The effects of differential gain and loss on sequential two-choice behavior.

Leonard. Katz

University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation

Katz, Leonard., "The effects of differential gain and loss on sequential two-choice behavior." (1963). Doctoral Dissertations 1896 February 2014. 1642.
https://scholarworks.umass.edu/dissertations_1/1642

THE EFFECTS OF DIFFERENTIAL GAIN ANO LOSS ON SEQUENTIAL TWO-CHOICE BEHAVIOR

KATZ. 1963

The Effects of Differential Gain and Loss on Sequential I'wo-Cholce Behavior

Leonard Katz
B. S. University of Hassachusetts M. i. University of lassachusetts

Dissertation Submitted in Partial Pulfillment of tne Requirements for the Doctor of Philosopy Degree

Advisor: i. H. leichner
May, 1,63
university of Massachusetts

Table of Contents

Introduction Pase
Method 7
Apparatus 7
Procedure 8
Subjects. 9
Results. 10
Expected value 10
Gein and loss 14
Sequential statistics 19
Variance preferences. 19
Discussion 20
Summary 23
References. 25
Acknowledginents. 27

Introduction

In order to increase the range of reinforcement above that of merely having S's predictions confirmed or disconfirmed, $_{\text {d }}$ monetary incentive has been introduced into the sequential two-choice situation (e.g., Goodnow, 1955; Siegal \& Goldstein, 1959). The purpose of the present experiment was to study the effects on two-choice behavior of varying monetary gains and losses associated with a single response while holding the reinforcement of the other response constant.

In the two-choice situation, first used by Humphreys (1939), a stimulus is presented to whioh Ss respond by predicting which one of two mutually exclusive E-manipulated events will occur. The two events, occur with fixed, but usually unequal, frequencies in a random sequence for a series of trials and the occurrence of an event is not contingent on S^{\prime} s behavior. The two events, designated \mathbb{P}_{1} and \mathbb{E}_{2}, occur with respective probabilities Π and $1-\pi$. Predictions of E_{1} and E_{2} by \underline{S}^{\prime} s are designated, respectively, as the responses \mathbb{A}_{1} and \mathbb{A}_{2}. Generally, Ss predict \mathbb{B}_{1} more as π increases (e.g., Grant, Hake, and Hornseth, 1951). If T $1 s$ greater than $1-\pi$, Ss predict E_{1} nore as the number of trials increases (Derks, 1962).

Slegal and Goldsteln (1959) demonstrated the effect of equal monetary gains and losses. With Π equal to $.75, A_{1}$
responding increased under conditions in which Ss gained 5% for each correct response as compared with conditions in which Ss noither gained nor lost money. The level of A_{1} responding was highest under conditions in which Ss gained 5\% for each correct response and lost 5% for each incorrect response. Thus, the introduction of monetary incentive tended to make Ss respond in a more nearly optimal manner, because, for it greater than .5 and equal gains and losses, always responding With A_{1} is the optimal strategy. Suppes and Atkinson (1960) demonstrated that increasing the level of monetary incentive increases this effect. For 11 of .6 , Suppes and Atkinson found that percentage of A_{1} responses increased progressively for gaine and losses of 0%, 5%, and 10%.

Taub and Myers (1961) explored the effects of differential payoff by varying the gain associated with $\mathbb{E}_{\mathcal{q}}$ with constant gain associated with E_{2} and constant loss assooiated with either event. As the difference in expected value ($\Delta E V$) between the events increased, the event with the higher IV was predicted more frequently. In an extension of this experiment by Myers, Reilly, and Taub (1962), three levels of each T, gain, and loss were varied factorially to produce several levels of gV. Whlle cholce of the event with greater

1 The EV of an E_{1} cholce, for example. is defined as the product T times the amount that can be gained minus the product 1-T times the amount that can be lost; that is, $2 V\left(\Lambda_{1}\right)$ $=T G\left(A_{1}\right)-(1-T T) L\left(A_{1}\right): \quad \Delta E V=E V\left(A_{1}\right)-\operatorname{IV}\left(A_{2}\right)$.

QV increased generally with increases in $\triangle \mathrm{EV}$, there were occasional discrepancies, particularly with regard to negative expected differencos. Bvents with negative EV generally altered choice behavior more than events with equal but positive expectancles; $1 . e .$, a loss had a greater effect than a gain of equal size.

