
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1980

An empirical investigation of the consequences of
error model misspecification.
David A. Wagstaff
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Wagstaff, David A., "An empirical investigation of the consequences of error model misspecification." (1980). Doctoral Dissertations
1896 - February 2014. 1519.
https://scholarworks.umass.edu/dissertations_1/1519

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/1519?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




EMPIRICAL INVESTIGATION OF THE CONSEQUENCES

OF

ERROR MODEL MISSPECIFICATION

A Dissertation Presented

By

DAVID A. WAGSTAFF

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1980

PSYCHOLOGY



David A. Wagstaff

1980

All Rights Reserved

ii



AN EMPIRICAL INVESTIGATION OF THE CONSEQUENCES

OF

ERROR MODEL MISSPECIFICATION

A Dissertation Presented

By

DAVID A. WAGSTAFF

Approved as to style and content by:

Jerome L. Myers^ Chairperson

David W. Hosmer, Member

Ronnie ulman, Member

X
inne M. Stoddard, Member

Charles
Acting Department Head,
Psychology

iii



ACKNOWLEDGMENTS

I would like to express my sincere appreciation to the members

of my dissertation committee: Jerry Myers, Dave Hosmer, Ronnie

Janoff-Bulman, and Anne Stoddard. While this dissertation benefited

greatly from their many helpful comments, suggestions, and

criticisms, I would be remiss if I did not acknowledge the important

role that each member played in terms of my development as a

statistician and data analyst.

Jerry introduced me to graduate-level statistics and, in doing

so, made the learning of statistics an enjoyable enterprise. Dave

indirectly sent me the first student that I would tutor in

statistics (my wife, Bettie). Through Dave, I learned that teach-

ing statistics could be a very rewarding experience. Ronnie

supported my exploration in statistics. She served on the

committees for my master's degree and my comprehensive examination.

Anne completed the cycle. She taught my final graduate-level

statistics course. (Anne also served on my comprehensive examina-

tion committee.)

I would also like to express my gratitude to Janet D. Elashoff.

Without her timely hints and encouraging letters, I certainly would

have been less eager to adopt an analytic approach.

Finally, I would like to thank Pat Milne of Wordstream

Processing. Pat, as usual, did an outstanding job typing this

dissertation.

iv



ABSTRACT

A.B., 1969, Lafayette College, Easton, Pennsylvania

M.S., 1977, University of Massachusetts, Amherst, Massachusetts

Ph.D., 1980, University of Massachusetts, Amherst, Massachusetts

Directed by: Professor Jerome L. Myers

Four Monte Carlo simulations were undertaken in order to deter-

mine the consequences of analyzing data from a mixed sample as if it had

come from a single, homogeneous population. More specifically, the

study examined the effect that misspecification of the error model had

on Ordinary Least Squares estimation and its associated hypothesis

testing procedure for no slope (i.e., the t-test)

.

The obtained data and supporting analytic arguments suggest that

misspecification of the error model will not seriously affect

parameter estimation when the contaminating fraction is small and

variables are measured on short, ordinal scales (e.g., the Likert

scale). The obtained data also suggest that misspecification of the

error model will not seriously affect the Type II error rate (i.e.,

the probability of accepting a false null hypothesis) providing that

the postulated causal model does not include variables not found in

(or exclude variables found in) the regression models for the

separate components.
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CHAPTER I

INTRODUCTION

A Hypothetical Example

Consider the following hypothetical study. A social

psychologist is interested in investigating the extent to which

the attribution of responsibility ( Y ) is influenced by the per-

ceived similarity ( Xj ) between observer and actor, and by the

seriousness ( X
2

) of any injuries or losses resulting from a

harmful act. To be more specific, the social psychologist would

like to determine the extent to which an observer would allow his

judgment concerning the actor's responsibility for having caused the

harmful act to be influenced by (a) the extent to which the observer

perceives the actor to be "like" him, and (b) the seriousness of any

injuries or losses which result from the harmful act.

To provide potential respondents with a relevant and engaging

experimental task, the social psychologist decides to consider the

situation where the observer (i.e., the respondent) is a "witness"

to a traffic accident; the actor is the driver of the moving

vehicle; and the accident results in the death of a jaywalker.

Given this context, the social psychologist advances two hypo-

theses. First, he suggests that the extent to which an observer

holds a driver responsible for a jaywalker's death is inversely

related to the extent to which the observer perceives the driver



to be "like" hi*. Second, he suggests that the extent to which
an observer hoids a driver responsible for a jaywalker's death is
directly related to the "losses" the observer assigns to this kind
of situation. In effect, the social psychologist is implicitly
assu^ng that the observer is influenced nore by the social identity
of the jaywalker than by the actual physical nature of the injury or
loss

Fall semester begins and the social psychologist conducts the

study. Unfortunately, he is unaware that the obtained data are

described best as a mixture of two regression equations. That is,

given his sample of N respondents, Nj respondents provide data that

support the hypothesized causal model while N,, respondents

provide data that challenge the hypothesized causal model. (Note,

N = + N
2
.)

Now, this mixture may have occurred for a number of reasons.

For example, the two populations may reflect different social

norms. The respondents may come from communities that require

the driver to yield the right of way to all pedestrians (even jay-

walkers). As a result, they are cognizant of the need to sanction

a driver who fails to obey the law. More importantly, they are

privy to the tacit knowledge as to the "type" of driver who

should be imprisoned or fined for a particular kind of motor

vehicle offense. In contrast, the N
£

respondents may come from

communities that refuse to take any action as it is understood

that pedestrians jaywalk at their own risk. Consequently, they



may have little knowledge of, or experience with, the cognitive or

social mechanisms which would assist them in assessing the serious-

ness of the loss or in assigning responsibility for the jaywalker's

death.

On the other hand, the two populations may reflect different

definitions of personal responsibility. Here, the N respondents

may use a pragmatic definition of personal responsibility that re-

quires them to balance the consequences of sanctioning the driver

against the losses incurred by the jaywalker and his immediate re-

lations. As a result, they may feel justified in considering the

social identities of both the driver and the jaywalker when assessing

the seriousness of the loss and attributing responsibility for the

death. In contrast, the N
2

respondents may use a strict moral

definition of personal responsbility that requires them to ignore the

social identities of driver and jaywalker. Because their available

information is limited to a description of the participants and the

act, they may base their judgments solely on the latter.

Then, the mixture may have occurred because one population in-

correctly (or correctly) guessed the experimental hypotheses. For

example, the N respondents may have incorrectly concluded from the

differences in social status between the driver and jaywalker that

the study deals with social stereotypes. As a result, they may have

intentionally biased their answers so that they would appear to be

the kind of individuals who would not be unduly influenced by "extra-

legal" considerations.



The point behind the preceding (and admittedly short) list of

examples is that in any given study a researcher may unknowingly

treat two or more heterogeneous groups as if they were one homo-

geneous population. By "treat," it is meant that the researcher

analyzes his data on the erroneous assumption that all N observa-

tions come from the same population. It is clear from the hypo-

thetical attribution study that an immediate consequence of "mis-

specifying the true error model" is the failure to identify correctly

the population for which the postulated causal model would be most

appropriate. What is not clear and, thus, needs to be demonstrated

is whether or not an additional consequence of misspecifying the

error model is the eventual acceptance of a causal model which is in-

appropriate for any population.

For the sake of completeness, let's define the term "appropriate"

as it is used to describe a causal model. A causal model is appro-

priate if it correctly identifies the causally relevant variables.

If the attribution of responsibility is indeed determined by perceived

similarity and seriousness, then Y. = p\X., . + B 0X„ . + e mav be
i 1 ll 2 2l i

J

an appropriate causal model. Now a causal model is to be dis-

tinguished from a mathematical model. Two different mathematical

models are Y = 2.54 X,. + 2.36 X0 . + e. and Y. = 1.36 + 5 X +
1 11 2l l i li

1 ' 00 X
2i

+ £
i'

However
>

as both cite the same variables as being

causally relevant, both reflect the same causal model. Finally,

while one mathematical model may be better than the other (where

"better" is judged in terms of mean squared prediction error), both
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may be appropriate causal models.

Problem Statement

In order to develop causal theory from observational data, the

researcher will often posit a simple linear model. That is, the

researcher will express Y, the outcome variable, as a simple linear

function of one or more explanatory variables, X. (i = 1 , 2,

k). Then, to determine whether the data are consistent with the

postulated causal relationship between a given explanatory variable

and Y, the researcher may use a test of statistical significance

(e.g., the t-test for H
q

: 0=0). If the test result suggests

that the explanatory variable accounts for an appreciable proportion

of the observed variation in Y, the researcher will attempt to use

the estimated regression weight, to say something about the

magnitude of the causal effect of X. on Y.
i

The selection of the most efficient estimator of £, the vector

of regression weights, depends on the distribution that is assumed

for the errors of measurement. If the errors are adequately

described by the Normal distribution, the Method of Ordinary Least

Squares will provide the most efficient estimator of £ (Harter,

1975). On the other hand, if the errors are more appropriately

described as a mixture of two or more Normal distributions, Least

Squares may provide a grossly inefficient estimator for both £ and

V ( £ ), the variance-covariance matrix for
J3

(Mosteller and

Tukey, 1977; Wainer and Thissen, 1976).



Many studies consider the statistical behavior of the various

estimators of g when the errors of measurement are approximated

best by the mixture of two Normal distributions. However, few

studies actually address the problems that such mixtures may pose

for the initial statement and subsequent refinement of causal

theory. To be more specific, few studies ask how the development

of a causal theory— the simple linear causal model—may be affected

when the researcher fails to detect that the errors reflect a mix-

ture of two (or more) distributions.

Then, few studies consider how ordinal measurement may affect

a researcher's ability to detect mixed distributions. This apparent

lack of interest on the part of social researchers is puzzling in

that many of the variables that provide the basis for theory in the

social sciences are measured on ordinal scales. Measurement on the

short, ordinal scale (e.g., a 5-point Likert scale) is likely to be

problematic in that it places a restriction on the extent to which

marginal and conditional means of heterogeneous populations may

differ. When dependent variables are restricted to a few discrete

values, misspecification of the error model is (a) more likely to

occur and (b) more difficult to detect.

Given the scarcity of research in this area, the present study

seeks to determine the conditions under which misspecification of

the error model and ordinal measurement lead to the statement of a

completely misleading (as opposed to an incomplete) causal theory.



An incomplete causal theory is said to develop when the researcher

fails to match the obtained causal model with the proper component

population. A completely misleading causal theory is said to develop

when the researcher accepts as viable a causal model which is not

appropriate for any of the component populations.

Literature Review

Real data (in contrast to computer simulated data) may manifest

non-normal error distributions for several reasons. First, the

data may be generated by processes which are represented best by

skewed distributions. For example, the length of time (in months)

from a prisoner's release until reincarceration is a non-negative,

positively skewed variable (see Witte and Schmidt, 1977). Second,

the data may be generated by processes which are represented best by

"long-tailed" distributions. Such distributions are more dense in

the tails than the correspondening Normal distribution. For example,

the distribution of income in the U.S. is described better by the

Pareto distribution than by the less dense Normal distribution (see

Hauseman and Wise, 1977). Finally, the data may be generated by

processes which are represented best by "short-tailed" distributions.

These distributions are less dense in the tails than the correspond-

ing Normal distribution. For example, a respondent may be asked to

use a 5-point bipolar scale to indicate the extent to which he agrees

with a questionnaire item. Now the data obtained in this manner may
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be described better by a short-tailed distribution than by the more

dense Normal distribution.

