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ABSTRACT

STUDIES ON POLYURETHANE ADHESIVES AND SURFACE MODIFICATION
OF HYDROPHOBIC SUBSTRATES

SEPTEMBER 2007

JAYARAMAN KRISHNAMOORTHY, B.Sc, UNIVERSITY OF MADRAS

M.S., INDIAN INSTITUTE OF SCIENCE, BANGALORE, INDIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shaw L. Hsu and Professor Thomas J. McCarthy

This thesis work deals with (a) Curing of reactive, hot-melt polyurethane

adhesives and (b) Adsorption studies using different interactions. Research on

polyurethanes involves characterization of polyurethane prepolymers and a novel

mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger"

mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown

to be influenced by morphology and environmental conditions such as temperature and

relative humidity. Although the initial composition, final morphology and curing

kinetics are known, information regarding the intermediate prepolymer mixture is yet to

be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with

the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether

diol (PPG) were characterized. The morphology and crystallization kinetics of a

polyurethane prepolymer was compared with a blend of PPG prepolymer (the product

obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the

product obtained by the reaction of PHMA with diisocyanate) to study the effect of

copolymer formed in the polyurethane prepolymer on the above-mentioned properties.
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Although the morphology of the polyurethane prepolymer is determined in the

first few minutes of application, the chemical curing of isocyanate-terminated

prepolymer occurs over hours to days. In the literature, different techniques are

described to follow the curing kinetics. But there is no established technique to control

the curing of polyurethane prepolymer. To make the curing process independent of

environmental factors, a novel approach using a trigger mechanism was designed and

implemented by using ammonium salts as curing agents. Ammonium salts that are

stable at room temperature but decompose on heating to yield active hydrogen-

containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the

prepolymer chemically.

Research on adsorption studies involved making functionalized, thickness-

controlled, wettability-controlled multilayers on hydrophobic substrates and the

adsorption of carboxylic acid-terminated poly(styrene-fr-isoprene) on alumina/silica

substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces

irreversibly due to hydrophobic interactions. This thin semicrystalline coating is

chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker

and hydrophobic coatings. The products of the modification reactions allow adsorption

of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized.

This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to

prepare coatings with thickness, chemical structure and wettability control on any

hydrophobic surface.

Research on adsorption characteristics of carboxylic acid-terminated

poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional

vii



group present at specific ends. Comparative adsorption studies for carboxylic acid-

terminated and hydrogen-terminated block copolymers was carried out on alumina and

silica substrates.
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CHAPTER 1

INTRODUCTION

1.1 Polyurethanes as reactive, hot-melt adhesives

Polyurethanes (PUR) find their use in variety of applications including

adhesives, coatings, elastomers, fibers and foams. The main reason behind the diversity

of applications of polyurethanes is the segmented nature of PURs and the rich chemistry

of isocyanates. Hard segments of the PUR impart strength whereas the soft segments

provide flexibility, making the PUR elastomeric by nature. By tuning the characteristics

of the hard and soft segments, different properties can be realized from PURs. Though

the name 'polyurethanes' seek to generalize the functional group present to urethane

(carbamate), other functional groups are also present. Hard segments are obtained by the

reaction of diisocyanates with small molecule diol, diamine or water. Urea is the

functional group obtained by the reaction of amine/water with isocyanate. Functionality

in the soft segment is determined by the temperature range for operation, solvent and

weather resistance. The polymers predominantly used for soft segments are hydroxyl-

terminated polyester, polyether or polycarbonate. Apart from the segmented structure,

PURs can also form highly crosslinked networks due to rich isocyanate chemistry.

Figure 1.1 shows the possible chain extension and crosslinking chemistry in

polyurethanes. A wide variety of catalysts are available to control the products formed

in polyurethanes, ranging from tertiary amines to tin compounds.

Polyurethanes find application in reactive, hot-melt adhesives because of their

ability to combine the fast setting property of a hot-melt adhesive and the cohesive

1



strength of a crosslinked polymer. In general, reactive, hot-melt polyurethanes involve

reacting excess diisocyanate with polyols in the presence of a high T, component. High

T
g
component helps in fast vitrification of the adhesive and the polyols provide physical

crosslinks and elastic properties through a semi-crystalline component and/or an

amorphous component. Excess isocyanate cures chemically over a period of time to

yield the chemically crosslinked system.

+ OCN-

-NH^NH-

+ H2q^co, + OH-

-NH^O
O

Urethane

+ OCN-

HN
CM

/
NT°-
O

Allophanate

Dimerization &
Trimerization

O

I

Isocyanurate

: chain extension1=3 :

r~~] : branching or crosslinking

Figure 1.1 Isocyanate chemistry involved in chain extension and crosslinking in

polyurethanes.
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Apart from the chemical crosslinks, morphology also plays an important role in

determining the mechanical strength of the adhesives. Morphology that is more

interpenetrating/co-continuous offers better mechanical properties than the domain-

matrix structure.' Compatibilization is one of the easy ways to achieve co-continuous

morphology. A compatibilizer acts as a surfactant and reduces the interfacial tension

between the phases. This increases the 'adhesion' between the phases and helps in better

stress transfer. With all the above-mentioned advantages, compatibilization can be tuned

by the molecular weight of the components and type of copolymer used as

compatibilizer (either a block copolymer or a graft copolymer).
2 4

Reactive

compatibilization is an effective technique to compatibilize an immiscible blend that

involves reaction of the functional groups during the processing stage. Reactive, hot-

melt polyurethane adhesives are typically a ternary blend which is reacted with

isocyanate during the processing stage.
5 8

Reaction of NCO with hydroxyl groups of

polyols changes the morphology and crystallization kinetics.
9 10

Chapter 2 of this thesis

deals with quantification of the copolymer formed by the reaction of NCO with the

polyols, polyester diol and polyether diol. Influence of this in-situ copolymer formation

on the morphology and crystallization kinetics of polyurethane prepolymer is studied.

Reaction of isocyanate-terminated prepolymer with water to form crosslinked

product is the second step involved in the curing of reactive, hot-melt polyurethane

adhesives. In the literature, different techniques are described to characterize the

conversion of isocyanate during the curing process."
17

But, there exists none to control

the curing. However, these kinds of controlled curing by blocking/deblocking

isocyanates are well-known phenomena in solvent-borne coatings. Blocking involves

3



reaction of NCO with an active hydrogen compound to yield a product that would

generate NCO on deblocking by a change in temperature or pH. A review by Wicks et.

al. describes the various blocking/deblocking mechanisms available for coating

applications.
18

However, these techniques are not applicable for reactive, hot-melt,

polyurethane adhesives because curing involves reaction of an active, hydrogen-

containing compound with isocyanate. Chapter 3 of this thesis deals with curing of

isocyanate-terminated prepolymer by a trigger mechanism where curing process is made

independent of environmental conditions.

1.2 Surface modification using adsorption phenomena

Surface modification of polymers plays an important role in wide variety of

fields such as adhesion, coatings, tribology and thin-film technology to name a few.

Surface modification involves incorporation of functional groups to meet the needs of

the specific application without compromising the bulk properties of the material.

Conventional ways to modify the surface involve either chemical treatment or

plasma/corona treatment.
19

Multilayer formation on different substrates is another way

to maintain 'similar surfaces' with varying bulk properties. Multilayer, instead of

monolayer is necessary because 'memory effects' persist over short length scales. The

literature describes different methods to fabricate multilayers. Ionic interactions, H-bond

interactions, charge transfer, repetitive adsorption/drying, biological interactions and

various complex formation methods were studied for multilayer film construction.
20 "26

Although these methods extend multilayer assembly to neutral molecules with specific

interactions, they individually lack latitude in terms of substrate choice and multilayer
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functionality and collectively do not comprise a versatile method, but rather a collection

of specific syntheses. Moreover, these techniques are not applicable for low-energy

surfaces as there are no favorable interactions leading to adsorption on these substrates.

Chapter 4 of this thesis deals with forming thickness-controlled, wettability-controlled,

functionalized multilayers on hydrophobic substrates by using the adsorption

characteristics of poly (vinyl alcohol) on hydrophobic substrates using hydrophobic

interactions.

Adsorption of polymer onto a substrate is determined by two factors : (a) Loss of

translational entropy, polymer/solvent interactions and solvent/adsorbent interactions

and (b) Adsorbent/polymer interactions.
27

Chapter 5 of this thesis deals with adsorption

of hemi-telechelic block copolymers of carboxylic acid-terminated poly(styrene-fr-

isoprene) and H-terminated poly(styrene-b-isoprene) on alumina and silica substrates

and the study of the influence of the enthalpic interaction between -COOH and

alumina/silica on adsorption of hemi-telechelic block copolymers.

1.3 Thesis overview

This thesis deals with two different fields : (a) Reactive, hot-melt polyurethanes

and (b) Surface science. Chapter 1 presents an introduction to the topics discussed in the

thesis. In Chapter 2, polyurethane prepolymer, synthesized by the reaction of PPG and

PHMA diols with diisocyanate, is characterized for the presence of copolymer of PPG

and PHMA. Morphology and crystallization kinetics of the polyurethane prepolymer are

compared with the blend of PPG prepolymer (obtained by the reaction of PPG with

diisocyanate) and PHMA prepolymer (obtained by the reaction of PPG with

5



diisocyanate). Chapter 3 presents a proof of concept for the curing of isocyanate-

terminated PPG prepolymer by a trigger mechanism. Ammonium salts, that are stable at

room temperature but decompose at elevated temperatures to give active hydrogen-

containing compounds are used as curing agents. In Chapter 4, functionalized,

thickness-controlled, wettability-controlled multilayers are formed on hydrophobic

substrates by using the adsorption of poly (vinyl alcohol) (PVOH) and the modification

of PVOH by chemical means in a cyclic manner. In Chapter 5, hemi-telechelic block

copolymers of poly(styrene-Z?-isoprene) containing carboxylic acid terminal groups are

synthesized by a living, anionic polymerization technique. Adsorption studies are

carried out on alumina and silica substrates and the effect of terminal carboxylic acid

group on adsorption characteristics is studied. Chapter 6 summarizes and discusses

future directions of this thesis work.
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CHAPTER 2

CAUSE AND EFFECT OF COPOLYMER FORMATION IN POLYURETHANE

PREPOLYMERS

2.1 Introduction

One-component polyurethane systems used as hot melt adhesives have many

attractive physical properties. These formulations have substantial environmental

benefits, such as being solvent-free and not producing volatile organic compounds.

These polyurethanes also are fast setting, durable, adhere well to a broad range of

substrates and are chemically stable.
1 '2

Typically, a three-component blend is used, with

each component serving a specific purpose to achieve the desired physical properties.

The three polymer components commonly employed are polyether, polyester and

polyacrylate.
3 '4

Polyether is used for its low T
g
properties whereas crystallizable

polyester is used to control the green strength (initial viscosity) and mechanical

properties. Polyacrylate is used for green strength and to enhance the overall physical

properties at elevated temperatures.

A substantial number of studies have clarified the miscibility behavior of the

various components and morphological features formed. The degree of crystallinity

and the size of crystallites formed are the controlling factors in determining the effective

viscosity thus their applicability as an one component adhesive.
9
These studies are based

on the non-reactive components. In actual reactive blends, the situation is more

complex. The reaction of diisocyanates and reactive polyols introduces a degree of
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complexity that has not been discussed previously for polyurethanes. Besides with the

increase in molecular weight and introduction of urethane groups, copolymerization can

also occur. The presence of a copolymer that acts as a surfactant reduces the interfacial

tension between the immiscible components. All of these effects should influence the

morphology of the blends. Therefore, any structural feature that would affect the

crystallization behavior would be important to identify and characterize.

Although a large number of studies have been carried out to characterize the

reaction products of an isocyanate and an alcohol, only a few studies have been carried

out to characterize the products of actual reactive polyurethanes.
10 22

The molecular

weight distribution of the prepolymer based on poly(propylene glycol) (PPG) and bis(4-

isocyantophenyl) methane (MDI) and the different products formed have been

determined recently.
23

In the reactive system under study, poly(propylene glycol) (PPG),

a polyether and poly(hexamethylene adipate) (PHMA), a polyester are used as

macrodiols. These two macrodiols possess two different types of hydroxyl groups,

primary hydroxyl in PHMA and secondary hydroxyl in PPG, with significant differences

in reactivity towards isocyanates. This difference in reactivity and the stoichiometric

excess of NCO leads to the formation of PPG and PHMA homopolymers, both chain-

extended by the urethane functionality and also possible copolymers of PPG and

PHMA.

