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ABSTRACT

PREPARATION OF ORDERED NANOCOMPOSITES IN

POLYMERIC TEMPLATES SWOLLEN BY SUPERCRITICAL CARBON

SEPTEMBER 2002

GARTH D. BROWN,

B.S., UNIVERSITY OF MISSOURI - ROLLA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James J. Watkins

Nanocomposites are of interest for numerous applications such as catalysis, photonic

band gap materials, and waveguides. lonomers and diblock copolymers have previously

been used as templates for ordered nanocomposites. However, these processes have been

limited to reactions within thin films or coprecipitation methods from solution due to mass

transport limitations of ceramic and metallic precursors within the solid templates. This issue

has been addressed by fabricating ordered nanocomposites using phase selective deposition

of precursors into supercritical carbon dioxide (SC-CO2) swollen polymeric templates. SC-

CO2 is an effective plasticizing agent for most polymers and enhances mass transport of the

precursors into polymeric templates while preserving the initial template morphology. By

proper choice of template material, the precursor can be selectively bound within one phase

of the template and reacted to produce the desired material. The resulting composite contains

nanoparticles arranged in an ordered morphology dictated by the template over bulk
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dimensions. Polymer/ceramic and polymer/metal nanocompo sites have been

synthesized using this technique.
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CHAPTER 1

INTRODUCTION

1.1 Project Overview

This dissertation describes the preparation of ordered nanocomposites in polymeric

templates swollen by supercritical carbon dioxide (SC-CO2) using the general approach

summarized in Figure 1.1. Polymer ionomers and block copolymers have controllable

morphologies that can be used as structure-directing templates. Ceramic and metallic

precursors were infused into specific domains within polymeric systems from SC-CO2

solution. Sorption of the SC-CO2 solution into the polymer matrix mitigates the mass

transport limitations for delivering precursors. CO2 sorption can be controlled at modest

levels which can have the added benefit of preserving the long-range order of a block

copolymer, which is often not the case with traditional solvents. Upon CO2 infusion,

precursors were selectively bound within an ionic cluster or one phase of the block

copolymer, which is the key to the templating process. Under proper reaction conditions,

nanoparticles are produced with a morphology dictated by the polymeric template.

Nanocomposites composed of the polymeric template containing ceramics, metals, or metal

sulfides were prepared in this manner.
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^ ,

SC-CO2 Reaction
Polyinenc Selective Deposition Teniplatecl
^""1'^^^'^ ofPreausor Naiiocomposite

Figure 11 Reaction scheme for the fabrication of ordered nanocomposites using SOCO2 swollen polymeric templates

The first part of the research project was the formation of templated polymer/ceramic

nanocomposites by the in-situ sol-gel chemistry within an acidic polymer, Nafion. This is a

ionomer that has a fluorinated carbon backbone with pendent sulfonic acid groups organized

into ionic clusters. SC-CO2 was used to deliver a ceramic precursor, tetraethylorthosilicate

(TEOS), into the polymer film. Condensation of the precursor via sol-gel chemistry within

the acidic ionic cluster of the polymer produced a silicon dioxide (Si02) network structure.

The next two sections of the research project focused largely on the formation of templated

metal/polymer nanocomposites using block copolymers templates. The copolymers

investigated in the second and third sections were polystyrene-Zj/oc^-poly(acrylic acid) and

polystyrene-block-poly(vinyl pyridines). Each of these copolymer systems has one phase

which is able to undergo chemical binding with an organometallic. Upon dissolving the

organometallic in SC-CO2, it is infused into the polymer systems and metallic nanoclusters

are produced upon reduction. The nanocomposites were characterized by several methods,

including transmission electron microscopy and wide angle X-ray scattering.
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1.2 Overview of Nanocnmpn^itpMj^tprhih

Nanocomposites are materials composed of two or more components in which the

size scale of at least one of the domams is on the order of 1 to lOO's of nanometers. These

materials are often polymer matrices filled with a second inorganic phase of ceramics, metals

or metal sulfides. The applications of nanocomposites are varied depending on the

functionally of the minor component. For example, mechanical properties of polymers can

be improved with ceramic fillers' and polymers filled with specific sizes of metal

nanoparticles can yield optical devices.^"'*

Three levels of control are critical for dictating nanocluster properties: composition,

size and ordering. Nanoparticle chemistry controls the chemical makeup of the second phase

which is commonly ceramic, metal, or metal sulfide nanoparticles. Discrete clusters with

well defined properties can be produced by a number of techniques involving molecular self-

assembly of structure directing agents including surfactants,^'^ liquid crystals,^' ^ ionomers,^-

and block copolymers.^' "'
'^"^^

These self-assembled materials are often commensurate

with the size of desired nanoparticles and can direct their architecture . However, to fabricate

many practical devices, the long-range order of nanoparticles must be controlled over bulk

dimensions. The limitations of current methods results from the nature of the template,

including mass transport limitations of reactants through solid templates such as block

copolymers and the fragility of bicontinuous surfactant phases in solufion.^^

1.2.1 Applications of Nanocomposite

The applications of polymer-based nanocomposites arise fi-om the functionality

imparted by the formation of a second domain. These applications can be broken down into

3



three different elasses depending on the funetionality of nanoparticles. The first ease is that

in which the small nanopartieles themselves give rise to the desired properties. An example

is a quantum dot. The seeond ease includes applications in which the nanoparticles as a

group collectively impart functionality. An example is modifying the refractive index of a

copolymer phase for potential optical applications. The third case anses when the

nanoparticles impart modification of the entire polymer, such as fillers providing improved

mechanical properties.

1-2.1.1 Active Nanoparticles

Nanoparticles can be prepared and encapsulated within supports, such as polymers, to

produce nanocomposites in which the nanoparticles themselves impact active functionality.

Applications for nanocomposites of polymers containing nanosized metal and semiconductor

particles arises from quantum effects and large surface to volume ratios of the active

nanoparticles. Extremely small nanoparticles, often less than 1 nanometer in size, are often

called quantum dots, consisting of a few hundred atoms to less than ten with properties

between that of a single atom and bulk material.^'' " This unique region of ultra-small

sizes gives an incompletely developed electronic band-gap structure, that are tunable with

particle size. The large surface/volume ratios of nanoparticles also have been used to explain

the different properties compared to bulk material, which have low surface/volume ratios.^''

56 58
For example, a 2 nm platinum nanoparticle consists of about 280 atoms with about 100

in the 'bulk like' interior. In contrast, a 0.7 nm platinum nanoparticle consists of about 12

atoms, all on the surface.
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Lack of a fully developed electronic structure gives rise to the unusual size-dependent

optical properties, such as an absorption spectrum that is "blue shifted" as particles become

smaller, leading to applications for optical devices.^' ^-^^'^^"^^ By controlling the size of small

nanoparticles, the wavelength of light transmitted or reflected, from infrared to ultraviolet,

can be precisely controlled. This leads to devices such as optical filters, where only one

wavelength of light is allowed to pass through the sample ""^^
Specific absorbances could

make it possible to produce nanocomposite films in a wide range of colors.

Nanoparticles with unusual magnetic properties have been prepared within polymer

supports and investigated by various research groups.^' These nanocomposites have

particles small enough such that each one acts as a single magnetic domain and can exhibit

phenomena such as superparamagnetism, where the domains are small enough to lose their

magnetic field due to thermal fluctuafions.'' An example of a magnetic nanocomposite

produced in a copolymer is an optically transparent film containing magnetic nanoparticles of

ferric oxide, with magnetic properties different from that of the bulk fenic oxide.^ Other

magnetic nanocomposites have been prepared with cobalt nanoparticles in

poly(acrylonitrile)^^ and with non-polymeric materials such as nickel within a silica

support.^^

The preparation of nanoparticles for catalytic applicafions has been studied by

numerous groups.^'' ^^'^^ The majority of work has been in the area of

palladium and platinum nanoparticles stabilized within polymeric supports. Examples of

catalytic studies using nanocomposites include catalytic cracking of '^C-labeled 2-

methylpentane^^ and hydrogenation of ethylene and propylene.^^ Studies have shown that

the smaller sized nanoparticles had a greater catalytic activity due to the larger surface area.^^

5



The polymer matrix also influences the catalytic activity,^^'
^6, 37

^^^^^ ^^^^

nanoparticle is important.^' Polymers play an important role in nanocomposites with active

nanoparticles. Nonconductive, transparent, permeable and easily processable polymers are

frequently used as the matrix for nanoclusters.^^' The polymer matrix serves several

purposes including: 1) stabilization of the colloidal dispersion and prevention of the

agglomeration of the nanoparticles, 2) protection of surfaces from contaminate deactivation,

and 3) tailoring the surface properties of the particles.^^' Nanoparticles in matrices other

than polymers such as water microemulsions and aluminum oxide have also been prepared

and investigated.^^

1.2.1.2 Collections of Nanoparticles

The presences of nanoparticles can influence the bulk properties of the matrix in

which they are distributed, such as in dielectrics and optical materials. Optical devices

produced from nanocomposites in which one component collectively adds functionality is

potentially one very important application. An example of this is the preparation of photonic

crystals using emulsion templates.^"* In this example, colloidal crystals of oil droplets acted

as a template for titania, which was subsequently calcined, to produce inorganic optical

material.^'*

Ordered nanocomposites fabricated in the manner presented in this dissertation can be

used for optical applications. First a film of a high molecular weight lamellar block

copolymer could be annealed in SC-CO2 with spacings that are on the order of the

wavelength of light.
''^ Modification of the film, by methods presented here (Figure 1.1),

6



could alter the refraetive index of one phase to fabricate highly ordered nanocomposites.

These could be capable of interact.ng with l.ght to produce devices such as optical mirrors.

1.2.1.3 Polymer Modification

Nanocomposites can also be prepared for applications in which nanoparticles modify

the mechanical properties of a second phase. The most common example of this are

polymeric materials filled with ceramic nanoparticles. The fillers have been placed into

polymeric matrixes by one of two basic methods: 1) mechanical mixing of different

components or 2) in-situ formation of one or both of the phases.

Polymer-ceramic nanocomposites have been prepared by annealing a mixture of

silicates and polymers statically or under shear.'^'^^ Intercalation of the polymer chains

between silicate layers produced the nanocomposite. The polymer-silicate nanocomposites

exhibited improved modulus, reduced gas permeability, increased solvent resistance,

decreased thermal expansion coefficient, and enhanced ionic conductivity over the

unmodified polymer.^^'^^

Nanocomposites have also been prepared by the in-situ formation of ceramic phases

within polymers for improved mechanical properties. Surface hardening of clear plastic

windows has been achieved by subsequently carrying out sol-gel chemistry on the polymer

76 TV
surface. ' This process produced a silicon dioxide film on the surface that interpenetrated

into the top layers of polymer chains. Conversely, ceramic windows have been surface

modified with monomers that can undergo both sol-gel chemistry and vinyl polymerization,

providing color and decreasing reflectance of glass.

7



1.2.2 Nanoparticle Chemistry

Different classes of nanoparticies can be produced by different chemisttyies to

control their clremical makeup. These nanoparticies are commonly composed of ceramics,

metals, or metal sulfides.

1-2.2.1 Ceramic Nanoparticies

Ceramic nanoparticies can be produced by sol-gel chemistry. This is a widely used

and industrially important method for producmg high purity ceramics at temperatures much

lower than traditional ceramic processing.^^' The sol-gel process starts with the formation

of a colloidal suspension (sol) and gelation of the sol into a continuous liquid or semi-solid

phase (gel). The precursors are metals or metalloids with reactive ligands, most commonly

metal alkoxides because they readily react with water to further produce an inorganic

network structure.

Sol-gel chemistry can be described by three general reactions (Figure 1.2). The first

step is hydrolysis of a metal alkoxide by water usually with acid or base catalysis. The

subsequent two reactions produce the inorganic network: two hydrolyzed species react to

produce metal oxide while liberating water (water condensation) or one hydrolyzed species

reacts with the original starting material to yield a metal oxide and alcohol (alcohol

condensation). The characteristics and properties of a particular sol-gel inorganic network

are related to a number of factors that affect the rate of hydrolysis and condensation reactions

such as pH, temperature, time, alkoxide composition, water composition, and catalyst.

8



M-O-R + IJLjO

M-o-ii + rr o M
M O R + Jl-O-M

^^==>^ M-O-II +R-()-ll afydrolysis)<= M-O-M + I I^O (Water CoiicJeiisalion)

M-O-M + R-O-i I (Alcohol ( oiulcnsat ion)
M Si, V, Ti, dc.

Usually ricid or base catalyzed

FiRiire 1.2 Ceiicnil reaction scheme loi soI-kcI chemistry

The most widely used metal alkoxide is lelraelliyloi-lhosilieale (TliOS), which yields

silicon dioxide (Si02) networks upon condensation (iMgure 1.3). The network structure is

highly dependent on the pll of reaction. Networks produced under acid-cataly/ed conditions

yield primarily linear or random branched polymers which entangle upon gelation to form

additional branches.^' Networks derived under base-catalyzed conditions yield more highly

branched clusters that do not interpenetrate prior to gelation and thus behave as discrete

clusters.^' Tetramethylorthosilicate (TMOS) is structurally similar to TEOS, except the

ethoxy side groups are replaced with the shorter methoxy groups. TMOS has similar

chemistry to TEOS, but is not as widely used due to its increased reactivity and toxicity.'

Sol-gel chemistry can be used to produce other metal oxide networks, such as aluminum

oxide (AbOj) with the proper choice of precursors such as aluminum butoxidc

(AI(0C4Hg),).'^'"^'^
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Hydrolysis
• •

Si(0Et)4+H,0 (HO)Si(OEt)3 + EtOH
(H0)Si(0Et)3+H,0 <=> (HO),Si(OEt), + EtOH
(HO)2Si(OEt)2 + H^O <=!> (HO)3Si(OEt) + EtOH
(HO)3Si(OEt) + H,0 <z=i^ Si(OH), + EtOH

Alcohol Condensiitioii (Alcoxohition)

= Si-OEt + HO-SiE <=> E Si-O-Si E + EtOH

Wil te 1 C0iKle 11sa 1io ii (Oxohi tio ii

)

ESi-OH + HO-SiE <=> ESi-0-SiE+ H^O

Overall Reaction

Si(OEt), + 2H2O I > -(SiO,)- + 4EtOH

Si02 Network

O—Si—O—Si—O—Si—

O

^si'^ i (i i

^ ^O—Si—O—Si—O—Si—O ^ ^

{ I i
\ /O—Si—O—Si—O—Si—0\ /
Si I I I Si

/ \ / \

Figure 1.3 Sol-gel chemistry of tetraethylorthosilicate

Sol-gel reactions are also advantageous with respect to versatile functionalities that

can be exploited to chemically modify the inorganic network structure."'
^'

Diethoxydimethylsilane (DEDMS) is an example of a TEGS derivative in which two

ethoxide groups are replaced with two methyl groups (Figure 1 .4), resulting in methyl groups

within the Si02 network structure when co-reacted with TEOS.'° 3-

(Glycidyloxyproply)trimethoxysiliane (GLYMOS) is a modified TMOS and when

copolymerized with TEGS, polymerizeable epoxide groups are placed within the Si02
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network structure (Figure 1.4). Temperature sensitive molecules have also been incorporated

into the Si02 network as a method to make optically transparent biological and chemical
OA

sensors.

CH3

Si(OEt),

CH3

DEDMS GLYMOS

Figure 1.4 Structure of two silicon dioxide network modifiers, DEDMS and GLYMOS

Sol-gel chemistry has been used to make ultra-low density SiOz networks called

82 83
aerogels. ' In traditional sol-gel chemistry, solvent removal by evaporation gives rise to

large capillary forces within pores which causes a shrinking of the network, potentially

leading to cracking and mechanical failure of the xerogel. To prevent collapse due to surface

tension, solvent can be removed by heating it above its critical temperature and pressure.

