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ABSTRACT

The Development of Auditory
Figure/Ground Segregation in Young Infants

(February 1, 1979)

Katherine A. Benson

B.A., University of Minnesota
M.S., University of Massachusetts

Ph.D., University of Massachusetts

Directed by: Professor Rachel K. Clifton

The purposes of the study were: (1) to determine if

12- and 25-week-cld infants could detect the addition of

their mother's tape-recorded, 5-second greeting to an on-

going background babel of voices, and (2) to determine if

a 90° separation of the signal loudspeaker from the back-

ground-babel loudspeaker facilitated detection of the sig-

nal. A 5-second control signal consisted of extra babel

presented in the background babel. Heart rate was re-

corded and a videotape was made for scoring visual alerting,

quieting, head turns to the signal, smiling, vocalizations

and fussing.

The results suggested that both the 12- and the

25-week-olds detected the addition of their mother's voice

to the background babel as indicated by cardiac deceleration,

alerting, and quieting. The control babel produced no

response in these measures. Separation of the signal loud-
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speaker produced a greater cardiac acceleration to the
offset of the mother's voice but not a greater decelera-
tion to its onset. visual alerting and quieting did not
increase with separation of the signal from the noise.

There was more head turning, smiling and vocali-
zing to the mother's voice than to the babel signal, with
the older infants showing more of the responses. Smiling
and vocalizing tended to be delayed until after the mother'

greeting was finished. There was cessation of fussing in

the 25-week-olds following the mother's greeting. The

head turning, smiling, vocalizing and fussing behaviors

occurred very rarely. The results were discussed in re-

lation to the literature, and suggestions for further re-

search were made.

s
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CHAPTER I

INTRODUCTION

The ability to hear a signal within a noisy back-
gound. also called auditory figure/ground segregation, is
an important auditory skill. Sounds pervade the environ-
ment, yet not all sounds are of equal importance to the
organism. it is advantageous to be able to discriminate
the more important ones. Auditory figure/ground segrega-
tion has been studied in adults, but very little is known
about the origin and development of the ability.

The purpose of the present study was to determine
if infants could segregate auditory figure from ground.

The paradigm chosen for study was analogous to that used for

studying the so-called "cocktail-party effect" in adults

(Cherry, 1953). The task in this situation is to attend

selectively to one voice within a context of other competing

voices. In infancy, the ability to segregate one message

is important in receptive language development, and a de-

ficiency in this ability could impair language learning.

In the present study, infants under 6 months of age were

observed in order to determine if they could detect the

addition of their mother's voice to an ongoing background

babel.



^ review of the literature suggested that one way
adults segregate a signal is by taking advantage of audi-
tory localisation when the message and competing voices
are spatially separated. Spatial separation facilitates
detection in adults. Therefore the present study was an
attempt to f.nd <1, whether or not young infants could
segregate their mother's voice from a babel, and (2,

given that they could, whether or not spatial separation
of signal and noise facilitated detection in infants as
well as adults. Infants were observed at two ages to see
if the ability develops over the first 6 months of life.
Heart rate changes were recorded and a videotape was made
of behavioral changes. The results are then discussed in
light of theories of adult audition and the related infant
audition literature.



CHAPTER II
REVIEW OF THE LITERATURE

There are no specific studies of the "cocktail-
Party effect" (cherry, 1953) in infancy, although two
references are related to it. One allusion to the prob-
lem was n,ade by Brazelton (1969) who (based on clinical
Observations of n.any xnfants) suggested that 2-.onth-olds
would orient toward their n.other s voice even when others
were talking. Bundy (1977) reported pilot data of a study
of binaural release from masking in infants. m this situ-
ation a tone is embedded within noise to both ears through
headphones. Then the tone in one ear is phase shifted so
that the signal is 180° out of phase in the two ears. The
4-month-olds were able to use this binaural information to

segregate the tone, as indicated by resumption of visual

attention to an habituated checkerboard at the time of the

shift. The results from these two references indicate that

the "cocktail-party effect" warrants further investigation

in early infancy.

Due to the paucity of studies of the phenomenon,

this review will describe the "cocktail-party effect" in

adults and wiJl attempt to lay a foundation for the study

of this effect in infants by looking at auditory develop-

3



-nt. .he following topics w.il .e reviewed: auditory
fxgure/ground segregation in adults, .aturat.on of the
auditory syste. in infants, studies of audrtron in infancy,
and studies relating to the heart rate and behavioral
responses of infants to sounds.

—^^^^^-^^iSHie/Groi^^

Research with adults has revealed a number of
parameters whxch affect the ability to segregate an audi-
tory stimulus from noise. Thurlow (1971) has reviewed
the literature and concluded that whether or not a signal
can be detected depends on the relative sound pressure
levels (SPL), frequencies, timings, and locations of the
signal and noise. m general, the greater the differences
between the signal and noise on these parameters, the more
likely it is that the signal will be detected. Thurlow em-

phasizes that there are probably a number of auditory mecha-
nisms producing the effects. The studies have used two types
of stimuli: non-speech signals such as tones, and speech.

Non-speech _signa Is. when a signal is obscured by noise it

is said to be masked. Monaural masking of tones has been

studied with two types of noise: a single pure tone (Wegel

& Lane, 1924) and a narrow band of sound (Egan & Hake, 1950;

Ehmer, 1959). These studies found a relationship between

the relative sound pressure levels of the signal and the



no.se. civen a situation where the s.gnal was just audible
-c.eas.n, the no.se require, the s.,nal to he e.uan, .ore
-tense to he heard. The a.ount of .askin, is e.ual to the
difference in threshold for a tone with and without back-
ground norse. Green and Swets (1966) have suggested that
ir listening for the tone within noise, the subject is
listening for an event with relatively more energy, due to
the presence of the tone.

The relative frequencies of the signal and noise in
fluence detection of the signal (Egan .Hake, 1950; Ehmer,
1959; Wegel . Lane, 1924). Tones close in frequency to the
masking tone or noise band are more likely to be masked.
The masking is caused by the interaction of the sound fre-
quencies close to or the same as the signal's frequency,

excluding the phenomenon of "beats." Component frequencies

beyond a "critical band" of limits are irrelevant to mask-
ing effects (Fletcher, 1940; Scharf, 1961; Swets, 1963).

As overall SPL of the stimuli increases, the effect of fre-

quency is more variable. For instance, there is a general

effect such that frequencies higher than the critical band

are also masked. This effect increases with increasing SPL

(Egan and Hake, 1950; Ehmer, 1959; Wegel & Lane, 1924).

Temporal relations are also important in masking.

The signal and the noise need not occur simultaneously for

masking to be obtained. Both backward and forward masking

can cccur, depending on the time lag and SPL of the noise



burst which follows or precedes the tone (Miller, 1947;
Raab, 1963)

.

The studies discussed so far have involved monaural
masking, where the signal and noise are presented to the
same ear. when signal and noise are presented to different
ears, binaural masking can be obtained, although the effects
are usually somewhat smaller (Ingham, 1959; Sherrick &

Mangabeira-Albernaz, 1961; Zsislocki, Damianopoulos

,

Braining,
. Glanz, 1967). Much of the relevant binaural

masking research has involved the effect of perceived
spatial location differences between the signal and the
noise. Langmuir, Schaefer, Ferguson & Hennelly (1944) found
that the ability to detect a signal depended on its loca-

tion with respect to the noise source. Lowest thresholds

for detection are found with low frequency signals and mark-

ed spatial separation (Hirsh, 1948; Jeffress, Blodgett,

& Deatherage, 1962; Jeffress, Blodgett, Sandel & Wood, 1956;

Robinson & Jeffress, 1963). Their research supports the

hypothesis that phase differences are used to separate the

tone from noise. A gain in detection under conditions of

certain phase differences is termed a masking level differ-

ence (MLD)

.

Speech signals . Studies using speech signals are different

from those using nonspeech signals in that the problem

chosen for study is usually not one of detection of the



Signal, but rather, the intelligiMlity (reception) of
-sKed speech. There are two categories of speech signal
research, those using non-speech background noise and those
using speech as .asking noise. The perception of speech
in the presence of non-speech noise is affected by the
same parameters as noise masking of non-speech signals, i.e.
SPL, frequency, timing, and spatial location. if the noise
has a continuous and uniform frequency composition, the
effect of SPL is straightforward. Licklider (1951) has speci-
fied the change in threshold for the intelligibility of speech
with increasing noise levels. When the frequencies present
in the noise are not uniform it is still possible to pre-
dict amount of interference with speech perception. This
is done by taking an average of the noise levels within
each octave band of the frequencies corresponding to the

range of frequencies found in speech, (Beranek, 1956; 1957).

Location of the noise source in space relative to

the location of the speech signals is also very important

in determining amount of interference (Hirsh, 1950; Koch,

1950). The relative disruption decreases with separation of

signals and noise, and is due to binaural differences in

SPL, time of arrival, and phase (Licklider, 1948).

Besides noise masking of speech from non-speech

noise, interference can occur from other messages. The

situation where the listener is trying to listen to one

message in spite of competing messages is called the "cock-



tail-party effect" (cherry, 1953). The "cocktail-party
effect" is also subject to the effects of SPL, frequency
turning, and spatial location. m general, any acoustic
or linguistic feature which distinguishes one message
from another will .ake it more probable that one will be
selected and another rejected (Broadbent, 1958). Louder
messages are easier to hear (Egan, Carterette, . Thwing,
1954; Tolhurst . Peters, 1956). If the messages are fil-
tered at different frequencies or spoken by differing voices
they are more easily segregated (Broadbent, 1952; Egan

,

et al., 1954; Spieth, Curtis, & Webster, 1954). The effect
of frequency is such that male voices tend to mask male
voices more effectively, and female mask female. In

addition, because low frequencies usually mask high frequen-
cies with intensities being equal, male voices are more ef-
fective at masking female voices than the reverse (Egan,

et al., 1954; Spieth et al., 1954). Familiarity of the

signal voice aids the listener (Broadbent, 1952; 1958).

There is less interference if the messages come from dif-

ferent locations. Location seems to be one of the more

powerful cues (Broadbent, 1958; Cherry, 1953; Egan et al.,

1954; Plomp, 1976; Poulton, 1953, 1956; Spieth et al., 1954).

Recent research on the masking of speech signals

has considered the quality of the speech, as well as its

intelligibility. Munson and Karlin (1962) developed one

method of speech-quality evaluation, called the iso-prefer-



enc:e .et.o.. civen a certain level of noise, subjects are
asked to rate their preferred level of signal. One inter-
esting finding of their research is that, for a given level
Of noise, the speech level can be either too high or too
low. Also, the more intelligible one of two messages will
not necessarily be what a listener will prefer (Beasley,
Zemlin,

. Silverman, 1972). This research may eventually
yield important results relating to infant speech perception,
because speech quality is probably important to prelinguis-
tic speech perception. Culp (1974) has shown infants'
sensitivity to a talker's voice quality ("harsh" or

"pleasant") by their visual attention during the reading
of a poem.

One technique used to measure speech quality is

Osgood's (1952) semantic differential scaling. Kerrick,

Nagel, and Bennett (1969) have used the scale for semantic-

differential description of sounds, e.g. loudness and noisi-

ness ratings. The scale might prove useful in operational-

ly distinguishing mothers' speech to babies from speech be-

tween adults, as speech to babies seems to have a differ-

ent quality. Convergent research using acoustical analy-

ses of perceived qualities is needed.

It can be concluded from the adult literature that

relative SPL, frequency, sound spectra, timing, and spatial

location of a signal and noise are relevant variables to be

studied in the development of auditory figure/ground seg-
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regation. Discussion of the infp.ni--otne infant s capacity to perceive
these acoustical parameters follows.

Auditory Abilit^e^j_n_jr^^f^^^

"^^^^^^^^^^^^^^^-^h^^^^ At one time it was
thought that the newborn was deaf, e.g. Martin . Vincent
(I960), or at least had greatly diminished capacity to
hear (Aldrich, 1928; Demetriades, 1923). The anatomical
development of the ear is nearly complete before the end
of gestation, (Patten, 1953). Premature and newborn in-

fants respond to sounds (Hardy, Dougherty, & Hardy, 1959;

Richmond, Grossman, & Lustman, 1953; Suzuki, Kamijo, &

Kiuchi, 1964; Wedenberg, 1956), and the fetus even re-

sponds to sounds in utero (Bernard & Sontag, 194 7; Forbes

& Forbes, 1927; Peiper, 1963).

In general, the peripheral structures of the ear

develop early and growth proceeds caudo-rostrally . At

birth the outer and middle ear are formed but growth produces

some changes in hearing. The increase in size of the exter-

nal auditory meatus lowers that particular resonant fre-

quency, which is higher in infants because of the external

ear's smaller size. Also, the impedance correction attribu-

ted to the middle ear improves with the growth and increas-

ed compliance of the tympanic membrane. Robertson, Peterson

and Lamb (1968) suggest that the gain in sensitivity due to

these changes amounts to only 5-10 dB. Frequently, the



functioning of the .iaaie ear at bi.th is i.pai.ed by the
presence of fl.ia and mesenchymal tissue which restricts
movement of the ossicles. However, much of this fluid

first few months it is thought to be completely resorbed
(Hecox, 1975) ,

Bredberg (1968) has studied the development of the
sensory cells and nerve supply in the human cochlea. m
the 3-month-old fetus the organ of Corti is undifferen-
tiated except for an area near the basal end. Differen-
tiation proceeds in both basal and apical directions from
there. Sensory cells are first distinguishable from support-
ing cells by their darker color after staining. The
inner hair cells develop initially, followed by the first,
second and third rows of outer cells. The fourth and fifth
rows (which are not present everywhere along the basilar
membrane) are last to develop, and occur in more irregular

patterns. In general, the hair cells are much more regular

initially, and become less regular in pattern in the fifth

and sixth months of fetal life. Irregularity in pattern is

characteristic of the adult form. Bredberg has estimated

the average number of outer hair cells to be 13,400, and

the average number of inner hair cells is 3,400.

After the hair cells have differentiated there is

further development of pillar cells and other supporting

tissue. Growth in the fluid spaces occurs beginning in the
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fifth fetal .onth. By the sixth fetal „onth the organ of
Cort. is developed. Bredberg ,1968) found that the fetus
towards the end of gestation, has what see.s to be a full
=on,ple„ent of hair cells, and none of the children or adults
studied by hi™ had damage-free sensory cells and nerves
like the fetus had. (His sample was admittedly biased
due to terminal illness, previous drug therapy, etc.)

Myelination of the auditory nerve begins in utero
and is advanced at birth, second only to myelination of the
vestibular system (Peiper, 1963; Vakovlev s Lecours, 1967).
Thus, from birth there is rapid neural conduction of acous-
tic information.

Too little is known about the developmental anatomy
of the brain stem to make structural-functional correlations
(Hecox, 1975). There is a caudo-rostral progression of

myelination of the auditory nuclei. Myelination of the

medial geniculate and inferior colliculus is not complete

at birth (Rorke & Riggs, 1969). The auditory cortex is

immature at birth (Conel, 1963). The earliest fibers to

mature are the projections from the medial geniculate.