In theory, introduction of copolymers is a simple, economical way to

compatibilize two immiscible polymers.
24

Compatibilization changes the morphology of

the immiscible blend and has a significant impact on the mechanical properties of the

blend. When a block copolymer is added to an immiscible blend, entropy would dictate
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random distribution of the copolymer. But the presence of the block copolymer at the

interface overcomes the unfavorable interaction between the immiscible homopolymers,

thereby reducing the interfacial tension.
25 '26

Practically, compatibilization can be

accomplished by suitably changing the chemistry of the end groups or having conditions

that would facilitate copolymer formation. Such compatibilization studies have been

extensively carried out with the formation of amide bonds and to a lesser extent with

ester bonds while processing. Compatibilization of non-polar polyolefins and polar

polyamides has been brought about by the formation of amide bonds between the amine

functionality in the polyamide and maleic anhydride incorporated in the polyolefin.

Transesterification was employed to compatibilize the ester based systems. Although

this technique is widely used, few attempts have been made to quantify the amount of

copolymer formed in such systems. " However, no such compatibilization or

quantification has been studied for polyurethane systems in spite of their importance and

application.

In this study, we demonstrate a general strategy to quantify the amount of

copolymer formed in polyether-based and polyester-based polyurethane prepolymer

systems and study how changes in miscibility can be brought about by the presence of

copolymers. The changes in the crystallization rate and morphology of the product are

then compared to the blends of polyester- based polyurethane (PHMA prepolymer) and

polyether-based polyurethane (PPG prepolymer).
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2.2 Experimental Section

2.2.1 Materials

Poly (propylene glycol) (PPG) was obtained from ARCH chemical (Mn = 1900

g/mol, Mw/ Mn= 1.01, Tg
= -66 °C and hydroxyl value (Number of mg of KOH

containing same number of hydroxyl groups as in 1 g of the material) = 56). Poly

(hexamethylene adipate) (PHMA) was obtained from Dow chemical ( Mn = 1600 g/mol,

Mw / M„ = 1.59, Tm = 55 °C, T
g
= -61 °C and hydroxyl value = 34).

31 MDI was used as

received (Aldrich, 98%).

2.2.2 Prepolymer synthesis

Polyurethane prepolymer was synthesized as follows. PPG and PHMA were

introduced to a three-neck round bottom flask fitted with a mechanical stirrer, vacuum

adapter and a rubber septum. Contents of the flask were evacuated at 60 °C coupled

with nitrogen purge in a cyclical manner to remove any trace amount of moisture over a

period of 24 h. The temperature of the flask was then increased to 120 °C under nitrogen

purge. A calculated amount of MDI was added through the septum and the reaction

allowed to proceed for 3 h under nitrogen. The prepolymer was synthesized with a PPG/

PHMA ratio of 1:1 (by mass) and a NCO/OH ratio of 1.68 with the OH contribution

from both PPG and PHMA. Polyurethane prepolymer thus obtained was isocyanate

terminated. To facilitate the characterization of the prepolymer, dry methanol was added

and stirred for 24 h to obtain methyl-terminated prepolymer. Inactive polyurethane

prepolymer, thus obtained, was recovered by rotary evaporation.
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PPG and PHMA prepolymers were prepared by reaction of the corresponding

macromonomer with MDI at 120 °C for 3 h with a NCO/OH ratio of 1.68. Conditions

for the synthesis of these prepolymers were the same as mentioned for the polyurethane

prepolymer.

2.2.3 Characterization

A Bruker DPX300 spectrometer (300 MHz 'H NMR) was used to record NMR

spectra. Acetone-d6 was used as solvent. An acquisition time of 2.0 s was employed to

collect the data and was found to be ample to allow all the protons to relax. The final

spectrum was signal-averaged over 16 scans. Fourier Tranform Infrared (FT-IR)

spectroscopy was carried out on a Perkin Elmer Spectrum 2000 system using

transmission mode. Samples were cast from CHCI3 solution onto a NaCl salt plate and

dried under vacuum at 50 °C for 3 h. Spectra recorded were signal averages of 32 scans.

Time-resolved IR measurements, to follow the crystallization process, were obtained

using a Perkin-Elmer 2000 FT-IR spectrometer in reflection-absorption mode. The

spectral resolution was 4 cm"
1

and the infrared spectra were obtained every 14 s to

follow the crystallization process. Samples were melted and transferred to a specially

designed cell maintained at a predetermined temperature to have a AT (Tm - T) of 1

8

°C. The molecular weight distribution was obtained using a Waters GPC equipped with

a differential refractometer using THF as the eluent at a flow rate of 1.0 mL/min.

Optical microscopy of the samples was carried out using an Olympus Vanox optical

microscope equipped with a Kodak EASYSHARE LS443 zoom digital camera.

Thermal analysis was carried out using a TA Instruments Q1000 instrument. A heating
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rate of 10 °C/min was used for the thermal measurements. The degree of crystallinity

was estimated by comparing the melting enthalpy (AH) of an isothermally crystallized

sample with the equilibrium melting enthalpy of PHMA (AH°).

Filtration was carried out by dissolving/dispersing approximately lg of

polyurethane prepolymer in 10 ml of methanol and filtering the solution/dispersion

through a sintered glass funnel. More methanol was added to wash the remains and the

residue was dissolved in acetone. The filtrate and residue were dried over a water bath.

The filtration products were characterized by NMR, GPC and FT-IR.

The residue of the filtration process was extracted with a mixture of 12.5/1

methanol/chloroform (v/v) using a Soxhlet extractor over 60 h. Due to the high

temperature in the sample chamber (because of conduction), part of the residue, which

was otherwise insoluble at room temperature in the solvent mixture, was obtained in the

extract flask. The solvent mixture was filtered to separate the extract and the insoluble

part. The extracted component was obtained from the solution by rotary evaporation.

The insoluble component of the extraction process was combined with the residue left

in the thimble. It was not possible to verify the amount of sample left in the thimble.

2.3 Results and discussion

2.3.1 Cause of the copolymer formation

Polyurethane prepolymer was obtained by the reaction of diisocyanate (MDI)

with the blend of macrodiols, PPG and PHMA. PHMA has primary hydroxyl groups

that have higher reactivity with isocyanate compared to the secondary hydroxyl group of
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PPG. In theory, it is possible to have PPG homopolymer, PHMA homopolymer,

copolymer of PPG and PHMA linked by the urethane bond and unreacted MDI as

shown in Figure 2.1. It is imperative to identify the different components of the

polyurethane prepolymer to account for the observed physical properties.

Filtration is an easy yet effective technique to purify or separate the constituents

of the synthesized prepolymer. PHMA is sparingly soluble in methanol whereas PPG is

highly soluble. Employing this contrast in solubility, the PPG component of the

polyurethane prepolymer can be obtained in the filtrate leaving the PHMA component

in the filtration residue. Copolymer, if present, can be obtained either in the filtration

residue or the filtrate depending on the volume fraction of the constituents in the

copolymer. Components obtained from filtration were compared with PPG and PHMA

prepolymers.
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NCO/OH = 1.68;

120 °C; 3 h

PHMA

+
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Chemical reactions

• Urethane

• Allophanate

Chemical reactions

• Amine formation

• Urea

• Biuret

Crosslinked hot melt

Physical processes

• Phase separation

• Crystallization

• Vitrification

0=C=N-(PPG)x-N=C=0
0=C=N-(PHMA)y-N=C=0
PPG/PHMA copolymer
Unreacted MDI

Prepolyme

HpO

Figure 2.1 Processes involved in crosslinked, hot melt polyurethane adhesives
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Figure 2.2 IR analyses of different prepolymer systems and filtration products, p
shows the C-O-C stretching band at 1108 cm"

1
and a shows the PHMA

crystallization band at 973 cm"
1
. MDI* denotes methanol-reacted MDI.

The filtration residue and filtrate were analyzed for functional groups by infrared

spectroscopy. The 1 108 cm"
1

band is characteristic of the backbone stretching of the C-

O-C functional group, which is indeed found to be extremely intense in the filtrate as

shown in Figure 2.2. In contrast, the intensity of this band is weak in the filtration

residue indicating the presence of PPG in the filtration residue. Its presence in the

residue can only be attributed to the PPG in the copolymer of PPG and PHMA. The

band at 973 cm"
1

is the CH2 skeletal backbone deformation band that is sensitive to

conformational order. This conformational order is identified with the crystalline state
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of PHMA. From Figure 2.2, it is clear that PHMA in the filtration residue crystallizes

whereas the filtrate does not show any crystallization peak. This observation confirms

the crystallinity of PHMA in the filtration residue but rules out crystallization of PHMA

in the filtrate. However, it is important to note that the absence of crystalline PHMA

does not imply an absence of PHMA in the filtrate.

(a)

i

i—i—i—i i i i i i i i i i i i i i
i i

8 6 4 2 0

PPM
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Figure 2.3 NMR spectra of (a) PPG prepolymer and (b) PHMA prepolymer and

the corresponding assignments for the protons.
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Figure 2.4 NMR analyses of the different constituents of polyurethane prepolymer.

Proton NMR was used to quantify the copolymer in the filtration residue and the

filtrate. Figure 2.3 shows the NMR spectrum of PPG and PHMA prepolymers and the

corresponding peak assignments. The methylene protons adjacent to the ester carbonyl

(at 2.2-2.5 ppm) were used as the signature for the PHMA component and the methyl

protons to assign the PPG component (1.0-1.3 ppm). Aromatic protons of MDI were

used to calculate the MDI contribution. Figure 2.4 shows the NMR spectra of different

constituents of the polyurethane prepolymer. From the spectra of filtration products,

mass ratios of PPG/PHMA were calculated using the molar mass of the monomers of

PHMA (228 g/mol) and PPG (58 g/mol). For the filtrate, PPG/ PHMA (mass ratio) was
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determined to be 8.27 and for the residue, PPG/PHMA was 0.33. Table 2.1 tabulates the

mass of the individual components from the observed amount for the filtrate and the

residue. Based on the amount of PPG present in the residue relative to the total mass of

polyurethane prepolymer used for filtration (0.1 156 g/0.9260 g), the contribution of

PPG to the copolymer of PPG-PHMA is approximately 12% of the total mass of the

polyurethane prepolymer. Calculations from NMR were based on isocyanate-terminated

prepolymers, but the observed mass was obtained from methanol-terminated

prepolymers. This discrepancy does not affect our inference as the amount of unreacted

MDI was low and the mass increase of the prepolymer due to isocyanate-methanol

adduct formation was less than 1%. Estimation of mass contributions of PPG and

PHMA in filtration products through NMR studies has an error of 5% with respect to

the initial composition used in the synthesis of polyurethane prepolymer.

Table 2.1 Estimation of mass of individual components from NMR studies and

filtration technique.

Filtrate Filtration residue

MDI PPG PHMA MDI PPG PHMA

Observed mass 0.4391 g/ 0.9620 g 0.5213 g/0.9620g

Mole ratio 2.4305 32.52 1 1 9.18 7.092

Weight ratio 2.67 8.27 1 1 2.125 6.4534

Estimated mass

(g)

0.304 0.0368 0.1156 0.3512
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To verify the validity of the filtration technique and the results obtained from

NMR, a blend of PPG prepolymer and PHMA prepolymer (1:1 by mass) was mixed in

methanol thereby replicating the same condition as the polyurethane prepolymer in

methanol. The blend solution was filtered and NMR was performed on the filtrate and

the residue. In the filtrate, PPG/PHMA was 16.74 and in the residue, PPG/PHMA was

0.03. PPG/PHMA ratio in the filtrate of the blend filtration shows the efficiency of the

filtration process. This control experiment confirms our premise that PPG in the residue

of polyurethane prepolymer is due to copolymer of PPG and PHMA.

Although the presence of copolymer in the residue was confirmed by the NMR

studies, the presence of PHMA homopolymer needs to be excluded. To isolate the

PHMA homopolymer and the PPG-PHMA copolymer, soxhlet extraction was carried

out using 12.5/1 (v/v) methanol/chloroform. From Figure 2.4, it is obvious that the

soxhlet residue and the extract have both PPG and PHMA. The extract of the process

has a PPG/ PHMA ratio of 1.22 and the insoluble part has PPG/PHMA = 0.24. This

experiment shows that the copolymer was inseparable from the PHMA homopolymer.