The supercritical solvent has zero surface tension and is removed without collapse of the

porous network. Sol-gel chemistry is typically conducted in traditional solvents, such as

ethanol, followed by exchange by a solvent with more accessible critical conditions, such as

carbon dioxide. The CO2 is then heated into the supercritical state where it was slowly

removed to leave behind the highly porous silica network.^"^
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1 •2-2.2 Metal Nanoparticles

Metal nanoparticles have been prepared by various chemical reactions that involve

the reduction of metal ions or organometallics using thermal, photolytic, or chemical means

such as reaction with hydrazine or hydrogen. One of the most straightforward ways to make

nanoclusters is by the thermal reduction of metal salts withm refluxmg solvents. For

example, palladium acetate was reduced to palladium metal in refluxing methyl isobutyl

ketone.'''- Thermal reduction of (1,5-cyclooctadiene) silver (hexafluoroacetylacetonate)

has been used to produce silver nanoclusters.^^. Gold salts have been photolytically

reduced with a laser.^'' Silver halide can be photolytically reduced with visible light,

which is the basis for traditional photography.^^

Metal nanoparticles have also been produced by the chemical reduction of metal salts

or organometallics. For example, hydrazine has been used for the reduction of metal salts for

the formation of platinum and palladium alloys.'^ One of the most common ways to produce

metal clusters is the reduction of metal ions or organometallics with hydrogen.^'"^^'^^'^''"^^'-"'"

37, 88-97

Diolefm dialkylplatinum complexes, such as (1,5-cyclooctadiene) dimethylplatinum

(II) [Pt(C0D)Me2], are rapidly reduced by hydrogen to produce platinum metal in an

autocatalytic reaction (Figure 1.5).^°"^^' The generated platinum is incorporated into the

surface of the platinum particle and the reduction rate is strongly influenced by mass

transport and by the surface area of the catalyst. This platinum precursor is also very useful

for composite synthesis as it has been reacted with hydrogen to produce platinum

nanoclusters within poly(4-methyl-l-pentene)^' and platinum films from SC-CO2 solutions.^^

12



CH

CH

H
>

A

+ Pt + 2CH

Figure 1.5 Reduction of (1,5-cyclooctadiene) dimethylplatinum with hydrogen

1-2.2.3 Metal Sulfide Nanoparticles

Metal sulfide nanoparticles have been prepared by the reactions of metal sahs or

organometallics with hydrogen sulfide (H2S). Most of this work has involved metal sulfide

nanocomposites prepared by reacting hydrogen sulfide with metal salts or organometallics

within polymeric systems.^^' The precursors can be loaded into polymer systems

by solvent casting with the precursors
•°2-io4

by mixing the precursors with a

monomer solutions followed by polymerization. Volatile metal sulfide precursors, such as

diethyl zinc and dimethyl cadmium, have been infused into thin polymeric films directly

from the vapor phase.'^'^ Once the precursors were loaded into the polymeric systems,

treatment with H2S produced the metal sulfide nanoparticles.

1.2.3 Nanocomposite Fabrication Methods

The fabrication of nanocomposites can be broadly divided into two different

categories depending on the final organization of the components, either disordered or

ordered. Disordered nanocomposites exhibit a random spatial distribution of nanoparticles,

but can have a narrow size distribution. Numerous techniques have been used for fabrication

13



of randomly distributed nanoparticles within a host matrix. These include polymer/ceramic

nanocomposites prepared by melt-pressing polystyrene with silicates fillers/^"^^

polymer/metal nanocomposites prepared by the evaporation of gold nanoparticles into

monomers later polymerized,^'^- '^^ or by the incorporation of a metal precursor into SC-CO2

swollen homopolymer followed by hydrogen reduction.^^ Ordered nanocomposites have

been fabricated using molecular self-assembly to produce a template. These self-assembled

materials can be commensurate with the size of desired nanoparticles. Examples of self-

assembled materials used previously as templates include surfactants,^' ^ liquid crystals,^' \

ionomers,'-'' and block copolymers.'' Several examples of disordered and ordered

nanocomposites are given in Table 1.1 and Table 1.2 respectively.

Table 1.1 Selected Disordered Polymer Nanocomposites

Polymer Nanoparticle Preparation Method

Poly(methyl methacrylatc)

Polystyrene

Polystyrene

Carbon Fiber

Nylon 1

1

PMP

Polystyrene

SiOj

Silicate

Gold

Cobalt

Gold

Platinum

Cadmium Sulfide

Simultaneous polymerization'

Melt pressed^"

Evaporation of metal into liquid monomer,'"'

Thermal reduction of cobalt precursor*^

Evaporation of metal onto Nylon 1 1

'"''

Infusion of precursor into homopolymer with SC-CO2'*

Simultaneous formation in an emulsion.'"*
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.2 Selected Ordered Polymer Nanocomposites

Polymer Nanoparticle Preparation Method

Nafion Si02 In-siiu sol-gel chemistry within Nafion^'^^

Soaking crosslinked polymer in silver iodide'^^

Coprecipitation of precursors and copolymer from solution^'

Coprecipitation of precursors and copolymer from solution^^

Reduction of solution in benzyl alcohol^^

Simultaneous formation in an emulsion'^^'

Uptake of metal precursors from solution into thin films followed

by reaction''-
^^'^^

PS-6-P2VP Silver

PS-^j-P2VP Gold

PS-6-PE0 Palladium

PI-6-P2VP Palladium

PS-Z)-PAA Cadmium Sulfide

Numerous MetalsMTD Copolymer

1-2.3.1 Disordered Nanocomposites

Disordered nanocomposites are materials fabricated in which one component

encapsulates a second nanosized component with no spatial ordering. However, some of the

disordered nanocomposites can exhibit narrow size distributions of the particles. This

section reviews some of the work on disorder nanocomposites in which one phase is ceramic,

metal, or metal sulfide.

1.2.3.1.1 Disordered Polymer/Ceramic Nanocomposites

Disordered polymer/ceramic nanocomposites have been fabricated within different

polymers either by mixing polymers with nanosized ceramic fillers or by the preparation of

the ceramic phase through sol-gel chemistry for improved mechanical properties of the

composite.^' Examples of a disordered polymer/ceramic nanocomposites include polymers

filled with organically modified silicates.
' FabricaUon involved directly annealing a

mixture of the silicate and polymer statically or under shear. Intercaladon of the polymer
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chains between the silicate layers gave rise to the nanocomposite, with improved mechanical

properties over the unfilled polymer/''

Disordered polymer/ceramic composites have been prepared by forming

interpenetrating structures either by sol-gel chemistry with in a polymer matrix or by sol-gel

reactions during polymerization rather than just a mechanical mixing of a ceramic filler and

polymer.' The use of sol-gel chemistry in the formadon of these composites is important

because functionalized ceramic precursors can be commercially obtained, allowing for direct

covalent bonds with the polymer chains. The ceramic/organic materials can be divided into

two major groups where the two phases are either connected by strong covalent bonds or

embedded together with weak bonds.^^''

'

An example of a interpenetrating polymer ceramic nanocomposites without strong

covalent bonds between the two phases is clear ceramic reinforced plastic windows. Theses

are fabricated by first solvent casting TEOS with poly(methyl methacrylate). Following

heating, sol-gel chemistry produced ceramic nanoparticles dispersed throughout the

77
polymer. In a similar manner, surface properties of polymers has also been modified with

polymer/ceramic structures. The surface of clear plastic windows have been hardened by

subsequently conducting sol-gel chemistry on the surface.^^ Ceramic windows have been

surface modified with monomers that can undergo both sol-gel chemistry and vinyl

polymerization to provide color or to decrease reflectance of glass.^^

Disordered polymer/ceramic nanocomposites have been prepared in which the

ceramic and polymer phases are covalently bound together. One method for this was

conducting TEOS sol-gel chemistry within polyethersulfone. Polyethersulfone contains

hydroxyl groups that are able to react with TEOS. During sol-gel chemistry, the silicon
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dioxide network becomes chemically bound to polymer cham ends. Linking of the polymer

chains was demonstrated by the increase m molecular weight as shown by gel permeation

chromatography.^' Other examples of silicon dioxide ceramic structures bound to polymers

are those with poly(silsesquioxane),'>' isocyanate functionalized poly(tetramethylene

oxide),' '^ poly(caporlactone)"2, and hyperbranched polymers.^^

1-2.3.1.2 Disordered Polymer/Metal Nanocompnsifps:

Polymer/metal nanocomposites have been prepared by various methods such as the

incorporation of metal nanocluster directly into polymeric systems or the incorporation of

metal precursors into polymers. An example of a disordered polymer/metal nanocomposite

involved the deposition of metal vapor into liquid monomer. Upon polymerization, gold

nanoparticles were trapped within a polymeric network of polystyrene,' °^ poly(methyl

methacrylate),'°^ and poly(isobutylene).^^ Another example of a disordered polymer/metal

nanocomposites was the chemical vapor deposition of gold onto Nylon 1 1 . Upon heating

above the glass transition temperature of nylon, relaxation of the polymer chains occurred

and the metal clusters were distributed throughout the polymer films.'°^'
'°^ An example of a

polymer/metal nanocomposite was the loading of cobalt precursors into poly(acrylonitrile)

during solvent casting. Upon thermolysis, cobalt nanoparticle were produced by reduction

Within a carbon fiber matrix. A more elegant and direct method was the diffusion of a

platinum organometallic into SC-CO2 swollen poly(4-methyl-l-pentene).^^ Upon reduction

with hydrogen, platinum nanoclusters were produced and stabilized by the polymer matrix.
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'•^•^•'•^ Disordered Polymer/Metal Sulfide Nanocompo.ifP.

Disordered polymer/metal sulfide nanocomposites have been fabricated by mixing

metal sulfide precursors with monomers followed by polymerization. An example of this is

the mixing of cadmium salts with a styrene emulsion Upon introduction of hydrogen

sulfide, the salts were reduced to yield cadmium sulfide followed by emulsion

polymerization of a styrene network. This technique has been extended with other salts to

prepare nanoparticles of copper sulfide and zinc sulfide within polystyrene.

Disordered polymer/metal sulfide nanocomposites have been fabricated by the

reaction of metal sulfide precursors within polymeric systems. Examples of these are

random copolymer films of polystyrene and poly(acrylic acid) cast onto films and immersed

into aqueous solutions containing cadmium or lead salts.''^^' Upon subjecting the dried

slides to hydrogen sulfide, metal sulfides in copolymers were produced. Optical properties

of these nanoparticles were investigated and control of nanoparticle size was dictated by the

random copolymer."''

1.2.3.2 Ordered Nanocomposites

For numerous applications, three dimensional ordering of nanoparticles within a

second matrix is critical. Nature has perfected the fabricafion of ordered nanocomposites

through the self-assembly of a bio molecule template which directs the formation of a second

inorganic phase. To obtain nanoparticles with controlled architectures on the size scale of

interest, many research groups have attempted to mimic nature with self-assembled

templates. Examples of self-assembled templates include surfactants,^' ^ liquid crystals,^' ^

ionomers,^"'^ and block copolymers.^'
^^'^^
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1.2.3.2.1 Natural Nanocompositps

Nature consistently produces ordered ceramic/polymer nanocomposites, such as

abalone sea shells,- radiolanan microskeletons,-, cartilage, eggshells, mollusk shells,

teeth, and bone."^ These naturally fabricated bioceramics are composites are prepared from

self-assembled templates at ambient conditions in aqueous media from readily available

natural materials.^^ Bone is an elegant example of a natural nanocomposite whose structure

has been perfected at both small and large scales, which provides for the desired mechanical

properties. Organic collagen fibers first self-assemble forming a template structure. This

fibrous framework is then filled with minerals, primarily calcium phosphate, producing a

structure with roughly 67% ceramic and 33% organic materials. Bulk composites are made

while domain sizes are controlled down to the micron level as the mineral adopts a structure

directed by an organic matrix. This process for the fabrication of ordered polymer/ceramic

nanocomposites through elegant chemistry at low temperatures is referred to as

biomineralization."^'

"

1.2.3.2.2 Surfactant Templates

Ordered nanocomposites have been prepared by surfactant templates which contain

two antagonistic parts and are the simplest molecules to undergo self-assembly."^ When

surfactants have been used as templates for ceramics nanocomposites, the process has been

called "biomimetic," in reference to similar processes in nature.^'
^o'- 120-122
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Surfactant self-assembly occurs in water with amphiphilic surfactants consisting of a

hydrophobic organic tail and a hydrophilic lonic head. Above a critical micelle concentration

(CMC), the organic tails associate with the tails of other surfactants forming a sphere

surrounded by the polar head group, which isexposed to the water. Changing variables, such

as the surfactant concentration, temperature, solvent, and the surfactant itself can give rise to

different non-robust structures, such as cylinders, lamellae, and bicontinuous structures.*^'
'^^

Switching to a non-polar solvent can result in an inversion of the micellar structure, where

the polar head groups will associate away from the non-polar solvent. Examples of larger

molecules that can also undergo similar self-assembly are liquid crystals, protein chains, and

block copolymers. Block copolymers can also exhibit a CMC in solution, but this occurs at a

much lower concentration than that for low molecular weight surfactants. CMC for a

surfactant is about 10"^ to 10"' Mol/L, where as for a copolymer CMC is in the range of 10"^

to 10-^ Mol/L."'-'

The structure directivity of surfactants templates is illustrated in Figure 1.6.^' ^ The

first step is the formation of a surfactant structure in a suitable non-polar solvent above the

CMC, which can take on several different morphologies such as spheres, cylinders, lamella,

and a bicontinuous systems. Mixing with the inorganic precursor, such as TEOS, can lead to

self assemblywhere the inorganic networks can start to form. After sol-gel chemical reaction

of precursor, an ordered structure will be produced with a morphology directed by the

surfactant.^ Surfactant structures have also been used to produce ordered structure with

metal nanoparticles. Metal salts were added to the surfactant structure and reduced with

hydrazine to produce palladium and platinum alloys. '^^ The particles were collected on a

solid alumina support.

20



Surfactant /liy^^Hl
Surfactant

'infl/lflf
Structures JUmi^i
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ceraiTiic precursors
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^^'^ 1 .T0^fy Ceramic Composite

Figure 1.6 Schematic of the cooperative organization of silicate-surfactant mesoph ases

1.2.3.2.3 Liquid Crystal Templates

Liquid crystals are molecules that undergo molecular self-assembly and some have

been used as templates for ordered nanocomposites. Lyotropic liquid crystals are larger,

more complex than simple surfactants with numerous structures available to prepare

nanocomposites/' '^"^
In one example, lyotropic liquid crystals containing unsaturated links

self-assembled into a hexagonal pattern. Upon cross-linking with UV light, TEOS was

introduced into the structures. Reduction ofTEOS produced a templated structure of Si02.^
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Polymeric lonomer TpmpltitP^f

Polymeric lonomers have been used as templates to prepare ordered nanocomposites.

lonomers are copolymers in which one of the blocks contains an ionic functionality and

aggregate into a quasi three-dimensional order. Nafion is the most widely used ionomer. It

contains small segments of sulfomc acid functional groups, and has been used as an acid

catalyst for TEOS sol-gel reactions.^"'^- '^5
^^^^^^ developed in the 1960's by DuPont

and has been used in numerous applications such as catalysts, gas separation, liquid

separation, and fuel cells.'^' These applications are enabled by Nafion's thermal and

chemical resistance, ion-exchange properties, selectivity, mechanical strength, hydrophilic

nature, and insolubility in water.'^^

The chemical structure of protonated Nafion ionomer consists of a fluorinated carbon

backbone with pendant sulfonic acid functional groups (Figure 1.7). This semicrystalline

matenal (T^ = 270 °C and -12% crystallinity) is structurally complex and the exact structure

of the ionic group aggregation is not fully known. Analysis by small angle X-ray

scattering (SAXS) and neutron scattering indicate that the ionic groups tend to aggregated to

form tightly packed ionic clusters from strong electrostatic interactions.'" From this

information and other studies such as ion transport through films, a structural model has been

developed that suggests that the ionic groups are dispersed in a quasi-order fashion

throughout a hydrophobic semicrystalline perfluorocarbon matrix (Figure 1.8). The

approximate center to center spacing of the ionic clusters is about 5 nm.'^^
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Figure 1.7 Chemical structure of protonated Nafion

Semicrystalline

Hydrophobic Region io„ic Cluster

Figure 1.8 Model of Nafion ionomer

Nafion has been extensity studied as solid acid catalyst for the preparation of

polymer/ceramic nanocomposites based on sol-gel chemistry within sulfonic acid (-SO3H)

S 1 2 1 23 1 28 1 29
catalytic sites. ' ^' The polar clusters within Nafion and other ionomers acts as an

interactive template that directs the reaction of metal oxide precursor and the disposition of

the final metal oxide network, most commonly SiOi from TEOS. Upon high loading of the

Si02 phase, percolation of the inorganic occurs, as suggested by brittle fracture in mechanical

tests.'^^

The templating capability of Nafion has been verified by SAXS on the Nafion film

before reaction and of the nanocomposite following reaction."^' In one example, untreated

Nafion showed a broad scattering maximum of qmax ~2.0 nm"', attributed to a quasi-ordered
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array of clusters with a spacing of -50 A.'« Upon TEOS infusion and subsequent reactions,

the nanocomposites showed a scattering peak at the same location, supporting the templating

-
1 28

theory. The siUcon dioxide network within Nafion has been modified by adding different

ratios of TEOS and DEDMS (Figure 1.4).>° These organically modified ceramics within

Nafion have been shown by SAXS to have similarly sized inorganic network structures.

Pretreatment of Nafion prior to any chemical impregnation has been shown to have a

large effect on the final product.'^^ The pretreatment involved soaking the films in

hydrochloric acid to oxidize dimethyl sulfoxide and other impurities left over from polymer

processing, followed by rinsing with doubly distilled water. Nafion was then treated with

nitric acid to fully protonate the acid groups and to "initialize" the membrane. The films

were then treated with water to remove excess acid. This last step was repeated until a

neutral pH of the water was obtained (6.5 < pH < 7.0).'^°

After pretreatment of the films, the general reaction procedure was as follows.'^

Nafion films were first soaked in a stirred solution of 5:1 (V/V) methanohwater at room

temperature for 24 hours. This swelling facilitates subsequent permeation of TEOS into the

films. Premixed solutions of TEOS/methanol were then added to keep the water/TEOS ratio

at 4:1, After 10 minutes in the solutions, the films were removed and washed with methanol

and dried at 100 °C for 48 hours to further promote the reaction and remove volatile material.