Expected value and $\triangle B V$ have not been found to be accurate predictors of choice in situations similar to the sequential two-shoice situation; e.g., the cholce between two gambles. Pruitt (1962), citing gambling data of Mosteller and Nogee (1951) and Coombs and Komorita (1951), suggests a breakdown in prediction of choice from small EV or small differences in $\mathbb{E V}$.

The most specific objective of the present study, therefore, was a detailed assessment of effects of relatively small EV's on cholce of E_{1} and E_{2}. For $T=.50,1,2$, and 4 units of gain associated with A_{1} were combined factorially with 1, 2, and 4 units of loss associated with \mathbb{A}_{1}. Gain and loss associated with \mathbb{A}_{2} were each 1 unit for all experimental groups. Table 1 presents BV for each combination of gain and loss. The two measures employed were percentage of choices of $I_{1}\left(1.8 ., A_{1}\right.$ responses) and first-order conditional probabilities of Δ_{1}. First-order conditional probabilities of A_{1} are the probabilities of A_{1} on trial $n+1$ given that, on trial $n_{,} A_{1}$ was followed by $\mathbb{E}_{1}, p\left(A_{1} \mid A_{1} B_{1}\right)$, A_{1} was followed by $E_{2}, p\left(A_{1} \mid A_{1} E_{2}\right), A_{2}$ was followed by $B_{1}, p\left(A_{1} \mid A_{2} E_{1}\right)$, and A_{2}

Table 1

Combinations of Gains and Losses With Associated $A^{\text {IV's }}$ in Each Cell

	Gain		
	1	2	4
2	0.0	+0.5	+1.5
4	-0.5	0.0	+1.0
2	-1.5	-1.0	0.0

was followed by $E_{2} p\left(A_{1} \mid A_{2} E_{2}\right)$.
For percentage of A_{1}, the prediction was a direct relation between such choices and $\Delta^{\text {PV }}$. Thus, the smallest number of A_{1} choices was predicted for the group in which $\Delta^{E V}=-1.5$, and the largest number for the group in which $\Delta^{T V}=+1.5$. Considering only $\triangle^{E V}$, no differences among the three $0 \Delta^{E V}$ groups could be predicted. However, a hypothesis based on the variance differences among the three games could be made. Coombs and Pruitt (1959) demonstrated that preferences for gambles existed which were based on variance differences between gambles. For the present study, it was predicted that choice of the response with the higher payoff variance (the \mathbb{A}_{1} or the gain-loss combinations $[2,-2]$ and $[4,-4]$) would be monotonically related to the size of the variance. Thus, if the combination $(1,-1)$, with the smallest varlance, had the smallest number of A_{1} choices, $(4,-4)$ should have the largest and vice versa.

First-order conditional probabilities for equal gains and losses have been reported previously by Suppes and Atkinson (1960). With $T=.60$, the probability of A_{1} following $A_{1} E_{2}$ was greater than the probability of A_{1} following $A_{2} E_{1}$ during the first 150 trials. At the end of 240 trials, the two probabilities were equal, a result that is contrary to the notion that punishment in the form of a loss should decrease the frequency of an incorrect choice. Atkinson (1962) has presented a mathematical model of choice that includes
parameters for incentive and which predicts the observed inversion of $p\left(A_{1} \mid A_{1} \mathbb{B}_{2}\right)$ and $p\left(A_{1} \mid A_{2} B_{1}\right)$. In this model, the size of the difference between the two porbabilities is an increasing function of the amount of monetary incentive. The present study, which included more trials than the Suppes and Atkinson experiment, provided sequential data which were more nearly asymptotic and, therefore, provided a basis for a clearer demonstration of the relationships among the firstorder conditional probabilities.