Therefore, based on the NMR data, PPG contribution to the copolymer is 12% of the

total mass of the polyurethane prepolymer.
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Figure 2.5 GPC analyses for (a) Comparison ofMWD of the prepolymers with the

filtration products and (b) Comparison ofMWD of the soxhlet extraction products

with the nitration residue.
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The molecular weight distribution (MWD) of the prepolymers and the different

constituents obtained by filtration were analyzed by GPC. Macromonomer PHMA has a

molecular weight distribution of 1 .59 that translates into a broad distribution for the

PHMA prepolymer. Macromonomer PPG has a PDI of 1 .0 1 that translates into well-

defined MWD for PPG prepolymer. Products formed were OCN-MDI-(PPG-MDI)n
-

NCO, where n = 1-4.
23

Figure 2.5 compares the MWD of the PPG prepolymer and

PHMA prepolymer with the polyurethane prepolymer and its filtration products. The

filtration residue of the polyurethane prepolymer has a MWD profile that resembles the

PHMA prepolymer and the filtrate MWD profile is similar to that of the PPG

prepolymer. However, due to the different reactivity of alcohol groups of PHMA and

PPG with isocyanate, MWD values of the filtration products were different from those

of the PPG and PHMA prepolymers. PHMA should react faster than PPG on account of

PHMA's primary hydroxyls; so consumption of isocyanate by the PHMA should be

faster than by PPG. This results in the formation of copolymer between PPG and PHMA

as determined by the rate constants for reaction of primary and secondary alcohol with

isocyanate. Since NCO/OH = 1 .68, after the complete consumption of PHMA hydroxyls

and partial consumption of PPG hydroxyls, remaining PPG hydroxyls react with the

isocyanate functionality. However, NCO/OH is different from the initial value of 1.68.

This difference in NCO/OH leads to MWD of the filtrate different from the PPG

prepolymer' s MWD.

Soxhlet extraction of the filtration residue yields two components with different

molecular weight distributions. The extract of the process has a lower molecular weight
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compared to the filtration residue and has a MWD profile similar to the filtration residue

whereas the soxhlet residue has an unimodal distribution but higher than the Mw of the

filtration residue.

Figure 2.6 Optical micrographs showing morphology evolution when cooled from

120 °C to 22 °C for (a) The blend of PHMA prepolymer and PPG prepolymer and

(b) The polyurethane prepolymer. Scale bar corresponds to 100 u.m.
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2.3.2 Effect of the copolymer formation

Copolymer formation affects the morphology and crystallization kinetics of

polyurethane prepolymer in a profound way. Figure 2.6 compares the morphology of a

PPG prepolymer/ PHMA prepolymer blend and the polyurethane prepolymer. The blend

is phase separated with the domains formed in the length scale of hundreds of microns

whereas the polyurethane prepolymer has a 'macroscopically homogeneous'

morphology. This phase separation in the blend is due to an unfavorable ^-parameter

which translates into high interfacial tension between the components of the blend as

given by

Y = (kT/a
2
)(X/6)

,/2

(1)

where y is the interfacial tension between the phases, and a is the monomer length.
33

However, in the polyurethane prepolymer, interfacial tension between the components is

greatly reduced because of copolymer formation. The extent of decrease in interfacial

tension is a function of the molecular weights of the homopolymers and copolymer in

the system and the concentration of copolymer. Reduction in interfacial tension with

concentration occurs until a critical micellar concentration (cmc) is reached." Park et.

al. have shown for a polystyrene/polybutadiene blend compatibilized by the

poly(styrene-Z?-butadiene) copolymer, dependence of the interfacial tension on the

concentration of copolymer approximately follows the relationship

y/y0 ~ exp (-c(p) (2)

where y and yo are the interfacial tensions with and without the copolymer, cp is the

concentration of the copolymer and c is a constant.
34
Beyond cmc, copolymer molecules

tend to form micelles and the domain size remains constant. In the polyurethane system
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studied here, even though the exact copolymer amount is not known, it is high enough

to reduce the interfacial tension between the PPG and PHMA components. Although the

polyurethane prepolymer appears optically homogenous at 120 °C when viewed using

white light, there exists micron/submicron domains. This explains the observed

morphology evolution for the polyurethane prepolymer.

J- i I i L
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)

Figure 2.7 Kinetics of PHMA crystallization in the polyurethane prepolymer as

followed by the deformation band at 973 cm'
1
.

The observed morphological features explain the crystallization trend in the

blend and the polyurethane prepolymer system. Figure 2.7 shows the time-dependent
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infrared spectra of the systems studied with a supercooling (difference between melting

temperature and crystallization temperature) of AT = 18 °C. Depression in the melting

temperature of PHMA occurs in the polyurethane due to the copolymer formation. To

arrive at any meaningful conclusion, the degree of supercooling and not the absolute

crystallization temperature is the appropriate parameter to follow the crystallization

kinetics. Crystallization of PHMA was faster in the blend system of PPG

prepolymer/PHMA prepolymer than the polyurethane prepolymer as followed by the

deformation band at 973 cm"
1

. This crystallization band was normalized with respect to

the carbonyl stretching band and calibrated to the degree of crystallinity from thermal

measurements.
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Figure 2.8 Crystallization kinetics of PHMA in (a) The blend of PHMA
prepolymer and PPG prepolymer and (b) The polyurethane prepolymer as

measured by following the deformation band at 973 cm"
1
.

Figure 2.8 compares quantitatively the crystallization kinetics of the different

systems. In the miscible system, the crystallization kinetics is slow and the degree of

crystallinity reaches a value of -12%, while in the immiscible blend system, the degree

of crystallinity is ~ 16.5% after 1400 seconds. This observation can be qualitatively

explained by considering the two processes involved in the crystallization: nucleation

and growth. For nucleation to occur, presence of heterogeneities and/or a critical

concentration of crystallizable component has to be attained and for crystal growth,

polymer chains need to be transported to the growth front. From the kinetics plot, there
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is not much of a difference in the nucleation rate as observed by the induction time for

crystallization. In the literature, crystallization studies of such compatibilized systems

are directed towards fractionated crystallization where homogeneous crystallization is

observed at high supercooling.
35-36

In this study, our goal was to study the crystallization

kinetics at fixed supercooling and not fractionated crystallization. Hence at the given

supercooling, PHMA-rich domains of the blend or the polyurethane prepolymer should

be governed by the same nucleation mechanism. This nucleation mechanism in

micron/submicron domains is also confirmed by the morphological studies where

crystallization of PHMA starts at the domain. However growth is slower in the

polyurethane prepolymer than the PPG prepolymer /PHMA prepolymer blend. This

observation can be explained by the reptation model.'
7

' Effective transport rate, v r

V r =fc /^r (3)

where fc is the force for pushing molecules to the growth front and ^r is the friction

coefficient associated with the reptation correlated to the segmental size of the reptation

model. In the polyurethane systems, correlation length, ^r, the average distance between

contact points of crystallizable polymer chains, is high as the concentration of PHMA is

diluted by the presence of PPG from the copolymer and the PHMA has to be transported

to the growth front. Thus growth is affected by the presence of copolymer which in turn

affects the crystallization kinetics. The same reasons also explain the observed trend in

the phase separated blend system of PPG prepolymer/ PHMA prepolymer. Because of

the high concentration of PHMA in the PHMA-rich domains of the blend, which are

larger than the domains of polyurethane prepolymer, 1$ is lower than in the polyurethane
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prepolymer. Thus, a lower friction coefficient results in faster crystal growth in the

blend.

2.4 Conclusions

Polyurethane prepolymer prepared from PPG, PHMA and MDI was separated by

filtration and soxhlet extraction techniques and analyzed for the copolymer formed

during the prepolymer formation by FT-IR, GPC and NMR techniques. Secondary

hydroxyls of PPG have lower reaction rates than the primary hydroxyls of PHMA

during urethane formation with isocyanates. From NMR studies, the contribution of

PPG to the copolymer is determined to be 12% of the total mass of the polyurethane

prepolymer. Presence of the copolymer alters the otherwise macrophase-separated

PHMA prepolymer/PPG prepolymer blend into a compatibilized polyurethane system.

This compatibilization results in slower PHMA crystallization kinetics in the

polyurethane prepolymer than in the blend of PPG prepolymer/PHMA prepolymer.
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CHAPTER 3

TROJAN HORSE APPROACH TO POLYURETHANE CURING

3.1 Introduction

Polyurethane (PUR) is one of the most studied polymers in the scientific

community. PURs find their use in variety of applications including foams, coating,

adhesives and fibers. The main reason behind the diverse applications of these materials

is the segmented nature of PURs. Hard segments of the PUR impart strength whereas

the soft segments provide flexibility, making the PUR elastomeric by nature. By tuning

the characteristics of the hard and soft segments, different properties can be realized

from PURs. Application in adhesion requires unique properties. It is preferred to have a

thermoplastic material for processing but the strength of chemical crosslinking of a

thermoset is needed for real-world application. Apart from the chemical crosslinking,

physical crosslinking can also occur if a crystallizable diol is used for PUR synthesis.

These processes of chemical crosslinking by isocyanate moieties and physical

crosslinking due to crystallization are called curing. There are two steps involved in the

curing of reactive hot melt adhesives. In the first step, an isocyanate terminated

prepolymer is obtained by reacting the macrodiol(s) with an excess of isocyanate. This

isocyanate-terminated prepolymer is applied for adhesive application and allowed to

cure. Water from the atmosphere reacts with the isocyanate to form an urea that can

form a biuret, a crosslink. The formation of biuret crosslinks is an important step in

PUR curing.
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Curing of PUR is dependent on the relative humidity of the ambient conditions.

A number of studies have been carried out to follow the curing kinetics by FT-IR, DSC,

intrinsic fluorescence spectroscopy, frequency-dependent dielectric sensing technique

and rheology.
15 Comyn et. al., proposed diffusion-limited curing kinetics defined by an

empirical equation

z = (2VPpt)
05

where z is the cure depth, V is the volume of the prepolymer , P is the permeability

coefficient of water in the cured prepolymer, p is the water vapor pressure and t is the

reaction time.
6

This theory of diffusion-controlled curing kinetics is contested by Jeong

et. al. who showed the curing is both a reaction rate-controlled and diffusion-controlled

process with the rate-determining reaction being that between the water and isocyanate.
7

It was also shown that the curing kinetics is dependent on the relative humidity,

temperature of curing and morphology of the prepolymer. However, it would be

interesting to not have the environmental factors control the curing kinetics.

Controlled curing of PUR for coating processes is a well-studied subject.

Blocked isocyanates synthesized by reacting -NCO with reagents including oximes,

sodium bisulphite, active methylene containing compounds like dialkyl malonate,

acetoacetic ester ( to form ester-amide) and hindered alcohols can be deblocked by

either thermal means or by changing the pH.
8

This process of deblocking releases free

isocyanate, which can react with a diol to form a cured product. However, these

reactions are carried out in solution and significant amounts of volatile compounds,

sometimes up to 50% of the total volume, are released during the curing process making

the process environmentally unfriendly. In research described in this chapter, we studied
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ammonium salts as curing agents for the curing of reactive hot melt adhesives by a

trigger mechanism. A dispersion of ammonium salt and isocyanate-terminated PPG

prepolymer was made which is stable at room temperature, but curing can be effected

by the release of ammonia and/or water that occurs upon heating the dispersion to a

predetermined temperature. Figure 3.1 is a pictorial version of the conventional curing

mechanism and compares that with the curing process as effected by the trigger

mechanism.

(a) FLO

PPG prepolymer

(b)

m.

CO,

H
2
0 + NH,

Ammonium salt

r*1 Trigger Chemical crosslink

Figure 3.1 Pictorial representation of (a) conventional curing mechanism and (b)

curing process by trigger mechanism.