1.2.3.2.5 Block Copolymer Templates

Block copolymers can encompass a wide range of phase separated morphologies and

can be used as structure directing templates to produced ordered nanocomposites.^'
^^'^^

Block copolymers are the polymeric analogue of liquid crystals and surfactants with
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morphologies more stable than those of their low molecular weight counterparts. Block

copolymers are made by the linking of two (or more) different segments of homopolymers.

If two homopolymers of the same molecular weight are mixed together, phase separation will

occur if the product of the Flory-Huggins segment-segment interaction (x) and degree of

polymerization (N) is sufficient (xN>2).'^- Linking the cham ends forms a block copolymer,

limiting the size scale upon which phase separation can occur. Segment comiectivity raises

the penalty for phase separation (xN>10.5) for two blocks of equal volume fraction.'^' The

morphology for a given phase separated block copolymer is dictated by minimizing both

interfacial area and stretching of the coil governed by x, N, and f, the volume fraction of each

block. If one considers a simple block copolymer composed of two immiscible

homopolymers, Poly(A) and Poly(B), phase separation will occur forming the morphologies

shown in Figure 1.9.

Polviner A Polvmei B

Increasing t

Figure 1.9 Generic block copolymer morphology

If one of the phases, Poly(A), represents a small volume fraction, it will aggregate

into spheres of Poly(A) surrounded by Poly(B), akin to spherical surfactant micelles. An

increase in the volume fraction of the minor phase will increase the surface area of the
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interface. The copolymer system will attempt to minimize this surface area and upon

reaching a critical value, a lower surface area is achieved by forming cylinders of Poly(A)

surrounded by a continuous phase of Poly(B). Further increase in the volume fraction of

Poly(A) will result in a lamellar structure of alternating blocks followed by the inversion of

the phases.

The actual morphologies of block copolymers are more complex and have been

studied in detail for several copolymer systems, most extensively for polystyrene-6/ocyt-

polyisoprenc. Examples of more complex structures include bicontinuous phases and meta-

stablc perforated lamellae and modulated lamellae, shown in a compilation of data (Figure

31 132 134
1 . 1 0). •

- This work has also shown the block copolymer phase behavior can be further

defined by the strength of segregation.^ '^^-'^^
The block copolymer is in the weak

segregation limit with poorly defined interfaces close to the critical xN, which is 10.5 for

lamellar systems. A much larger xN drives the system in the strong segregation limit giving

a shaper interface,'''^
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Figure 1.10 Phase diagram of a poly(isoprene-b-styrene) copolymers"^'"'*

Another advantage of block copolymers is their robust nature in comparison to other

self-assembled structures, such as surfactants and liquid crystals. The ideal nanocomposite

template should be chemically robust to survive chemical modification, have mechanical

integrity for manipulation upon fabrication, and have the ability to be ordered over large

length scales relative to the size of the cluster being templated. Introducing macroscopic

order in block copolymers (BCP) has been shown by using shear, thermal gradients, roll

casting, electric fields, and annealing in supercritical carbon dioxideJ^'
"^"'^^

These

requirements are possible with block copolymers and are a key advantage to their use. With

all of the advantages of BCP's, their use as bulk templates has been limited by the mass

transport and efficient delivery of materials into the copolymers.

One of the earliest examples of a block copolymer nanocomposite was the fabrication

of metallic silver within a thin copolymer film of polystyrene-^/oc/:-poly(2-vinyl pyridine)
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(PS-6-P2VP).'°^^ The polystyrene phase was first Hghtly cross-Hnked by UV light, to

preserve the initial morphology and soaked in a solution containing silver iodide. The silver

was bound to the pyridine and thermally reduced in place forming templated silver clusters.

A similar preparation was repeated for gold clusters in PS-Z,-P2VP, introducing the

nanoreactor concept of metallic particles in copolymers.
'^^

Solutions of copolymers have been used to prepare templated nanocomposites of

metal and metal sulfides.^' For example, gold nanoparticles were prepared withm

a PS-^-P2VP copolymer in three steps. The copolymer was first dissolved in toluene with a

gold salt, forming thermodynamically stable spherical micelles of P2VP, which bound the

gold precursor.^^ Upon reduction with hydrazine, gold clusters were produced within the

P2VP phase. Gold clusters remain within the P2VP phase, which acts as a protective shell

when films are cast from solution onto a TEM grid. Microcellular wires have similariy been

made using PS-/j-P2VP dissolved in toluene with the same gold precursor.'*^ The volume

fraction of P2VP in the copolymer and the concentration of solvent were controlled,

establishing a cylindrical phase in solution. The cylindrical phase became the template for

binding the gold precursor, which upon evaporation of the solvent and reduction of the metal

produced gold wires. Thin films nanocomposites on silicon wafers have been prepared in the

same manner. By dipping a wafer into a solution of copolymer and metal precursor,

nanoclusters were produced by the reduction of the dry film."*^

The precipitation method has also been used to make nanocomposites fi-om other

copolymer polymers and solvents.^^ In one example, a polystyrene-Z7/oc^-poly(ethylene

oxide) (PS-^-PEO) copolymer was dissolved into a mixture of tetrahydrofuran and ethanol.

The PEO blocks aggregated into spherical micelles in solution and bound dissolved
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palladium acetate, which was subsequently reduced thermally. Catalytic properties of the

palladium dispersions were studied by the hydrogenalion of cyclohexene and TEM analysis

was performed by solvent evaporation onto a copper grid." Other work has investigated

precipitation from aqueous solutions" and catalytic properties of nanoparticles prepared in

different copolymers. ^^'^^

The preparation of metal-copolymcr nanocompositcs by precipitation of benzyl

alcohol, polyisoprcne-Woc/:-poly(2-vinylpyridine) (PI-/.-P2VP), and palladium bis-

acetylacctonate in chloroform has been reported.^^ This solution produced a cylindrical

structure of P2VP, which was able to bind palladium precursor. PI-6-P2VP acted as the

template and the nanostructure remained after the evaporation of chloroform. Upon heating

to 140 "C, benzyl alcohol reduced the palladium and was driven from the film.^^

Commercially available polystyrene-/)/oc/:-polyisoprene (PS-6-PI) has been used as

the starting material for nanocompositcs."^' The PI phase was chemically modified by

epoxidation, allowing it to be converted into a number of different functional groups. A

range of different metal and metal sulfide precursors were added to the different

functionalized copolymers. Differences in the reduction of metals and semiconductors

within the modified copolymer were discussed in relation to hard-soft acid-base theory.'^

The direct preparation of nanocompositcs of metal and semiconductor nanoclusters

within block copolymers has been demonstrated by Cohen and coworkers."*'
^^'^'' '*^"'*'*'

In their first reaction schemes, norbomene-derived monomers were prepared with various

pendent organometallic groups. Using Schrock catalysts, these monomers were

copolymerized with other norbomene-derived monomers producing a phase separated block

copolymer of desired morphology. The copolymers were solution cast followed by reduction
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with hydrogen to yield clusters of platinum, palladium, gold and silver, or with hydrogen

sulfide, producing zinc sulfide, lead sulfide, and cadmium sulfide nanoclusters.^'*'

To prevent the synthesis of a new monomer each time a different nanocluster was

desired, a "universal" technique was introduced.^^' In this scheme, norbomene-denved

monomers were prepared with pendent trimethylsilyl esters and copolymerized with other

norbomene-derived monomers. By controlling the monomer ratio, desired lamellae,

cylindrical, spherical morphologies of reactive copolymers were achieved.'^' The ester

groups were hydrolyzed to pendent acid groups that can bind metals in an aqueous solution

(such as Zn'\ Cd'\ ?b'\ Cu'\ Co'\ Fe^^) when the thin sections of copolymer are placed in

contact with the solutions. Metal precursors, such as ZnEt2 and CdMe2, were also infused

directly into thin copolymer films from the vapor phase.'' Upon reducfion with hydrogen or

hydrogen sulfide, metal or metal sulfide nanoclusters were formed. Templating of the

clusters was verified by characterization with transmission electron microscopy (TEM).

Additional templating evidence has been obtained by an X-ray fiuorescence map of the

nanocomposite containing ZnS. Mapping the X-ray florescence results directly onto TEM

image, showing that the clusters were only formed within the reactive phase of the

copolymer.''

Further studies of this 'universal' method have allowed for the effect of the reduction

potentials of the metal ions and complexes to be invesfigated and for the measurement of the

diffusion of metal precursors into the copolymers. Diffusivities of approximately 3x10"'^

2 * 27cm /s were obtained. Those low diffusivities essentially preclude the formation of

nanocomposites over bulk dimensions. In another example, the universal method was used

to produce lamellar copolymer systems loaded with platinum nanoclusters. The platinum
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nanoclusters were subsequently used as seed layers for electroless copper deposition witlrin

the copolymer domains.^'^

Diblock and tnblock copolymers have been used as templates to fabricate ordered

polymer/ceramic nanocomposites.^^ Copolymers have been used as templates with one

phase containing pendent side-groups capable of undergoing sol-gel chemistry alone or with

added ceramic precursors such as TEOS.^^ Most commonly, the block copolymers contain a

hydrophilic block that is able to absorb water and a ceramic precursor.

An example of this is the fabrication of an ordered nanocomposite from tri-block

copolymers of polyethylene oxide-WocA:-polypropylene oxide (PPO-6-PEO-6-PPO) and

TEOS.'^'^' The PEO phase absorbs the water acting as the template where the sol-gel

chemistry occurs depositing an ordered silicon dioxide network.'^^ Other block copolymers

and inorganic networks have been prepared using poly(isoprene-6/ocyt-ethylene oxide) (PI-^j-

PEO).'^ In this study, the PEO phase acted as a template, which was selectively swollen by a

solution containing an aluminum alkoxide (Al(OC4H9)3), TEOS, and GLYMOS (Figure 1.4).

A ceramic network structure was fabricated and shown to contain aluminum and silicon

dioxide bound to the PEO chains. The morphology was dictated by the block copolymer

template structure.'^

1.2.4 Nanoparticle Size and Aggregation

A key consideration for nanocomposites containing metal and meal sulfide particles

is the initial particle size and potential aggregation of particles used to produced larger

clusters. The particle sizes within a polymer will be determined by the reaction conditions

used to synthesize the materials and potentially nanoparticle diffusion and coalescence.
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Variations in nanoparticle sizes from different reduction conditions have been investigated"'

54, 141-143 . 21 29 31or mentioned '

• ma few sources. Nanoparticle diffosion has been studied

within polymer films containing metal sulfides'^^' and metals.^^'

Understanding the growth processes of particle size is essential for developing a

rational synthesis mechanism to produce monodisperse nanoclusters within polymeric

materials. The growth of semiconductor nanoparticles within block copolymer

microdomains reduced by hydrogen sulfide has been investigated and modeled.''^ The

growth of the nanoparticle was found to be influenced by diffusion, aggregation and growth.

Other methods of particle growth, such as Ostwald ripening, were ruled out by the large

energy penalty required for these mechanisms. Two growth models were proposed: 1)

reaction-diffusion and 2) equilibrium.'^^ The reaction-diffusion model assumes that the

growth of nanoparticles is governed by the competition between diffusion time for particles

to aggregate (ij) and reaction time (Xr) for the production of the nanoclusters. When id

becomes much greater than Xr, the growth of particles will stop and new sites will be

nucleated, giving rise to more particles. The equilibrium model assumes an equilibrium

number of metal-ligand bonds at any given temperature. Formulas were developed for these

two models and were used as a guide to determine the dominat mechanism within a

system.''*^

The influence of reduction conditions on nanoparticle size was examined using a

platinum precursor/polymer substrate solid solutions.'"*^ Poly(4-methyl-l-pentene) films

were loaded with Pt(C0D)Me2, then the film was cut into pieces, and reduced with hydrogen

under conditions of various degrees of plasdcization by SC-CO2. Scherer analysis of the

platinum (111) peak measured in WAXS indicated larger clusters were produced with
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increasmg pressures of SC-CO. Increase in CO. pressure lead to increasing sorption ofCO
and thus a large increase in the precursor diffusion to previously formed reduction sites

The effect of reduction conditions on the properties gold clusters prepared within

polystyrene-/,/oc^-poly(4-vinyl pyridine) [PS-Z.-P4VP] has been noted.^' The copolymer was

dissolved in toluene with a gold precursor, tetrachloroaunc acid (HAuCU), which yielded

gold precursor bound to a P4VP sphere surrounded by a PS corona. Upon solvent casting

onto a TEM grid, gold was templated within a spherical P4VP phase and subjected to two

different reducing agents. The fast (strong) reducing agent, lithium aluminum hydride

(LiAlH4), produced numerous small nanoparticles within each domain. The slow (weak)

reducing agent, trimethyl silane (McsSiH), produced a single nanoparticle within each

domain, that was larger than with the fast reducing agent and also located at the interface.''

The authors attributed differences between the particles to the strength of the reducing

agents, but did not comment on the location of the nanoparticles at the copolymer interface or

any unreduced precursor which appeared to be visible in the TEM images.

In another study, the photo-reduction of gold salts within a PS-6-P4VP copolymer

was carried out using an ArF laser.^^ Again the copolymer with the gold precursor was

solvent cast onto TEM grids. Upon reduction with 20 laser pulses at low power (10 mJ/cm^)

at 25 °C, numerous small nanoparticles were produced within each copolymer domain. With

10 laser pulses at high power (20 mJ/cm^) at 25 °C, few larger nanoparticles were produced,

with a loss of templating. A sample was reduced at low power and at 90 °C, which resulted

in a structure similar to that obtained at low temperature and high laser power with larger

nanoparticles and a loss of templating. These results suggest that the energy density per

laser pulse was the decisive parameter controlling the coalescence of smaller nanoparticles
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into larger ones accompanied by a loss of the original template order.- To test the theory

that the variation in nanoparticle size was due to only local temperature increases that

provided increased mobility for nanocluster diffusion and aggregation, a sample was reduced

with the low power and 25 °C followed by heating at 135 °C for 10 seconds, which

corresponds to the typical laser-irradiation time. This short heating time did not alter the

structure, which showed that the formation of larger clusters by low energy irradiation at

elevated temperatures is not simply due to a coalescence of already existing smaller dots, but

occurs during of nucleation and growth.^

The mobility of gold nanoparticles deposited by evaporation'^^ and from an aqueous

colloidal suspension'^' on polymer surfaces and sandwiched between polymer films has been

studied by TEM microscopy. Four nanometer gold nanoparticles were evaporated onto a

polystyrene film followed by annealing for various times at 179 °C, well above the individual

glass transition temperatures (Tg) of the homopolymers."^ The gold nanoparticles were able

to diffuse and coalesce to form larger particles at a temperature hundreds of degree below the

bulk mehing point of gold (1064 °C).''*^

Polymer sandwiches of PS-PS, PS-P2VP and P2VP-P2VP were prepared by placing a

polymer film onto a second polymer film coated with evaporated gold nanoparticles. Within

the PS-PS sandwich, the gold nanoparticles were able to diffuse away from the interface and

coalesced together to produce larger particles similar to the results on the polystyrene film.'^^

Within the P2VP-P2VP sandwich, the gold nanoparticles were able to migrate away from the

interface, but were prevented from aggregation due to strong metal-polymer interaction.

Coalescence of the nanoparticles would require rearrangement of the polymer chains bound
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to the metal, which is energetically unfavored. Nanoparticles in PS-P2VP interface

pinned at the interface unable to move and also prevented from aggregation.'^^

In a second set of experiments, movement of twenty nanometer gold nanoparticles

deposited from aqueous colloids was investigated on surface films of PS and P2VP and

within polymer sandwiches of P2VP-P2VP, PS-PS, and PS-P2VP during annealmg at 179

°C.'^^ Gold nanoparticles on the surface of polystyrene were able to diffuse and coalesce at

179 °C. Atomic force microscopy (AFM) of the films revealed that the nanoparticles

remained on the top of the film and did not penetrate into the film.'^^ However, results for

the annealed P2VP films were different; the gold particles were not able to coalesce due to

strong metal-polymer binding. AFM revealed another difference. The 20 nm nanoparticles

penetrated the film to a depth of only 15 nm as detected by 5 nm spots on the surface. The

authors related this difference in PS and P2VP to the use of an aqueous colloid, which would

be able to plasticize P2VP more than PS allowing for an initially deeper penetration.

However, the addition of a PS film onto the P2VP allowed for deep penetration into the

P2VP. The authors related this to the change in the contact angle of P2VP on gold from 9° to

essentially zero with PS."*^ Upon annealing a P2VP-P2VP sandwich, gold nanoparticles

were prevented from agglomeration, but were able to diffuse into each of the films.

