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ABSTRACT

The Assessment of Intervention Effects

in Time Series Processes

May 1985

John B. White, B.S., Kenyon College

M.A., University of Massachusetts

Ph.D., University of Massachusetts

Directed by: Professor H. Swaminathan

This dissertation presents four Monte Carlo experiments

that provide information with respect to the small sample

properties of several estimators utilized in time series

analysis. Studies one through three investigate procedures

that are used in the model identification stage of

ARIMA(p,d,q) time series analysis, while study four

examines the small sample properties of Box and Tiao's

(1965,1975) test statistic for the presence of an

intervention effect in an ongoing time series process. All

of the studies manipulate two factors; the nature of the

autocorrelation structure and the length of the time series

realization.

On the basis of the research presented in this

V



dissertation, it is recommended that time series

realizations consist of at least 90 observations. The

length of the time series realization plays a critical role

in determining the quality of the estimates that are

obtained when applying the procedures examined in this

investigation. Almost all of the estimation problems that

have been investigated - bias, the magnitude of standard

errors, the accuracy of estimated standard errors,

inflation of Type I error rates, and lack of power - are

much less severe for more lengthy time series realizations.

It is also important for researchers to be aware of the

severity of the estimation problems that are encountered

when the autocorrelation among data points is extremely

large. For almost all of the conditions examined in the

present research, extreme serial dependence magnifies the

problems that are observed in estimation procedures. In the

model identification stage of time series analysis, both

the bias in the autocorrelation estimator and the

o V e r - e s t i ma t i o n of the standard error of autocorrelation

coefficients becomes more severe as the serial dependence

becomes more severe. Furthermore, problems with the

estimation of the intervention component become more severe

as serial dependence increases; the inflation of the Type I

error rate becomes greater and there is a large reduction

in the statistical power to detect an intervention effect.
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CHAPTER I

INTRODUCTION

Introduction

In recent years, social scientists have more frequently

been using data analysis procedures that are based on

statistical models of time series processes. In particular,

the interrupted time series design has been widely utilized

as a research paradigm for social scientists affiliated

with a wide spectrum of disciplines. This

quasi-experimental design (Campbell, 1963; Campbell and

Stanley, 1963, 1966), offers several potential benefits as

an alternative to traditional experimental paradigms. The

design was originally introduced by Campbell as a technique

for assessing the impact of an intervention (e.g., a change

in social policy) on some ongoing social process. This

dissertation will discuss the appropriate procedures for

the analysis of data from interrupted time series

experiments, and point out potential difficulties that may

be encountered in applying these procedures to "real life"

data sets.

In the quasi-experimental time series design, a series

of measures are assessed on a single variable over a period
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s
of time prior to some intervention. The same variable i;

then measured over time subsequent to the intervention. The

hypothesis under consideration concerns the impact of the

intervention, which is evaluated by comparing the

pre-intervention times series with the post-intervention

time series. The research design is conceptually simple,

and researchers may be tempted to use an ordinary t-test to

compare the mean of measures collected before the

intervention with the mean of those collected after the

intervention. The results of such a procedure are extremely

unreliable, however, due to the n o n - i n d e p e n d e n c e of the

measures that are assessed over time. More sophisticated

statistical models, which take the interdependence of

measures into account, are necessary to draw inferences

with any degree of confidence on the basis of data

collected in this type of study.

In addition to the statistical problems associated with

a simple comparison of pre- and p o s t - i n t e r v e n t i o n means,

there are logical problems with the procedure. For example,

a time series process that follows a steady upward trend

will result in a post-intervention mean that is

substantially larger than the pre-intervention mean. A

conclusion that the intervention is responsible for the

difference would be illogical, however, because the

po s t - i n t e r V e n t i o n mean would be greater in the absence of
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the intervention as a result of the upward trend. In oth

instances, the equality of pre- and post-intervention means

may lead the researcher to the false conclusion that the

intervention had no impact. This situation may occur if

time series process follows an upward trend prior to the

intervention, and the intervention results in a downward

trend during the post-intervention phase. This dramatic

intervention effect would not be evident if the researcher

simply compared pre- and post-intervention means.

There are several sources of information about

interrupted time series designs that are intended for an

audience of social scientists. The most comprehensive

discussion of the interrupted time series design is

provided by Glass, Willson, and Gottman in Design and

Analysis of Time Series Experiments (1975). This book

thoroughly considers basic quasi-experimental designs, and

in particular the statistical procedures that are commonly

used in the analysis of data collected from interrupted

time series experiments. A brief introduction to the most

prevalent data analysis procedures is presented by

McDowall, McCleary, Meidinger and Hay (1980). Gottman

(1981) provides a brief discussion of some alternative data

analysis procedures, which he suggests may often be

preferable to more widely used techniques. Finally,

McCleary, Hay, Meidinger and McDowall (1980) discuss the



interrupted time series design,

series procedures that are utilized

as well as other time

by social scientists.

Applications of the Interrupted Time Series Design

The interrupted time series design is appealing to

social scientists for a number of reasons. Many topics of

study would be virtually impossible to investigate within

the structure of traditional experimental designs. Time

series quasi-exper ime n t s , on the other hand, often allow

researchers to meaningfully interpret data that are

collected in the absence of the rigorous control over

variables that is necessary in traditional experiments.

Time series experiments also permit hypothesis testing of

treatment effects in studies involving only a single

subject or unit of observation. Finally, and perhaps most

importantly, the interrupted time series experiment

provides information concerning the nature of the

intervention effect over a period of time. This advantage

may be of particular importance in many areas of social

science research. The impact of an intervention on human

behavior is likely to be extremely complex, and probably

not consistent over time. It is often of interest to

evaluate the immediacy, duration, and pattern over time of

the intervention effect by examining the post-intervention
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data.

One type of research that has greatly benefited from

the interrupted time series design i n v o 1 v e s t e s t i n g post

hoc hypotheses using archival data. The researcher can

generate causal hypotheses concerning the effect of

historical events on some variable of interest, and test

these hypotheses using the standard interrupted time series

data analysis procedures. Some examples of this type of

quasi-experiment include the impact of new traffic laws

(Campbell and Ross, 1968; Glass, 1968), the effect of air

pollution control laws (Box and Tiao, 1975), and the impact

of gun control laws (Deutsch and Alt, 1977; Hay and

McCleary, 1979; Zimring, 1975). Extreme caution must be

exercised in drawing causal inferences on the basis of

archival data, however. Interventions are likely to be

accompanied by other events that may also influence the

variable that is being studied, and thus, viable

alternative explanations for an intervention effect will

generally be present. Whenever possible, replications of

the study under different conditions and/or planned

experiments should be conducted to lend greater credence to

the veracity of the causal inference.

A second situation in which the interrupted time series

design may be useful to social scientists occurs when the

feasibility of comparison groups is questionable. There are



situations in which it is very difficult to expose one

group of subjects to a treatment, while simultaneously

observing a second comparable group of subjects. This type

of situation often arises in educational or societal

settings, where entire populations are affected by an

intervention. Comparisons with a separate population from a

different school or geographical region may be meaningless,

since there may be substantial underlying discrepancies

between the populations. In other situations, it is

sometimes unethical to withhold a beneficial intervention

from a sample of people in order to scientifically examine

the effect of a treatment. Under the circumstances

discussed above, the impact of an intervention is best

evaluated using an interrupted times series paradigm.

A similar circumstance involves the desirability of

single subject experimental designs. For a variety of

reasons, researchers often prefer to investigate treatment

effects using a single experimental unit. One area of

research that relies heavily on the use of single subject

designs is the field of behavioral psychology. Experiments

generally involve an operant conditioning procedure that is

administered to a single person or animal. Time series

designs allow the researcher to evaluate the impact of the

conditioning procedure on an individual unit.

Finally, the interrupted time series design provides
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longitudinal information about the impact of the

intervention. Conventional experimental designs generally

assess the impact of a treatment at a single time point

after the intervention has occurred. Glass et. al. (1975)

suggest that the most valuable asset of time series

experiments is the capability of examining an intervention

impact over a period of time.

The most important advantage of the time series
design is not that it offers an alternative when a
traditional, randomized, comparative experimental
design is not feasible, but it offers a unique
perspective on the evaluation of intervention (or
"treatment") effects. Simultaneous comparative
designs in the Fisherian tradition may blind the
experimenter to important observations when such
designs become a thoughtless habit of mind. The
Fisherian design which has so captured the
attention of social and behavioral scientists was
originally developed for use in evaluating
agricultural field trials. The methodology was
appropriate to comparing two or more agricultural
methods with respect to their relative yields. The
yields were crops which were harvested when they
were ripe; it was irrelevant in this application
whether the crops grew slowly or rapidly or
whether they rotted six months after harvest. For
social systems, there are no planting and harvest
times. . . The value of an intervention is properly
judged not by whether the effect is observable at
the fall harvest, but by whether the effect occurs
immediately or is delayed, whether it increases or

decays, whether it is only temporarily or
constantly superior to the effects of alternative
interventions. The time series design provides a

methodology appropriate to the complexity of the
effects of interventions into social organizations
or with human beings (pp. 4-5).

It is clear that the interrupted time series design is
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a useful tool for social scientists interested in a wide

variety of research areas. The statistical procedures that

have evolved to analyze time series data have made possible

the investigation of new topic areas, and have provided a

unique perspective for the study of traditional fields of

research. It is important that those who conduct research

that may benefit from these techniques thoroughly

understand both the research opportunities that are

afforded by the availability of these procedures, and the

limitations and drawbacks of these methods. As with any

statistical procedure, those who wisely apply the method to

research problems will benefit greatly from the information

generated, while those who are less prudent in their

applications will often be misled to erroneous conclusions.

The discussion in the following chapters deals with the

basic underlying statistical procedures that are necessary

to model time series processes and to test for the effect

of interventions. More importantly, some of the potential

limitations and problems encountered in the application of

time series analysis will be discussed. The extent to which

some of these potential problems may adversely affect

statistical inferences is investigated empirically via

computer simulations.



CHAPTER II

TIME SERIES MODELS

Introduction

The analysis of time series data requires different

considerations than are generally encountered in more

traditional data analysis procedures. The distinguishing

aspect of the structure of time series data is the

non-independence of observations. Most statistical models

are based on the premise that observations are independent,

or u n c o r r e 1 a t e d , with other observations. This basic

assumption is seldom fulfilled for data that is collected

on the same experimental unit across time, however.

Instead, observations are likely to be related to other

observations collected in close temporal proximity and

relatively independent from more distant observations.

The most common method for resolving this problem of

serial dependence is to empirically model the

autocorrelation of the measures, and then test for the

presence of an intervention effect while controlling for

the autocorrelation. The most widely used time series model

is the Autoregr essi ve Integrated Moving Average (ARIMA)

model, which was developed primarily by Box and Jenkins

9



10

(1970). The problem of model identification is general to

all time series analyses based on ARIMA models (e.g.

forecasting and the use of "lead indicators" ). Thus, the

statistical modeling of serial dependence in

quasi-experimental time series data is a preliminary step

for hypothesis testing of an intervention effect. The model

identification process is of critical importance in the

analysis of interrupted time series experiments, and the

actual test of the basic hypothesis is relatively

straightforward if the time series model is properly

identified. Unfortunately, difficulties are often

encountered when attempting to model the dependency of

"real life" data sets.

Autocorrelation and Autocovar iance

The autocorrelation of a time series process is defined

as the correlation between all pairs of observations that

are separated by a fixed number of points in the time

series. Suppose that an individual's overall mood is

measured on a daily basis over some period of time. The

estimated correlations between the subject's mood on day 1

vs. day 2, day 2 vs. day 3 ... through day t vs. day t+1

can be computed as an ordinary Pearson product moment

correlation coefficient. This first-order autocorrelation
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coefficient is an indication of how well an individual's

overall daily mood can be predicted on the basis of the

subject's mood on the previous day. Similarly, the

second-order autocorrelation coefficient (or

autocorrelation at a lag of 2) can be computed by

correlating observations on day t vs. day t+2.

The estimate of the first-order autocorrelation is

calculated as

:

n-1 _ _ " _
r^ = { Z (X^ - X) (X^^i _ X)} / { Z (X - X)2}

t=l t=l

where X^ is the observation on day t,
^^^.i

represents the

observation on day t+1, and X is the mean of all

observations. This estimator is based on the assumption of

s tat ionar ity , which is discussed below. The formula for the

second order autocorrelation coefficient is of the same

form, with ^^^i simply replaced by X^_|_2.

The estimate of the au t oc o var i a n c e at lag 1 of a time

series is defined as

covCX,. ,X^^l) = { Z (X^ - X)(X^^i _ X)} / n .

t = l

As with the estimate for the second-order autocorrelation,

the autocovariance at lag 2 is estimated by substituting

X^^o for X^.i in the formula presented above.
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Stationarity

When estimating a statistical model of a time series

process that may have generated an observed data set, it is

necessary to make certain assumptions about the nature of

the underlying process. A set of assumptions that is

fundamental to most time series models is often referred to

as the conditions of stationarity. These conditions are

based on the assumption that specific characteristics of

the underlying time series process remain stable over time.

It is easy to see, on an intuitive level, why certain

aspects of a time series process must remain stable over

time if a statistical model of the process is to be fitted.

A finite set of parameters must be estimated to determine

the model that is believed to have generated an observed

realization of the time series process. If crucial aspects

of the process were not consistent across time, it would be

impossible to apply the same model to different portions of

the time series. For example, forecasting future points in

time would not be possible if an observed trend was not

consistent across the time period.

The first condition of stationarity is that the mean

and variance of a time series process do not change with

historical time. In other words, a stationary time series
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r m
process will oscillate around a constant level with unifo

variability over time. The second condition of stationarity

is that the a u t o c o v a r i a n c e of a time series process is

independent of historical time. Thus the covariance of two

time points is completely determined by the relative lag of

the time points, irrespective of the portion of the time

series that is under consideration. Therefore, the accuracy

with which time point 2 can be predicted from time point 1

is equal to the predictability of point 48 from point 47

(or any other pair of adjacent time points).

Time series data must conform to the conditions of

stationarity before the researcher can properly model the

time series process. In actual practice, however, data sets

often do not conform to these requirements. Instead, a

realization of a time series process is likely to exhibit

one or more of the following characteristics: 1) a change

in the level of the series over time, 2) periodicity, 3)

nonconstant variance, or 4) a shift in the a u t o c o v a r i a n c

e

structure of the time series. The two most common forms of

nonstationarity are the presence of "trend" in the series

and a tendency for the series to display indications of

periodicity. Methods of analyzing data sets that exhibit

these types of nonstationarity have been developed, and

generally appear to provide an adequate means for modeling

time series processes with these tendencies.
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Nonstationarity involving a shift in the variance of the

observations or a change in the autocovar iance structure of

the time series are less common and may present greater

difficulties for the researcher.

Despite the fundamental nature of the concept of

stationar ity
, there appears to be no precise method for

determining the stationarity of a time series process, and

thus, the researcher must exercise caution when inspecting

data for indications of stationarity. If it is determined

that the underlying process is not stationary, the

researcher should attempt to either model the

nonstationarity, or transform the data so that the

observations conform to the conditions of stationarity. The

specification of these models and the transformation of the

data can greatly affect the conclusions drawn on the basis

of statistical analyses, so once again, caution is demanded

of the researcher.

Several characteristics of the observed time series

should be considered when examining data for stationarity.

Some of the tools that may be useful may be useful in

deciding whether the data are stationary include: a) a plot

of the time series data, b) a correlogram of the data, c)

tables of means, variances, and autocorrelations for

different segments of the observed time series, and d) the

spectral density function of the time series data. A
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careful consideration of this information concerning the

underlying structure of the data set is necessary to assess

the validity of assuming that the conditions of

stationarity are fulfilled. In addition, these methods are

useful in determining which type of transformation or model

may be effective in removing nons t a t i o n a r y aspects of the

data set.

The first step in studying stationarity is to visually

inspect a plot of the time series realization. The plot of

the observed data points over time will often reveal

evidence that is pertinent to the stationarity conditions.

It is often possible to visually detect changes in the

level of the time series, or in the variability of the data

points around that level. Periodic trends in the data

(e.g., a seasonal component) may also become evident when

examining the plot of time series data. In short, the

careful examination of the data points plotted over time

may alert the researcher to possible violations of the

assumption of stationarity.

The correlogram is simply a plot of the autocorrelation

coefficients at each lag as a function of the lag. In

general, the autocorrelations of a stationary time series

process will approach zero after a relatively small number

of lags. It should be emphasized that not all stationary

time series processes conform to this pattern of
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autocorrelations; however, most stationary time series data

that is encountered in practical applications will exhibit

this tendency. The interdependence of data generated by a

stationary time series process can usually be explained in

terms of a small number of lags, and thus, the

autocorrelation at relatively large lags is essentially

zero. In contrast, nons tat ionary data (especially data in

which the level is not stationary) will generally result in

autocorrelations that approach zero very slowly as the

number of lags increases. It is easy to see why this would

be the case for data that follows a linear trend over time,

such as a gradual increase in the level of the time series.