3.2 Experimental section

3.2.1 Materials

Poly (propylene glycol) (PPG) was obtained from ARCH chemical (Mn = 1900

g/mol, MJ Mn= 1.01, Tg
= -66 °C and hydroxyl value = 56). MDI, NH4HCO3 and

NH2COONH4 were used as received (either from Aldrich or Fisher).
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3.2.2 Prepolymer synthesis

Isocyanate-terminated PPG prepolymer was synthesized as follows. PPG was

taken in a two-neck round bottom flask fitted with a stop-cock-controlled purge/vacuum

adapter. Contents of the flask were evacuated at 60 °C coupled with a nitrogen purge in

a cyclical manner to remove any trace amount of moisture over a period of 24 h. The

temperature of the flask was then increased to 1 20 °C under nitrogen. A calculated

amount of MDI was added and the reaction allowed to proceed for 3 h under nitrogen.

The isocyanate-terminated prepolymer was synthesized with a NCO/OH ratio of 2. To

facilitate the characterization of the prepolymer and for TGA studies, dry methanol was

added and stirred for 24 h to obtain methyl-terminated, inactive PPG prepolymer.

3.2.3 Characterization

TGA studies were performed using a TA instruments TGA 2950 under nitrogen

with a heating rate of 10 °C/min. HPLC studies were carried out with an Agilent -HP

1 100 series instrument using a diode array detector. The mixed solvent system used for

elution started with a mixture of CH
3
CN and water (50 : 50 by volume), reached 100%

CH
3
CN in 20 minutes and 10 more minutes of elution with CH

3
CN was carried out. To

avoid reaction of the isocyanate group in the sample reacting with adventitious

moisture, dibutyl amine was added to react with the isocyanate functionality. MS was

performed in positive ion mode using Bruker's Esquire- LC instrument. Rheological

studies were performed with a constant stress of 10 Pa. Curing of PPG prepolymer with

NH
4
HC0

3
was followed in a Rheologica instruments' Viscotech with a frequency range

of 0.062832 rad/sec (0.01 Hz) to 6.2832 rad/sec (1 Hz) and the studies using
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NH,COONH
4
were performed using an AR2000 instrument with a frequency range of

0.6283 (0.1 Hz) to 62.83 (10 Hz). DSC studies were performed using a TA instruments

DSC Q 100 instrument at a heating rate of 10 °C/min.

3.3 Results and discussion

Curing of isocyanate-terminated polyurethane prepolymers involves reaction of

isocyanate with active hydrogen containing molecules to form cross-linked products.

The active hydrogen-containing molecules, called the reactive component (RC),

obtained by the decomposition of ammonium salts are ammonia and/or water.

Ammonium salts used in this study are ammonium bicarbonate ( NH4
HC0

3
) and

ammonium carbamate ( NH 2
COONH

4 ). RCs formed by the decomposition of the

ammonium salts are given by the following equations.

NH4HCO3 - NH3 + H20 + C02

NH2COONH4
" 2 NH

3
+ C02

TGA studies were carried out to determine the onset of decomposition of the

ammonium salt and also to follow the decomposition kinetics of the salt in the presence

of PPG prepolymer. To avoid the isocyanate-terminated PPG prepolmer reacting with

the RCs, inactive PPG prepolymer was used for TGA srudies. Finely ground

ammonium salts were dispersed in the inactive PPG prepolymer to carry out the TGA

studies. Figure 3.2 shows the TGA analyses of an NH
4
HCO/PPG prepolymer mixture.

It is clear from Figure 3.2a that decomposition of NH
4
HC0

3
starts at approximately 60

°C. However, when a mixture containing 8% NH
4
HCO\ and inactive PPG prepolymer

was used, as shown in Figure 3.2b, 2 stages of mass loss were observed. The first mass
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loss corresponds to decomposition of NH
4
HC0

3
and the subsequent removal of NH

3
and

the second mass loss corresponds to elimination of water, which is a decomposition

product of NH
4
HCOv Decomposition kinetics of the salt was followed at predetermined

temperatures above the decomposition temperature of the salt. From Figure 3.2c, it is

clear that the decomposition of salt has an expected trend with the decomposition at 80

°C faster than the one at 60 °C. However, the significant aspect of the decomposition

kinetics at all temperatures studied is the gradual decomposition of the salt. This is

pertinent for efficient curing, as abrupt release of all the RC, particularly gaseous NH
3

would result in either incomplete conversion of NCO groups as the RCs can escape

from the reaction medium (if reaction rate of the RC with NCO is slower than the

diffusion rate of the RC) or reaction of NCO with RC with degree of conversion of

NCO greater than 50% (if reaction rate of NCO with RC is faster than the diffusion rate

of RC). For good mechanical properties, it is preferred to have high crosslink density,

hence degree of conversion of NCO with RC should be lower than 50% to facilitate

chain extension and crosslinking by the reaction of remaining NCO with the product of

NCO and RC.
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Figure 3.2 TGA analyses of (a) NH4HCO3, (b) mixture containing inactive PPG
prepolymer and 8% NH4HCO3 and (c) decomposition kinetics of the mixture

under isothermal conditions. Isothermal temperature is given in the graph,
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Figure 3.3 TGA analyses of (a) NH2COONH4, (b) mixture containing inactive PPG
prepolymer and 5% NH2COONH4 and (c) decomposition kinetics of the mixture

under isothermal conditions. Isothermal temperature is given in the graph.
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Figure 3.3 shows the TGA analyses for NH
2
COONH

4 .
NH

2
COONH

4
begins to

decompose at room temperature, but NH,COONH
4
in the mixture, as seen in Figure

3.3b, begins to decompose only above 60 °C. From the decomposition kinetics as shown

in Figure 3.3c, it is observed that at 60 °C and 70 °C, decomposition of NH
2
COONH

4
in

the mixture is gradual whereas at 80 °C, decomposition of NH
2
COONH

4
is abrupt. It is

interesting to note that NH
4
HC0

3
which is stable at room temperature decomposes faster

in the presence of PPG prepolymer whereas NH
2
COONH

4
which starts to decompose at

room temperature is stable in the presence of PPG prepolymer up to 60 °C.

(a)

RNCO

RNCO + Salt, RT,12d

RNCO/ RC= 1,70 °C,24h

RNCO/RC = 2,70 °C,24h

RNCO / RC = 0.5, 70 °C,24h

RNCO + Salt, RT, 30 d
i—i—i—i—i—i—i i i i i i i i i i

i i i i i i i i i

0 12 3 4

Time (min)
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(b)

RNCO

/v RNCO + Salt, RT.12 d

RNCO/ RC = 1,70 °C,24h

JL RNCO/RC=2, 70 °C, 24 h

RNCO /RC = 0.5, 70 °C, 24 h

TV RNCO + Salt, RT, 30 d
_i i i i i i_

1 2 3 4 5

Time (min)

Figure 3.4 HPLC analyses of C6H5NCO (RNCO)/ ammonium salt mixture at

various conditions when the salt used is (a) NH4HCO3 and (b) NH2COONH4.

To be an effective trigger for curing, ammonium salts must not react with the

isocyanate-terminated prepolymer at room temperature, but should decompose and react

at a predetermined temperature. To study the efficacy of the trigger mechanism, model

studies were carried out. Phenyl isocyanate (RNCO) was used as isocyanate source and

the stability of the ammonium salts in the presence of RNCO was followed by HPLC-

MS. To avoid the RNCO reacting with adventitious water or any other active-hydrogen

containing species, dibutyl amine was added to the eluent system. Figure 3.4 shows the

HPLC analyses of ammonium salts with RNCO at different conditions. RNCO-dibutyl

amine adduct elutes at 4.2 minutes. From Figure 3.4a, it is obvious that after 12 days at

room temperature, no isocyanate groups are left behind when NH4HCOa
is used as the

curing agent. However, NH
2
COONH

4
(Figure 3.4b) is more stable than NH4HC03
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indicated by the presence of eluting species at 4.2 minutes when stored at room

temperature over a period of 30 days. This shows the efficiency of ammonium salts to

act as controlled curing agents in polyurethane curing processes. On heating the

RNCO/ammonium salt mixture, with varying ratios of NCO/RC, at 70 °C different

species are formed that elute at different times, which confirms the ability of ammonium

salts to cure the prepolymer on heating.

,
...

,

,i I

50 100 150 200
m/z I—i i i i i i i i i I i i i i i i i i i i i . i i i

0 1 2 3 4 5

Time (min)

Figure 3.5 HPLC-MS analyses of RNCO/NH4HCO3 with NCO/RC =2 at 70 °C.

HPLC-MS was carried out to analyze the products formed by the reaction of

ammonium salt, NH
4
HCOv Figure 3.5 shows HPLC-MS analyses of the products

formed by the reaction of C
6
H,NCO with NH

3
and H

2
0, formed by the decomposition of
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NH
4
HCOv The molecular weight of C

6
H

5
NCO is 1 19 g/mol and dibutyl amine is 129

g/mol. From the MS analyses, it is obvious that dibutyl amine elutes at 1.2 min (m/z of

130). For the species that eluted around 2.2 min, m/z is 213. This molecular weight

corresponds to formation of urea formed by the reaction of H
2
0 with CT-LNCO. For the

species that eluted at 2.8 min, mass spectrometry shows a variety of peaks with the

maximum m/z value of 857. It is not clear whether the peak at 857 is a parent peak or

one of the fragments from the parent molecule. However, it clearly shows the existence

of higher molecular weight species that are equal to or above 857 g/mol. Considering

the molecular weight of C
6
H

s
NCO (1 19 g /mol), 857 g/mol yields a chemical species

that is formed by the condensation of multiple C
6
H

s
NCO molecules. This experiment

confirms the crosslinking ability of the decomposition products of the ammonium salt.

Curing kinetics of the isocyanate-terminated PPG prepolymer was followed by

small amplitude oscillatory shear experiments. G' (Storage modulus), G" (Loss

modulus) and tan 8 (= G'VG') are the parameters that are used to define the progress of

the curing process and the onset of gelation. Figure 3.6a shows the evolution of G' and

G" with time and it is clear that as curing time increases, G' and G" increase. To begin

with, isocyanate-terminated PPG prepolymer is liquid-like resulting in G" greater than

G'. However as the system starts to cure, becoming more elastic than viscous, G' equals

G" at the gel point. After the gel point, material is more solid-like with G' greater than

G". At the gel point, G' and G" are proportional to co°
5

.

9 The gel point of the system is

best determined by the transition of tan 8 from > 1 to < 1 . At gel point, tan 8 is

independent of co, at low frequencies, as seen in Figure 3.6b. Though the exact gel point
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is missed, it is clear from the tan 5 vs co that at low frequencies, tan 5 is independent of

the frequency.
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Figure 3.6 Representative rheological data obtained for RC/NCO =4 at 70 °C using

NH4HCO3 showing (a) Evolution of G' and G" with curing and (b) Evolution of

tan 8 with curing. Line shown is to identify tan 5 =1.
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To determine the gel point to characterize the curing kinetics, G' and G" at the

frequency 0.628 rad/sec (0.1 Hz) is plotted against the curing time. Frequency of 0.1 Hz

is used because it is in the frequency range which is independent of G'and G" during

gelation. Figure 3.7 shows the curing kinetics of PPG prepolymer by the reaction of

isocyanate with NH3 and H2O, evolved from the decomposition of NH4HCO3, for

different curing temperatures and different RC/NCO ratios. As expected, gelation time,

tgei decreases with an increase in curing temperature or an increase in RC/NCO. Either

temperature or salt concentration would increase the rate at which RCs are generated

and is consistent with the tge i
values obtained for the curing caused by the decomposition

of NH4HCO3. It is also worthwhile to study the mechanical properties of the cured PPG-

based polyurethane polymer. Though the G' and G" are measured at different

temperatures, 60 to 80 °C, these temperatures are well above the T
g
(around -40 °C) and

should not affect the qualitative comparisons. Final mechanical properties of the

polymer cured at 70 °C (RC/NCO = 2 and RC/NCO = 4) and 60 °C (for RC/NCO = 4)

are better than the polymer cured at 80 °C or 60 °C (for RC/NCO =2). This can be

explained by the three factors that determine the curing kinetics of isocyanate-

terminated PPG prepolymer. They are ( 1 ) decomposition of the ammonium salts (2)

reaction between NCO and the RCs, obtained by the decomposition of the ammonium

salts and (3) reaction between NCO and the product of NCO and RC. In ideal scenario,

to obtain maximum mechanical properties, less than 50% of available NCO groups need

to react with RC to account for both chain extension and crosslinking. At low

temperature and low salt concentration, generation of RC is slow, making the curing

process dependent on decomposition kinetics. At high temperature and high salt
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concentration, RC production is fast, resulting in higher degrees of conversion of

isocyanate groups (NCO conversion > 50%) causing lowered crosslink density. This

argument is validated by looking at the curing kinetics at 60 °C. After 1000 min, for

RC/NCO = 2, mechanical properties have not reached the maximum whereas for

RC/NCO =4, a plateau seems to have been reached with maximum mechanical

properties obtained for this system. This confirms the concentration effect of RC on

curing kinetics. At 70 °C, decomposition kinetics and reaction kinetics are optimum,

resulting in superior mechanical properties. However at 80 °C, decomposition kinetics

fast, resulting in an NCO conversion of greater than 50 % and lower crosslink density.