Measurement of nanoparticle penetration depth into polymers has been studied for

gold nanoparticles deposited from thermal evaporation or from aqueous colloidal suspensions

into poly(tert-butyl acrylate),^^'
"'^

polystyrene,'^^"'^^ and poly(2-vinyl pyridine).'^^-'^^

Rutherford backscattering spectroscopy was used to measure the penetration depth as this

method is ideally suited for determining the location of atomically heavy gold nanoparticles

within a light atom polymer matrix. From measurements of penetration depth vs. time,
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diffusion of the nanoparticles was calculated withm different polymers, at several

temperatures and molecular weights. Examples of the diffusion rates are 3x10 '^
cm^/sec for

gold nanoparticles in poly(tert-butyl acrylate) with Mw = 21,000 g/mol at 80 "^C'^^ and 5x10'

cmVsec for gold nanoparticles in P2VP with Mw = 82,000 g/mol at 160 °C.'^« Under these

conditions, a nanoparticle could diffuse 30 mu in 2.5 and 15 minutes, respectively. Figure

1.11 shows the diffusion of 20 nm gold nanoparticles for two different molecular weights of

poly(2-vinyl pyridine).'^^ The solid line is the calculated diffusion for a 7.5 mn gold particle

using the zero shear rate viscosity for the (Mwt = 82,000) polymer. The results indicated that

the diffusion was an order of magnitude slower than predicted, which was explained by a

strong binding of P2VP to the gold. This strong binding required the gold nanoparticle to

drag along P2VP chains, which essentially increases the size of the particle.

C
O 82,000 g/mol

150,000 g/mol

"~~ Stokes-Einstein

1 I r

120 140 160 180 200 220

Temperature ("C)

Figure 1.11 Diffusion of 20 nm gold nanoparticles in poly(2-vinyI pyridine)
148
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1.3 Background on Siippr^Htipj^jj^

A supercritical nuid (SCF) is a substance above its critical temperature and pressure.

SCF's have been used as solvents in numerous applications such as the polymerization of

ethylene,"' decaffeination of coffee,'" for organic chemical reactions,"^' '« '*
and

nanocomposite synthesis."- '« '"• '» The applications of SCF's arise due to several of its

characteristics, such as a wide range of solvent strengths and densities that can be adjusted by

tuning the pressure and/or temperature. A number of different small molecules and reactants

can be dissolved into SCF's and infused into polymeric systems. This approach also will be

used in this research project.

Carbon dioxide is the most widely used SCF. It has a readily accessible critical

temperature and pressure (T, = 31.06 X and P, = 73.83 bar).'^^ The properties of SCF's are

coupled to density and controlled by variations in temperature and pressure. Several

isotherms of CO2 are shown in Figure 1.12.'^'^ Densities approaching or exceeding those of

liquid organic solvents (-0.7-0.9 g/mL) can be obtained with SC-CO2 while retaining

desirable properties of gases, such as high diffusion rates and zero surface tension. Key

physical properties of fluids are summarized in Table 1.3 SC-CO2 is an attractive medium

for use with polymers as the solvent is inexpensive, nontoxic, nonflammable and

environmentally benign.
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Figure 1.12 SC-CO2 density isotherms
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Table 1.3 Physical Properties of Liquids, Gases and SCF's

Density (g/cc)

Viscosity (Pa*s)

Diffusion (cm^/s)

Liquids

LO

10-^

10
-5

Gas

0.001

10-

10
-1

SCF's

0.1-1.0

10-'- 10-'

10-^

1.3.1 Use of SCF's in Polymers

For polymer applications, supercritical fluids were initially used for high-pressure

polymerizations such polyethylene, where ethylene is both the solvent and monomer (Tc =

9.22 °C and Pc = 50.32 bar).'^''
'^^ More recently, supercritical fluids have been used as an

aid in polymer processing, and as a solvent for polymer fractionation, polymer synthesis,

polymer foaming and for extraction or impregnation of small molecules.
152, 161-163

Almost all polymers absorb CO2 appreciably without being dissolved, allowing for

the modification of polymers, by SCF assisted infusion of reactants. However SC-CO2 is
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able to dissolve some polymers such as some polysiloxanes and perfluoralkylpolyether.'^^

and fluorinated surfactants for emulsion and dispersion polymerization '^^-^^^ An example is

the dispersion polymerization of acrylonitrile in SC-CO, using a fluorinated copolymer,

polystyrene-Woc^-poly(l,l-dihydroperfluorooctyl acrylate), as a stabilizer.
'^^

CO2 sorption in polymers causes a depression in the Tg, an increase in polymer

diffusivity and a decrease in viscosity.
'^^"'^^

The Tg of polystyrene and

poly(methylmethacylate) (PMMA) is reduced by CO2 sorption from 100 and 105 °C to 35 °C

at 72 bar and 58.8 ''C at 101 bar, respectively.
'^O' '^^ At these conditions, gas sorption withm

PS was found to be about 10 weight percent and 12 volume percent. For PMMA, the gas

sorption was more than 18 weight percent and 28 volume percent swelling.''^'
''^

In some

cases, the solubility of SC-CO2 can be as high as that of typical organic liquid swelling

agents.
'^^

CO2 sorption in polymers increases free volume and hence decreases viscosity.

The viscosity of a CO2 - PS melt at 150 °C can be reduced by two orders of magnitude with

just 4.5 weight percent of dissolved CO2. The greatest reduction in viscosity is found near

the Tg of the polymer. This can be explained by the Williams-Landel-Ferry equation, which

relates viscosity at different temperatures to the viscosity at Tg.^^^'

The large decreases in the Tg upon sorption of CO2 has been used to improve ordering

kinetics of block copolymers. For applications as optical devices, the dimensions of a

structure must be on the order of wavelength of light, and high molecular weight block

copolymers have this desired length scale (Mwt > -300,00 g/mole). Thin films of low

molecular weight copolymers, such as PS-Z)-PMMA, are able to form well ordered structures

upon annealing, but high molecular weight films are kinetically trapped and unable to form
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highly ordered structures.'" The large increase in chain mobility by the large decrease in T

from CO: sorption allows for the ordering of high molecular weight copolymer films
"

g

1.3.2 Small Molecules in SCF-Swollen Pnlympr^

SC-CO2 can be used for the impregnation or extraction of small molecules from

polymer matrixes. Equilibrium is determined by the partition coefficient of the molecule

between pure CO2 and the swollen polymer. A major effect of CO2 is to accelerate the

kinetics of additive absorption.

The diffusion of small molecules within polymers is greatly enhanced by the sorption

of CO2. In one example, the extraction of ethylbenzene in PS was performed with COz.'^^ It

was found that at a CO2 density of 0.22 g/cm\ the estimated diffiisivity increased by more

than six orders of magnitude when compared to the PS matrix. '^^ Enhanced diffusion has

also been demonstrated by the measurement of tracer diffusion coefficients of azobenzene in

polystyrene at 35 °C and various CO2 pressures using Forced Rayleigh Scattering.

Small molecule diffusion has been measured in C02-swollen polymer films in-situ by

fluorescence nonradiative energy transfer techniques. Two polymer films were

sandwiched together with one film having a donor molecule (pyrene) chained to PS and the

other film having an acceptor (decacyclene) that is free to move. Upon plasticization of CO2,

the doped acceptors diffuse towards the bound donor to quench the fluorescence. From

measurement of the continuous decrease in the donor emission intensity over time, diffusion

rates of the acceptor can be determined. It was shown that at a constant temperature of 65

°C, CO2 sorption enhances the diffusivity of decacyclene by as much as five orders of

1 80
magnitude relative to the PS glass at ambient pressure and identical temperature.
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SCF - Polymer Phase Behavior

Similar to partially miscible polymer blends, block copolymers can phase separate

upon cooling through an upper order-disorder transitions (UODT) analogous to an upper

critical solution transition (UCST) in polymer blends.'" However, due to the tethered nature

of the block copolymers, phase separation can only occur on the length scale of the

macromolecules, resulting in periodic ordered structures. Although, UODT-type behavior is

the norm for block copolymers, a number of block copolymers have recently been found to

microphase separate upon heating through a lower disorder-order transition (LDOT), which

is analogous to lower critical solution transition (LOST) behavior in polymer blends.'^'

Figure 1.13 Block copolymer phase diagram
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By solvating the block copolymer, the location of theses transitions can shift, but

more importantly, changes in the copolymer morphology can occur depending on solvent

selectively.'^^-'^^ Thus understanding the effect of compressed carbon dioxide on the phase

behavior of block copolymer is an important factor in the use of SC-CO^ swollen copolymers

as templates.'«^-'^« In general it was found that CO2 sorption can induce phase segregation

for systems that exhibit LCST and LCOT behavior, but CO, sorption promotes compatibility

for systems that exhibit UCST and UCOT behavior.

1-3.4 Supercritical Fluids and Nanoparficlps

A number of SCF's have been used as solvents and co-solvents for the production of

nanoparticles and for micron-sized particles.'"' "^'"^^
Particle design is becoming a very

important application, especially in the pharmaceutical industry.'^^

Rapid expansion of supercritical solutions is a process in which the material of

interest is dissolved in a SCF and rapidly depressurized through a nozzle, causing an

extremely rapid nucleation of the product.
'"^^

Another common method for the production of

micron-sized particles is the formation of particles from gas-saturated solutions.'^^ This

process consists of dissolving a supercritical fluid into a liquid material or a solution of the

material. The mixture is then passed though a nozzle causing the formation of liquid droplets

and the growth of particles. These methods can allow for control of the crystal structure and

size of the particle, which is important as the crystal structure can have a large impact on

biological functionality.'^''
'^^ These methods for precipitation particles within SCF's has

been extended into polymers. In one example, micrometer sized particles and fibers of nylon
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6/6 were produced by expanding polymer solutions into SC-CO., for™ing micron sized

particles.
''^^

In the production of several nanoparticles, a supercritical fluid (water or ammonia)

was also used as the reducing agent.-' - However, the corrosive nature of both water (T,

=374 «C & P, = 220.6 bar)'^*^ and ammonia (T, =132 °C & P, = 113.3 bar)'-^^ are serious

drawback for these processes. A much less corrosive supercritical fluid is carbon dioxide

which also has been used as a solvent for making nanoparticles.'" However in all of these

cases, the agglomeration of these nanoparticles is problematic as is the collection of the

nanoparticles. One solution to these shortcomings is the encapsulate the nanoparticles with

some protective shell, such as a alkanethiol capping ligand.''^^

One such synthesis involved the production of nanoparticles directly in a polymer

matrix to produce a metal-homopolymer nanocomposites.'^''' A platinum precursor,

[Pt(C0D)Mc2], was infused into a bulk sample of poly(4-methly-l-pentene) by SC-CO2.

Upon reducing with hydrogen, platinum nanoclusters were produced. The semi-crystalline

homopolymer did not provide for control of cluster sizes or for the overall three dimensional

morphology, but prevented cluster aggregation.^^
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CHAPTER 2

POLYMER / CERAMIC NANOCOMPOSITES

2.1 Introduction

The use of disordered and ordered polymer/ceramic nanocomposites is of interest for

numerous applications, primarily for improved mechanical properties of polymers."' ''''

Ordered polymer/ceramic nanocomposites have been prepared using a variety of self-

assembled systems, such as ionic and neutral surfactants,^' '°'' '^'' '^2. i98
jonomers,^''^'

^^'

and block copolymers.'^' The fabrication of both disordered and ordered

polymer/ceramic nanocomposites is discussed in detail in the introductory chapter.

In this part of the study, the fabrication of nanocomposites of Nafion and silicon

dioxide was explored, as illustrated in Figure 1.1. The ionic domains of a Nafion film were

exposed to humidified SC-CO2 solution, and then infused with a tetraethoxysilane (TEOS)

SC-CO2 solution. Sol-gel chemistry was selectively performed within the ionic domains to

produce the quasi-ordered polymer/ceramic nanocomposite. As a preliminary step, the

solubility of TEOS in SC-CO2 was investigated. Nafion/ceramic nanocomposites were also

prepared from «-propanol solutions. The nanocomposite were characterized by electron

microscopy and x-ray scattering.

2.2 Experimental Section

The goal of this part of the research project was the fabrication of ordered

polymer/ceramic nanocomposites. The polymeric template was provided by an acidic

polymer, Nafion, and the ceramic phase was silicon dioxide produced by TEOS sol-gel
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chemistry. SC-CO^ was used to impregnate the polymer with water and to dehver TEOS into

the Nafion to enable the fabrieation of bulk ordered polymer/ceramic nanocomposites.^^' «^

Heat treatment facilitate the TEOS condensation reaction to proceed, which produced the

ceramic silicon dioxide network structure. Samples were characterized by various methods

including electron microscopy and x-ray scattering.

2.2.1 Materials

Tetraethoxysilane (TEOS) was the ceramic precursor and was used as received

(Aldrich Chemical). /7-Toluenesulfonic acid (p-TSA) was an additional acidic catalyst for

sol-gel chemistry and used as received (Aldrich Chemical). The solvents for the sol-gel

chemistry were Coleman-grade CO2 (Merriam-Graves) and A2-propanol (Aldrich Chemical),

and were used as received. Nafion-ll? films were purchased from DuPont. The clear

Nafion films had a thickness of 0.184. Water treated by reverse osmosis was used for the

sol-gel reactions and rinsing of Nafion films.

2.2.2 TEOS/CO 2 Phase Behavior

Before exploring the TEOS infusion into the polymers by SC-CO2, the phase

behavior and stability of TEOS/CO2 mixtures was studied. Initial studies indicated that

TEOS solutions with a small amount of water were stable for more than 24 hours in CO2.

The phase behavior determinations were carried out using a high-pressure variable volume

View cell shown in Figure 2.1.
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Figure 2.1 Schematic of variable volume view cell used to determine solubility

The view cell allows for direct observation of either reactions or phase behavior

under a range of different pressures and temperatures. Internal pressure control of the view

cell was provided by a water-filled pressure generator connected to the back of the cell.

Water moved an internal piston, which increased or decreased the volume (a maximum of

-10 mL) and hence adjusted the pressure of the fluid phase. The internal pressure of the cell

was determined by measuring the water pressure with a digital pressure gauge, assuming no

loss of pressure by drag on the piston o-ring seals.'^^ Temperature control was provided by

two PID temperature controllers attached to two different heating elements. The primary

heater was a heating tape directly wrapped around the view cell and controlled to the desired

temperature by a thermocouple measuring the fluid temperature directly inside the view cell.

The second heater controlled an oven encasing the view cell to maintain a constant

temperature of the external components, such as the CO2 filling port. Constant temperature

of the view cell is essential for visualization as temperature gradients will produce refractory
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waves withm the view cell. Direct visualization of the cell contents was made through a

sapphire window and a horoscope attached to a light source and a video camera.

Solubility experiments were conducted by first loading the desired amount of TEOS

and a magnetic stir bar into the view cell. The front of the cell was sealed by an o-ring

against the sapphire window. Liquid CO2 was loaded into the view cell from a blind vessel.

The amount of CO2 added was measured by weight difference of the vessel before and after

transfer, and the weight percent of TEOS in CO2 was calculated. The view cell and box were

heated to the desired temperature and allowed to fully equilibrate. Under constant agitation

provided by the internal magnetic stir bar, the piston was moved forward increasing the

pressure until a single TEOS/SC-CO2 phase was obtained. Pressure was lowered in a step-

wise manner until a bubble was observed, indicating the presence of a second phase. The

bubble point pressure was recorded and the pressure was increased until a single phase was

obtained. The pressure was again lowered in a stepwise fashion with decreasing step-size

until a reproducibility was obtained of +/-0.34 bar (+/-5 psi). Once the bubble point was

determined at the desired temperature for at a given weight percent TEOS in SC-CO2, the

temperature was changed and the process was repeated. The phase diagram for mixtures of

TEOS and SC-CO2 is shown in Figure 2.2. Lines in Figure 2.2 are shown as a guide. The

data show that TEOS is quite soluble.
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Figure 2.2 Phase behavior of TEOS in SC-CO2

2.2.3 Silicon Dioxide Deposition

Deposition of Si02 on silicon wafers was performed using TEOS to determine if

TEOS condensation chemistry can be conducted in CO2. Reactions were run in 25 mL high-

pressure stainless steel reactors {Thar Designs) equipped with a high-pressure needle valve.

Each vessel was loaded with a silicon wafer (1 cm x 3 cm), /?-TSA, and a small glass tube

(i.d. = 1 cm) containing the TEOS and water separated from the catalyst to prevent reaction

before CO2 dissolved the components. Then the vessel was filled with SC-CO2 at 120 °C and

260 bar (p=0.28 g/cc)'*^'^ using a high-pressure computer controlled syringe pump (Isco Inc.).

The final concentrations of the reactants are given in Table 2.1

.
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Table 2.1 Reaction Condition of Deposited Silicon Dioxide Films

Sample
B

TEOS (wt %) 4 0 4 Q
Water (wt %) 6.0 0 4
/7-TSA (wt %) 0.4 0 4
% Weight Gain 109

After a two hour soaking time, the reactors were slowly drained, opened, and the

samples were removed for analysis. Weight gains of the silicon wafers are shown in Table

2.1.

