
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1979

Central nervous system control of food intake and
diurnal rhythms.
Ricardo, Eng
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Eng, Ricardo,, "Central nervous system control of food intake and diurnal rhythms." (1979). Doctoral Dissertations 1896 - February
2014. 1516.
https://scholarworks.umass.edu/dissertations_1/1516

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/1516?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




CENTRAL NERVOUS SYSTEM CONTROL

OF

FOOD INTAKE AND DIURNAL RHYTHMS

A Dissertation Presented

By

RICARDO ENG

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1979

Psychology Department



Ricardo Eng 1979

All Rights Reserved

This research was supported by N.I.M.H. grant MH26251



CENTRAL NERVOUS SYSTEM CONTROL

OF

FOOD INTAKE AND DIURNAL RHYTHMS

A Dissertation Presented

by

RICARDO ENG

Approved as to style and content by:

^ 9k
Richard M. Gold, ChairpeVson of Committee

Ernest Dzendolet, ^[(^ber

George N.VjWade, Member

Gordon A. Wyse, Member

Bonnie R. Strickland, Chairperson

Psychology Department

iii



ACKNOWLEDGEMENTS

I would like to thank all the members of my committee, Dick,

Ernie, George, and Gordon, for their guidance and helpful suggestions

Special thanks go to Tony Nunez for his help with the Esterline-Angus

apparatus and insightful discussions. Thanks are due also to Paul

Sawchenko and Earl Simson for their helpful suggestions during the pr

paration of the dissertation. Last, but not least, the expert techni

cal assistance of Jay Alexander, his help with the histology and fig-

ures, is gratefully acknowledged.

iv



ABSTRACT

CENTRAL NERVOUS SYSTEM CONTROL

OF

FOOD INTAKE AND DIURNAL RHYTHMS

September 1979

Ricardo Eng, B.A., Suffolk University

M.S., Ph.D., University of Massachusetts

Directed by: Professor Richard M. Gold

Discrete anodal electrolytic lesions of the paraventricular

nucleus produce hyperphagia and obesity in rats. The lesions did not

affect water/food ratio- ., normal estrous cycling, or reactivity to

an air puff. These measures were comparable to that of controls. How-

ever, the lesloned rats grew longer linearly than control rats. Asym-

metrical lesions consisting of a paraventricular nucleus lesion paired

with a contralateral dorsolateral tegmental lesion also produced hyper-

phagia and obesity with no disruption of the other measures mentioned

above. This suggests that longitudinal pathways are involved in the

regulation of food intake. The paraventricular nucleus appears to be

the most rostral site of a neural circuit mediating food intake with

pathways coursing through the midbrain.

Rats with paraventricular nucleus lesions had normal diurnal and

circadian rhythms of feeding and activity. Bilateral parasagittal

knife cuts severing the lateral connections of the suprachiasmatic

V



nucleus reduced activity but had no effect on body weight or diurnal

rhythms of eating, drinking, and activity. More caudally placed para-

sagittal cuts produced hyperphagia, obesity, and hypoactivity . These

latter cuts abolished feeding rhythms but not activity rhythms. Sur-

gical isolation of the suprachiasmatic nucleus produced a rat with

primarily diurnal eating and activity patterns. Horizontal knife cuts

below the paraventricular nucleus temporarily disrupted activity

rhythms and eating rhythms, but the rats soon recovered. These find-

ings suggest that the pathways mediating rhythms are separable from

those mediating food intake.
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INTRODUCTION

Eating or not eating is the final behavioral consequence follow-

ing the integration of internal and external signals by cells both in

the brain and the periphery. These cells integrate signals from

various body sites (e.^.
, brain, liver, gut, adipose tissue, blood),

reporting the energy state of the organism and, in turn, issue sig-

nals which ultimately (perhaps involving interneurons) direct the motor

sequences initiating, maintaining, or terminating eating. The exact

manner in which neurons, and which neurons, bring about this behavior

is not known. The integrity of the basal hypothalamus seems essential

for the regulation of eating but we have only begun to specify more

precisely the neurocircuitry involved and how it works.

Large ventromedial hypothalamic lesions disrupt both regulatory

and rhythmic components of food intake. In the rat, these lesions

produce hyperphagia and obesity, and also disrupt the normal daytime

suppression of eating. However, the day/night cyclicity of eating

(J^.e^. the percent eaten in the day vs. the night) may not be controlled

by the same neural substrates that control regulatory (Jl'^' total

amount eaten). Instead, the simultaneous expression of hyperphagia

and loss of rhythms may reflect coincidental damage to two adjacent

regulatory systems by the large electrolytic lesions typically used in

such studies. It is proposed here that regulatory eating and diurnal

eating rhythms are mediated by separate neural systems. If this is



the case, then one would expect that somewhere there is a site where

a discrete brain lesion would produce hyperphagia and obesity without

disrupting diurnal eating rhythms, and vice versa. It is further pro-

posed that the paraventricular nucleus (PVN) is part of a system

mediating regulatory eating, whereas the suprachiasmatic nucleus (SCN)

is part of a system mediating eating rhythms, the pathways for which

remain to be determined. Supporting evidence for this thesis will be

reviewed in the following pages. Chapter I will deal with regulatory

eating and Chapter II will deal with eating rhythms.



CHAPTER I

CNS CONTROL OF EATING

Hypothalamic Hyperphagia and Obesity

Historical overview. At the beginning of this century the function

of the hypothalamus was unknown. Clinical observations (e._^. , Froh-

llch, 1901) described an "adipogenital" syndrome (obesity with fail-

ure to mature sexually) associated in some cases with polyuria (dia-

betes insipidus ) . Frohlich (1901) attributed the obesity to a tumor

of the pituitary. Experimental hypophysectomy in dogs (Crowe, Cushing,

and Homans, 1910) seemed to support Frohlich 's hypothesis. There were

objections (Aschner, 1912) that the obesity might result from damage

to the base of the brain as a consequence of the transtemporal ap-

proach used in the hypophysectomy. When hypophysectomy was performed

via the roof of the mouth, thus avoiding damage to the base of the

brain, there was no obesity. Despite these objections, Cushing'

s

view on the role of the pituitary went unchallenged until two of his

students (Bailey and Bremer, 1921) showed that puncture of the post-

infundibular region of the hypothalamus without damage to the pitui-

tary produced the adipogenital syndrome and diabetes insipidus .

This was the beginning of the pituitary-hypothalamic controversy.

Smith (1930) using chromic acid lesions, and Keller £t aJ^. (1930)

using surgical lesions of the hypothalamus also reported the obesity.

However, the controversy was not settled until Hetherlngton and
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Ranson (1939; 19A0; Hetherington, 1943) conclusively demonstrated

that bilateral damage in the ventromedial region of the hypothalamus,

not the pituitary, was responsible for the hyperphagia and obesity.

The critical observation involved 2-stage surgery. Hypophysectomy

alone failed to produce obesity, but subsequent hypothalamic lesions

did. The prior removal of the pituitary ruled out any possible in-

volvement of the pituitary in the etiology of the obesity.

The dual center hypothesis . The ventromedial (Brobeck et al. 1943)

,

and lateral (Anand and Brobeck, 1951a) hypothalamic areas were pro-

posed as sites for the control of food intake. The "dual center" hy-

pothesis of Anand and Brobeck (1951b) proposed that the ventromedial

hypothalamus (VMH) was a "satiety center" which suppressed the "eat-

ing center" located in the lateral hypothalamus (LH) . The dual cen-

ter hypothesis generated and guided considerable research on the cen-

tral nervous system control of eating (for reviews see Stevenson,

1969; Grossman, 1975, 1979; Lytle, 1978). However, the seductive

simplicity of this hypothesis led investigators to the mistaken belief

that they had Identified the "centers" controlling eating and satiety

by naming them, and that all that remained was to examine the factors

necessary for the development of hyperphagia and obesity. Certainly,

the large electrolytic lesions of the VMH and LH provided supportive

evidence at that time (Anand and Brobeck, 1951a; Teitelbaum and

Epstein, 1962).
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:er
Longitudinal systems controlling eating . In the past, the dual cent(

hypothesis focused on the ventromedial nucleus and the region just

lateral to it, detracting attention from more anterior or caudal brain

sites. More recently, due to the advent of more selective lesioning

methods such as knife cuts (which damage fibers crossing the plane of

the knife, but minimize neuronal damage, e.^.
, Gold, 1970; Gold

et aJ..
, 1977; Grossman and Grossman, 1977) transmitter specific

neurotoxins (e.^.
, Ahlskog and Hoebel, 1973; Sailer and Strieker,

1976; Breisch et^ al. , 1976) and selective stimulation via intra-

cranial microinfusions of transmitters (e^-_g^. , Leibowitz, 1978a) re-

searchers have re-discovered that eating regulation must involve more

than isolated brain centers.