Time (min)
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Figure 3.7 Curing kinetics of PPG prepolymer with NH4HCO3 as followed by the

Theological studies for (a) RC/NCO = 2 and (b) RC/NCO =4. Curing temperature

and gelation time, tgei, are given for each curing kinetics curve.— denotes G' and
— denotes G".
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Figure 3.8 Curing kinetics of PPG prepolymer with NH2COONH4 as followed by

the Theological studies for (a) RC/NCO = 2 and (b) RC/NCO = 4. Curing
temperature and gelation time, tgei, are given for each curing kinetics curve.—

denotes G' and — denotes G".
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Figure 3.9 Dependence of gelation time on curing temperature when (a) NH4HCO3
and (b) NH2COONH4 are used as curing agents : (A) RC/NCO = 2 and (T)

RC/NCO = 4.
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Figure 3.8 shows the curing kinetics of isocyanate-terminated PPG prepolymer

by the decomposition of NH2COONH4. As with NKtHCOs-promoted curing, curing

kinetics is influenced by temperature and RC/NCO. The important thing to notice with

NH2COONH4 is the tgd. Gelation time of NF^COONFLi-promoted curing is less than

the one promoted by NH4HCO3. This is due to the faster decomposition rate of

NH2COONH4 compared to NH4HCO3. In fact, at 80 °C, decomposition of

NH2COONH4 is so fast (as seen in TGA studies) that gelation is not observed at all due

to either too high or too low a conversion of NCO groups by reaction with NH3. Apart

from the decomposition rate, the mechanical properties of the materials prepared by

NH2COONH4-induced curing are inferior to those prepared by NPLtHCOs-induced

curing. This may be due to two reasons. The first one is due to the reactivity difference

between NH3 and H2O. NH3 being stronger base/better nucleophile than H20, NH3

should react faster than H20 with NCO. But the physical states of the RCs also play a

role as gaseous NH3 can escape from the reaction medium faster than H2O. The second

reason is due to the relative ease of formation of crosslinks by the RCs. When

NH4HCO3 is used as curing agent, both H2O and NH3 act as RCs whereas with

NH2COONH4, only NH3 reacts with NCO. Thus the faster decomposition rate of

NH2COONH4 and less ease in the formation of crosslinks (hence lower crosslink

density) affect the mechanical properties of NH2COONH4 promoted curing. Figure 3.9

compiles the impact of curing temperature on the gelation time for the isocyanate-

terminated PPG prepolymer for the different concentrations of RCs.
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Figure 3.10 Physical state of PPG prepolymer before curing (liquid-like) and gel

state of NH4HC03-cured PPG-based polyurethane polymer.

The gel state of the cured polyurethane polymer due to crosslink formation is

shown in Figure 3.10. PPG prepolymer is a viscous liquid and upon curing, a solid-like,

gel state is obtained.
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Figure 3.11 DSC studies of (a) PPG prepolymer (b) PPG prepolymer cured by

NH4HCO3 and (c) PPG prepolymer cured by NH2COONH4 .

DSC studies were carried out to confirm the presence of crosslinks. T
g
should

increase on crosslinking and the crosslink density dictates the extent of increase in T
g

.

Figure 3.1 1 compares the T
g
of PPG prepolymer and the ammonium salts-cured

polyurethane polymer. T
g
of the PPG prepolymer is -48.27 °C. On curing with the

ammonium salts, increases in T
g
are observed. For NH4HC03-cured PPG prepolymer,

T
g

is found to be in the range of -44.8 °C to -42.7 °C and for NH2COONH4-cured

polymer, T
g
is found in the range of -43.08 °C to -41.27 °C. The increase in T

g
for

NH2COONH4-cured polymer is higher than NFLjHCOs-cured polymer. This is

surprising because the mechanical properties of NFLtHCOi-cured polymer are superior

to the mechanical properties of NF^COONFLt-cured polymer. This anomaly can be

explained by considering the possible products formed by the reaction of RCs with
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NCO. Reaction of H2O with NCO can result in a maximum of just one crosslink at the

junction point whereas reaction with NH3 can lead to more than one crosslink at the

junction point. Apart from that, molecular weight between the crosslink junctions can

also be different as the reactivity and physical state of RCs are also different. All these

variables make the comparative studies irrelevant. One thing to note in the

NH2COONH4-assisted curing is that at 80 °C and RC/NCO = 2, a gel point was not

reached after 200 min, but the Tg of the cured sample increased compared to the PPG

prepolymer. This may be due to low conversion of NCO by the reaction with gaseous

NH3 (at 80 °C, decomposition of the salt is abrupt), in the initial time period, in the

rheometer not leading to gelation. But, over a period of time, reaction of NCO with

monosubstituted urea (formed by the reaction of NCO with NH3) can occur, leading to

an increase in T
g
when DSC studies were carried out.

3.4 Conclusions

A new approach to cure isocyanate-terminated prepolymer by a trigger

mechanism has been studied. Addition of an ammonium salt that is stable at room

temperature but decomposes on heating to release products that cure the prepolymer is

presented. This mechanism makes the curing process independent of environmental

conditions. Curing kinetics of the prepolymer were followed by rheological studies.

Curing by the decomposition of NH4HCO3 yields better mechanical properties than by

the decomposition of NH2COONH4. Differences in the mechanical properties and

thermal properties are explained in terms of reactivity, physical state of the RCs and the

properties of crosslinks formed by the reaction between NCO and the RCs.
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CHAPTER 4

MULTILAYER FORMATION USING HYDROPHOBIC INTERACTIONS

4.1 Introduction

Multilayer thin film preparation has progressed significantly in many ways since

Blodgett's deposition of calcium stearate films on glass slides.
1

The Langmuir-Blodgett

(LB) technique has been well studied, but practical issues - that it is sensitive to

contaminants, substrate geometry and the kinetics of monolayer film transfer, have

limited its utility.
2 4 A limited amount of relatively early research was reported that

adopted chemical means to construct multilayer films to try to circumvent problems

inherent to the LB technique, and then the relative dormancy in this field was replaced

with a very active period following the seminal work of Decher and co-workers.
5 7

Their

work revived interest in layer-by-layer deposition (LbL) primarily through the use of

electrostatic interactions between polycation and polyanion layers. Although this

preparative technique was versatile, in terms of the wide choice of polyelectrolyte

materials and that pH, ionic strength and counterion identity of adsorption solutions

could control layer structure, it was limited by the lack of applicability to neutral

molecules. Hence, hydrogen bonding, charge transfer, repetitive adsorption/drying,

biological interactions and various complex formation methods were studied for LbL

multilayer film construction.
8

Although these methods extend multilayer assembly to

neutral molecules with specific interactions, they individually lack latitude in terms of

substrate choice and multilayer functionality and collectively do not comprise a

versatile method, but rather a collection of specific syntheses. In McCarthy's lab, LbL
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adsorption was studied with the goal of turning any polymer surface into "the same

surface" so that interface problems could be solved generically.
14 17

This failed because

"memory effects" over length scale of the substrates (interactions being inversely

proportional to 1" where 1 is length and n is determined by the type of interaction)

persisted over all subsequent adsorptions steps.

Supported thin films (coatings) require a range of bulk and surface properties for

specific applications and need to be applied to a range of substrates. An objective of the

work studied here is to establish a technique that can be used for any substrate and can

be adapted to permit wide latitude of chemical structure manipulation, both in

individual layers and at the free surface of the resulting material. This has been

accomplished by using the hydrophobic interactions that occur between most polymers

that are soluble in water and hydrophobic, low energy surfaces in contact with these

aqueous solutions.

Hydrophobic interaction is an entropy-driven phenomenon in which an

adsorbate adsorbs at the solid-water (or liquid-water) interface to reduce the interfacial

energy. Entropy gained by the release of water molecules from the interface drives the

adsorption process.
18

Although most polymers adsorb at aqueous interfaces with

hydrophobic solids, the stability of such coatings based on this process is questionable

due to the reversible nature of many adsorptions. Numerous biopolymers, particularly

proteins, have been shown to irreversibly adsorb to hydrophobic solids. The fact that

proteins denature (change conformation and become insoluble) upon adsorption makes

the process irreversible. It has been shown that proteins can adsorb irreversibly even on

a negatively charged surface with the hydrophobic interactions overcoming coulombic
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repulsions.
19

In spite of the facile irreversible adsorption of many biopolymers, only a

few synthetic polymers have been shown to adsorb irreversibly (cannot be washed off

with water) from aqueous solution. Poly(L-lysine) adsorbs to fluoropolymers and the

irreversibility is proposed to be due to the unfolding of the a-helix structure.
20

Poly(vinyl alcohol) (PVOH) adsorbs to hydrophobic surfaces and crystallization, in

conjunction with hydrophobic interactions, is proposed to be responsible for the

irreversibility.
21 23

It has been suggested that the PVOH adsorption occurs from water on

all sufficiently hydrophobic surfaces and the effects of temperature, time, PVOH

concentration, degree of hydrolysis, salt concentration and the type of salt on the

adsorption of PVOH have been reported.
22 23

Hence to have a stable coating (water

insoluble), it is necessary to couple hydrophobic interactions with a secondary

interaction that is more more stable (unfolding, denaturization, crystallization).

Hydrophobic interactions most certainly play a role in most LbL techniques.

Ionic interactions are the most important driving force for multilayer formation using

polyelectrolytes, but hydrophobic interactions are also involved in the process. Water

molecules in the solvation sphere are released when a cation binds to an anion leading

to increase in entropy. Serizawa et. al. studied PVOH adsorption on a (likely

hydrophobic) gold surface and showed that surface reconstruction on drying facilitates

subsequent PVOH adsorption at the solid-liquid interface." This argument can be

extended to other LbL techniques and we argue that most of the LbL techniques involve

hydrophobic interactions as a secondary effect for multilayer formation.

In the research described in this chapter, we discuss using hydrophobic

interactions as the primary force in multilayer formation. PVOH is adsorbed to a
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hydrophobic substrate to form a reproducible ~2 nm thick layer that is stabilized (at

room temperature) by crystallization. Chemical reaction of this thin semicrystalline

layer in the vapor phase can produce a hydrophobic coating that is susceptible to

adsorption by a second exposure to PVOH solution. The 2-step process can be repeated

to form multilayer films. The preparation of multilayer films with ester, urethane and

acetal functionalities is described here.

4.2 Experimental Section

4.2.1 Materials

Polyvinyl alcohol) (99+% hydrolyzed, Mw = 89000 - 98000 g/mol),

heptafluorobutyryl chloride, hexanoyl chloride and octanoyl chloride were purchased

from Aldrich and used as received. Silicon wafers (100 orientation) were obtained from

International Wafer Service (P/B doped; resistivity, 20-40 Q cm; thickness 450-575

jim). Propyldimefhylchlorosilane was obtained from Gelest and used as received. House

purified water (reverse osmosis) was further purified using a Millipore Milli-Q system

that involves reverse osmosis, ion-exchange, and filtration steps. Other reagents and

solvents were obtained from Aldrich or Fisher and used as received.

4.2.2 Characterization

X-ray photoelectron spectra (XPS) were recorded with a Physical Electronics

Quantum 2000 with Al Ka excitation (15 KV, 25 W). Spectra were obtained at take off

angles of 15° and 75° (between the plane of the surface and the entrance lens of the

detector optics). Contact angle measurements were made with a Rame-Hart telescopic
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goniometer and a Gilmont syringe with a 24-gauge flat-tipped needle. The probe fluid

was water, purified as described above. Dynamic advancing angle (9A) and receding

angle (0R)
were recorded as water was added to or withdrawn from the drop,

respectively. The values reported are averages of 3-5 measurements made on different

areas of the sample surface. Ellipsometric measurements were made with a Rudolph

Research model SL-II automatic ellipsometer with an angle of incidence of 70° from the

normal. The light source was a He-Ne laser with X = 632.8 nm. Measurements were

performed on 3-5 different locations on each sample. Thickness of the layers was

calculated from the ellipsometric parameters (A and 4/
) using DaflBM software.

