameter:

the number of boosting iterations. However, optimization with respect to this discrete tuning

parameter is simpler than optimization of the continuous L2 penalty.

The other method we proposed that worked well was the BB-Nonpar-CRF method. In this

approach we used a non-parametric specification for the component of the model relating the

accelerometer features to the activity types, and we again combined bagging and boosting to

perform the parameter estimation. This method is similar to the ideas introduced by Dietterich

et al. [2004], with two modifications: (1) the use of bagging and a LOP to combine the model

fits obtained with each bagged training sample, and (2) the use of a random subset of features

for each tree in the boosting process. As we discussed in Section 7.6, it appears that the most

important of these changes was the use of a LOP to combine results from several fits using

different partitions of the data into training and validation subsets. Bagging and random subset

selection had limited impact on the predictive performance of the model fit. A simpler and faster

method than our BB-Nonpar-CRF that would achieve similar classification performance would

be to perform a procedure analogous to 10-fold cross validation to obtain 10 model fits based

on different partitions of the data into training and validation sets, and then combine those 10

models using a LOP.
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Our final methods combined the ideas behind estimation of static random forests with the

CRF model. We proposed two variations on this idea using different strategies for bagging the

observations: the RF-CRF and RF-seq-CRF. These methods performed well in many cases, but

had large drops in classification performance for a few of the more difficult classification tasks.

Additionally, we did not find evidence that bagging at the level of observations for individual

time points as in the RF-CRF method led to improvements in classification performance relative

to the simpler method of bagging complete observation sequences as in the RF-seq-CRF method.

Through simulation studies and applications to classification with real data, we have demon-

strated that CRFs can offer better classification performance than a HMM that models the ob-

servation distributions with a mixture of Gaussians, even after an initial transformation of the

features to approximate normality. In our view, this result holds for our particular application

and data set because the accelerometer features have a complex joint distribution that is not well

modeled by a mixture of Gaussians with a small number of mixture components, and our sam-

ple size is fairly small relative to the number of features we have used so that there is not enough

information in the data to use a large number of mixture components. An alternative approach

to modeling that we have not explored would be to select a small subset of the features that are

most informative, and to model the joint distribution of those features more carefully. We have

chosen to use a large number of features because we believe that these features are all likely to

be informative about activity type and intensity.

Our simulation studies and data applications have also demonstrated that accounting for

sequential dependence in activity type and intensity can lead to improved classification perfor-

mance. The improvement in classification performance that was achieved by using a dynamic

model instead of a static model was largest in the laboratory data sets, and in the cases of the

simulation study with low Bayes error rate. As we have discussed, one possible explanation for

this is that when the overall classification rates are low, the dynamic models have less to gain

from sharing information across time. Under this theory, if the overall classification rates can

be improved in the free living setting, the difference in performance between the static and dy-

namic methods with free living will be more apparent than they were in our applications. We

believe that improved classification rates are possible in the free living setting; we will discuss

this issue more in Section 9.2.

The method McShane et al. [2013] proposed for combining a static classification method with
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the dependence structure of a HMM performed very well in almost every case, particularly when

the static classification method was a random forest. This method has the major advantage over

CRFs of being much faster to estimate. It can be viewed as an intermediate solution between

HMMs and CRFs in which the parameters governing transitions between classes in adjacent

time points are estimated via maximum likelihood in the HMM, and the parameters describing

the relationship between the features and the classes are estimated discriminatively. The good

performance of this approach suggests that in applications to physical activity classification,

discriminative estimation of the parameters describing transitions between activity types is less

beneficial than discriminative estimation of the parameters describing the relationship between

the features and the activity classes.

We now turn to some criticisms of our methods. We focus first on limitations of the basic first-

order Markov linear chain CRF model that forms the foundation of all three of our methods,

and discuss several modifications that could be made to address those limitations. Some of

these modifications would be feasible with our data, but others would likely require more data.

Nevertheless, we mention them as possibilities for future research. We then discuss alternatives

to the more general approach we have taken of dividing the accelerometer signal up into non-

overlapping windows and summarizing the signal in each window with a vector of features.

One way of thinking about limitations of our model is to examine each of the assumptions

we made in Section 5.1, and whether those assumptions can be relaxed. Our first simplifying

assumption was that the different observation sequences are independent of each other given the

observed features, and that the observation sequences for each subject are described by a CRF

with the same parameter values. The second part of this assumption is clearly false. Different

people people engage in different activity types with varying frequencies: for example, some

people walk or ride a bike more often than others. Different people also have different patterns

of motion, so that the locations in the space of features that are associated with each activity type

vary across different individuals. We have not addressed this variation across individuals in our

models because we believe that we would need data for more subjects and for more time per

subject in order to model this variation. However, it would be interesting to explore the use of

hierarchical models to allow for variation among individuals in future work.