The original term ventromedial hypothalamic area was shortened

to ventromedial hypothalamus (VMH) and then was confused with the ven-

tromedial nucleus (VMN) . Thus the VMN was erroneously implicated in

the control of food intake. This confusion was clarified by Gold

(1973) who showed, by using discrete electrolytic lesions, that the

critical area damage which produced hyperphagia and obesity was not

the VMN, but rather lay immediately rostral to it. This finding has

since been replicated (Coscina et al. , 1976) . Hyperphagia and obesity

can also be produced by parasagittal knife cuts (Albert and Storlien,

1969; Sclafani and Grossman, 1969; Gold, 1970; Sclafani, 1971;

Paxinos and Bindra, 1973). The most effective placement for these

parasagittal cuts is rostral to the VMN and LH and coincides with
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Gold's (1973) electrolytic lesion findings. Coronal knife cuts ros-

tral to the anterior tip of the VMN also produce hyperphagia and

obesity (Grossman, 1971; Paxinos and Bindra, 1972; Storlien and

Albert, 1972). The above effects could be due to interruption of

caudal connections of the rostral hypothalamus to the posterior hypo-

thalamus and/or brainstem. If so, this would be evidence for longi-

tudinal systems involved in food intake. In support of this, a para-

sagittal knife-cut rostrolateral to the VMN combined with a contra-

lateral mammillary area lesion, an approach designed to asymmetrical-

ly damage the same system bilaterally, produces hyperphagia and

obesity (Gold et al. , 1972). A finer analysis of the caudal connec-

tions mediating food Intake (Grossman and Hennessy, 1976; Hennessy

and Grossman, 1976; McDermott et al. , 1977) implicates the medial

components of the medial forebrain bundle (MFB) as it courses through

the perifornical posterior hypothalamus. In cats, bilateral electro-

lytic lesions of the dorsolateral tegmentum (Skultety and Gary, 1962;

Skultety, 1966) produce hyperphagia and obesity. In rats, tegmental

coronal knife-cuts (Grossman and Grossman, 1977) also produce hyper-

phagia and obesity. Finally, Gold _al
•

' s (1977) asymmetrical knife-

cuts also support the existence of a longitudinal system running from

the area of the PVN through the posterior hypothalamus (possibly via

the MFB) into the tegmental area. The posited system appears to be-

come more diffuse as it courses caudally since larger knife-cuts (Gold

e_t al. , 1977) or large lesions (Skultety and Gary, 1962) are needed to

produce the effect at tegmental levels.
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Studies using transmitter-specific neurotoxins also support the

concept of longitudinal systems mediating food intake. Microinjec-

tions of 6-hydroxydopamine (6-OHDA) , which specifically depletes cate-

cholamines, into the ventral tegmentum, where the cell bodies of as-

cending noradrenergic systems (e.^. , the ventral noradrenergic bundle)

are located, cause hyperphagia and obesity (Ahlskog and Hoebel, 1973).

However, the effect of 6-OHDA lesions appears to be dissociable from

that of VMH electrolytic lesions (Ahlskog et al.
, 1975). Indeed,

norepinephrine depletion is not essential for the hyperphagia seen

after coronal tegmental knife-cuts (Grossman and Grossman, 1977;

Grossman et al.
, 1977). In some cases 6-OHDA injected into the teg-

mentum has no effect, whereas small electrolytic lesions in the same

area produce a small, diet-dependent hyperphagia and obesity (Lorden

et^ al. , 1976) . Norepinephrine depletions in the forebrain do not

necessarily produce hyperphagia and obesity (Coscina e^ al.
, 1973)

.

Thus, the posited damage to the ventral noradrenergic bundle (Gold,

1973; Kapatos and Gold, 1973) may be neither necessary nor sufficient

for the expression of VMH hyperphagia and obesity.

Serotonin (5-HT) depletions have been reported to produce hyper-

phagia and increased body weight (Breisch et_ ^al.
, 1976; Sailer and

Strieker, 1976). In this respect, the coronal tegmental knife-cuts

which produce hyperphagia and obesity significantly deplete forebrain

5-HT (Grossman et al. , 1977). However, Sailer and Strieker (1976)

found that while their rats were hyperphagic and gained weight, they

did not become obese. Sailer and Strieker attributed these effects
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to excess growth hormone, because their rats grew longer in length.

Thus the role of 5-HT in hypothalamic obesity is not clear. Further-

more, 5-HT depletions via lesions of the midbrain raphe nuclei (Lor-

ens et al., 1971; Coscina et al.
, 1972; 1976; Coscina and Stancer,

1977) do not produce hyperphagia and obesity. On the contrary, raphe

lesions markedly attenuate or abolish VMH hyperphagia and obesity

(Coscina and Stancer, 1977). These conflicting reports may be due to

the degree of 5-HT depletion, or to damage to more than 5-HT neurons.

ion
The PVN and food intake . In contrast to Hetherington and Rans<

(1940)
,
who identified the ventromedial hypothalamus as the critical

hypothalamic site, other early investigators had suggested a role

for the anterior hypothalamus in the inhibition of food intake. Camus

and Roussy (1922) attributed the obesity to lesions of the arcuate

nucleus and the PVN. Biggart and Alexander (1939) emphasized the im-

portance of the anterior hypothalamus. Their lesions damaged ventral

and caudal portions of the supraoptic nucleus and the anterior hypo-

thalamus anterior to the median eminence. They believed that such

lesions interrupted fibers from the PVN to the hypophysis, and re-

called Greving's (1928) suggestion that the PVN controlled fat meta-

bolism. Anterior hypothalamic lesions including damage to the PVN

produced hypoglycemia in cats (Harris and Ingram, 1936) and increased

insulin sensitivity (Ingram and Harris, 1936). Unilateral PVN stimu-

lation produced hyperglycemia (Lewy and Gassmann, 1935) . From clini-

cal observations of brain tumors, the PVN and its tegmental connec-
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tions to the brainstem dorsal motor nucleus of the vagus were proposed

as an insulin regulating system (Vonderahe, 1937).

The PVN itself has been little explored because early studies

(e.^., Hetherington and Ranson, 1940, 1942) concentrated on more cau-

dal hypothalamic sites (ventromedial, dorsomedial, and lateral).

Accordingly, there is little direct evidence specifically implicating

the PVN in the control of food intake: An early study (Heinbecker et

al.
, 1944) reported hyperphagia and obesity in dogs after hypothala-

mic puncture lesions which damaged the PVN and/or its efferents. As

mentioned earlier, large electrolytic lesions of the anterior hypo-

thalamus which included the PVN, lowered blood sugar levels (Barris

and Ingram, 1936), and also lowered growth hormone releasing factor

(Sawano et al. , 1968). However, the effect of the lesions on food in-

take and body weight was not tested in either study since the cats

were on a restricted feeding schedule.

The early studies suggesting a role for the PVN in the control of

food intake were overlooked or bypassed because, for the most part,

they emphasized connections to the pituitary at a time when it was

becoming apparent that the pituitary was not involved. However the

PVN hypothesis once again becomes justifiable in light of several re-

cent findings . One line of evidence comes from the recently demon-

strated extrahypothalamlc luteinizing hormone releasing hormone

(LH-RH) pathways (Knigge e_t a_l. , 1978) , and extrahypothalamlc neuro-

physin pathways and other direct autonomic pathways from the PVN to

brainstem nuclei (Saper et al. , 1976; Hancock, 1976; Swanson, 1977;
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Nilaver et al.
, 1978) and reciprocal connections to the PVN (Ricardo

and Koh, 1978). These pathways may be relevant in view of the reports

that vagotomy abolishes VMH hyperphagia and obesity (Powley and Op-

sahl, 1974), knife-cut- induced obesity (Sawchenko and Gold, 1977) and

PVN norepinephrine-induced eating (Leibowitz, unpublished; Sawchenko,

1978). Electrolytic lesions (Gold, 1973) and asymmetrical knife-cuts

(Gold et al.
, 1977) implicate the PVN area as the most rostral ter-

minus of a satiety neurocircuit . Finally norepinephrine microinjec-

tion studies (Leibowitz, 1978a) localize the PVN as the most sensitive

site for eliciting eating. The discrete electrolytic lesions of the

PVN reported in this thesis confirm the role of the nucleus in the

control of food intake.

Possible specificity of PVN lesions . It should not be surprising

that large lesions of the ventromedial hypothalamus cause a complex

syndrome. Besides hyperphagia and obesity, this syndrome includes

dietary "finickiness" (Graff and Stellar, 1962), disrupted eating and

drinking rhythms (Kakolewski e^ al. , 1971) , hypoactivity and disrupted

gonadal function (Kennedy and Mitra, 1963), and hyper-reactivity and

increased "emotionality" (Grossman, 1966) . The complexity of the syn-

drome reflects both the size of the lesions used and the intricate

substrate lesloned. The medial hypothalamus contains aminergic affer-

ents and fibers of passage (Ungerstedt, 1971; Lindvall et al. , 1974;

Swanson and Hartmann, 1975; Hokfelt e^ ^1. , 1978), estrogen concen-

trating cells (Pfaff and Keiner, 1973), adenohypophyseal trophic hor-
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mones (Guillemin, 1978), and many newly discovered peptidergic path-

ways (Buijs et al.
, 1978; Hokfelt et al., 1978; Knigge et al.