In such instances, data points will be correlated to some

extent with observations that are separated by several

points in time. In other words, data points that are

relatively distant will be somewhat useful in predicting

the location of future observations.

The correlogram is also helpful in detecting cyclic

components of a time series process. Periodicity in the

time series may be considered to be either a deterministic

or n o n d e t e r m i n i s t i c process. A deterministic process

implies that future time points are completely determined

by past observations, whereas a n o n d e t e r m i n i s t i c (or

stochastic) process indicates that observations are only

partially determined by previous occurrences. The
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implication of a deterministic periodic component is that

the predictive accuracy of previous points in time does not

diminish as the distance between observations increases. In

contrast, the predictive accuracy of a n o n d e t e r m i n i s t i

c

periodic component will attenuate as the amount of time

between data points increases. The correlogram provides

indications of both deterministic and n o n d e t e r m i n i s t i

c

cycles in time series processes. For example, cyclic

components that are based on seasonal variation

corresponding to measurements obtained on a monthly basis

will often be indicated by a large autocorrelation

coefficient at lag 12. This type of periodicity indicates

that observations from the corresponding month of the

previous year are useful in predicting the current

observation. If the cycle is of a deterministic nature, the

autocorrelation coefficient at lag 24 and at lag 36 will be

of the same magnitude as the autocorrelation at lag 12. A

nond e t e r m i n i s t i c cycle, on the other hand, will display

autocorrelations that tend to decrease with each cycle.

It is also useful to divide the data set into several

segments and construct tables of the mean, variance, and

autocorrelations within each segment. Under the conditions

of s t a t i o n a r i t y , these values will remain relatively

constant across segments. If the data are n o n s t a t i o n a r

y

with respect to one of these characteristics, however, a
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disparity in the values across segments of the time series

may be apparent.

Finally, the s p e c t r a T d e n s i t y function is very useful

in identifying cyclic components in time series data. The

present paper will not consider spectral density models,

which belong to the class of frequency domain time series

models. At an intuitive level, however, spectral

decomposition involves modeling the time series by forming

a summation of sine waves. This decomposition allows one to

identify the frequencies of underlying periodic components

of the time series process. The existence of periodicity in

the data must then be taken into account when using time

domain approaches (e.g. ARIMA models) to model the process.

One procedure that is sometimes utilized in the

nalysis of n o n s t a t i o n a r i t y time series data involves

deling the n o n s t a t i o n a r y components of the series and

subtracting these components from the original data set.

Assuming that the n o n s t a t i o n a r i t y has been accurately

modeled, the removal of these components will result in a

set of residuals conforming to the conditions of

s t a t i o n a r i t y . The residuals may then be modeled as a

stationary time series process. This approach assumes that

most n o n s t a t i ona r i t y consists of two components; 1) trend,

which is usually linear although in some cases it may be

necessary to remove polynomial trends, and 2) deterministic

a

mo
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cycles. These two components may be modeled via ordinary

least squares fitting procedures. Gottman (1981) advocates

the use of this technique as outlined below.

A linear trend for a time series is modeled as

= bo + b^t + a

where bg is the estimated level of the time series at time

0, b^ is the estimated slope of the linear trend in the

data, and a^ is the residual (representing a stationary

time series process if the nonstationarity of the data is

adequately modeled using only a linear trend component).

Least squares fitting of polynomial trend follows directly

from the linear model presented above.

Assuming that the time series has been "detrended" as

described above, deterministic cyclical components may then

be removed by fitting the model

= A(sin27Tft) + B(cos27Tft)

using ordinary least squares procedures to estimate A and

B, while assuming a frequency (defined as the reciprocal of

the length of the period) of f. Here Y^ is used to

represent the residual of the time series after removing

the linear trend component. It should be emphasized that
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this method of obtainine "de-sinpd" Hah=. -lo-L'ls bxnea aata is not appropriate

for data sets exhibiting stochastic periodicity.

An alternative method for analyzing data sets that are

nonstationary with respect to level involves a

transformation of the data referred to as "differencing".

As implied by its label, "differencing" is performed by

calculating differences between pairs of observed values

separated by a fixed number of time points. The simplest

and most common form of differencing is called "first-order

differencing". In this case, all observations are

subtracted from the observation that immediately precedes

it. Thus, the first differencing of a time series is

def ined as

where V is used to indicate that the time series has been

dif f erenced

.

It is easy to see the effect of first order

differencing on a time series whose level increases

mono tonically , as shown below.

t=l 2 3 4 5 6 7

X^ = 2.5 3.7 4.4 6.5 7.6 8.4 9.6

V = 1.2 .7 1.1 1.1 .8 1.3
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The original data set shows a clear linear trend, and thus

is nonstationary in the homogeneous sense (meaning with

respect to level). The first differenced series, however,

is relatively stable and fluctuates around a level of 1.

The resulting time series can be thought of as a series of

estimates representing the rate of change in the original

data se t

.

First order differencing will also dramatically change

the pattern of data sets exhibiting trends that are not

simply increasing or decreasing over time. First

differencing transforms data solely on the basis of

adjacent time points, and thus, even temporary trends in

the data will be removed by the differencing operation. For

example, a time series realization that follows an upward

linear trend during the first portion of the series, a

table level throughout the middle section of the series,

nd a decreasing linear trend during the last section of

the time series will be transformed into a series with a

relatively constant level.

Time series data that follows a quadratic trend can

also be transformed to stationarity by differencing the

observations. In this case it is necessary to perform

"second-order differencing", which is simply differencing

the first differenced series. A time series realization

s

a
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that has been second differenced is represented by v^X

Similarly, data sets displaying n^h polynomial trends may

be transformed to stationarity by n^^ order differencing.

It should be emphasized, however, that in practical

applications of time series analysis it is rarely necessary

to difference beyond the second order.

There is presently some controversy concerning which of

the two procedures for analyzing nonstationary time series

data generally possesses more desirable properties.

Differencing is the most widely advocated approach for

analyzing time series data that is nonstationary in the

level. However, some researchers maintain that modeling

nonstationary components of a time series process and

subsequently removing these components from the data set is

generally preferable.

Gottman (1981) contends that the modeling of

nonstationary components is generally preferable to

differencing, and should almost always be attempted before

resorting to the differencing procedure. His argument in

favor of modeling nonstationarity is based on two premises;

1) differencing radically transforms the data set, and 2)

modeling the nonstationarity often suggests a meaningful

interpretation of the nature of the nonstationarity.

Gottman points out that differencing a white noise series

(i.e. = bQ + a^, where a^ ~NID(0, o|) and bg represents
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the level of the series) actually xntroduces dependency in

the data set. He argues that the potential misuse of such a

powerful transformation may outweigh the benefits of the

procedure. Gottman also believes that modeling of

nonstationary components permits a more readily
inter pretable analysis of the time series data. The

researcher can easily describe underlying trends in the

data set in terms of an ordinary least squares regression

(OLS) equation. Because of these advantages, he recommends

that the researcher attempt to model nonstationar i ty before

relying on the alternative of the differencing procedure.

Home, Yang, and Ware ( 1982) also advocate the method

of removing deterministic trends and seasonal components of

time series data, and subsequently, modeling the residuals

of the time series data using a u t o r e g r e s s i v e and moving

average parameters (i.e. ARMA models). Their basis for

preferring this method of time series analysis is similar

to Gottman's point concerning the i n t e r p r e t a b i 1 i t y of the

analysis; it is argued that the underlying trends in a data

set are of great interest to many research issues, and

thus, the OLS regression modeling of trend provides a more

meaningful insight into the time series process in

comparison to differencing.

Many other authors contend that the procedure of

removing trend via OLS regression analysis is generally
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inappropriate. According to McClearv et «1 "n5 ii^v^iediy et. ai., One common

(but almost always inappropriate) method of detrending a

time series is to use a linear regression model for the

trend." They go on to point out several potential problems

with the procedure. 1) OLS estimates of slope and intercept

are sensitive to outliers, and thus, the existence of a

small number of extreme data points can dramatically alter

the estimates of the coefficients. 2) The point in time (t)

of each observation serves as the independent variable in

this procedure. This variable (t) increases mo n o t o n i c a 1 1 y ,

however, rather than being normally distributed. As a

result, observations that are close to the beginning or the

end of the series tend to have greater impact on the sum of

squares function than observations that are close to the

middle of the time series. In essence, the extreme values

of t have an effect similar to outliers in OLS analyses,

with the additional problem that the absence of numerous

observations close to the mean value of t tends to further

exaggerate the importance of these points in minimizing the

residual sum of squares. 3) The distinction between

"deterministic trend" and "stochastic drift" is emphasized

by McCleary et. al. The modeling of trend via OLS

regression analysis assumes an underlying deterministic

process that will continue in the future as a fixed

function of time. Differencing, on the other hand, assumes
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an underlying stochastic process that is free to vary in a

probabilistic manner.

Box and Jenkins (1976) elaborate on the last point

raised by McCleary et. al.; the assumption of a fixed,

deterministic trend is often unjustified on the basis of a

finite sample from a time series process.

One of the deficiencies in the analysis of time
series in the past has been the confusion between
fitting a series and forecasting it. For example,
suppose that a time series has shown a tendency to
increase over a particular period and also follow
a seasonal pattern. A common method of analysis is
to decompose the series arbitrarily into three
components; a "trend," a "seasonal component," and
a "random component." The trend might be fitted by
a polynomial and the seasonal component by a
Fourier series. A forecast was then made by
projecting these fitted functions.

Such methods can give extremely misleading
results Now, it is true that short lengths of
Series B do look as if they might be fitted by
quadratic curves. This simply reflects the fact
that a sum of random deviates can sometimes have
this appearance. However, there is no basis for
the use of a quadratic forecast function, which
produces very poor forecasts. Of course, genuine
systematic effects which can be explained
physically should be taken into account by the
inclusion of a suitable deterministic component in
the model (P. 301).

In summary, there are legitimate arguments supporting

the use of either method for removing nons t a t i o n a r i t y from

time series data. The arguments presented by McCleary et

al. and by Box and Jenkins appear to convincingly rule out

a simple procedure of routinely attempting to model



n o n s t a t i o n a r y components of

methods. Rather, the modeling

to be appropriate only when

the n o n s t a t i o n a r i t y is of a

practical consequences of c

of the other are not readily
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the time series data using OLS

procedure may be considered

it can safely be assumed that

deterministic nature. The

hoosing one procedure in favor

apparent

.

Modeling Time Series Data

Autoregressive Models

A u t o r e g r e s s i V e time series models are an extension of

the more common regression models used in a wide variety of

applications. Autoregressive models simply predict

observations in a time series from a previous set of

observations in the series. For example, a time series

realization may be modeled adequately by predicting each

observation from the two observations that immediately

precede the observation. In this case, the autoregressive

model would be specified as

^t = ^l^t-1 + ^2^t-2 + ^t

where a^^ and a2 are the regression coefficients that

minimize the square error, Z e^^; and where t varies from

t = l

three to n, the number of observations in the time series.
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The variance of e, is represented as o|
. e, is assumed to

have a mean of 0, and e, is assumed to be uncorrelated with
» , where t .

If a time series realization is generated by a

"second-order" autoregr essi ve process, then the values of

will be predicted accurately by the previous two

observations of the time series, X^_^ and X^_2. It should

be apparent that many time series processes that are

studied in the social sciences are well described by

autoregressive models. It is logical to expect that

individual observations of an on-going social process will

be accurately predicted by previous observations that are

in close temporal proximity.

The observations of time series processes are usually

represented as deviations from the mean observation, since

algebraic manipulations of time series processes

represented in this manner are greatly simplified. The

theoretical conclusions that are arrived at by using this

alternative representation are generally unaltered, and

therefore, X^. will be used to represent (X^ - X) throughout

the remainder of this dissertation unless otherwise noted.

This representation of time series processes simply

"centers" the series around a mean observation of 0.

The first-order autoregressive process (AR(1)) is

represented as
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It is important to note that the absolute value of a

be less than one if a first-order autoregressive proc

to be stationary. It will be later shown that the va

of an AR(1) process is

= o|{ 1 + + (a^)2 + (a^)3 . . . } .

If the absolute value of a^^ is greater than or equal to

one, the value of c^2wiii increase without bound. This

type of time series process is referred to as an explosive

series, and it is impossible to model such a series using

time series models which are based on the assumption of

s tationar i ty . In addition, an autoregressive model in which

a-j^ is greater than one runs counter to the type of

dependency that is generally assumed to be present in time

series data. It will become apparent that if a-|^ is greater

than one, a given observation will be more strongly related

to those observations that are temporarily distant in

comparison to those that are close in temporal proximity.

The autocovar iance function of a first-order autoregressive

process is calculated by multiplying the autoregressive

equation by X^_j^ and taking expected values.
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cov(X^_j^,X^) = aiCov(X^_i^,X^_^) + c o v ( e ^ . X ^_ )

Yk = ^1 Yk-1

Here, Yk used to represent the autocovariance at lag k.

The covariance between e^ and is equal to zero, since

e^ is independent of all observations other than X^. The

autocorrelation function is derived by dividing the

autocovariance function by the variance of the observations

( TO = 0^).

Pk = ^1 Pk-1

Thus, the autocorrelation at lag 1 (k=l) for a first order

aut oregressive process is

Pi = ^1

since qq is equal to one by definition. The

autocorrelation of observations at lag 2 (k=2) is

2
P2 = ^1 Pi = ^1 (since = a^)

In general, the autocorrelation function of a first-order
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autoregr essive process is defined

Pk = ^l^

a s

A set of linear equations, referred to as the

Yule-Walker equations, are used to express the parameters

of autoregressi ve models in terms of autocorrelations and

variances. The derivation of the equation is

straightforward. A p'^'^ order autoregr essive process (AR(p))

can be represented as

^t = ^l^t-1 + ^2^t-2 + ••• ^p^t-p + ^t •

The autocovariance of a time series process is defined as

Yk = ^(^t'^t-k)

where, as usual, X^. represents the deviation of observation

t from the mean of the observations. Substituting for

results in

Yk = E{(aiX^_i + a2X^_2 + ... apX^_p + e^)(X^_^))

= aiE(X,_iX,_i^) + a2E(X,_2X,_^) + . . . a p E ( X , _ p X
, _^ )

+ E(e,X,_j^) .



The definition of a stations

that the a u t o c o v a r i a n c e is

between o b s e r v a t i o n s , r e g a r

d

result,

31

ry time series process demands

a function only of the lag

less of the values of t. As a

for all values of s. It follows that

= ^1 Tk_i + a2 Yk_2 + ... Bp Yk_p + ECe^X^.j^)

since

(t+s-1) - (t+s-k) = k-1, (t+s-2) - (t+s-k) = k-2, etc.

E(e^X^._j^) is equal to zero for all k > 0, since e^ is by

definition independent from all X^?, where t'j^t. Finally,

the autocorrelation at lag k is determined by dividing by

Yq, the variance of the observations in the series

Pk =^1 Pk-1 + ^2 Pk-2 + ••• ^p Pk-p (fo'^ ^ > 0)

If k is set equal to zero, the autocovariance at lag 0 is

defined as the variance of the observations
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The Y(_s) = Yg by the definition of a stationary time

series process, and thus

^0 = = ^1 Yi + a2 Y2 +---ap Yp + E(e^XJ .

The expected value of (e^X^) is a|, since the only portion

of X^ which is correlated with e^ is the contribution of

e^ . Therefore

,

^0 = O' = a
1 Yl + a

2 Y2 • a,

Dividing by Yq results in

1 = {a^ + a2 P2 + . . -ap pp + o|] /

or

0% = 0^(1 - - a2 P2 - ap pp)

The Yule-Walker equations are extremely important in

the estimation of unknown parameters of an autoregressi ve

model. Given that the order of the a u t o r e g r e s s i v e process

is known, and the quantities d^, Pi , p 2^ - - • Pp
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estimated from the data set, estimates of a^, a2, ... a

and o| can be computed using the Yule-Walker equations.

The linearity of the Yule-Walker equations provide closed

form solutions for the estimation of a u t o r e g r e s s i v

e

parameters in AR models. In contrast, solutions for moving

average and ARIiMA models involve non-linear equations, and

thus iterative procedures are necessary to estimate the

parameters of interest. The relative simplicity of

parameter estimation in autoregressive models has led some

researchers (e.g. Gottman) to recommend their use almost

exclusively. The consideration of only AR models will often

result in a rather large number of autoregressive

parameters, however. As a result other authors maintain

that ARIMA models are preferable, since they provide more

parsimonious models.