Myelination of these fibers occurs between birth and about

4 years of age. The number of fibers does not change but

growth and dendritic arborization do occur. There seem

to be no hemispheric differences in anatomy except for the

differences in the planum temporale found by Witelson &

Paillie (1973) in both newborns and adults. This area is



larger .n the le.t hemisphere of .oth ,.o.ps, possi.l,
related to speech perception. The brain waves of the two
hemispheres are not synchronized at birth. The fact that
the cortex is so immature suggests that binaural Integra-
tion of sounds may be poor.

some electrophysiological research has been done
on the auditory pathway. However, there are no data on
the development of the cochlear microphonic. m newborns,
auditory nerve potentials display longer latencies, dimin-
ished amplitudes, and higher thresholds than in adults.
The responses reach adult values during the first year.
The brain stem evoked potential (BEP) (Jewett & Williston,
1971) shows generally longer latencies, diminished ampli-
tude, and higher thresholds than in adults. it is possible
to attribute specific parts of the BEP waveform to speci-
fic loci in the auditory system. Wave I is attributed to
the eighth nerve; it approximates adult performances by the

seventh month, postnatally. Waves III and V are attribu-

ted to more central processes; they mature between 12-18

months postnatally (Hecox, 1975). One advantage of using

the BEP in infant studies is that it seems not to depend

on state, as cortical responses do.

^-LtQ£Z_g££j:bili ties of the infant . It is well establish-

ed that the newborn can respond to a number of different

parameters of sound. Studies of sound pressure level
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(SPL) changes have been concerned with types of responses
to different levels and the determination of absolute
thresholds. Much of this research grew out of audio.etric
concerns (Spears . Hohle, 1967). Different thresholds have
been established with different types of responses, e.g.
105 dB threshold for auropalpebral response (Wedenberg,
1956); 62.8 dB threshold for respiratory change, (Suzuki
et al., 1964); 40-55 dB for heart rate change (Bartoshuk,

1964; Eisenberg, 1965; Steinschneider
, Lipton . Richmond,

1966); and 10-17 dB for a BEP (Hecox, 1975). a sharp drop
in auditory threshold is seen between three and eight months
of postnatal age (Hoversten & Moncur, 1969).

One difficulty with infant threshold studies is

that a "no response" does not necessarily mean a lack of

detection by the infant. Overt responses do vary consider-

ably, as well. Loud sounds provoke a startle response

(Prechtl, 1965) and are more likely to provoke a response

than soft ones (Froeschels & Beebe, 1946; Haller, 1932;

Stubbs, 1934). The likelihood of a response increases

sharply at 60 dB and above (Bartoshuk, 1964; Eisenberg,

1965; Steinschneider et al., 1966); thus most speech is

probably audible to the infant. Turkewitz, Moreau, and

Birch (1966) suggested that the right and left ears may

have different sensitivity, but this finding may be due to

the fact that newborns often have their heads turned to the

right with the right ear muffled by the bed. Hence, in-



creased sensitivity in the right ear .ay be a contrast
effect. Steinschneider et al. (1966) found an increase in
motor and cardiac response with increasing loudness. Barto-
shu. (1964) found that the relation between heart rate and
SPL between 48 and 78 dB fit a power function. Barnet and
Goodwin (1965) did not find a systematic relation between
heart rate and SPL, however. Moffitt (1973) found heart
rate deceleration with increased SPL in older infants.
This finding represents an orienting response to a change
in a stimulus previously habituated to, and therefore is
not an outright discrepancy with Bartoshuk's (1964) finding
of increased heart rate with increasing SPL.

Studies of infant responses to frequency have con-
firmed that infants do discriminate and respond differential-
ly to them. infants as young as 1 month of age can discrim-
inate frequency differences as small as 300 Hz (Wormith,

Pankhurst, & Moffitt, 1975). Adults are able to perceive

a range of 20 to 20,000 Hz under ideal conditions, but are

most sensitive to the range of frequencies critical for

speech perception (1,000-3,000 Hz), (Keele & Neil, 1965,

p. 319). Signals in the critical speech hearing range are

also differentially effective at eliciting infant responses

(Eisenberg, 1965, 1967, 1969; Hoversten & Moncur, 1969).

Low frequency sounds are often soothing (Bench, 1969;

Birns, Blank, Bridger, & Escalona, 1965). High frequencies

are often distressing (Busnell, 1963; Haller, 1932; Hutt,
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von Be„uth, Lena.d, Hutt, Prechtl, X968,. Sounds of
w.de bandwidth ellc.t greater responsivity (Eisenberg,
1965; Hutt, Hutt, Lenard. von Bernuth . Muntjewerff, 1968-
and Hoversten . Moncur. 1969) . infants fro» three to six'
..onths Of age can distinguish rising and failing intona-
tion (Kaplan, 1969; Morse, 1972).

Infants respond differentially to temporal varia-
tions, including duration (Eisenberg, 1965; Keen, 1964; Lip-
ton

. Stemschneider, 1964; Stubbs, 1934); repetition
rate (Bartoshuk, 1962a; Beadle, 1962); intersti.ulus inter-
val (Bartoshuk, 1962b; Lipton , S teinschneider

, 1964); rise
time (Peiper, 1963; Jackson, Kantowitz . Graham, 1971); and
are soothed by continuous or rhythmic sounds, as are most
adults (BrackbiU, Adams, Crowell, . Gray, 1966; Salk, 1962;
Tulloch, Brown, Jacobs, Prugh, & Greene, 1964; Weiss, 1934).

Reconsideration of the infant responses to the para-
meters of sound discussed so far suggests an interesting

finding. The SPL (60 dB and above), frequency (1,000-

3,000 Hz), band-width (wide), and temporal (continuous and

rhythmic) characteristics of sound which are most able to

elicit responses from infants are those which characterize

human speech. Although it cannot be concluded that infants

perceive speech as a special stimulus "innately," it can be

said that speech contains those parameters of sound to which

infants are responsive. Very young ( 1-month-old) infants

have an ability to process units of speech such as some
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phonemes in a categorical manner (Eimas, Siqueland,
^usczyk,

. Vigorito, 1971; Moffitt, 1971; Morse, 1972).
By two months of age, infants can discriminate different
voices Which were recorded on tape (Boyd, 1972). infants
also learn by four months of age to respond differentially
to their mother's and a stranger's voice (LaRoche . Tcheng,
1963) and their mother's voice and its distortion (Turnure,
1971). Also, infants show more quieting and subsequent
vocalization to female over male voices (Kagan , Lewis,
1965).

The final ability discussed here is sound localiza-
tion, which is basic to adult auditory figure-ground segre-
gation. In general, there is conflicting evidence about

infants' ability to localize sound. Although some evidence

suggests that infants can localize sound soon after birth

(Hammond, 1970; Leventhal & Lipsitt, 1964; Wertheimer, 1961),

the response has not been found in every study. Aronson

and Rosenbloom (1971) found that one-month-olds were dis-

tressed by a discrepancy between the location of the

mother's face and voice, but their results have not been

replicated (McGurk & Lewis, 1974; Condry, Halton, & Neisser,

1977). There is agreement in the Bayley, Gesell, and

Cattell Infant Scales that sound localization can be elicit-

ed reliably later than 1 month (Bayley, 1969; Cattell, 1940;

Gesell, 1925). They suggest that 50% of 4-5-month-olds

will turn their head to try to see a hidden object which is
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-..ng a sound. Kwin, Ewing ,1944, and Chun, Pawset
and Porste., (i960,, did not find localization of sound

'

-til 6 months Of age. The ability to search manually
for an unseen noisy object develops late in the first
year (Freedman, Fox-Kolenda, Margileth . Miner, 1969).

Recent research on sound localization has helped
to Clarify the issue. Newborns respond to the location of
a rattle with a head turn (Muir . Field, in press, . How-
ever, the response is less frequent at about 2-3 months,
increasing around 4 months of age (Field s Muir, 1978,.
Further work is needed to clarify the reason for changes in
the reliability of head turning toward sound between birth
and 4 months.

Results of the studies of sound localization which
show development of the response within the first half
year of life concur with Piaget's (1952) finding with his
own children. He maintains that the coordination between

vision and hearing is not achieved until 3 months of age.

The infant first acquires schemata for "privileged" famil-

iar audio-visual stimuli, such as a face and voice, or a

toy that makes a sound. These schemata, which involve

audio-visual aspects of the person or object, become

"look-and-listen" stimuli. The infant then begins to search

for other correlations between sound and image with other

less privileged objects, i.e. novel or not familiar ones.

Prior to this initial coordination, the infant does not



try to look at What he hears, but rather to see while he
hears. For Piaget, this accounts for the generalized
Visual excitation produced by sound before the infant
associates sound as a property of a particular person or
object

It can be concluded from the literature on infant
audition that they are sensitive to the same acoustic para-
meters affecting the ability of adults to detect a signal
within noise. These parameters are: the relative SPL,
frequency, spectrum differences, timing, and spatial loca-
tion of a signal and noise. This information, combined
with the findings of Brazleton (1969) and Bundy (1977) men-
tioned earlier, suggests that auditory figure/ground segre-

gation would be an interesting topic of study in infancy.

In addition to the consideration of the sensory

capacities of the infant, the responses which will be

measured must be taken into account. In infant research it

is necessary to identify indicator responses which allow us

to infer what the infant knows. In the present study, two

types of dependent measures were recorded, change in heart

rate, and behavioral responses which were recorded on

videotape. A review of the literature supporting the use

of these response measures with infants follows.
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Dependeirt_Me a s u re s

Studies of infant responses to sound have used a
wide variety of physiological and behavioral measures:
e.g., heart rate, respiration change, evoked potentials,
startles, quieting, alerting, head turn, smiling, and
change in facial expression (Appleton, Clifton & Goldberg,
1975). The present study used heart rate change and sever-
al behavioral responses. A review of the use of these
measures with infants follows.

Heart_rate_^anges. In their review of the literature,

Graham and Clifton (1966) linked the research on the two

arousal systems (orienting and defensive) of Sokolov (1963)

to the heart rate research of the Laceys (1959, 1967, 1978)

Graham and Clifton suggested that the orienting response

is accompanied by a heart rate deceleration and an increas-

ed receptiveness to the environment. They associated the

defensive response with a heart rate acceleration and de-

creased receptiveness to the environment as the organism

mobilizes for action. Graham and Jackson (1970) speci-

fied further the differences between the two response sys-

tems. The orienting response (1) is elicited by novel

stimuli of low or moderate intensity, (2) habituates rapid-

ly with repetition of the stimuli, and (3) occurs at simu-

lus offset, regardless of the stimulus intensity.

In research with infants heart rate deceleration



has be-en associated with attention (Kagan . Lewis, 1965.
I^ew.s, Kagan, Ca.p.ell, . Kalafat, IseS; .ewis . Spauia.n,,
1967; Moffitt, 1973; Wilson . Lewis, 1972). There is evi-
dence for regular decelerations in 2-3-.onth-olds

, the
younger of the two ages in the present study (Cray . Crowell,
1968; Hatton, 1969; Lewis, Goldberg, , Campbell, 1969).

Lewis (1975) and Campos (1976) have recently under-
scored how valuable cardiac responses can be for infancy
research. Heart rate can be used when behavioral measures
have not yet matured (e.g. Campos, Langor , . Krowitz, 1970).
sometimes the cardiac measures are more sensitive than be-
havioral measures (e.g. McCall & Melson, 1970).

Campos (1976) has suggested that the bi-directional
nature of the heart rate response makes it an especially

sensitive tool for studying infant social and emotional

development. Stroufe and Waters (1977) agree and point to

its usefulness in differentiating overt behaviors which are

similar or only subtly distinguishable in aspect. Lewis

(1975), Campos (1976), and Sroufe and Waters (1977) note

that cardiac change relates to the meaning of a situation

for an infant, although Lewis cautions that the response

is a vector under the influence of multiple systems and an

exact meaning cannot be inferred. For example, an acceler-

ation may be due to anxiety, concentration on problem-

solving, or an increase in motor activity. The relation

of heart rate to affect is useful in the present study where
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a socially "significant" stimulus (the .other's greeting)
is used.

l-ll-ioral_^ Three categories of behavioral re-
sponses were used in the present study as indicating response
to sound: alerting, localizing, and social responses. Alert-
ing and localizing indicated detection of the presence and
location of the sound, respectively. m the present study,
social responses to the mother's voice gave evidence that
the infants were indeed segregating a signal, and may have
comprehended its social quality, although infants sometimes
smile and vocalize to nonsocial stimuli, such as toys.

The category of alerting included behaviors such as

looking up and staring, eye widening, and quieting of ongoing
motor activity or fussing. Sounds can alert infants to

resume visual attention between 3 and 6 months of age

(Culp, 1971; Self, 1971). Piaget (1952) noted that sounds

elicit generalized looking in infants under 3 months of age,

even if specific orienting in the direction of the sound

does not occur. Bayley (1969) found that 2-month-olds re-

liably alert to voices. The age at which infants begin

to respond to voices varies from . 3 to 2 months of age, with

50% of the infants she sampled showing the response at .7

month.

The category of localizing included head turns to

right or left. As was mentioned in the literature on sound



localization, infants show a reliable head turn to a sound
around 4-5 months of age (Bayley, 1969). Bayley has chart-
ed the following course of development of sound localiza-
tion. Pirst, half of her infants at 2.2 months searched with
their eyes to a sound, although not necessarily in the cor-
rect direction. The range was from .7 month to 5 months,
second, head turns in the specific direction of a ringing
bell were present in half the infants 3.8 months old, with
a range of 2 to 6 months. Both Piaget (1952) and Church

(19 70) found head turn in 2-month-olds to the mother's voice.

Social responses included smiling and vocalizations.

Both of these behaviors also develop during the first six

months, for voice accompanied by face (Bayley, 1969). La-

Roche and Tcheng (1963) found differential smiling to

mothers' and strangers' voices between 3 and 6 months. Tur-

nure (1971) found distress in 3- and 6-month-olds when the

sight of the mother did not accompany her voice. Babbling

also occurs regularly at 3 months (McCarthy, 1954), es-

pecially to social stimuli.

Summary of the Review of the Literature

The previous review of the literature suggests the

following findings. In adults, auditory figure/ground seg-

regation depends on the relative SPLs, frequencies, timing,

sound spectra, and location of the signal and the noise.

The previous studies of infant audition indicate that in-



fants response differentially to variations in these para
-ters. This fact combined with the two references on in
fant auditory figure/ground segregation suggest that the
problem Will benefit fro™ study with infants. Both heart
rate change and behavioral responses will he appropriate
to record as indicator responses in the infants.



CHAPTER III
THE PROBLEM

52^_purpose_of_th^

infants_cou]^_^eg^^

babel__of_voices. As was mentioned, auditory figure/ground
segregation in adults depends on the relative SPL, frequen-
cy, timing, and location of the signal and noise. m the

present_study_re^^ location wa s systematically vari.H

.