To generate data sets that approximate the kinds of non-normal

distributions observed in real data, statisticians have frequently

employed a mixture of two Normal distributions. For example,

Elashoff (1972) has modeled a skewed error distribution with

e
i
~ (1 - 71) N (0, a

2
) + 7i N(A(x), a

2
) ,

where 71 is the mixing proportion and A(x) is either a constant or

some function of the data values. When the errors are appropriately

described by the above model, Least Squares estimators are biased and
l

inefficient (Elashoff, 1972).

The improvement in efficiency offered by alternative or

"robust" estimators varies in a complex way with the mixing propor-

tion, 71; the degree of separation between the two populations, A;

the sample size, N; and the method of estimation. Because these

four factors interact with one another, a straightforward inter-

pretation of the various Monte Carlo simulations is inappropriate.

However, it it would appear that Least Squares estimators fare

poorly when the sample size is small, and the contaminating data

points are both numerous and distant from the mean of the remaining

data points.

l

When the mixture results in a symmetric error distribution
(say, one with a common mean, but unequal variances for the

individual components), the Least Squares estimators are simply
inefficient (see Andrews et al.

,
1972; Wainer and Thissen,

1976; Mosteller and Tukey)

.



If the outcome variable, Y, can be expressed as a simple

linear function of one or more explanatory variables and the errors

of measurement are appropriately modeled by a mixed or "compound"

error model, the sample data are described best as a mixture of two

regressions (see Elashoff, 1972; Quandt, 1972; Hosmer, 1974; Quandt

and Ramsey, 1978; Kiefer, 1978). That is, data are collected from

N observational units with respect to Y and X, an N x p matrix with

p explanatory variables. Then, with a probability equal to (1 - 7t),

the regression

Y. = a + I B.X. . + e.
1 J ij i

J=l

occurs; and with a probability equal to 71, the regression

P

* * *
Y. = a + 2 B .X. . + 8 .

1 J iJ i

j=l

occurs (where one or more of the parameters in the second regres-

sion differs in value from its counterpart in the first regression).

The mixture may arise in one of two ways. First, it may occur

as a result of some physical process. For some reason data are not

collected on the variable or variables that would allow the re-

searcher to assign each of the observational units to its respective

population. As a result, the obtained sample contains two or more
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different statistical populations. Second, the mixture may occur as

the result of a "structural change." That is, at some level of a

known or unknown factor, a slight or radical alteration occurs in the

nature of the relationship between the outcome variable and the

explanatory variables.

Now, the literature on mixed regressions is particularly

relevant in that it examines the factors which influence the

researcher's ability to detect a misspecified error model.

Specifically, this literature suggests that the researcher's

ability to detect mixed regressions varies with the mixing propor-

tion, 71; the degree of separation between the mixed regression

lines, \; the sample size, N; and the method of estimation. Again,

as these factors interact, a straightforward interpretation of the

various Monte Carlo simulations is not feasible. However, it would

appear that misspecification of the error model is most likely to go

undetected when the regression lines are not well separated, and

the sample is small in size and relatively free of contaminating data

points

.

In summary, the following points are noted. First, the factors

which influence the researcher's ability to detect a misspecified

error model are identical to the factors which enable a misspecified

error model to produce unreliable and/or grossly misleading estimates

These factors are: the mixing proportion, 71; the degree of separa-

tion between the marginal or conditional means, A; and the sample

size, N. Second, the more difficult it becomes to detect a mis-
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specified error model, the less likely error model misspecification

is to result in biased and grossly inefficient estimators. For

example, a misspecified error model is difficult to detect when the

two regressions (say) are not well separated and the obtained sample

is relatively free of contaminating data points. On the other hand,

a misspecified error model poses a serious threat to Least Squares

estimation only when the two regressions are quite distant from one

another and the obtained sample is relatively "noisy."

Finally, in that measurement on the short, ordinal scale

restricts the extent to which heterogeneous groups may differ, the

author suggests the following. First, as detection of mixed re-

gressions depends on the degree to which the regression lines are

separated, it is suggested that the researcher's ability to detect

mixed regressions decreases with decreasing scale length, L. Second,

as the realization of reliable estimates also depends on the separa-

tion between the different regression lines, it is suggested that

the researcher's ability to obtain reliable estimates may also be

influenced by scale length.

Study Objectives

Through a series of Monte Carlo simulations, the author seeks

to determine the consequences of misspecifying the error model for

stated combinations of the mixing proportion, sample size, scale

length, and degree of separation between the mixed regressions. By

"consequences," the author refers to any problem misspecification



12

may pose for parameter estimation and statistical inference

procedures. In addition, the author seeks to determine if a decrease

in scale length can in fact affect a researcher's ability to detect

mixed regressions (when the values of the mixing proportion, sample

size, and degree of separation are fixed).



CHAPTER II

METHODOLOGY

Monte Carlo Simulation: General Remarks

The present study employs a series of Monte Carlo simulations

to investigate the consequences of misspecifying the error model.

In particular, it seeks to determine how estimation and inference

are affected when all observations are incorrectly assumed to come

from the same statistical population.

In general, a Monte Carlo simulation represents an attempt to

have the computer generate values which behave as if they were the

result of a random process (Chambers, 1977). For many statistical

investigations, the approximate answer achieved through a Monte Car

simulation provides a useful complement to the more rigorous analyt

solution. However, for the statistical investigations in which an

analytic solution is not readily forthcoming, the answer achieved

through a Monte Carlo simulation may be the only obtainable one.

Whereas the analytic approach may suffer from the use of

questionable simplifying mathematical assumptions, a Monte Carlo

simulation faces the additional problem of having the computer

generate values in accordance with the analyst's intentions and/or

programmer's instructions. In each of the four simulations under-

taken in this study, the computer is asked to generate data which

approximate the kind that one would observe if a sample of N

13
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observations contained a mixture of two simple linear regressions

Specifically, the computer is asked to:

STEP

0 enter the necessary input data (e.g., Xj, X
2 , .

,
X^)

and set the initial values of the design parameters (the

mixing proportion, 7t; the sample size, N; the degree of

separation between the two regressions, A; and the

scale length, L)

;

1 generate 2N random uniform deviates;

2 use the uniform deviates to generate N values of Y, an

outcome variable that can assume any integer value from

1 to L, such that each Y. has the "compound" probability

density function f~(Y ) = 1 - 7i)f (Y.) + tt f 0 (Y.),

where fgO^) = {Ina
2 )'^ exp - ^{[Y. - E(Y.|X.)] a}

2

for K = 1, 2;

3 calculate the Least Squares regression estimates (a, b,

o
and a ) and t-statistic testing H : 8=0:

y x ° o

4 repeat steps (1) through (3) until the number of

replications equals 1000;

5 calculate summary statistics and moments for the

empirical sampling distributions of the regression

estimates and t-statistic;

6 change the values of specified design parameters and

repeat Steps (1) through (5).
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Estimation of the regression parameter is said to be affected

if the mean of the 1000 Monte Carlo estimates differs from the

correct value of the regression parameter. Inference is said to be

affected if the probability of accepting a false null hypothesis

(H
q : P = 0) is 0.10 or greater. Or to be more specific, inference

is said to be affected if 100 or more of the computed t-statistics

,

|t|- Ll°

V.
2

Q
P

o
where aR is the estimated variance of 8, are less than tP N-2, 0.975'

the value of the t-distribution corresponding to the 97.5th

percentile.

Simulation I utilizes a 2 x 4 factorial design with a single

control group (zt = 0.00). The degree of separation and mixing

proportion are varied while the sample size and scale length are

fixed. Further, Xj, X^, . • . , and are arrayed in a rectangular

distribution to reflect the classic regression situation.

Simulation II utilizes a 2 x 3 x 5 factorial design. The

sample size, scale length, and mixing proportion are varied while

the separation factor is held constant. Here, X., X,, • • • , and

are arrayed in a symmetrical distribution.

For Simulations III and IV, the method used to generate Y

values is changed. This change is dictated in part by the fact

that the continued use of the "old" FORTRAN code would have resulted

in a subroutine of undesirable length (say, when L = 15). To
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ascertain the possible effects of this change in procedure,

Simulation III replicates Simulation I.

Finally, to investigate the consequences of misspecifying both

the structural model and the error model, Simulation IV utilizes a

one-factor design. The mixing proportion is varied while the

sample size and scale length are fixed. Table 1 provides an over-

view of each simulation.

The Generation of Random Uniform Deviates:
Subroutine Super

For a statistical investigation, the value of a Monte Carlo

simulation is ultimately and directly related to the computer's

ability to generate a sequence of random numbers. At present, it

is not possible to program the computer to generate a sequence of

numbers that exhibits true randomness. However, algorithms do

exist which will result in a reasonable approximation to the desired

random sequence.

The generation of values in accordance with a known

statistical law typically begins with an attempt to generate random

uniform deviates, Uj, u
2

, . . . , u , 0 < u. < 1. The algorithms

most frequently used to generate these deviates usually combine

As Deegan (1976) notes, misspecification of the structural
model is said to occur when the proposed model incorrectly includes
an irrelevant causal variable or incorrectly excludes a relevant
causal variable.
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two simpler or basic generators. These basic generators are

combined in order to compensate for or eliminate the known patterns

observed in the basic generator.

Subroutine Super is a FORTRAN version of the random uniform

generator available at UCLA's Health Sciences Computer Facility.

It combines a full period mixed multiplicative congruential

generator,

r
i

= (r
i-l

+ M) ),

with a 32-bit shift register generator,

r* = XOR( r'imV SHIFT( r!_r -17) )

r^ = XOR( rL , SHIFT( r*
, 15) ) ,

in order to generate uniform deviates,

u. = r" / 281474976710655

where

r
M = X0R( r. , r'. ) .

1

l

Both XOR and SHIFT are FORTRAN string bit manipulation
operations. For a more complete definition, the reader is referred
to Chambers (1977).
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Note, r
Q

is the seed for the mixed congruential generator and is

the seed for the shift register generator. (A seed is a six to nine

digit odd integer used to start the generator.) To enhance Super's

performance, r
Q

and r^ are changed following the generation of every

2N x 100 deviates.

A FORTRAN listing of Super (as modified for use in this study) j

contained within appendix I. Appendix II provides a listing of the

"original" version of Super. In addition, appendix II provides an

evaluation of Super's performance as a random uniform generator.

The Generation of Discrete Integers:
Subroutine Transform

Given the availability of a random uniform generator, there are

many ways of generating a discrete outcome variable, Y., such that1

'

with a probability of (1 - n)

u. = a + p X. and a
2

= a
2

(1 - p
2
),y | X i y x V

and with a probability of 71

M
i

= (a + A) + (3 X. and a
2

, = a
2

(1 - p
2
),y x K

i y|x y
K J '

2where |J is the conditional mean: a
,

is the conditional variance
y x y x

2
a is the marginal variance; p is the product moment correlation
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coefficient; a and B are the regression weights; and A is the degree

of separation between the mixed regressions. The present study

adopts two different approaches for the generation of such integers.

Again, the second transformation is adopted as it results in a con-

siderably shorter FORTRAN code.