Moving Average Models

The discussion of autoregressive time series models

described the basic characteristic of a stationary

autoregressive process as a dependency between observations

that decays exponentially as the numbers of time points

between observations increases. It will be shown that a

class of models that are referred to as moving average

models will be useful in describing time series processes

that are characterized by a different type of dependency.
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Moving average processes exhibit a dependency between

observations that are separated by a finite number of time

points. Observations that are separated by more than q

points in time are independent from each other.

While autoregressive processes are modeled in terms of

previous observations, moving average processes are modeled

using previous error terms (e^) that are usually referred

to as random shocks. The general principle of the model is

that an observation is a function of the current random

shock e^, and a portion of a fixed number of previous

random shocks. The model is represented as

^t = ^t - h^t-1 - ^2^t-2 - ••• ^q^t-q

which can also be written as

q

^t = ^t - ^ ^s^t-;
s = 1

Where e^. is a white noise series with variance Og, and

is used to represent (X^ - X).

It can also be seen that the term moving average is

actually a misnomer, since the values of b^ are usually not

equal. Moving average models are actually defined as a

weighted summation of random shocks.

It is instructive to initially consider the properties
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of a first-order moving average process, which is

represented as

^t = ^t - h e^_^ .

The autocovariance function of any

defined as

Substituting for and X^_j^, and then taking expected

values results in

= E{(e,-bie,_i)(e,_i^ - h^e^_^_^)}

= E(e^e^_(^ - bie^e^_i^_i - b^e^.^e^.j^ + b ^
^ ^ ^ _ ^ ^ ^ ^ ^

= E(e^e^_j^) - biE(e^e^_i^_^) - b ^ E ( e
^ _ ^ e ^ _ ) +

bi^E(e^_ie^_l^_^) .

The variance of the series is

^ 0 = ^'x

= E(e^2) _ biE(e^.e^_i) - bECe^.^e^) + b^ECe^,;^) .

time series process is

-1.)

Since the process e^ is a white noise process, with

constant variance
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The autocovariance of a first-order moving average model at

lag 1 is

Tl = E^^t^t-l) - b^E(e^e^_22) - b^ECe^.i) +

b2E(e,_^e,_2)

= -biE(e,_i2)

If k is greater than one, = 0, since all e^ are assumed

to be independent from e ^.
i where t'/ t . Thus, the

autocovariance function of a MA(1) model truncates after a

single lag. In comparison, the autocorrelation of an AR(1)

model was shown to decrease exponentially ( = a;

P2=a; pp=aP).

Extending the derivation to a MA(q) model, it can be

shown that the autocovariance function truncates to zero

after q lags. The general form of the autocovariance

function is

q

s = k + l
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The Duality of MA and AR Processes

It can be shown that a stationary AR(1) time series

process can be represented as an infinite order MA process.

Similarly, under certain conditions, a MA(1) process can be

expressed as an infinite order autoregressive process. The

practical importance of this duality is related to the

flexibility that it provides in modeling time series data.

For example, the researcher can adequately model a MA(1)

process with an autoregressive model, AR(p), in which p is

relatively large.

The equivalence of an AR(1) model and an infinite order

moving average model will be considered first. Given our

knowledge of the autocorrelation functions of MA and AR

models, one might intuitively expect an AR(1) process to

share similarities with a relatively high order MA process.

The autocorrelation function of an AR(1) process decays

exponentially over time, while that of a moving average

process truncates after lag q of a MA(q) process.

Logically, the only potential for modeling the dependency

of an AR(1) process with a MA(q) model would be to specify

a large value of q.

The first-order autoregressive model is specified as

^t = ^l^t-l + ^t
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The model can then be rewritten by substituting for X.t-1

t - ^l<^^l^t-2 ^t-1^ + ^t
2

= ^1 ^t-2 + ^l^t-1 + ^t •

Substituting successively for each observation represented

on the right side of the equation results in

^t = ai2^aiX^_3 + e^_2) + (a^e^.^ + e^)

= a-^^X^_^ + a^^e^_2 + a^e^.^^ + e^

1
^1

i = 0
^_^r ^t-i

which is a MA( oo ) model. It should be apparent that this

relationship is only reasonable if \a-^\ < 1, so that a-^^^ 0

as k -> oo , and thus, the series converges to a finite limit.

The first-order moving average model

^t = ^t - ^^t-1

also implies



Solving for e^_^ and substituting in the first

results in

^t = et-b(Xt_i + be^_2)

Rewriting the MA(1) model as

suggests a substitution for e^_2 in the previous equation

= -bXj._i + - b2(X^_2 + be^_3)

= -bX^_i - b2x^_2 + e, - b3e^_3 .

The repeated substitution results in

X, = -bX,_i - b2x,_2 - b3x,_3 - b^X,_4 ...

39

equation

Which is an AR(oo) process. It should also be pointed out

that this relationship will hold up only if |b| < 1, which

is referred to as the i n v e r t i b i 1 i t y condition of a MA(1)

process

.

ARMA and ARIMA models

Time series processes are sometimes best modeled by

including both autoregressi ve and moving average parameters
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in the model. Although many authors believe that it is

rarely useful to include both AR and MA parameters in a

single model, it is sometimes convenient to represent time

series processes using a single unified model. The ARIMA

class of models incorporates the differencing operation

into a model that also includes AR and MA parameters. ARIMA

is an acronym for aut oregressive integrated moving average

process. The number of parameters of each type are

specified by using the notation ARIMA (p,d,q), where p

indicates the number of a u t o r e g r e s s i v e parameters, d

represents the degree of differencing that is required to

obtain stationarity , and q indicates the number of moving

average parameters in the model. In a comment on the

general utility of models with both AR and MA parameters,

McCleary et. al. (1980) state "if our experiences are

typical, only a few social science time series in a

thousand will have both p and q;^0".

At this point it is helpful to introduce some

additional notation that is often used in represented

"mixed" autoregressi ve moving average time series models.

The backward shift operator, which is typically represented

as B, acts as an operator which shifts the time series

backward one point in time. Thus, the notation B(X^) is

used to represent Superscripts are also used, which
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follow the general laws of exponents that are routinely

used in algebraic manipulations. The notation B"(X^)

represents X and B^B"^(X.) = B^ + "^(X ) = X
^ ^ t^ t-n-m •

The representation of the differencing operator is

simplified by using the backward shift notation. First

differencing can be expressed as

V^t = - ^t-1 = ^t - B(XJ = (l-B)X^ .

Similarly, second differencing can be written as

V^X, = (X^ - X,_i) - (X,_i - X

^t ~ + ^t-2

t-2

= (1 - 2B + b2)X^

= (1 - B)2x^ .

The backward shift operator also has the property of

invertibility , so that B~"'"B = 1. This is a useful property

since B"''" can be used to represent a forward shift

operator

.

The backward shift operator is used to represent an

AR(p) process as follows:

^t

= + a2Xt_2 + . . . apXt-p +

= (X^ - a^X^_;^ - a2X^_2 - ... apX^_p)
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= (1 - a^B - a2B2 _ . . . apBP)X^

Similarly, a MA(q) process is represented as

= (1 - b^B - b2B2 - . . . bqBq)e^ .

An ARIMA (1,0,1) model, which would represent a stationary

time series process with one autoregressi ve parameter, and

one moving average parameter can be written as

^t = ^^t-1 + ^t - b^t-l

^t - a^t-1 = ^t - b^t-l

(1 - aB)Xt = (1 - bB)e^
,

or as

Xt = (1 - bB) e^
(1 - aB)

Once again, the variance of the time series will converge

to a finite limit only if the stationarity and the

i n v e r t i b i 1 i t y conditions are satisfied. In general, the

roots of the polynomials of an ARIMA model will be complex

numbers that can be represented as
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where Uj^ and Vj^ are real numbers, and i = (_i)l/2_

modulus of the complex number is represented as | sJ .

and defined as

An AR or MA process is said to be stationary or invertible

if all of the roots (sj^) have a modulus greater than one.

Model Building

Box and Jenkins (1976) have proposed a model building

strategy which is the most widely employed procedure in the

analysis of time series data. This strategy consists of an

iterative procedure that is divided into three stages;

identification, estimation, and diagnostic checking. The

identification process involves selecting an ARIMA model

that may parsimoniously describe the data set. Next, the

parameters of the potential model that is chosen are

estimated. Finally, the adequacy of the model is assessed

in the diagnostic checking stage. This procedure will

generally be repeated several times until, in the judgment

of the researcher, the "best" model is determined. As with
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any model fitting procedure, there is ultimately a trade

off between parsimony and further improvement in the fit of

the model. Adding more parameters will generally improve

the fit of the model, however, this more complicated model

may simply be explaining idiosyncrasies of a single data

set, and drawing inferences on the basis of a less

parsimonious model may be difficult.

Model identification is perhaps the most important key

to the analysis of time series data. This is also the

portion of the model building strategy that requires the

most subjective judgment on the part of the researcher.

There is no precise objective method for determining the

best values of p, d, and q in an ARIMA(p,d,q) model.

Instead, the data set must be carefully examined for clues

that provide suggestions of potential models. The

information that is most useful in the identification of

models is the autocorrelation function and the partial

autocorrelation function (which will be discussed in the

next paragraph). This is the information that most directly

describes the dependency of time series observations, and

thus, this information is essential in the proper

identification of models that are designed to explain time

dependency. In addition, it is it is often useful to

present this information in graphical form to facilitate

the model identification process.
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The partial autocorrelation function is extremely

useful in model identification. The actual autocorrelation

function of a time series process is never known, and thus,

a finite realization of the time series process must be

used to estimate the true autocorrelation function. Th

imprecision of these estimates can result in considerabl

confusion as to the choice of the potential model. Th

interpretation of the partial autocorrelation function is

very similar to the usual partial correlation coefficient,

except the correlations of intermediate observations are

"partialled out" instead of the inter correlation of a third

variable. Thus, the partial autocorrelation coefficient (k)

represents the correlation between observations that are

separated by a lag of k, after the autocorrelation of

intermediate lags has been controlled for.

For purposes of clarification, it is useful to consider

the partial autocorrelation function of an AR(1) time

series process. It has already been shown that the

autocorrelation function of an AR(1) process is p = (aj^)^.

The purpose of the partial autocorrelation function is to

determine if the dependency between observations is

adequately explained by the first-order a u t o r e g r e s s i v

e

process, or alternatively, if the observations demonstrate

a dependency even after the first-order a u t o r e g r e s s i v

e

process is taken into account. Representing the time points
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X^, X^^;^, and X^^2 1, 2, and 3 in the standard equation

for a partial correlation coefficient,

^13-2 = Pl3 - Pl2 Pl3

(1 - (1 - P32)'/'

we can determine the autocorrelation between observations

X^ and X^_|_2, after controlling for the intermediate

observation X
^. . By using the previously derived

properties of the autocorrelation function of an AR(1)

process ( = P2 = a^^ and 2 = P32 = ^l)' it can

seen that the numerator of the partial autocorrelation is

^1 ~ = 0 • Therefore the partial autocorrelation

function of an AR(1) process at lag 2 is equal to zero.

Similarly, the partial autocorrelation of all lags greater

than 2 are equal to zero.

In contrast to the partial autocorrelation function of

an AR(p) process which truncates after lag p, it can be

shown that the partial autocorrelation function of a MA(q)

process decays gradually. The general properties of the

autocorrelation function and the partial autocorrelation

function are summarized below.
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Process

Function

PACF

AR(p)
Iruncates atter lag q Llecays after lag qDecays after lag p Truncates after lag p

It should be obvious at this point that estimates of

the autocorrelation function and the partial
autocorrelation function are extremely important in the

identification of time series models. The characteristics

of the autocorrelation function are virtually the only

means of distinguishing one time series process from

another. If the true autocorrelation function was known,

the identification of time series models would be a

relatively routine and precise procedure. In practice,

however, the autocorrelation (and partial autocorrelation)

functions are estimated on the basis of a finite set of

observations

.

The construction of confidence intervals around the

estimates of autocorrelations and partial autocorrelations

is useful in the identification of ARIMA models. The

confidence intervals provide assistance for the researcher

who is trying to determine which of the apparent

dependencies in the data set are of a magnitude that is

large enough to warrant consideration in the model building

procedure. Bartlett (1946) has shown that the standard

error of an autocorrelation coefficient at lag k may be
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estimated from the formula

SE(ri^) = {(1/N)(1 + 2 ^2)^1/2
i = l

where rj^ is the estimate of the autocorrelation function

pj^, N is the number of observations in the time series, and

are the true autocorrelations for all lags less than k.

In practice, the estimated autocorrelations are substituted

for p^ .

Quenouille (1947) has shown that the partial

autocorrelations of a realization of an AR(p) process are

distributed with variance 1/n for all partial

autocorrelation at a lag of p+1 or greater. Thus, the

standard error of the partial autocorrelation at lag k is

estimated as

SE{PACF(k) } = 1/ /H

Approximate 95% confidence intervals for the

autocorrelations and partial autocorrelations can be formed

around the zero value using the values ± 2 SE. If

autocorrelations or partial autocorrelations fall within

this interval, they are generally considered to be not

significantly different form zero. Computer programs that

plot the autocorrelation and partial autocorrelation

functions with the appropriate confidence intervals are of
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great assistance in the identification of time series

models. The width of the confidence bands are directly

related to the number of observations in the time series

process, and thus, certainty in the identification of the

time series process is increased as the number of time

points in the realization becomes greater.

The information provided by the estimated

autocorrelation and partial autocorrelation functions is

sufficient to specify a tentative ARIMA (p,d,q) model. It

should be remembered that the researcher will usually

examine the fit of several models, and therefore, the

preliminary identification of a model does not imply a

commitment to the model. The preliminary identification is

based on an informal consideration of the general

characteristics of the estimated autocorrelation and

partial autocorrelation functions. The researcher simply

examines these estimates for similarities to the known

properties of various time series processes.

The first consideration is always the stationarity of

the time series process. This issue was thoroughly

considered in the discussion of stationarity and the

analysis of nons ta t ionar y data. A tentative identification

of the differencing parameter (d) is determined at this

point. It should be noted that over-differencing is one of

the most common errors in the use of ARIMA models. If the

specified value of d is too large, as often happens when
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the researcher attempts to remove all evidence of

nonstationarity in the data, dependencies among the

observations are introduced. It is then necessary to

remove these dependencies with AR and MA parameters, which

usually results in a cumbersome ARIMA model with a large

number of parameters. Furthermore, most authors contend

that time series processes which require a value of d

greater than 2 are extremely rare. Box and Jenkins (1976)

state that "In practice d is usually 0, 1, or at most 2

(p. 11)." McCleary et. al. (1980) also express the opinion

that applications of time series analyses almost never

require differencing beyond the second order. It is wise to

avoid the problem of o v e r - d i f f e r e n c i n g by applying the

difference operator only when the estimated autocorrelation

function unambiguously demonstrates that the time series

process is nonstationary

.

The next step in the model building process is the

estimation of the AR and MA parameters (i.e.

a-j^,a2»...ap,b-|^,b2,...bp). It was shown previously that the

Yule-Walker equations provide a closed form solution for

the estimation of a u t o r e g r e s s i v e models. Unfortunately,

the general ARIMA parameters can not be estimated by using

analytical solutions. Instead, numerical solutions are are

required in the estimation procedure. There are several

alternative estimation procedures, which are usually based
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on an iterative algorithm that is used to numerically

derive maximum likelihood estimates of the ARIMA

parameters.

Box and Jenkins suggest using a grid search procedure
n

to minimize the residual sum of squares ( Z e-^) of an
i = 1

ARIMA (p,d,q) model. The procedure is conceptually simple,

but the amount of computation involved makes the procedure

inefficient even on today's high speed computers. The grid

search procedure simply involves repeated substitution for

the parameters (
a ^ , a2 , . . . ap ,

b ^ , b2 , . . . b ) to obtain
"

2estimates of Z e^^ , with the set of parameters which
i = 1

minimize the sum of squares function providing the best

estimate of the parameters. It is easy to see that this

procedure becomes impractical with even a relatively small

number of parameters to estimate. Considerably more

complex estimation procedures that converge to a minimum

more rapidly are used in computer software designed to

analyze time series data. Marquardt's (1963) algorithm, or

minor variations of this algorithm, are generally applied

in time series software.

After the parameters of an ARIMA (p,d,q) model have

been estimated, the model must be evaluated in the

diagnostic checking stage of the model building procedure.

The analysis of the residuals of a time series model forms

the basis of the diagnosis stage, in which the adequacy of
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the tentative model is evaluated. As usual, the estimated

autocorrelation function is the principle source of

information available to the analyst of time series data.

McCleary et. al. (1980) outline some guidelines that can be

used to evaluate the adequacy of an ARIMA model. First,

there should be no dependency between the estimated

autocorrelations at the first or second lag. A large

autocorrelation would obviously suggest that the ARIMA

model is not adequately accounting for the observed

dependency of the data points.