Our second simplifying assumption was that activity types obey a first-order Markov struc-

ture, so that in the graph representing conditional dependence relationships, each node Yi,t is
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connected only with its immediate neighbors Yi,t−1 and Yi,t+1. Again, this assumption is clearly

incorrect. As we have discussed, we believe that using a more flexible model for sequential de-

pendence would be inappropriate for the data gathered in the laboratory, where subjects were

told the order and duration of activities to perform. We focused on the model specification that

we used so that we could apply the methods we developed with all three of our data sets.

However, we believe that a more flexible model for time dependence would be appropriate

in the free living setting. There are several ways that the first order structure used in our models

could be relaxed. One idea would be to adapt the variable duration models that have been

proposed for HMMs for use with CRFs. Roughly, these methods separate the modeling for

transitions from a class back to the same class from the modeling for transitions between different

classes, and use a more general specification for the transitions back to the same class. Another

alternative would be to simply expand to a second order Markov structure. Ordinarily, this

would involve a large increase in the number of model parameters. For instance, with 6 classes

moving from a first order structure to a fully parameterized second order structure means the the

number of parameters used in modeling transitions jumps from 62 = 36 to 63 = 216. However,

we have coded the data in such a way that all moves from one activity category to another move

through the Transition category. We could use that information to formulate a second order

model with a relatively small number of transition parameters. A third alternative would be to

use a specification that is common in CRF models in which the compatibility of observing states

r and s at times t and t + 1 depends on the feature values at those times. For example, this

possibility is allowed for by the parameterization used by Dietterich et al. [2004].

While any one of these approaches might be feasible to estimate with our free living data set,

we believe that they would lead to only modest improvements in classification performance.

This is because with the free living data, our models that accounted for time dependence models

led to only negligible improvements in classification performance relative to the static methods.

It seems likely that without more fundamental changes in the available data (which we will

discuss in Section 9.2), small tweaks to the time dependence model will not lead to substantial

improvements to classification performance with free living data.

Another restriction imposed in our formulation of the CRF is that the accelerometer features

in each time window are only informative about the activity type and intensity at that time. In

the graphical representation of the model, this restriction is reflected in the fact that there is an
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edge connecting Yi,t with xi,t, but not with xi,t∗ for any other time index t∗. It seems likely that

the accelerometer features are also informative about the activity type and intensity in nearby

windows. This feature of the model could be easily changed by inserting links between Yi,t and

xi,t∗ for values of t∗ within ±w indices of t in the graph. In fact, most specifications of CRF

models allow for this type of dependence. We adopted the formulation in which Yi,t depends

only on xi,t so that we could compare the different treatments of the feature vectors in a CRF

and a HMM with similar structures. However, including these edges in the graph could lead to

improved classification results.

All of the methods that we included in our comparisons are based on the same general ap-

proach: we divide the acceleration signal up into non-overlapping windows 12.8 seconds long,

extract a vector of features summarizing the acceleration signal in each window, and fit a model

that relates these features to the activity type in each window. However, this is not the only op-

tion for modeling these data, and other approaches we have not considered may offer superior

performance. One option that was suggested by Zheng et al. [2013] and Lester et al. [2005] is to

combine information from several overlapping windows of different lengths. This idea could be

implemented within a single CRF by expanding xi,t to include features from multiple window

lengths, or by using a LOP to combine inferences from multiple CRFs operating at different time

scales. Another option would be to abandon the windowing approach altogether and model the

accelerometer signal directly. We are not aware of any previous methods that take this approach,

but it may be worth exploring in future research. It may also be beneficial to explore the use of

new features.

9.2 Discussion of Applications to Physical Activity Classification

In this Section, we discuss what we have learned about the impact of several different factors

related to data collection and processing on classification performance. First, as with previous

researchers, we found that classification is much more difficult with free living data than it is

with data gathered in the laboratory. We discuss several reasons for this and suggest some ideas

for obtaining improved classification rates with free living data. We also review our findings

relating to the impact of the accelerometer location on classification performance, and on the use

of information about physical activity type in estimating its intensity.
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We observed a large drop in classification performance when using free living data instead

of data collected in the laboratory. It is natural to consider what the causes of this drop in perfor-

mance are and how they can be addressed. Moving from the laboratory to the free living setting

introduces two related challenges: (1) individuals’ movement patterns are more complex, and

(2) data collection is more difficult.