In the first approach (hereafter referred to as Transforma-

tion I) the 2N x 1 vector of uniform deviates generated by Super is

reconfigured as an N x 2 matrix with elements p (i = 1 2
ij ' * ' ' ' '

N
; J = 1, 2). Each p^ or first column element is then used to

identify the sampling population. Specifically, if p. . > 71, Y. is

drawn from Population I where |j

y
. = a + BX. ; if p.j < it, Y. is

drawn from Population II. Next, each p or second column element

is used to determine an integer value for Y.. Following a sugges-

tion offered by Newman and Odell (1971), Y. is varied from 1 to L,

where L is the scale length, and is assigned that integer value

which satisfies the inequality

(Y. - 1) -M
|

CT
iy x

.Y. - u .

<
Pi2 < f ^-L—

CT
y|x

where F( ) is the Standard Normal cumulative distribution function.

(Note, the mean and variance are as defined in paragraph one, this

section.

)
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To be more specific, an interval of unit length is partitioned

into L sub-intervals

[a
o

= °> a iJ . Car a
2 ] , . . . , (a

L_r ^ = x]

for each of the L possible values of X, and an integer ranging in

value from 1 to L is associated with each sub-interval. As the

partition boundaries are determined by F( ), the length of a given

sub-interval at a given value of X is proportional to the probability

of observing a particular value of Y at a particular value of X.

When p.
2

falls in a given sub-interval, Y. is assigned the integer

value associated with that sub-interval.

In the second approach (hereafter referred to as Trans-

formation II) the 2N x 1 vector of uniform deviates is again re-

configured as an N x 2 matrix with elements p (i = 1 2
ij ' » • • • >

N; j = 1, 2). Again, each p^ or first column element is used to

identify the sampling population, while each p i2
or second column

element is used to determine an integer value of Y. . Specifically,

p.. > 71, Y. = INT (a + BX. + kZ.)

if

p.- < 71, Y. = INT (Of + A + BX. + kZ.)
,ii — i i i
'

where INT(u , + kZ
. ) is the largest integer less than u + kZ . :y|x x r

y x i'

k = CT

y| x
> and is a standard normal deviate satisfying the

equality, p = F(Z.)k. By defining p in terms of the cumulative

Normal distribution function, Y^ is ensured of being sampled from a
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Normal population.

A FORTRAN listing of Transformation I (for a = 1.67; A = 3;

P - 0.333; p = 0.667; a
2

= l; and L = 7) is contained withiny

appendix I. Appendix III provides a FORTRAN listing of Transforma-

tion II. In addition, it provides test data on the performance of

each transformation.

The Computation and Display of Regression Statistic
Subroutine Regress, Subroutine Sort, Subroutine Stem

cs

:

Subroutine Regress calculates the Least Squares regression

estimates using the following equations:

the intercept, 5 = J(H. • p Z X,);

the regression coefficient, 0 = Z(X.. - X)(Y
i

- Y)/I(X. - X)
2

;

the correlation coefficient, p = I(X
i

- X)
2

I(Y. - Y)
2

;op o
the conditional variance, = (1 - p ) I (Y. - Y) /(N - 1);

the variance of the regression coefficient, a
2

= a
2

,
/I(X - X)

2

p y x l

the t-statistic for the null hypothesis, H
q

: 0=0.

All summations are from 1 to N. To accomplish these calculations,

the N values of X are entered into the program through a FORTRAN DATA

statement on Step (0)

.
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SubrOU«ne Stem ia . modiflcation of ^ aigoritta—1 It provides . graphical display (specificauy
_ a s_

and-rea, display) of and^ ^^ ^ ^
-pirica! Sampll„8 distributions

. (A .^.^^
a two-dimensional reDrespnt-at-^.representation of a batch of numbers. It is a histo
gram which uses digits instead of the usual »*' ma * *e usuai x marks to note which
values occurred and how often they occurred./

Sort is an IMS! (International Mathematical and Statistical
Library) called subroutine that arranges a vector of sorted numbers

» ascending order. This subroutine~or another like it-is retired
for the execution of Subroutine Stem An +ue atem

' AU three subroutines are con-
tained within appendix I.

Program Compute

Program Compute combines the previously cited FORTRAN sub-

routines in the manner shown in Figure 1.

l

in. th* S T f disP lays are extremely useful in represent-ing the degree of spread, symmetry, and peakedness exhibited bv abatch of numbers. Unfortunately, as they are difficult and costlv

in t

r

hL
r0

D

d

a

U

o

C

e%
by tyPGWriter (Wh£n N = 1000 >> ^ ™ a t

3

? c^
y
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Figure 1. A Flowchart of Program Compute.

["start
j

True

Enters
Input

Data 7
| LL = 0

^DC 300 MJ = l,lp"fr«-

/Read 7
IR1, IR2/

^ Continue
|

Call SUPER (IR1, IR2, U)

1

Call TRANSF (P,Y)

1

Call REGRES (X,Y,N,a,3,a
2

, ,t,p)
yi x
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Figure 1 (continued).

True False

|
Call

*_

STEM (Beta)

1

Call STEM (Alpha)

Call STEM (Error)

1

Call STEM (T-Stat)

1

Call STEM (Corr)

320 r
Continue

(Note, IR1 is the seed for the multiplicative generator and IR2

is the seed for the shift register generator. In addition, note

that Subroutine SORT is called by Subroutine STEM.)



CHAPTER III

RESULTS

Simulation I

In Simulation I, the mixing proportion, 71, and the separation

factor, A, are varied for a fixed sample size (N = 35) and scale

length (L = 7). Specifically, five values of Y, the outcome

variable, are generated for each of the seven possible values of

X, the explanatory variable. Then, with a probability of (1 -
71),

(D Y = 1.67 + 0.333 X.
;1 1 '

and with a probability of 71,

(2) Y = (1.67 + A) + 0.333 X. .

1 1

Crossing the values for 71 (0.00, 0.07, 0.14, 0.28, 0.49) and A

(1, 3) results in a 2 x 4 factorial design with a single control

group (71 = 0.00).

A Note on Estimation and Notation

A researcher frequently undertakes a regression analysis assuming

that the errors of measurement are normally distributed with common

mean and constant variance. That is,

(3) e. ~ N(0, a
2

)

When this assumption is valid, the researcher may use the computation-

ally simple Method of Ordinary Least Squares to derive estimators

26
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for the regression parameters. On the other hand, if the researcher

knows that the errors are distributed as follows,

(4) e. ~ (1 - 7i) N(0, a
2

) + /t N ( A
,
a
2

) ,

he will generally use the Method of Maximum Likelihood to "fit" the

postulated model to the data.

Because the data generated for this study are distributed in

accordance with equation (4), rather extensive use is made of

Maximum Likelihood estimators. Specifically, the formulas for the

Maximum Likelihood estimators are used to pinpoint sources of bias

(if any) in the Least Squares estimators derived under the mis-

specified error model (equation (3)).

As such, this study does not seek to compare Maximum Likelihood

estimators with Least Squares estimators. (Indeed, when the errors

are distributed as in equation (3), the Least Squares estimators are

equivalent to the Maximum Likelihood estimators.) Instead, it seeks

to compare estimators derived under two different error models, one

which is true and the other which is false.

To minimize problems in notation, the present study uses Greek

letters for the regression parameters (e.g., B) , "circumflexed"

Greek letters for the Maximum Likelihood estimators (e.g., 8), and

lower case letters for the Least Squares estimators (e.g., b).

Maximum Likelihood estimation under the mixed error model is

described in appendix IV.
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Estimation Under the Mixed Error Model

If the Monte Carlo samples are generated according to the design

parameters for a, P> and A, the Maximum likelihood estimators of the

regression coefficient and residual variance are:

I (Y - a - A w
0 .) X.

8 = i 2i i

2
I X.

l

(5)
2 (X. - X)(Y. - Y)

I (X. - x)
2

and

(6) S
2

= 1 Z fY. - 5 - 8 XI 2
- I A

2a = B
Z (Y. - 5 - 8 XJ* - i ^ z »

,

where

w
2

. = R f
2
(Y.)/f

3
(Y.)

,

for ^(Y^^), the weighted compound normal density function with com-

ponents f
J
(y

i
) and f

2
(Y.),

and

(7) a = Y - B X - ^ A a w
2

. .

From equation (5), it is clear that the (Maximum likelihood)

estimator of the regression coefficient derived under the mixed error

model is identical to the (Least Squares) estimator that is derived

under the misspecified error model. Consequently, it follows that

point estimation of the regression coefficient will not be affected

by incorrectly asuming that all N observations come from the same

statistical population.
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However, it is clear from equation (6) that the (Maximum

Likelihood) estimator of the residual variance derived under the

mixed error model is smaller than the (Least Squares) estimator

that is derived under the misspecified error model.
1

Then, from

the known relationship between the residual variance and the

variance of the regression coefficient, it follows that the (Maximum

Likelihood) estimator of oj that is derived under the mixed error

model is smaller than the (Least Squares) estimator that is derived

under the misspecified error model. Indeed, using a result from

Elashoff (1972: eqn. 4.4), it can be argued that the (Least

l

Equation (6) may be rewritten as follows:

where

CT
ML

=
°LS

+ c(c " »

1
1 Vc = - A I w

N 2i

N°W
* °ML < a

LS

if c(c - A) < 0

i.e. , if c < A

h 2 w .

N 2i

1 Vor - I w^ . < 1

As it is unlikely that w
2i

= 1 for all N observations (where w is
the posterior probability

1
that the "i"th observation comes

from Population 2 given date vector X), it is clear that

2^2
G
ML

<
°LS



30

Squares) estimator of a* is biased by a factor proportional to
2
71(1

' 70
*

As a result
>
interval estimation of the regression co-

efficient and tests of significance will be affected by misspecifica

tion of the error model.

Estimation Under the Misspecified Error Model

Table 2 presents the basic results vis-a-vis the empirical

sampling distribution of the Least Squares estimates of the regres-

sion coefficient. Note, the mean and variance of the control

condition (71 = 0.00) agree quite nicely with the intended values of
l

0.333 and 0.004205. In addition, note that the means of the low

separation condition (A. = 1) are less variable and closer to 0.333

than are the means of the high separation condition (A = 3).

This finding appears to contradict the conclusion drawn from

the mathematical analysis as it suggests that A affects the point

estimation of p\ However, an analysis of variance (table 3)

confirms the fact that effects due to 7t and/or A cannot be used

to explain the variation observed among the means of the empirical

sampling distributions. Indeed, even when they are combined,

these effects account for less than 2.5% of the observed vari-

ation (100% x (0.0041 + 0.0154 + 0.0053) = 2.48%).

l

The value 0.004205 is obtained by substituting in£o the
formula for estimated sample variance of b the values O = 1,

a = 4, p = 0.667, and N = 35. y
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TABLE 2. The Mean (and Variance) of the Empirical Sampling
Distribution of the Regression Coefficient by Degreeof Separation and Mixing Proportion.

§
•H

U
cd

Mixing Proportion

0-00 0.07 0.14 0.28 0.49

j
0.3334 0.3311 0.3337 0.3346 0.3338

(0.4307)* (0.4728) (0.5849) (0.5699) (0.6355)

%> °-3234 0.3206 0.3006 0.2918

(0.7792) (1.0710) (1.5523) (1.7416)

•2
Notes

:

^Multiply all variances by 10"

Each distribution is based on 1000 replications
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TABLE 3
'

Sata^
317818

°
f Vari3nCe

° f ^ Re 8ression Coefficient

Source of Variation D.F, Sum of Squares

Mixing Proportion 3 0.3113 0.0041

Separation 1 1.1718 0.0154

Interaction 3 0.4029 0.0053

Residual 7992 73.9973

Total 7999 75.8833

Note: w is the sum of squares attributed to a given effect/the total
sum of squares.
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Although it not evident from the data presented thus far,

the mean of the high separation condition would have been much

closer to 0.333 had the Y values generated for the contaminating

equation,

(8) Y = (of + A) + B X
.