Box and Jenkins ( 1 9 7 6, p. 290 ) point out that the

approximate standard errors of the estimated

autocorrelations of the residuals (1/ /n ) tend to be

inflated at low lags. As a result, they suggest that the

researcher consider the confidence intervals of the

autocorrelations at low lags to be an upper bound of the

true confidence intervals. Thus, discrepancies from the

expected autocorrelation of zero at lags 1 or 2 should, for

diagnostic purposes, be considered to be significant if

they approach a value of - two standard errors.

The second check of the residuals is designed to

evaluate whether the residuals are distributed as white

noise. This diagnostic check considers an entire set of

autocorrelations simultaneously to evaluate whether the

entire set of estimated autocorrelations are significantly
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different from 0. Box and Pierce (1970) suggest testing

by the statistic Q,
the independence of the residuals

defined as

Q =

which is distributed approximately as chi-square with k-p-q

degrees of freedom. Here, n represents N-d (the number of

observations used to estimate the autocorrelation

function), k is the number of lags that the estimated ACF

is calculated for, and rj is the estimate of the

autocorrelation at lag j. It is suggested that a minimum

of 20 lags (k=20) should always be used to compute the Q

statistic. McCleary et. al. claim that a large value of k

(for example 50) will tend to lack power in rejecting the

null hypothesis of independent observations, whereas a

value of k less than 20 will tend to be over-sensitive to

indications of serial dependency and lead to rejections of

the null hypothesis even when the residuals are distributed

as white noise. As a result, they recommend setting the

value of k between 20 and 30 when using the Q statistic to

detect serial dependency of the residuals.

It is also recommended that plots of the residuals and

plots of observed values versus predicted values should be

carefully examined by the researcher. The visual
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inspection of these plots is very useful in assessing the

adequacy of the fit. In addition, these plots are useful

in the detection of outliers and may provide indications of

nonstationarity

.

Finally, another useful procedure in the diagnosis

stage of modeling is referred to as o v e r - f i 1 1 i n g . The

basic concept of over-fitting is the attempt to find a

better fitting model by adding parameters to the tentative

ARIMA model that is being evaluated. These additional

parameters should be selected on the basis of knowledge

concerning possible sources of dependency that may not have

adequately been modeled. The analysis of residuals that

has just been discussed is the most logical source of

information for the selection of the new parameters in the

over-fitted model.

It is useful to compute a statistic that describes the

amount of variance accounted for by each of the alternative

models. A statistic analogous to the percentage of

variance accounted for by a regression analysis can be

defined as

= 1 - Z {e^^ / X^^}
,

t = l

— o

where X ^.
= (X^ - X), and R indicates the amount of

variance accounted for by the AR and MA parameters in the
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the model is the

related

residual

measure of the goodness-of-f i

t

mean square statistic, defined

55

of

a s

RMS ={l/n}{

Models that have a smaller residual mean square are better

fitting than those models with a larger value.

The lack of precision in the model building procedures

of time series analysis are very apparent in the use of the

Q statistic, the estimation of the standard errors of the

autocorrelation function, and the evaluation of the

goodness-of-fit of a model. There is a large degree of

subjective judgment involved in the interpretation of

information that is used in analyzing time series data, as

many of the properties of the estimators that are used in

ARIMA modeling are not precisely defined at this time.

Nevertheless, those who are familiar with time series

analysis believe that a well informed researcher can use

the available information to make judgments that will

provide useful time series models. In addition, there is

considerable interest in further developing and refining

the procedures of time series analysis. Both theoretical

and empirical research that is being conducted should lead

to significant advances in the field.



56

Interrupted Ti me Series Experiment^.

The modeling of time series processes is usually only a

preliminary step in the analysis of time series data. The

researcher is generally interested in modeling a time

series process for one of three purposes; 1) to forecast

future points in time, 2) to draw causal inferences

concerning the interrelationship of separate time series

processes, or 3) to assess an intervention effect. The

identification of an appropriate ARIMA model is usually the

most complex and difficult aspect of the analysis of time

series data, and the applications of ARIMA models for the

purposes stated above are relatively straightforward.

Forecasting is widely used by social scientists in the

fields of economics and political science. Most other

areas of study are less interested in simply predicting

future time points. Instead, they tend to focus on

theoretical issues of causation; therefore, time series

analyses that assess the relationship between different

ongoing processes or evaluate the impact of an intervention

offer greater potential utility to most social scientists.

Of these two potential applications of time series models,

only impact assessment has been widely used by social

scientists. This is probably a reflection of current
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computer software capabilities rather than a response to

the inherent usefulness of procedures involving multiple

time series processes. In recent years, software programs

that are capable of assessing univariate intervention

effects have been developed and widely distributed.

Unfortunately, programs that are designed for the analysis

of multivariate time series processes are not generally

available at the present time.

The most widely used method for the analysis of the

interrupted time series experiment is an approach developed

by Box and Tiao (1965) and discussed by Glass, Willson, and

Gottman (1975). These methods involve the simultaneous

estimation of the intervention component and the parameters

of an ARIMA model using nonlinear estimation procedures.

Gottman (1981, p. 365) discusses another procedure that he

proposes as a "simple, yet uninvestigated alternative".

This procedure involves reducing the time series

realization to a white noise process by removing the

dependency of the observations with an a u t o r e g r e s s i v

e

model. The residuals of the AR model are then used to

assess the intervention effect using ordinary least squares

procedures. This method of analysis is extremely simple in

comparison to the more widely used procedures, since all of

the parameters of the model can be estimated with closed

form solutions.
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A third procedure for assessing the effect of

interventions has been proposed by Box and Tiao (1975) and

is recommended in the writings of McCleary et. al. (1980).

This is the only procedure to be considered in the present

discussion. The original Box and Tiao ( 1965) method is a

special case of this general model, and thus, will not be

described. The Gottman procedure is not often utilized,

and will therefore also be excluded from this discussion.

The Box and Tiao (1975) approach to modeling

intervention effects provides a straightforward

conceptualization of the intervention effect, as well as

providing a more manageable technique for incorporating

complex intervention effects into the time series model.

As mentioned previously, one type of intervention effect

has been evaluated almost exclusively; that of an abrupt,

constant change in level, where a constant value, 5 , is

added to each p o s t - i n t e r v e n t i o n observation. The recent

development of this alternative method provides greater

flexibility in the modeling of intervention effects, and

thus, may lead to the evaluation of a wide variety of

intervention effects. Of course, the distribution of the

necessary computer software is a prerequisite to the

widespread use of these techniques. As with any type of

parameter estimation in the general class of ARIMA models,

closed form solutions for the estimations do not exist.
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which results in tremendous computational difficulties.

The time series process with an intervention component

can be represented succinctly as

Xt = fdt) + N,

where represents the "noise component" of the time

series process, and fil^) denotes a function of the

variable I^, which represents the intervention component.

Thus, the time series process is simply assumed to be the

outcome of two components; 1) the stochastic process of an

ARIMA(p,d,q) process, represented by N^, and 2) the

deterministic effect of an intervention component (f(I^)).

The simplest type of intervention effect is that of an

abrupt, constant shift in level. In this case, the

intervention component can be represented as

fdt) = WqI^
,

where = 0 prior to the intervention and = 1 after the

intervention. The full impact assessment model can be

written as

^t = ^O^t + '"^t
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and the intervention effect itself can be represented as

or
,

where X^ represents the time series after removing the

stochastic process modeled as ARIMA( p , d , q )

.

The general procedure of evaluating the effect of an

intervention can be described as follows. An ARIMA(p,d,q)

model is identified according to the general model building

strategies that were previously explained. This entire

procedure should be carried out separately for both the

p r e - i n t e r v e n t i o n and p o s t - i n t e r v e n t i o n data, since the

intervention effect will sometimes change the nature of the

ARIMA process. In the event that the ARIMA process is

altered by the intervention, it is not entirely clear how

the researcher should proceed. There is an underlying

assumption that the stochastic process of the time series

data is equivalent before and after intervention. All of

the impact assessment models that have been discussed rely

on this implicit assumption, and thus one approach to the

problem is to stop the analysis at this point with the
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conclusion that the intervention altered the nature of the

time series process. Other authors have suggested
explicitly modeling the two distinct time series processes

(Stoline, Huitema, and Mitchell, 1980), or relying on the

pre-intervention data to identify the ARIMA model (McCleary

et. al., 1980) and then fit the entire model including the

intervention component.

Assuming that the noise component of the pre- and

post-intervention time series models are similar, and that

the most appropriate ARIMA(p,d,q) model has been

identified, the intervention component of the model is

added and all of the parameters of the full model are

estimated. The intervention effect is then evaluated using

the estimate for the parameter wg

.

Other types of intervention effects can be incorporated

into this model of the interrupted time series process by

modifying the function f ( I
j. ) . The general form of the

modified function is

fdt) = {wq/CI - <5iB)}

where the parameter 6 is in the interval -1 to +1, and B

indicates the backward shift operator. It will be seen

that the parameter 6^ estimates the rate at which the

intervention effect approaches the asymptote, or eventual
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change in the level, of X,. Thus, models in which 5^ is

not equal to zero imply a gradual change in level as a

result of some intervention until an asymptotic level is

reached. The series then remains relatively stable

throughout the p o s t - i n t e r vent ion phase of the time series

realization

.

Once again, the time series process after removing the

stochastic noise component can be represented as

X,* = X, - N,

Ther ef ore

,

(1 - 6iB)X,* = wqI^

The level of the time series prior to the intervention

is equal to zero, as = 0;

^t* = 5l^t-l* + ^o^t

= 6i(0) + wq(0)

The

and

first pos t- in t er v e n t i o n time point occurs at

the value of I^ij^ + i
is equal to 1. Therefore,

t = n ^ + 1 ,
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^nl + 1 = ^l^nl" + ^O^nUl
= 6^(0) + wq(1)

= Wq

At the second observation after the intervention,

^nl+2 = ^l^nl+1 + ^O^nl+2

= 5 ^ ( Wq) + Wq( 1 )

It can be seen that the recursive substitution for each

subsequent post-intervention time point will result in the

general representation of X^-j^^^'^ as

^nl + s = °l^nl + s-l + ""O^nl + s

(5 1 ( 62^^~-'-Wq +„.. Sj^Wq + Wq) + Wq

n-n 1

Z

3 = 0

Z 6i^wq

Since the absolute value of 6^ is always less than 1, the

additional change in level at each p o s t - i n t e r v e n t i o n time

point becomes smaller as time passes until an asymptotic

level is reached.

As the value of 6
^
approaches 1, the rate of change

tends to continue at a relatively constant amount, rather
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e
than decreasing as an asymptotic level is reached. In th

most extreme case, where
5i

= 1, the level continues to

increase at a continuous rate instead of eventually

reaching a constant level. This intervention effect can be

represented as

X
t

= (wq / (1 - B)} I^.

This model indicates that the level of the series prior to

intervention is 0, since = 0. After intervention,

however, the value of wq is added to each successive

observation. This implies a change in level as follows:

^nl+1 = "0

^nl+2 = 2wq

^nl+3 = ^^0

^nl + s = ^""O

It is obvious that this type of intervention effect is

virtually impossible in practice. As time passes, the

additional impact of an intervention will inevitably decay.
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At the opposite extreme, an intervention whose full

impact is realized at the first p o s t - i n t e r v e n t i o n time

point can be modeled by setting 5^ = 0. In this case the

intervention component reduces to WqI^, which is the model

that has been implicit in almost all interrupted time

series experiments. An abrupt, temporary intervention

effect can also be modeled by slightly altering the

representation of the intervention component. In this

case, the complete model becomes

Xt = {[wq / (1 - 5^B)] (1 - B)}I^ +

or ,

= i [^0 / (I - 61B)] (1 - B) }I^

^t* = 6lXt-l* + w(l - B)I^

where I^ = 0 before the intervention is introduced, and

I
^.

= 1 after the onset of the intervention (t = n-^ + l).

Assuming this model,

(1 - = Ini + i
- I„i = 1 - 0 = 1

thus ,
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^nl + l"^ = 61 (0) + Wq(1)

= Wq

At the second post-intervention observation,

(1 - B)Inl + 2 = InU2 " ^nUl

= 1-1

= 0

and therefore
,

^nl+2 = 6i(wo) + wq(0)

= 61W0

It follows that at time point t = n^+s, the intervention

effect can be represented as

^nl + s
= <5i^"-^wq

It is readily apparent that this form of the

intervention component represents an abrupt impact with a

magnitude of wq at the point of intervention. The effect

of the intervention then decays at a rate determined by ^

.

Three different types of intervention effects have been

illustrated using the interrupted time series model which
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was first proposed by Box and Tiao (1975) and later

advocated by McCleary et. al.(1980). First, the modeling

of an abrupt, permanent impact was discussed. Next, a

model that implies a gradual realization of a permanent

intervention effect was described. And finally, an

intervention model that assumes an immediate effect that

gradually diminishes was described. Although these three

forms of the intervention component probably represent the

most commonly encountered intervention effects, they are by

no means the only types on intervention effects that can be

modeled using this approach. In fact, virtually any type

of intervention effect can be evaluated by adding a second

(or even third) intervention component to the model, or by

creating more complex intervention components with more

than one rate parameter (represented by 6^).

Statement of the Problem

The most common methods for the analysis of interrupted

time series experiments have been discussed in this

chapter. As with any type of time series analysis, the

primary focus of the procedures involves modeling the

dependency among data points that is characteristic of most

time series processes. The stationarity conditions are a

prerequisite for modeling the autocorrelation of the time
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series process, and thus, careful attention must also be

devoted to the ramifications of this assumption. The

central importance of these issues is reflected in the

proportion of this chapter that is concerned with the

conditions of stationarity and the modeling of serial

dependency

.

Only those time series modeling procedures that are

closely related to the general class of ARIMA models have

been examined. Even within this limited class of models,

only the essential aspects of ARIMA models were considered.

The lengthy volume of Box and Jenkins' (1976) attests to

the complexity and number of issues that can be involved in

ARIMA models of time series processes. In addition to the

general class of ARIMA models, many other approaches to the

analysis of time series processes have been developed. The

most widely used of these procedures is spectral analysis,

which was only briefly mentioned in this chapter. There

has also been a recent proliferation of other alternative

procedures, many of which are still in the process of being

developed and refined.

An approach recently suggested by Box and Tiao ( 1975)

and advocated by McCleary et. al. (1980), is perhaps the

most promising available method for the analysis of the

interrupted time series experiment. This procedure offers

the flexibility of modeling almost any type of intervention
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effect, and thus has the potential of providing researchers

with more explicit information about the nature of the

intervention effect.

There are numerous issues concerning interrupted time

series data analysis that are unanswered at the present

time. First, all of the statistical methods that have been

discussed are based on asymptotic theory. There has been a

conspicuous absence of research devoted to the

investigation of the small sample properties of these

procedures, and thus, it is impossible to determine the

circumstances under which the application of these

procedures i. s appropriate. The most fundamental question

that the researcher is faced with concerns the number of

time points that are necessary to accurately estimate the

effect of an intervention. Although there are some vague

guidelines available, an accurate answer in the context of

many situations is not presently available.

The general problem of a lack of information concerning

the small sample properties of these estimation procedures

has several implications for the evaluation of intervention

effects. The ARIMA(p,d,q) model must first be identified

on the basis of the estimated autocorrelation and partial

autocorrelation functions. The observed realization of the

time series process must be long enough to appropriately

identify p, d, and q; but at present, it is not clear what
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length is generally sufficient. Furthermore, it is not

known how severely the m i s i d e n t i f i c a t i o n of p, d, and q

will distort the test of an intervention effect. It is

possible that ARIMA(p,d,q) models that are similar, but not

identical, to the true ARIMA(p,d,q) process will result in

a negligible effect on the test of intervention effects.

Other issues that may be of interest to researchers

involve the consequences of violating the underlying

assumptions of time series models. In practical

applications, the theoretical assumptions of any

statistical procedure are never completely fulfilled. The

investigation of the robustness of time series procedures

is an important line of research that has not yet been

pursued .

In suraimary, there are a wide variety of practical

issues that are extremely important to researchers who

utilize the interrupted time series experimental design.

Although a variety of theoretical approaches to the

analysis of interrupted time series data have been

developed, there has been virtually no research concerning

the problems of applying these procedures to "real-life"

data sets. To address these issues, it is necessary to

empirically examine the small sample properties of these

procedures under a variety of conditions by conducting

Monte Carlo experiments.



CHAPTER III

METHODOLOGY

Introduction

The research methodology will be presented as a series

of four interrelated studies. The first three Monte Carlo

experiments examine the small sample properties of the

autocorrelation and partial autocorrelation functions, as

they are commonly utilized in the identification of

ARIMA(p,d,q) time series models. The importance of the

model identification stage of interrupted time series

analysis cannot be underestimated, since it is a necessary

prerequisite to the test of intervention effects. The

fourth study investigates the small sample properties of

the test statistic for the analysis of intervention effect

prescribed by Box and Tiao (1965,1975).