The background babel of eight voices was played continual-

ly from a loudspeaker directly in front of the infant. At

specified intervals the mother's prerecorded greeting to the

baby was added from one of two other loudspeakers, either

also in front or 90° to the side of the infant. Because

spatial separation of signal and noise facilitates detec-

tion in adults, it was hypothesized that it would facili-

tate detection in infants as well. As a control for "right

ear advantage," half of the infants had the separated loud-

speaker on their right, and half on their left . Heart

rate change was recorded and a videotape of behavioral re-

sponses was made.

In addition to the mother's greeting, a control sig -

nal of extra babel was used . The control is best under-

stood as ."babel in babel." It was used because the addi-
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tion Of the .other's voice to the background babel undoubt-
edly Changed the SPL. frequency, rhythm, and location of the
ambient sound, despite the .asking effect of the background.
A simultaneous change in the infant's heart rate or behavior
could have been an orienting response to the change in am-
bient sound rather than segregation of the greeting. Babel
added to babel created similar (but not identical) changes
in the ambient sound for purposes of comparison. The
babel signal consisted of a segment of the background
babel equal to the mother's greeting in overall sound

pressure level, duration, and location. However, the spe-

cific message, frequencies, and rhythm of each mother's

greeting were not matched.

Brazelton (1969) claimed that 2-month-olds will

orient to their mother's voices even if there are other

people speaking at the same time. Therefore, the present

study looked for evidence of the discrimination in infants

approachingf j_months of age, i.e. 12-week-old infants . The

ability to localize sound played an important part in the

present study because the relative locations of signal and

background were varied. The evidence cited previously in

the literature review suggested that sound localization de-

velops during the first 6 months. Accordingly, infants

who were 25 weeks old were used in addition to 12-week-olds .



Hypotheses

The hypotheses tested were as follows:

1) It was hypothesized that the following heart rate
and behavioral changes would occur to the mother's
voice but not to the added control babel signal:

(a) A heart rate deceleration was expected.

(b) Increases in the duration of alerting, quieting,

head turning, smiling and vocalizing were ex-

pected to the mother's voice.

(c) Fussing was observed to see if its incidence

changed, thereby indicating detection of the

signal. The direction of change was not pre-

dicted because fussing has been shown to in-

crease to a recording of the mother's voice

(e.g. Turnure, 1971), as well as to cease to the

sound of a voice (e.g. Brazelton, 1969).

)
No age differences were expected in response to the

mother's voice for heart rate change, alerting, or

quieting. Age differences were expected in local-

izing head turns and social responses (smiling and

vocalizing)

.

) Because separation of the signal loudspeaker from

the background loudspeaker aids performance in

adults, it was hypothesized that it would also aid

the infants in the present study.



CHAPTER IV

METHOD

Subjects

The subjects were 32 infants equally divided into
two age groups. Half the infants were 12-week-olds (11-13
weeks of age), and half were 25-week-olds (24-26 weeks of
age), with an equal number of males and females at each
age. m order to obtain 32 infants with complete data,

20 extra subjects were obtained. The reasons for replace-
ment of subjects were as follows: 7 infants fussed and the

session was stopped early; 11 infants had heart rate data

with artifacts; and the data for 2 infants were lost due to

experimenter error.

Parents of infants of the appropriate age were lo-

cated through newspaper birth announcements, informed of the

project by letter, and invited to bring their child to the

Psychology Department for the experiment. A framed poly-

graph record of their infant's heartbeat was given to the

parents in appreciation for their participation, and they

received a research report with the project results; see

Appendix A for samples of the letter and the report. The

experimental procedures were approved in advance by the Psy-

chology Department's Committee on the Use of Human Subjects .

28



stimuli

Each subject was exposed to two tape-recorded sig-
nals, the mother's greeting and the babel signal, as well
as the background babel

. au signals were presented via
loudspeakers. The background babel consisted of a record-
ing of four male and four female voices reading different
material aloud simultaneously. it was obtained by having
two male and two female voices record two reading sessions
on the same tape with a Sony Stereotapecorder SCS TC-252.
This tape recorder can re-record over the same section of
tape without erasing the initial stimulus; thus the four
initial voices produced eight simultaneous streams of speech
The same tape recorder was used to record the mother's voice
which was recorded on a visit to the infant's home prior
to the laboratory visit. To obtain the greeting, the

mother was asked to try to get her baby's attention by cal-

ling the baby for 5 seconds. Whenever possible, the infant

was present in the room. An attempt was made to elicit

from the mother a greeting which actually did get the baby's

attention, preferably including a head turn. The control

signal was a 5-second segment of .extra babel.

The background babel was played at approximately

60 dB (C), with SPL readings never fluctuating above 63 or

64 dB as measured by a General Radio Type 1565-A Sound-

Level Meter. Although it was desired to have a 1:1 signal/
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Lem

"Oise ratio in this initial study, there was a probl,
in that addition of the signal to the background elevated
the overall SPL slightly. Because the infant .night orient
to the overall sPL increase without really segregating the
signal, the mother and babel signals SPLs were made to be
slightly less than the background levels. Signals which
averaged about 55 or 56 dB with fluctuations of 58 or 59

dB were used. They were found not to raise the overall
SPL reading of the ambient sound when added to the 60 dB

background babel , whereas louder signals did.

Apparatus

The infant sat in an infant seat on a table enclosed

above and on three sides, with the mother seated directly

behind the infant. (See Figure 1.) Facing the infant was

a stage-like 43 x 100 cm opening decorated with multi-

colored shapes and mobiles. In the center of the stage,

and in front of a curtained backdrop, was a Sony AVC-3200

video camera and a microphone. If the infant faced straight

ahead in the infant seat, he or she looked directly into the

visible camera lens set at eye level. The colorful display

and the camera helped direct the infant's attention toward

the front. The microphone transmitted the infant vocaliza-

tions.

Mounted on the wall behind the curtained backdrop

was the first signal loudspeaker, 140 cm from the infant at



Signal
Loudspeaker

M = Mother
I = Infant
^= Mobile

Doorway |-

Table

vinfant
Seat

Signal
Loudspeaker

Curtained
Enclosure

rpy Stagelike Opening

Curtained
Backdrop

V signal Loudspeaker
Background-babel Loudspeaker

(on top)

Figure 1: A Schematic Diagram of the Experimental
Setting

.
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eye level. .he second si,.al lo.aspeaKer was also 140 c.
the infant at eye level, but was directly to the side

Of the infant. „al, , he infants had the side signal loud-
speaker to the right, and half to the left. The loudspeaker
wh.ch Played continual background babel was on top of the
front Signal loudspeaker. Thus it was above 12 c™ above
the infant

.
The vertical separation of the signal and back-

ground noise Which occurred due to the placement of the
front loudspeakers was probably not discriminable to the in-
fants because sound localisation within the median plane is
very poor even in adults (e.g. I.icklider, 1951, p. 1029).
The babel was played from the Sony SCS TC-252 Stereotape-
recorder on which it had been recorded. The signals were
Played over two identical AB-7 loudspeakers whose frequency
response is essentially flat between 60-12,000 Hz. The in-

fant's vocalizations were amplified by a Realistic SA lOOB
solid state stereo amplifier prior to being recorded.

The equipnent room which contained most of the stimu-

lus and recording apparatus was outside of the second cham-

ber. The video image and the amplified infant vocalizations

were recorded on a Sony AV-3650 Videocorder, with DAK video-

tape. The 5-second mother and babel signals were prere-

corded onto identical tape loops which played on a Revox FM

tape recorder running at 3 3/4 ips. The tape loops allowed

the signal to play repeatedly with an identical interval of

22 seconds between each stimulus onset. The tape loops were



Changed halfway through the experiment so that each infant
received both mother and babel signals. The 5-second sig-
nals were amplified by a Pioneer SX-434 Stereo Receiver and
directed to the front or side signal loudspeakers throughout
the experiment as desired. a tv monitor allowed the experi-
menter to evaluate the infant's state during the experiment
while presenting stimuli from the equipment room.

An electrocardiogram was recorded from three Beckman
electrodes placed on the infant's chest. One active lead
was placed high on the sternum while the second active lead
and ground were placed on the lower ribs about 5 to 6 cm on
either side the midline. The signal was first filtered and

amplified by a Data, Inc., Instrumentation Differential Am-

plifier, Model 1124, before reaching the polygraph. The

polygraph consisted of a Hewlett-Packard 350-3200A ECG pre-

amplifier, with a Hewlett-Packard 7714-04A power supply and

a 7700 Series Recorder. The arrplified heart rate signal was

recorded on a Vetter C-4 FM Cassette Data Recorder, along

with a stimulus pulse signaling the start of each trial.

The signal pulse was automatically produced by a custom-

built voice-activated relay triggered by the onset of the

5-second voice and babel stimulus and control signals. The

voice-activated relay also triggered an Eico 377 Audio

Generator, which added a 2000 Hz sine wave to the sound re-

corded on the Sony Videocorder. The latter enabled audio

scoring of signal onset on the videotape because the vocali-
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zations and ambient sound also being recorded didn't afford

a discriminable stimulus. Blind scoring of all behaviors

except fussing and vocalizations was achieved by completely

attenuating the audio channel on the video monitor. Fuss-

ing and vocalizations were scored with the observers blind

to the stimulus situation but not to stimulus onset.

Experimental Conditions

Each infant received a total of 12 trials. Half of

the trials had the mother's voice (M) as the signal, and

half had the babel signal (B) . Of the 6 trials of each

type of voice, half were presented from the front (F) and

half were from the side (S) . (As was mentioned, half the

infants had their side speaker to the right and half to the

left.) Thus there were four types of signals: MF, MS, BF,

and BS . Each type was presented three times.

The infants were divided into two groups which re-

ceived different orders of conditions. Either the infant

received 6 trials of the mother's greeting before the 6

trials of the babel, or the infant received the babel first.

The specific order of front and side trials within each

type of signal was determined randomly, with the restriction

that half the infants received the first signal from the

front, and the other half received the first signal from the

side. Order of front-or-side location of first signal was

not included in the analyses.



Procedure

each infant was brought to the laboratory by a
parent who was present throughout the experiment. infants
were tested only .f awake, ,uiet, and alert. The background
babel was turned on immediately upon the infants' arrival
and remained on until the session was over. The recording
electrodes were placed on the infant. The parent read a
short explanation of the procedures and gave written per-
mission. (See Appendix A for a copy of the explanation and
permission form.) An oral description of the experiment
had already been given to the parent during the home visit.

The infant was placed in the infant seat, and the
double doors to the sound chamber were closed. The two

recorders (video and heart rate) were started, and after
about 30 seconds the first trial started. The infant's

state of arousal was noted and recorded on each of the 12

trials. If the infant became drowsy or began to cry, the

session was stopped. However, some fussing was tolerated

if it was brief and mild. Parents were informed that they

could stop the session any time they wanted without preju-

dice to them or their child. Each visit lasted about 30

minutes, with about 6 minutes of that being the actual data

col lection

.



Da ta Reduction

Coding of data .

Heart_r^e_data. A small electrical signal is

associated with each heart beat, and it is this 2 mV signal
which is amplified and recorded in studies of heart rate.
The signal consists of a particular pattern of fluctuation
in voltage which is repeated with each beat. See Figure

2 for an example. The large r-wave can be "recognized"

electronically and is used to indicate the occurrence of

each beat. The heart beat intervals (or times between R-

waves), can then be clocked and a measure of heart rate in

beats per minute (bpm) computed. For a more detailed dis-

cussion of the heart beat signal and its measurement, see

Brener (1967) .

In the present study, the magnetic-tape recording of

the amplified waveform was played through a Hewlett-Packard

2100 computer which timed the intervals between R-waves. A

weighted average of heart rate in bpm was computed for each

second. The formula for computing the weighted average for

heart rate in bpm is presented in Figure x of Appendix B.

When the average for each second was computed, all R-R in-

tervals including fractions of an interval which fell within

that second contributed to the average. The R-R intervals

were weighted in proportion to the time in the second they

occupied. For example, two R-R intervals of one half second
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Figure 2: An Example of a Typical Waveform Associatedwith a Heart Beat: two beats are representedwith the components in one of them labeled



duration each which filled a one-second period exactly would
have their values weighted equally. But if one of the R-R
intervals occupied more than one half of a second of the
one-second period it would be weighted proportionally more
in computing the average for that second.

The weighted average R-R intervals were then con-
verted into average heart rate in beats per minute for each
second, beginning 3 seconds before each stimulus onset and
ending 15 seconds after each stimulus onset. Thus 18

seconds of data were obtained for each trial. Although
details of the analysis of the heart rate data will be re-

served for later, it should be noted that only 1 of the 3

pre-seconds was used in the analyses, along with the 15 post-

seconds. Extra pre-seconds were obtained in the event that

an artifact (from movement, etc.) obscured the first pre-

second. Only 1 pre-second was necessary for analysis be-

cause Clifton and Graham (1968) found that 1 pre-second

accounted for as much of the variance in response as the

average of 5 pre-stimulus seconds.

Heart rate was recorded for 15 post-stimulus seconds

in the present study, even though Graham and Jackson (1970)

te that they most often record heart rate for 20 seconds

fter stimulus onset. They indicate that some flexibility

is called for in determining how long each trial should be

in any particular study. Fewer seconds were recorded here

because the trial length was comparatively short (22 seconds)

no

a
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in order to keep the infants in an optimum state of arousal.
Also, the stimulus duration was only 5 seconds and thus
enough time (10 seconds) remained after stimulus offset
for recording the return to baseline rate, given that a
change had occurred. This was followed by 4 seconds of

stabilization when no data was obtained. Third, behavior-
al ratings were obtained for 15 seconds after the stimulus
onset, and thus heart rate data was consistent with the be-
havioral data in this respect. Heart rate data was thus
available for 18 of the 22 seconds in each trial.

Graham and Jackson (1970) further suggest that 3

to 4 trials of each type be averaged together to obtain more

reliable data for each infant. As was mentioned, the pre-

sent study averaged 3 trials of each type of stimulus.

Graham and Jackson also suggest that when responses to

stimulus parameters are of interest, rather than habitua-

tion, that different types of trials be interspersed. For

this reason, the front and side trials were interspersed.

The mother's voice and the babel signal were not inter-

spersed because they were on different tape loops. Block-

ing them made the procedure simpler.

As was mentioned, 11 infants were eliminated from

the study because of artifactual heart rate data. Arti-

facts occur when other electrical activity, such as that

produced by muscle movement, is recorded along with the

heart rate signal. When minor artifacts occurred in other-
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wise good data an average rate in bp. was substituted for
that particular second. For example, if heart rate were
150 bpm, then 259 bpm, and then 148 bpm in 3 successive
seconds, the 259 bpm figure (physiologically impossible
and artifactual) was changed to 149 bpm. The criteria
used for changes are listed in Appendix B along with Table

12 which indicates those changes which were made.

In summary, heart rate in bpm was obtained from
the electrical heart beat signal for at least 1 second

prior to each stimulus onset and 15 seconds post-stimulus

for each of the 12 trials for each infant.

5^^^al_data. A videotape of each infant was

recorded. Types of behavior which were scored as showing

detection of a signal within the background babel includ-

ed visual alerting, quieting, head turns to either the

right or left, smiling, vocalizing, and fussing. These

responses were operationalized as follows:

( 1 ) Visual alerting

(a) Eye widening, starting from that infant's base-

line. It could be due to looking up.