,

i i

not been subject to "ceiling" effects. To illustrate this point,

Figure 2 provides an example of a scattergram of the contaminating

equation used in the high separation condition (A = 3)/

Note, the outcome variable is restricted to three values: 5,

6, and 7. While Y values less than 5 can occur, it is important to

recall that the probability associated with such occurrences is

quite small. In fact, when X
i

equals 4, the probability of obtaining

a Y value less than or equal to 5 is only 0.09. Then, as X in-
i

creases in value, the value of this probability decreases. In effect,

when X^^ is greater than or equal to 4, the outcome variable is

restricted to two values: 6 and 7.

By way of contrast, Figure 3 provides a scattergram of the

generating equation used in the control condition (A = 0). Note,

the range of the outcome variable is much larger than that observed

in Figure 2. Then, upon careful inspection of both figures, one

should note that the number of conditional distributions which are

l

For the cited values of a and B, the maximum value that A can
achieve is 3. Specifically, A =Y (of + BX ).r J max max r max



X



Figure 3. Scattergram of 35 X.Y. Pairs - (X=0)
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truncated as well as the extent to which these distributions are

truncated is less when A = 0 than when A = 3.

Whenever the range of the outcome variable is restricted, one

or more of the conditional distributions will be truncated. As a

result, the Least Squares estimators will be biased (see Hauseman

and Wise, 1977; Takeshi, 1973). Table 4 presents the bias observed

in the mean of the Least Squares estimates of a and B for specified

values of A.. (Each mean is based on the 1000 estimates generated

when 71 is either 0 or 1.) Note, when A = 0, "floor" effects lead

to a positive bias in the Least Squares estimator of a. As the

value of A. increases, "floor" and "ceiling" effects combine to

produce positive bias in the Least Squares estimator of a and

negative bias in the Least Squares estimator of B. When A attains

its maximum value of 3, "ceiling" effects predominate, and the

bias in the Least Squares estimators of a and B attain their

maximum value.

In effect, equation (8) does not describe the regression which

occurs with a probability of 71. Instead, the contaminating regres-

sion is

(9) Y. = (a + A) + (.p + 6) X. + £. .

When "ceiling" and "floor" effects are non-existent, 9 equals zero.

(Note, the term corresponding to the "floor" effects observed in the

Least Squares estimator of a has been absorbed by A.) Estimates

of 0 may be obtained by subtracting B from b, where b is the mean
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TABLE 4. The Estimated Bias in the Least Squares Estimates bvDegree of Separation.

Degree of Separation

0.00 1.00 2.33

Observed
Intercept 2.168 3.180 4.571

3.00

Bias in the
Intercept 0.498 0.510 0.571 0.688

5.358

Bias in the
Slope 0.000 -0.003 -0.029 -0.094

Observed
sloPe 0.000 0.330 0.304 0.239
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of the 1000 sample regression coefficients generated when n equals

zero or one. For example, when A. = 3,

(10) 0 = b - 6

= 0.239-0.333

= -0.094 .

Returning to Table 2, one can easily verify that B + 71.8 - the

expected value of the Least Squares estimator of 6 at the "j"th

level of 71 - provides an accurate (2 decimal place) description of

the means of the high separation condition. In fact, -0.094 is the

Least Squares solution for 6 when the high separation condition means

are regressed on 6 + 7^8. Thus, one may conclude that the means of

the high separation would have been much closer to p had it not

been for the "ceiling" effects observed in the contaminating re-

gression.

Before we consider how inference is affected by misspecifica-

tion of the error model, we should note that the expected value of

"b", the Least Squares estimator of B in the mixed sample, is a

weighted sum. Specifically, if 6* and 6** are the Least Squares

estimators of the regression coefficient for that portion of the

sample from Populations I and II, respectively, then

(11) E(B) = (1 - 71) E(6*) + 71 (6**).

Moreover, the mean regression of the mixed sample is the weighted

sum of the mean regressions for the individual populations.



that is,

(12) = (1 - 71) E

i* )

+ 71 E

6** J

To support this argument, Table 5 presents the observed and

estimated mean values of the Least Squares estimates of the inter-

cept and regression coefficient for the eight combinations of

71 and A. The estimated mean value is the weighted sum of (a) the

mean estimate observed for 71 = 0 and (b) the mean estimate observed

for 71 = 1. While the estimated mean values are reasonably close to

the observed mean values , the fit is better when A = 1 than when

A = 3.

An informal proof in terms of the mixed sample regression co-
efficient is as follows.

If, for Population I,

Y
i

= a + 0X
£

+ e. with E(6») = 0

and, for Population II,

Y. = (or + A) + (0 + 6)X. + e. with E(6**) = 0 + e

then, for the mixed sample,

Y = (a + 7tA) + (0 + tt6)X. + e. with E(B) = B + 7t0.
i 11 r

Since 0 + 7T0 = (1 - 7l) 0 + 71 (6 + 6) , it follows that
E(S) = (1 - 7t) E(6*) + 71 E(6**).
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TABLE 5. Observed and Estimated Mean Values of the Intercept andRegression Coefficient by Degree of Separation and
Mixing Proportion.

Mixing Observed Estimated
Separation Proportion Mean Mean Difference2

0.49 3.713 3.732 361*

0.28 3.084 3.062 484

0.14 2.620 2.615 25

0.07 2.406 2.392 196

0.49 2.660 2.664 16

0.28 2.455 2.452 9

0.14 2.305 2.310 25

0.07 2.247 2.240 49

0.49 0.292 0.287 25

0.28 0.301 0.307 36

0.14 0.321 0.320 1

0.07 0.323 0.327 16

0.49 0.334 0.332 4

0.28 0.335 0.333 4

0.14 0.334 0.333 1

0.07 0.331 0.333 4

Notes

:

~6
* Multiply column values by 10

When the Separation Factor is 3, the observed mixed regressions are

f-CY) = 2.168 + 0.334 X and f
2
(Y) = 5.358 + 0.2393 X.

When the Separation Factor is 1, the observed mixed regressions are

f
2
(Y) = 2.168 + 0.334 X and f

2
(Y) = 3.180 + 0.3302 X.
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^ is dear from equation tf) ^ ^^^
of the residual varlance ls poslUvely Mase(j ThM) ^ ^^

of the regression coefficlent ^ ^ ^^
rarla,lCe

' " f0U0"S "»< *~< »~ est ima t„ r 0£ the fowee
"ill be positive!,, biased.' Because of this Mas, the actual
distribution of the mixed sample t.staustic ^^
fro. the t-distcibutiou. As . resuU> ^ actuai ^ accepwng
a false null hypothesis (i * tyP U.e., the Type II error rate) may be quite
different from some assumed nominal risk.

Table 6 presents the first four moments of the empirical
sampling distribution of the t-statistic for the control condition

(* = 0.00) and the eight experimental conditions. In addition, it

presents an estimate of the Type II error rate associated with each

condition. The latter is the proportion of computed t-statistics

less than ^ gg75 . (Note, the null hypothesis is H • 8 = 0
o r

The alternative hypothesis is H : 8/0.)
3

Given table 6, it is clear that the value of t, the mean of

the computed t-statistics, decreases as the value of A and/or n in-

creases. When A = 1 , the positive bias in the Least Squares

estimator of a* leads to a value to t which is slightly smaller

Mmnl
0ne

A
ca

* vjrify this bias by regressing the variances of thesamplmg distributions of the Least Squares estimator of 6 (table

TrrJ ; Vi»
Wh6re Z

i
=
^ * 0 F° r b° th leVels Of A, theaccounts for approximately 98% of the observed variation
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than that obtained in the control condition. When A = 3, the posi-

tive bias in the Least Squares estimator of a* combines with the

negative bias in the Least Squares estimate of 0 and the value of t

is reduced further. However, even when A attains its maximum value

and 71 = 0.49, the mean value for the t-statistic for H : p = 0 is
o

the tabled criterion value, fc

N 2 q 975*

Table 6 also suggests that an increase in A or 71 leads to an

increase in the probability of accepting a false null hypothesis.

When A = 1, the probability of accepting the null hypothesis is

negligible. When A = 3 and 71 = 0.49, the probability of accepting

the null hypothesis is roughly 0.50.

Finally, as is shown in table 7, when the contaminating

equation is

(13) ' = (a + A) -
(3 X. + e

.

,

1 11'

t may be much less than t
N_ 2 Q Q7^.

Specifically, the expected

value of the test statistic for H : 6 = 0 may be much less than

the tabled criterion value when there is a modest degree of

contamination (7t > 0.20). For regressions with slopes of

opposite sign, it is clear that the researcher stands an even

chance of accepting a false null hypothesis when the value

of 71 is much less than 0.50.
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Moments of the Empirical Sampling Distribution of the
t-statistic by the Mixing Proportion.

Mixing
Proportion Mean Variance Skewness Kurtosis

0.49 0.112 1.4262 -0.0509 0 3693 0.903

0.28 1.891 1.6372 0.3393 0 4693 0.578

0.14 3.231 1.7675 0.3892 0 7731 0.173

0.07 4.404 1.7822 0.5132 0 9522 0.056

Note: The mixed regressions are 2.168 + 0.333 X and 5.146 - 0.313 X.

\
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Simulation II

In Simulation II the sample size, scale length, and mixing

proportion are varied while the separation factor is held

constant (k = 1). Specifically, n. (In. =N; j = 1, 2, L)

values of Y are generated for each of the L possible values of X.

With a probability of (1 - n)
,

(14) Y. = a +pX. +£.,
i ii*

and with a probability of 71,

(15) r. = (n + D + px. +e.,1 ii
Crossing N (35, 150), L (5, 7, 9) and n (0.00, 0.07, 0.14, 0.28,

1.00) results in a 2 x 3 x 5 factorial design. For L = 5, 7, and

9, the respective values for a are 1.00, 1.33, and 1.67.
1

For

each combination of N and L, p = 0.667 and cr
2

= a
2

. (Hence
y x '

CT
y|x

= CT
y

(1 " °- 6672 ) = 0-551 a
2
.)

The marginal distribution of X used in each N-L combination is

shown in table 8. Note, the N values of X are symmetrically dis-

2tributed with mean jj = ^(L +1) and variance a .

x x

l

The values for a are changed in order to ensure that

P = p at each combination of N and L.
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TABLE 8. ^Marginal Distribution of X by Scale Length and Sample

Scale Sample Marginal Distribution
Length Size X=l X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

35 2 10 11 10 2
150 9 42 48 42 9

35 1 3 8 11 8 3 1

150 5 14 33 46 33 14 5

35 1 1 5 6 9 6 5
150 4 6 17 28 40 28 17

1 1

6 4
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Finally, the mean regressions observed for the six combinations

of sample size and scale length are displayed in table 9. As noted

earlier, each mean regression is the average of the 1000 regressions

generated when n = 0 or 7t = 1.

As in Simulation I, the mean of the Least Squares estimates of

a is consistently larger than the parameter's true value. Further,

when there are marked "ceiling" effects, the mean of the estimates

of 0 is much smaller than that parameter's true value. In effect,

the Least Square estimator of a is positively biased because ¥ is

a positively biased estimator of its population parameter. Now,

Y is biased because (at least) one of the conditional distributions

at X = x. is truncated. Then, as the Least Squares estimates of the

intercept and regression coefficient are correlated, the latter must

underestimate 0 as the bias in Y causes the former to overestimate

a.