The Silicon wafers were coated with a white powder and a white cracked film that

was apparent to the eye. Closer observation of the samples obtained at the two reaction

conditions was possible using scanning electron microscopy (SEM) Figure 2.3. Prior to

SEM analyses, samples were coated with a light coating of gold to dissipate charging of the

nonconductive sample.

Figure 2.3 shows the SEM pictures of the deposited silicon dioxide films. Both of the

images showed cracked films of poor quality along with small particles. The particles
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observed are a result of gas phase nueleation. There are not significant differences in the

morphology of the films. Figure 2.3 B presents a higher magnification. This work showed

that neat silicon dioxide could be produced by TEOS condensation in SC-CO,. These

experiments set the stage for subsequent reactions within acidic polymer films.

2.2.4 Nafion/Ceramic Nanocomposites

In this section, the preparation of Nafion/ceramic nanocomposites is discussed. The

first step was the quantification of water uptake into Nafion films. Films used for reactions

underwent a pretreatment and were subsequently infused with water and TEOS from both

alcohol solution and SC-CO2 solutions. The sol-gel reactions of TEOS with water requires

an acid or base catalyst as discussed in the Introduction. The Nafion film has an acid group

and could act itself as the catalyst. The resulting nanocomposites were then characterized by

various methods such as electron microscopy and x-ray scattering.

2.2.4.1 Water Uptake into Nafion

The water uptake of Nafion was measured on (~2 cm x ~2 cm) squares Nafion pieces

used as received. Three different conditions were studied: neat water at 25 °C, 100 °C, and

exposure to humidified SC-CO2 at 70 °C and 152 bar. For water uptake at 25 °C, films of

known weight were placed into a covered glass beaker containing a magnetic stir bar and

water. The films were removed at different intervals for weighing and returned to soak in the

beaker. A similar procedure was used for water uptake at 100 "C, except that the water was

refluxed in an Erlenmeyer flask connected to a water-cooled condenser. For three
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representative samples, a higher uptake of water was observed at 100 T than at 25 »C.

Weigh pereent gains of the Nafion films versus time at the different conditions are shown in

Figure 2.4, were samples at 25 "C and 100 "C represented by open and closed symbols,

respectively.
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Figure 2.4 Uptal^e of neat water into Nafion

The uptake of water from SC-CO2 solutions into Nafion films was also studied.

Experiments were carried out in 6 mL high-pressure stainless steel reactors. Nafion film of

know weight was placed into the reactor along with 1.0 mL of water held in a small glass

support at the bottom of the reactor which prevented direct contact of the films with water.

Then the reactor was placed in a thermostatic bath at 70 T and filled with SC-CO2 at the

same temperature to 152 bar (p=0.51 g/cc)'^*^ using a high-pressure computer controlled

syringe pump (Isco Inc.). After different intervals, the reactor was vented, the films were

weighted. Two of the films were returned to the reactors and the infusion of water in SC-
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C02 into the Nafion was repeated. The mass uptakes for six different samples are shown in

Figure 2.5 with different symbols.
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Figure 2.5 Nafion uptake of water from humidified SC-CO

In these experiments CO2 is fully saturated with water as the solubility of water in

CO2 at these conditions is about 0.3 weight percent^^°"^°^ well below the loading conditions.

Comparison of Figure 2.4 and Figure 2.5 shows that the water uptake for the water SC-CO2

conditions was slightly larger than for the water at 100 °C.

2.2.4.2 Nafion Pretreatment

Before TEOS infusion, the Nafion films were pretreated following a procedure

described in the literature' to initialize the films to a common protonated state and to

remove contaminates from commercial possessing. Nafion films were cut into squares (~2

cm X ~2 cm) and were soaked in concentrated hydrochloric acid for 12 hours. This was
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were

followed by soaking twice in refluxing water for 12 hours. Afterwards, the films

soaked in concentrated nitnc acid for 24 hours to fully oxidize the films. In the end, the films

were soaked in stirred water until a neutral pH between 6.5 and 7.0 was measured.'^° The

protonated films were stored in a vacuum oven at room temperature for drying until use.

2.2.4.3 TEOS Reactions in Nafion

Nafion/ceramic nanocomposites have been previously made using TEOS/alcohol

solutions.'-'' In order to compare with the reactions from TEOS/CO2 solutions,

Nafion/ceramic nanocomposites were made from TEOS/«-propanol solutions.'"'' Nafion

films were pretreated as previously described. After pretreatment, the weighed Nafion films

were soaked in a 2:1 (v:v) /z-propanol/water solution for 4 hours at room temperature,

allowing water to be adsorbed into the acidic ionic domains of Nafion. The films were then

transferred from the propanol/water solution to a 3:2 (v:v) of «-propanol/TEOS solution.

Samples were removed at different intervals ranging from 14 to 120 minutes. Upon removal

from the TEOS solution, the films were placed in a vacuum oven at 40 °C for 12 hours and

then in a second vacuum oven at 120 °C for 12 hours to remove solvent and to further

facilitate the sol-gel reaction. The amount of Si02 in the nanocomposite was determined by

mass uptakes and is shown in Figure 2.6. Samples showed a steady uptake of the inorganic

phase in Nafion with increasing soaking time.
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Figure 2.6 Weight percent increase of Si02 in Nafion nanocomposites upon reaction
I KOS//i-propanol solution

in a

SC-CO2 was also used as a solvent instead of Az-propanol to prepare Nafion/ceramic

nanocomposites. Humidified SC-CO2 was infused into pretreated Nafion and films were

soaked in a TEOS/SC-CO2 solution. Pretreated Nafion films of known weight were loaded

into 6 mL high-pressure stainless steel reactors along with 0.25 ml of water. The reactors

were sealed and immersed into a thermostatic bath maintained at 40 °C. SC-CO2 was

transferred to the reactors using a high-pressure computer controlled syringe pump (Isco Inc.)

at 40 °C to a pressure of 96 bar (p=0.60 g/cc),'^'' resulting in approximately a 0.12 weight

percent solution of water in CO2.
200-202

After a four hour soak in humidified SC-CO2, the

reactors were vented through a back-pressure regulator and opened.

The reactors were quickly dried and the Nafion films were placed back into the

reactors. TEOS (1.0 mL) was then added to the reactors, which were sealed, immersed into a

thermostatic bath at 40 "C, and pressurized with CO2 to 96 bar. The samples were removed

from the reactors in different intervals ranging from 10 to 120 minutes. Upon removal from

the reactors, films were placed in a vacuum oven at 40 "C for 12 hours followed by a

treatment at 120 "C for 12 hours in another vacuum oven to remove solvent and further
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facilitate the sol-gel reaction. The amount of SiO. in the nanocomposite was determined by

mass uptakes and it is shown in Figure 2.7. The mass uptakes from SC-CO, showed more

scatter in the data and also reached a lower percentage of SiO, than in the Naf.on reactions in

«-propanol (Figure 2.6). The total uptake of SiO^ was lower due to the low concentrations of

water and TEOS used. In several experiment, much higher mass uptakes of Si02 were

achieved using slightly different reaction conditions. In one experiment, a Naf.on sample

was soaked in humidified SC-CO2 followed by a soak in a TEOS/SC-CO2 solution at 40 "C

for 24 hours. After drying in the vacuum oven, this sample resulted in a 53 weight percent

Si02 Nafion/ecramic nanocomposite.

i 15
-
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Figure 2.7 Weight percent increase of SiOi in Nafion nanocomposites upon reaction of

TEOS/SC-CO2

Nafion/ceramic nanocomposites were characterized by transmission electron

microscopy (TEM) and wide and small angle X-ray scattering (WAXS & SAXS). TEM was

conducted using a JEOL lOOCX operating at 100 kV. Sections for analysis (-50 nm thick)
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were obtained via microtoming at room temperature on a Reichert-Jung microtome using a

freshly prepared glass knife. The ceramic nanoparticles provided sufficient contrast for

TEM; hence, additional enhancement via staining was not required. WAXS measurements

were performed using a Siemens D-500 diffractometer equipped with a copper anode and

utilizing the copper Ka radiation (^=1.54 A). SAXS measurements were performed on a

Rigaku RU-H3R rotating copper anode X-ray diffractometer equipped with an Osmic

multilayer focusing optics. The incident copper Ka radiation ^=1 .54 A) was passed through

the sample and scattering patterns were collected with Fuji ST-VA image plates in an

evacuated Statton-type scattering camera. Scattering patterns were acquired with a Fuji

BAS-2500 image plate scanner and intensity profiles were obtained from radial averages of

the scattering pattern intensities. The TEM images of untreated Nafion and a Nafion/SiOz

nanocomposite are shown in Figure 2.8 and Figure 2.9 respectively. WAXS and SAXS

patterns for three different examples arc shown in Figure 2.1 1 and Figure 2.10, respectively.

Figure 2.8 TEM micrograph of unmodified Nafion
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Figure 2.9 TEM micrograph of 7 weight percent SiOj Nafion/ceramic nanocomposite

It was important to note that Nafion did not have any visible structure upon TEM

imaging before modification, hence any new morphology would be due to the SiOs phase in

Nafion. Nafion film was microtomed and collected on a copper grid. Figure 2.8 shows the

featureless TEM image of untreated Nafion, where the black line bar at the top of the figure

part is of the copper grid. Nafion/ceramic nanocomposites were microtomed and

investigated by TEM. Figure 2.9 shows an example of a TEM image of a Nafion/ceramic

nanocomposites containing 7 weight percent of SiOz. Si02 nanoparticles (~4 nm) were

observed evenly distributed through the Nafion film.
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Figure 2.10 WAXS of Nafion and Nafion/silica nanocomposites

Figure 2.10 shows the WAXS pattern of a Nafion film and the Nafion/Si02

nanocomposites with 7 and 36 weight percents of Si02. This scattering patterns show several

peaks, such as a small shoulder located at 3 degrees two theta which corresponds to a size of

about 3 nm, the rough spacing of the ionic clusters. A second broad peak centered around 18

degrees two theta corresponding to the crystalline peak of Nafion. '^^ This peak survives

infusion of the ceramic phase which shows that the crystallitity of the Nafion is not affected

by the formation of the ceramic network.^°"'^ Another small peak at about 38 degrees two

theta is also observed. This peak is inherent to Nafion and most likely a secondary reflection

of the crystalline peak.'°"'^ Sol-gel chemistry of TEOS will typically produce amorphous

Si02 * and the Si02 fabricated with Nafion is also amorphous. This is supported by the

small shoulder at about 23 degrees two theta in the sample with the highest weight percent
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Si02 and the absences of peaks characteristic of a crystalline SiO

degrees two theta.'^^-'

2 phase occurring at 43

0.05 0.15 025 035

q (A 1)
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Figure 2.11 SAXS of Nafion/ceraitiic nanocomposites

Figure 2. 11 shows the SAXS patterns for the same three sets of samples as shown in

Figure 2.11. Nafion shows a broad peak centered at a scattering vector of q = 0.21 A"',

correlating to a size of about 3 nm. After TEOS infusion and condensation, this peak

remains in approximately the same location suggesting the structure of the Nafion template is
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preserved. This directly matches with the hterature for Nafion/ceramic nanocomposites.

including the loss decrease in the SAXS peak due to a decreasing contrast factor.
"^"'^
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CHAPTER 3

POLY(STYRENE).^Z,OC/i:-POLY(ACRYLIC ACID) NANOCOMPOSITES

3.1 Introduction

Ordered polymer/metal nanocomposites have previously been prepared within both

diblock and random copolymers contaming acidic groups such as poly(acrylic acid) (PAA) as

reviewed m the Introduction.^^'^^' 'o^. n3, 204
p.^y^^y^^^^ ^pg^ ^^^^^^

copolymers have been used to produce disordered polymer/metal sulfide nanocomposites

upon loading thin films with aqueous metal sulfide precursors. Upon subjecting the films to

hydrogen sulfide, metal sulfide nanoparticles were produced."^^' Ordered

polymer/metal and polymer/metal sulfide nanocomposites have been fabricated fi-om diblock

copolymers with one domain containing carboxylic acid functionality. The acidic groups

bound aqueous or volatile precursors, which were subsequently reduced or subjected to

hydrogen sulfide to produce metal or metal sulfide nanoparticles.^^"^^ This previous work

demonstrates the feasibility of using a PS-^-PAA block copolymer to produce ordered

nanocomposites.

In this section, the fabrication of ordered nanocomposites using supercritical carbon

dioxide (SC-CO2) as a solvent to infuse metallic precursors into a polymeric template is

described, as outlined in Figure 1.1. The first sets of experiments consisted of the infusion of

a platinum precursor into PS to investigate the effect of the reduction conditions on the

nanoparticle size. Infusion of organometallics by SC-CO2 solutions was then carried out in a

polystyrene-Z?/ocA:-poly(acrylic acid) (PS-Z)-PAA) copolymer which resulted in the
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organometallics selectively bmdmg to the poly(acrylic acid) domain. Reduction, yielded the

metal nanocomposites, where were then characterizated.

3.2 Experimental Section

Nanocomposites were produced within polystyrene and polystyrene-Wocyt-

poly(acrylic acid) copolymer. The nanocomposites were fabricated by the mfusion of

organometallic/C02 solutions into the polymeric systems followed by treatment with either

hydrogen or hydrogen sulfide yielding the corresponding polymer/metal or polymer/metal

sulfide nanocomposites. Characterization of the materials was carried out by TEM and

WAXS.

3.2.1 Materials

Polystyrene (Mwt = 280,000 g/mole) was used as received from Aldrich Chemical.

Polystyrene-Woc/:-poly(acrylic acid) (PS-Z)-PAA) was used as received from Dr. Steve Smith

at Procter & Gamble. The copolymer had a total molecular weight of 107,000 g/mol

(100,000 g/mole PS and 7,000 g/mole PAA) with a 6.5 volume percent of PAA to give a

spherical nature of PAA surrounded by PS, with the chemical structure shown in Figure 3.1.

The metal precursors were (1,5-cyclooctadiene) silver (hexafluoroacetylacetonate)

[Ag(COD)hfac] (Aldrich Chemical), (1,5-cyclooctadiene) dimethylplatinum (II)

[Pt(C0D)Me2] (Strem Chemical), and Iridium (II) (Acetylacetonate) (1,5-Cyclooctadiene )

[Ir(COD)acac] (Strem Chemical) and were all used as received. Palladium (II)

cyclopentadiene methylallyl [PdCp(C3H5)] was synthesized by Dr. David Long in our group
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and sublimed prior to use.^^ The structures of the different metal precursors are shown in

Figure 3.2. Reduction of Pt(COD)Me, with hydrogen is autocatalytic as shown in Figure 1.5

and discussed in the Introduction.^^"^^. ^« These organometallics dissolve in SC-CO. and

are easily reduced with hydrogen to yield metal films.^^-^^' For the fabrication of metal

sulfide nanoparticles, lead bis-hexafluoroacetylacetonate [Pb(hfac)2] was used as received

from Strem Chemical. This precursor reacts with hydrogen sulfide to produce lead sulfide

(PbS). N,N-Dimethylformamide (DMF) was used as received from Aldrich Chemical.

Coleman grade carbon dioxide, ultra-high purity hydrogen (H2), and hydrogen sulfide (H2S)

were used as received from Merriam Graves.

CH2—CH

O'' ^OH

Figure 3.1 PoIystyrene-A/ocA:-poly(acryIic acid) copolymer

t

63
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Figure 3.2 Metal precursors for nanoparticle formation

3.2.2 Polystyrene/Platinum Metal Nanocomposites

The effect of the reduction conditions for a platinum precursor within bulk

polystyrene was studied. A polystyrene plaque was prepared by melt pressing at 160 °C and

loaded with 1 1 7 mg of Pt(C0D)Me2 into a high-pressure stainless-steel reactor equipped

with a high-pressure needle valve. The reactor was heated to 60 °C in a thermostatic bath

and filled with SC-CO2 at the same temperature to 135 bar using a high-pressure, computer-

controlled syringe pump (Isco Inc.). After a 30 hour soak to allow the precursor diffusion

though the PS, the reactor was cooled to 0 °C, and slowly vented through a back-pressure

regulator. The drop in temperature will allow for system to drop below the glass transition

temperature (Tg) of the polymer, which is 105 °C at atmospheric pressure, 65 °C at a pressure

of 36 bar, 50 °C at a pressure of 48 bar, and 35 °C at a pressure of 60 bar of C02.'^^ The
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reactor was opened and the sample was cut in half. Each part was subjected to different

hydrogen reduction conditions: neat H, and a plasticizing SC-CO./H, mixture, as show in

Table 3.1. Neat was added to the reactor at 60 °C from a high-pressure mamfold via a

pressure drop to 102 bar. After a two hour soak, the reactor was slowly vented. The

reduction with the SC-CO,/H, mixture was carried out by first plasticizmg the infused PS for

2 hours with SC-CO2 at 60 °C & 135 bar and then adding to a final pressure of 170 bar

from a high-pressure manifold via a pressure drop. After an addifional 2 hour soak, the

reactor was cooled to 0 '^C, slowly vented, and the sample removed for analysis.