(b) A sudden head movement to a stationary position,

(c) The eyes could either stare or search.

( 2 ) Quieting

(a) The sudden cessation of gross head and body

movement.
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(b) Some slight digital, facial, or eye movement
was permissible, e.g., slight mouthing or mov-
ing a digit.

(c) This behavior was also imposed on an average

subjective baseline, set in a practice run.

( 3 ) Head turns

(a) It was noted whether they were right or left

turns

.

(b) Turns had to be greater than 30° to the side.

(c) The return component was included in the turns.

(4) Smiles

(a) Widening of the mouth.

(b) Brightening.

( 5 ) Vocali zatons
, pleasure

(a) Coos were included.

(b) A vocalization did not include the short grunts

which sometimes occurred with breathing.

(6 ) Fussing

(a) Fussing or crying.

(b) Distressed facial expressions aided in dis-

tinguishing fussing.

( 7 ) Stimulus onset

(a) The onset of the stimulus was noted when it

occurred by a 5-second press of the push-button.

(The 5-second duration was automatically pro-

duced . )



The videotape recorded the entire session with
each infant, but only specific time periods were of inter-
est and were, therefore, included in the analyses. Because
the signal had a duration of 5 seconds, the time periods

used for analysis also had 5-second durations. Four 5-

second periods were used, comprising 20 seconds of each 22-

second trial. This is different from the heart rate data,

where a second-by-second analysis was performed. Second-

by-second analysis was possible with the heart rate data be-

cause of the continuous, labile nature of the response. The

behaviors which were rated were less labile than heart rate

change and were also likely not to occur.

The four consecutive 5-second periods used for

coding and analyzing the behavioral data were identified

as follows: (1) A pre-stimulus period which preceded the

stimulus onset by 5 seconds, (2) An onset period corres-

ponding to the 5 seconds when the signal was on, (3) An

offset period corresponding to the 5 seconds immediately

after the signal ended, and (4) A post-stimulus period of

5 seconds after the offset period. The amount of occurrence

of each behavior within these 4 stimulus periods was noted.

The scoring of the behavioral data was accomplished

by means of a system of push-buttons which were connected

to a clock in a Hewlett-Packard 2100 computer. A push-

button was pressed when the observer judged that a particu-

lar behavior began, it was held down until the behavior



stopped, and then the push-button was released. The begin-
ning and end-times of each behavior were stored in the com-
puter and subtracted to obtain the amount of behavior. The
data for the 3 trials of each type of stimulus (MF, MS, BF

,

and BS) were then averaged so that each subject's data

represented the average amount of behavior in each condi-
tion. Within each of the four stimulus types, information
was coded into the four stimulus periods within a trial.

In other words, there were 16 data points for each infant

for each of the behaviors. These represented the average

occurrence of the behavior within the four stimulus per-

iods for each of the four types of signals (MF, MS, BF, and

BS) .

The author and a trained Hampshire College under-

graduate, Dana Blackmer, observed the videotapes and rated

the behaviors. Blind scoring as to the moment of stimulus

onset was achieved by completely attenuating the audio

channel on the video monitor. Two exceptions to this were

the behaviors of vocalizing and fussing which required the

audio channel for scoring. However, the observers were blir

to the particular stimulus condition of vocalizing and fus-

sing, even though they were aware of the onset of a signal.

It should be noted that the author collected the data for

each infant, and it is possible that some conditions were

remembered during scoring for some infants. However, the

scoring of the videotapes was done several months after



data collection, and it was not the author'cuue autnor s impression that
information about order or locationxuuation, etc., was remembered.
as a rule

Inter-observer reliability was established before
the behavior rating began. The two observers scored
the behavior of the same infant independently (i.e. they
observed the videotape at different times) and a measure of
agreement was computed. The measure reflected the percen-
tage of the time that it was agreed that the behavior either
was or was not occurring. Infants were chosen for scoring
in the reliability test for a behavior only if they exhibit-
ed comparatively high levels of that behavior, e.g. an in-

fant who never smiled was not chosen as the subject to be

observed for the reliability test of smiling. Coding of

data was begun after agreement was 90% or better for each

behavior. At the completion of coding of the videotapes

a post-test was conducted for each behavior. The results

of the pre- and post-tests are in Table 1.

Analysis of data .

Heart rate data . The need for specific ways of view-

ing and analyzing heart rate data. arises from consideration

of the nature of heart rate as a continuous, labile re-

sponse. It is the second-by-second change in heart rate to

the presentation of the stimulus which is of primary con-

cern. Interactions of the seconds variable with other var-



TABLE 1

RELIABILITY COEFFICIENTS FOR THE VIDEO BEHAVIORS^

Behavior 4-«„4.Pre-test Post-test

Alerting .924 .909

Quieting .938 .933

Right Turn
. 965 .979

Left Turn .983 1.000

Smi ling .984 .938

Vocalizations .987 1.000

Fussing .919 .997

Stimulus pulse .988 .997

^Each coefficient reflects the percentage of timethat there was agreement that the behavior either was or
was not occurring.
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iables are also important, because they indicate that the
heart rate response was different to the different levels
of another variable. Main effects and interactions of
variables other than seconds are of lesser importance
in the present study, because they indicate only that the
averages of the entire 16 seconds of heart rate data were
different as a result of the different conditions. For
example, if the average heart rate throughout the trials
was ]50 bpm for the 12-week-olds and only 140 bpm for the

25-week-olds, the main effect for age might be statistic-
ally significant. This finding provides little information

about the presence or type of response to the stimulus for

the two age groups, though it might indicate a state differ-

ence between the groups. In the present study it is the re-

sponse to the stimulus which is of uppermost importance.

There are several other important considerations re-

lated to the seconds variable in heart rate data. The sta-

tistical meaning of a seconds effect is that two or more of

the seconds being analyzed differed from each other. It is

possible that a seconds effect could be found, therefore,

when the difference did not relate to a psychologically

meaningful heart rate response. In conjunction with this,

heart rate change involved 16 points of data (for the 16

seconds) . Consequently, the degrees of freedom were large,

increasing the likelihood of a Type I error. Therefore,

in the present study, analyses of heart rate which produced
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significant-, main effects and interactions of the seconds
variable were always followed up by trend analysis. When
a seconds effect was not supported by a significant trend,
it was considered unreliable. Trend analysis enabled

identification of the form of the function produced by the
heart rate change. It also involved fewer degrees of free-
dom than the original analysis of variance and this tended
to control for the inflated possibility of a Type I error

due to the 16 data points.

It was decided to test for linear, quadratic and

cubic functions. A significant linear trend indicated a

uni-directional acceleration or deceleration in heart rate.

A quadratic function indicated an acceleration or deceler-

ation which was followed by a return to base level or

beyond. An (ixample of a quadratic trend would be a deceler-

ation in heart rate followed by a return to baseline. It

might indicate an orienting response to the onset of the

stimulus. A cubic trend indicated a heart rate change

followed by a return to base level or beyond, followed

by yet another change. An example of a cubic trend which

could have occurred in the present study might be a deceler-

ation in heart rate to the onset of the mother's voice, fol-

lowed by an acceleration to supra-baseline levels before

stabilization at baseline level. This example could have

occurred as an orienting response to the mother's voice,

followed by a distressed response to the termination of
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her greeting and lack of visibility before the heart rate
returned to baseline. Other more complex trends (e.g.

quartic) were not examined because no hypotheses concern-

ing the psychological meaning of these trends were made.

Trend analyses were not performed when there was no sig-

nificant seconds effect.

The analyses of variance of the heart rate data

were of the same general form. There were nine inde-

pendent variables in all. The between-subject independent

variables were: age, sex, order of signal (trials with the

mother's voice first vs. trials with the babel signal

first), right vs. left-side loudspeaker, and individual

subject. The within-subject independent variables were:

type of signal (the mother's voice vs. the babel signal),

location of signal (front or side), trials, and seconds.

The significance level was set a p < .05 Each analysis

will be described more specifically when it is presented in

the Results section.

Behavioral data . Data was obtained for seven beha-

viors. Only four of those behaviors occurred frequently

enough to justify statistical analysis. These four were

visual alerting, quieting, and right and left head turns.

The findings of the other three behaviors were described

as supporting data. These three others were smiling, vocal-

izing, and fussing. The analyses of variance of the beha-

vioral data were similar but not identical to the analyses
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Of the heart rate data. The between-subject independent
variables were: age, sex, order of signal presentation,
right vs. left-side loudspeaker, and individual subject.
The within-subject independent variables were: type of
signal, location of signal, and periods. (Periods corres-
pond to the 5-second stimulus periods described above, e.g.

pre-stimulus period.) Again, the criterion significance

level for the behavioral data was p < .05.

Pi lot Study

An initial experiment was conducted with 4 infants,

2 at each age, to determine the response to the mother's

greeting and babel signal when no background voices were

present. Because of the small number of subjects, the

loudspeakers were directly to the front and 90° to the right

of the infant, never to the left. Other than the silent

background and the omission of left loudspeakers, the pro-

cedure was the same as for the experimental study outlined

above. Heart rate was recorded.

The results of the pilot study showed heart rate

deceleration to the onset of both signals presented in a

silent background. The mean change in heart rate for the

pilot subjects is shown in Figure 3 as responses to the

mother's voice and the babel signal both separately and

in combination (see Figure 3) . An age (2) x subject (2)

X voice (2) x location (2) x trials (3) x seconds (16)
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Figure 3: Average Heart Rate Change to Mother's
Voice, Babel Signal, and Combined Condi-
tions for the Pilot . Subject.



analysis of variance was conducted on the heart rate in
bpm for 1 second preceding and 15 seconds following the on-
set of the 5-second signals (see Appendix c, Table 13).

There was a significant effect of seconds, F (15,30) = 4.20,

which was supported by a significant linear seconds effect,
F (1,2) = 86.10. There was also a significant interaction

of voice and seconds, F (15, 30) = 3.07 The interaction

was supported by a significant voice x cubic seconds effect,

F (1,2) = 44.43. The interaction suggested that there was

greater deceleration to the mother's voice, as can be seen

in Figure 3, although an average deceleration of about 5 bpm

occurred to the babel signal. There were no age differences

(see Appendix C, Table 13)

.

It should be noted that the heart rate deceleration

is 5-10 bpm. The magnitude and direction of this response

is similar to that found previously in the literature.



CHAPTER V

RESULTS

The findings are presented with regard to the ini-
tial hypotheses for the heart rate data and for each of the
rated behaviors.

Heart Rate Data

Preliminary analyses of heart rate change .

The following preliminary analyses were conducted

on the heart rate data:

(1) Heart rate was measured immediately preceding

stimulus onset for each of the 12 trials. The 12 prestimu-

lus seconds were analyzed in the event that differences

in values occurred in baseline heart rate due to age or

across trials. Differences in baseline heart rate can

occur as a result of changes in the infants' state of

arousal. They are important because of the law of initial

values (LIV)
. The LIV holds that the initial value or

level of heart rate can affect the magnitude and direction

of heart rate change independently of stimulus factors (e.g.

Wilder, 1958) . For example, if heart rate is initially

very fast and a startling stimulus is presented, there may

not be as great an acceleration in heart rate as when the
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rate is initially slower.

(2) Preliminary analyses of heart rate change
also conducted separately on the between-subject independent
variables of sex, order of signal presentation, and right-
vs. left-side loudspeaker. These variables were primarily
for control purposes and were of lesser interest. Analyzing
them separately simplified the main analysis.

Ana lysis of prestimulus heart rate levels . There

were no differences in baseline heart rate levels. The

mean prestimulus heart rate level as a function of age and

trial is shown in Table 2. These data are for the one-sec-

ond period prior to the onset of the signals. They are

ordered by trial number rather than stimulus type to test

for variation in initial level with age over time during the

experimental session. An age (2) x subject (16) x trial

(12) repeated-measures analysis of variance performed on

these data revealed no systematic differences in prestimu-

lus heart rate levels, see Appendix D, Table 14.

Preliminary analysis of heart rate change for male

vs. female infants . Mean heart rate change to the mother's

voice vs. the babel signal is presented in Figure 4 for

males and females. It should be noted that the scale for

this and subsequent figures is different than that for the

pilot data. An age (2) x sex (2) x subject (8) x voice (2)

X location (2) x trials (3) x seconds (16) repeated-meas-

ures analysis of variance on these data yielded no signifi-
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cm'

I .50 3 .50

o Males, Mother's Voice
Y Males, Babel Signal
* Females, Mother's Voice

X Females, Babel Signal
The means are plotted as dif-
ference scores from the pre-
^timul^s level

S.SO 1.50 9.50
TinE IN SECONDS

II .50 13 .50

Figure 4: Average Heart Rate Change to Mother's Voice
vs. Babel Signal for Males and Females.



cant effects indicating that .ales and females responded
differently to the stimulus conditions. A number of higher-
order interactions were significant but were not interpret-
able; see Appendix D, Table 15, for a summary of all sig-
nificant effects and interactions involving the variable
of sex.

ll^J^^^^naly^j^of heart rate change for ord^r

signal^^gresent Whether the infant received the

block of trials with the mother's voice or the babel

signal first did not affect the overall response to the two

signals. The mean heart rate responses to the mother's

voice and the babel signal are presented in Figure 5 for

the two groups of infants receiving different orders of pre-

sentation of the signals. An age (2) x order (2) x subject

(8) x voice (2) X location (2) x trials (3) x seconds (16)

repeated-measures analysis of variance on these data re-

vealed no differences in response for the groups receiving

different orders of signal presentation; see Appendix D,

Table 16, for a summary of all significant effects and in-

teractions involving the variable of order. Several higher-

order interactions were significant.

Pre liminary analysis of heart rate change for right-

v s . left-side loudspeaker . This analysis tested for an

effect of the right- vs. left-side location of the side loud-

speaker. • Location of the side loudspeaker (right vs. left)

did not affect the infants' responses to the four types of



Mother First, Mother's Voice
Mother First, Babel Signal
Babel First, Mother's Voice
Babel First, Babel Signal

The means are plotted
as difference scores from

. the prestimulus level.

1 -50 3.50 S-SO 7.50 9.50
TIME IN SECONDS

11 .50 13.50

Average Heart Rate Change to Mother's Voice
vs. Babel Signal for the Two Groups Receiv-
ing Different Orders of Presentation of the
Signals

.
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Signals (MF, MS, BF, and BS) . The mean heart rate respon-
ses to the front and side presentations of the mother's
voice are shown for the two side-loudspeaker groups in

Figure 6. The mean responses to the front and side presen-

tations of the babel signal are graphed separately in

Figure 7. An age (2) x side-loudspeaker (2) x subject (8)

X voice (2) X location (2) x trials (3) x seconds (16) re-

peated-measures analysis of variance was performed on these

data and no significant differences were found other than

higher-order interactions; see Appendix D, Table 17, for a

summary of all significant effects involving the side-

loudspeaker variable.

Primary analyses of heart rate change . The primary analysis

of the heart rate data compared the changes in heart rate

of the 12- and 25-week-olds to the mother and babel sig-

nals presented from the front and side loudspeakers. In

order to facilitate interpretation of the results, the find-

ings are reported within the context of the specific hypo-

theses being tested.