For each specific condition in the four studies, 1000

time series realizations were randomly generated according

to a given ARIMA(p,d,q) process using the IMSL subroutine

FTGEN. The data generating program allows the user to

specify the population autoregressive . moving average, and

white noise parameters of the time series process, as well

as the length of the time series realization. In study

71
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four, an intervention effect of an abrupt permanent change

in level was imposed within a general FORTRAN program by

simply adding a constant to all of the post-intervention

time points

.

Each of the four studies varies either two or three

factors in all possible combinations. Therefore, the design

of the simulations can be thought of as being analogous to

a completely crossed, factorial experimental design. The

two factors that were manipulated in all four studies were

1) the values of autoregressive or moving parameters, and

2) the number of the time points in the data sets. Study

four adds a third factor to the experimental design.

Study One

The primary purpose of study one is the investigation

of the sampling variability of the autocorrelation and

partial autocorrelation functions under a variety of

conditions. The bias of the estimates will also be

considered, although the magnitude of bias can be

theoretically derived given the population parameters of

the ARIMA process and the length of the time series

real iza t ion

.

For each condition examined, 1000 data sets were

generated according to the parameters specified in the
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condition. The discrepancy between the mean of the 1000

parameter estimates and the true parameters was used to

assess the degree of bias in various conditions. The

sampling variability of the estimates was measured by

computing the standard deviation of the 1000 parameter

estimates. This measure can be considered to be an

empirical estimate of the standard error of the

autocorrelation and partial autocorrelation coefficients.

The first factor that was manipulated in study one was

the nature of the autocorrelation structure. Four different

ARIMA(p,d,q) processes were considered, with three

different parameter values examined for each of the four

models. The three AR(1) processes were generated with

autoregr essive coefficients of .3, .6, and .9. The three

AR(2) processes had autoregr essive parameters of (.4, .3),

(.5, .3), and (.6, .3). The MA(1) coefficients were -.3,

-.6, and -.9, while the MA(2) parameters were (-.4, -.3),

(-.5, -.3) , and (-.6, -.3)

.

The second characteristic that was varied is the number

of time points in the data sets. Each replication

consisted of either 30, 60, 90, or 120 time points. The

lengths of the realizations were intended to cover a wide

range; from the minimum number of time points for which

time series analysis might be considered (30), to a number

that would be considered to be adequate by most researchers

(120).
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The estimates of the autocorrelation and partial

autocorrelation functions were computed with the IMSL

subroutine FTAUTO. The estimators are those that are most

commonly employed, and are described in detail in Chapter

Two. Procedures for estimating the mean and standard

deviation of the estimates were programmed in FORTRAN.

Study Two

Study two investigates the accuracy of approximate

standard errors of the estimated autocorrelation and

partial autocorrelation functions. In addition, the

directly related issue of the adequacy of the procedure for

constructing approximate confidence intervals around the

estimates of the coefficients is considered. The specific

research topics investigated in study two are:

o the discrepancy between the estimated and empirical

standard errors of the autocorrelation functions;

o the Type I error rate and power of the statistical test

for a non-zero autocorrelation coefficient; and,

o the Type I error rate and power of the statistical test

for a non-zero partial autocorrelation coefficient.



75

As discussed in Chapter o, the confidence intervals

are based on the formulae for approximate standard err

SE(rj^) = [(1/N)(1 + and

SE[PACF(k)

]

= i//n .

It is important to remember that these exp ressions are

based on the assumption that P is known and that all of

the autocorrelations at lag k or greater are equal to zero.

Consequently, the accuracy of these approximate standard

errors for finite sample sizes is questionable.

Study two was executed as a subroutine of the FORTRAN

program used in study one. Thus, two factors were

manipulated in a manner identical to study one. As

described in study one, a total of 12 different ARIMA

processes were examined, with data sets of length 30, 60,

90, and 120 time points.

Several results of interest were computed. The mean

(over the 1000 replications) of the estimated standard

errors of the autocorrelation coefficients were computed

for the first five lags. The mean values of the estimated

standard errors are then compared with the empirical

standard errors which were computed in study one. In

addition, test statistics were constructed to investigate
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the Type I error rate and power of testing the null

hypotheses
: Pj^ = 0 and H^rPACCk) = 0.

Study Three

Study three examines the usefulness of Quenouille's

(1956) unbiased estimator of the autocorrelation function.

As previously discussed, the bias in the usual estimator of

the autocorrelation function is very large for relatively

short time series realizations (i.e. less than 100

observations). Quenouille proposed a jackknife procedure

to correct for bias using the formula below

Rj^ = 2r - l/2(r^ + r2)
,

where Rj^ is the unbiased estimate of autocorrelation at lag

k, r represents the ordinary autocorrelation estimate (at

lag k) for the entire series, and r and r2 are the usual

autocorrelation estimates (at lag k) for the first and

second halves of the series, respectively.

There are two potential problems with the application

of this estimation procedure. First, unlike the ordinary

estimation procedure, there is no assurance that the value

of R will be within the theoretical bounds of -1 <_ R _< 1 .

Thus, estimates that are theoretically impossible may
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occur. Secondly, the standard error of the unbiased

estimator may be considerably larger than that of the

biased estimator, and consequently, it may be a less

desirable estimator despite its attribute of u n b i a s e d n e s s .

The purpose of study three can be summarized as follows:

o to determine the percentage of unbiased estimates that

are outside the theoretical boundaries of the

parameter ; and

,

o to compare the sampling variability of the unbiased

estimates with those of the ordinary biased estimates.

As with studies one and two, the two factors manipulated

were the nature of the ARIMA process and the number of time

points in the realization.

The IMSL subroutine FTAUTO was used to estimate the

ordinary biased autocorrelation function of a) the entire

series, b) the first half of each realization, and c) the

second half of each realization. Based on the results

generated by FTAUTO, FORTRAN statements were used to

calculate the unbiased estimates of the autocorrelation

function. The percentage of estimates that exceeded the

absolute value of 1.0 were then tabulated. Furthermore, the

standard deviation of the estimates over 1000 replications

in each condition were calculated as an empirical measure

of standard error.
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Study Four

This study is designed to investigate the small sample

properties of the test statistic of intervention effect

proposed by Box and Tiao (1965,1975). Several important

properties of the test statistic are examined including:

o the distribution of the test statistic;

o the Type I error rate of the test statistic;

o the statistical power of the test statistic; and,

o the accuracy of the estimates of standard error.

The form of intervention effect considered is an abrupt

permanent change in level of a stationary time series

process. This intervention effect was chosen for

investigation on the basis of several considerations. Most

importantly, an abrupt permanent change in level is the

most common form of impact assessment in social science

research applications. Furthermore, it is important to

gain a thorough understanding of the sampling properties of

the most straightforward intervention model before

attempting to study more complicated intervention

components involving additional parameters.
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The scope of the present study is also limited to the

first order au t o r eg r e s s i v e process. The AR(1) process is

considered because it is probably the most prevalent model

employed in social science research. Moreover, it i

important to begin the systematic investigation of th

intervention analysis procedure with the more basic time

series processes. Problems which are encountered in the

test statistic of relatively simple time series processes

are likely to be common to other processes, and may very

well create even more serious difficulties in ARIMA models

of greater complexity.

The present investigation employs estimation procedures

based on the exact likelihood function. Most computing

algorithms exploit the relationship between maximum

likelihood estimation and least squares procedures (e.g.,

BMDP and IMSL). However, according to Harvey and Phillips

(1979), many authors have recently stressed the importance

of computing ARIMA estimates using the exact likelihood

function

.

The logarithm of the exact likelihood function of a

first order autoregressive process without an intervention

component (Fuller, 1976, p. 328 ) is
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log L (x;u,p,o2)= -(n/2)log2Tr - (n/2)logo2 + ( 1 / 2 ) 1 og ( 1 -p ^
)

-(l/2aM{(Xi - - P^) + ^y(X, - u) - p(X,_^-u)]M

The likelihood function can be modified to incorporate the

intervention component as follows:

log L (x;ui ,U2.P,0^)= -(n/2)log27T - (n/2)logo2 +

+ (l/2)log(l - p2)

- (l/2o2){(X^ - - P')

r

n

+ Z [(X^ - - P(Xt_i - U21M
t = r + 2

Xj. is used to represent the midpoint of the time series

realization. The point at which the likelihood function is

maximum provides the maximum likelihood estimates of
»

1J2 . P 1 and .

Several procedures based directly on the joint

maximization of the likelihood function are available for

maximum likelihood estimation of the parameters of the

intervention model. The IMSL subroutine ZXMIN, which

employs a quasi-Newton method to find the minimum of a

function of variables, was used to minimize -(log L).
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Starting values for each replication were determined on the

basis of closed form expressions for each of th

parameters, based on the assumption that estimates of the

other parameters are population parameters. Thus the

starting values that were provided were

r

Ui = { Z X. }/r
i = l

n

U2 = { 2 X.}/(n-r)
i = r + l

Pi =

n-1
Z (X, - X)(X,^i - X)

t = l

n _
Z (X. - X)2

t = l

= var (1 - p2

)

Unfortunately, a failure to meet the convergence criterion

(|tj^_l_2 - < .001) was a problem often encountered with

the joint maximization procedure. It was not uncommon for

30-40% of the replications to fail to converge in certain

conditions

.

Several computational methods designed to increase the

percentage of replications that successfully converged were

attempted. The most promising procedure was to compute

estimates using a stage-wise estimation procedure, and then

use these estimates as starting values for the simultaneous
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estimation procedure. The stage-wise procedure involves

fixingU^, and in the likelihood function, and

maximizing the function with p as the only variable. Then,

closed form solutions for the three parameters that were

previously fixed ( , U2
,

O^) are computed by treating the

estimate of P as a known parameter.

First, an estimate of is obtained by setting

= 0
do

which results in the closed form expressi on

a2=(l/n)(l - p2)(Xi - Ui)2 + I {(X^ - Ui) - P(X, . - Ui)2}
t = 2

n

t = r + 2

Previous estimates of p , U-^, and U 2 are substituted and

the equation is solved.

Next , setting

^lo8 L ^ Q ^^°8 ^ = 0
d]A-^ dU2
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yields the system of linear equations

[H-(r-l)(l-P)2]u^ _ pu^ = (l-P^)Xi + (1-P) Z
{ (X - PX, O

t = 2 ^ ^

- [(r-l)(P-l)2+i]U2 = PX^ - X^^i - (1-p) I (X -PX, ,)
t = r + 2

By substituting the previous estimate of P as a known

quantity, the simultaneous solution of the two equations

provides estimates of U
^ and The entire stage-wise

estimation procedure is then repeated until the convergence

criterion (|t^^^ - t^| < .001) is reached. Finally, the

parameter estimates of the stage-wise procedure were used

as starting values for the simultaneous estimation of all

four parameters.

This procedure produced a much higher percentage of

successful convergence (over 95% for most conditions), but

created another problem. The amount of computing time

required to go through the two separate iteration

procedures for the 1000 replications in each condition made

the procedure cumbersome to execute. It was decided that

the results of the stage-wise procedure should be compared

with the full simultaneous estimation procedure. If the

comparison of the two procedures yielded nearly identical

results, the stage-wise estimation procedure would be used

for the investigation of the test of intervention effect.
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The comparison of the two procedures was conducted by

generating 500 replications of several conditions (varying

P ,
o\ n, and the magnitude of the intervention), and

estimating the parameters using both the stage-wise

procedure described above and the procedure for estimating

all four parameters simultaneously. Only data sets that

successfully converged for both estimation procedures were

included in the comparison of the procedures. Descriptive

statistics were then computed on the two sets of estimated

parameters and examined for similarities and differences.

The two procedures were nearly identical with respect to

mean parameter estimates, standard deviations of the

estimates, and other descriptions of the distribution of

the estimates such as skewness and kurtosis.

A second method of comparison was the computation of

Pearson product-moment coefficients of the corresponding

pairs of estimates computed according to the two

alternative procedures. In all conditions the correlation

coefficients between the estimates of the two procedures

was greater than .95, and in most instances the

coefficients approached 1.0. Consequently, it was concluded

that the stage-wise estimation procedure would be utilized

because of its advantage in computational efficiency.

The other quantity that must be estimated to construct

the test statistic is the standard error of the estimate

^1 ~ ^2' '^^^ appropriate estimate of the standard error is
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derived as follows. The information matrix (given below)

of the parameters to be estimated is obtained. The

negative of the inverse of this matrix yields the variances

of the maximum likelihood estimators of the parameters.

The information matrix for the current problem is defined

as :

9^1og L 3^1og L

a'loR L

3U
9noo L

9p3u 1

illog_L

log L
9U

I
9u

9^1og L 3^ log L

3 ^ log L 3 ^ log L
3p3u-^ 3p3U2

3 ^ log L 3 ^ log L
3o^3u 1 3o^9u

„

3^00 L^
3'log L

9^1og L

9 0 " 9 p

3^1og L

It can be shown that this matrix simplifies to

l+(r-l)(l-P) -P/Q'

-P/P' l+(r-l)(l-P)

1 ^{ 1±P + (n-2)}
1-P' 1-P

p/o' (l-p2 )

p/o^ ( l-p2 )

n/(2o')

where r represents 1/2 the length of the time series.

Because U and U2 are the only parameters of interest

in the present context and the matrix is of the form of a
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diagonal block, the 2 x 2 block can be inverted
independently. The negative of the inverse of the block

provides in the var iance-covariance matrix of and ^2 is

1 + (r-l)(l-p)

{1 + (r-l)(l-p)^}2 1 2

1 + (r-l)(l-p)

It follows that the standard error of (u^ - ^2) is

/ {(2a^)(l-p)Ll+(r-l)(l-p) J} / I [l+(r-i)(l-p)^J^

It is assumed that the test statistic is distributed as t

with degrees of freedom equal to n-2, where n is equal to

the length of the realization.

The design of the Monte Carlo experiment can be thought

of as a completely crossed three factor design. The

factors that were systematically manipulated were 1) the

magnitude of the autoregressi ve parameter (.3, .6, or .9),

2) the length of the time series realization (60, 90, 120,

or 150 time points) and 3) the magnitude of the

intervention (0, 0.5, 0.8, or 1.1). The variance of the

time series processes were held constant at 1.0 by

adjusting the value of the white noise parameter. The

variance is a function of both the white noise variance of

the series and the autocorrelation of the series.
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e

VAR(X^) = o2 / (1 _

Thus, fixing the variance of the process at 1.0 implies th

following white noise parameters: (p =.3,0^ =.91); (p = 6

0^ =.64)
; (p =.9, o2=. 19)

.

As with studies one through four, 1000 time series

realizations were generated by IMSL subroutine FTGEN for

each condition under consideration. After generating the

each data set, a constant (.5, .8, or 1.1) was added to

each of the post-intervention data points of conditions in

which an intervention effect was present. Those conditions

in which the model did not include an intervention effect

(i.e., H^:
y^^

- = 0 is true) were left unaltered.

Estimates of the intervention component ( -

its standard error were obtained as described above. SPSS

routines were employed to test for the normality of the

distribution of the test statistic ( K o 1 m o g o r o v - S m i r n o

v

one-sample test), to generate descriptive statistics of all

of the estimated parameters, and to calculate the

percentage of statistically significant rejections of the

null hypothesis.



CHAPTER IV

RESULTS AND DISCUSSION

Study One

Monte Carlo methods were used to examine the sampling

properties of the autocorrelation and partial

autocorrelation functions under a variety of conditions.

The extent of bias in these estimates can be determined

theoretically provided that the true parameters of the

ARIMA(p,d,q) process are known, and therefore, the primary

interest in study one is the empirical estimation of the

standard errors of the autocorrelation and partial

autocorrelation coefficients. Information concerning both

the standard error and bias of the estimates is essential

for determining the length of time series realization that

is necessary to ensure a reasonably high likelihood of an

appropriately identified ARIMA(p,d,q) model.

The first model to be considered is the first order

autoregressi ve model. The mean (over 1000 replications)

estimates of the autocorrelation function for lags 1

through 3, and the standard deviation of these estimates,

are presented in Table 1. The true parameter value of eacn

autocorrelation coefficient is also presented for the

88
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Table 1

First Order Autor egr essi ve Processes

Mean Estimated Autocorrelation (AC) and
Empirical Standard Error (SE)

LAGl LAG2 LAG3
ARl AR2 TP AC SE AC SE AC SE

.9

.6

.3

p .900 .810 .729
120 .859 .051 . 736 .090 .628 .120
90 . 844 .062 . 709 .107 .590 .141
60 .809 .087 .650 .146 .519 .182
30 . 724 . 133 .508 .197 .336 .227

P .600 .360 .216
120 .574 .078 .326 . 105 .177 .118
90 .566 .088 .313 .118 .163 .129
60 .538 .114 .276 .154 .135 .161
30 .488 .156 .211 . 192 .054 .200

P . 300 .090 .027
120 .285 .091 .077 .095 .013 .096
90 .280 . 103 .070 .109 .005 . 107
60 .260 .126 .048 .139 -.002 .132
30 . 232 . 169 .025 .173 -.044 .170
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purpose of comparison.