Transmission electron microscopy (TEM) was conducted using a JEOL lOOCX

operating at lOOkV. Sections for analysis (40 nm thick) were obtained via microtoming at

room temperature on a Reichert-Jung microtome using a freshly cut glass knife. Wide angle

X-ray scattering (WAXS) was performed using a Siemens D-500 diffractometer with a

copper anode (k=\ .54 A).

Different nanoparticles sizes were observed for Pt(C0D)Me2 reduction under the

different reaction conditions (Table 3.1). Neat H2 reduction produced approximately 10 nm

clusters (Figure 3.3) while the SC-CO2/H2 reduction produced approximately 30 nm clusters

(Figure 3.4). The WAXS images (Figure 3.5) also reflected the difference in the size of the

platinum nanoparticles and the width of the platinum (111) peak centered at 40 degrees two

theta.^°^ According to the Scherrer equation (Equation 3.1), the apparent crystallite size is

inversely proportional to the width of the peak at half maximum height.

Size(A) = (Equation 3.1)
B cos 0g

In Equation 3.1, X is the X-ray wavelength (1.54 A for Cu Ka), C is a constant that

accounts for numerous factors such as wavelength broadening of the instrument (C = 0.9,
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determined by running a inorganic crystalline standard), B is the width of the peak at half the

maximum peak, and Ob is the peak location.

Figure 3.3 112 reduction to produce -10 nm Pt nanoclusters in PS
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Figure 3.4 CO2/H2 reduction to produce -30 nm Pt nanoclusters in PS

0 ~
^ 1 r-

10 20 30 40

Two Theta

Figure 3,5 WAXS of platinum nanoparticles in polystyrene
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Table 3.1 Preparation of Platinum Nanoparticles in Polystyrene

SC-C02(bar) (bar) TEM size (nm) TEM Picture
Apparent Scherrer Analysis

Size (nm)
102 -10 Figure 3.3 g

170 -30 Figure 3.4 ^

Scherrer analysis of the platinum peak gave apparent sizes of 6 nm for the sample

reduced with neat H2 reduction 13 nm for the sample reduced with the SC-CO2/H2 mixture

(Table 3.1). The crystallite sized determined by the Scherrer equation does not always agree

with the actual size, as nanoparticles could be made up of a large number of crystallites.''-'^^

The size of the platinum nanoparticles is determined by a competition between the

rate of nucleation and the diffusion of the platinum precursor to a nucleation site within the

polystyrene. In the unplasticized system with neat H2, the diffusion of the organometallic is

slow and reduction of the precursor will occur in place giving rise to smaller particles, as

nucleation dominates vs. diffusion and growth. In the polystyrene plasticized with the

CO2/H2 mixture, the organometallic has much higher mobility and could diffuse to

previously reduced platinum clusters producing larger particles.

3.2.3 PS-6-PAA / Metal Nanocoinposites

PS-6-PAA diblock copolymer were used as templates for the formation of ordered

nanocomposites, containing platinum and silver nanoclusters. This templating scheme is

illustrated in Figure 3.6. Additional nanocomposites of palladium and iridium were also

fabricated.
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Figure 3.6 Copolymer templating process

Figure 3.6 illustrates the templating process used within PS-Zj-PAA diblock

copolymer for the formation of ordered nanocomposites. One block of the copolymer has an

active phase, represented by the white domain and the functional group X (in this example

PAA), and an inactive phase show as the darker region (PS). A suitable organometallic is

dissolved in SC-CO2 and impregnated inside the block copolymer where the organometallic

undergoes ligand exchange with the functional group X (acrylic acid) within the active phase

(PAA). This selective binding of the precursor prior to reduction is the key to the templating

process. Upon the proper reduction conditions, the organometallic is reduced to produce a

templated nanocomposite.
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'•^•31 PS-&-PAA / Platinum N=.nnn„.^p„,itr,

Platinum/PS-6-PAA nanocomposites were fabrieated following the scheme shown in

Figure 1.1 and Figure 3.6. The platinum precursor was first infused into PS-6-PAA using a

SC-CO, solution. These samples were then subjected to different reduction conditions to

study their effect on platinum particles size. Different reductions are expected to yield

different results, as the nanoparticle size is detennined from the competition between

nucleation and crystal growth.

PS-6-PAA films were prepared by solvent casting the copolymer from DMF

solutions onto glass slides. The films were dried under vacuum for 24 hours at 125 °C to

remove any remaining solvent. A sample of the film was cut, weighed and placed into a

glass test tube (i.d. = 1 cm). Pt(C0D)Me2 (30 mg) was added into a high-pressure stainless

steel reactor equipped with a high-pressure needle valve within a nitrogen glove box. The

test tube simplified sample handling and was placed within the reactor to inifially separate

the copolymer from the organometallic, while not interfering with the precursor diffusion

into the polymer from SC-CO2 solution. The reactor was sealed, heated to 60 ''C in a

thermostatic bath, and filled with SC-CO2 at the same temperature to a pressure of 135 bar.

This resulted in a 0.8 weight percent solution of Pt(C0D)Me2 in CO2. At these conditions,

the organometallic compound completely dissolved in C02.^°^ After a 12 hour soaking

period, the reactor was cooled to 0 °C, and slowly vented through a backpressure regulator to

suppress polymer foaming. The excess unbound precursor was removed by repeating the

soaking process three times. After the final extraction, the sample was cut into four pieces,

one was saved for analysis and three were subjected to different reduction conditions, as

shown in Table 3.2.
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Table 3.2 Various Reduction Conditions of Platinum precursor in PS-A-PAA

Reduction Temperature (°C) SC-CO, (bar) H, (bar) TEM Picture

^ 135 170 Figure 3.8

® - 135 Figure 3.9

C 25 14 Figure 3.10

Reduction A was carried out on a section of the platinum infused copolymer in a

high-pressure reactor. The reactor was filled with SC-CO2 at 60 °C and 135 bar. After a two

hour soaking time, additional hydrogen was added via pressure drop from a high pressure

manifold to a final pressure of 170 bar. These conditions were maintained for an additional 2

hours, after which time the reactor was cooled to 0 °C and slowly vented. Reductions B and

C were carried out with neat H2 at two different conditions. Reduction B was carried out on

a section of the platinum-infused copolymer into a high-pressure reactor with hydrogen at 60

°C and 135 bar for 2 hours. Reduction C was carried out on a section of the platinum inftised

copolymer into a high-pressure reactor with hydrogen at 25 °C and 14 bar for 48 hours.

Each of the samples was analyzed by TEM. Figure 3.7 shows the platinum infused

PS-^-PAA sample prior to reduction. The TEM micrograph of the sample subjected to the

plasticizing CO2/H2 mixture, Reduction A is shown in Figure 3.8. The reductions with neat

hydrogen at different pressures and temperatures, Reduction B and Reduction C, are shown

in Figure 3.9 and Figure 3.10, respectively.

71



Figure 3.7 Platinum precursor in PS-A-PAA before reduction

Figure 3.7 demonstrates the templating ability and spherical nature of the PAA. The

observed contrast arise directly from the platinum precursor and is not enhanced by

additional staining agents common for studying block copolymer morphology. The

aggregates arc just under 20 nm in size and some are slightly elongated, which is an artifact

of microtoming.
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Figure 3.8 Platinum/PS-A-PAA nanocomposite subjected to Reduction A

The sample reduced using the plasticizing CO2/H2 mixture (Reduction A) gave the

largest nanoparticles and an apparent loss of template structure with nanoparticles ranging

from 5-20 nm (Figure 3.8). This is a consequence of the large mobility of the precursor

during reduction under these conditions which allows the diffusion of precursor to other pre-

formed platinum catalytic sites. The plasticizing system also provides for an increasing

mobility of the nanoparticles which could lead to nanoparticle aggregation or coalescence, as

these particles are larger than in the other samples (Reduction B and C).

The effect of the CO2 plasticization on the growth of platinum nanoclusters has also

been observed within poly(4-methyl-l-pentene) (PMP) films.
''^^ PMP films were loaded

with Pt(C0D)Me2 cut into pieces and reduced with hydrogen in the presence of different

amounts of plasticization by SC-CO2. Upon analysis by WAXS, larger clusters were

produced with increasing pressures of SC-C02.''^^
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Figure 3.9 Platinum/PS-b-PAA nanocomposite subjected to Reduction B

The material produced from the neat hydrogen reduction of Pt(C0D)Me2 in ?S-b-

PAA at 60 °C and 135 bar, (Reduction B) showed loss of template structure as with the

CO2/H2 mixture (Reduction A). In this case, however, smaller platinum nanoparticles (~5

nm) than in the plasticizing reduction scheme were observed suggesting the lower mobility

of the precursor in neat H2.

The cases for imperfect templating of nanoparticles within copolymers has been

investigated for other systems. In the synthesis of nanocomposites made by static casting

from solution with the precursor followed by reduction with H2 (100 °C and 5 bar) or UV

radiation by Cohen and coworkers problems arose where the morphology of the palladium

and platinum nanoclusters within microphase separated diblock copolymers did not match
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perfectly with either the starting copolymer or the sample before reduction
^

Some of the

clusters are found outside the microdomains suggesting that the precursor can travel through

the copolymer matrix before reducing or small cluster could move following reduction.^
'"^^

This could be due to exothermic reduction process, which raise the local temperature above

the Tg of the blocks.^' At conditions above the T, of the polymer matrix, the movement of

the nanoparticles would increase and could result in the disruption of the morphology.

Figure 3.10 Platinum/PS-b-PAA nanocomposite subjected to Reduction C

In our experiments, neat hydrogen reduction of Pt(C0D)Me2 infused ?S-b-?AA

copolymer at 25 °C and 14 bar (Reduction C) gave the smallest platinum nanoparticles, ~2

nm, and the best templating (Figure 3.10). The nanoparticles grouped in spherical domain

under 20 nm in size. This aggregates have a similar size to the PAA domains shown in the as

infused sample Figure 3.7 Proving that reduction at theses conditions preserves the structure
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of the template. Diffusion of the precursor or the small platmum nanoparticles at this lower

temperature is less likely to occur. The reduction conditions for this sample were the least

aggressive with the lowest temperature and pressure.

3.2.3.2 PS-A-PAA / Silver Nanocomposifes

PS-Z)-PAA/Silver nanocomposites were prepared in the same manner as shown in

Figure 1.1 and Figure 3.6. PS-Z^-PAA films were first prepared by solvent casting the

copolymer from DMF as previously described. Within a nitrogen glove box, 25 mg of a

silver precursor [Ag(COD)hfac] and the polymer sample were added into a high-pressure

stainless steel reactor equipped with a high-pressure needle valve. The vessel was sealed,

heated to 40 °C in a thermostatic bath and filled with SC-CO2 at the same temperature and

135 bar, resulting in approximately a 0.5 weight percent soludon of Ag(COD)hfac in CO2.

After a three hour soak, the reactor was cooled to 0 °C, and slowly vented through a

back-pressure regulator to suppress polymer foaming. The sample underwent SC-CO2

extraction to remove excess unbound precursor by repeating the filling and venting

conditions three times. The reactor was opened and part of the unreduced sample was

sectioned away for analysis. The remaining sample was placed back into a high-pressure

reactor and reduced with neat hydrogen at 40 °C and 100 bar for one hour. Then, the reactor

was cooled to 0 °C and slowly vented, opened, and the sample was removed for TEM

analysis.

The TEM micrograph of the sample before hydrogen reduction is shown in Figure

3.1 1. The TEM micrograph of the sample after hydrogen reduction is shown in Figure 3.12.
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Figure 3.1 1 Silver precursor in PS-b-PAA before reduction

Spherical aggregates were observed that are just under 20 nm in size in Figure 3.1 1 in

the unreduced sample. The image could be distorted by the large thickness of the sample,

which leads to imaging of spheres in several planes. This result is similar to the platinum

infusion prior to reduction within ?S-b-?AA shown in Figure 3.7 as the same size PAA

domains are observed.
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Figure 3.12 Silver/PS-A-PAA nanocomposite after reduction

The TEM micrograph of the sample after hydrogen reduction showed the formation

of an ordered silver/PS-^-PAA nanocomposite, which preserved the structure of the template

(Figure 3.12). Small silver nanoparticles (~5 nm) are observed within a larger spherical

aggregates that were -20 nm in size. This example demonstrates that our method can be a

viable means for fabrication of bulk ordered nanocomposites from block copolymers.

3.2.3.3 Other Metals in PS-^-PAA

Other organometallics were infused into PS-^-PAA films solvent cast from DMF as

described earlier. Within a nitrogen glove box, the precursors Pt(C0D)Me2, Ir(COD)acac,

and PdCp(C3H5) were added to different high-pressure stainless steel reactors. Each reactor
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was sealed, heated to 60 °C in a thermostatic bath and filled with SC-CO, at 60 °C and 135

bar, resulting in approximately 0.5 weight percent solution of the organometallics in CO^.

After a three hour soak, the reactors were cooled to 0 °C, and slowly vented through a

backpressure regulator to suppress polymer foaming. The reactors were opened, cleaned to

remove any precursor precipitated on the reactor walls, and resealed with the samples. Neat

hydrogen at 60 °C and 135 bar was added to reduce the precursors. After one hour soak, the

reactors were vented, opened, and the samples removed for WAXS analysis (Figure 3.13).
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Figure 3.13 Various Metal/PS-A-PAA Nanocomposites

Figure 3.13 shows the WAXS patterns of the different organometallics reduced

within the PS-Z?-PAA copolymer. In each of the patterns, the broad amorphous peak centered

around 1 8 degrees two theta is characteristic of the block copolymer, labeled by the BCP.
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The second peak at higher two theta values observed in each of the patterns corresponds to

the (1 1
1)

plane of the different metals. The spacing of these planes taken from the literature

is shown in the same Hgure.-^ The trends in cluster size can be determined by measuring the

apparent size by Scherrer analysis. The calculated apparent sizes for platinum, iridium, and

palladium are 4 nm,
1 nm, and 2 nm respectively. Peaks for palladium and iridium are

poorly defined so errors in the determination for these metals are larger.

Reduction depends on the nature of the organometallic compound and the balance

between nuclealion and crystal growth so at the same reduction conditions different sized

metal nanoparticlcs arc observed. Previous work in our group has shown the palladium

precursor is reduced faster in the presence of hydrogen than the platinum precursor for the

production of thin metal films grown from SC-CO2 solution.^^' This suggest that there is a

direct relationship between ease of reduction or rate of reduction and particle size. The faster

the reduction, the smaller the particle size.

3.2.4 Metal Sulfides into PS-A-PAA

Lead sulfide nanoparticlcs were prepared within PS-6-PAA as a demonstration for

extension of the infusion method to produce polymer/metal sulfide nanocomposites. ?S-b-

PAA films were prepared as previously described and loaded into high-pressure reactor along

with 25 mg of Pb(hfac)2. The reactor was heated to 60 °C and SC-CO2 was added to 135 bar,

resulting in a 0.7 weight percent solution of Pb(hfac)2 in SC-CO2.

After a three hour soak, the reactor was cooled to 0 °C and slowly vented through a

backpressure regulator to suppress polymer foaming. The reactor was opened, cleaned.
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resealed with the PS-^-PAA inside, and heated to 60 T in a thermostatic bath. Hydrogen

sulfide was then added to the vessel to a pressure of 4 bar for 2 hours.

Due to the high toxicity of hydrogen sulfide, a special setup was used to test for leaks

and trap the exiting gas from the vessel. Wet lead acetate paper strips were used to test for

the presence of H2S. Upon exposure, the strips would turn black. The reactor was slowly

vented through a series of four H2S scrubbers that consisted of a saturated solution of lead

nitrate in water. When the H2S was vented through the system, insoluble PbS precipitated

out of solution.^"*^ After draining, the reactor was pressurized with house compressed air (~4

bar) and then vented again through the H2S scrubbers. With four purge cycles with air, no

further black precipitate was observed upon venting, indicating the absence of H2S. The

removed sample had changed color from the original clear PS-/7-PAA film to black,

suggesting a successful formation of lead sulfide. To remove any remaining hydrogen

sulfide, the sample was placed under vacuum overnight and analyzed with WAXS Figure

3.14.
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Figure 3.14 Lead Sulfide in polystyrene-Z>/tfc/i-Poly(acrylic Acid)

Figure 3.14 shows the WAXS analysis of the PS-^-PAA/PbS sample, which showed

several peaks corresponding to the amorphous block copolymer and lead sulfide. Scherrer

analysis on the (1 1 1) plane of PbS gave an apparent size of 5 nm.^^^ Three different peaks of

PbS are observed and are indexed along with the scattering of the block copolymer (BCP) in

Figure 3.14. This example demonstrates that polymer/metal sulfides can be fabricated with

our method.
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CHAPTER

4

POLYSTVRENE.BiOC/r-POLY(VINYL PYRIDINE) NANOCOMPOSITES

4.1 Introduction

Polyslyrene-Z^/oc/:-poly(vinyl pyridine) copolymers (PS-^-PVP) have been used to

prepare ordered polymer/metal nanocomposites as discussed in the introduction.^'
"'

Typically, PS-/j-PVP was dissolved in an organic solvent yielding a micellar structure of

PVP core and a PS corona. A suitable metal precursor that can bind to the PVP phase was

added to the PS-^-PVP solution and the solution was solvent cast. The metal precursor

remained bound within the spherical PVP domains, surrounded by PS. The films were then

reduced to produce metal nanoparticles whose size, shape, and three dimensional

morphology was determined by the copolymer template.^'"'^'

Supercritical carbon dioxide (SC-CO2) is an ideal solvent to achieve a more direct

method for the preparation of ordered polymer/metal nanocomposites, based on the delivery

of a metallic precursors into a solvent-dilated polymer (Figure 1.1 and Figure 3.6). In this

section its utility for the fabrication of ordered polymer/metal nanocomposites using

polystyrene-/)/oc^-poly(vinyl pyridine) copolymers as templates is demonstrated. First the

partitioning of the organometallic into homopolymers, polystyrene and poly(2-vinyl

pyridine), in the presence of CO2 was studied. These experiments indicate that the silver

organometallic was selective towards P2VP. This work was followed by the preparation of

ordered nanocomposites with different polystyrene-Woc/:-poly(vinyl pyridine) copolymers.
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4.2 Experimental Section

Ordered nanocomposites were fabricated within polystyrene-Woc;t-poly(vinyl

pyridine) copolymers. This was achieved by the infusion of organometalHc metal precursors

into the copolymers with SC-CO^ solutions followed by hydrogen reduction.