Hypothesis 1; Heart rate changes to the mother's

voice vs. the babel signal . The first hypothesis was that

the infants would show a heart rate change to the mother's

voice but not to the control babel signal. The hypothesis

was supported. Figure 8 displays a heart rate deceleration

of 3 bpm followed by a return to baselevel in response to
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Z
Co

o Right-side, Front Signal
Y Right-side, Side Signal

Left-Side, Front Signal
X Left-Side, Side Signal

The means are plotted
as difference scores from
the prestimulus level.

11 .50 13.50

Figure 6: Average Heart Rate Change to Mother's Voice
From Front and Side for the Two Side-
Loudspeaker Groups (right and left)

.
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The means are plotted as difference
scores from the prestimulus level.

o Right-side, Front Signal
Y Right-side, Side Signal
* Left-Side, Front Signal
X Left-Side, Side Signal

-0 .50 I .50 3 .50 5.50 7.50 9.50

TIME IN SECONDS
1 1 .50 13.50

Figure 7: Average Heart Rate Change to the Babel
Signal From Front and Side for the Two
Side-Loudspeaker Groups (right and left)

.
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Figure 8: Average Heart Rate Change in bpm to Mother's
Voice vs. Babel Signal.



on

s

the mother's voice. The average value of heart rate during
the trials with the babel signal varied less than 1 bpm
over the 16 seconds. Averaged heart rate change to the
mother's voice and the babel signal is also presented in
Figure 8. An age (2) x subject (16) x voice (2) x locati

(2) X trials (3) x seconds (16) repeated-measures analysi
of variance was performed on these data (see Appendix

Table 18) .

Overall heart rate change differed from what would

be expected by chance as indicated by a significant seconds

effect, F (15, 450) = 5.80, which produced a linear seconds

effect, F (1, 30) = 11.32; a quadratic seconds effect, F

(1, 30) = 6.26; and a cubic seconds effect, F (1, 30) =

4.51. This effect is graphed in Figure 8 as the average of

the response to the two signals.

The second-by-second heart rate changes to the

mother's voice and the control babel signal were differ-

ent, as indicated by a significant voice x seconds inter-

action, F (15, 450) =4.99 The subsequent trend analysis

performed on these data indicated that the voice x quadra-

tic seconds interaction was significant, F (1, 30) = 9.92,

supporting the interpretation that heart rate decelerated

in response to the mother's voice but not to the babel sig-

nal. The deceleration in heart rate to the mother's voice

was reflected in the lower overall average heart rate dur-

ing the trials with the mother's voice. The mean heart rate



during trials with the mother voice was 144.6 bp™, where
as during the babel signal it was 148.4 bpm, a difference
Which was significant, F (l, 30) = 12.35

one important question concerns the relationship
of the responses to chance levels of variation. To infer
that the response to either signal was detected within the
background babel, it was necessary to determine that the
response differed from chance. Separate analyses of

variance were conducted for the responses to the mother's
voice and the babel signal in order to compare each to

chance levels. The design for both analyses was an age

(2) X subject (16) X location (2) x trials (3) x seconds

(11) repeated-measures design. For a listing of the signi

ficant effects, see Appendix E, Table 19, for the mother's

voice effects, and Appendix E, Table 20, for the effects t

the babel signal. The analysis of variance for the mother

voice showed a significant effect for seconds (F (10, 160)

= 3.17) which was supported by a quadratic trend (F (1,16)

= 5.97). But heart rate change to the babel signal did

not show a significant effect for seconds.

One additional finding of the analysis of variance

for the babel signal (Appendix E, Table 20) qualified the

conclusion that heart rate change to the babel signal was

random. In Figure 9 the average heart rate change in the

babel condition is plotted for the 12- and 25-week-olds.

It can be seen that the 12-week-olds ' heart rate changed
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Figure 9: Average Heart Rate Change in bpm to the
Babel Signal by Age.



very little for 10 seconds, before dropping 1 bpm. Aver-

age heart rate was more variable for the 25-week-olds

,

although change was gradual and amounted to only 2 bpm al-

together. Thus, differences were minimal even though a

significant age x seconds effect was obtained to the babel

signal, F (10, 160) = 2.32, and was supported by an age x

quadratic seconds effect F (1, 16) - 5.05. (See Appendix

E, Table 20.) One possible explanation of the finding is

that the older infants detected the babel signal, and the

younger did not, with the combined ages showing a signifi-

cant seconds effect of heart rate change. Further discus-

sion will be reserved for the final chapter.

Hypothesi s 2: Age differences in heart rate changes

to the mother's voice vs. the babel signal . Part of the

second hypothesis predicted that the differential response

to the mother's voice and the babel signal for heart rate

change would be characteristic of both 12- and 25-week-olds.

The mean heart rate change to the mother's voice and the

babel signal are presented separately for each age in

Figure 10.

Follow-up repeated measures analyses of variance

were conducted independently for each age group, see Appen-

dix E, Tables 21 and 22, for 12- and 25-week-olds, respec-

tively. Both of the analyses were of the form: subjects (16)

x voice (2) X location (2) x trials (3) x seconds (16). The
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voice X seconds effect was significant for both 12-week-
olds, (F (15, 225) = 3.86), and 2 5-week-olds , F (15, 225)

3.11). Trend analyses revealed that the 12-week-olds show-
ed both a voice x linear seconds effect, F (1, 15) = 11.84,

and a voice x cubic seconds effect, F (1, 15) = 6.46. The

25-week-olds showed a voice x quadratic seconds effect, F

(1, 15) = 8.92. The average heart rate for both 12- and

25-week-olds separately was different for the mother's

voice and the babel signal, see Table 3. The effect of

voice for both ages was significant (12-week-olds: F (1, 15)

= 4.77; 25-week-olds: F (1, 15) = 7.95).

No overall effect of seconds was found for the 12-

week-olds in the separate analysis of heart rate change for

that age group, but the significant voice x seconds inter-

action supported the case that the response to the mother's

voice differed from chance levels, and that therefore the

voice was detected within the babel background. The 25-week

olds showed an effect for seconds, F (15, 225) = 5.51, which

was supported by a linear seconds effect, F (1, 15) = 11.06,

and a quadratic seconds effect, F (1, 15) = 6.08.

Hypothesis 3; Heart rate changes to the front vs .

the side loudspeakers . It was hypothesized that separation

of the signal from the background noise would facilitate de-

tection of the signal. Some of the evidence pointed to this

conclusion, although the evidence is qualified. Heart rate

change to the mother's voice and the babel signal from the



TABLE 3

THE AVERAGE HEART RATE BY AGE

AND TYPE OF SIGNAL^

Age Group

12-Week-Olds 25-Week-Olds

Mother's Voice 146.6

Babel Signal 150.2

Type
of
Signal

142.5

146.7

N-32, divided equally by age group.
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front and the side is depicted in Figure 11. The deceler-
ation to the mother's voice from the side occurred more
quickly and was about 1 bpm greater on the average, than
the 2 bpm deceleration to the mother's voice from the

front. Responses to the babel signal in both locations

varied by less than 1 bpm on the average during the entire

trial. A voice x location x seconds interaction reached

significant levels of difference, F (15, 450) = 2.19, and

was supported by a voice x location x linear seconds effect,

F (1, 30) - 5.77, see Appendix E, Table 18. Examination of

Figure 11 suggests that the interaction of voice x location

X seconds occurred because there was no response to the

babel signal in either location, whereas there was a differ-

ence to the mother's voice from front and side, with a great-

er average response to the side.

Although this is comparable to the finding with

adults that spatial separation facilitates detection, the

conclusion must be qualified because of the separate supple-

mentary analyses for the mother's voice and the babel sig-

nal, see Appendix E, Tables 19 and 20, respectively. Neith-

er signal showed an effect for location x seconds, which is

contradictory to the combined analysis of variance's signi-

ficant voice X location x seconds effect. (One of the two

types of signals should have shown the linear effect,)

The contradiction might be explained by the fact

that the separate analyses (Appendix E, Tables 19 and 20)
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Figure 11: Average Heart Rate Change to Mother's
Voice vs. Babel Signal From Front and
Side Loudspeakers.



examined onlv 11 «?p>r-onr^c: / 1 ^ixy ±i seconds (1 presecond and 10 postseconds)
Of the trial, whereas the main analysis of variance (Ap-
pendix E, Table 18), examined 16 seconds (1 presecond and
15 postseconds). This was done in order to limit the si;

of the problem for the computer, and also because Graham
and Jackson (1970) suggest that the heart rate response

usually occurs during the first 10-12 seconds of the trial.

Evidently the last 5 seconds were required to maintain a

significant effect, perhaps by increasing degrees of free-

dom. In trying to support a hypothesis, one should not

rely too heavily on a heart rate change which needed 5-10

postseconds after the 5-second signal offset to maintain

significant levels of difference. other effects held when

the last 5 seconds were dropped.

In order to clarify the finding, two separate analy-

ses of variance were conducted on the front and side trials

of the mother's voice, see Appendix E, Tables 23 and 24.

There was a significant seconds effect for the mother's

voice from the front, F (15, 450) = 2,46, which was support-

ed by a quadratic trend, F (1, 30) = 4.20. The seconds ef-

fect for the mother's voice from the side was also signifi-

cant, F (15, 450) = 8.52, and it was supported by linear, (F

(1, 30) = 16.16), quadratic (F (1, 30) = 12.35), and cubic

trends, (F (1 , 30 ) = 5 . 88 )

.

The linear seconds trend which occurred in the voice

X location x seconds interaction from the original main



analysis would seem to have been due to the linear trend in
the heart rate change to the mother's voice from the side
as opposed to the front. The quadratic changes (decelera-
tion and return) were thus of sufficiently similar slope not
to interact statistically. For this reason, the conclusion

that spatial separation facilitated detection is qualified,

although it is possible that offset of the mother's voice

to the side triggered a linear acceleration in heart rate

because it was more easily detected.

The effect of location seemed to be similar for both

age groups. No interactions of age and location were signi-

ficant in the main analysis, with the exception of some

higher-order interactions involving trials effects, see Ap-

pendix E, Table 18. The higher-order interactions will not

be discussed because of the ordering of trials in the present

study. Front and side trials were interspersed randomly and

thus the 3 trials of each type do not reflect successive pre-

sentations .

Behavioral Data

The findings are presented with regard to the ini-

tial hypotheses for the following behaviors: visual alerting,

quieting, right and left head turns, smiling, vocalizing,

and crying. The data for head turning, smiling, vocalizing

and fussing will be presented in tables without supporting

analyses of variance because of their very low levels of
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occurrence. As was mentioned, the behavioral measures are
the duration of the occurrence of the respective behaviors,
not the frequency of occurrence.

Visual alerting .

Hypothesis 1: Visual alerting to the mother's voice
vs. the babel signal

. The hypothesis that visual alerting

would occur for longer periods of time to the mother's voice

than to the babel signal was supported, indicating enhanced

detection of the mother's voice over the babel signal. The

amounts of visual alerting by age and type of signal are pre-

sented in Table 4, averaged over trials and subjects within

each age, and expressed as percentages of the four 5-second

stimulus periods. An age (2) x side-loudspeaker location

(2) X order of signal presentation (2) x sex (2) x subject

(2) X voice (2) x location (2) x periods (4) repeated-mea-

sures analysis of variance on the amount of visual alerting

revealed a significant main effect for voice (the mother's

voice vs. the babel signal), F (1, 16) = 11.96, see Appendix

F, Table 25. It should be noted that the prestimulus differ-

ences show a marked effect. Despite this difference there

is reason to believe that the effect is real and due to a

tonic, rather than phasic change in alerting. The discus-

sion will elaborate this further.

Hypothesis 2; Age differences in visual alerting to

the mother's voice vs. the babel signal . It was hypothe-
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sized that there would be no age differences in visual
alerting to the two types of signals. Responses were found
not to vary by age. Again, see Table 4 where the duration
percentages of visual alerting are presented for each age
group to the two types of signals. Neither the age main
effect nor the age x voice interaction was significant (see

Appendix F, Table 25).

Hypothesis 3; Visual alerting to the front vs. the

side loudspeaker. It was hypothesized that spatial separa-

tion of the signal from the background noise would facili-

tate the detection of the signal, at least for the mother's

voice. The front vs. the side location of the loudspeaker

did affect visual alerting, but not in the way predicted.

See Table 5 where the percentages of visual alerting to the

mother's voice and the babel signal from the front and the

side are presented for both age groups. It can be seen that

there was increased visual alerting for the older infants to

the mother's voice presented from the front, rather than the

side. The pattern for the babel signal was reversed, with

greater percentages of visual alerting to the side condition,

The visual-alerting analysis of variance, see Appendix F,

Table 25, showed a significant voice x location interaction,

F (1, 16) = 5.28. The age x location interaction was also

significant, F (1, 16) = 6.69. The younger infants showed

more visual alerting to the side condition, whereas the

older infants showed more alerting to the front.
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TABLE 5

THE AVERAGE DURATION OF VISUAL ALERTING BY TYPE AND
LOCATION OF SIGNAL EXPRESSED AS A PERCENTAGE FOR

EACH AGE GROUP^

Type of Signal

Mother

Front

Side

Age Group

12-Week-Olds

42%

44%

25-Week-Olds Combined Age
Groups

57%

48%

50'

46'

Babel

Front

Side

31%

37%

40%

42%

35%

39%

Combined
Signals

Front

Side

36%

40%

48%

45%

42%

42%

Note 1 . Each percentage reflects the average of
3 trials.

^N=32, equally divided by age group.



77

Qther_effects_ of visual alerti ng. Alerting to the

mother's voice vs. the babel signal was different for the

two groups receiving different orders of presentation of

the two signals. The group which received the mother's

voice as the first signal showed alerting 57% of the time

to the mother's voice and only 34% of the time to the

babel signal. The group which received the babel signal

first showed alerting 38% of the time to the mother's

voice and 40% of the time to the babel signal. The voice

X order interaction was significant, F (1, 16) = 17.48.

All other higher-order interactions which were significant

have been listed in Appendix F, Table 25, and will not be

discussed

.

Quieting .

Hypothesis 1 : Quieting to the mother's voice vs .

the babel signal . The hypothesis that quieting would

occur to the mother's voice but not to the babel signal

was supported. The percentage of quieting to each type

of signal is presented in Table 6 for each age group. An

age (2) x side-loudspeaker location (2) x order of signal

presentation (2) x sex (2) x subject (2) x voice (2) x

location (2) x periods (4) repeated-measures analysis of

variance was performed on the amount of quieting; see

Appendix F, Table 26, for a listing of all significant

effects for that analysis. There was a significant main
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TABLE 6

THE AVERAGE DURATION OF QUIETING EXPRESSED

AS A PERCENTAGE FOR EACH AGE AND SIGNAL^

Type of Signal

Mother's Voice

Babel Signal

Combined Signals

17%

9%

13%

Age Group

12-Week-Olds 25-Week-Olds Combined Ages

24%

10%

17%

21%

9%

15%

trials

»

Note 1. Each percentage reflects the average of 6

^N=32, divided equally by age group.



effect for voice, F (1, 16) = 15. so.