Aoparatus. Bach of four Ss sat in adjacent stalls before a 7 x 9 inch game board. On each board were two toggle switches; one of which was 2 inches to the left of the vertical centerline and the other 2 inches to the right of the vertical centerline. Green pilot lights, 1 inch in diameter, and 3 inches above each switch, were the event stimuli. A smallex amber neon glow lamp, 1 inch above each pilot light was IIghted when the togsle switch for that pilot Ilght was thrown. Finally, above each neon lanp was a rectangular White paper indicating the amount of gain for correct responses and the amount of loss for incorrect responses. For two game boards, the B_{1} pllot 11 ght and the A_{1} switch and neon light were on the right side; for the other two, they were on the left. At the beginning of the experiment, Ss were given $\$ 1.00$ worth of white. red, and blue poker chips worth 1,2 , and 4 units, respectively, redeemable at $.25 \%$ per unit. Each of \underline{E}^{i} : two assistants stood between and behind two of the four $\mathrm{S} s$ and dispensed and reclaimed chips after each trial.

When \underline{S}^{\prime} s switches were closed, corresponding lights came on in an adjacent room in which B recorded S^{\prime} 's responses. There was a one-wey vision glass betweea the rooms.

Procedure. The instructions were read to Ss at the beginning of the session informing them of the number of units and monetary equivalent of each chip and about the number of units they would gain with a correct and lose with an incorrect prediction. Also, they were informed that the $\$ 1.00$ in chips given to them was "their money". Further, eny aditional money they won could be taken with them in addition to the $\$ 1.00$ but whatever money was lost would be deducted from the \$1.00. Finally, they were told to win as much as possible rather than to be correct as often as they could.

Bach trial was initiated by a .5 sec. buzzer which was the signal to respond. Two sec.later one of the green event stimuli was lighted. Ohips were then given or taken away from Ss by E's assistants. Three sec. later the event stimulus went out and Ss opened their switches. The intertrial interval was 2 sec.

The sequence of equal numbers of E_{1} and E_{2} events through 400 trials was randon with the restrictions of equal numbers of each event in each block of 50 trials and of occurrence of the expected number of runs of each length (Nicks, 1959). Then, the sequence was divided into four starting points, each separated from the adjacent starting points by 100 trials. For every five Ss in each experimental group, the session bogan at one of the four starting points and made a complete cycle of 400 trials. The sequence was programmed on a Western Union tape transmitter.

Subjects. The Ss were 186 undergraduate males and ferales at the University of Massachusetts. Six Ss were discarded, two because of fallure to complete the experiment and four because of recording errors. The remaining 180 Ss were assigned in equal groups of 20 Ss to each of the nine experimental groups. The ninc games were run successively With 10 Ss in each game (assigning every ilve Is in each game to one of two starting points); then the experiment was replicated with an additional 10 Ss in each game (assigning every five Ss in each game to one of the two remaining starting points).

Results

Expected value. The data were analyzed as function of $\triangle E V$, Sign of $\triangle Z V$, and Trials. Figure 1 shows mean percentages of A_{1} responses in successive 50-trial blocks for each of the nine experimental groups. Bach curve is 1dentified by the combination of gain and loss and by the $\triangle E V$. The three $O_{\Delta} \mathbb{E V}$ did not separate systematically and each oselliated about 50 per cent occurrence of A_{1}. The mean percentage for the $+\Delta \mathbb{E V}$ groups increased in the order $+1.0,+.5$, and +1.5 and the mean percentage for the $-\Delta$ EV groups decreased in the order $-1.0,-.5$, and -1.5.

In each $+\triangle \mathbb{E V}$ game $\left[\operatorname{EV}\left(A_{1}\right)>\operatorname{EV}\left(A_{2}\right)\right]$ and in each $-\Delta^{\operatorname{BV}}$ game $\left[\operatorname{EV}\left(A_{2}\right)>E V\left(A_{1}\right)\right]$, optimal responses were A_{1} and A_{2}, respectivaly. Therefore, in order to study the effect of $\Delta^{E V}$ on the frequency of optimal responding, it was necessary to contrast the frequency of A_{1} for each $+\Delta E V$ group with the frequency of A_{2} for each $-\Delta E V$ group. The mean percentage of A_{1} for each $+\triangle Z V$ game and the mean percentage of A_{2} for each $-\Delta$ VV game for Blocks 7 and 8 combined (Trials 301-400) are plotted in Figure 2. In the analysis of variance performed on the frequency of optimal responses in $4 \triangle E V$ and $-\triangle$ EV groups In each of Blocks 7 and 8 (Table 2), $\Delta^{\text {EV }}$ (without respect to sign) is significant at $p<.01$. But whether $\Delta^{E V}$ was positive or negative (Sign) and the A LV Xign interaction were not

$$
\begin{array}{cccccccc}
1 & 1 & 1 & 1-1 & 1 & 1 & 1 & 1 \\
\hdashline 1- & 51-0 & 101- & 151- & 201 & 251- & 300- & 351-1 \\
50 & 100 & 150 & 200 & 250 & 300 & 350 & 400
\end{array}
$$

Figure 1. Pescountage of ai choices through successive blocks of 50 trials for each combination of gain and 1088 (within parentheses) or $\triangle^{8 V}$.