Characterization of the samples was performed by transmission electron microscopy (TEM)

and wide angle x-ray scattering (WAXS).

4.2.1 Materials

Polystyrene-/7/oc/:-poly(vinyl-pyridine) copolymers were used as received from

Polymer Source. Figure 4.1 and Table 4.1 present the different copolymer structures and

molecular weight of the copolymers used. The majority of the work was carried out with

polystyrene-Zj/oc/:-poly(2-vinyl-pyridine) [PS-6-P2VP], whose molecular weights for styrene

and 2-vinyl-pyridine segments were 52,400 and 28,100 respectively. This represents a 33

volume percent for P2VP resulting in a cylindrical morphology of P2VP surrounded by a

continuous phase of PS. These copolymers were chosen as previous experiments

demonstrated the potential for selective binding. PS did not bind the organometallics

whereas P2VP was reactive toward metalhc precursors.^^'
^"^^ The homopolymer

analogues to the copolymer segments, polystyrene (Mw = 280,000) and Poly(2-vinyl-

pyridine) (Mw = 200,000) were used as received from Aldrich Chemical and Polysciences,

respectively.
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Polystyrene-A-Poly(4-Vinyl Pyridine) Polystyrene-*-Poly(2-Vinyl Pyridine)

Figure 4.1 Polystyrene-Z>/oc/c-poIy(vinyI pyridine) copolymers

Table 4.1 PS-Z>-PVP Copolymers Used as Templates

PS (M^,) PVP (M,,) XN(25''C) XN(60 "C) % PVP PVP Stmcture

35,500 3,680 P4VP 80 68 8 Spheres

52,400 28,100 P2VP 160 140 33 Cylinders

91,500 115,000 P2VP 420 350 54 Lamella

The phase behavior of polystyrene and poly(2-vinyl pyridine) copolymers has been

reported previously.^^' The temperature dependence for the Flory interaction

parameter (x) of PS and P2VP homopolymers can be approximated by equation 4.1.^°'^

91.6
Z{T) = 0.095 (Equation 4.1)

For samples at 25 °C, x is approximately 0.2. At any appreciable molecular weight, a

block copolymer of PS and P2VP is phased separated. Approximate xN shown in Table

4^ 38, 209-211
calculations of xN, it was assumed that the P4VP-PS values for the

polymers used are the same interaction parameter as with P2VP-PS.

(1,5-cyclooctadiene) dimethylplatinum (II) [Pt(C0D)Me2] (Strem Chemical) and

(1,5-cyclooctadiene) silver (hexafluoroacetylacetonate) [Ag(COD)hfac] (Aldrich Chemical),
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were used as received. The structure of the organometaUic compounds are shown in Figure

4.2. These precursors are soluble in SC-CO, and can be easily reduced to thin metal fdms

with hydrogen'^' or by thermal reduction.^ Similar metallic precursors have previously

been used to bind to acid domains within copolymers." Cyclooctadiene has been shown to

be a liable ligand that undergoes ligand exchange with pyridine.'" This selective binding of

the precursors prior to reduction is the key to the tempting process (Figure 3.6). Coleman

grade carbon dioxide and ultra-high purity hydrogen were used as received from Merriam

Graves.

Pt(COD)Me2 Ag(COD)hfac

Figure 4.2 Platinum and silver precursors

Transmission electron microscopy (TEM) and electron diffraction were conducted

using a JEOL lOOCX operating at lOOkV. Sections for analysis (--40 nm thick) were

obtained via microtoming at room temperature on a Reichert-Jung microtome using a

freshly-cut glass knife. The bound metal precursor or the metal nanoclusters provided

sufficient contrast for TEM; hence, additional enhancement via staining was not typically

required. In some cases, to determine the location of metal nanoparticles respective to the

different domains, selective staining of one of the domains of the block copolymer was
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carried out. Selective staining was achieved by exposing the sample to iodine vapor for one

hour. Iodine selectively stained the poly(vinyl pyridine) domains.^^ Scanning electron

microscopy (SEM) was conducted on a JEOL 35 CF operating at 20 kV usmg the secondary

electron detector. Polymer samples were prepared by microtoming a smooth block face with

a freshly cut glass knife. The block face was then mounted on a sample holder facing up and

coated with a light gold sputter coating. This amount of gold sputter was not enough to mask

the features, but sufficient to prevent charging on the polymeric material. Wide angle x-ray

scattering (WAXS) was performed using a Siemens D-500 diffractometer with a copper

anode (X,=1.54 A).

4.2.2 Platinum Precursor Partitioning Between Polystyrene and CO^

To help determine the optimum reaction conditions for the infusion of the

organometallics into the copolymer systems, the partitioning of the platinum precursor

between polystyrene and CO2 was investigated. Polystyrene films were melt pressed at 160

°C and trimmed to a constant weight of 500 mg (+/- 0.3 mg). A constant weight of

Pt(C0D)Me2, 12.5 mg (+/- 0.1 mg), and the polymer sample were placed into a high-pressure

stainless steel reactor equipped with a high-pressure needle valve. The reactor was sealed,

heated to 60 °C in a thermostatic bath, and filled with SC-CO2 at the same temperature to a

pressure ranging from 40 to 350 bar using a high-pressure computer controlled syringe pump

(Isco Inc.). After a two hour soaking, the vessel was cooled to 0 °C, and slowly vented

through a backpressure regulator to suppress polymer foaming. The samples were removed

and weighed. CO2 dissolved slowly from the polymer phase and weight of the samples

decreased with time. To thoroughly allow for CO2 out gassing from the polymer, final
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weights of the samples were recorded after two weeks. Weight gains of the samples infused

at the different conditions were used to determine the platinum precursor uptake. Mass

uptakes of platinum precursor into polystyrene samples at 60 "C and various pressures are

shown in Figure 4.3. Figure 4.4 shows the same data plotted against density of the CO2.
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Figure 4.3 Mass uptake of Pt(COD)Me2 within PS infused with CO2 at 60 "C and
different pressures
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Figure 4.4 Mass uptake of Pt(COD)Me2 within PS infused with CO2 at 60 °C and
different densities

Figure 4.3 shows the results for the uptake of platinum precursor into polystyrene

samples at various pressures. Two different regions can be observed. The region below 120

bar, shows a mass uptake increasing with pressure. At the lower pressures, polymer swelling

is low as is the solubility of the precursor in CO2 and the infusion of the precursor into the

polymer is kinetically limited.
^"^^ At higher pressures, the polymer swelling increases as well

as the solubility of the precursor and more precursor infuses into the polystyrene. The uptake

of platinum precursor into polystyrene reaches a maximum around 120 bar. Above this

pressure, the mass uptake becomes equilibrium controlled and decreases with increasing the

pressure of CO2. This occurs because the precursor becomes more soluble in the CO2 fluid

and partitioning of the organometallic into the CO2 phase is favored. The same data and

trends are observed when plotted against density of CO2 (Figure 4.4).
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4.2.3 Phase Selectivity of the Organometallics

The selectivity of the organometalHc silver precursor between polystyrene and

poly(2-vinyl-pyridine) homopolymers was investigated. Plaques of the homopolymers were

melt pressed at 160 »C to a nominal thickness of 0.5 mm and were trimmed to achieve a

constant weight of 150 mg. The two homopolymers were loaded into the same 25 mL Thar

reactor with 50 mg of Ag(COD)hfac, sealed, heated to 40 °C and filled with SC-CO2 to a

pressure of 95 bar, resulting in approximately a 0.35 weight percent solution. The samples

were then subjected to three extractions by repeated fillings, 2-hour soakings, and venting.

The samples were then reduced with hydrogen at 40 "C and 100 bar for 2 hours. After

opening the vessels, the samples were placed under vacuum at room temperature for 12 hours

and weighed. The results are summarized in Table 4.2.

Table 4.2 Distribution of Ag(COD)hfac Between PS and P2VP

PS P2VP

Wt. Before (mg) 150.0 150.1

Wt. After (mg) 150.1 171.9

Wt. Gain (mg) ol 21.8

%Gain 0.1 14.5

The mass uptake of silver into the P2VP homopolymer was much higher than that of

the PS. This suggests that there is a strong associative mechanism through ligand exchange

of pyridine for cyclooctadiene which results in the strong binding of the silver precursor to

the homopolymer. In the PS phase, however, no such strong binding exists and upon

extraction most of the organometalHc is removed from the PS phase.
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The strong binding of the silver precursor with P2VP is illustrated in a SEM cross-

section by the silver band (Figure 4.5). This picture corresponds to a P2VP sample soaked in

a 1.0 weight percent solution of silver precursor in CO2 at 40 °C and 95 bar for 4 hours

followed by hydrogen reduction at 135 bar at 25 »C as described previously. The sample was

then placed in a vacuum oven for 12 hours at 25 ""C.

Figure 4.5 SEM image indicating strong silver - P2VP binding

Figure 4.5 was obtained by cutting a part of the sample, which was microtomed to

obtain a smooth block face. The nanocomposite was placed on a sample holder with the

block face up and then lightly coated with gold via sputter coating. The gold coating was

light enough to only to dissipate charging of the polymer sample, and not obscure the silver

layer. The silver regions will appear brighter than areas free of silver due to more electrons
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being scattered from the electron dense region. At Irigher magniHcation (Figure 4.6), a very

sharp interface was observed. The width of the silver band was 28 in this sample. After

infusion and reduction, the sample was found to contain 3 weight percent silver. Using a

geometric argument and assuming all the silver was located in the bright band, the local

weight percent silver in the band was approximately 30 percent. Due to the strong silver

metal binding to the outer layer, it is possible that accumulahon of further silver in this

region is hindered.

Figure 4.6 Close-up of interface between silver and neat P2VP

The identity of metaUic silver upon the reduction of Ag(COD)hafc was confirmed by

WAXS (Figure 4.7).
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Figure 4.7 WAXS of silver nanoparticles within homopolymer P2VP prepared at 40 "C

Figure 4.7 shows the WAXS spectrum of the silver/polymer nanocomposite This

diffraction patter is similar to those previously shown for polymer/platmum nanocomposites

(Figure 3.5). The peak around 20 degrees two theta is due to the amorphous polymer. The

second peak located at 38 degrees two theta, matches the literature value for silver.^^^

Scherrer analysis (Equation 3.1) of the silver peak gave an apparent crystallite size of 3 nm.

4.2.4 PS-A-PVP / Platinum Nanocomposites

This section presents examples of the infusion of organometallic platinum precursor

into polystyrene-Z?/oc/:-poly(vinyl pyridine) copolymers to produce ordered polymer/metal

nanocomposites, as depicted in Figure 1.1. Different copolymers containing both poly(2-

vinyl pyridine) and poly(4-vinyl pyridine) domains were used, as shown in Table 4.1.

Poly(vinyl pyridine) is a reactive phase that can undergo association with ligands as

illustrated in Figure 3.6. Ag(COD)hfac is therefore selective for P2VP over PS (Table 4.2).
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4.2.4.1 PS-^-P4VP CopnlymPr

The first polystyrene and poly(vinyl pyridine) copolymer investigated was a FS-b-

P4VP copolymer with an overall molecular weight of 39,200 g/mole. The molecular weight

of the blocks were 35,500 and 3,680 g/mole for the PS and P4VP respectively, which yields

spherical domains of P4VP surrounded by PS. Before the infusion of the organometallic into

the copolymer, the initial copolymer morphology was investigated by TEM. A melt pressed

copolymer film was microtomed with a freshly cut glass knife and samples collected onto

copper grids. These samples were stained for one hour with iodine vapor, which selectively

bound to the poly(vinyl pyridine) domains.^' Figure 4.8 shows the stained P4VP spheres

(-20 nm in size) on the unstained PS matrix. The elongation of the spheres and diagonal

banding are artifacts of microtoming

100 nm

Figure 4.8 PS-A-P4VP copolymer stained with iodine
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The PS-/>-P4VP was used as a template to prepare an ordered copolymer/metal

nanocomposites as depicted m Figure 1.1 and Figure 3.6. The copolymer was melt-pressed

to a nommal thickness of 0.5 mm at 160 X. A sample of the film (^0.5 cm x ^3 cm) was

placed into a glass test tube (i.d. = 1 cm) for ease of sample handlmg. The platinum

precursor, Pt(COD)Me„ was weighed (12 mg) and added mto a high-pressure stamless steel

reactor at 40 °C equipped with a high-pressure needle valve. A copolymer sample of known

mass was then placed into the reactor which was then sealed and heated to 40 X in a

thermostatic bath. SC-CO^ was transferred to the reactor to a pressure of 100 bar using a

high-pressure computer controlled syringe pump (Isco Inc.). The initial mass of

Pt(C0D)Me2 represents approximately a 0.5 weight percent solution in CO2. The copolymer

was allowed to soak in the solution for 12 hours. After soaking, the reactor was cooled to 0

"C and slowly vented through a backpressure regulator to suppress polymer foaming. The

sample was removed and placed back into the reactor for SC-CO2 extraction to remove

excess or unbound precursor by repeating the filling and venting conditions three times. The

reactor was opened and a part of the unreduced sample was sectioned away for analysis The

remaining sample was placed back into the reactor for reduction with hydrogen. Reduction

was carried out with neat hydrogen at 25 T and 100 bar. After soaking for 2 hours, the

reactor was opened and the sample analyzed. TEM imaging was done on the samples both

before and after hydrogen reduction, as shown in Figure 4.9 and Figure 4.10, respectively.
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Figure 4.9 Platinum infused PS-b-P4VP before H2 reduction

Figure 4.9 shows the TEM micrograph of the PS-^-P4VP copolymer with platinum

precursor prior to reduction, where a evenly distributed spheres of approximately 20 nm in

size are observed. The contrast in the sample was due to the unreduced platinum precursor

within the P4VP domains. These domains have the same size and structure as that of the

template showing the templating ability of the PS-Z)-P4VP copolymer.
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Figure 4.10 Platinum infused PS-b-P4VP after H2 reduction

Figure 4.10 shows the TEM image of the PS-Z)-P4VP/platinum nanocomposite

produced after hydrogen reduction. The image shows two main features. The first feature

consists of small black dots, which are platinum metal nanoparticles about 5 nm in size. The

second feature shows gray spherical regions about 20 nm in size that match the morphology

of the sample before reduction, as well as the morphology of the copolymers. This diffuse

gray background matching the spherical region could be due to unreduced platinum within

the P4VP domain, as upon higher magnification, did not show smaller nanoparticles. Similar

images, with small metal nanoparticles surrounded by gray regions can be observed in the

literature for some copolymer/metal nanocomposites. The authors did not comment on the

gray regions or any possible unreduced metal precursor.
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4.2.4.2 PS-A-P2VP rnpnlym.-

The next copolymer/metal system to be investigated was that of polystyrene and

poly(2-vinyl pyridine), with a cyhndrical moT,hology of P2VP surrounded by PS. These

nanocomposites were prepared following the same proeedure used to make the PS-6-P4VP

nanoeomposites previously deseribed. The platinum organome.allic was infosed within the

bloek eopolymer at 60 »C and 135 bar and was redueed with neat hydrogen at 135 bar and 60

°C. A TEM picture of a samples obtained at these conditions is shown in Figure 4. 1 1

.
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Figure 4.11 Platinum nanoparticles in PS-6-P2VP

Figure 4.11 shows an SEM micrographs of one of the ordered polymer/metal

nanocomposites. This picture shows that the location of platinum nanoparticles has been

controlled by the cylindrical structure of the copolymer template. It is also interesting to note

that the defects in the copolymer template structure were carried over to the nanocomposite

structure. Small platinum nanoparticles about 5 nm in size were observed within the P2VP

domain. At the copolymer interface, larger platinum nanoparticles, up to about 20 nm in

size, were observed. Theses larger nanoparticles may be a result of reduction of platinum

precursor from the PS phase on a preformed platinum nanoparticle within the P2VP or from
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the trapping of platinum nanoparticles produced in the PS domain at the copolymer interface.