Hypothesis lL_A2e_dif ferences in quieting tn

?n^ther:^^^oice_vs^^
differences

in quieting were expected. As can be seen in Table 6,

there was more quieting to the mother's voice than to the
babel signal for both ages. No main effect for age nor

interaction of age x voice was found, see Appendix F, Table

26.

Hypothesis 3: Quieting to the stimuli presented from

the front vs. the side. it was hypothesized that there

would be more quieting to the mother's voice presented from

the side than from the front because the voice would be de-

tected more easily there; but that there would be no dif-

ference to the babel signal because it would not be detec-

ted. It was found that location did not have an effect.

The percentages of quieting to the two signals from the

front and side are presented in Table 7. The voice x loca-

tion interaction in the quieting analysis of variance was

not significant, see Appendix F, Table 26.

Other effects for quieting . Several higher-order

interactions were significant in the analysis of the quiet-

ing data. They were not considered to be interpretable and

are not presented, except in Appendix F, Table 26, where

they are listed.

Head turning. The data for head turning are presented with

regard to the initial hypotheses. A word of explanation is



TABLE 7

THE AVERAGE DURATION OF QUIETING EXPRESSED

AS A PERCENTAGE FOR EACH SIGNAL AND LOCATION

Type of Signal Location of Signal

Front Side

Mother's Voice 22%

Babel Signal 10%

Combined Signals 16%

20%

9%

14%

Note_J^. Each percentage reflects the average of 3
trials

.

^N=32, divided equally by age group.
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in order to clarify the response measure. The data which
were obtained represent the amount of time (expressed as a

percentage) that the infants' head was turned to the ipsi-
lateral and/or contralateral side for each of the four 5-

second stimulus periods, e.g. the prestimulus period, and
each condition, e.g. MS. The data were averaged over each
of the three similar trials, e.g. the three trials with the

mother's voice to the side. in addition, the data for

right and left head turns toward the right- vs. the left-

side loudspeaker have been combined and designated as

either appropriate or inappropriate head turns . For example,

an appropriate head turn would be a right turn for an in-

fant with a right-side loudspeaker. An inappropriate one

would be a right turn when the signal was presented from the

left. The average percentages of time that the infants were

turned toward the side loudspeaker are presented in Table

8 for each age, signal, and stimulus period. Only side

presentations of the signals are included.

Hypothesis 1; Head turning to the mother's voice vs .

the babel sig nal . It was hypothesized that there would

be more head turning to the mother's voice than to the

babel signal. This hypothesis is supported by the older

infants' data, see Table 8. The 25-week-olds showed more

head turning to the mother's voice than to the babel sig-

nal for all stimulus periods. However, durational in-

creases in head turning to the onset of the babel signal
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TABLE 8

THE AVERAGE DURATION OF APPROPRIATE AND INAPPROPRIATE HEAD

TURNING BY AGE AND SIGNAL, EXPRESSED AS A PERCENTAGE OF

EACH 5-SECOND STIMULUS PERIOD^

Signal Type
and

Stimulu s Period

Appropriateness Prestimulus Onset Offset Poststimulus

12 -Week-Olds

Appropriate

Mother
Babel

2 .4%
3.8%

2 7%
5.6%

1.0%
2.4%

2 0%
3.0%

Inappropriate

rio uner
Babel

.2%
5.6%

.0%
2.1%

,6%
2 . 8%

, 3%
3.8%

25 -Week-Olds

Appropriate

Mother 15.4% 27.4% 25.6% 18.2%
Babel 9.5% 17.7% 19 .0% 15.8%

Inappropriate

Mother 6.2% 6.1% 3.9% 5.8%
Babel 8.8% 2.4% 6.2% 9.8%

Note 1 . Right and left head turns to right vs. left
loudspeakers have been combined and designated as appropriate
vs. inappropriate turns.

Note 2 . Only trials with side presentations of the
signals are included.

trials

.

Note 3. Each percentage reflects the average of 3

'n=32, equally divided by age group
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suggest that it may have been detected and localized, al-
though to a lesser extent than the mother's voice was. it
is interesting to note that inappropriate head turning to
the mother's voice was virtually absent in the 12-week-
olds and was of uniformly lower occurrence than head turn-
ing to the babel signal. Appropriate head turning in-

creased during the onset period and then tapered off,

which would be expected if the signals were being localized.

Hypothesis 2 ; Age differences in head turning to

the signals. It was hypothesized that there would be more

head turning by the older infants than the younger ones, and

this hypothesis was supported. It can be seen in Table 8

that there was more head turning for the older infants than

for the younger ones, especially for appropriate head turns.

The overall incidence of head turning was very low for the

younger infants. The older infants demonstrated greater

amounts of head turning under appropriate than inappropriate

conditions

.

Smiling . The average percentage of time that the 12- and

25-week-olds smiled to the mother's voice vs. the babel

signal during the four stimulus periods are presented in

Table 9.

Hypothesis 1; Smiling to the mother's voice vs. the

babel signal . The hypothesis was supported that more

smiles would occur in response to the mother's voice than to



84

TABLE 9

THE AVERAGE DURATION OF SMILING TO THE TWO

SIGNALS BY AGE AND STIMULUS PERIOD^

Type of Signal Stimulus Period

Prestimulus Onset Offset Poststimulus

12 -Week-Olds

Mother 0 9
• ^ o .4% 1.5% 2.2%

Babel
. 0% .1% . 1% .0%

25-Wedk -Olds

Mother . 1% 2.0% 6.0% 5.2%

Babel .7% .2% .4% 1.4%

Note 1 . Each percentage reflects the average of 6
trials

.

^N=32, divided equally by age group.
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the babel signal, both because the mother's voice would

be more easily detected and because of its social nature.

It can be seen in Table 9 that there was more smiling to

the mother's voice than the babel signal for both age

groups and in all four stimulus periods with the exception

of the prestimulus period. (The older infants smiled more

on babel trials during the prestimulus period.)

Hypothesis 2: Age differences in smiling . The hy-

pothesis that the older infants would be more likely to

smile to the mother's voice than the younger infants would

was supported. There was more smiling by the older infants

in every stimulus period with the exception of the pre-

stimulus period. The difference between the two was espe-

cially great in the condition with the mother's voice.

Other effects of smiling . Smiling was most pro-

nounced for both ages in the offset and poststimulus per-

iods, which immediately followed the period when the sig-

nal was presented. The response may have been delayed

until after the completion of the mother's greeting, and

is thus compatible with the notion of reciprocity in social

interactions

.

Vocalizing The average duration of vocalizing by age and

stimulus is presented in Table 10 as a percentage of each

5-second stimulus period.
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TABLE 10

THE AVERAGE DURATION OF VOCALIZING TO THE TWO SIGNALS

BY AGE EXPRESSED AS A PERCENTAGE OF EACH STIMULUS PERIOD^

Type of Signal Stimulus Period

Prestimulus Onset Offset Poststimulus

12-Week-Olds

Mother 1.1% .6% . 6% 1.8%

Babel .4% .2% .2% .3%

2 5-Week-Olds

Mother 1.5% 2.1% 1.4% 4.2%

Babel 1.4% 1.0% .7% .8%

Note 1 . Each percentage reflects the average of
6 trials.

^N=32, divided equally by age group.
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Hypothesis 1: Vocalizing to the mother's voice vs .

the babel __sj^nal. Vocalizations were predicted to occur

more often to the mother's voice than to the babel signal,

because the mother's voice would be detected more easily and

also because of its social nature. The hypothesis was

supported. More vocalizing was found to the mother's voice

for every stimulus period for each age.

Hypothesis 2: Age differences in the social response

of vocalizing . It was hypothesized that the older infants

would show more vocalizing in response to the mother's voice

than the younger infants would. The hypothesis was support-

ed .

Other effects for vocalizing . In conjunction with

the results for smiling, vocalizing tended to be delayed

until after the stimulus offset. The delay tended to be

even greater, reserved for the poststimulus period.

Fussing . The average amount of fussing is presented in

Table 11 for each age, signal, and stimulus period.

Hypothesis 1: Fussing during the mother's voice vs .

the babel signal . It was hypothesized that fussing would

occur in different amounts to the two different signals,

although the direction of the difference was not predict-

ed. For example, if the mother's voice were detected and

the babel signal were not detected, more fussing could

occur to the mother's voice if the infants were frustrated
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TABLE 11

THE AVERAGE DURATION OF FUSSING TO THE TWO SIGNALS BY AG

EXPRESSED AS A PERCENTAGE OF EACH STIMULUS PERIOD^

Type of Signal Stimulus Period

Prestimulus Onset Offset Poststimulus

12-Week-Olds

Mother .4% .3% .6% 1.1%

Babel .9% .1% .7% .9%

25-Week-Olds

Mother .7% .2% .0% .3%

Babel 4.3% 2.1% 3.1% 5.1%

Note 1 . Each percentage reflects the average of 6

trials

.

^N=32, divided equally by age group.
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at not being able to see her. But on the other hand, in-
fants will often cease fussing at the sound of a voice;

therefore, the mother's voice could have terminated fussing.
It was found that there was less fussing to the mother's

voice for the older infants. Fussing was absent in the 5-

second period immediately after cessation of her voice (the

offset period)
. The data for the younger infants are

variable and do not lend themselves to easy interpretation.

Age differences in fussing . No particular hypo-

theses were made. Age differences were found. The older

infants showed less fussing to the mother's voice; the

younger infants showed no clear result.

Summary of the Results Section

Heart rate deceleration occurred to the mother's

voice but not to the babel signal for both 12- and 25-

week-olds. Separation of a signal loudspeaker from the

background noise produced a stronger offset response in

heart rate, but not necessarily facilitation of detection.

Increases in the duration of alerting and quieting were found

for both age groups. The older infants showed a greater

proportion of head turning, smiling and vocalizing to the

mother's voice than to the babel signal, as well as ces-

sation of fussing.



CHAPTER VI

DISCUSSION

The initial hypotheses are discussed in relation

to the findings of the present study and the related lit-

erature .

Hypothesis 1; Detection of the Mother's

Voice vs. the Babel Signal

The hypothesis that the 12- and 25-week-olds would

detect the addition of their mother's voice, but not the con-

trol babel signal, to the background babel was supported

by both the heart rate findings and the alerting, quiet-

ing, and fussing measures. Discussion of the other be-

havioral measures will be delayed until the section on age

differences.

Heart rate change . The infant's heart rate decelerated an

average of 3 beats when the mother's voice was added to

the ongoing background babel. The finding confirms the

observations of Brazelton (1969) that infants as young as

2 months old will orient to the direction of their mother's

voice even when other people are speaking at the same time.

It also supports Bundy's (1977) pilot data which suggested

that 4-month-olds have the ability to detect a signal within
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noise

.

The fact that heart rate changed in the direction

of a deceleration corroborates the previous findings of

a deceleration in infants' heart rate to a mild auditory

stimulus, e.g. Graham and Jackson, 1970. More detailed

discussion of this finding will be reserved for the sec-

tion on age differences.

Behavioral change .

Visual alerting . There was significantly more

visual alerting to the mother's voice than to the babel

signal, as was predicted, indicating that the mother's voice

was detected. The analysis showed that alerting was not as

closely time-locked as the heart rate change because the

periods main effect and the voice x periods interaction

were not significant. The choice of 5-second stimulus per-

iods was made on the basis of the stimulus length and not

on the basis of the characteristics of an alerting episode;

it is therefore reasonable that alerting was found to be less

time-locked than heart rate change, which was measured every

second. (One-second intervals were chosen on the basis of

the characteristics of the heart rate response.) Observa-

tion of the infants suggested that listening to the mother's

voice often initiated prolonged visual fixation of the mo-

biles.

The choice 5-second stimulus periods was no unin-

formative, however. For the older infants, visual alert-



ing increased during the stimulus period when the mother's

voice was added, and peaked during the offset period.

There is some suggestion that the babel signal may have

been detected also, as indicated by an increase in the

amount of visual alerting to the babel signal during

the onset period for both age groups.

The interaction of the type of signal (the mother's

voice vs. the babel signal) and the order of presentation

of the signals for the visual alerting measure was unex-

pected. It suggests that the infants who received the babel

signal as the first signal may have become fatigued by the

end of the first half of the session, showing less visual

alerting to their mother's voice during the second half

as a result. Whether the fatigue may have occurred because

the babel signal was not detected, or because it was detect-

ed but not novel, cannot be determined conclusively. Evi-

dently the fatigue was specific in its effect on visual

alerting, because no effect of order of presentation was

found for heart rate change. This effect of order combined

with the lack of a periods effect for visual alerting sug-

gests that the detection of the mother's voice produced a

generalized increase in alerting.

Quieting . The hypothesis that there would be more

quieting to the mother's voice than to the babel signal

was supported. The quieting was not related to stimulus

period, however. Both 12- and 25-week-olds showed the
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the mother's voice over the babel signal. Quieting may

have been similar to visual alerting in the generalization

of the effect.

Fussing. No particular hypotheses were made for the

outcome of the fussing measure, other than that a change in

the occurrence of fussing might follow the presentation of

the mother's voice. More fussing could have occurred to the

recording of the mother's voice, as was found by Turnure

(1971). However, cessation of fussing to the sound of a

voice has also been found in infants (Brazleton, 1969)

.

A change in the amount of fussing to the addition

of the mother's voice to background babel was found for

the older infants, in the direction of a decrease. The

older infants ceased fussing coincidentally to the mother's

voice, and there was less overall fussing during the trials

in which the mother's voice occurred. This is in contrast

to the finding of Turnure. The data for the 12-week-olds

were more variable and do not lend themselves to easy in-

terpretation. There may have been a tendency to increase

quieting to the onset of both signals.

Summary for hypothesis 1 . The combined evidence of a 3

bpm heart rate deceleration, increased alerting and quieting,

and decreased fussing to the mother's voice supports the

hypothesis that the mother's voice would be detected within
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the background babel, as compared to the control babel

signal

.

Hypothesis 2: Age Differences in the Detection

of the Signals for Heart Rate Change and the

Behavioral Responses

Heart rate change . Both the 12- and the 25-week-olds show-

ed a significant heart rate change to the onset of the

mother's voice. Although changes for both age groups be-

gan as decelerations, the overall form for the two age

groups differed as indicated by the follow-up trend

analyses

.

The 12-week-olds . As was mentioned, both the linear

and cubic trends over seconds interacted with the type of

signal for the 12-week-olds. This means that the forms of

the heart rate change to the mother's voice vs. the babel

signal differed from each other, but it doesn't specify

where the linear and cubic trends occurred. It should be

noted that an interaction of trend over seconds with the

two types of signals could indicate either that one change

showed the trend and the other one didn't, or that both

changes showed the trend, but with significantly different

slopes to the lines, e.g. a horizontal slope vs. a slope

increasing at 45°. Examination of Figure 10, where the

12-week-olds' responses to the mother's voice and the babel

signal are depicted, may facilitate the interpretation of
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the finding.