The mean estimate of the autocorrelation function
reflects the considerable magnitude of bias in the
estimator when applied to finite sample sizes. The bias is

a function of both the true autocorrelation parameter
( p^)

and the number of observations in the series (n). The bias

is always downward, which results in an underestimation the

autocorrelation. The degree of underestimation increases as

p becomes larger and as n becomes smaller. Furthermore,

the magnitude of the bias increases as the lag of the

autocorrelation coefficient increases.

The results summarized in Table 1 are also presented

graphically in a series of figures. The first graph

illustrates the downward bias of the autocorrelation

estimates at lag 1. As the number of time points in the

realization increases, the mean of the 1000 estimated

autocorrelations approaches the true values of .9, .6, and

.3. The same pattern of results are apparent for lags 2

and 3, which are displayed in Figures 2 and 3. The bias

becomes even more severe as the lag increases, especially

for the condition with the greatest serial correlation

(ARl = .9).

The standard deviations of the 1000 parameter estimates

provide an empirical measure of the standard error, which

is extremely important given the absence of a theoretically
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derived expression for an ex^rt oexact estimate of the standard
error. The standard error at lap 1 .iag

1 IS a function of p and
n; the standard error heco.es smaller as p and n hecome
larger. In addition

.

autocorrelation estimates are more
variable at laroer lao« A f i , oger lags. At lag 3, the relative magnitude
of the standard error for the three values of AR(1)
reverses. «ith the estimates of AR(1) , .9 demonstrating
the most varlablllity. This result can he explained In
terms of the formula for the approximate standard error of
an autocorrelation coefficient, which is presented in
Chapter II. The standard error is a function of all
autocorrelations at lags less than the lag being
considered. The autocorrelation function of a data set

with greater serial dependence will exhibit large
autocorrelations at several lao=several lags, and consequently,
autocorrelation estimates will be more variable. Figures 4

through 6 show the estimated standard errors of the

autocorrelation coefficients at lags 1, 2, and 3. In each

case, the estimated standard error decreases rapidly as the

number of time points becomes larger.

The small sample properties of the partial

autocorrelation function at lags 2, 3, and 4 of the AR(1)

process are presented in Table 2. The true value of the

parameter for all conditions is, of course, zero. In all

cases, the bias in the estimator results in a mean estimate
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Table 2

First Order Autoregressive Processes

Mean Estimated Partial Autocorrelation (PAC)
and Empirical Standard Error (SE)

LAG2 LAG3 LAG4
ARl AR2 TP PAC SE PAC SE PAC SE

TRUE .000 .000 .000
120 -.018 .089 -.014 .083 -.022 .086
90 -.030 . 102 -.020 .098 -.025 .094
60 -.038 .120 -.018 . 121 -.043 .111
30 -.081 .155 -.054 .150 -.069 .145

TRUE .000 .000 .000
120 -.015 .092 -.010 .087 -.022 .088
90 -.023 . 104 - . 014 . 100 -.021 .100
60 - . 037 .127 - . 012 .125 -.038 .120
30 -.071 .169 -.049 .162 -.067 .153

TRUE .000 .000 .000
120 -.014 .089 -.008 .089 - . 021 .089
90 -.021 .103 -.013 .099 - .020 . 102
60 -.039 .129 -.012 .124 -.037 .120
30 -.064 .169 -.046 .164 -.069 .159



99

less than zero. The extent of the bias i . t ...Lue Dias IS negligible for
all conditions in which the length of the series is greater
than or equal to 60 time points. The underestimation of
the partial autocorrelation coefficient is considerably
larger for realizations of length 30, however. It can also
be seen that the varlablllity of the partial
autocorrelation estimates as the length of the realization

becomes greater.

The next process considered is the ARIMA(2,0,0) model.

One thousand time series realizations following the AR(2)

model were generated based on three sets of autoregressi ve

parameters; 1) AR1 = .6, AR2=.3, 2) A R 1 = . 5 , A R 2 =
. 3 , and 3)

AR1=.4, AR2=.3. The mean of the 1000 estimates of the

autocorrelation function for the first three lags and the

standard deviation of these estimates are presented in

Table 3.

The general pattern of results is similar to that of

the AR(1) process. However, the downward bias of the

estimates is greater and the standard error of the

estimates tends to be slightly larger. Thus, the

troublesome attributes of the estimated autocorrelation

function are magnified for the second order au t o r e g r e s s i v e

process. The bias of the estimated autocorrelation

function of the AR(2) process is illustrated in Figures 7,

8, and 9, which plot the mean estimate over 1000
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Table 3

Second Order Autor egressive Proces

Mean Estimated Autocorrelation (AC)
Empirical Standard Error (SE)

ARl AR2 TP
T Am

AC
T A oLAG 2

A rAL SE
LAG3

AC SE

.6 .3 P .857 .814 .746
120 . 791 . 083 .727 . 098 .628 . 126
90 . 768 . 099 .695 . 116 . 586 . 149
60 .718 . 132 .630 . 153 . 509 . 185
30 . 601 192 .482 . 197 .318 . 222

.5 .3 P .714 .657 .543
120 .661 . 098 . 592 . 104 .459 . 129
90 . 643 . 112 .569 . 118 .428 . 145
60 .598 . 146 .516 . 154 . 373 . 180
30 . 502 . 202 .403 . 193 .228 . 214

.4 .3 P .571 .529 .383
120 . 528 . 110 .480 . 103 .322 . 124
90 .513 . 123 .462 . 115 . 299 . 136
60 .474 . 156 .418 . 149 . 259 . 168
30 . 395 . 210 .333 . 185 .147 . 202
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replications for lag 1 l^o 9 ^ i^§ lag 2, and lag 3. respectively.
The empirical standard error of the e^^Hm.^tne estimates at each lag
are presented graphically m Figures 10, 11, and 12.

The next table shows the mean and standard deviation
over 1000 replications of the estimated partial
autocorrelation function. Once again, the bias of the
estimates is considerable for relatively short time series

realizations and the standard error of the estimates is

much larger than would be desirable.

Finally, the procedure followed for the AR(1) and AR(2)

processes was repeated for first and second order moving

average processes. One thousand time series realizations

were generated for each of the conditions under

consideration. The mean and standard deviation of the 1000

estimates of the autocorrelation and partial
autocorrelations are presented in tables 5 and 6. Th

results are similar to those for the a u t o r e g r e s s i

v

processes, and will not be discussed further at this time.

In summary, study one examined the autocorrelation and

partial autocorrelation functions of four different time

series processes; AR(1), AR(2), MA(1), and MA(2). For each

of the models, the length of the time series realization

and the nature of the serial dependence of the observations

was varied. The results of the study suggest that the

proper identification of an ARIMA(p,d,q) process may be

e

e
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Table 4

Second Order Autoregressi ve Processes

ean Estimated Partial Autocorrelation (PAC)
and Empirical Standard Error (SE)

AR 1 AR2 TP
LAG2

PAC SE PAC J Lj

LAG4
PAC SE

.6 . 3 TRUE . 300 .000 .000
120 .254 . 089 -.017 . 084 -.024 . 087
90 .237 . 101 -.027 . 097 -.027 . 097
60 . 209 . 122 -.023 . 123 -.042 . 113
30 .136 . 161 -.063 . 151 -.074 . 148

. 5 .3 TRUE . 300 .000
. 000

120 . 263 . 090 -.013 . 086 -.023 . 088
90 . 248 . 102 -.022 . 099 -.025 . 100
60 .221 . 124 -.018 . 125 -.039 . 1 1 7
30 .154 . 166 -.058 . 155 -.074 . 151

.4 .3 TRUE . 300 .000 .000
120 . 267 . 089 -.011 . 088 -.022 . 088
90 .254 . ] 01 -.019 . 099 -.024 . 101
60 . 225 . 126 -.015 . 126 -.037 . 119
30 .164 . 169 -.05 5 . 1 58 -.073 . 1 53
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Table 5

First and Second Order Moving Average Processes

Mean Estimated Autocorrelation (AC) and
Empirical Standard Error (SE)

MAI MA2 TP AC

T APIL A(j i

SE AC
LAG2

SE
LAG3

A r

-
. 9 /i O 7

. 000 - .000 -
hi Q

. H 1 y . Uo J -.022
. 109 -.020 109

A 7 =^ -.031
. 125 -.030 123

60 .465 .094 -.039
. 152 -.031 1 53

30 .421 . 132 -.084
. 196 -.056

! 187

- . 6 LL 1 r\r\r\.UOU —
. 000 -

1 ?C) LOO
. H i. Z.

n A o
. u D y -.020

. 105 -.019 104
QO A 1 Q o Q n

. U 0 u - . Uz o .120 -.029 119
60 .408 .099 - .035 . 146 -.029 148
30 . 364 .139 -.076 . 188 -.053 181

_ 3 9 7 ^ r\ r\ r\
. 000 —

. 000 -
1 901 ^ w 9 1^ 7 HQ!

. Uo i
1 c-.015 . 096 -.015 095

9 R
. Z J J no/. AO!-.021

. 109 -.024 110
60 . 246 .116 -.026 . 133 -.024 136
30 . 202 .159 -.056 .175 -.044 169

^ 7 Q
. J J O o r\ "7

.20 7 —
. 000 —

i z u . J 1 H r\ A o
. Ubo .180 . 099 -.029 1 1

1

c; 1 T
. J i J r\ Q n .179 .113 - . 032 124
. ^ y J A n "7

.09 7 .162 . 1 40 -.042 1 54
30 . 449 . 148 . 102 . 187 -.087 190

-.5 -.3 .485 .224 .000
120 .460 .077 . 199 .095 -.028 108
90 .459 .090 . 198 . 108 -.032 120
60 .440 . 109 .181 .134 -.041 149
30 .395 .164 .123 .180 -.083 184

-.4 -.3 .416 . 240 .000
120 . 389 .087 .217 .090 -.027 104
90 . 389 . 102 .216 . 104 -.031 117
60 .370 .123 . 200 .128 -.040 143
30 .327 .182 . 144 . 173 -.078 178
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Table 6

First and Second Order Moving Average Process

Mean Esimated Partial Autocorrelation (PAC)
and Empirical Standard Error (SE)

MAI MA2 TP
LAG2

PAC SE
LAG3

PAC SE PAC SE

-.9 - TRUE -.328 -
. 243

120 o o o- . 333 .074 .216 . 084 - 19 5m ± y ^ «
OR 1

90 o o n- . J 39 ,086 . 209 . 091 - 194 DQ 7
60 Q T Q- . J J O 1 "7

.10 7 . 201 . 115 -.196 . 105
jU - . j44 .141 .159 144 -.205 . 153

-.6 TRUE - . 242 - .141 - . 083
120 - . 248 . 080 .119 . 088 -.097 085
90 "1 K ^

. 091 .112 . 097 -.097 102
60 O cr ^- . 256 .113 . 107 . 122 -.103 . 114
J U O A- . Z D O .151 .074 153 -.126 . 160

-.3 - TRUE - .082 .025 - . 007
120 -

. 094 . 088 .012 . 089 -.028 089
90 -.102 . 100 .004 . 102 -.031 103
60 -.108 .123 .004 . 128 -.038 . 121
30 -.130 . 168 - . 014 161 -.071 . 161

-.6 -.3 TRUE -.116
120 -.122 .093 -.099 . 091 . 066 . 089
90 -.125 . 109 -.102 . 103 .061 098
60 -. 125 .136 -.099 . 125 . 040 1 18
30 - . 160 .173 -.102 . 166 -.006 . 159

-.5 -.3 TRUE -.015
120 -.025 .096 -.142 . 088 .050 . 089
90 -.029 . 113 -.144 . 098 .046 . 100
60 -.034 . 140 -.138 . 121 . 026 . 119
30 -.078 . 178 -.137 . 161 -.016 . 160

-.4 -.3 TRUE - .081
120 .067 .094 -.158 . 086 .018 . 091
90 .062 .111 -.161 . 095 .015 . 101
60 .053 . 138 -.153 . 118 -.003 . 121
30 . 001 .178 -.151 . 158 -.040 . 162
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difficult for relatively short realizations. Given the

combination of severe bias and large standard errors of the

estimated autocorrelation and partial autocorrelation

functions, the accuracy of ARIMA models identified on the

basis of fewer than 90 observations is questionable.

Study Two

A second tool used in the model identification stage of

time series analysis is investigated in study two. The

construction of approximate confidence intervals around the

estimated autocorrelation and partial autocorrelation

functions is often prescribed as a useful tool in the

identification of ARIMA models. The first result of

interest is the comparison of the estimated standard error

of the autocorrelation function (which will be referred to

as the estimated standard error) with the empirical

standard error assessed as the standard deviation of the

estimates over 1000 replications of the procedure (which

will be referred to as the empirical standard error) . For

each realization in the conditions under consideration, the

estimated standard error of the autocorrelation function at

lags 1 through 3 was computed using the formula previously

discussed in the methodology section. The mean over 1000

replications was then computed to serve as a measure of
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central tendency of the distribution of the estimates.

Table 7 presents the mean estimated standard errors for

lags 1 through 3 with the empirical measure of the standard

deviation of the estimated autocorrelations over 1000

replications .

The results for the three AR(1) processes presented in

Table 7 show that the mean estimated standard error is

always greater than the empirical standard error for this

set of conditions. It is also apparent that the discrepancy

between the estimated and empirical standard errors is

largest for autoregressive processes with greater values of

P . In addition, the discrepancy is related to the length

of the time series realization. Figures 13, 14, and 15

graphically illustrate the results of Table 7 at lags 1, 2,

and 3 respectively. It should be noted that the estimated

standard errors at lag 1 do not vary (since the estimation

procedure assumes that p
-j^

= 0 ), and thus the three

conditions are represented by a single line.

The parallel results for three AR(2) processes are

presented in Table 8. The results for lags 2 and 3 are

similar to those of the AR(1) processes, with the estimated

standard errors consistently larger than the empirical

standard errors. In contrast to the AR(1) processes and

the AR(2) results at lags 2 and 3, the results at lag 1

show that the estimated standard errors are consistently
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Table 7

First Order Autoregr essi ve Processes

Mean Estimated Standard Error (EST)
and Empirical Standard Error (EMP)

LAGl LAG2 lAGT
AR2 TP EST EMP EST EMP EST EMP

.9

.6

.3

120 .091 .051 . 144 .090 .173 .120
90 . 105 . 062 .164 .107 .196 .141
60 . 129 .087 . 197 .146 . 230 . 182
30 . 183 . 133 . 263 .197 . 296 .227

120 . 091 .078 .118 . 105 .126 .118
90 . 105 .088 .135 .118 .144 .129
60 . 129 . 114 .163 .154 .172 .161
30 . 183 .156 .224 . 192 .235 . 200

120 .091 .091 .099 .095 , 100 .096
90 . 105 . 103 .114 .109 .116 .107
60 . 129 .126 .139 .139 .142 .132
30 . 183 . 169 .197 .173 .202 .170
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Table 8

econd Order Autoregressive Processes

Mean Estimated Standard Error (EST)
and Empirical Standard Error (EMP)

ARl AR2 TP
LAGl

EST EMP
LAG2

EST EMP
LAG3

EST EMP

.6 .3 120 .091 . 083 .137 . 098 .166 . 126
90 . 105 . 099 .156 . 116 .188 . 149
60 .129 . 132 . 185 . 153 .218 . 185
30 . 183 . 192 . 243 . 197 .276 . 222

. 5 . 3 120 .091 098 .125 . 104 . 147 . 129
90 .105 . 112 .143 . 118 .167 . 145
60 .129 . 146 .171 . 154 . 196 . 180
30 . 183 . 202 .228 . 193 .254 . 214

.4 .3 120 . 091 110 .115 . 103 .131 . 124
90 .105 . 123 .131 . 115 .149 . 136
60 .129 . 156 .157 . 149 .176 . 168
30 .183 . 210 .215 . 185 .235 . 202
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smaller than the empirical standard errors. These results
are graphically displayed in Figures 16, 17, and 18.

Table
9 presents the results of comparable simulations

for moving average processes. An examination of the
results shows that the estimated standard errors at those
lags where the true autocorrelation coefficient is equal to

0 (lags 2 and 3 for MA(1) processes and lag 3 for MA(2)

processes) are close to the empirical estimates of the

standard error for relatively lengthy realizations
(n >_60). On the other hand, the results for MA(1)

processes at lag 1 and MA(2) processes at lags 1 and 2

demonstrate a tendency to over-estimate the standard error

of the autocorrelation coefficients.