The increased complexity of movement patterns in the free living setting means that there

is more variability in the accelerometer signal associated with each activity class. For instance,

locomotion in the laboratory setting might involve walking back and forth down an empty hall-

way with the arms free to move at the sides. This leads to a strong, uninterrupted cyclical pattern

in the acceleration recordings. In the real world, an individual may need to carry objects, navi-

gate around other pedestrians or obstacles, move up and down inclines or steps, and occasion-

ally pause for short periods of time. This increased variability in the behaviors that constitute

locomotion results in less consistent and easily identifiable patterns of acceleration, and in turn

makes the classification problem fundamentally more challenging. This is an important factor

leading to lower classification rates in free living data that cannot be solved, although some of

the revised modeling options we discussed in the previous Section may help the situation.

Data collection is also much more difficult in the free living setting. In particular, as we dis-

cussed in Chapter 3 our recorded labels for physical activity type are less reliable. This impacts

the training of the classification methods, since the classifiers may learn to associate certain pat-

terns in the accelerometer signal with the incorrect labels. It also impacts our scoring of the

success of the classifier through leave one subject out cross validation, since a predicted class

label may give an accurate description of a subject’s behavior but disagree with the recorded

class. One way to limit this problem would be to incorporate a method of validating the class

labels in the study design, for instance by recording videos of subjects while they are wearing

the accelerometers.

Another challenge is that the free living data from Sasaki [2013] contain data for fewer than

half as many subjects as we had in either of the data sets gathered in the laboratory. We believe

that it would be helpful to have data from a larger number of subjects because of the variabil-

ity in accelerometer signals across subjects illustrated in Figure 9. With only 15 subjects, the

accelerometer features one particular subject sometimes lie in a region of the feature space that

does not contain data from any of the other subjects. For example, in Figure 9, the data from
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subject 9 include a cluster of points around 1.05 on the horizontal axis and 0 on the vertical axis

but there are no data in this region for any of the other subjects. To some extent this is an ir-

resolvable consequence of the fact that different subjects have different patterns of movement.

However, this problem would be mitigated to some extent if we had data from more subjects.

Also, although the free living data have observations over a longer time period for each subject

than the laboratory data do, they do not necessarily have recordings for a variety of activities

for each subject. For example, 6 of 15 subjects engaged in fewer than 5 minutes of time labeled

as locomotion during the time they were observed, including one subject with no time in the

locomotion category. Similarly, only three subjects engaged in Recreational activity in the free

living component of the study, with a total of about 2 hours and 15 minutes spent in that activity

category.

It is difficult to determine how much of the drop in classification performance from the lab-

oratory setting to the free living setting is due to the inevitable increased difficulty of the classi-

fication problem and how much is due to other factors that we could address such as increased

error rates in the recorded labels or the smaller number of subjects and limited amount of time

spent in some activity categories. However, we are encouraged by the plot in Figure 63, which

indicates to us that at least some of the discrepancies between the predicted and recorded class

labels may be due to errors in data collection. We believe that better classification rates could be

achieved in the free living setting if more training data were available and we could ensure that

the activity type labels were accurate. It may also be helpful to use activity type categories de-

scribing specific postures, and avoid more ambiguous categories such as Moving Intermittently.

As part of our applications to classification with real physical activity data, we investigated

the impact that the accelerometer placement has on the success of the classifiers. Our results

confirm the earlier work by Mannini et al. [2013] and Sasaki [2013] indicating that the best classi-

fication results can be achieved using data collected using an accelerometer placed at the ankle.

Aside from whether the data were collected in the laboratory or in a free living setting, the

accelerometer location is often the most important determinant of classification success. For in-

stance, in the free living data from Sasaki [2013] all of the classification methods we compared

had substantially improved performance when using data from the ankle instead of the wrist,

and most of these classification methods did about as well as each other.

We also contributed to the discussion in the literature regarding the merits of using informa-
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tion about a subject’s activity type when estimating the intensity of their activity. Our results

suggest that if the true activity type were known, it would provide useful information about

activity intensity that is not contained in the accelerometer signal. However, in most cases the

activity type is unknown and must be estimated. In the laboratory setting, where activity type

classification methods perform well, we found some evidence that small gains in classification

of intensity could be achieved by using a two-stage procedure in which we first classify activity

according to type and then use those type estimates as an input to methods that classify accord-

ing to intensity. In the free living setting, where classification according to activity type was less

successful, using this two stage procedure did not lead to improved classification according to

intensity level. In some cases, the two stage procedure actually had worse classification rates

than a one stage procedure that did not make use of activity type. As we have discussed, it may

be possible to improve the activity type classification results in free living data. This could lead

in turn to improved performance of the two-stage procedure in free living data.
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