Similar trapping of gold nanoparticles has been observed in the literature at the interface of

PS and P2VP homopolymers.'^^

The PS-6-P2VP copolymer appeared to have given a more complete reduction of

platinum compound in the P2VP than the P4VP. It is possible that the platinum precursor

can bind more strongly to P4VP than to P2VP due to a larger steric hindrance of the nitrogen

atom with the polymer backbone in P2VP. Significant differences in the binding of P4VP

and P2VP has been observed in Raman spectra of the homopolymers bound to silver

surfaces. The data suggest that the P2VP has less steric hindrance and might allow for a

more complete reduction of the metal, and the use of the copolymer containing P2VP was

explored further.

Formation of metal nanoparticles was demonstrated by the electron diffraction image

and wide angle x-ray scattering. Electron diffraction pattern of the platinum metal

nanoparticles in a nanocomposite is shown in Figure 4.12. Figure 4.13 shows WAXS of a

platinum containing nanocomposite.
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Figure 4.12 Electron diffraction of a PS-6-P2VP/platinum nanocomposite

Figure 4.12 shows defined rings due to the platinum metal nanoparticles and a diffuse

background, due to the amorphous halo of the copolymer in the electron diffraction pattern.

The identity of the platinum nanoparticles was confirmed by comparison with an electron

diffraction pattern of a platinum standard. The standard was prepared by platinum

evaporation onto a TEM grid followed by diffraction at the same conditions on the electron

microscope. The electron diffraction image of the untreated copolymer and unreduced

platinum infused in a copolymer only showed an amorphous halo.
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Figure 4.13 WAXS of a PS-Z>-P2VP/pIatinum nanocomposite

Figure 4.13 shows the WAXS pattern for a PS-b-P2VP nanocomposite containing 6

weight percent platinum metal. In this spectrum, two peaks can be observed. One is from

the halo from the copolymer located around 18 degrees two theta and the other is the

diffraction peak from the platinum (111) plane, which matches the literature value of 39.8

203
degrees two theta. Scherrer analysis (Equation 3.1) of the platinum peak gave an apparent

crystallite size of 4 nm.

The evolution of the platinum peak during nanocomposite fabrication in a PS-Z)-P2VP

copolymer is shown Figure 4.14.
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Figure 4.14 Evolution of platinum peak observed in WAXS in a PS-A-P2VP copolymer

Figure 4.14 illustrates the evolution of the diffraction peak for platinum with a PS-^-

P2VP copolymer. The bottom line in the scattering pattern of a different sample in Figure

4.14 shows the WAXS pattern of the copolymer for the area of interest, around 40 degrees

two theta. After SC-CO2 infusion of the platinum metal precursor into the copolymer, the

WAXS pattern did not show the presences of platinum metal nanoparticles. With hydrogen

reduction, platinum metal nanoparticles were produces as indicated by the sharp peak.

Scherrer analysis of the peak (Equation 3.1) gave an apparent size of 5 nm

4.2.5 PS-A-P2VP / Silver Nanocomposites

This section discusses the infusion of Ag(COD)hfac into a polystyrene-W(9cA:-poly(2-

vinyl pyridine) copolymer for the fabrication of ordered polymer/metal nanocomposites, as

depicted in Figure 1.1 and Figure 3.6. The PS-^-P2VP had a total molecular weight of
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80,500 g/mole with molecular weights for PS and P2VP segments of 52,400 and 28,100

g/mole respectively. P2VP represented a 34 volume percent, resulting in a cylindrical

morphology of P2VP surrounded by a continuous phase of PS as shown in Table 4.1

.

Ag(COD)hfac was first infused into the PS-/.-P2VP at identical reaction conditions to

those of the platinum infusion. Infusion of the organometallic precursor, Ag(COD)hfac, into

the melt pressed copolymer was carried out at 60 "C and 135 from a SC-CO2 solution (~1

weight percent). After 12 hours soaking, cooling down to 0 °C and slow venting, the infused

polymer samples changed in color from a slightly yellow clear copolymer to colored samples

ranging from red to deep purple. The color depended on reaction conditions and was a

consequence of thermal reduction of the bound organometallic silver during the soaking and

infusion steps. This precursor is know to be reduced thermally or photolytically, so the

thermal reduction of this organometallic within the copolymers was possible.^^

The sample was then extracted and reduced with hydrogen at 60 "C and 135 bar in the

same manner as before. Reduction of the sample produced a color change in the sample

from dark purple to black, indicating further thermal reduction of the organometallic to

produce silver nanoparticles. TEM analysis of the sample before and after reduction showed

minor differences, as most of the compound was thermally reduced at theses conditions.

Figure 4.15 shows one of the samples after reduction with hydrogen.
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Figure 4.15 Silver nanoparticles within cylindrical P2VP domains of PS-ft-P2VP
prepared using reactions at 60 "C

Figure 4.15 shows small silver nanoclusters (~2 nm) deposited selectively within the

P2VP domain, with occasional larger clusters. This is the same copolymer as used to prepare

the ordered platinum nanocomposites in Figure 4.11. Differences in the structure of

nanocomposites arise from the melt pressing, in which the copolymer template was in

different morphologies.

In an attempt to minimize the thermal reduction of Ag(COD)hfac, the reaction

temperature was reduced to 40 °C for the infusion and extraction steps. To maintain the

same SC-CO2 density used at 60 °C (p = 0.55 g/cc),'^^ the pressure was reduced from 135 bar
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to 95 bar. After the in&sion step, the copolymer did not change color, indicating that much

less thenrral reduction occurred. Sample were reduced with hydrogen at mild reduction

conditions at 25 "C and 14 bar for 2 days. Upon reduction the color of the sample changed to

deep purple. The sample was analyzed via TEM before and after reduction in Figure 4.16

and Figure 4.17 respectively.

Figure 4.16 Silver precursor within PS-A-P2VP prior to the addition of hydrogen
prepared using reactions at 40

Figure 4.16 shows some gray banding due to unreduced silver precursor which acted

as a stain for the P2VP phase. Some silver nanoparticles can be observed that are possibly a

resuh of thermal reduction at these temperatures. However, the possibility of photolytic

reduction of the silver precursor within thin microtomed films due to exposure to normal

room light cannot be ruled out.
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Figure 4.17 Silver nanoparticles within cylindrical P2VP domains of PS-A-P2VP
prepared using reactions at 40 "C

Figure 4.17 shows the same sample after hydrogen reduction, where silver

nanoparticles were produced throughout the sample. Within the P2VP phase, silver

nanoparticles were -2-5 nm in size. The amount of silver within the PS increases at the mild

reduction conditions in comparison to Figure 4.15. Growth of small nanocluster of ~5 nm in

size within the P2VP domains can also be observed. Large nanoparticles can also be

observed similar in size to what was observed in Figure 4.16, indicating that some thermal

reduction is still taking place even at the low temperature.

The strong binding between silver and copolymers was studied in thicker samples.

Figure 4.18 and Figure 4.19 are TEM images of the same sample and show a sharp line,

similar to what was observed within the P2VP homopolymers (Figure 4.5 and Figure 4.6).
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Figure 4.18 TEM of silver interface within PS-A-P2VP prepared using reactions at 40
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Figure 4.19 Close-up of interface TEM of silver interface within PS-6-P2VP from
reactions at 40 °C

In Figure 4. 1 8 the copolymer morphology of the P2VP can be observed. The TEM

picture also show some artifacts due to the microtoming, such as the light region in the

middle of the image where the film is thinner. Black spots from dust on the film and chatter

lines which run diagonally in a direction different than the inherent P2VP morphology can

also be observed. In Figure 4.19 at the higher magnification, the small silver nanoparticles

can be observed within the P2VP phase.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, ordered polymer/ceramic and polymer/metal nanocomposites

were prepared within polymeric templates as outlined in Figure 1.1. Ceramic and metallic

precursors were infused and bound or reacted within specific domains within polymeric

templates from SC-CO, solutions, which is the key to this templating process. The polymer

templates were ionomers and block copolymers which can have controllable morphologies.

Sorption of SC-CO2 solution into the polymer matrix mitigates the mass transport limitations

for delivering precursors into bulk systems. CO^ sorption can be controlled and has the

added benefit of preserving the long-range order of a block copolymer which is often not the

case with traditional solvents. Under proper reaction conditions, ceramics, metals, or metal

sulfides nanoparticles are produced and their organization is dictated by the polymeric

template.

The polymer templates used were Nafion and reactive block copolymers, ?S-b-?AA

and PS-6-PVP. Nafion contains ionic domains that can support sol-gel chemistry to produce

templated amorphous Si02 nanoparticles. Block copolymers were used as they have a range

of controllable morphologies and can direct the structure of nanoparticles synthesized within

the domains. Each of these block copolymers has one phase which is able to undergo

chemical binding with an organometallic (Figure 3.6). In both cases, SC-CO2 was used as a

solvent to infuse the precursors into the polymeric templates. The use of SC-CO2 has

numerous advantages such as being an environmentally begin solvent, but most importantly

it can be used to deliver reactants into polymeric templates without destroying the initial
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template morphology. Achieving high diffusion rates of the precursors into the polymeric

systems while preserving the morphology of the template is a key use of SC-CO, allowing

for ordering of nanoparticles over bulk dimensions.

Chapter 2: Polymer/Ceramic Nanocomposites

TEOS was shown to be soluble in SC-CO2 up to high weight percents and capable of

depositing SiOz films from CO2 solutions upon acid catalysis with water.

A Nafion template was then used to prepare ordered polymer/ceramic

nanocomposites. Ionic domains within Nafion were exposed to water from a humidified

SC-CO2 followed by a TEOS/SC-CO2 solution. Sol-gel chemistry, catalyzed by the ionic

domains, produced templated amorphous SiOi nanoparticles.

Chapter 3: PS-b-PAA Nanocomposites

Polystyrene/platinum nanocomposites were prepared to investigate the effect of

reduction conditions on nanoparticle size. Reductions of Pt(C0D)Me2 within PS were

carried out with a mixture of CO2/H2 and neat hydrogen. CO2 has a plasticizing effect in

polymer matrixes and increases diffusion of precursor which produced larger nanoparticles

than in the case of neat reduction.

PS-^-PAA/platinum nanocomposites were prepared by first infusing Pt(C0D)Me2

into the copolymer. The spherical morphology of the PAA domains was observed prior to

reduction. Proper reduction conditions were again essential for controlling nanoparticle size.

The best templating occurred with the least aggressive reduction conditions. Reduction in a

plasticized polymer with a mixture of CO2/H2 resulted in a loss of templating.
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Ordered polymer/silver nanocomposites were prepared by the infusion of

Ag(COD)l,fac into PS-/,-PAA. Reduction of this system produced an excellent example of

an ordered nanocomposite.

Other PS-/,-PAA/metal nanocomposites of platinum, palladium, and iridium were

then prepared under identical reaction conditions. These systems showed that different

organometallics produced different sized nanoparticles under identical reaction conditions.

Chapter 4: PS-b-PVP Nanocomposites

Pl(C0D)Me2 partitioning between PS and CO2 was investigated by varying pressure

at constant temperature and loading of precursor and PS. The optimum pressure window for

impregnations reactions was identified. Two different regions were observed. The first

region was a kinetically-hmitcd regime where the uptake of precursor was limited by mass

transfer. The second regime was equihbrium limited; increasing solubility of the platinum

precursor in CO2 upon increasing pressure favors partition of the precursor into the fiuid

phase.

Next the phase selectivity of Ag(COD)hfac between the homopolymers PS and P2VP

was investigated. This work showed that the silver precursor was very selective towards

P2VP. SEM analysis of the nanocomposites cross section also demonstrated the strong

binding between the P2VP and Ag(COD)hfac.

PS-6-PVP/platinum nanocomposites were prepared. These nanocomposites were

prepared within a PS-Z)-P4VP copolymer, where P4VP appeared to prevent the full reduction

of the platinum precursor. Extension of this into a PS-/)-P2VP gave a more complete

reduction of the platinum precursor for ordered nanocomposites.
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PS-^-P2VP/silver nanocomposites were also prepared. The silver precursor could be

thermally reduced at 60 °C and better nanocomposites were fabricated at 40 «C. The silver

precursor could be reduced them^ally without the addition of hydrogen, while the platinum

precursor could not be reduced without the addition of hydrogen.

Future Directions

This project has demonstrated that block copolymers can be successfully used as

templates for the fabrication of bulk ordered nanocomposites. Potential applications that can

be pursued from this work are in the area of dielectric materials, photonic devices, and

polymer electrolyte modification.

A block copolymer template with one phase selective towards water can be ordered

on a surface. Sol-gel chemistry is selectively run within this domain producing an ordered

polymer/ceramic nanocomposite. Upon calcination the organic block copolymer is removed,

leaving a porous ceramic structure determined by template. Application of these structures

could be in the area of dielectric insulators, an application of interest to the microelectronics

industry. This ideas is being further studied by other member of the group.

Another key potential application for ordered nanocomposites fabricated by this

method are for optical materials. As an example, a high molecular weight lamellar block

copolymer could be ordered upon SC-CO2 annealing into a periodic structure whose spacing

are on the order of the wavelength of light. Modification of the refractive index of one

phase, such as by the selective deposition of silver metal or metal sulfides nanoparticles

could produced nanocomposites with direct optical applications.

113



Another application could be the modification of poly(ethylene oxide) (PEO) by the

deposition of SiO, nanoparticles. Lithium doped-PEO are used as polymer batteries as they

are intrinsically safe and easily processable into complex geometries. However,

crystallization of PEO causes a reduction in ion conductance to unacceptable levels. By

using some of the techniques developed for the Nafion work, ceramic nanoparticles can be

produced directly within a poly(ethyle„e oxtde) film by sol-gel chemistty. This could lead to

a unique method for the direct preparation of the solid polymer membranes for polymer

battery applications.
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APPENDIX

NANOPARTICLE MOVEMENT

in a

an

Movement of nanoparticles after reduction of organometallics was investigate ,o

evaluate the possibility of nanoparticle agglomeration following synthesis. Nanoparticle

sizes within polymers can be determined by both the reaction condition used to fabricate the

nanoparticles and followed by any nanoparticle diffusion and coalescence.'" as reviewed in

the introduction.

The loss of templating ability by a block copolymer has been postulated to be due to

localized heating upon the reduction of the organometallic compounds.'' This could then

lead to an increase in the diffusion rates of nanoparticles allowing for agglomeration.

Nanoparticle movement within block copolymers been tested with gold nanoparticles

PS-/)-P4VP copolymer. The metal nanoparticles were produced by photo reduction using

ArF laser after solvent casting the gold precursor with the block copolymer onto a TEM

grid.^" With mild reduction conditions (20 pulses at 10 mJ/cm' and 25 "C) numerous small

nanoparticles were produced within each copolymer domain. Harsher conditions (10 pulses

at 20 mJ/cm and 25 ""C) produced larger nanoparticles with a loss of templating. Reduction

at a higher temperature (20 pulses at 10 mJ/cm^ and 90 ''C) gave a structure similar to the

mild reduction conditions, illustrating that the decisive parameter was the reduction

conditions through the laser power.^"*

To test the theory that nanoparticles agglomerate due only to local temperature

increase during reduction, a sample was reduced with the low power at 25 °C followed by

heating at 135 for 10 seconds, which corresponds to the typical laser-irradiation time.
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This heating ,i„e did no, alter the structure which showed that the formation of larger

nanopart,cles is dictated by the reduction conditions and is not due to a coalescence of

already existing smaller dots, but occurs during the process of nucleation.«

The mobility of the nanoparticle was tested on nanocomposites prepared withm this

dissertation. Samples were imaged within the TEM and then subjected to external heating

followed by reexamination of the morphology in the TEM. The heating conditions was done

for 4 hours at 120 °C in a thermostatic oven.

An example of the result of this is shown here for a sample of silver nanoparticles

within homopolymer P2VP, prepared as descnbed earlier in Chapter 4. The TEM image of

the sample before heating is shown in Figure A.l. This sample was heated 4 hours at 120 "C

and reexamined in the TEM. The TEM image after heating is shown in Figure A.2.

••7
« * «

If

100 nm

Figure A.l Silver nanoparticles within P2VP
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« •

Figure A.2 Silver nanoparticles within P2VP after heating at 120 "C

Within this sample, heating did not have any inHucnce on the nanoparticle movement

within the P2VP. This can bee seen in the essentially identical TEM images, which show

nanoparticles of the same size and location with a difference in the contrast of the

background due to development of the prints. This is important as it is in agreement with

what has been previously shown for nanoclusters within P2VP homopolymers and also PS-h-

P2VP copolymers, where nanoparticles do not agglomerate within P2VP. This helps to

illustrated that the key to controlling nanoparticle size is the reduction conditions.
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