, 1978)

,

in addition to the traditional neurohypophyseal system (Scharrer and

Scharrer, 1954). Thus, it is very probable that discrete PVN lesions

may isolate the hyperphagia and obesity from the other components of

the VMH syndrome, producing an "elemental" obesity syndrome. However,

such a possibility should be tempered by the caveat of our lack of

sophistication as to the function(s) of the PVN.

Research strategy . Discrete electrolytic lesions of the PVN should

produce hyperphagia and obesity without abolishing the nocturnality

of intake, and preserve normal gonadal function. If the PVN is indeed

part of longitudinal pathways mediating food intake, then an asymme-

trical lesioning approach i.e., a PVN lesion paired with a contrala-

teral dorsolateral tegmentum (DLT) lesion, should produce hyperphagia

and obesity comparable to that of bilateral PVN lesions. The effects

of PVN lesions on gonadal function and rhythms will be tested via

vaginal smears, and by observing nocturnal rhythms of intake. How-

ever, since this latter measure comes under "rhythms" it will be

dealt with in Chapter II.

Methods

Subjects . Adult female Charles River CD rats (250-300 gm) served as

subjects. Rats were housed singly in stainless steel wire-mesh hang-

ing cages, in an air-conditioned room, under cycling lights (12:12
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hrs, light/dark). Purina laboratory pellets and tap water was availa-

ble ad libitum. On the occassion of dietary challenges, Purina pow-

dered diet, or a high fat diet (2/3 powder, 1/3 Crisco, by weight)

was used.

Surgery. Under Nembutal anesthesia (40 mg/kg, i.p.) rats were placed

in a Kopf stereotaxic instrument and received anodal electrolytic

lesions (1 mA x 10 sec) bilaterally via a non-metal-depositing plati-

num-iridium (90-10%) electrode (0.3 mm in diameter) insulated with

enamel except for 0.5 mm at the tip. The cathode was attached to the

ipsilateral ear. The current parameters and mechanisms of lesion for-

mation using this electrode have been previously reported (Gold,

1975). Briefly, oxygen bubbles formed at the anode damage tissue

mechanically and the acidity of the hydronium ions (H3O+) produced

contributes to lesion formation. Stereotaxic coordinates were taken

from Konig and Klippel's (1963) atlas and adapted for the adult rats

used. With the incisor bar set at - 3.0 mm, the PVN coordinates were:

7.0 mm anterior from ear bar, lateral 1 0.3 mm from the midline (mea-

sured from the sagittal sinus), and 7 . 7 mm ventral from the dura. For

the asymmetrical lesions, a unilateral PVN lesion was placed as above,

and paired with a contralateral DLT lesion. The coordinates for the

DLT lesion were: 2.3 mm anterior from the ear bar, 1.5 mm lateral,

and 6.6 mm ventral from the dura. The lesion parameters were 1 mA x

30 sec. For sham lesions, rats were anesthetized, placed in the

stereotaxic and the electrode lowered to within one mm of the
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nucleus, but no current was passed.

Measures. Following a one-week settling period after the rats'

arrival, bi-weekly body weight and intake data were taken for 14 days

pre-operatively and for at least 14 days post-operatively . Post-opera-

tive daily vaginal smears were taken over 2 cycles (approximately

8-10 days) to be used as an index of normal ovarian function. Post-

operative reactivity to an air puff from an ear syringe delivered to

the area around the head, was taken as a measure of emotionality. The

emotionality scores to the puff were: 0 (no reaction), 1 (sniffing),

2 (sniffing and moving around) , 3 (flinching) , 4 (flinching and vo-

calizing) , 5 (jumping off the cage floor, vocalizing). Nose-anal

lengths (NAL) were taken at the time of surgery and again just before

perfusion. From the NAL and body weight (BW) an obesity index (Lee,

1929) can be calculated using the formula, obesity index = (Bw-'-/^)/

(NAL in millimeters) x (10^). A range from 290-310 is considered nor-

mal and 320+ is considered obese.

Histology . At the conclusion of the experiment, rats received an

overdose of Nembutal (80 mg/kg, i.p.) and were perfused intracardially

with physiological saline followed by 10% formalin. Brains were re-

moved from the skulls using rongeurs, and placed in 10% formalin for

24 hours followed by 24 hours in sucrose-formalin. Frozen coronal,

or horizontal sections (for the bilateral PVN, or the PVN x DLT re-

spectively) of 40 microns were cut and every fourth section saved and

mounted on glass slides for staining with Cresyl violet. Lesion
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reconstructions consisted of camera lucida tracings of sections

through the extent of the lesion. Two observers who had no knowledge

of the behavioral results rated the extent of damage to the PVN.

Statistical analysis. After the rats were sorted into groups based

on the amount of PVN damage, group means for body weight, intake, and

obesity index, and their respective standard errors were calculated.

These data were then analyzed using two-tailed Student's _t tests for

between-groups comparisons. In addition, a one-way analysis of vari-

ance, followed by a Newman-Keuls or Duncan's multiple range test was

done on body weight, and on linear growth.

The extent of damage to the PVN was determined by projecting the

brain section (13X magnification) onto a grid pattern (1 square =

0.5 mm). An intact PVN covered 7 squares on the grid. The extent of

damage was calculated by dividing the number of squares covered by any

remaining PVN by 7. This was converted to a percentage, and sub-

tracted from one hundred. Thus, total damage to the nucleus would

give a value of one hundred percent. A linear regression analysis was

then done between extent of damage to the nucleus, and the subsequent

body weight and food intake changes.

Results

Histology . Seven rats sustained total (100%) damage to the PVN. Six

rats sustained partial (50-87%) damage, and seven had no damage to the

PVN. Seven rats received a sham operation. Representative lesion
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reconstructions are shown in the accompanying figures (Figs. 1-3.).

Intakes and body weights . These data are summarized in Table 1. Pre-

operatively, there were no significant differences in food and water

intake, water-to-food ratios, or body-weight change between any of

the groups. Total PVN destruction led to a significant increase in

food (p < 01, t = 9.82, df = 12) and water (p < .01, t = 5.41, df = 12)

Intakes, and body weight (p < ,01, t = 18.6, df = 12) compared to sham

operates, or to control lesions (p < .01, t = 8,84, 3.98, 11.6 respec-

tively, df = 12). Rats with total destruction of the PVN were signi-

ficantly more obese (p < .01, t = 8.2, 4.72) than either sham operated

or lesioned controls. The mean Lee index for the rats with total PVN

lesions was 330^ 2.08, definitely in the obese range in contrast to

mean Indices of 307 and 299.3 for the control lesioned and sham oper-

ated rats, respectively. Rats with partial PVN lesions had a Lee

index of 325 ±4.0. Total PVN lesions did not significantly affect

the water-to-food ratios (p > .10, t = .82, .41, df = 12) compared to

shams or lesioned controls. Rats with total PVN lesions differed

significantly from the partially-lesioned group in post-operative

weight increase (p < .01, t = 3.58, df = 11). There was a significant

difference in their total post-operative food intake (p < .01,

t = 7.15, df = 11). Rats with total PVN lesions increased food intake

70% from pre-operative levels, compared to a 48% increase for the rats

with partial PVN damage.

Partial damage (50 - 87%) to the PVN, when compared to shams.
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Fig. 1. Representative total PVN lesion. The extent of the
lesion is shown by the hatched area. The outline of the PVN is
represented by dotted lines.
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Fig. 2. Representative partial PVN lesion.
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1



Fig. 3. Representative asymmetrical (PVN x DLT)
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iresulted in significant increases in food and water intakes (p < .05,

t - 3.73, 2.79, df = 11), body weisl.t (p <'.01, t = A. 23, df - 11) and

Lee index (p .01, t - 5.13, df ^ 3.1) . CoTiipared to control lesions,

partial FVN lesions indnced significant increases in food intake

(p < .05, t - 2.53, df - 11) 5
body weight (p < .05, t - 3.08, df = 11),

and Lea index (p < .05, t = 3.07, df - 11), but the increase in v,Tater

intake was not significant (p > .10, t - 1.61, df - 11). Rats with

partial ?VN lesions v7ore obese, with a mean index of 325.27. However,

rats with partial PVN lesions did not differ significantly from rats

with total PVN lesions in the Lee index, (p > .10, t - 1.04, c.\ - 11).

It shonld be noted that th'^ 50% damage to the PVN consisted of a uni-

lateral FVN lesion, the contralater.- 1 nucleus being snared. This uni-

lateral lesion did not produce hyperphagia and obesity.

A linear regression analysis of extent of daaiage to the PVN (!')

vs. body weight gain (X) yielded an r of 0.87, and a regression equa-

tioii of y 16.46X + 1.32. This correlation was highly significant

(p < Q], critical r = 0 . 561 , df - 18) . A regression analysis of post-

operative food intake gave similar results, with an r -0.B7, and a re-

gression equation of Y =^ 5.69(X) - 132.56 (p < .01, df = 18). The

scatter plots and regression lines are shown in Figures 4 and 5.

The results of the analysis of variance of the postoperative body

weight gains was highJy significant (p < .01, F - 50.62, df - 3.23).

The sunuaary oi the analysis is presented in Table 2. All groups were

signifieantly different from each oLher except for the control lesion

vs. Bhan. comparison (Newmatv-Keuls , Table 3; Duncan's Multiple Range,
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Fig. f\
. Scatter plot and linear regression line for %

damaged vs_. post-operative body weight change.