Table 2
Analysis of Varlance of Frequency of Optimal Lesponse as a Function of $\triangle U V$ and Sign of $\triangle V V$
during Trial-Blocks 7 and 8

Source
$d f$
MS
E

Between Ss
119

$\Delta E V$	2	747.5	5.26%
$\operatorname{Sign}(S)$	1	333.5	2.31
$\Delta E V \times S$	2	3.1	\ldots
$S S / \Delta V \times S$	114	142.3	\ldots

Hithin Ss 120

Blocks (B)	1	30.0	2.20
$B X \triangle^{E V}$	2	2.5	--
$B \times 5$	1	2.0	--
$3 \times 5 \times \Delta{ }^{\text {P }}$	2	0.0	--
Ss \times B/ $\Delta^{\text {EV }} \times \mathrm{S}$	114	13.6	

$$
\# 2<.01
$$

significant. Nor were any of the sources involving the last two blocks significant.

Gain and Ioss. Percentages of A_{1} during Prials 301-400 were also analyzed as functions of gain and loss assoclated with A_{1}, without regard to $A E V$. Figure 3 presente the percentage of A_{1} for each experimental group for Trials 301-400. Hach point on the graph represents a different group. For example, the point represented by the abscissa value, 4 , and the parameter value, -2 , identifies the group $(4,-2)$. As gain increased, percentages of occurrence of A_{1} increased and as loss increased, percentages of occurrence of A_{1} decreased.

Orthogonal polynomials for the spacing 1, 2, 4 were constructed according to the procedure of Robson (1959) and a trend analysis was performed on the frequencies of A_{1} during Trials 301-400 (Table 3). Both gain and loss had significant linear ($p<.001$) and quatratic ($p<.01$) components. In addition, an increase in either gain or loss from one unit to two units had a greater effect on the percentage of A_{1} then an increase from two to four units. This suggestion was supported by Duncan range tests (Edwards, 1960) performed on the mean A_{1} frequencies of adjacent units of reinforcement ($p<.005$). The gain x loss interaction was not significant. Thus, the percentage of A_{1} was a linear function of the gain and loss functions and both the gain and loss functions were negatively accelerated with large initial slopes.

Table 3
Analysis of Variance of Frequency of A_{1} Responses as Functions of Gain and Loss during Trials 301-400

Source	df	H3	T
Gain (G)	2.	9783	39.93**
Linear	1	17600	71.86\%
Quadratic	1	1960	8.00\%
Loss (L_{1})	2	8895	36.30\%*
Innear	1	15775	64.38**
Quadratic	1	2014	8.22**
GXIL	4	157	. 64
Ss/Gx L	171	245	

*2 $2<.01$

Sequential statisties. P1gure 4 shows the means for each of the first-order conditional probebilities of an A_{1} response through successive blooks of 50 trials. The means for all blocks for which data were avallable only on less than 19 Ss were omitted. All the omitted means are those for probabilities contingent on the non-optimal response. In some of the last five blocks, some 3s never made the non-optizal response and, thus, provided no data. To use the data of the remaining $\mathrm{g} s$ in each group would bias a mean in favor of those who falled to use the optimel response. The order of conditional probablilties in each experimental combination in Block 8 was $p\left(A_{1} \mid A_{1} B_{1}\right)>p\left(A_{1} \mid A_{2} i_{1}\right)>$ $p\left(\mathbb{A}_{1} \mid \mathbb{A}_{1} \mathscr{B}_{2}\right)>p\left(\mathbb{A}_{1} \mid A_{2} \mathbb{A}_{2}\right)$. When comparisons ainong the experimental combinations were pade in Block 8, it was observed that each conditional probability increased as gain increased and decreased as loss increused.