The interaction of the linear component for the two

signals may be due to the small amount of change which

occurred to the babel signal as compared to the deceler-

ation and return to baseline which occurred to the mother's

voice. Thus the response to the babel signal may have

been linear, and with the response to the mother's voice

being nonlinear, an interaction would have occurred.

Another possible interpretation suggested by Figure 10 is

that the return to baseline which occurred to the mother's

voice in the 5th second was sufficient to create a linear

component in the response to the mother's voice. But it

would have had a different slope from the response to the

babel signal, and this could have created the linear in-

teraction .

The interaction of the cubic component for the two

signals may have been due to the form of the response to

the mother's voice: there was an initial deceleration,

followed by a return to baseline, and then a leveling off.

If the response to the babel were the flat, linear one

proposed above, this would have created the interaction.

One other possible explanation for the cubic interaction

is that the response to the babel signal also showed a

cubic trend. The response to the babel signal was ini-

tially flat, followed by a small deceleration and return in

the latter part of the trial. In other words, the dips in
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the responses to the two signals occurred at different
times, and this could have caused the interaction. it
is important to note, however, that if this were in fact
what happened, the conclusion that a significant decelera-
tion occurred to the babel signal would not necessarily
be justified. The deceleration in the response to the babel
signal occurred several seconds after the signal offset.
This makes it unlikely that the deceleration on the babel
trials was a response to the stimulus.

In summary, although the exact cause of the signi-

ficant interaction of trend over seconds for the two sig-

nals cannot be specified for the 12-week-olds . An examina-

tion of Figure 10 suggests that there was a significant

deceleration to the mother's voice, but not to the onset of

the babel signal, for this age group.

The 2 5-week olds . The older infants showed linear

and quadratic trends which distinguished their responses

to the mother's voice and the babel signal. The linear

component (again, as seen in Figure 10) , may have been due

to the fact that there was little change in the response

to the babel signal, whereas the response to the mother's

voice was a deceleration, followed by a return to baseline.

The quadratic trend is most probably due to the decelera-

tion to the mother's voice, and not to the babel signal,

which creates the interaction in trend.



97

The combined age groups . Both the 12- and the 25-

week-olds showed a return to baseline in their responses to

the mother's voice which moved beyond the prestimulus level

somewhat. This may or may not have been an acceleratory

response in its own right, because it amounted to less than

1 beat for the 12-week-olds and about 1 1/2 beats for the

25-week-olds
. Gray and Crowell (1968) found an initial

deceleration followed by an acceleration beyond prestimu-

lus levels 10 seconds after the presentation of an auditory

stimulus to 11-week-olds . If this were an acceleration in

the present study, it would be difficult to interpret pre-

cisely. It could have been due to excitement if the infants

expected their mother to appear. Graham and Jackson (1970)

and Lewis (1975) have emphasized that many variables affect

the specific form of the heart rate response.

The deceleration to the mother's voice was greater

for the 25-week-olds than for the 12-week-olds. The age x

seconds interaction and the age x voice x seconds interaction

both reached significance in the main analysis of variance

(Appendix E, Table 18). However, neither effect was sup-

ported by a significant difference in trend, which makes the

finding difficult to interpret.' According to the ground

rules discussed earlier, effects of seconds which are not

supported by trends are considered to be unreliable differ-

ences. For this reason, the age differences in heart rate

will be discounted, although it should be mentioned that age
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differences in this context would not be surprising.

Graham, Berg, Berg, Jackson, Hatton, and Kantowitz (1970)

found greater decelerations in older infants. Berg's

(1974) study with 6- and 16-week-olds suggests that their

finding was due to differences in state, because the

younger infants have shorter alert periods. (As was men-

tioned, there was less visual alerting and quieting by the

12-week-olds as compared to the 25-week-olds in the present

study, although the difference was not significant.)

Behavioral change .

Visual alerting . Neither the main effect of age

nor the interactions of age with other variables were sig-

nificant in the analysis of variance of visual alerting,

with the exception of higher-order interactions. One

point of interest was that the 12-week-olds did not show

an increase in visual alerting to the mother's voice during

the onset period, even though they showed an increase in

alerting to the babel signal during the onset period.

The older infants showed increased alerting to the onset

of both signals. Even though the differences were not

significant, the direction of the response of the 12-week-

olds to the mother's voice is puzzling. Lewis, Kagan,

Campbell, and Kalafat (1966) found a positive relation-

ship between the amount of visual fixation and the amount

of deceleration in heart rate. A deceleration in heart
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rate occurred to the onset of the mother's voice in the

present study for the 12-week-olds

.

One possible explanation for the discrepancy lies

in the theory of Piaget (1952) concerning the development

of the coordination of auditory and visual space. As was

mentioned in the literature review, Piaget suggested that

the coordination of auditory and visual space develops

during the first few months. Initially the infant tries to

see while he hears, but when the two sensory spaces are

coordinated the infant tries to see what he hears. The 12-

week-olds in the present study were probably in the ini-

tial phase of coordinating auditory and visual space. The

continual background babel may have interfered with the

timing of the response of visual alerting to the signal.

Although an increase did occur to the onset of the babel

signal for the 12-week-olds, the overall pattern of in-

creases and decreases in alerting for them was erratic and

seems random, with the exception of greater values for the

mother's voice.

Quieting . Although the 25-week-olds showed more

quieting than the 12-week-olds, the differences were not

significant. The amount of quieting to the babel signal

was virtually identical for the two age groups.

Head turns . Head turning in the appropriate di-

rection was found for the 25-week-olds but not for the

12-week-olds, as was predicted. The amount of head



100

turning on side trials is presented in Table 8. The 12-

week-olds showed very small amounts of head turning, and

no clear pattern for head turning to either signal emerged.

The only interesting finding was that inappropriate head

turns were virtually absent during the entire trial when the

mother's voice was presented, especially during the onset

period when they were absent.

The older infants showed appropriate head turning.

There was more head turning to the mother's voice than to

the babel signal, as was predicted. Appropriate head

turning to the mother's voice occurred the greatest amount

of time during the onset period. Although the amount of

head turning to the babel was less than to the mother's

voice, there was an increase in appropriate head turning

to the onset of the babel signal, which peaked in the

offset period. This suggests that the babel may have been

detected and localized, at least by the older infants.

The fact that the two age groups differed in their

head turning responses to the signals supported the hypo-

thesis that head turning would be more likely in the older

infants. The absence of inappropriate head turning to the

mother's voice and the generally low levels of head turn-

ing in the younger infants suggests that the typical re-

sponse of the 12-week-olds was one of quieting rather than

a more .active response. The 12-week-olds may not have

been coordinating auditory and visual space in this task
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yet

.

The absence of head turning to the signals by the

12-week-olds in the present study was not surprising. As
was mentioned in the literature review, the presence of head
turning to sound in this age group is less reliable than

in older infants (Bayley, 1969; Cattell, 1940; Field &

Muir, 1978; Gesell, 1925). Moore, Wilson, and Thompson

(1977) found that even reinforcement procedures were in-

effective in increasing the likelihood of a head turn to

sound in infants younger than 5 months of age.

Smiling. The hypothesis that the 25-week-olds would

be more likely than the 12-week-olds to smile to the sig-

nals was supported. There was little difference between

the two age groups in their smiling during the prestimulus

period. Both age groups showed increased smiling to the

mother's voice during the onset period, although the older

infants smiled more than the younger infants. The offset

period showed even more smiling for both age groups, again

with more for the older than the younger. The poststimulus

period also showed high levels of smiling to the mother's

voice. For the 12-week-olds, this was the period with the

greatest amount of smiling. Both age groups showed more

smiling to the mother's voice than to the babel signal.

Additionally, both groups showed smiling in the latter part

of the trial. This finding will be discussed later in

conjunction with some of the other behavioral evidence.
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Vocalizing. The hypothesis that the infants would
show more vocalizing to the mother's voice was supported.
More vocalizing was shown to the mother's voice than to the
babel signal for each age. Vocalizing tended to be

delayed until after the completion of the mother's greeting,
just as smiling was. For both age groups, the period of

most vocalizing was the poststimulus period. More vocal-

izing was found for the 25-week-olds
, supporting the hypo-

thesis of age differences in their behavior. The fact that,

in general, the amount of vocalizing in the present study

was very low, is not surprising given the finding of Kagan

and Lewis (1965). They found that vocalization was low

when the infants showed long visual fixations. Visual

alerting was the most frequently occurring behavioral re-

sponse in the present study. Barrett-Goldfarb and White-

hurst (1973) found that spontaneous infant vocalizations

^^re suppressed during stimulation with their parents' taped

voices, which also helps to explain the low incidence of

vocalizations in the present study.

Summary for hypothesis 2 , In general there were no sig-

nificant age differences for the measures of heart rate

change, alerting, and quieting. The heart rate change for

the two age groups differed in form: the 12-week-olds show-

ed a cubic trend and the 25-week-olds showed a quadratic

trend to the mother's voice. This suggests that the older
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infants showed a deceleration and return to baseline in

heart rate change whereas in the younger infants the de-

celeration and return were followed by a second change in

the form of the response. Figure 10 suggested it was a

linear response of no change.

Head turning, smiling, and vocalizing all occurred

more often in the older infants than in the younger ones,

as was predicted. The younger infants did show a tenden-

cy to respond socially in a manner similar to the older

infants. There were more social responses to the mother's

voice than to the babel signal, and social responses were

delayed until after the mother's greeting was over. There

were no inappropriate head turns to the onset of the mother'

voice for the younger infants.

One important consideration which has only been

alluded to up to this point is the relative timing of the

behavioral responses. Wilson and Lewis (1972) identified

two successive components in infants' behavioral responses

to pictures of faces. The first component was orientation,

consisting of intense looking, cardiac deceleration, and

cessation of activity. The second component was affective,

and included smiling and vocalizing. The results for the

present study were similar to those of Wilson and Lewis.

The initial response to the onset of the mother's voice was

one of cardiac deceleration, alerting, and quieting for both

age groups. The social responses of smiling and vocalizing
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occurred later in the trial. Thus the finding of Wilson
and Lewis for visual stimuli was replicated for auditory

stimuli in the present study.

Another facet of importance for the delay in social

responses is the notion of reciprocity (e.g. Brazelton,

Kozlowski, and Main, 1974). Infants develop the capacity

to be a partner in social interactions, and reciprocity is

found early in mother-infant interactions. The delay in

responding to the mother's voice suggests that infants

"waited for their turn" until the mother's greeting was

over.

Hypothesis 3: Separation of the Signal

and Background Loudspeakers

Heart rate change . Separation of the signal and background

loudspeakers facilitates detection of a signal for adults,

and it was predicted that it would facilitate detection of

the mother's voice for the infants. A voice x location x

seconds interaction suggested that the hypothesis was sup-

ported, but with a qualification. The interaction of voice

X location x seconds was supported by a linear trend which

was due to an acceleration in heart rate to the offset of

the mother's voice from the side. This may have been due to

the fact that the signal from the side was detected more

easily, supporting the hypothesis. Clifton and Meyers (1969)

found cardiac acceleration to signal offset in infants. An
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interaction supported by a quadratic change with a deeper

deceleration to the side presentation would be stronger

evidence. Although that particular interaction was not

significant, the difference in the responses to the two

locations was in the predicted direction.

Behavioral change .

Visual alerting . Increased visual alerting to

the side loudspeaker (indicating improved detection) was

not found. On the contrary, the 25-week-olds showed in-

creased visual alerting to the mother's voice from the

front, rather than from the side. There were slightly

more alerting responses to the side than to the front for

the babel signal, however. The 12-week-olds showed more

visual alerting to the side than to the front for both

signals.

One possible explanation for the discrepancy to

the mother's voice for the 25-week-olds is that the inter-

esting visual stimuli were to the front. Visual alerting

to the front may have been maintained by the interesting

visual stimuli in the experimental environment and perhaps

by the background babel , as well. Field (1978) suggested

that visual stimuli were essential to maintain an alerting

episode

.

Quieting . Location did not have an effect on

quieting for the two age groups.
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Other behavioral measures . The other measures, e.g.

head turning, occurred too infrequently to allow analyses

of variance to be conducted. As a result of this, and be-

cause their chief importance was in distinguishing the

two age groups, the other behavioral measures will not be

discussed with respect to Hypothesis 3.

Summary for Hypothesis 3 . It cannot be stated conclusive-

ly that separation of the signal loudspeaker from the back-

ground babel facilitated detection of the signal. The

weight of the evidence was in this direction, however.

Summary of the Discussion

The mother's voice vs. the babel signal . The combined evi-

dence from the heart rate and behavioral data in the pre-

sent study suggests that the 12- and 25-week-olds segre-

gated their mother's voice from the background babel. An

important distinction which should be made is that the

evidence can only speak for the detection of the mother's

voice and not the recognition of it. The responses to the

mother's voice are in contrast to those made to the control

babel signal. There were no significant effects suggest-

ing detection of the babel signal.

One question which may arise concerning the babel

signal has to do with the likelihood that the infants would

show a cardiac deceleration to the babel signal. The pilot
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subjects showed less deceleration to the babel signal than

to the mother's voice when there was no background noise.

It is possible that although the babel signal was detected

as easily as the mother's voice was, the tendency to re-

spond to it with smaller decelerations caused the average

deceleration to fail to reach significance. In conjunction

with this, there may have been fewer decelerations to the

babel signal because it was not novel, but more noise-like.

The infants had been listening to the ongoing background

babel since their arrival, and both the babel signal and

the background babel were obtained from the same tape.

Several writers have stressed the fact that the heart rate

response is not an automatic consequence of the detection

of a signal, but rather relates to the meaning and impor-

tance of what is detected (e.g. Brown, Morse, Leavitt, &

Graham, 1976; Sameroff, 1972).

However, even if these factors caused insignificant

levels of heart rate change to the babel signal when it was

in fact detected, this does not negate its use as a control.

It shows that the addition of a speech signal of similar

SPL, duration, and location as the mother's greeting was in-

sufficient in and of itself to create a heart rate deceler-

ation. Therefore, the response to the mother's voice was

more likely to have been due to the fact that the voice

was segregated from the background. Detection of the babel

signal would also show ability to detect a signal within
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noise

.

Age differences . Both the 12- and the 25-week-olds re-

sponded to the mother's voice as indicated by heart rate

change, alerting, and quieting. The age differences in

these measures were not significant, although the differ-

ences were in the direction of greater changes for the

older infants. Localizing head turns, fussing, and social

responses (smiling and vocalizing) did show greater levels

of occurrence in the older infants, although analyses of

variance could not be performed due to the very low levels

of occurrence of the behaviors.

Separation of the signal and background babel loudspeakers .

Whether or not detection of the signal was made easier by

separation of the signal and noise is not completely clear.

The cardiac results were in this direction and were sup-

ported by a significant difference in the offset response.

But the deceleration to the side stimulus was not signifi-

cantly deeper than the deceleration to the front.

An important consideration with respect to this

issue is that the front signal was discriminable in the

present study. A replication which would clarify the

issue might involve testing for a signal-to-noise ratio

which did not allow the front signal to be heard, but

which allowed discrimination of the same signal when it

was separated from the noise. An initial study with adults
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could determine what these levels might be, and although

infants might need a slightly louder signal, it would

provide a place to start. An additional control which

could be displayed which might affect the finding would

be to start the trials only when the infant was at mid-

line. In general, the infants faced front and this was

not a problem; but occasionally infants would be turned to

the side prior to signal onset.