Fig. 5. Scatter plot and linear regression line for % PVN
inaged vr^. po:3 1- operative food intake.



Table 2

Summary of the Analysis of Variance

for Post-Operative Body Weight Changes

SS df MS V

154.89 3 56.63 50.60

wg 23.36 23 1.02

Mean Post-Operative Body Weight Change (g/d)

Total PVN lesion 6.2 ± .746

Partial PVN lesion 3.52 ± 1.77

Control lesion 0.877 ± .835

Sham lesion .257 ± .203



Table 3

Newman-Keu.! G Paired Comparisons

for Post-Operative Body Weiglit Change

27

4

Total
PVN
Lesion

Partial
I'VN

Lesion
Control
Lesion

Sham
Lesion

Total
4 PVM
Lesion

Partial
3 PVN
Lesion

Control
2 Lesion

Sbara

1 Lesion

2 . ir 5.37' 5.9/4*

3.83'

0.57

N . S

.

P <..o:

EF .01

1

3.89

.93

2

4.45

1.07

h

4.80

1.15
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Table 4

Duncan's Multiple Range Test

for Post-Operative Body Weight Change

Partial
PVN
Lesion

Sham
Lesion

Control
Lesion

Total
PVN
Lesion

Partial
PVN

Lesion
Sham

Lesion

3.26

Control
Lesion

2. 64''

0.62

Total
PVN
Lesion

2.60*

5.9'

5.32

V<.01

R4 = 1.03

R3 = 1.002

R2 = 0.950

Ranks

X^: Sham Lesion

X3: Control Lesion

X2: Partial PVN Lesion

X]^: Total PVN Lesion
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Table 4)

.

Estrous cycling. All rats showed the normal 4-5 day cycle as deter-

mined by observation of the daily vaginal smears.

Reactivity. There were no differences in reactivity to the air puff

among the groups. Typically, rats showed a sniffing and moving-

around response, sometimes a flinch, but there were no vocalizations

or jumping off the cage floor.

Linear growth . Because of the different post-operative survival times,

the nose-anal lengths (NAL) were transformed to daily growth (mm. /day).

The transformed data were analyzed via analysis of variance and Dun-

can's multiple range test. The results, summarized in Tables 5 and 6,

show that rats with total PVN lesions grew at a significantly faster

rate (p < .01) than the other groups, which did not significantly dif-

fer from each other (p > .10).

Asymmetrical lesions . Because of the small number of animals (4) which

received a unilateral PVN lesion paired with a contralateral DLT

lesion, these data will be presented anecdotally. A typical lesion is

shown in Figure 3. Rats with such asymmetrical damage gained 4.0

grams/day, and had a Lee index comparable to that of the rats with par-

tial PVN lesions (329) . These asymmetrically lesioned rats were hy-

perphagic (60% increase over pre-operative intake) , but not polydipsic

(water-to-food ratios were normal). They had normal estrous cycling,



Table 5. Summary of Anova on linear growth (nnn/day)
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Table 5

Summary of the Analysis of Variance for Post-Operative

Increases in Nose-Anal Length (N.A.L.)

SS MS. df F P

bg .06017 .02057 3 3.10 .05

wg .1496 .008504 23

Mean Post-Operative Increases in N.A.L. (m/d) t S.E.M,

Total PVN lesion .187 ± .053

Partial PVN lesion .0694 ± .012

Control lesion .092 ± .054

Sham lesion .0789 ± .032



Table 6

Duncan's Multiple Range Test

for Post-Operative Increases in Nose-Anal Length

32

Partial
PVN
Lesion

Sham
Lesion

Control
Lesion

Total
PVN
Lesion

Partial
PVN

Lesion
Sham

Lesion

.0095

Control
Lesion

0231

.0136

Total
PVN
Lesion

.118

1081

.0945

P<.01

GRIT. R.

R4 = .08235

R3 = .07986

R2 = .07585

Ranks

Partial PVN lesion

X4: Partial Sham lesion

X3: Control lesion

X-^: Total PVN lesion



33

and were also normal in their response to the air puff.

Discussion

The results confirm earlier suggestions that the PVN is involved

in the control of food intake and body weight (Heinbecker et al.,

1944; Gold et al., 1977; Leibowitz, 1978a) . The present results sug-

gest a role for the PVN itself, as damage to the nucleus is highly

correlated with hyperphagia, increased body weight, and obesity.

There was no polydipsia as defined by water/food ratios. Damage to

the PVN did not disturb estrous cycling, confirming an earlier report

by Brown-Grant et al. , (1977). The normal reactivity after PVN

lesions is congruent with the reports after knife cuts (Paxinos and

Bindra, 1972; Gold et al.
, 1977). Taken together these findings sup-

port the hypothesis that PVN lesions are more specific than VMH

lesions in producing hyperphagia and obesity. The persistence of nor-

mal circadian rhythms in behavior following PVN lesions will be as-

sessed in part II.

The results of the asymmetrical lesions (PVN x DLT) suggest that

the PVN is part of longitudinal pathways coursing through the tegmen-

tum (Skultety and Gary, 1962; Peters et^ al. , submitted, 1979) and

asymmetrical knife cuts (Gold et^ al. , 1977) . The asymmetrical lesions

did not affect estrous cycling, reactivity to the air puff, or cause

polydipsia. In this respect, the asymmetrical lesions appear to be

equivalent to bilateral PVN lesions. The lesser magnitude of the

body-weight increase can be accounted for in terms of the system's
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becoming more diffuse at tegmental levels, thus requiring large lesions

(Skultety and Gary, 1962) or knife cuts (Gold e^ al.
, 1977) to fully

interrupt it.

The identity of transmitter system(s) involved in this longitu-

dinal system remains a mystery. In view of the rich aminergic innerva-

tion of the medial hypothalamus (Hokfelt et al. , 1978), especially the

catecholamlnergic input to the PVN (Lindvall and Bjorklund, 1974), an

aminergic system is a good candidate. This would be consistent with

the fact that Ahlskog and Hoebel (1973) produced hyperphagia after in-

jections of the catecholamine-specif ic neurotoxin 6-OHDA into the teg-

mentum, and norepinephrine microinjections are most effective in eli-

citing eating when placed in the PVN (Leibowitz, 1978a).

The relationship between the system identified by Leibowitz

(1978a) and the system revealed by knife cuts and PVISI lesions is not

clear. It could be that norepinephrine stimulates food intake via

dlsinhibition, i^.e_. y by inhibition of satiety. Such an interpretation

would be internally consistent with the alpha-eating and beta-satiety

adrenergic "dual center" model (Leibowitz, 1970). In support of such

a possibility, iontophoretic application of norepinephrine has been

shown to inhibit firing of PVN neurons (Moss et al. , 1972) . Further-

more, sub- (eating) threshold doses of norepinephrine (0.015-0.37 nmoles)

triple the size of the meal intake, a fact which would be consistent

with an inhibition of satiety (Ritter and Epstein, 1975). However,

norepinephrine levels are inversely correlated with weight-gains after

radio-frequency lesions of the medial hypothalamus (Coscina ^ al.

,
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1976) . Such a relationship would not be expected if norepinephrine is

suppressing a PVN satiety system. If this were the case, depletions

of norepinephrine should lead to increased satiety rather than in-

creased eating. Similarly, if norepinephrine is suppressing satiety,

then the hyperphagia and obesity seen after PVN knife cuts (Gold et al.
,

1977) can not be attributed to damage to noradrenergic inputs to the

PVN, because again the expected result would be increased satiety and

body weight loss. There is a report of hypophagia after transections

of the tractus f iliformis

,

a major noradrenergic input to the PVN

(O'Donohue et al. , 1978). However, the effect is transient and the an-

imals recover despite nearly a 60% depletion of noradrenergic input to

the nucleus

.

An alternative interpretation is that the pathways mediating nora-

drenergic eating and knife-cut hyperphagia are different. Noradrener-

gic eating responses remain intact after knife cuts beside the PVN

(Aravich et^ al. , 1978), which result in hyperphagia and obesity. Thus,

it is very likely that knife cuts and lesions produce hyperphagia and

obesity via damage to PVN connections which are not adrenergic and

which may be efferent.

Other evidence argues against an exclusive catecholaminergic medi-

ation of VMH hyperphagia. The 6-OHDA effect is additive to VMH le-

sions (Ahlskog et^ al. , 1975). Furthermore selective depletion of PVN

norepinephrine (56% decrease) by discrete knife cuts along the PVN

has no permanent effects on food intake (0 'Donohue et_ al
. , 1978). Ser-

otonin probably is also Involved because depletions of this indolea-



36

mine are correlated with the hyperphagia produced by tegmental knife

cuts (Grossman et al.
, 1977), and VMH lesions (Coscina et al.

, 1976).

However, hyperphagia after serotonin depletions does not produce obe-

sity (Sailer and Strieker, 1976). The serotonin input to the PVN it-

self is very sparse (Moore et al.
, 1978), and lastly serotinin deple-

tion via raphe lesions abolishes VMH hyperphagia and obesity (Coscina

and Stancer, 1977). Raphe lesions also deplete PVN serotonin (Pal-

kovits ^ al. , 1977). In conclusion, the neurochemical identity of

the afferent systems mediating food intake can not be specified.