Variance preferences. The preferences for rimk were amall and unsystematic for experimental combinations ($1,-1$), $(2,-2)$, and $(4,-4)$. in each group, A_{1} and A_{2} were chosen nearly equally as ofton. With ragard to individuals, nine Ss in $(2,-2)$ and six $\operatorname{si} \ln (4,-4)$ made less than 50 per cent $A_{1}{ }^{\prime}$'s in the last 100 trials.
,
Figure 4. Means of first-order conditional probabilities of $A 1, p\left(A_{1} \mid A_{i}, j\right), i, j=12$, for each
combination of gain and loss through successive blocks of 50 trials.

Discussion

With respect to percentage of \mathbb{A}_{1}, the increase and decrease expected, respectively, for successively larger positive and negative $A^{\text {VV's }}$ did not occur. Instead, percentage A_{1} increased in the order $+1.0,+0.5$, and +1.5 , and decreased in the order $-1.0,-0.5$, and -1.5 . The non-significant interaction of size of EV and direction indicated parallel trends for positive and negative $\triangle V^{\prime}$ s. The fallure to obtain a monotonic relationship between choice of the optimal response and size of $\triangle E V$ suggests that $\triangle E V$ is of limited value as a single index for different combinations of π, gain, and loss.

The differences between $+\triangle E V$ and $-\triangle E V$ combinations of the same absolute value were small and nonsignificant. However, the slightly greater percentages of optimel responses for negative $\triangle E V$ games were in the same direction as Myers, Rellly and Taub's (1962) finding of a slightly greater effect on choice of loss than of equal-sized gain. Percentages of choices of A_{1} increased with anount of gain and decreased with amount of loss. Both functions were negatively accelerated and, as suggested by the nonslgnificant interaction of gain and loss, the gain and loss functions combined linearly to affect percentages of A_{1}.

During all trials, percentages of A_{1} were nearly the same for the three combinations of equal gain and loss. Varlance of gain and loss for equal $\triangle V^{\prime \prime}$ s, therefore, did not have differential effects.

In each experimental combination A_{1} was less likely to occur on $n+1$ when it was punished on n then when A_{2} was punished on n. In addition, the greater the punishment, the smaller the probability of A_{1} on $n+1$. The results do not agree with the finding of Suppes \& Atkinson (1960) of indtially greater $p\left(A_{1} \mid A_{1} \mathbb{B}_{2}\right)$ than $p\left(A_{1} \mid A_{2} m_{1}\right)$ and equality at the end of 240 trials. The present data suggest that the data of Suppes and Atkinson which were puzzling when viewed as asymptotic results, were, in fact, not truly asymptotic. This indicates that it is necessary to mun large numbers of trials (in excess of 400) in the two-choice situation in order to obtain stable data.

The results of the present study suggest that further study of EV consepts is not likely to be fruitful. However, two-choice behavior did exhibit orderly relationships with gain and loss and these variables appear to be worthy of additional exploration. Several aspects of the present study require further clarification. For example, the relationship between the effects of the arbitrarliy chosen units of incentive and the effects of the conventional units of money should be investigated. It has been assumed that the effects of the two kinds of units are equal through
multiplication of a positive constant but this may not be true. Related to this problem is the problem of the effects of amounts of monetary incentive larger than those used in the present study. For example, choice behavior may change when a unit of reinforcement is worth lo申 instead of 25%. In addition, the effect on choice of varying Ss $^{\prime}$ initial stake should be studied. The variables of greatest interest are the frequencies of occurrence of E_{1} and E_{2}. Unequal frequencies have been demonstrated to have large effects on choice (e.g., Myers, Reilly, and Taub, 1962). Detalled studies of unequal event frequency and differential reinforcement should be made.

The effects on two-cholce behavior of varying the monetary gain and loss associated with a single response (A_{1}) while holding the reinforcement of the other $\left(A_{2}\right)$ constant were investigated. Three levels each of gain and loss were varied factorially among nine experimental groups of 20 Ss each. The events, I_{1} and E_{2}, predicted by the responses A_{1} and A_{2}, respectively, occurred randoinly and equally often in each 50-trial block of a 400 trial sequence.