Estimation Under the Misspecified Error Model

Table 10 presents the means of the empirical sampling dis-

tributions of the regression and correlation coefficients. As in

Simulation I, the mean of the generated mixed sample regression

coefficients is a weighted average of the regression coefficients

of the individual components (see equation (11)).

If there were no "floor" or "ceiling" effects, the following

relationships would hold:

(17) E(6) = E(6*) = E(6**).
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TABLE 9. The Observed Regressions for Each Population by ScaleLength and Sample Size.
7

Scale Sample
Length Size

Observed Regression
Population I Population II

35 Y = 1.580 + 0.634 X

150 Y = 1.588 + 0.630 X

Y = 2.901 + 0.471 X

Y = 2.897 + 0.472 X

35 Y = 1.903 + 0.645 X

150 Y = 1.912 + 0.643 X

Y = 3.359 + 0.535 X

Y = 3.345 + 0.535 X

35 Y = 2.184 + 0.662 X

150 Y = 2.203 + 0.659 X

Y = 3.311 + 0.629 X

Y = 3.355 + 0.619 X

Note: The intended value for the regression coefficient in each
instance is 0.667. The intended values for the respective
intercepts (a a ) are: (1.00, 2.00), (1.33, 2.33), and
(1.67, 2.67).

1 Z
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However, the above data suggest quite strongly that both 6* and

6**--the Least Squares estimators of the regression coefficient

in Populations I and II, respectively-are biased for all six

combinations of sample size and scale length. The estimator 6* is

biased because the conditional distributions near are truncated

on the left. In contrast, the estimator 6** is biased because the

conditional distributions near are truncated on the right.

As scale length increases, the bias observed in both estimators

decreases in (absolute) value. However, this result is not

attributable solely to the increase in scale length. It occurs in

part because the values of Of, B, a*,, Y^, and change

with each change in scale length.

It is also clear from Table 10 that estimation of the corre-

lation coefficient is not seriously affected by misspecification

of the error model. (Although, it should be noted that the

present form of contamination is quite mild.) Furthermore, while

the mean of the sampled correlation coefficients is generally less

than the value of the population parameter, it is apparent that the

Least Squares estimator performs better when L = 9 than when L = 7

or 5

.

Inference Under the Misspecified Error Model

Table 11 presents the moments of the empirical sampling dis-

tribution of the mixed sample t-statistic by scale length, sample

size, and mixing proportion. As in Simulation I, the null hypo-
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thesis is H
Q : 0 = 0, while the alternative hypothesis is

H
a : P * 0. Given the above table, it is clear that the probability

of accepting a false null hypothesis is virtually non-existent when

N = 150 and extremely low when N = 35 . Of course, different

parameter values would lead to different error rates. In fact, care-

ful examination of the expected value of the mixed sample

t-statistic,

E( t ) z

(1 - P ) (T + kn(l - 7i)

I (X. - X)
2

suggests that the error rate would increase if p and p were allowed

to reach their minimum values while A, n, and aj were allowed to

reach their maximum values

l

The formula for the mixed sample t-statistic was derived as
follows

.

E( t ) = E

°P

= E (0) • E(l/a
p
)

* I (h • (1/E(a ))
However,

"

a
2

= I (X. - X)
2

• a
2

/ [I (X. - X)
2

]

2
.

Substituting

°e
= CT

y|x
+ ^ 71(1 " 70 = CT

y
(1 " p2) + k2jl(1 ~ n)

2
into the expression for a

fi
, and that in turn into the expression

for the expectation, one obtains—assuming E(p) = p - equation 18
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Simulation III

Using Transformation II to generate Y values, Simulation III

replicates Simulation I. As before, the degree of separation and

mixing proportion are varied while the sample size (N = 35) and

scale length (L = 7) are fixed. Five values of Y, the outcome

variable, are generated for each of the seven possible values of X.

With a probability of (1 - n)
,

O 9 ) Y = 1.67 + 0.333 X. + e.1 11
and with a probability of 71,

(2°) Y. = (1.67 + A) + 0.333 X. + e1 1 1

Crossing 71 (0.00, 0.07, 0.14, 0.28, 0.49) and A (1, 3) results in a

2x4 factorial design with a single control group (71 = 0.00).

Panel (a) of table 12 presents the results of Simulation III

in terms of the empirical sampling distribution of the regression

coefficient. For ready comparison, panel (b) displays the

corresponding results from Simulation I. From the above table, it

is clear that Transformation I generates a conditional variance which

is approximately 1.5 times larger than that generated by Transforma-

tion II. Of course, the two transformations could be programmed to

produce identical results. To achieve this objective, one need only

multiply the random error term generated by Transformation II by a

constant. This constant, if chosen carefully, ensures that both

transformations generate the same conditional variance.
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TABLE 12. The Mean (and Variance) of the Regression Coefficient's
Empirical Sampling Distribution by Degree of Separationand Mixing Proportion.

d

a. Simulation III

Mixing Proportion

°-°00 0.07 0.14 0.28 0.49

1 0.335 * 0.333 0.333 0.333 0.334
o (0.288) (0.336) (0.351) (0.434) (0.457)
u
CO

u

| 3 0.326 0.321 0.319 0.301
« (0.660) (0.952) (1.435) (1.626)

b. Simulation I

Mixing Proportion

0.00 0.07 0.14 0.28 0.49

1 0.333 * 0.331 0.334 0.335 0.334
(0.431)" (0.473) (0.585) (0.570) (0.636)

o
•H
4J

2 3 0.323 0.321 0.301 0.292

| (0.779) (1.017) (1.552) (1.742)

If -2
Note: Multiply all variances by 10
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Simulation IV

Simulation IV differs from the previous simulations in that

the proposed causal model

(21) Y = a + B x. . + e

.

i li i

is structurally misspecified . More specifically, it omits a

relevant causal variable, X^ Given a fixed sample size (N = 150)

and scale length (L = 15), the regression which occurs with

probability (1 = 71) is

(22) Y = 2.67 + 0.333 X.. - 0.166 X 0 . + e.
,li 2i 1 '

and the regression which occurs with probability 71 is

(23) Y. = 1.67 + 0.667 X, . + e . .

1 li 1

The marginal frequencies for X
]

are: 0, 0, 8, 6, 10, 16, 22, 26, 22,

16, 10, 4, 4, 4, and 2. The marginal frequencies for are:

0, 0, 9, 5, 11, 15, 20, 26, 24, 16, 10, 6, 5, 2, and 1. The Y

values are generated by Transformation II.

Now, the expected value of the mixed sample regression co-

efficient is again a weighted average of the individual component re-

gression coefficients (see equation (11)). When 71 = 1 , the

expected value of the Least Squares estimator of the regression

coefficient for Xj is 0.667. However, when 7T = 0, the expected

value of the regression coefficient for X^ is not 0.333. Instead,
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l

it is 0.167.

Table 13 presents the means (and variances) of the empirical

sampling distributions of the Least Squares estimators of the

parameters of the proposed causal model. Note, the above results

are consistent with the analytic argument. Within reasonable

error, E(6) = (l - 7t)(0.167) + 7i(0.667) and E(a) = (1 - tt)(2.67)

+ 71(1.67).

is

The Least Squares estimator of Bj in the proposed causal model

B
2
= 2 (Y. - a) Xl ./Z X2. .

Upon substitution of the true model of Y. and taking expectations,
one obtains 1

= 0.333 - (0.l66)(2506/2508)

= 0.167 .
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TABLE 13. The Mean (and Variance) of the Empirical Sampling
Distribution of the Intercept and Regression
Coefficient by Mixing Proportion.

Mixing Proportion

0.00 0.07 0.14 0.28 1.00

2.929 2.853 2.791 2.681 1.966
Intercept (0.033) (0.078) (0.121) (0.182) (0.030)

Regression 0.173 ^ 0.208 0.243 * 0.308 , 0.667
Coefficient (0.045) (0.145)" (0.227)" (0.360)" (0.041)'

* -2
Multiply variance by 10



CHAPTER IV

DISCUSSION

The Effect of Error Model Misspecification
on Parameter Estimation

For each simulation the correct error model may be written a

follows

:

(24) e . ~ (1 - 7t) N(0, a
2

) + 71 N(m(X), a
2

) ,

where

(25) M (X) = A + 0 Xu + Y X
2

. .

This error model would be appropriate if, for example, the sample

contained a mixture of two regressions:

(26) f (Y) = a + B X, . + e.
,1 11 1 '

and

(27) f
2
(Y) = (or + A) + (6 + 6) Xu + yX

2i
+ e. .

Now, analysis suggests that the Least Squares regression of

on Xj will lead to positively biased estimates. Specifically,

(28) E(a) = Of + 71A
,

60
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129) E(f>) =
fj

+ n J q + y

1 XUX
2i

and

(30) E(a
2

) = I (1 - v .) a
2

i e

where

(31) v. = {X(X'X)'
1
X'} . . .i ~ J ii

If each X
hi

(h = 1, 2) is expressed in mean deviation form (i.e.,

X
hi

= X
hi " V '

(32) V(a) . § + 7i(l - n) I (k + Q^. + yx
2

.)
2
/N

2

and

(33)

V(6) = -5—
Ix2

.

+ 7t(l - zt) I (x
2
.)(A + exu + Yx

2
.)

2
/(I x

2
.)

2
.

In Simulations I and II the mixed regressions are parallel to

one another. (For the moment, let's ignore the fact that non-parallel

regressions are actually obtained in these simulations). Furthermore,

as tentative causal models, both regressions are correctly specified.

In terms of equation (27) this means that both 0 and y are zero. In

terms of equations (28) - (33), zero values for 0 and y imply the

following. First, the Least Squares estimator of 6 will be unbiased.

Consequently, point estimation of 8 will not be affected in this

instance by misspecification of the error model. Second, the
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Least Squares estimator of the residual variance will be positively

biased. Consequently, interval estimation of p will be adversely

affected. However, it is clear upon substituting 9 = y = Q into

equation (33) that interval estimation of B is not seriously affected

when N is large (or N is of moderate size and 71 is near either one

of its limiting values).

However, as noted earlier, the mixed regressions are not

parallel in either Simulation I or II. Specifically, while y is

zero, 9 is not. In terms of equations (28) - (33), a non-zero

value of 6 implies the following. First, the Least Squares

estimator of B will be biased. From equation (29), it is clear

that the bias is given by 7t6. Second, the Least Squares estimator

of the residual variance will again be positively biased, and

interval estimation of 6 will again be adversely affected. Given

equations (29) and (33), however, it is clear that the non-

parallelism resulting from 9 not being equal to zero will not

seriously affect point or interval estimation of 6. In fact, if

9 is small, the point and interval estimates which are obtained

will not be noticeably different from those obtained when the mixed

regressions are parallel.

In Simulation IV the mixed regressions are by design not

parallel. In addition, the causal model suggested by regressing Y on

is misspecified. In terms of equation (27) this means that y has

a non-zero value while 9 equals zero. In terms of equations (28) -

(33), the non-zero value for y implies the following. First, the
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Least Squares estimator of B will be biased (providing that ^ and

X
2

are not independently distributed). From equation (29), it is

clear that the bias is given by n\ (I x^./I x*.). Second, the

Least Squares estimator of the residual variance will again be

positively biased, and interval estimation of B will again be ad-

versely affected. However, from equations (29) and (33), it is

clear that one could choose values for y, for the correlation

between Xj and X,,, and for the N values of Xj and X
2

and obtain

point and interval estimates of the regression parameters as biased

as or less biased than the estimates obtained when the mixed re-

gressions are correctly specified, but not parallel.