An alternative possibility, prompted by the report of autonomic

mediation of VMH hyperphagia (Powley and Opsahl, 1974), has been to

look at the efferent components of this system. Hyperphagia and obe-

sity after knife cuts beside the PVN is also abolished by vagotomy

(Sawchenko, 1978). Considerable attention has therefore been given to

the hypothesis that VMH hyperphagia is due to vagal disinhibition

(e^.^. , Powley, 1977; Gold, et^ al.
, 1977), resulting in autonomic ex-

cesses, most notably hyperinsulinemia. This hypothesis receives some

support from recent reports of extra-hypothalamic neurophysin pathways

from the PVN to the brainstem (Swanson, 1974) . Such descending path-

ways have also been demonstrated using horseradish peroxidase (Saper

et^ al. , 1976). A more recent report (Nilaver, e^ _al. , 1978) specifi-

cally describes an oxytocin pathway to the dorsal motor nucleus of the

vagus, which could mediate food intake. Furthermore, there are reci-

procal connections between the PVN and brainstem nuclei (Ricardo and

Koh, 1978) which could be involved in food intake. The functional
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role of these pathways has not, to date, been specif ical].y tested.

However, ojcytocin and vasopressin are differentially distributed in

the PVH (Defendini and Zimmerman, 1978). Oxytocin it;, peripherally

located, in the neurons formiiig the "wings" of the I'VN, and also more

roRtrally, Vasopressin is located in the medial aspects of the P'^/N

,

and more vcntro-caudally . This anatomical separation tantalizingly

suggests a functional difference between these cells
5,
and their pep-

tides, and c'orrebponds to earlier morphological classification of the

cells. Thus, the lateral (magnocellular) cells vjould contain oxytocin

whj-le the medial (parvocellular) cells would contain vasopressin.

Based upon inspection of the series of PVK lesions and knife cuts in

the present study, it appears that the medial and ventral aspects are

not important for control of food intake since their destruction does

not produce obesity. Conversely, destruction of the dorsolateral as-

pects of the nucleus produces hyperphagia and obesity. Knife cuts

hicli spare the lateral "wings" of the luicleus do not produce the

obesity either. The oxytocin cells project to the brainstem (Nilyver

et a]., 1978) while the vasopressin cells project to the median emi-

nence (Vandesande e.t a_l- , 1977; Ziii-,merraan et al . , 1977) and the sep-

tum (iiuijs et al . , 1978). hereditary _dia]je_t^ ioi^sjj^j^^^ (DI) ,
or

"Brattleboro" rats have a genetic defect which obviates the production

of vasopressin, lience their abnormal water regulation. However, these

rats are not hyperpliagic or obese (Nunez, personal communication).

A reasonable hypothesis from the above evidence is the possibil-

ity of a role for oxytocin as a transmitter wliiclv regulates food in-
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take. Perhaps this could be tested by Iminunostaining the brains of hy-

perphaglc, obese, selectively lateral-PVN lesioned rats, and testing

whether or not the oxytocin projections to the dorsal motor nucleus of

the vagus were gone. Meanwhile, existing evidence which is consistent

with this hypothesis does exist.

The efferents from the PVN have been autoradiographically mapped by

Conrad and Pfaff (1976). These projections run along the medial as-

pects of the hypothalamus and form a capsule around the VMN, thus ex-

plaining why large VMN lesions would produce hyperphagia and obesity.

The map is also consistent with the knife cuts of Gold et al., (1977)

and the asymmetrical (PVN x DLT) lesions of the present study. Of par-

ticular relevance, the efferents become more diffuse as they course

through the tegmentum, thus accounting for the lesser magnitude of the

asymmetrical lesion effect. These projections continue to descend

through the tegmental reticular formation into brainstem nuclei, such

as the median and dorsal raphe. The projections also continue into the

pontine reticular formation and to the medial part of the nucleus of

the solitary tract. These connections are also consistent with an au-

tonomic mediation of hyperphagia and obesity.

Pfaff and Keiner (1973) in their map of estradiol-concentrating

brain cells reported labeling in the PVN. The cells were located in

the "wings", or magnocellular portion of the nucleus in what is now

known to be the site of the oxytocin cells. In the monkey, the PVN

also is labeled (Pfaff et^ al. , 1976) and there are significant in-

creases of the oxy tocin-specif ic neurophysin after estradiol adminis-
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tration (Robinson et al.
, 1976). It could be that these lateral cells

are mediating the increases in circulating estrogen-stimulated neuro-

physin (ESN), and consequently oxytocin production. If oxytocin is a

transmitter regulating food intake, then the preceding could be a

mechanism whereby the well-known effects of estrogen on food intake

(for review, see Wade, 1976) are mediated. This speculation brings to

mind a study by Wade and Zucker (1970) in which unilateral implants of

estradiol benzoate in the VMH suppressed food intake. This localiza-

tion has been challenged since small VMH lesions do not abolish the

anorexic effect of estrogen (e._^. , Beatty et al.
, 1975). However,

larger lesions of the VMH are reported to be effective in blocking

this effect of estrogen (Nance, 1976). These larger lesions could

have damaged the PVN or its efferents. Perhaps a direct test of this

hypothesis would be to implant estradiol benzoate in the PVN of ovari-

ectomized rats and observe changes in food intake. Such experiments

would be useful in teasing out central effects of gonadal hormones

from peripheral metabolic effects which also ultimately affect food

intake and adiposity (for review see Wade and Gray, 1979). Eng et al
.

,

(1979) found that vagotomy did not abolish the weight suppressive ef-

fects of (peripheral) exogenous estrogen in ovariectomized rats. How-

ever, in order to conclusively rule out a vagal mediation of central

nervous system effects of estrogen, the effect of vagotomy on the food

intake suppressing effects of intradiencephalic estradiol implants

would have to be tested.

An additional line of evidence supporting a role for oxytocin
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brains Lein pathwayf5 in food intake Is the relationship between secre-

tory c.yc.3.es and actlvj.Ly jvl tlie PVN, and the estrous cycle (Freund-

Merciet and Richard^ 1977; Yukitake, 1978). Such changes arc consis-

tent v;.i.i-li secretion of oxytocin in the afternoon of proestrus (Yuki-

take^ 1970) -wiiich correlates VTell v;ith the estrogen suppression of

food intake at that time. Furtliermore the ox>'tocln is not being re--

leased from the pituitary because neurosecretory granules in the pos-

terior pituitiiry do not change over the estrous cycle (Yukitake,

1978). Thus, these secretory changes could be taking place via the

oxytocin parhv'ays to the braiustem. Also consistent with this inodel,

is the re^port that progesterone inhibi.ts oxytocin release (Roberts,

1971).

It is unlikely that the pituitary plays a role in PVN-lesion

obesity. Although the PVN-lesioned rats grew longer (as do PVN knife-

cut rats, see Gold and Kapatos , 1975), they were still obese. Further-

more, \mi lesions (Cox e^ al. , 1968) or knife cuts (leni and Gold,

1977) still produce hypcrpbagia and obesity in hypophysectoinized rats.

Thus, a growth hormone excess is not essential for hypothalainic obes-

ity. The posterior pituitary is also probably not involved because

PVN-lesior.ed rats were not polydipsic. They had normal v/ater-to-food

ratios. The antidiuretic hormone (ADII) in the supraoptic nucleus is

probably primarily responsible for water balance. The ADH/vasopressin

in tlic PVM projects to the amygdala and septum, as reviewed above, and

to the median eminence. The vasopressin pathways to the median emi-

nence have been proposed as a corticotropin releasing factor, or to
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participate in the release of corticotropin (ACTH) by Zimmerman et al.

,

(1977). However, the PVN rats in the present study show none of the

deficits associated with Addison's disease or adrenalectomized rats

(Turner and Bagnara, 1971). PVN lesioned rats are healthy, normally

active not listless, gain weight, are not polydipsic or polyuric. Fur-

thermore, the asymmetrical (PVN x DLT) lesions which spare the PVN uni-

laterally, still produce hyperphagia and obesity.

Finally, the problem of interpretation of the PWl lesion's ef-

fects remains. It would be premature to interpret the present find-

ings as revealing a new "satiety center" in the PVN. The data show

only that discrete lesions of the PVN can produce hyperphagia and o-

besity in the absence of gonadal dysfunction, polydipsia, and hyper-

reactivity. The enhanced linear growth remains. It is tentatively

suggested, therefore, that the PVN mediates food intake. The nature

of the mechanism is probably via the autonomic nervous system. The

primacy of food intake vs. metabolic changes remains an issue. Fried-

man and Strieker (1976) suggest that the primary effect of VMH lesions

is metabolic: disruptions of nutrient processing and unavailability

of fuels leading to hyperphagia. This suggestion is consistent with

the primary hyperinsulinemia after knife cuts (Tannenbaum et al.,

1974) . VMH lesions cause a constellation of metabolic disturbances

(see Bernardis 1976, for review). PVN lesions probably cause fewer

disturbances, as the present data suggest. However, the question of

primacy can not be answered until correlations between metabolic and

food-intake changes, especially the temporal sequence of events, are
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known

.