To briefly summarize, the results indicate that the

procedure for estimating the approximate standard errors of

the autocorrelation coefficients often over-estimates the

actual magnitude of the standard error. The

over-estimation is greatest for situations in which the

autocorrelation coefficient is considerably different from

zero. Those conditions for which the autocorrelation

parameter is close to or equal to zero provide reasonably

accurate estimates of the standard error of the parameter.

The results presented above have obvious implications

for the use of approximate confidence intervals in the

identification of time series processes. It is necessary to
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Table 9

First and Second Order Moving Average Proc

Mean Estimated Standard Error (EST)and Empirical Standard Error (EMP)

esses

MAI MA2

-.9

-.6

-.3

-.6 -.3

-.5 -.3

-.4 -.3

TP

120
90
60
30

120
90
60
30

120
90
60
30

120
90
60
30

120
90
60
30

120
90
60
30

EST

.091

. 105

. 129

. 183

.091

. 105

. 129

. 183

.091

. 105

. 129

. 183

,091
, 105
,129
183

091
105
129
183

091
105
129
183

EMP EST EMP EST EMP

.065 .111 .109 .111 . 108

.075 .127 .125
. 129 .123

.094 .155 .152 .158 . 1 53

.132 .215 . 196
. 222 . 187

.069 . 107 . 105
. 108 .104

.080 .123 .120 .124 .119

.099 .150 .146 .152 . 148

.139 . 208 . 188 .214 . 181

.081 .098 .096 .098 .095

.094 .113 . 109 .114 .110

. 116 . 138 .133 .140 .136

.159 . 194 .175 . 200 . 169

.068 .113 .099 .116 .111

.080 .131 .113 .134 .124

.097 .158 .140 .163 .154

. 148 .219 . 187 .225 . 190

.087 .105 .090 . 109 .104

. 102 .121 . 104 .126 .117

. 123 .147 .128 .153 . 144

. 182 . 206 .173 .213 .178

. 087 .105 .090 . 109 .104

. 102 . 121 . 104 .126 .117

.123 .147 .128 .153 .144

. 182 . 206 . 173 .213 . 178
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assu.e that the parameter is equal to zero in order to

construct confidence intervals around the hypothetical
autocorrelation parameter of zero. If the parameter is

indeed zero, the approximate confidence intervals are
relatively accurate. In contrast, non-zero autocorrelation

parameters lead to standard error estimates which deviate

from the true standard error; in most circumstances, the

estimated standard errors are larger than the true values.

It follows that confidence bands around parameters equal to

zero will result in a true type one error rate, while the

confidence intervals for non-zero parameters will often be

too wide and result in a large Type II error rate.

The next part of study two systematically examines the

Type I and Type II error rates of the test of significance

of the autocorrelation parameters. The test statistic is

based on the 95% confidence interval around the zero value

of the autocorrelation coefficient. For each replication,

estimated autocorrelations were substituted for the

population parameters that are assumed to be known in the

estimation procedure. The percentage of replications for

which the estimate was outside of the 95% confidence

interval were calculated, resulting in a Type I error rate

for conditions in which the true autocorrelation is equal

to zero, and a power estimate (1 - Type II error rate) for

those conditions with a non-zero population parameter.
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Type I error rates and power estimates were also assessed
for the partial autocorrelation coefficients using the same

procedure with the standard error estimate of the partial

autocorrelation coefficient.

The results of the Monte Carlo simulations for AR(1)

and AR(2) processes are presented in Table 10. The

population autocorrelation function is greater than zero

for lags 1, 2, and 3, as shown in the rows labeled "p

Thus, the rejection of the null hypothesis
: p = 0 is a

measure of the power of the procedure to detect a

significant autocorrelation parameter. It can be seen that

the power of this test varies considerably with the length

of the time series realization. The percentage of

replications for which the test was able to detect a

non-zero autocorrelation parameter is also obviously

related to the magnitude of the parameter. As the lag

increases, the population parameter of an AR(1) or AR(2)

process becomes smaller and more difficult to detect.

These results are also presented graphically in Figures 19

through 24.

The percentage of null hypotheses rejected for the test

of the partial autocorrelation coefficients are presented

in the last three columns of Table 10. The population

parameters are zero for all cases other than the partial

autocorrelation coefficient at lag 2 of the AR(2)



125

Table 10

First and Second Order Autor egressive Processes

Percentage of Null Hypotheses Rejected (p<.05) forThree Lags of Estimated Autocorrelations (AC)
and Partial Autocorrelations (PC)

A D 1A K i
ADOAR 2 TP ACl AC2 AC3 PC2 PC3 PC4

Q
1 RUL . 900 .810 .729 .000 .000 .000
120 1 .000 1 .000 . 994 . 045 0 3 9• W J n A

. <J '4 O
90 1 .000 .999 .943 .044 .037 .031
60 1 . 000 . 966 .715 .043 .039 .034
30 r\ Ci r\

. 980 . 543 . 027 .039 . 032 .028

, 0 1 R U h . 600 . 360 . 216 . 000 .000 .000
120 1 .000 . 839 . 268 . 049 . 042 05 ?9 \J ^ c.

90 1 .000 .679 .156 ,062 . 042 .033
oO . 987 . 401 . 068 . 048 .039 . 050
30 .805 . 082 . 008 . 044 .036 .031

q
. J T D TT t?

1 K U Ei . 300 . 090 . 027 . 000 . 000 .000
120 .875 . 106 .042 . 041 . 049 .049
90 . 766 .082 .032 .057 .043 . 045
oO .53 7 . 050 .031 .066 . 046 .051
30 .234 . 021 .014 . 040 . 034 . 035

. D . 3 TRUE .857 .814 . 746 . 300 . 000 . 000
120 1 . 000 1 . 000 . 994 . 807 . 039 . 045
90 1 .000 . 999 .950 .621 . 045 .040
60 .997 .966 . 736 . 381 .051 .032
30 . 895 .572 .036 .088 .034 .026

. 5 . 3 TRUE .714 . 657 .543 . 300 .000 . 000
120 1 .000 .999 . 941 .834 .038 .045
90 1 .000 .994 .804 .670 .050 . 041
60 .981 .910 .518 .422 .048 .039
30 . 773 .421 .019 . 106 .032 .030

.4 . 3 TRUE .571 .529 .383 .300 .000 .000
120 . 995 . 990 . 747 .840 . 042 .049
90 .989 .969 . 531 .691 .052 .043

60 .898 .809 . 284 .435 .049 .035

30 .613 . 304 .010 . 122 .031 .034
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processes. It can be seen that the type I error rates in
these conditions are very close to the nominal value of

P=.05, With a slight tendency towards a deflated type I

error rate.

The power of the statistical test of the partial
autocorrelation coefficient is examined for the AR(2)
processes. The length of the realization has a tremendou

effect on the power to reject the null hypothesis that th

lag 2 partial autocorrelation coefficient is different f

zero. This relationship is displayed in Figure 25.

Table 11 presents the corresponding results for moving

average processes. In this situation, the population

autocorrelation coefficient at lags greater than the number

of moving average parameters is equal to zero. It is

apparent that the empirical Type I error rates in these

conditions are relatively close to the nominal p=.05 level.

The power to detect true differences from zero at lag 1 is

very good for time series realizations of length 60 or

greater. For the MA(2) processes however, the ability to

detect non-zero autocorrelations at lag 2 is poor, even for

realizations of 120 time points.

The practical implications of insufficient power should

be pointed out at this time. For first order

autoregressi ve processes, the theoretical autocorrelation

function is characterized by an exponential rate of decay.



133

SNOIlD3r3iJ SIS3H10dAH HON JO 30VlN30a3d



134

Table 11

First and Second Order Moving Average Proc esses

Percentage of Null Hypotheses rejected (p<.05) forThree Lags of Autocorrelation Estimates (AC)and Partial Autocorrelation Estimates (PC)

MAI MA2

-.3 120 .831 .045 .045
90 . 697 .051 .044
60 .487 .044 .036
30 .165 . 038 .018

170
156
123
084

043
044
048
026

- . 6 1 7nX z u i . uuu .05 7 . 044 .815 . 257
90 . 992 .053 .040

. 700 . 164
60 . 934 .052 .035 .511 . 114
30 .552 .054 .019 . 287 . 033

-.9 120 1 .000 .059 .047 .982 .665
90 . 998 .054 .038 . 937 .521
60 .984 .058 .035 . 794 .345
30 .716 .064 .018 .473 .091

-.4 -.3 120 .988 . 563 .060 .111 .416
90 .952 .429 .042 .104 .318
60 .831 . 237 .055 .078 . 220
30 .473 .059 .040 .043 .088

-.5 - . 3 120 . 999 .450 .062 .071 . 342
90 .991 .330 .038 .069 .280
60 .946 . 174 .058 .080 .178
30 .628 . 038 . 041 .056 .079

-.6 -.3 120 1 .000 .336 . 058 . 277 . 190
90 .999 .236 .037 . 241 .159
60 . 990 .118 .061 .172 .115
30 .750 .028 .040 .122 . 055

046
053
049
037

172
138
099
072

585
466
299
163

. 059

.043

. 037

.026

. 078
,057
,040
,027

104
071
04 5

020
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The failure to consider autocorrelation coefficients at
lags 2 and beyond as different from zero .ay result in a

.isidentification of an AR(1) process as a MA(1) process.
The apparent for. of the autocorrelation function would be
a truncation after lag 1 rather than an exponential decay.
One of the keys to identifying an AR(2) process is
recognizing the partial autocorrelation at lag 2 as being

different from zero, and thus a lack of power in testing
this coefficient may result in the m i s i d e n t i f i c a t i on of

AR(2) processes. In short, the researcher must make
accurate judgments about form of the autocorrelation and

partial autocorrelation functions in order to properly

identify a time series process. A lack of power in testing

whether the autocorrelation and partial autocorrelation

parameters are different from zero can be a serious

impediment to proper model identification.

Study Three

This study considers the practical implications of

applying the unbiased estimator of the autocorrelation

function proposed by Quenouille (1956). This procedure for

estimating the autocorrelation function is designed to

remove the severe bias of the ordinary estimator of the

autocorrelation function that occurs when time series
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estl.a.o. „„,,33ed,
c o „ s . . e . a t i o „ s a.

necessary in evaluating the relative hS cne relative desirability of the
estimator. Fttqi- ,, r^i-i^"--i. rirst, unlike the n-^^nai ^ ^usual estimator of the
autocorrelation function, estimates ™a, ,e obtained that
are theoretically impossible. Secondly, it is very
important to consider the magnitude of standard error of
the estimator.

The first result of this set of Monte Carlo simulations
addresses the issue of estimates outside the theoretical
bounds of the parameter. It is of interest to examine the
frequency of such estimates under a variety of conditions.
The results presented below (Table 12) indicate that
estimated autocorrelation coefficients greater than 1.0 are

quite common for a u t o r e g r e s s i v e processes with a high
degree of serial correlation. As would be expected,
shorter realizations are more likely to produce such

estimates than are longer realizations. A set of

simulations conducted for moving average processes showed

that the incidence of estimates greater than 1.0 was very

small, since the expected values of the autocorrelation

coefficients are smaller than those of the a u t o r e g r e s s i v e

processes considered.

Next, the empirical standard errors of the unbiased

estimator are compared with those of the usual biased
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Table 12

Unbiased Estimates of Autoregressive Processes

Percentage of Autocorrelation Estimates > 1.0

ARl AR2 TP ACl AC2 AC3 AC4 ATS

. 9 120 .075 .061 .054 .047 .04190 1 n "7

. 086 .071 .062
60

. 199 .173 . 143 .121 . 106
30 .327 . 252 . 189 . 130 . 062

. 6 120 .000 .000 .000 .000 .000
90 nnn. w w u . UUU r\ r\

. 000 . 000 .000
60 .002 .000 . 000 .000 . 000
30 .020 .011 .007 .005 . 000

. 3 120 .000 . 000 . 000 .000 .000
90 ODD

• UUU r\ r\ A.000 . 000 . 000
60 .000 . 000 .000 . 000 .000
30 .001 . 001 .000 .000 .000

. 6 .3 120 .079 . 073 . 072 .063 . 061
90 .137 .133 .119 . 104 .092
60 . 192 .177 .152 . 127 .110
30 .274 .222 .168 .110 .050

.5 .3 120 .004 .003 .003 .003 .002
90 .017 .019 .016 .010 .006
60 .057 .051 . 039 . 035 . 028
30 .144 . 103 .077 .038 .014

. 4 .3 120 .000 .000 .000 .000 . 000
90 .000 .000 .000 .000 . 000
60 .016 .016 . 013 .007 .005
30 .060 .048 .026 .011 .004
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estimator. Table 13 presents the standard deviation of the

estimated autocorrelation coefficients for Quenouille's
unbiased estimate next to the usual biased estimates. In

all cases the empirical standard error of the biased
estimator is smaller than that of the unbiased estimator.

The magnitude of the difference in standard error is

relatively small for time series realizations of length

120, especially for conditions with less serial dependency.

As the series becomes shorter and p increases in

magnitude, however, the biased estimator exhibits

considerably less variability.

The results of study three suggest that the unbiased

estimation procedure proposed by Quenouille is of limited

usefulness. The conditions under which bias is troublesome

are the same circumstances that result in problems with the

unbiased estimation procedure; relatively short time series

realizations and relatively high degrees of serial

dependence. In conclusion, it appears that utilizing the

unbiased estimation procedure avoids one problem at the

expense of a large increase in the magnitude of the

standard error of the estimates.
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First and

Empirical
Biased

Second 0

Standard
(BIAS)

Table 13

rder Auto

Error of
Autocor re

regressive

Unbiased
lation Est

Processes

(UNBS) and
ima t e s

ARl AR2
LAGl

TP UNBS BIAS
LAG2

UNBS BIAS
LAG3

UNBS BIAS

120 .068 .051 . 121 .090 .166 .120
90 .085 .062 .151 . 107 . 206 .141
60 .126 .087 .217 . 146 . 280 . 182
30 .216 . 133 . 334 .197 .398 .227

120 .085 .078 .121 . 105 . 139 . 118
90 .099 .088 .141 .118 .161 .129
60 .136 . 114 . 197 .154 .218 . 161
30 .212 .156 . 283 .192 .311 . 200

120 . 097 .091 . 105 .095 . 107 .096
90 .111 . 103 .122 .109 . 124 .107
60 . 1A2 .126 . 165 .139 . 163 . 132
30 .210 .169 .233 .173 .239 .170

. 3 120 . 109 .083 .135 .098 .178 .126
90 . 133 .099 .167 .116 .221 .149
60 . 186 . 132 . 229 .153 . 287 . 185
30 .296 . 192 .330 .197 . 389 .222

. 3 120 .117 .098 . 130 . 104 . 167 . 129
90 . 138 .112 .157 . 118 . 200 .145
60 . 194 . 146 . 220 .154 . 269 . 180
30 . 297 . 202 .310 .193 .363 .214

.3 120 .124 ,110 . 123 . 103 .153 .124
90 .144 .123 .145 . 115 .180 . 136
60 . 197 .156 . 203 . 149 . 241 .168
30 . 295 .210 . 282 .185 .330 . 202
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Study Four

The final set of Monte Carlo simulations investigate
the small sample properties of the intervention analysis

procedure developed by Box and Tiao (1965, 1975). The type

of intervention process examined is an immediate, permanent

change in level of an ARIMA(1,0,0) stationary time series

process. Three characteristics of the time series process

were systematically manipulated; 1) the magnitude of the

autoregressive parameter (.3, .6, or .9), 2) the number of

time points in the time series process (60, 90, 120, or

150), and 3) the magnitude of the intervention parameter

(0, .5, .8, or 1.1). Also, the value of the white noise

parameter changed with the value of the autoregressive

parameter in order to generate time series realizations

with a constant variance of one (if AR(1) = ,3, q2 = ,91.

if AR(1) = .6, 0^ = .64; if AR(1) = .9, = .19).

Maximum likelihood estimates of the intervention

parameter were obtained for 1000 replications of each

condition. Confidence intervals (95% and 99% C.I.) were

constructed around the estimates based on the t

distribution and asymptotic approximation of the standard

error of the estimator. The percentage of replications

that resulted in the rejection of the null hypothesis,

*

U 1 "1-1 2 ~ ^ (where ^ j
and

jj 2 represent the pre- and

post- intervention means of the time series process), were
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computed for each condition. This measure provides an
estimate of the empirical Type I error rate for condition
in which the null hypothesis is true, and of the power of
the test statistic for conditions in which the intervention
component is different from zero.

The results of this set of simulations are presented in

Table 14. An examination of the Type I error rate shows

that for all conditions the empirical rate of rejection of

the null hypothesis is greater than the nominal error rate.