In considering (a) parallel mixed regressions; (b) non-

parallel, but correctly specified mixed regressions; and (c) non-

parallel, misspecified mixed regressions, this study has sought to

examine situations characteristic of most social science research.

Equations (28) through (33) summarize the results obtained in the

various simulations. Taken collectively, the analytic arguments and

Monte Carlo results suggest that point estimation will be least

affected when the mixed regressions are either parallel or non-

parallel, but correctly specified. When the mixed regressions are

non-parallel and misspecified, both point and interval estimation

can be seriously affected.
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The Effect of Error Missgecification
on Statistical Inference

Because of the potential bias in the Least Squares estimator of

the regression coefficient and the inevitable bias in the Least

Squares estimator of the residual variance, the researcher runs an

increased risk of accepting a false null hypothesis when he in-

correctly assumes that the data come from the same statistical popula-

tion. As observed in Simulations I and II, the mean of the computed

mixed sample t-statistics is generally greater than the value of the

central t distribution which is most frequently selected as a criterion

for rejecting the null hypothesis. As a result, the observed Type

II error rate is generally low (i.e., less than 10% when the mixing

proportion is less than or equal to 0.10).

This finding may be of marginal utility as the error rates

observed in Simulations I and II are determined in large part by

the values assigned to the secondary parameters: N, a
2
/a

2

y x

Pyx >
and 0. Specifically, the error rate observed at a given level

of 7t would have been larger had N, pyx
, and p each been assigned

2 2
a smaller value and c^/a^ been assigned a larger value. Using the

results of Simulation II, it is easy to verify that an increase in

the value of N leads to a decrease in the error rate. Then, using

the results of Simulations I and II, it is easy to verify that an

2 2increase in the value of 6 and a /o leads to a decrease in the
y x

error rate.



While the actual value of the error rate depends on such

secondary parameters, certain conclusions (based on the expression

for t and the results of Simulations II and III) are warranted.

First, a researcher is least likely to erroneously conclude that

P = 0 when it is low (say, less than 0.10). Second, the likelihood

of making an incorrect inference is not significantly increased

if the mixed regressions are correctly specified, parallel, and

poorly separated. (If the mixed regressions are correctly specified

and parallel, and yet quite distant from one another, there can be

an appreciable increase in the error rate.) Third, although the

mixed regressions may be correctly specified, the likelihood of

making an incorrect inference will increase dramatically providing

that the two regressions exhibit slopes of opposite sign. (If the

mixed regressions have opposing slopes, the Least Squares estimator

of the regression coefficient will exhibit a negative bias while the

Least Squares estimator of the residual variance will exhibit a

positive bias.) Fourth, and finally, a researcher is most likely

to make an incorrect inference when he compounds misspecification

of the error model with misspecification of the causal model.

(Again, the Least Squares estimator of the regression coefficient

will exhibit a negative bias while the Least Squares estimator of

the residual variance will exhibit a positive bias.)
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Scale Length and the Problem of
Detecting Outliers

Error model misspecification would be of little consequence if

outliers were easily detected. (Upon detection, one could in

principle perform the necessary separate regressions.) However,

outliers are seldom detected.

Short, ordinal scales complicate the process of detection

because they restrict a variable's range. As a result, a

researcher is less likely to observe any of the physical characteristics

which mark mixed distributions (e.g., bimodality). Further, as

short scales minimize the potential separation between the means of

heterogeneous populations, a researcher is less likely to observe a

y
i

that can be Proven to be an outlier (e.g., shown to be more than

two standard deviations from the center of the remaining observa-

tions) .

Figure 4 illustrates these problems. It presents a scattergram

of 150 pairs. As in Simulation II, L = 5; p = p = 0.667; and

2
CT

y
~ 1- Upon inspection, it is clear that an outlier will exert

maximum influence on the Least Squares fit when X = 1 or X = 5. As

the 150 pairs are presently configured, d = 0.667. If a Y value at

X = 1 is replaced by a 5 , 6 becomes 0.615. Now, this slight reduction

in value is not unexpected as n (1/150) is quite small. However

—

and, this is the important point— the "replaced" Y value

would probably have to fall at a much greater distance from the

remaining observations at X = 1 before the "eye" of the typically
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Figure 4. Scattergram for 150 X-Y Pairs

X
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untrained researcher would even begin to suspect its true nature
Then, visual detection of an outlier when X = 2, 3, or 4 is most
unlikely even for the trained "eye."

Finally, a Tj . s were an 0QtUer that dom
.

nated ^^
Squares fit, «<„--«. regression weight calculated, omitting Y, =

5--would be quite different from b. In this instance, 6 =

0-658. Again, what is important is not that the least Squares

estimate of the regression weight is little changed by the omission
of the suspect point. Rather it i<? that m~ n - ,

'
1C 18 that there is little likelihood

that the routine application of computerized statistical detection

procedures will reveal outliers when variables are measured on short,

ordinal scales.

Summa ry_

The problems that misspecification of the error model pose for

Least Squares estimation and its associated inference procedures are

tolerable providing that the contaminating fraction is small and

the hypothesized causal model is correctly specified. These problems

become more severe if the hypothesized causal model is also mis-

specified. Finally, the inferential problems will be exacerbated

further if variables are measured on short scales.



CHAPTER V

STUDY LIMITATIONS AND IMPLICATIONS

The present research investigates the effect which misspecifica-

tion of the error model may have on the initial statement and

subsequent refinement of causal theory. Now, implicit in the

above are two study limitations. First, the present study

only investigates the consequences of misspecifying the error model

for the simplest mathematical representation of a causal theory:

the single-stage, just-identified, fully recursive, linear model

(see Land, 1969; Duncan, 1975). Second, the present study restricts

its consideration of error model misspecification to the situation

where the researcher fails to detect that the errors are described

best as a mixture of two normal distributions. Other mixtures or

non-normal distributions are not considered (e.g., Pollock, 1978;

Hasseblad, 1969).

For an experimental discipline such as social psychology, the

first limitation would not appear to be that great of a shortcoming.

While it provides a questionable description of most social

phenomena, the single-stage, linear recursive model nonetheless

reflects quite well the level of complexity currently found in many

social psychological theories.

The second limitation is potentially more serious. The

appropriateness of using error models such as

69
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c
i
~ (1 " N(0,a

2
) + /i N(m(x), a

2
)

to describe the kinds of non-normal error distributions observed

in real data is already suspect (see Stigler, 1977).

Fortunately, the present study deals with issues which transcend

the concerns one might have about the adequacy of the simulated data.

In its less important role, the occurrence of (undetected) mixed

regressions may simply reflect incomplete theorizing, faulty data

screening procedures, or both. For example, upon noting that male

and female respondents exhibit similar sample means and variances

on all measured variables, a researcher may decide to "pool" the

two samples and use the combined data to develop a causal model.

Now, if the variance-covariance matrix for the male respondents

is significantly different from that of the female respondents,

the researcher would have erred in treating the two groups as if

they came from the same population (see Sprecht and Warren, 1976).

In this example, the resulting mixture of regressions could have

been avoided had the researcher exercised more care when the data

were screened. In other situations, however, the (undetected)

mixture may be unavoidable. That is, the stated theory may be so

incomplete that the researcher fails to obtain data on several key

variables. As a result, the variance-covariance matrices based on

the measured variables may indicate that the two groups come from

the same population.
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In its raore important role, the occurrence of (undetected)

mixed regressions suggests that there may be a limit to the extent

to which a researcher can achieve an accurate description of any

social process. All social processes are subject to change.

Consequently, data that describe social processes may be a mixture

of two or more statistical populations. If the mixture remains

undetected, the researcher may never be in a position to provide an

accurate description of the social process.

The present study addresses both of these issues. It documents

the conditions for which improper or inadvertent "pooling" will

seriously affect point and interval estimation. Moreover, it

identifies some of the factors which contribute to the development

of incomplete or erroneous causal theory. In accomplishing the

latter, the present study seeks to redirect attention to the

limitations inherent in ordinal measurement.
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APPENDIX I

PROGRAM COMPUTE, A FORTRAN LISTING

Program Compute is written in standard FORTRAN and runs on the

CDC CYBER 175 computer under a NOS operating system at the University

of Massachusetts (Amherst). It consists of a main program and five

subroutines: SUPER, TRANS, REGRES, STEM, and SORT. For convenience,

the call statements for SUPER, TRANS, and REGRES have been eliminated.

Subroutine SUPER is the segment of code which appears between

FORTRAN statements 5 and 6. Again, it is a modified version of the

random uniform generator available at UCLA's Health Sciences

Computer Facility.

Subroutine TRANSF is the segment of code which appears between

FORTRAN statements 10 and 225. Using the 2N random deviates

generated by SUPER and Transformation I, it generates a mixed

sample of N observations. As written in this appendix, the two

conditional means are 1.67 + 0.333 X. and 4.67 + 0.333 X : the
i i

common variance-covariance matrix is

1.00 1.33

1.33 4.00

74
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Subroutine REGRES is the segment of code which appears between

FORTRAN statements 230 and 300. It takes the N observations

generated by TRANSF and the N values of X entered earlier through

a DATA statement and computes the regression estimates (a, 6, a
2

) and

t-statistic for H
Q

: P = 0. It also contains the counter (LL) which

ensures that 1000 samples are generated for every 10 seed pairs

(IRl, IR2).

Subroutine STEM is a modification of an algorithm published in

McNeil (1977). It provides the numerical summaries of the empirical

sampling distributions of the regression estimates and t-statistic.

In addition, it provides a graphical display (specifically, a Stem-

and-Leaf display). It requires four inputs: (a) B, the vector of

the Least Squares estimates; (b) N, the number of estimates;

(c) Theta, the true value of the regression parameter or t-statistic;

and (d) Print, a parameter which controls labeling. Its internal

parameters include Iwidth, Atom, and Scale. Iwidth controls the

number of characters printed on a single line. Atom prevents the

impossible division by zero. Finally, Scale controls the depth of

the display.

Subroutine SORT is a called IMSL (International Mathematical

and Statistical Libraries) subroutine. The version of SORT printed

in this appendix is Singleton's (1969) algorithm 347, the source

cited for the IMSL subroutine. Its inputs include the unordered

vector of Least Squares estimates (or t-statistics) , and the

numbers II = 1 and JJ = 1000.
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Dimension U(70), W(35,2)
Equivalence (W( 1, 1) , U(l)

ock/X(3^
0UtPUt

'
TaPe 5=InpUt

'
Tape 6=0utPut)

This segment of code enters the necessary input data.

5*6., 5*7./

N = 35
NN = 70

This segment of code reads in the seeds for the mixed
congruential generator and the shift register generat

Format(I6,I6)
LL = 0

DO 300 MJ = 1,10
Read (5,1) IR1.IR2

IM = IR1
IT = IR2

This segment of code generates a vector of uniform
deviates

.