CHAPTER II

CNS CONTROL OF RHYTHMS

The Hypothalamus and Behavioral Rhythms

Hypothalamic lesions, regulatory and rhythmic food intake . Lesions

of the hypothalamus that disrupt the regulation of food intake also

disrupt the diurnal rhythm of food intake. VMH lesions produce hy-

perphagia and obesity and disrupt the nocturnality of intake (Bala-

gura and Devenport, 1970; Kakolewski et al.
, 1971; Becker and Kis-

sileff, 1974; Rietveld et al.
, 1978). LH lesions produce aphagia

and lowered body weight and increase the nocturnality of intake (Row-

land, 1976). Conversely, lesions that disrupt rhythms also cause

hyperphagia and obesity (Nagai et al. , 1978). These results could

be interpreted as evidence for a common system mediating both regu-

latory and rhythmic functions. Alternately, this association could

be an artifact of the large hypothalamic lesions used. If the lat-

ter were the case, one would expect that PVN lesions would produce

hyperphagia and obesity without abolishing rhythms.

Evidence for separate systems . In support of a separate mediation of

rhythms and regulation of food intake, discrete brain damage via

knife cuts beside the PVN produces hyperphagic rats without abolish-

ing (but with some attenuation of) the nocturnal pattern of intake

(Gold et_ al
. , 1975). Moreover, the magnitude of the hyperphagia seen

after VMH lesions is not correlated with the degree of loss of rhyth-

43
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tnicity (Rietveld et al. , 1978). Also consistent with the present hy-

pothesis is the fact that norepinephrine injected into the PVN elicits

eating at night as well as eating during the day (Leibowitz, 1978b).

The disruption of nocturnality of food intake must be due to

interruption of pathways from some other structure. The most likely

candidate is a structure previously implicated in rhythms and a close

neighbor to the PVN, the suprachiasmatic nucleus (SCN) . The follow-

ing section presents an overview of the rhythms literature, and then

proposes a research strategy.

Adaptive significance of rhythms . Just as regulatory behaviors are

important for the maintenance of internal homeostasis, rhythmic be-

haviors are of adaptive significance for the coupling of events in

the internal environment to events in the external environment. One

of the prime events in the external environment is the daily cycle

of light and dark. Consequently, for most vertebrates light is a

Zeitgeber (Aschoff , 1960) and the visual system plays a role in the

entrainment of endogenous rhythms (for review see Moore, 1978)

.

It would be of adaptive value for an animal to be active and

to search for food when such food is available, and when the risk of

being eaten by a predator is minimal. Conversely, it would be most

adaptive for the same animal to be quiescent and sleep, thus conser-

ving energy and remaining in a safe place, when food is not available

and/or predators are on the prowl. It also becomes possible for the

animal, through evolution, to specialize for nocturnal activity.



A 5

In tills type ol: situation it would also bo adaptive for the animal to

overeat duririt; tlie active period in anticipation of the energy needs

during tlio. quiescent period. In order to accomplish thcje thingvS it

would be best, for the animal, especially for burrov.'ing animals, to

!)avc an endogenous "clock" so that, for example, it could anticipate

day/nif^ht cyclicity, rather than be passively driven by external sti-

muli and com inually have to check to see if night has fallen. From

a physiological standpoint an internal clock co.jld mediate the tem-

poral sequence of metabolic and endocriiie events associated witli eat-

ing/satiety and activity /sleep
5
perhaps in an anticipatory fashion.

A clock could also mediate the secretion of hormones vhich may have

a synergistic action or whose temporal sequence of secretion msy be

crucial as in reproduction (Alleva £t al. , 1971; Brovm-Grant and

Raisman, 1977; Gray i^t al.. ^ 1978). From this evolutionary perspec-

tive it is not surprising that animals should develop endogenous

rhythmic osci.lJ.ators or clocks. This conclusion is s'lpported by many

observational and experimental findings(for reviews see llalberg,

1968; I'ittcndrigh, 1974; Rusak and Zucker, 1975) of endogenous

rhytlims with a circadian (appro;:imately 24 hours, Halberg, 1960) per-

iodicity, vjhich persist in the absence of any external entraining

cues

.

Kl]ItjTnu^lii_the_jrod^^^ The laboratory rat is a nocturnal animal,

doing most of its eating, drinking, and activity at niglit (Richter,

196.'5; Zucker, 1971). The endogenous nature of these rhythms is
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demonstrated by their "free-funning" or continuing following blinding

of the animal (Richter, 1965).

Central nervous system control of rhvthms . After an extensive series

of studies, Richter (1965, 1967) concluded that the clock was located

in the brain since removal of all the endocrine glands did not abol-

ish rhythms. From brain lesioning experiments, Richter further con-

cluded that the clock was located in the hypothalamus, but he was

unable to find a specific nucleus responsible for the rhythms (Rich-

ter, 1967). An earlier report by Critchlow (1963) that the SCN con-

trolled estrous cyclicity was overlooked by researchers in biological

rhythms. More recently, two laboratories have independently replica-

ted Richter 's earlier findings (Moore and Eichler, 1972; Stephan and

Zucker, 1972b). These investigators used a different approach, name-

ly the well known fact that rodent rhythms are entrained by light

(Browman, 1937; Siegel, 1961; Zucker, 1971), and reasoned that a

functional connection must exist between visual pathways and the

clock. Surprisingly, however, interruption of the primary and acces-

sory optic tracts did not affect the entrainment of drinking rhythms

(Stephan and Zucker, 1972a). Based on these findings the existence

of a direct retinohypothalamic projection was proposed. This projec-

tion was later demonstrated using amino acid autoradiography (Hen-

drickson et^ aJ.. , 1972; Moore and Lenn, 1972), and cobalt precipita-

tion (Mason and Lincoln, 1976) to project to the SCN exclusively.

The SCN is nestled on top of the optic chiasm, and the retinal input
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enters from below. Thus, it is not possible to selectively cut the

retino-hypothalamic tract. Instead, lesions of the SCN were per-

formed with the expectation that entrainment would be abolished and

the rhythms would freely run. The surprising finding was that the

SCN lesions abolished rhythms in adrenal corticosterone (Moore and

Eichler, 1972) and drinking and wheel-running activity (Stephan and

Zucker, 1972b). These two experiments were the vanguard of a host

of experiments implicating the SCN in the control of a great variety

of rhythms: Pineal serotonin N-acetyltransferase activity (Moore and

Klein, 1974), sleep (Ibuka and Kawamura, 1975; Ibuka e^ al. , 1977;

Stephan and Nunez, 1977), body temperature (Saleh et al.
, 1977;

Stephan and Nunez, 1977), estrous cycling and sex hormones (Brown-

Grant and Raisman, 1977; Raisman and Brown-Grant, 1977; Gray et al.

,

1978; Stetson and Watson-Whitmyre, 1976; Nunez and Stephan, 1977),

drinking and activity (Nunez and Stephan, 1977; Stephan and Nunez,

1977; Rusak, 1977), and eating and drinking (Nagai et^ al. , 1978;

van den Pol and Powley, 1979)

.

Although the evidence strongly supports a role for the SCN in

the control of rhythms, little is known concerning the neural connec-

tions mediating this control. The following section will review per-

tinent anatomical and experimental findings.

Anatomy and functional connectivity of the SCN . The SCN is composed

of parvocellular cells (Krieg, 1932) some of which contain vasopres-

sin and its neurophysin (Vandesande et^ al. , 1975; Sofroniew and



48

Weindl, 1978), and others which contain luteinizing hormone releas-

ing hormone (LH-RH) (Setalo et al.
, 1976). The role of these pep-

tidergic cells is not known, but they may play a neuroendocrine role

as suggested by the lesion studies (e.^.
, Brown-Grant and Raisman,

1977)

.

The only afferent projection to the SCN important for rhythms

appears to be the retino-hypothalamic tract. The evidence for this

is indirect (Stephan and Zucker, 1972a) because, for the reasons

mentioned earlier, it is not possible to specifically cut the retino-

hypothalamic projection. The serotonergic afferents to the SCN

(Azmitia and Segal, 1978; Moore et al.
, 1978) are not involved in

rhythms because raphe lesions did not abolish drinking or activity

rhythms (Block and Zucker, 1976), plasma corticosterone rhythms

(Balestrery and Moberg, 1976) , or pineal serotonin N-acetyltrans-

ferase rhythms (Moore and Klein, 1974). A second visual input from

the ventral nucleus of the lateral geniculate body (Swanson et al.

,

1974) can also be eliminated (Stephan and Zucker, 1972a) without af-

fecting rhythms. Therefore, researchers have concentrated on the

output side.

The efferents from the SCN form a dorsocaudal projection in the

direction of the ventromedial and dorsomedial nuclei, and a caudal

projection to the arcuate nucleus and median eminence, but the termi-

nations of these projections are not known (Swanson and Cowan, 1975).