The interesting visual stimuli were to the front

in order to keep the infants in the midline position as

much as possible, because trials were not delayed until

the infant was at midline. The visual stimuli which were

to the front probably caused the 25-week-olds ' greater visu-

al alerting to the front, and may have enhanced any car-

diac decelerations which occurred, as well. This could

have lessened the average difference in heart rate change

between front and side trials. There may have been fewer

detections of the front signals and, consequently, fewer

decelerations in heart rate to the front presentations.

But these differences may have been masked because the de-

celerations were deeper due to the interesting visual stim-

ulation. An important control which could be added in

future studies would be to equate the level of visual in-

terest in all locations where auditory stimuli are pre-

sented.



Suggestions for Further Research

110

The major questions which remains concerns how

the infants were able to segregate the signal. Because

of the acoustically complex stimuli used in the study, it

is not possible to specify the exact means by which the

mother's voice was detected. It differed from the babel

in many respects, e.g. frequency, message, rhythm, famil-

iarity, etc. Studies of specific acoustical parameters

would help clarify the issue. One important replication

would be the use of a stranger's voice. It may be the

familiarity of the mother's voice which is of importance.

More specific analyses of the behavioral data

should be made. Frequency information would be especially

valuable for the head turning, smiling, and vocalizing

measures. Another behavior which was not analyzed, but

which gained the author's attention during coding of the

videotapes, was mouthing to the mother's voice in the 12-

week-olds. Turnure (1971) found that the amount of mouthing

was significantly greater to the mother's voice than to a

stranger's voice in 3-month-olds . That result may have been

replicated in the present study.
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DEPARTMENT OF PSYCHOLOGY

Dear Parents,

I am a graduate student in developmental psycholoqvat the University of Massachusetts, Amherst, and I am con-
ducting a research project with 2- and 5-month-old infants.
I understand from newspaper birth announcements that you are
parents of a child of this age. My project, which is a
requirement for the Ph.D. degree, is concerned with the
development of the infant's ability to hear his or her
mother's voice over a background of other voices. I will
observe whether the baby turns toward the sound and responds
with a heart rate change. Very little is known about the
developmental changes in this ability, although it has been
suggested by Piaget and others that the ability may develop
sometime between the ages chosen for study. I hope that
you and your child will help me by participating.

Participation in the project would involve one visit
to the Infant Research Laboratory in Tobin Hall at the Uni-
versity. In addition, I would arrange to visit your home
prior to your appointment to tape record your greeting to
your baby. Although I'm looking at responses to mothers'
voices, fathers are welcome to attend. The project has
received approval from the departmental committee on ethics
in research with humans.

I will be calling you soon to see if you are inter-
ested and to answer any questions you might have. If you
are particularly interested in learning more or wish to

arrange a time more quickly, I can be reached at 545-3882.

Thank you.

Sincerely,

Katherine A. Benson



Report to Parents July 10, 1978

Study of the Development of Auditory

Figure/Ground Segregation in Young Infants

I want to thank you for participating in my study
of hearing in young infants. I enjoyed meeting you and I
appreciate your help in my research.

If you remember, I was interested in seeing if
young infants respond to the addition of their mother's
voice to a background babel of voices. The results of
the study are very interesting. Both the younger (about
12 weeks) and the older (about 25 weeks) infants were able
to hear their mother's voice added to the background babel
of voices, as indicated by heart rate deceleration. It
was easier for the babies when the voice was played from
the side, spatially separated from the babel in front of
them. (This is true for adults, too.) The babies didn't
detect the control signal of extra babel. Typical beha-
vioral responses were alerting and quieting to the addition
of the voice, for both ages. There was a significant
amount of head turning to the correct side in the older
infants, but not in the younger ones. These are typical
patterns of response to sound at these two ages, and they
add further support to the heart rate data. Smiles were
significantly related to the mother's voice, occurring in
response to her greeting.

Thank you again for your participation. If you
have questions, I can be reached at the Psychology Depart-
ment, 545-2383.

Sincerely,

Kathy Benson
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Infants' Heart Rate and Behavioral

Responses to their Mother's Voice

This project is concerned with the study of infants'responses to a recording of their mother's voice I am test-ing 2- and 5-month-olds to see if they will change their on-going behavior when they hear their mother speak. You havebeen asked to record a greeting to get the baby's attention
The recording will be played over a loudspeaker to the front
or the side of the infant. The baby will be observed to see
if he or she responds with a heart rate change or a head
turn in the direction from which your voice is coming. For
example, if your voice comes from a loudspeaker to the side,
will the baby look in that direction? In addition, some
infants will hear their mother's voice when other background
voices are played as well. Will the infant be able to de-
tect the mother's voice in this case? The mother's voice is
being used because I want to maximize the likelihood that
the infant will respond to the sound. The procedures which
are experimental are varying the location of the mother's
greeting, varying the presence of the background voices, and
testing infants at two age periods.

There is no discomfort to the baby in the procedures,
as the voice will be presented at normal conversational
levels (60 decibels) . The doll mobile is provided to keep
the baby interested between presentations of the recording.
You will be seated directly behind your infant. If he or
she starts to cry for any reason, the session will be
stopped. The recording of heart rate is a completely safe
procedure, and we have special safeguards that prevent any
hazard to the baby.

I hope this project will tell us something about
the normal infant's development of the ability to respond
to and localize his or her mother's voice, even when it is

heard with a background of other voices. I hope that all

infants will show a response to the sound. I expect that

the older infants will be more likely to look in the direc-

tion of the sound, but I want to see if the younger infants

will also respond overtly, perhaps with quieting because

they are listening. The results will increase scientific

knowledge about normal hearing, and what kinds of infant

responses can be expected. This will make further research

into infant hearing possible. Although there is no personal
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benefit to your own baby, I am very grateful for yourcooperation. If at any time you wish to discontinue
the procedure, please tell me and the session will bestopped immediately. Please feel free to ask any ques-tions you might have.

I understand the procedure, and my signature
below indicates that I will allow my infant,

, to participate in this project.

Signed: Date



APPENDIX B

THE COMPUTATION AND EDITING OF HEART RATE DATA

Figure 12 : The Formula For Computing a Weighted Average

of Heart Rate in bpm for 1 Second

Table 12 : The Edits of Artificial Data by Trial and Second

Number for each Individual Subject who Required

Them, and the Criteria for Editing
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Figure_12: The formula for computing a weighted average

of heart rate in bpm for 1 second:

R-R-i^ is the time in seconds between R-waves for the i^^

R-R interval;

a is the first R-R interval or fraction of an interval

within the second;

n is the total number of R-R intervals within the second;

is the proportion of the second which the i^^ R-R inter-

val occupies (the weight)

.
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TABLE 12

THE EDITS OF ARTIFACTUAL DATA BY TRIAL AND SECOND

NUMBER FOR EACH INDIVIDUAL SUBJECT

WHO REQUIRED THEM

^''^^^^^^ Trial Number (T) Second Number (S)

14 T 1 9 S 12
16 ± cD S 4

17
u S 8
0

b -3
T J o -3
J.

Q o oo
18 T 4 co }— J
21 T 10 co oZ

T 12 co £.

23 T 10 cD AH
29 T 4 c CD

T 9 o 1 1

T 12 c _1
J- t

QO 1

30 T 2 q 7

T 6 S 6
31 T 2 S -3
32 T 8 S 15
33 T 2 s 11

T 9 S 15
34 T 3 S 14
36 T 4 s 6, s 7

37 T 4 s 3

T 12 s -3
40 T 5 s 3, s 8

T 10 s 11, s 12
41 T 7 s 13
42 T 4 s 13, s 14

44 T 4 s 12

T 9 s 14

46 T 9 s 5

T 11 s 6

T 12 s 3

47 T 4 s 5

48 T 7 s 13
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TABLE 12~Continued

# Subject Trial Number (T) Second Number (S)

49 T
T
T
T
T
T
T
T
T

1

2

5

7

10
3

7

10
12

S
S

S

S

S

S

S

S

S

-2

15
-3,
-3
8

12
8

6,
7

S 15

53
57

S 15

The criteria for edits of artifactual data were:

(1) No more than 2 consecutive seconds were edited, with
averages inserted.

(2) Two consecutive seconds missing immediately before and
after the stimulus onset were not acceptable.

(3) No more than 3 seconds in any one trial were edited
for a trial to be acceptable.

(4) If a subject had many edits, even though all were
acceptable, that subject was replaced. (This happened
in one instance.)



APPENDIX C

ANALYSIS OF PILOT DATA

Table 13 : Analysis of Variance of Heart Rate Change

For the Pilot Subjects
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TABLE 13

ANALYSTS OF VARIANCE OF HEART RATE CHANGE

FOR THE PILOT SUBJECTS^

Source U J. Mean Square F P

Mean (1,2) 16637312. 57748 2255.473 .001

Seconds
Linear Trend

(15,30)
(1,2)

226.48076
484.65131

4 .19598 .001
ATI.Oil

Voice X Seconds
Cubic Trend

(15,30)
(1,2)

84.87208
351.24417.

3.07052
44.43098

.004

.022

Voice X Location x
Trials x Seconds
Cubic Trend

(30,60)
(2,4)

26 .76398
94.03864

2.82163
18.104965

.001

.010

Note 1 . The design of the analysis was an age (2) x
subjects (2) X voice (2) x location (2) x trials (3) x
seconds (16) repeated-measures design.

Note 2 . Only the main effects and interactions which
reached the significance level of p < .05 have been listed.

aN=4



APPENDIX D

PRELIMINARY ANALYSIS OF HEART RATE CHANGE

Table_JJ_: Analysis of Variance of the One-Second Prestimulus

Periods

Table 15; Analysis of Variance of Heart Rate Change by Sex

of Subject

Table 16 ; Analysis of Variance of Heart Rate Change by

Order of Signal Presentation

Table 17 ; Analysis of Variance of Heart Rate Change by

Right- vs. Left-Side Loudspeaker
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TABLE 14

ANALYSIS OF VARIANCE OF THE ONE-SECOND

PRESTIMULUS PERIODS^

Source df Mean Square F E

Mean (1,30) 8271651.92042 6491.03813 .001

Note_J^. The design of the analysis was an age (2)X subjects (16) X trials (12) repeated-measures design.

Note 2 . Only the main effects and interactions
which reached the significance level of p< .05 have been
listed.

^N=32.
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APPENDIX E

PRIMARY ANALYSES OF HEART RATE CHANGE

Table 1 8: Analysis o f Variance of Heart Rate Change By

Age and Type of Stimulus

Table 19: Analysis of Variance of Heart Rate Change to the

Mother's Voice

Table 20: Analysis of Variance of Heart Rate Change to the

Babel Signal

Table 21 : Analysis of Variance of Heart Rate Change for the

Younger Infants

Table 22 ; Analysis of Variance of Heart Rate Change for the

Older Infants
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TABLE 19

ANALYSIS OF VARIANCE OF HEART RATE CHANGE

TO THE MOTHER'S VOICE^

Source df Mean Square F E

Mean (1, 30) 43740037.06082 4255 .49375 .001

Seconds
Quadratic Trend

(10,300)
(1,30)

207 .60111
1849 .77694

4.09818
7.85831

.001

.009

Note 1. The design was an age (2) x subjects (16) x
location (2) x trials (3) x seconds (11) repeated-measures
design

.

Note 2 . Only the main effects and interactions which
reached the significance level of p <.05 have been listed.

^N=32.
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APPENDIX E

Table 23; Analysis of Variance of Heart Rate Change to

the Mother's Voice in the Front Location

Table 24 : Analysis of Variance of Heart Rate Change to

the Mother's Voice in the Side Location
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TABLE 2 3

ANALYSIS OF VARIANCE OF HEART RATE CHANGE

TO THE MOTHER'S VOICE IN THE FRONT LOCATION

Source df Mean Square

^^^"^ (1, 30) 32106076 .75294 4482.17098 .001

Seconds (15,450) 92.78489 2.45671 .002

Quadratic Trend (1,30) 755.47269 4.19572 .049

Note 1 . The design of the analysis was an age (2) x
subjects (16) X trials (3) x seconds (16) repeated-measures
design

.

Note 2 . Only the main effects and interactions which
reached the significance level of p< .05 have been listed.

^N=32, divided equally by age group.
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APPENDIX F

ANALYSIS OF BEHAVIORAL DATA

Table_25: Analysis of Variance of visual Alerting

Table 26; Analysis of Variance of Quieting
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TABLE 2 5

ANALYSIS OF VARIANCE OF VISUAL ALERTING^

Source df Mean Square

Mean

AL
OV
VL
SXV
XVL
SOL
ASXV
AOXL
SOXL
OXVP
SOLP
AVLP
ASOVL
AXVLP
ASOXVP
ASOVLP
AOXVLP
ASOXVLP

(1,16)
(1,16)
(1,16)
(1,16)
(1, 16)
(1,16)
(1,16)
(1,16)
(1,16)
(1,16)
(1,16)
(3,48)
(3,48)
(3,48)
(1,16)
(3,48)
(3,48)
(3,48)
(3,48)
(3,48)

92 .45790
1 . 38590
.18712
2 .02458
.18658
1.91884
.27770
.25992
.97110
.22095
.19853
.05691
.10159
.05433
.21345
.06332
.08906
. 06924
.05217
.06035

103 .01868
11.96242
6 .68735
17.47511
5.27795
16 . 56246
7.85533
9 . 28917
8 .38200
7.89629

09512
01873
18348
48269
03789
05905
72401

4 .43834
3. 34398
3.86856

.001

.003

.020

.001

.035

.001

.013

.008

.011

.013

.017

.039

.010

.023

.026

.012

.006

.008

.027

.015

Note 1 . The design was an age (2) x side (2) x or-
der (2) X sex (2) X subjects (2) x voice (2) x location (2)
X periods (4) repeated-measures design.

Note 2 . Only the main effects and interactions
which reached the significance level of p < .05 have been
listed

.

^N=32.

t> The initials stand for the following:

A = age
S = side-loudspeaker location
0 = order of signal presentation
X = sex
V = voice
L = location
P = periods
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TABLE 26

ANALYSIS OF VARIANCE OF QUIETING^

Source df Mean Square

Mean (1,16) 11.59211 65.04895 .001

(1,16) 1.71843 15.80080 .001

ASOL (1,16) .15687 6 .10919 .025

AOXL (1, 16) .16124 6.27941 .023

ASVP (3,48) .04943 3.04293 .038

AOXVP (3,48) .05313 3. 27100 .029

SXVLP (3,48) .06051 3.79021 .016

Note_l. The design was an age (2) x side (2) x
order (2) x sex (2) x subjects (2) x voice (2) x location
(2) X periods (4) repeated-measures design.

Note 2 . Only the main effects and interactions which
reached the significance level of p < .05 have been listed.

^N=32

^ The initials stand for the following:

A = age
S = side-loudspeaker location
O = order of signal presentation
X = sex
V = voice
L = location
P = periods
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