Calculations were performed for the transparent double layer model (Si substrate/SiOx +

alkylsilane layer / PVOH (derivatized PVOH) / air) with the following parameters: air,

n
o
= 1; PVOH, n, = 1.54; SiOx + propyldimethylsilane layer, n

2
= 1.462 (the thickness of

this layer varied from 2.3-2.6 nm); silicon substrate, n
s
= 3.858, k =0.018 (imaginary

part of refractive index); poly (vinyl heptafluorobutyrate), n
3
= 1.3019; poly (vinyl

hexanoate), n
4
= 1.4073; poly (vinyl octanoate), n

5
= 1.4178. The refractive indices of

the monomers of the PVOH derivatives were used for the calculation of the thickness of

the corresponding PVOH derivative. Though refractive index of the functionalized layer

is used assuming 100% conversion of hydroxy 1 groups of PVOH to ester, in reality it is

found not to be the case. This introduces certain degree of error in the calculation of

thickness which is included in the error bar in the figures. The AFM images were

obtained with a Digital Instruments Dimension 3100 scanning probe microscope with a

Nanoscope III controller operated in tapping mode.
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4.2.3 Preparation of Si-supported substrates

Silicon wafers were cut into 1.2 cm x 1.2 cm samples, rinsed with water and

dried in air before treatment with oxygen plasma for 5 minutes at a pressure of 100

mtorr (Harrick Plasma Cleaner). Silanization reactions were carried out immediately on

the plasma-cleaned wafers. Silanization with propyldimethylchlorosilane was performed

in the vapor phase at 70 °C for 72h.
24

After silanization, wafers were rinsed with

toluene, ethanol, ethanol/water (1:1) and water (in this order).

4.2.4 PVOH solutions

PVOH aqueous solutions were prepared by heating the polymer-water

suspension for 1 hour at 85-100 °C in a water bath and allowing it to cool. The solutions

were allowed to equilibrate for at least 3 days before the adsorption experiments.

Concentrations used in this study were 0.1% and 1.0% w/v.

4.2.5 Adsorption experiments

Hydrophobized silicon wafers were submerged in polymer solutions for 2h,

removed, and rinsed with copious amounts of water and dried under reduced pressure

overnite. To eliminate any possibility of LB film transfer during removal of samples

through the solution-air interface, adsorption solutions were diluted repetitively after

adsorption and the samples were removed from pure water.
22 23

4.2.6 Reaction of adsorbed PVOH with acyl chlorides

Samples containing PVOH layers on silicon-supported

propyldimethylchlorosilane-derived monolayers were allowed to react with the acyl
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chlorides in vapor phase. Kinetics studies were performed by carrying out the reaction

for different time periods at a predetermined temperature and measuring the thickness of

the ester layer by ellipsometric studies. From the kinetics studies, the reaction time was

chosen to maximize conversion. Exposure to heptafluorobutyryl chloride was for 4 h at

room temperature. Hexanoyl chloride was allowed to react at 75 °C for 6 h for the 0.1%

PVOH multilayer system and for 2 h for the 1 .0% multilayer system. Octanoyl chloride

was allowed to react at 100 °C for 12 h for the 0.1% multilayer system and for 3 h for

the 1.0% multilayer system. All of the esterified surfaces were rinsed with copious

amounts of water and dried at reduced pressure overnite.

4.2.7 Reaction of adsorbed PVOH with butyl isocyanate

Adsorbed PVOH was reacted with butyl isocyanate (0.25 M) in the presence of

dibutyltin dilaurate (0.025 M) in anhydrous toluene for 4 h at 60 C. Wafers were

removed from the solution by repetitive dilution of the solution by toluene and then

rinsed with toluene and dried by blowing compressed air and under reduced pressure

overnite.

4.2.8 Reaction of adsorbed PVOH with butanal

Butanal (0.15 M) in the presence of 0.2 M H2S04 in water was reacted with

adsorbed PVOH for 18 h at 50 C. Wafers were removed from the solution by repetitive

dilution of the solution by water and then rinsed with water and dried by blowing

compressed air and under reduced pressure overnite.
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4.3 Results and Discussion

The spontaneous and irreversible adsorption of PVOH from aqueous solution to

hydrophobic solids that is in contact with the solution has been demonstrated to occur

for a range of hydrophobic solids.
21"23

This adsorption takes place on all hydrophobic

materials and detailed studies of this adsorption for a silicon-supported perfluoroalkyl

monolayer has been reported.
23

In this study, propyldimethylchlorosilane-derived

hydrophobic silicon wafers were chosen as the substrate because these samples can be

reproducibly prepared using an uncatalyzed vapor phase reaction and they do not

contain fluorine. The experiments described here involve the multilayer build up of

esters, urethane and acetal of polyvinyl alcohol prepared by reacting PVOH layers with

acid chlorides, butyl isocyanate and butanal respectively.

PVOH (aq) RCOCI PVOH (aq)

B

B

Hydrophobic

surface
PVOH Hydrophobic

ester surface

PVOH

Figure 4.1. Multilayer formation by the repetitive process of adsorption and

chemical reaction of PVOH.

Figure 4. 1 shows the general strategy for multilayer assembly beginning with a

hydrophobic solid. PVOH is adsorbed to the solid from aqueous solution, and after

isolation and drying is exposed to the vapor of a carboxylic acid chloride, chosen to

convert the hydrophilic PVOH layer to a hydrophobic ester surface. Figure 4.

1

deliberately indicates that the thickness of this layer increases as the result of the
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esterification reaction. The formed hydrophobic solid is exposed again to aqueous

PVOH and a second layer of PVOH film is formed. Cycling steps A and B in Figure 4.1

allows build up of a multilayer film. 5 points are made in regard to this sequential

scheme, some of which are followed up below: (1) The thickness of the first PVOH

layer will be a function of the hydrophobicity (and perhaps other properties) of the

hydrophobic solid. It has been shown that less hydrophobic solids are coated with

thinner layers of PVOH.
22

(2) The thickness and structure (in particular, percent

crystallinity) of this layer can also be controlled by PVOH concentration, molecular

weight and degree of hydrolysis and as well by adsorption temperature and solution

ionic strength.
23

(3) The thickness of the functionalized layer resulting from reaction of

PVOH with other reactants will be the result of the reaction yield and the identity of

alkyl group of the reactant. This thickness can likely be controlled by choice of reagent.

(4) The wettability of the hydrophobic layer will also be controlled by the choice of

reactants. This will affect the thickness of the subsequent layer of PVOH that adsorbs.

(5) Different reactants could be used in a single multilayer film to give alternating,

gradient or evenly spaced layers, which might be useful for a particular application.

4.3.1 Multilayer ester formation with heptafluorobutyryl chloride (HFBC)

The process described in Figure 4.1 was carried out using HFBC. This acid

chloride was chosen to modify PVOH (and form polyvinyl heptafluorobutyrate)) for

several reasons: (1) The fluorine in HFBC acts as a sensitive label for XPS studies and

facilitates the calculation of the degree of conversion. (2) The high vapor pressure of

HFBC (b.p. 40 °C) enables esterification in the gas phase at room temperature. (3) The
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reactivity of fluorinated acid chlorides is enhanced over other acid chlorides because of

the electron withdrawing effect of the perfluoroalkyl group. (4) The perfluoroalkyl

group should impart hydrophobicity and promote the adsorption of subsequent layers of

PVOH. Two different concentration solutions of PVOH, 0.1% and 1.0% w/v, were used

for adsorption experiments. The rationale behind using two concentrations was to study

the impact of PVOH crystallinity on multilayer formation. A concentration of 0.1%

PVOH solution is below the entanglement concentration and adsorption using this

concentration leads to PVOH with a high degree of crystallinity." The 1.0% PVOH

solution is above the entanglement concentration and leads to a less crystalline and

more amorphous layer.
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I l I l I I l I
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Figure 4.2. Ellipsometric thickness of multilayer films prepared by sequential

adsorption of PVOH followed by ester ification with HFBC. PVOH solution

concentration was 0.1% (±) and 1.0% ().
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Figure 4.2 shows plots of the thickness of multilayer films (measured by

ellipsometry) versus the number of ester layers formed. The data at 0 layers represent

the thicknesses of the initial PVOH layer formed on the silicon-supported

propyldimethylsilyl monolayer. The values are 2.0 ± 0.2 nm for the 0.1% PVOH

solution and 2.6 ± 0.2 nm for the 1 .0% PVOH solution. The thicknesses increase to 7.0

nm and 7.7 nm, respectively, after reaction of these layers with HFBC vapor.

Subsequent sequential adsorption of PVOH and reaction with HFBC produces

multilayer films of increasing thickness. From the slope of the plots in Figure 4.2, the

average thickness increase per ester layer is determined to be 5.8 nm for 0.1% PVOH

and 8.0 nm for 1% PVOH. The differences between these thickness values for films

prepared with different concentration PVOH solutions can be attributed to either thicker

PVOH layers formed with the higher concentration solution, greater reaction yield with

HFBC for the less crystalline PVOH formed with the higher concentration solution or

both of these effects. The thickness of the adsorbed PVOH layer is dependent on the

hydrophobicity of the solid surface as well as the concentration of PVOH in the

solution. Attempts were made to measure ellipsometric thicknesses of samples with

PVOH as the outer layer to distinguish between these possibilities, but the scatter in the

data was too great to make any conclusions as water adsorption/absorption on/in the

hydrophilic layers complicates the measurement. Contact angle and XPS data gave

more insight into this issue.
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Figure 4.3 Dynamic water contact angle measurements for surfaces formed using

(a) 0.1% PVOH and (b) 1.0% PVOH and HFBC: (A) advancing angles, (V)

receding angles.
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Contact angle analysis (Figure 4.3) of the deposition process supports the view

of multilayer build-up depicted in Figure 4. 1 . The alternate hydrophilization and

hydrophobization by PVOH and HFBC treatments is apparent from the zig-zag profile

of advancing and receding water contact angles. The propyldimefhylsilyl monolayer

surface exhibits water contact angles of 0A/0R
= 104793° which decrease to 63715° and

4379° upon adsorption of PVOH from 0.1% and 1.0% PVOH solutions, respectively.

After reaction with HFBC, 0A/9R values increase to 1 1 1774° and 1 18777° for 0.1% and

1 .0% PVOH-treated surfaces, respectively. The oscillating data between hydrophobic

and hydrophilic is obvious from the plots in Figure 4.3 and the scatter in the data is

largely due to the fact that each 0A/0R
value was determined on separate samples that

were prepared by multiple synthetic steps. The receding contact angle data for the

fluorinated ester surfaces is in general lower for samples prepared using the lower

concentration PVOH solution. This may contribute to the thinner layers observed in

samples prepared with the less concentrated PVOH solution. It is also interesting to note

that these perfluoroalkyl surfaces exhibit lower contact angles and greater hysteresis

than covalently attached perfluoroalkyl monolayers.
23

The presence of unreacted

alcohols and ester functionality in the region of contact angle sensitivity is suggested.

Surface roughness can also influence contact angle hysteresis, but these samples

exhibited smooth surfaces as assessed by AFM. Figure 4.4 shows the AFM images of

the final ester surface prepared using different concentrations of PVOH. The maximum

root mean square roughness for the surfaces shown in Figure 4.4 was 0.757 nm for 0.1%

PVOH samples and 1.034 nm for 1.0% PVOH samples.
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Figure 4.4. AFM analyses showing height (left image) and phase (right image)

profile for ester surfaces formed by the reaction of HFBC with the thin layer

formed by (a) 0.1% PVOH and (b) 1.0% PVOH.
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Figure 4.5 Ci s spectra recorded at 15° takeoff angle for (a) a single PVOH layer

adsorbed on a propyldimethylsilyl monolayer, (b) a single HFBC-reacted PVOH
layer and (c) PVOH adsorbed on a single HFBC-derived ester layer.