The vasopressin cells project to the lateral septum, the medial dor-

sal thalmus, the lateral habenula, the posterior hypothalamus, the
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froniew and Weindl, 1978). The caudal connections of the SCN appear

to be important for the neuroendocrine rhythms. Retrochiasmatic

knife cuts severing these fibers are equivalent to lesions of the

SCN in abolishing adrenal corticosterone rhythms (Moore and Eichler,

1972), and pineal N-acetyl-transferase rhythms (Moore and Klein,

1974). Neural components mediating this latter rhythm may run in

the medial forebrain bundle (Moore and Klein, 1974). Anterior hypo-

thalamic and anterior periventricular connections (Conrad and Pfaff,

1976; Swanson, 1976) are not involved since knife cuts rostral to

the chiasm had no effect on rhythms (Moore and Eichler, 1972; Moore

and Klein, 1974; Nunez and Stephan, 1977).

The connections mediating drinking, eating, and activity

rhythms have, however, yet to be specified. Neither retrochiasmatic,

lateral, or anterior knife cuts abolish eating and drinking rhythms

(Nunez and Stephan, 1977). Only a partial isolation of the SCN via

simultaneous interruption of lateral, caudal, and dorsal efferents

with a bayonet knife cut abolished these rhythms (Nunez and Stephan,

1977; Dark, in press, 1979) . Nunez and Stephan (1977) proposed that

the caudal efferents primarily mediate hormonal rhythms and that

behavioral rhythms are mediated by separate, but undetermined, possi-

bly diffuse, pathways. The role of the dorsal efferents per se has

not been tested to date.

Research strategy . The role of dorsal efferents from the SCN has not
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bconi specifically tested. Horizontal knife c'utG are propoGod to ad-

drc^:.'; this question. Also the role of later.H] connections needs to

be re-c-xain incd using nacasagit ta]. knife cuts lliat extend higher from

the base of thc-^ brain than those used l)y Nunci: and Stephan (1977) ,

i..H.y 3 rv<i\ Yersu:i thcii; 1 min cuts.

The issue of the specif j.city of the PVN lesions' effect on rc}^u-

latory, but not xljytlimic food intake \7i].l also be investigated in

this section. PVN-lesioned rats, though hyperphagic and obese,

should Imve nocturnal patterns of intake and activity comparable to

sham -operated rats.

Metliod s

S\)bjects. The general surgical procedure was also as reported in

Chapter 1. Knife cuts were made using a retracting wire knife (Gold

et a.1., 3.97']) cuts were made in the parasagittal and horizontal

planes. Tlie parasagittal knife cuts v;ere placed along tlic lateral

border of the SON. T)ie coordinates were: anterior 9.0 nrni from tlie

ear bar, lateral 0.5 imii, the wire was extended at 7.0 mm below the

dura. The knife assembly with the wire extended was lowered to the

base of the. brain, raised 3.0 mm, the wire retracted, and the entire

assembly removed from the brain. The length of the wire was 3.0 mm.

For the liorizontal knife cuts, tlie knife assembly was mounted on a

rotator. Using th.e same coordinates, the wire was again extended at

V.O mm below dura, but ti.is time the l^iife was rotated 90 degrees to

ll)e right, returned to center, rotated 90 degrees to the left, and
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ro^turne.d to ceatcr. The wire was then retracted and the knife assem-

b3y removed from the brain.

jl?^?il£eS' The body weight, intake, and vaginal sn.car data were taken

as in Chapter I. In addition, twice-daxly read Jugs were talien at the

times of changeover in the 1 i ght/dark cycle. Some of the rats in Chap-

ter I were tested in Chapter IT. Some of Uie rat.s wore hon-ioc! in Uah-

iT'on activity wheels and had Richter tubes so that activity and drink-

ing could be sampled tv;ice daily with minimal disturbance to the rat.

Wh^n thesp day/iiight samples suggested a disruption of rhythms, _i.e,,

nocturnaJity was disrupted, rats vzere placed in an isolated, con-

trolled environment with cycling lights, and their activity in wheels,

and their eating was conti.jiuous3.y monitored using an Estcrlinc- Angus

event recorder. The technique was that turning of the activity

wheel tripped a microswitch wired to tlie event recorder. SimJJ.arly,

eating patterns v/ere monitored using an "eatomcter" (Rowland, 1976)

designed so that tVie rat had to deflect a metal arm, thus tripping a

microsw'itch , in order to eat. All recording equipment v/as in a

separate room. The resultant records V7ould then reveal, upon visual

inspection, the existence of endogenous rliythms and entrainment to

1:he light/dark cycle, as well as eating/activity patterns. In some

cases, the endogenous nature of the rb.ythras was further tested by

placing the rats under constant dim light (approximately 2 ft-candles)

and continuing to monitor eating and activity on the Esterli ne--Angus

recorder

.
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Histology
. Brains were processed and analyzed as in Chapter I.

Representative knife cuts are shown in Figures 6 and 7.

Statistics
. Where appropriate, data was statistically analyzed as

in Chapter I. For the Esterline-Angus recordings, visual inspection

was sufficient to determine the presence of rhythms.

Results

PVN lesions. The nocturnality of intakes was sampled for some of the

lesioned rats used in Chapter I. Five rats with partial PVN lesions

and 2 rats with total PVN lesions were sampled over 3 days and the

results pooled for comparison with 7 sham-lesioned rats. The noctur-

nality of food (69.2%) and water (77.5%) in PVN lesioned rats was not

significantly reduced compared to shams (70.8%, 80.4%) (p > .10;

t = .41, .66; df = 12). These data are summarized in Figure 8. Fig-

ure 9 summarizes the activity and % of nocturnality data. Continu-

ous activity and eating records were taken on two rats pre- and post-

lesions aimed at the PVN. A representative continuous record is

shown in Figure 10. Both rats had rhythms comparable to controls'.

PV-1 had damage to 71% of the nucleus. PV-2 was a total PVN lesion.

After the continuous recording, the rats were individually housed and

their body'weight gain over 11 days recorded. PV-1 gained 2.8 g/d

vs . 6.5 g/d for PV-2. PV-1 was not obese, but PV-2 was (obesity in-

dices = 315, 347.6, respectively).
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Fig. 6. Representative horizontal knife cut below the PW Thecuts are represented by solid lines extending laterally from th; thirdventricle. i-nxj.u
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Fig. 7. Representative SCN biparasagittal knife cuts. The cuts
are represented as solid lines extending from the base of the brain.





57

Fig. 8. Nocturnallty of food and water intake. Histograms
represent the mean t SEM intakes. Hatched area represents proportion
of intake taken at night. Percentages refer to percent of intake
that is nocturnal (Mean t SEM)

.
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cz::r:

LD

LL

LD

Fig« 10. Continuous record for a total PVl'] lesioned rat:.

Activity (A) and feeding (F) for each day are shown together. Break

in the figure, represents days of data lest due to equipment failure.

LD -L lights on; D == lights off;

dim light; OP - operation.
cycling lights; LL = constant
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Knife cuts .

Bilateral parasagittal cuts. Based on histology, these cuts

fell Into two groups, with 3 rats each. One group had cuts beside

the SCN. The data for this group is shown in Figure 8. No continu-

ous records are available for this group. The other group had cuts

which began in the retrochiasmatic area. As the representative

record (Fig. 11) shows the rats with retrochiasmatic cuts had acti-

vity rhythms. The rats with cuts in the retrochiasmatic area, how-

ever, showed increased weight gain, obesity (obesity indices of 365-

385, weight gains of 7.2-12.4) and a reduction in activity, but run-

ning rhythms were nevertheless present. The PVN did not stain in

brain sections from this group. The rats activity rhythms were simi-

lar to shams when subjected to a 12 hour phase-shift of the light-

dark cycle, and to constant dim light (i-^-, they were free-running

with a tau, or periodicity of approximately 24 hours). The eating

rhythms of these rats were either abolished or severely disrupted.

Inspection of the records shows a reduction of eating at light onset

which was probably under exogenous control since it was not seen under

constant dim light. Visual inspection also suggests the presence of

ultradian components, but further data analysis would be needed.

One_ rat, #272 was different from the above description in terms

of rhythms (Fig. 12). After 25 days on a reversed light-dark cycle,

both eating and wheel running (although of low activity) were diurnall

In the constant dim light, the eating rhythm was not evident. How-

ever, when returned to cycling lights, this rat showed an entrainment



62

Fig. 11. Continuous post-operative record for a retrochiasmatic

parasagittal knife-cut rat. Top record shows activity. Bottom record

shows feeding. Note absence of a feeding rhythm despite a normal

running rhythm. PS = phase shifted from a reversed light cycle. Other

abbreviations as in Fig. 10.
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Fig. 12. Continuous post-operative activity (A) and feeding (F)
records for an SCN knife-cut isolation rat. Abbreviations as in Fig.
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of the eating pattern, perhaps driven by the light offset. Upon his-

tological analysis, this rat turned out to have an isolation of the

SCN due to fortuitous neural damage.