Continue
Ml = 65539
M2 = 4101
M3 = 261
DO 6 1=1, NN

IM = M3*IM
L = Ml
IF(IM.LT.O) L = M2
IM = L*IM
IF(IM.LT.0)IM = IM + 576460752303423487 + 1

IB = IT
IT = SHIFT(IT, -17)
IB = X0R(IB,IT)
IB = SHIFT (IB, 15)
IC = X0R(IB,IT)
IT = IC

IR = X0R(IM,IC)
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U(I) = IR
U(I) = U(I)/281474976710655
U(I) = ABS(U(I))

6 Continue
10 Continue

C

C This segment of code transforms the uniform deviates into

C ^lll
e
l
e

7v
B
V<

The miX6d re8ress ions are Y = 1.67 +
<- 0.333 X and Y = 4.67 + 0.333 X
C

C Computes Y values for X equals 1 0
C

DO 45 k=l,5
IF(W(k,l).GT.PI)15,30

C Population One
15 (Y(k) = 1.

DO 25 MM = 1,1
IF(W(k,2).GT.0.089) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.499) Y(k) = Y(k) + 1.
IF(W(k,2).GT.0.910) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.996) Y(k) = Y(k) + 1.
25 Continue

GO TO 45
C Population Two

30 Y(k) = 3.

DO 40 MM = 1,1
IF(W(k,2).GT.0.004) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.089) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.499) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.910) Y(k) = Y(k) + 1.

40 Continue
45 Continue

C

C Computes Y values for X equals 2.0
C

DO 75 k=6,10
IF(W(k,l).GT.PI)55,65

C Population One
55 Y(k) = 1.

DO 60 MM = 1,1
IF(W(k,2).GT.0.037) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.326) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.813) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.987) Y(k) = Y(k) + 1.

60 Continue
GO TO 75

C Population Two
65 Y(k) = 3.

DO 70 MM = 1,1

IF(W(k,2) .GT.0.001) Y(k) = Y(k) + 1.

IF(W(k,2).GT.0.037) Y(k) = Y(k) + 1.



c

c

c

IF(W(k,2).GT. 0.326) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.8l3) Y(k) = Y(k) + 1'V Continue

75 Continue

Computes Y values for X equals 3.0

DO 105 k=ll,15
IF(W(k,l).GT.PI)85,95

c Population One
85 Y(k) = 1.

DO 90 MM = 1,1
IF(W(k,2).GT.0.013) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.185) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.671) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.963) Y(k) = Y(k) + 1
IF(W(k,2).GT. 0.999) Y(k) = Y(k) + 1

90 Continue
GO TO 105

C Population Two
95 Y(k) = 4.

DO 100 MM = 1,1
IF(W(k,2).GT.0.013) Y(k) = Y(k) + 1

IF(W(k,2).GT. 0.185) Y(k) = Y(k) + 1

IF(W(k,2).GT. 0.671) Y(k) = Y(k) + 1

100 Continue
105 Continue

C

C Computes Y values for X equals 4.0
C

DO 135 k=16,20
IF(W(k,l).GT.PI)115,125

C Population One
115 Y(k) = 1.

DO 120 MM = 1,1
IF(W(k,2).GT.0.004) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.089) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.499) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.910) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.996) Y(k) = Y(k) + 1

120 Continue
GO TO 135

C Population Two
125 Y(k) = 4.

DO 130 MM = 1,1
IF(W(k,2).GT.0.004) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.089) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.499) Y(k) = Y(k) + 1



c

c

c

130 Continue
135 Continue

Computes Y values for X equals 5.0

DO 165 k=l6,25
IF(W(k,l).GT.PI)H5,155

c Population One
145 Y(k) = l.

DO 150 MM = 1,1
IF(W(k,2).GT. 0.001) Y(k) = Y(k) + l
IF(W(k,2).GT.0.037) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.327) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.814) Y(k) = Y(k) + 1
IF(W(k,2).GT.0.987) Y(k) = Y(k) + 1ajU Continue

GO TO 165
C Population Two

155 Y(k) = 4.

DO 160 MM = 1,1
IF(W(k,2).GT. 0.001) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.037) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.327) Y(k) = Y(k) + 1
160 Continue
165 Continue

C

C Computes Y values for X equals 6.0
C

DO 195 k=26,30
IF(W(k,l).GT.PI)175,185

C Population One
175 Y(k) = 2.

DO 180 MM = 1,1
IF(W(k,2).GT.0.013) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.185) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.672) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.963) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.999) Y(k) = Y(k) + 1

180 Continue
GO TO 195

C Population Two
185 Y(k) = 5.

DO 190 MM = 1,1
IF(W(k,2).GT.0.013) Y(k) = Y(k) + 1

IF(W(k,2).GT.0.185) Y(k) = Y(k) + 1

190 Continue
195 Continue

C

C Computes Y values for X equals 7.0
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205

210

215

220

225
230

C

C

C

c

c

240

DO 225 k=31,35
IF(W(k,l).6T.PI
Population One
Y(k) = 2.

DO 210 MM = 1,1
IF(W(k,2).GT
IF(W(k,2).6T
IF(W(k,2).GT
IF(W(k,2).GT
IF(W(k,2).GT

Continue
GO TO 225
Population Two
Y(k) = 5.

DO 220 MM = 1,1
IF(W(k,2).GT
IF(W(k,2).GT

Continue
Continue
Continue

)205,215

•0.004) Y(k)
•0.089) Y(k)
.0.500) Y(k)
•0.910) Y(k)
•0.996) Y(k)

Y(k) +

Y(k) +

Y(k) +

Y(k) +

Y(k) +

.0.004) Y(k)
•0.089) Y(k)

Y(k)

Y(k)
+ 1

+ 1

This segment of code computes the Least Squares estimates
for the simple linear regression of Y on X.

Sum Y = 0.0
Sum YY = 0.0
Sum X = 0.0
Sum XX = 0.0
Sum XY = 0.0

DO 240 k=l,N
Sum X = Sum X + X(k)
Sum XX = Sum XX + X(k)**2.
Sum Y = Sum Y + Y(k)
Sum YY = Sum YY + Y(k)**2.
Sum XY = Sum XY + X(k)*Y(k)

Continue
Var X = N-Sum XX - Sum X**2.
Var Y = N«Sum YY - Sum Y**2.
Covxy = N*Sum XY - Sum X*Sum Y
DDD = Covxy/ ((Var X*Var Y)**0.5)
BBB = Covxy/Var X
AAA = (Sum Y - BBB*Sum X)/N
EEE = (Var Y*(l. - DDD**2. ))/((N-2)*N)
TTT = BBB/((N*EEE/Var X)**0.5)



LL = LL + 1

Alpha (LL) = AAA
Beta(LL) = BBB
Error(LL) = EEE
Corr(LL) = DDD
T Stat(LL) = TTT

IF(LL.LT.MJ*100) GO TO 5

Continue

IF(LL.LT.IOOO) GO TO 320

Call STEM (Alpha, 1000,1.67,1)
Call STEM(Beta, 1000,0.333,2)
Call STEM(Error, 1000,0.555,3)
Call STEM(T Stat, 1000,0.0,4)
Call STEM(Corr, 1000,0.667,5)

Continue
Stop
End
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Subroutine STEM (B, N, Theta, Print)

Real Min Loq, Med, Upq, Max, Mean, Mse B, KurtInteger Print
Dimension LF(1000), IA(20), M(4)
Dimension B(n)
DATA IA/»0,», "l", "

2 ", "3", "4", »5 » »6» »7» "8" »o«

DATA M/" -", ii '
' ° '

y 1

DATA Iwidth/120/
DATA Atom/0.001/
Scale = 5.

Sum B =0.0
Sum B2 = 0.0
Sum B3 = 0.0
Sum B4 = 0.0

DO 10 k = 1,N
Sum B = Sum B + B(k)
Sum B2 = Sum B2 + B(k)**2.
Sum B3 = Sum B3 + B(k)**3.
Sum B4 = Sum B4 + B(k)**4.

Continue

Calculates the various summary measures

Mean = Sum B/N
Var B = (Sum B2 - N*Mean**2.)/(N- 1)
SD = Var B**0.5
Bias = Mean - Theta
MSE B = Var B + (N/(N-l))*Bias**

2

T = Mean
R = N
F = ((R-l)/R)**0.5
Skew = (Sum B3 - 3. -Sum B2*T + 3 ."Sum B*t-a-*2 .

-

Skew = Skew/(SD*F)**3.
Kurt = (Sum B4 - 4. "Sum B3*T + 6 ."Sum B2*T"*2

.

- 4."-Sum B*T**3 . +N*T**4
.

)

Kurt = Kurt/(((N-l)*Var B)/N)**l
Kurt = (Kurt/N) - 3.

Sets up the Stemleaf Display



IF(Print.EQ.l) Write(6,100)
IF(Print.EQ.2) Write(6,110)
IF(Print.EQ.3) Write(6,120)
IF(Print.EQ.4) Write(6,130)
IF(Print.EQ.5) Write(6,135)

Call Sort(B, 1000)

Min = B(l)
Loq = (B(250) + B(251))/2.
Med = (B(500) + B(501))/2
Upq = (B(750) + B(751))/2.
Max = B(1000)
Spd = Upq = Loq
Write(6,l40) Min, Loq, Med, Upq, Max, Spd, N

This segment initiates McNeil's (1977) algorithm.

R = (Atom + (B(N) - B(l)))/Scale
C = 10.**(11-INT(AL0G10(R) + 10))
MM = MIN0(2,MAX0(INT(R*c/25.) 0))
K = 3*MM + 2 - 150/(N + 50)
IF((K-l)*(K-2)*(K-5).EQ.O) C = C*i 0
MU = 10

IF(K*(K-4)*(K-8).EQ.0)MU = 5

IF((K-l)*(K-5)*(K-6).EQ.O) MU = 20
I = 1

IF(B(1).GE.0) I = 2

II = 1

D = MU*(INT(B(II)*c/MU) + I-2)/10.