XPS data were recorded for all samples and were consistent with the

ellipsometry and contact angle data just described. It did permit us to make estimates for

the yields of reaction with HFBC. Figure 4.5 shows C
ls
region spectra for the first 3

steps of preparing a multilayer film using 0.1% PVOH solution. The sample containing

the first layer of PVOH shows two peaks for the 2 carbons present in -CH
2
-CH(OH)-, at

relatively low binding energy. Some contribution from the propyldimethylsilyl

monolayer is not ruled out. Upon reaction with HFBC, carbon signals at higher binding

energy appear, indicating the presence of CF,CF
2
CF,C(0)0- groups. Adsorption of the

second layer of PVOH increases the relative intensity of the low binding energy peaks.

The degree of conversion of alcohol to ester can be calculated from the XPS data to give
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estimates of reaction yield. From the F/C ratio of multilayer esterified surfaces, yields of

60-70% for 0.1% PVOH and 80-90% for 1.0% PVOH were observed. The XPS data

used for these calculations was recorded at a take off angle of 75° which provides

information on the outermost 5-10 nm of samples. This is roughly equal to the average

thickness per ester layer. We attribute the higher degree of conversion for 1% PVOH

than for 0. 1% PVOH to the lower degree of crystallinity of PVOH layers prepared from

higher concentrated solutions. HFBC can rapidly diffuse into ~2 nm thick films. The

average thickness per layer for 1 .0% PVOH is higher than that of the 0. 1% PVOH

because of the lower crystallinity and thus higher esterification yield.

4.3.2 Multilayer ester formation with //-alkanoyl chlorides

The generality of this multilayer assembly method was shown using two

additional acid chlorides, hexanoyl chloride and octanoyl chloride, which were chosen

to ensure sufficient hydrophobicity of the resulting ester surfaces for PVOH adsorption.

Vapor phase reactions were again carried out, however at temperatures of 75 °C and 100

°C for hexanoyl chloride and octanoyl chloride, respectively, to compensate for their

lower vapor pressures and higher boiling points (150 and 250 °C at 1 atm).
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Figure 4.6 Ellipsometric thickness of multilayer films prepared by sequential

adsorption of PVOH followed by esterification with hexanoyl chloride (a) and
octanoyl chloride (b) PVOH solution concentration was 0.1% (^) and 1.0% ().
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Films were prepared with 1 , 2 and 3 ester layers for each acid chloride and, as

was described above for HFBC; PVOH was adsorbed from solutions with

concentrations of 0.1% and 1.0%. Figure 4.6 shows ellipsometric thickness data for the

hexanoate and octanoate multilayer films. As was the case for HFBC, the thickness

increases linearly with the number of ester layers applied and the thickness was slightly

greater for films prepared with 1.0% PVOH than with 0.1% PVOH. The average

thickness increase per hexanoate layer was 4.5 nm and 5.2 nm using 0.1% and 1.0%

PVOH, respectively. For the octanoate system, the average thickness increase per layer

was 6.4 nm and 7.1 nm using 0.1% and 1.0% PVOH, respectively. These differences

between the hexanoate and octanoate thicknesses could be due to the different alkyl

chain lengths of the esters or to the relative yields of the esterification reactions.

XPS data was used to estimate the yields of the esterification reactions. The Cu

spectra of all of the alkanoate multilayer samples exhibit three prominent peaks that

correspond to -C=0 (288.2 eV), -C-O (285.9 eV) and alkyl carbons (284.2 eV). Taking

ratios of the area of the carbonyl peak to the total area of the carbon signal gave reaction

yield values of 35-45% for 0.1% PVOH and 40-55% for 1.0% PVOH for formation of

the esters. These must be regarded as rough estimates.
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Figure 4.7 Dynamic water contact angle measurements for surfaces formed using

(a) 0.1% PVOH and (b) 1.0% PVOH and C5HnCOCl: (A) advancing angles, (V)
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Figure 4.8 Dynamic water contact angle measurements for surfaces formed using

(a) 0.1% PVOH and (b) 1.0% PVOH and C7H15COCI: (A) advancing angles, (V)
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Dynamic water contact angle data for the multilayers prepared with PVOH and

either hexanoyl chloride or octanoyl chloride are qualitatively similar to those of HFBC-

derived ester surfaces and are shown in Figure 4.7 and Figure 4.8 respectively.

Receding contact angles show the pronounced zig-zag patterns as the surfaces change

from hydrophilic (8R
~10° ) to hydrophobic (6R

~45° for 0.1% PVOH and -60° for 1.0%

PVOH). The zig-zag patterns are evident, but less pronounced in the advancing contact

angle data, changing from 0A
~1 10° for hydrophobic surfaces to 0A

~95° after PVOH is

adsorbed to an ester surface. The pronounced hysteresis is not due to roughness as all

surfaces are smooth as evidenced by AFM. Figures 4.9 and 4.10 shows the AFM images

of the final poly(vinyl hexanoate) and poly(vinyl octanoate) surfaces respectively. The

highest value RMS roughness measured is lower than 1 nm for all the samples
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Figure 4.9 AFM analyses showing height (left image) and phase (right image)

profile for ester surfaces formed by the reaction of C5H11COCI with the thin layer

formed by (a) 0.1% PVOH and (b) 1.0% PVOH.
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(a)

Figure 4.10 AFM analyses showing height (left image) and phase (right image)

profile for ester surfaces formed by the reaction of C7H15COCI with the thin layer

formed by (a) 0.1% PVOH and (b) 1.0% PVOH.
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Figure 4.11 Ellipsometric thickness of multilayer films prepared by sequential

adsorption of PVOH followed by reaction with C4H9NCO. PVOH solution

concentration was 0.1% (*) and 1.0% ()

4.3.3 Multilayer urethane formation with butyl isocyanate

Adsorbed PVOH was reacted with butyl isocyanate in the presence of dibutyltin

dilaurate to form poly (N-butylvinyl carbamate) (PBVC), an urethane layer. A plot of

ellipsometric thickness vs. number of layers is shown in Figure 4.1 1. The thicknesses of

the first functionalized layers derived from nascent PVOH are 5.6 nm and 7.2 nm for

0.1% PVOH and 1.0% PVOH respectively. Thickness increase per layer is -1.3 nm for

0.1% PVOH and -1.8 nm for 1.0% PVOH. Such low thickness increases are attributed

to very thin films of PVOH adsorbed on the urethane surfaces. The urethane

functionality is more hydrophilic than the esters and this decrease in hydrophobicity

reduces the amount of PVOH adsorbed, eventually resulting in low thickness increases
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per layer. Contact angle measurements follow the expected trend of alternating

hydrophilicity and hydrophobicity as shown in Figure 4.12. It is observed that 6A for the

urethane surface is lower than 0a for ester surfaces because urethane functionality is

more hydrophilic than the esters and this observation also supports the low thickness

increase per layer. Figure 4. 1 3 shows the AFM images of the final functionalized

surfaces prepared using 0. 1% PVOH and 1 .0% PVOH. It is apparent from the height

section that the films are very rough relative to the thickness of the samples. RMS

roughness is 2.5 nm for a 8.1 nm thick urethane film obtained using 0.1% PVOH and

1.9 nm for a 10.8 nm thick urethane film obtained using 1.0% PVOH. The combination

of lower hydrophobicity and high roughness explains the trend observed in ellipsometric

measurements.
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Figure 4.12 Dynamic water contact angle measurements for surfaces formed using

(a) 0.1% PVOH and (b) 1.0% PVOH and C4H9NCO : (A) advancing angles, (V)

receding angles.
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Figure 4.13 AFM analyses showing height (left image) and phase (right image)

profile for urethane surfaces formed using (a) 0.1% PVOH and (b) 1.0% PVOH.

Figure 4.14 Possible products formed by the reaction of PVOH with an aldehyde in

acid medium.

4.3.4 Multilayer acetal formation with butanal

Adsorbed PVOH is reacted with butanal in the presence of H2SO4 to form an

acetal surface. Reaction of PVOH with butanal could lead to various products as shown

in Figure 4.14. Products formed are not as hydrophobic as the ester surfaces.
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Ellipsometric thickness vs. number,of layers is shown in Figure 4.15 for the multilayer

system formed using 0.1% PVOH. Thickness of the first functionalized layer derived

from nascent PVOH is 5.9 nm. However, subsequent increase in thickness is very low

as the thickness reaches 7.0 nm after three cycles of adsorption/reaction. Such a low

thickness increase is due to the low hydrophobicity of the acetal surface and hence low

adsorption of PVOH. Low hydrophobicity of the acetal surface is supported by contact

angle studies as shown in Figure 4.16. The advancing angle does not change much when

PVOH is adsorbed onto the acetal surface whereas receding angle shows the

characteristic zig-zag pattern between acetal and PVOH surfaces. The advancing angle

of the acetal surface is -90°. This is not sufficiently hydrophobic to cause substantial

adsorption of PVOH. To understand the contact angle hysteresis, XPS and AFM studies

were carried out. XPS of the surface, as shown in Figure 4. 17, shows a broad tail which

suggests that a variety of products form. AFM analysis of the final acetal surface is

shown in Figure 4.18. For the 7.0 nm thick film, RrmS is 1.5 nm. Thus XPS and AFM

explain the reasons for contact angle hysteresis.
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Figure 4.15 Ellipsometric thickness of multilayer films prepared by sequential

adsorption of PVOH followed by reaction with butanal.
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Figure 4.16 Dynamic water contact angle measurements for surfaces formed using

0.1% PVOH and C3H7CHO : (A) advancing angles, (V) receding angles.
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Figure 4.17 Ci s spectra recorded at 75° takeoff angle for the acetal surface.
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Figure 4.18 AFM analyses showing height (left image) and phase (right image)

profile for acetal surface formed using 0.1% PVOH.
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4.4 Conclusions

A new method for layer-by-layer assembly that uses hydrophobic interactions to

adsorb PVOH followed by chemical modification to regenerate a hydrophobic surface

that another layer of PVOH can adsorb to has been presented. This technique is general

in that it can be used on any hydrophobic substrate and versatile in that different

hydrophobic functionalities can be incorporated. Vapor phase reaction of acid chloride

with PVOH is found to yield better results than the solution phase reaction of PVOH

with isocyanate and butanal.
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CHAPTER 5

SYNTHESIS AND ADSORPTION OF HEMI-TELECHELIC BLOCK

COPOLYMERS

5.1 Introduction

Adsorption is a phenomenon in which there exists concentration gradient of the

adsorbate at the interface. Adsorption of polymer to solid surfaces is of technological

significance in colloidal stabilization, lubrication, adhesion and coating applications.

Adsorption of polymers onto a solid surface is influenced by variety of factors including

polymer molecular weight, polydispersity, chain stiffness, solvent quality and chemical

interactions.
1 Upon adsorption, polymer molecules can adopt various configurations,

like trains, loops and tails. Adsorption of polymers leads to loss of translational entropy,

polymer/solvent interactions and solvent/adsorbent interactions. However, if there exists

an environment, like poor solvent or a favorable enthalpic interaction between the

polymer and the adsorbent, adsorption can occur.

Many studies have been carried out that deal with adsorption of polymers onto

solid surfaces. ' This chapter describes the synthesis of hemi-telechelic block

copolymers of poly(styrene-fr-isoprene) with different compositions and attachment of

the functional group, -COOH at different positions. Adsorption studies of the polymers

on alumina and silica surfaces were also carried out. The aim of the project is to carry

out preliminary studies so that these functionalized polymers can be used in controlling

the morphology of block copolymers in the pores of alumina membranes
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5.2 Experimental section

5.2.1 Materials

All reagents were purchased from Aldrich and purified as mentioned below. All

the distillations were preformed using a trap-to-trap technique. Styrene was distilled

from CaH2 into dibutyl magnesium and redistilled under low pressure at 40 °C. Isoprene

was distilled from CaB.2 into 1°- butyl lithium and redistilled at 0 °C under low pressure.

Cyclohexane was first distilled from CaH^.To further purify cyclohexane, a solution

containing 2°- butyl lithium/cyclohexane and few drops of styrene was made. This

solution was added to distilled cyclohexane and it was redistilled. All the distilled

reagents/solvent were stored under nitrogen. Tetrahydrofuran was distilled from

sodium/benzophenone. Isopropanol was degassed by a freeze and thaw technique.