Horizontal knife cuts . Based on preliminary day/night readings,

horizontal knife cuts appeared to disrupt rhythms (Fig. 8). However,

when these rats were tested at a later date, they had recovered their

rhythms. Unfortunately, no continuous recordings were taken on those

rats. Accordingly, the horizontal knife cuts were repeated. In this

replication, surgery produced a transient disruption of activity and

eating rhythms, which as seen in the representative record (Fig. 13)

returned to normal a week post surgery. Although these rats then had

rhythms entrained to the light cycle, they had more bouts of activity

and eating in the light when compared to their own pre-operative re-

cords. Thus, they were less nocturnal. Under constant dim light,

these rats had free-running rhythms of activity with a tau of approxi-

mately 24 hours. In 2 of the 3 rats ( H-1, H-3) there was a dissocia-

tion of eating and wheel running. The eating rhythm was less well

defined and showed a bimodal distribution over the 24 hour period.

Upon return to cycling lights, eating and activity were again en-

trained to the light cycle.

Discussion

PVN lesioned rats do not differ from shams in their nocturnality

of intakes. Thus, the hyperphagia after PVN lesions is primarily noc-
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Fig. 13. Continuous activity (A) and feeding (F) for a
horizontal knife-cut rat. Abbreviations as in Fig. 10.
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turnal, suggesting no disruption of rhythms. This suggestion is

supported by the continuous records of rats PV-1 and PV-2. There-

fore, the hypothesis of separate systems mediating diurnal rhythms

vs. regulatory intakes is demonstrated.

The horizontal knife cuts severing dorsal efferents from the SCN

temporarily disrupted rhythms, but the rats soon recover. Therefore

the dorsal efferents from the SCN are not solely responsible for the

mediation of rhythms. These connections play some role, however,

because the observed disruption of rhythms is specific to horizontal

cuts and not seen after sham or control knife cuts.

The SCN parasagittal knife cuts severing the lateral efferents

from the nucleus did not disrupt rhythms. Taken together with the

horizontal cuts, these results are congruent with those of Nunez and

Stephan (1977) and Dark (in press, 1979). These investigators re-

ported that only simultaneous Interruption of all dorsal, caudal,

and lateral efferents abolished rhythms permanently. Thus the path-

ways mediating rhythms are probably very diffuse. This conclusion is

consistent with the known diffuse projections of SCN efferents (Swan-

son and Cowan, 1975; Sofroniew and Weindl, 1978).

PVN lesions apparently affect regulatory but not circadian con-

straints on eating and activity. Such a conclusion is supported by

the report that norepinephrine injected into the PVN elicits eating

during the day or night (Leibowitz, 1978b). The rats with parasagit-

tal cuts starting at retrochiasmatic levels, were hyperphagic and

obese with no eating rhythms. However, although hypoactive, they did
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lers

.

most of their running at night, and were also nocturnal drinkc

Since the PVN did not stain in the histology of these rats, damage

to efferents followed by degeneration in PVN can be inferred. This

can be contrasted with the SCN parasagittal cuts which spared the

lateral "wings" of the PVN. These cuts produced neither hyperphagia

nor disruption of feeding or running rhythms. The damage caused by

the large retrochiasmatic parasagittal cuts is not necessarily equiv-

alent to that of discrete PVN lesions. Because the cuts are so

long (3 mm) they cut a large number of fibers in the basal hypothala-

mus. This could cause complex neuroendocrine and metabolic distur-

bances which could contribute to the observed hyperphagia and obesity.

Subtle differences in the anter-posterior extent of the cuts are

probably of relevance. The cuts that produced hyperphagia and obesity

were more caudal. The cuts also produced hypoactivity which no

doubt contributed to the obesity. This multiple factor explanation

for the obesity receives support from Hennessy and Grossman's (1967)

report that hyperphagia and obesity after coronal knife cuts in the

posterior hypothalamus were attenuated by daily estradiol injections.

PVN lesioned rats have normal estrous cycling, thus the lesser magni-

tude of the hyperphagia and obesity is consistent with normal ovar-

ian function. Hormonal disruptions, particularly hyperinsulinemia

could account for the dissociation of eating from other rhythms in

the rats of the present experiment which became hyperphagic and

obese. In support of such a notion, insulin injections can mimic the

disruption of eating rhythms seen in VMH rats (Larue-Achagiotis and
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Le Magnen, 1979)

.

The rat with the fortuitous isolation of the SCN (#272) , be-

came diurnal. This result, though surprising, is not unique. Simi-

lar inverted (light-active) records have been obtained after surgical

isolation of the SCN (Richter, 1978) and electrolytic SCN lesions

(Richter, 1978; Nunez, personal communication). Richter (1978) at-

tributed the diurnal activity to damage extending beyond the SCN it-

self, as he only obtained the inversion by large isolations or

lesions of the SCN. Richter concluded that the inverted patterns

were due to elimination of the clock in the SCN. However, the light-

active pattern was not eliminated by blinding the rats. Thus after

the destruction of the clock in the SCN, some other bodily function

is mediating the rhythms observed by Richter. Despite their loss of

circadian rhythms, rats with SCN lesions exhibit anticipatory wheel

running in response to a restricted (access to food at 24-hour inter-

vals) feeding schedule (Stephan et^ al. , 1978) . This finding sug-

gests that either circadian oscillators outside the SCN can be en-

trained by restricted feeding schedules, or anticipatory running is

due to an "hourglass" type of clock which must be reset daily.

Consistent with the present hypothesis of separate systems,

Richter (1978) reported that the rats with "the shift to light acti-

vity had no detectable . . . (disruption) of any of the metabolic func-

tions (total daily running, daily food and water intakes, body

weight)." Thus the clock function is independent of any regulatory

functions of the hypothalamus. After destruction of the clock, some



metabolic functions may take over a synchronizing role. Possibl

candidates are the blood glucose and insulin levels which are re

ported to show a circadian fluctuation (Gagliardino and Hernande

1971).
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GENERAL DISCUSSION

The present ref5ults support the hypothesis of separate iTLGural

syjitemo nedlatin</, regulatory and rhythmic aspects of behavior.

Thiu coiiclasion is based on the findings that PVN lesions produce

hyperphagia acid obesity vjithout disrupting rliythms, estrous cycling

,

or rer. ctivJ ty

.

Thift relaticnship between regulatory and circadian constraints

on eating reiriaiiis open to Rpecnlation. The normal rat is hyporpha-

gic dtrcli.g the rriglit and hypophagic during the day. These beh'-ivior-

al changes are reflected in metaboljc f Ivictuations also (Le Magnen

et al., 1973). llov^cver, the normal rat would not show a circadian

flucr.uafJon if it v/ere only driven by metabolic events. If such

vere the case, one vjould expect that the rat would eat periodically

during the day and night in response to energy needs. Clearly this

is no'.-, the case. It is likely that sorae clock drives these irietabolic

fuiictions. The SON is the most likely candidate because after DCW

damage circad:ian eating rhythms disappear (van den Pol and Powley,

1979) . iowever, ti\ere is no regulatory disruption because SCN-

lesioned rats do 'uot become hyperphagic, hypoactive, or obese. Con-

versely, specific damage to the PVN in the ptesent study, ventral

noradrenergic bundle lesions (Ahlskog and Uoebel, 1973), knife cuts

along the PVN (Gold ^^t _a_l. , 1975), intrahypothalamJ c goJ.d thJo-lu-

cose (GTC) (Kcitveld al-» J-^"^'^) ' bilateral DLT lesions (Pe.ter.^

er. al., 1979, submitted) all produce hyperphagia which is still
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clearly nocturnal, even though this nocturnali ty is often dampened.

This suggests a separate, food intake regulating systeai. V^m

lesions (e.?,- . Kakolcwski et al. , 1971) prohably damage components

of both regulatory and rhythrus systems.

One would expect thai: regulatory and xhythraic food intake sys-

tems must somewhere interact, sharing a common neural output and at

least a final comuon motor system, as the regulaied behavior is com-

mon to the tx,;o. It is -.ot yet known, however, wh-re such interac-

tion could tike place, and hence an additional food intaVe regulatory

brain site is to be discovered.

Hepatic vagotomy, although altering the normal daily rhythm of

food intake, does not affect the entrainment of eating to the light/

dark cycle (Sawchenko et .al. ,
1979, submitted). Liver signals are

probably also important for food intake (Sawchenko and Friedman,

1979) . The clock in the SCK cou] d modulate the relative importance

of liver signals. For example, the clock could suppress liver sig-

nals of nutrient excess, thus mediating nocturnal hyperphagia. Re-

moval of the clock via a lesion would allow liver signals to take

precedence, thus the rat would eat throughout the day in response to

hou^-Jy energy fluctuations. Daytime hypophagia could be similarly

interpreted, with the clock suppressing nutrient depletion signals.

However, liver signals ean not he the only mechanism.

The central neuroci rcuitry of the PVN and the SCN and how they

respectively af Cect regulatory and diurnal eating remains unre^

solved. The SC. can not act directly on the PVN because PVN lesions



or horizontal cuts do not disrupt eating rhythms and vice versa .

The SCN could be acting on VMN cells which are separate from gluco-

receptor cells (Rletveld et al.
, 1979) . These VMN cells could then

mediate some of the clrcadian metabolic fluctuations. It is also

possible that PVN cells could send collaterals to the VMN, because

PVN efferents to the brainstem pass in close proximity to the VMN

(Conrad and Pfaff, 1976). These conjectures remain the subject of

future investigations.
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