DO 30 k = 1, IWIDTH
LF(k) = M(2)

Continue
IF(I.EQ.2.0R.D.LE.O) GO TO 40
I = 2

D = D - MU/10.0
J = 0

J = J + 1

IX = INT(0.5 + ABS(B(II)*C-10*INT(D)))
IF((B(II)*C-10*D).GE.0.5+(MU-l)*(l-i)) GO TO 60
IF(J.LE. IWIDTH) LF(J) = IA(1 + IX)
II = II + 1

IF(II.GT.N) GO TO 60
GO TO 50
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60 ID = MOD(IABS(INT(D)),100)
Kl = 1 + ID/10
K2 = 1 + ID - 10*(K1 - 1)
IF(J.LE.IWIDTH + 1) GO TO 70
LF(IWIDTH-2) = M(4)
LF(IWIDTH-l) = IA(1 + (J-IWIDTH + 2)/10)LF( IWIDTH) = IA(J - IWIDTH + 3 - 10*((J - IWIDTH 2VirmK = MIN0( IWIDTH, J)

1W1U1H + 2)/10))70

D = D + MU/10.0
GO TO 20

90 Continue

Write(6,150)
Write(6,155) Mean, Mse B, Var B, Bias
Write(6,l60) Skew, Kurt

IF(Print.EQ.l) Write(6,180) (B(k),k=l,N)
IF(Print.EQ.2) Write(6,185) (B(k),k=l,N)
IF(Print.EQ.3) Write(6,185) (B(k),k=l,n)
IF(Print.EQ.4) Write(6,180) (B(k),k=l,N)
IF(Print.EQ.5) Write(6,185) (B(k),k=l,N)

Write(6,195)

80 Format(6X,120Al)
100 Format (44X, "Stemleaf Display - Alpha"////)
110 Format (45X, "Stemleaf Display - Beta"////)
120 Format (44X, "Stemleaf Display - Error Term"////)
130 Format(43X, "Stemleaf Display - T Stat"////)
135 Format (45X, "Stemleaf Display - Corr"////)
140 Format("0MIN = ",F8.3,3X,"Loq = ",F8.3,3X,"Med =",F8.3,3X,

2 "Upq =",2F8.3,3X,"Max =" ,F8 . 3/"0Spd =",F8.3,3X,"N ="
, 16//)

150 Format (4X, "Mean" , 16X, "Mse" , 17X, "var" , 17X, "Bias"/)
155 Format(F8.5,3E20.5//)
160 Format ("0Skewness =",E20.5 , 6X, "Kurtosis =",E20.5//)
180 Format(10F8.3)
185 Format(10F8.4)
195 Format(" "//)

Return
End



Subroutine Sort(B, II, Jj)

Dimension B(l), IU(16), IL(16)
Integer B, T, TT

M = 1

I = II

J = JJ
IF(I.GE.J) GO TO 70
K = I

IJ = (J+D/2
T = B(IJ)
IF(B(I).LE.T) GO TO 20
B(IJ) = B(I)
B(I) = T
T = B(IJ)
L = J
IF(B(IJ).GE.T) GO TO 40
B(IJ) = B(J)
B(J) = T

T = B(IJ)
IF(B(I).LE.T) GO TO 40
B(IJ) = B(I)
B(I) = T

T = B(IJ)
GO TO 40
B(L) = B(K)
B(K) = TT
L = L-l

IF(B(L).GT.T) GO TO 40
TT = B(L)
K = K+l
IF(B(K).LT.T) GO TO 50
IF(K.LE.L) GO TO 30
IF(L-I.LE.J-K) GO TO 60
IL(M) = I

IU(M) = L

I = K
M = M+l
GO TO 80

IL(M) = k

IU(M) = J
J = L

M = M+l
GO TO 80
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70 M = M-l
IF(M.EQ.O) Return
I = IL(M)
J = IU(M)

80 IF(J-I.GE.II) GO TO 10
IF(I.EQ.II) GO TO 5
I = 1-1

90 I = i+i
IF(I.EQ.J) GO TO 70
T = B(I+1)
IF(B(I) .LE.T) GO TO 90
K = I

100 B(K+1) = B(K)
K = K-l
IF(T.LT.B(K)) GO TO 100
B(K+1) = T
GO TO 90
End



APPENDIX II

TESTS OF SUBROUTINE SUPER

Prior to the initiation of this study, the author was shown

the results of a previous evaluation of SUPER.
1

'
2

Viewed

individually and collectively, the test results suggest quite

strongly that there are no serious deficiencies in SUPER'S per-

formance as a pseudo-random number generator. A FORTRAN listing of

SUPER is provided below.

l

TWh ,

Th
f.

testin8 P^gram was written in FORTRAN by Alan Van Hull

tu I £
8 P5°8ram and test resul ts were graciously shown to theauthor by Mr. Robert Gonter, Associate Director, UMASS Computer

2

MQ^ ThC Specific *ests were suggested by Maclaren and Marsaglia
U965) as a means of examining a generator's ability to producerandom points which are uniformly distributed in a k-dimensional
space. This property, as Chambers (1977) notes, is important interms of this study as k = 2 uniform variates are needed to
generate each Y. value.

i
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Subroutine SUPER (IRl, iR2
, i C , N X)

Dimension X(l)

IRl is the seed for the mixed multiplicative generator

C is'th ^ Shift rC8ister g-eraLr.

N is thp
start constant with values of either 0 or 1.N xs the number of uniform deviates generated.

X is the returned array of random uniform deviates.

IF(IC)5, 5, 10
IM = IRl
IT = IR2
Continue
Ml = 65539
M2 = 4101
M3 = 261

Ml = (2**16) + 3
M2 = (2**12) + 5
M3 = (2**8) + 5

DO 15 I = 1 , N
IM = M3*IM
L = Ml
IF(IM.LT. 0) L = M2
IM = L*IM
IF(IM.LT.O) IM = IM + 576460752303423487 + 1
IB = IT
IT = SHIFT (IT, -17)
IB = X0R(IB, IT)
IB = SHIFT (IB, 15)
IC = X0R(IB, IT)
IT = IC

IR = X0R(IM, IC)
X(I) = IR
X(I) = X(I)/281474976718655
X(I) = ABS(X(I))

Continue
Return
End



APPENDIX III

TESTS OF SUBROUTINE TRANSFORM

Each transformation was evaluated in terms of its ability to

generate N = 35 (X.Y.) pairs which behaved as if they had been

randomly sampled from a population with conditional mean, 1.67 +

0.333 X
f ,

and variance-covariance matrix,

XY

\ . I-
00

a.
XY 1.33

1.33

4.00

The X. values were arrayed as in Simulation I. Following 3000

replications, Transformation I yielded a conditional mean and

covariance matrix of

2.168 + 0.3334 X. and f 1.069

1.334

while Transformation II yielded a conditional mean and covariance

matrix of

1.979 + 0.331 X. and
i

0.844

1.332

1.332

4.000
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Note, Transforation I overestimates the marginal variance,

"r
Wh"e *»»•*«•«<» II underestimates it. The implications of

the differing valnes for o
2

are clear in that:

4
/ 2 2

CT
Y|X CT

y (1

.2

Y[X

2

.2 CT?

2 (X. - X)
2

P-Po
/

2
7

P

and, finally, floor and ceiling effects are proportional to

2 ( Aa
y

|
x . (As a result, the estimate of a is smaller when Transforma-

tion II is used than when Transformation I is used.)

The code for Transformation I is found in appendix I. The code

for Transformation II is given below. Note, it is both simpler and

more flexible than the code for Transformation I. More importantly,

it readily lends itself to any necessary correction of the realized

2 2a
y

value. A deficiency in a
y

can be corrected by multiplying the

random error term, Distur(k), by a constant such that a? |v has the
Y |X

intended value. (Distur(k) is a random normal deviate generated by

subroutine TRF. The latter is based on an algorithm published in

Hastings (1955).)
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C

C This segment of code transforms uniform deviates intoC discrete values for the equations shown below

DO 20 k = 1,N
IF(W(k,l).GT.PI)10,15

10 Continue
Call TRF(k, W(k,2), Distur(k) )

88 : iiSffw?
8

3

*x(k) + Dist««* *«*
IF(Y(k).GT.ULIMIT) Y(k) = ULIMIT
IF(Y(k).LT.l.) Y(k) = 1.
GO TO 20

15 Contmue
Call TRF(k, W(k,2), Distur(k) )
Y(k) = 4.67 + 0.333*X(k) + Distur(k)*Const
Y(k) = AINT(Y(k))
IF(Y(k).GT. ULIMIT) Y(k) = ULIMIT
IF(Y(k).LT.l.) Y(k) = 1.

20 Continue

Subroutine TRF(k, Pr, Z)
DATA Al,A2,A3/2. 515517, 0.802853, 0.010328/
DATA B1,B2,B3/1. 432788, 0.189269, 0.001308/

IF(Pr.GT.0.5) PR = 1 . - pr

T2 = ALOG(2.0/Pr**2.)
Tl = T2**0.5
AA = Al + A2«T1 + B2"T2 + B3*T1*T2
Z = Tl - (AA/BB)

IF(PR.GT.0.5) Z = -Z

Return
End



APPENDIX IV

MAXIMUM LIKELIHOOD ESTIMATION FOR MIXED REGRESSIONS

Maxima. Likelihood estimation of the parameters associated with
mixed regressions is described by Elashoff (1972), Hosmer (1974), and

Kiefer (1978). Basically, the problem is as follows. Data are

collected from »N" individuals with respect to a response variable,

i
(l =

*» * • • >
N)» and "p" explanatory variables. With a

probability equal to (1 - 7t), the regression

P
Y. = a + I pi. + e1

h = 1
h hl ]

occurs; and with a probability equal to 7t, the regression

1
h = 1

h hl 1

occurs where one or more of the parameters in the second regression

differs in value from its counterpart in the first regression.

Given this mixture of regressions, the density function for

Y. is
i

(1) f
3
(Y.) = (1 - 7t) f^Y.) + n f

2
(Y.)

,

where fjCY^ and ^
2

^Y
i^

are tne density functions corresponding to the

first and second regressions. Estimation of (ff, 0^, p-i • • •
>
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p 2 * * *
p> ° »

01
>

Pr P
2 , • . . , ff, and a"

2
) by Maximum Likelihood

requires that the Log-Likelihood Function (LLF) be differentiated
with respect to the parameters of interest.

In general, estimation proceeds as follows. First, the

Likelihood Function (LF) is defined for the »N» independent observa-
tions on Y:

(2) LF = Flf (Y. ) .

3 l

Second, the Log-Likelihood Function (LLF) is derived by taking the

natural logarithm of the Likelihood Function:

(3) LLF = I In f
3
(Y.)

Third, the Log-Likelihood Function is differentiated with respect

to 9, the parameter of interest:

(L\ 9LLF _ a(4) -36- = 1 -30 lnW
=

i
1 ^^leW^liyV } 'W

since

,

(5) f.(Y.) = (2^)"* axp - h (Y. - A (6) )

2
/o?

, j = 1, 2

it follows that

-fg
fj (Y.) = (2m*)"* -|g exp .UY .

. KjW )2/0
2

(6) +
-k: (Y. - Aj(6) )

2
/Oj}-fg tt™b~ h

,
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"here ye) is the "j"th equation for the regression of Y. on theV explanatory variables. Finally, to obtain the Maxi™ Likelihood
estimator for 8, §§§! is set eoual to zero and the resulting

equation is solved for 6.

(7)

For the specific case investigated in this study, i.e.,

VV (!-*) VY.) + 71 f
2

(Y .) ,

where

2(8) f^y.) = (2na
2yh exP -\ (y. - B . ^fiv

and

(9) f
2
(Y.) = (2/ia

2)^ exp (Y. - a - A - px.)
2

/ a
2

implementation of the cited procedure yields:

3LLF
(10)

(11)

(12)

3LLF
ap

9LLF

3a

1 {
wu (T

i
- a - px.) w

2
. (Y. - a - A - pz.)

} / a

2 (Y. - a - px.) - A I w
2

. ;

2 {w (Y - a - PX )(-X.) + w CY, - Of - A -
1

PX.)(-X.)
}

x
/a

21 21 1

KY. - 0/ - p - A w
2
.)X.

;

I
= % I { Wl .(Y. - a - PX.)

2
- wu a

2
] /a

4

* * 2 { w
2
.(Y. - a - A - px.)

2
- w

2
.a

2

}
/a

4
;

where

(13)

(14)

W
li

= (1 " / f
3
(Y.)

,

W
2i

= 71 VV / W '



and

W
li

+ W
2i

= 1 for 1 = l
>

2
> • • .

N.

Upon setting expressions (10) - (12) equal to zero and solving

for the parameter, one obtains the following:

(15) S = Y- P X - hAwr ,N 2i '

(16) B = Z (Y. - a - \ w
2
.)X. /IX? , and

(17) a
2

= I I (Y. - a - p X.)
2

- \
2

I w
2

. .

Finally, upon substitution of the expression for a into that for

P, one can show that

(18) 6 = I (X. - X)(Y. - T) I I (X. - X)
2

.
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