2° - BuLi +

P(l-b-S)COOH

Figure 5.1 Representative synthesis of hemi telechelic block copolymer P(I-ft-S).
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5.2.2 Block copolymer synthesis

Hemitelechelic block copolymers of poly (styrene-co-isoprene) were synthesized

in cyclohexane medium. Figure 5.1 shows a representative synthesis of functionalized

block copolymer with the COOH group attached to the polystyrene end. To

cyclohexane, a few drops of 2°- butyl lithium/styrene were added until a pale yellow

color persists, indicating an impurities-free reaction medium. A calculated amount of 2°-

butyl lithium was added followed by isoprene and the reaction was allowed to proceed

for 17 hours at room temperature. Then, a calculated amount of styrene was added and

allowed to react for 4 hours. To this block copolymer anion, distilled THF containing a

few drops of 2°- butyl lithium/styrene was added to separate the aggregated anion. This

solution was separated into two parts with one part terminated with isopropanol and the

other part purged with CO2 till the color of the solution changes from reddish orange to

colorless. Block copolymer was precipitated in acidified ethanol and filtered. Block

copolymers thus obtained were stored in amber-colored bottles under nitrogen.

Calculations for the volume composition of the copolymer were based on the densities

of monomer and polymer with isoprene (0.68 g/ml), poly(isoprene) (0.91 g/ml), styrene

(0.906 g/ml) and poly(styrene) (1.05 g/ml).

5.2.3 Adsorption experiments

Alumina or silica substrates were submerged in block copolymer solutions in

distilled toluene (25 mg / 5ml) for 17 h, removed, and rinsed with copious amounts of

toluene. Substrates were dried under reduced pressure overnite.
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5.2.4 Characterization

A Bruker DPX300 spectrometer (300 MHz !H NMR) was used to record NMR

spectra to determine the volume fraction of polyisoprene and polystyrene. CDCI3 was

used as solvent. The molecular weight distribution was obtained using a Waters GPC

equipped with a differential refractometer using THF as the eluent at a flow rate of 1 .0

mL/min and the molecular weight determined using polystyrene standards. Thin Layer

Chromatography (TLC) was performed using benzene as mobile phase and silica gel 60

A as stationary phase. UV light was used to monitor the elution after drying the TLC

plate. X-ray photoelectron spectra (XPS) were recorded with a Physical Electronics

Quantum 2000 with Al Ka excitation. Spectra were obtained at different take off angles

of 15°, 45° and 75° (between the plane of the surface and the entrance lens of the

detector optics).

5.3 Results and discussion

5.3.1 Synthesis and characterization of the block copolymer

Block copolymers of different composition with the functional group attached to

either isoprene end or styrene end were synthesized. Table 5.1 summarizes the

properties of the block copolymer synthesized.
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Table 5.1 Molecular properties of the polymer synthesized. F denotes either H or

COOH.
Polymer Volume % of styrene (±

4%)

Mw (Kg/mol) PDI

r(b-D-l)t i

P(I-£-S)F 50 36 1.08

P(S-M)F 30 16 1.03

P(I^-S)F 70 19 1.29

Conventional synthesis of carboxylic acid-terminated polymers synthesized by

living anionic polymerization using alkyl lithium in apolar solvent involves using

tetramethylethylene diamine (TMEDA) as base to disaggregate the lithium clusters.
4 '5

In

the synthesis scheme used here, instead of using TMEDA, THF was used as the base to

disaggregate the cluster. Along with that, carbonation was carried out by sparging CO2

rather than by the conventional freeze-dry technique.
6

*

1 1 1 1 1 1

7 6 5 4 3 2 1

PPM

Figure 5.2 Representative NMR spectrum of P(S-M) copolymer

104



P(S-I)H
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Figure 5.3 Representative GPC spectrum of COOH and H-terminated P(S-ft-I)

copolymer

(a) (b)

Figure 5.4 Thin layer chromatogram on fluorescence indicator-containing silica

plate of COOH and H-terminated copolymer for (a) before elution and (b) after

elution.

105



Block copolymers obtained were characterized by NMR to determine the

volume composition of the components, GPC for molecular weight distribution and

TLC to confirm the presence of functionalized end group. Figure 5.2 shows a

representative NMR spectrum of a block copolymer. Use of apolar solvent for

polymerization results in the thermodynamic product 1,4-isoprene compared to the

kinetic product, 3,4-isoprene that is favored in polar solvents. In the NMR spectrum, the

alkenic proton of the 1,4 product is at 5.15 ppm and the alkenic protons of the 3,4

product are at 4.7-4.8 ppm. Figure 5.3 compares the MWD of the -COOH terminated

polymer and the H-terminated polymer. GPC confirms the ability of THF addition to

successfully obtain monodisperse hemi-telechelic block copolymers. Presence of

carboxylic acid group at the end of the polymer chain was confirmed by TLC studies.

Figure 5.4 shows the chromatogram before and after elution for the carboxylic acid and

hydrogen terminated block copolymer. H-terminated copolymer elutes completely by

reaching the top of the solvent front (Rf =1) whereas the carboxylic acid terminated

polymer leaves 2 distinct features, one at the solvent front due to the presence of H-

terminated impurities and the second with a trail of COOH-terminated copolymer.

Elution (or in general adsorption) is a dynamic process involving adsorption and

desorption of the adsorbate/polymer from the surface. The presence of -COOH group

affects the adsorption and desorption process, making the -COOH functionalized

copolymer elute slower than the H-terminated copolymer.
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5.3.2 Adsorption studies on alumina and silica substrates

Toluene (solubility parameter, 8 = 18.5 MPa 1/2

) was chosen as the solvent for

adsorption studies as it is neutral to polystyrene (8 = 19.0 MPa 1/2

) and polyisoprene (8 =

15.1 MPa l/2

) blocks. Figure 5.5 shows the XPS spectrum of the various alumina

surfaces in the adsorption experiments. The shakeup peak, corresponding to n to n

transition in polystyrene, is seen for P(S-6-I)COOH (Mw = 29 kG/mol) adsorbed on

alumina surface at higher binding energy, aroung 290 eV, in Figure 5.5(c). For H-

terminated copolymer, in Figure 5.5(b), no such shake-up peak is observed.The Ci s peak

observed in H-terminated peak is due to adsorption of carbonaceous impurities/solvent

on the high surface energy alumina surface. Such carbon is also observed for plasma-

treated alumina before adsorption experiments. It is also observed that when the

molecular weight of the copolymer is high, for P(I-b-S)F (36 Kg/mol), adsorption does

not occur as seen in Figure 5.6 (d) and (e). This is because, after a critical molecular

weight, an entropic penalty due to adsorption outweighs the enthalpic interaction

between COOH and alumina. These results are consistent with that observed by Iyengar

et. al. for functionalized polystyrenes where polymers above 37 Kg/mol did not show

any functionality effects.^ Figure 5.6 shows the XPS spectra for the adsorption

experiments conducted on silica surfaces. As can be seen from the XPS studies, end

functionality does not have any impact on the adsorption characteristics of the

copolymer on silica. This is because the -COOH group interacts with the adsorbents in

different manner. Between alumina and carboxylic acid group, chemisorption with a

transfer of proton takes place whereas with silica, physisorption occurs.
7,8

This
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difference in enthalpic interaction due to type of adsorption explains the adsorption of

hemi-telechelic block copolymer onto alumina and silica substrates.
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Figure 5.5 Cis XPS spectrum of (a) plasma-treated alumina and alumina surfaces

adsorbed with (b) P(S-M)H (Mw =29 Kg/mol) (c) P(S-M)COOH (Mw =29 Kg/mol)

(d) P(I-J>-S)H (Mw =36 Kg/mol) and (e) P(I-6-S)COOH (Mw =36 Kg/mol). Take off

angles of 15° (red), 45° (blue) and 75° (turquoise) were used for XPS studies.
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Figure 5.6 Ci s spectrum of (a) plasma treated silica (b) adsorption of H-terminated

copolymer and (c) adsorption of COOH-terminated copolymer on silica. Take off

angles of 15° (red), and 75° (blue) were used for XPS studies.
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5.4 Conclusions

Poly(styrene-&-isoprene) copolymers end-functionalized with carboxylic acids

were synthesized and characterized by NMR, GPC and TLC. Adsorption studies of the

synthesized copolymers were carried out on silica and alumina. Adsorption of

functionalized copolymer is influenced by the substrate, molecular weight of the

copolymer and solvent quality. For future studies, these copolymers will be used in

porous alumina membranes to control the copolymer morphology by varying the end

functionality.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Studies on reactive, hot-melt polyurethane adhesives

In the first part, influence of copolymer formed by the reaction of polyols,

PHMA and PPG (1:1 by mass) with diisocyanate on morphology and crystallization

kinetics is studied. Presence of copolymer of PPG-PHMA whose PPG contribution is

12% of the total mass of the polyurethane prepolymer has compatibilizing effect on the

otherwise phase-separated blend of PPG prepolymer and PHMA prepolymer. From the

crystallization kinetics study of PHMA, followed by time-dependent IR studies, it is

observed that nucleation rate in PPG prepolymer/PHMA prepolymer blend and

polyurethane prepolymer are almost equal at same degree of supercooling. But growth

in polyurethane prepolymer is slower due to reduced domain size formed by the

compatibilizing action of PPG-PHMA copolymer. Transport of PHMA to the

crystallization growth front is affected by the presence of PPG 'defects'.This

observation on crystallization kinetics is explained in terms of de Gennes' reptation

model.

In the second part, a novel approach to cure isocyanate-terminated prepolymer,

inspired by 'Trojan horse strategy' is implemented. Ammonium salts that are stable at

room temperature but decompose on heating to evolve active hydrogen-containing

compounds on heating or decompose over longer period of time (in days) at room

temperature are used as triggers. Ammonium carbamate in the dispersion of PPG

prepolymer/ammonium salt is more stable than ammonium bicarbonate at room
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temperature but the decomposition rate of carbamate is faster than bicarbonate. Rate at

which the active hydrogen-containing compounds are released determines the

mechanical properties of the final product. Chemical crosslinks in the cured,

polyurethane product is confirmed by the increase in T
g
from DSC studies.

6.2 Adsorption studies using different interactions

Repetition of adsorption of PVOH on hydrophobic substrates by hydrophobic

interactions followed by chemical modification of PVOH to generate hydrophobic

substrate is used to form thickness-controlled, wettability-controlled, functionalized

multilayer. Multilayers have been made using ester, urethane and acetal functionalities.

Ability to successfully form the multilayer is contingent upon hydrophobicity of PVOH

derived product. Hydrophobicity of PVOH derivative is in the order of ester > urethane

> acetal. Multilayer-formation is also affected by the concentration of PVOH used for

adsorption studies. Concentration of PVOH above entanglement concentration results in

predominantly amorphous layer. This translates to thicker functionalized layers.

In the second part of this study, presence of functionality at the end of poly

(styrene-fr-isoprene) is used to control the adsorption properties of the polymer on

alumina and silica substrates. Hemi-telechelic block copolymers, end-terminated with

carboxylic acid or hydrogen, has been synthesized by living anionic polymerization.

Enthalpic interaction between alumina and carboxylic acid overcomes the loss of

translational entropy on adsorption, solvent/alumina interactions and polymer/solvent

interactions. Thus, carboxylic acid-terminated polymer adsorbs onto alumina whereas

hydrogen-containing polymer does not.
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6.3 Future work

Curing studies by 'Trojan horse approach' involves using isocyanate-terminated

PPG prepolymer (T
g
~ -48 °C) as model prepolymer. However, actual, reactive, hot-melt

polyurethane adhesive is a multicomponent system containing high T
g
components ( Tg

up to 100 °C). This requires the adhesive to be melted before application. Ammonium

salts used in this study can not withstand such high temperature. Future studies will

involve developing new trigger systems or different ways of implementing the

'controlled curing' using ammonium carbamate or ammonium bicarbonate. Mechanical

studies will also be performed to verify the suitability of these techniques to

multicomponent systems.

Hemi-telechelic block copolymers will be used to control the morphology in the

pores of alumina membrane. Studies will be carried out to verify if the enthalpic

interaction between alumina and carboxylic acid group can overcome the interfacial

interactions. Controlled positioning of carboxylic acid group in poly(styrene-&-isoprene)

will help to study the competing factors.
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