Contrary to expectation, frequency of choice of A_{1} did not increase with increases in the expected value of $\Lambda_{1}\left[\operatorname{EV}\left(\Lambda_{1}\right)\right]$, for all $\operatorname{EV}\left(A_{1}\right)$. However, frequency of A_{1} cholce was an increasing negatively accelerated function of the amount of gain and a cecreasing negatively accelerated function of the amount of loss associated with A_{1}. The absence of a significant gain X loss interaction suggested that frequency of A_{1} choice was a linear function of the gain and loss functions. The results suggest that while $\dot{L V}$ notions are of limited predictive value, the parameters of gain and loss are worthy of further study.

The effects of reinforcement on the first-order conditional probabilities $p\left(A_{1, n+1} \mid A_{1, n} \mathbb{E}_{j, n}\right)$, where $n i s$ trial number and 1, $j=1,2$, were also investiceted. In general, these probabilities were affected by reinforcement in a manner
similar to over-all frequency of A_{1} choice. The peculiar superiority of the frequency of a response which follows punishment of that response over the frequency of a response which follows punishment of the alternate response, a result reported by other investigators, was not found asymptotically, in the present study. However, this superiority did occur initially.

References

Atkinson, $ぇ$. Jholce behavior and monetary payoff: strong and weak conditioning. In J. ỉ. Criswell, H. Soloson,
 groun orocesses, Stanford: Stanford Univ. Press, 1962.
Coombs, C. and Pruitt, D. G. Components of rish in decision making: probability and variance preferences. j. exp. Psychol., 1960, 60, 265-277.

Derks, P. I. The generality of the "conditioning axiom" in human oinary prediction. J. exp. Peyohol.. 1962, 63. 538-545.

3dwards, A. Ixperimental design in psychological research. New York: Rinehart, 1960.

Goodnow, J. J. Determinants of choice-distribution in twochoice situations. Am. J. Psychol., 1955, 63, 106-116.
Grant, D. A., Hake, H. W., and Hornsetn, J. F. Acquisition and extinction of verbal conditioned response to differing percentages of reinxorcement. J.exp. pisychol.. 1951. 42, 1 - 5 .

Humphreys, L. G. Acquisition and extinction of verbal expectations in a situation analagous to conditioning. J. exp, Psychol., 1939. 25, 294-301.

Mosteller, E. and Nogee, P. An experimental measurement of utility. J. polit. Scon. $1951,59,371-404$.

Myers, J. L., Reilly, R., and raub, H. Differential cost, galn, and relative frequency of reward in a sequential choice situation. J. exp. Psychol., 1962, 62, 357-360.
Nicks, D. C. Prediction of sequential two-choice decisions from event runs. J. exp. Psychol. . 1959, 57. 105-114.

Pruitt, D. pattern and level of risk in gambling decisions. Psychol. Rev., 1962, 69, 187-201.

Nobson, D. J. A simple method for construction of orthajonal polynorials when the independent variable is unequally spaced. B1onetrlos, 1959, 15, 187-191.

Slegal, S. and Goldstein, D. A. Decision-maling behavior in a two-choice uncertain outcome situation. J. exp. Psycho1., 1959, 57. 37-42.

Suppes, P and Etkinson, R. D. llarkov learming models for multinerson interactions. Standord: Stanford University

Taub, H. and Hyers, J. д̇. Differantial monetary gains in a two-choice situation. 厄. exp. Psychol., 1961, 61, 157-162.

Acknowledgments

The author is grateful to Dr. Warren H. Teichner, who served as dissertation advisor, and to Drs. Helen Gullen and Albert Goss, dissertation cominttee members, for their advice in the preparation of this manuscript. The experiment, in the main, grew out of the work of Dr. Jerome i. ifyers. Phe author Wishes to express his appreciation to br. ilyers for his advice in the planning of the study.

Nr. John F. Prior provided assistance in designing the apparatus, in the execution of the experiment, and was particularly valuable in the computer analysis of the data. Also valuable in the execution and analysis of the experiment were Mr. Steven Daly, and Misses Dona Giberti, Virsinia Kochanowskl, and Jan Newman.

This study was sipported by N3ir grant 221138.

APPROVED:

DATE: $\frac{23 \text { may } 1963}{f}$