The inflation of Type I error is somewhat smaller for time

ries realizations of greater length. However, even data

ts of-150 time points exhibit error rates are

considerably inflated. Furthermore, the inflation becomes

more severe as the value of the a u t o r e g r e s s i v e parameter

increases.

The power of the test of the intervention effect will

be considered next. As mentioned previously, the variance

of the generated data sets was fixed at 1.0 in order to

facilitate the comparison of conditions in which the

a u t o r e g r essi ve parameter differed. Table 14 shows the

percentage of rejections of : - U2 = 0 for situations

in which the intervention component is equal to .5, .8, and

1.1. Obviously, the power of the test statistic increases

as the magnitude of the intervention parameter becomes

larger

.
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The i.pact of the autoregr essive parameter on the power
of the test statistic is of .ore interest. It can be seen
that the power of the test statistic is greatly diminished
as the autoregressive parameter becomes larger. Figures
26, 27, and 28 illustrate the importance of serial
correlation in determining the probability of correctly
rejecting the null hypothesis at the p < .05 level.

The length of the time series realization is extremely

important in determining the power of the test statistic.

Sixty time points is apparently not a sufficient length to

assure reasonable certainty of rejecting the null

hypothesis when an intervention effect is in fact present.

It can be seen that there is very little power for a time

series realization of sixty time points and a moderately

large autoregressive parameter of .6. Even an intervention

effect of 1.1, which is greater than the variance of the

time series, only results in a rejection of the null

hypothesis in 73% of the replications at the p < .05 level.

The test statistic for time series realizations of

greater length demonstrates a larger percentage of

rejections of the null hypothesis, however, it appears that

a lack of power may be a problem in many of the longer time

series conditions as well. In particular, as the magnitude

of the autoregressive parameter increases, the ability to

detect an intervention effect diminishes. For the case of
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AR(1) = .9 and 150 time Doint<. • .points, an intervention effect of
1.1 is necessary to achieve reasonable power.

Study four also considers the sampling distribution of
the test statistic. It is assumed that the test statistic
is distributed normally for large sample sizes and as a t

distribution for smaller sample sizes. The
Kolmogorov-Smirnov test of normality was applied to the

distributions of the test statistics in each condition with
an intervention parameter equal to zero. The null
hypothesis that the sampling distribution was normal could
not be rejected for any of the conditions studied.
However, the probability levels of the Kolmogorov-Smirnov

test statistic were less than .20 for three conditions;

AR(1)=.9 with the number of time points equal to 120, 90,

and 60. Thus it appears that the distribution of the test

statistic may deviate somewhat from normality as the

autoregressive parameter of the time series process becomes

very large.

The final set of results presented in study four

concerns the accuracy of the estimated standard error of

the intervention parameter. The results presented in Table

15 are a comparison of the mean estimated standard error of

the intervention parameter over 1000 replications and the

empirical measure of the standard error obtained by

computing the standard deviation of the 1000 estimates of

the intervention component. As would be expected, the



in

CO

-a
a
CO

/-s CO

E-H '-^ 1)

CO CU -M

w CO

o

u
w
T3
Ui

CO

-a
c
CO

4-1

CO

T3
OJ

4-)

CO

e
•H
4-1

CO

w
a
CO

cu

CO

w
4-1

U
OJ

^4-1

CO W
T3
C
CO

4J

CO
c

r—I (U

CO >
U i-i

•H <U

(-1 4-)

•H C
CXI-H

E
W 4-1

o

II

E-H

CO
w

W
00

II

h-i H
CO
w

Oh
IS
w

CO
w

o
II

H
CO
W

CO O O CN
>—<

CO -d- -d-

--H 00 r-H CO
<j- <r in LP)

CO CO 00 CO

00 •—
I in On

00 CM -vj- vO
CO <3- <J-

CN 00 --H ^
<t in in
CO CO CO CO

CN vO t-H On
CJN r—

I VO
CO <!

cN r-- .-H <f
<r -cr in in
CO CO CO CO

CO \0 CO CO
CJN I—

I ^ \o
00 <} •<f

.—
( 00 r-l 00

<f in in
CO 00 CO CO

O O O O
in cN cjN

CTN

^ O in
o ^ C3> in
CO CO CO •<!

—
I
CO o o

CJN .—
I <t O

CN CO CO <}•

00 o <j-

o -cr cjN in
00 CO CO -4"

00 C7N o
—

I ^ O
OJ 00 00 ^

CM CN Csl

O <)• 00 in
CO CO CO <r

I—
I 00 o o>

CJN i-H ^ CJN

CM 00 CO CO

<J- 00 Csl

o <t 00 in
CO CO CO

--I 00 O o
c7\ 1—

I
in o

CN 00 CO <3-

o o o o
in cN ON vo

O ^ CO
CN 00
CN CN OM CO

CO r-- 00 OS)

r-( 00 VO Osl

Csl CN CM CO

vo
<—

I ^J- 1^ CO
CM CN CM OO

CO CO CO
<—

I CO 'O CN
CN CM OM CO

ON 1^ 00 o
'-H <t
Csl CM CN 00

CO C3^ O
CO O OM

CM 0\1 CN CO

CJN O '—

<

<f 00 in
CM CN CN CO

CO r-- ON 00
.—I CO O CM
CM eg CN CO

o o o o
in CN ON ^

CO



U9

intervention component does not influence the magnitude of

either the estimated or empirical standard error, and thus
only the values for conditions with the intervention
component equal to zero need to be considered.

It can be seen immediately that the mean estimated
standard error is consistently smaller than the empirically

obtained standard error. This discrepancy between the

estimated and empirical standard errors becomes greater as

the AR(1) parameter becomes larger, and as the length of

the realization becomes shorter. This finding is also

presented graphically in Figure 29. The underestimation of

the standard error of the intervention component is the

most reasonable explanation for the consistent inflation of

Type I error rate reported above.

In conclusion, the results of study four suggest two

problems in the application of the Box and Tiao (1965,1975)

method of testing for the presence of an intervention

effect. The empirical Type I error rate of the estimator

is consistently greater than the nominal error rate, and

the power of the test statistic is often insufficient.

These undesirable properties are most severe in those

conditions with the largest autoregressi ve parameter. Both

of these problems tend to be alleviated as the length of

the time series realizations approaches the maximum length

investigated, 150 time points.
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CHAPTER V

SUMMARY, LIMITATIONS, AND CONCLUSIONS

Summary

The four Monte Carlo studies conducted in this research
project provide important information with respect to the

small sample properties of several estimators utilized in

time series analysis. Studies one through three
investigate procedures that are used in the model
identification stage of ARIMA(p,d,q) time s'eries analysis,

while study four examines the small sample properties of

Box and Tiao's (1965,1975) test statistic for the presence

of an intervention effect in an ongoing time series

process. All of the studies manipulate two factors; the

nature of the autocorrelation structure and the length of

the time series realization.

Study one examines the properties of the usual

estimators of autocorrelation and partial autocorrelation

in time series processes. The estimated autocorrelation and

partial autocorrelation functions provide the basis for

model identification, and thus, an understanding of their

small sample properties is essential for the meaningful

application of time series analysis. The results of study

151
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one emphasize the importance of measuring the time series
process over a sufficient number of time points. As

demonstrated in this set of simulations, the problems of

bias and variability of the estimates are attenuated as the

number of observations in the time series becomes greater.

The second study investigates the estimators of the

approximated standard error of the autocorrelation and

partial autocorrelation coefficients. The estimators are

commonly used to detect non-zero coefficients by

constructing confidence intervals around zero for each of

the parameters in the autocorrelation or partial

autocorrelation function. The expression used to estimate

the standard error of the autocorrelation coefficient is

based on two assumptions that are likely to be violated.

First, it is assumed that the population parameters of the

autocorrelation function at every lag is known.

Furthermore, it is assumed that the parameter for which the

standard error is being estimated is equal to zero, and

that the autocorrelation at all lags greater than that of

the parameter being tested are equal to zero.

The simulations conducted in study two emphasize

several problems in utilizing the estimated standard

errors. The study compares the estimated values of standard

error with empirical estimates of the standard error.

These results indicate a wide discrepancy for many of the
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ror
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conditions investigated, with the estimated standard er

generally exceeding the empirical standard error.

Study two also examines the statistical tests of

significance of the autocorrelation and partial
autocorrelation coefficients. These tests of significance

are based on the estimated standard errors, and thus, the

results of this part of the study are closely related to

those described above. Study two demonstrates that whil

the empirical Type I error rates are reasonably accurate,

the power of the two test statistics tend to b

insufficient for the less lengthy realizations that wer

considered. This is not surprising given the finding that

the standard error of the autocorrelation coefficient is

over-estimated when the population parameter is different

from zero.

Study three investigates the unbiased estimator of the

autocorrelation function proposed by Quenouille (1956). It

was found that while the estimator is unbiased, two other

problems arise that may be more troublesome. First, the

occurrence of parameter estimates outside of the

theoretical bounds of the parameter were not uncommon.

Perhaps more importantly, the estimates exhibited much

greater variability in comparison to those of the usual

biased estimator. These undesirable properties were most

severe in conditions with larger values of P , and in those
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with shorter time series realizations.

Study four examines the statistical test of an abrupt
permanent change in level of a stationary time series
process, as proposed by Box and Tiao (1965, 1975). Based
on the results of the Kolmogorov-Smirnov test of normality,

the sampling distribution of the test statistic does not

significantly deviate from normality. The results of study

four also indicate that the estimated standard error of the

intervention component was consistently smaller than the

standard deviation of the 1000 estimates of the

intervention effect. In addition, the Type I error rate of

the test statistic was inflated for all conditions

considered, with the inflation increasing as the length of

the time series realization becomes shorter. This result

can most likely be attributed to the underestimation of the

standard error noted above. Finally, the power of the test

statistic is less than desirable for many conditions that

were studied

.

Limitations

The findings of the present research project are

limited in several respects, and many areas of future

investigation are warranted. The conditions selected for

investigation were limited to:
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o the AR(1), AR(2), MA(1), and MA(2) processes In

Studies one, two and three;

o the AR(1) process for study four, which investigated

the statistical test of an intervention effect; o an

intervention component of an abrupt permanent change

in level; o time series realizations of length 30,

60, 90, and 120 in studies one, two, and three;

o and, realizations of length 60, 90, 120, and 150 in

study four.

Numerous other conditions could have been selected for

investigation, and may have led to slightly different

results

.

An important area or research that was not investigated

involves the robustness of the statistical test of the

intervention component. All of the simulations in the

present research are based on data generated according to

the AR(1) process, which is the model that was assumed by

the statistical test. It is also important to examine the

consequences of violating the assumption, by testing for an

intervention when the ARIMA(p,d,q) model is mi s id en t i f i ed

.

The present research attempted to investigate the issue

of robustness, but a severe problem in obtaining

convergence was encountered during the estimation
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procedure. Ti.e series realizations were generated
according to a MA(I) process and then tested using the
maximum likelihood function based on the AR(1) process.
Estimates were unobtainable for virtually all of the
realizations that were generated.

A second type of model mi s s p e c i f i c a t i o n was attempted
by generating AR(2) realizations and testing for an

intervention effect using the likelihood function of the

AR(1) process. Once again, reaching convergence was a

problem, but in this instance, the difficulties were

somewhat less severe. The percentage of replications for

which convergence was attained was roughly 50% for 90 time

points, and 20% for 150 time points. For those data sets

that successfully converged, the Type I error rate was

severely inflated. For the limited number of conditions

considered, the empirical Type I error rate was roughly 20%

when tested at the nominal p < .05 level. Obviously, the

validity of the results are questionable given the number

of data sets that were eliminated due to convergence

problems. Nevertheless, the results of this informal

investigation do suggest that model mi s iden t if i ca t i on may

be a critical problem in the application of statistical

tests of intervention.

Another type of model m i s s p e c i f i c a t i on that warrants

future research is the instance of a change in the time
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serxes process at the point of intervention. This is
likely to be a common problem for the researcher, since the
intervention component may simultaneously affect both the

level of the time series process and the nature of the
interdependence among the observations. This study did not

attempt to investigate this form of model misspecif ication

,

and there is apparently existing research that addresses

the issue

.

Another type of limitation of the research involves the

estimation procedures employed in study four, which

examines the properties of the intervention component. As

described in the methodology chapter, efforts to estimate

the four parameters of the model simultaneously by

maximizing the full likelihood function were not

successful. As a result, a stage-wise estimation procedure

was utilized to obtain the maximum likelihood estimates.

The extensive comparison of the stage-wise and simultaneous

estimation procedures provide reasonable assurance that

results based on a simultaneous estimation procedure would

not differ from those of the present research.

Nevertheless, the possibility that the results would not be

precisely replicated using a simultaneous estimation

procedure cannot be entirely eliminated.

A related issue concerns the convergence failure of

roughly 2 to 5% of the data sets that were generated.
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Although the realizations that failed to converge did not
appear to differ systematically fro. those that were
successfully analyzed, there is a possibility of biased

results due to a systematic difference in those
realizations that were eliminated.

In summary, the present research is limited with
respect to two general aspects. First, the results of the

research are based on a set of specific conditions that

were selected for investigation, and these conditions will

not necessarily generalize to other conditions that may be

of interest. Secondly, the estimation procedure that

employed was not the most desirable procedure that i

available. The practical considerations involved in

conducting 1000 replications for each condition

necessitated using a stage-wise estimation procedure rather

than the full maximum likelihood estimation of all

parameters simultaneously. The researcher who is analyzing

a limited set of time series realizations is more able to

employ the full maximum likelihood estimation procedure,

and, in the event of non-convergence, modify the starting

values to obtain solutions in most circumstances.

was

s
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Conclusions

In addition to providing specific information wxth
respect to the small sample properties of several
estimators utilized in time series analysis, two general
conclusions can be drawn by considering the entire set of

four Monte Carlo simulations. The most important
conclusion concerns the length of time series realization

that is necessary to obtain meaningful results on the basis

of the statistical procedures discussed in this paper. In

addition, researchers should be wary of the problems that

are likely to be encountered when analyzing time series

data with extreme serial dependence.

It is extremely difficult to provide definitive

guidelines for the application of interrupted time

analysis. The small sample properties of the test

statistic are sample dependent, and thus vary according to

the autocorrelation structure of a particular data set.

This difficulty is made more troublesome by the large

standard error of estimated autocorrelation coefficients

that are based on a small number of time points. The

extensive variability and bias of the small sample

estimates limit the usefulness of pilot testing as .a method

of evaluating the extent of serial dependency in a time

series process. Consequently, the researcher will often be
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forced to determine the nu.ber of observations to be
measured .n the absence of knowledge concerning the
autocorrelation structure of the process.

Additional problems in the application of time series
analysis to actual data sets involve the assumptions of

stationarity and the proper identification of an ARIMA
(P,d,q) model. The results presented in this dissertation

are based on simulated data sets that are generated
according to known stationary AR and MA processes. In

actual practice, data sets are not likely to fit an

identified ARIMA (p.d,q) process as closely as the

simulated data sets of the Monte Carlo experiments.

Furthermore, time series data encountered in practice is

not likely to precisely conform to the assumption of

stationarity. The results of the present research are

obtained under optimal conditions, and thus, the

idiosyncrasies of actual data sets may magnify the

undesirable properties that have been discussed.

Based on the research presented in this dissertation,

it is recommended that time series realizations consist of

at least 90 observations. The length of the time series

realization plays a critical role in determining the

quality of the estimates that are obtained when .applying

the procedures that have been described. Almost all of the

estimation problems that have been investigated - bias, the
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magnitude of standard errors, the accuracy of estimated
standard errors, inflation of Type I error rates, and lack
of power - are much less severe for more lengthy time
series realizations. Thus, researchers should make every
effort possible to obtain lengthy data sets, and recognize

that conclusions drawn on the basis of shorter time series

realizations may be misleading.

The second general conclusion suggested by the results

of these experiments involves the degree of serial

dependence in time series processes. It is important for

researchers to be aware of the severity of the estimation

problems that are encountered when the autocorrelation

among data points is extremely high. For almost all of the

conditions examined in the present research, extreme serial

dependence increases the problems that are observed in the

estimation procedures. In the model identification stage of

time series analysis, both the bias in the autocorrelation

estimator and the over-estimation of the standard error of

autocorrelation coefficients becomes more severe as the

serial dependence becomes more severe. Furthermore,

problems with the estimation of the intervention component

become more severe as p increases; inflation of the Type I

error rate becomes greater and there is a decrease, in the

statistical power to detect an intervention effect.
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In conclusion, although methods for the statistical
analysis of tine series processes are a valuable tool for
the researcher, it is important for those applym, ,,ese
procedures to be aware of the inherent limitations and
potential problems with the procedures. It is hoped that

the research presented here will prove useful to those
interested in the application of ARIMA models.
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