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ABSTRACT

I. CONTROLLED FOAMING OF POLYSTYRENE USING SUPERCRITICAL CO
II. POLYMER ADSORPTION TO SILANE-MODIFIED SILICA SURFACES
III. PROTEIN ADSORPTION TO SILANE-MODIFIED SILICA SURFACES.'

February 2002

CHRISTOPHER M. STAFFORD, B.S., UNIVERSITY OF SOUTHERN MISSISSIPPI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professors Thomas J. McCarthy and Thomas P. Russell

Part I of this dissertation focuses on the use of supercritical C02 as a blowing

agent to produce microcellular foams. The goal of this research was to determine the

origins of observed differences between the foaming behavior of commercial materials

and those materials produced in our laboratory. It was shown that polymer molecular

weight and polydispersity are not important factors in determining cell size and are not

responsible for the disparity in cell sizes observed. This disparity was, however, a result

of the presence of a very low molecular weight component (-270 g/mol) found the

commercial samples. Extraction of this component reduced the cell diameter of resulting

foams to that of the NMW distribution samples. Addition of a styrene oligomer (285

g/mol) to a NMW distribution sample resulted in foams with larger cell diameters.

Varying the concentration of this oligomer allows control of cell size in foams.

Part II concentrates on the adsorption behavior of end-functionalized polymers to

monochlorosilane-modified silica surfaces. Chemically grafted tris(trimethylsiloxy)silyl

(sub)monolayers (tris(TMS)) were prepared on the native oxide of silicon by the vapor

phase reaction of the monochlorosilane at elevated temperatures. By exploiting the
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inherently sluggish kinetics of the silanization reaction, the grafting density of the

tris(TMS) (sub)monolayer can be tuned. Unreacted silanol groups on the substrate

surface were used as adsorption sites for carboxylic acid end-functionalized polystyrenes

(PS-COOH). The thickness of the adsorbed layer could be controlled by the tris(TMS)

surface coverage, adsorbing solvent, and polymer molecular weight. The topography of

the adsorbed layers was investigated by AFM.

Part III probes the absorption behavior of a specific protein, albumin, to

monochlorosilane-modified silica surfaces. Covalently attached monolayers were

prepared on the native oxide of silicon by reaction of various chlorosilanes at room

temperature. Both one-component (pure) surfaces and two-component (mixed) surfaces

were investigated. The adsorption of albumin to these surfaces was carried out under

physiological conditions, and ellipsometry was used to determine the total adsorbed

amount of protein to these surfaces. The adsorption of albumin closely follows the

surface energy of the substrate as seen by plotting adsorbance (O versus the cosine of the

water contact angle. The morphology of the adsorbed albumin layer was examined by

AFM and was correlated to the mode of adsorption of the albumin molecule as directed

by the surface chemistry.
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CHAPTER 1

CONTROLLED FOAMING OF POLYSTYRENE USING SUPERCRITICAL
CARBON DIOXIDE

1.1. Introduction

Supercritical (SC) fluids have received increased attention as alternatives to

conventional liquid solvents in areas such as polymerization, 1 "6 polymer modification,7 9

polymer fractionation, 10" 12 and the preparation of microcellular foams. 13 " 17 A

supercritical fluid is defined as any substance above its critical temperature and pressure

(see Figure 1.1). SC carbon dioxide (C02), in particular, has proven to be quite

advantageous since it possesses an experimentally accessible critical point (Tc
~ 31 °C, Pc

~ 1070 psi) and is environmentally benign. In this condensed state, SC C02 exhibits

properties that are unique and different from traditional solvents, such as adjustable

solvating strength, gas-like diffusivity coupled with liquid-like density, low viscosity, and

zero surface tension (see Figure 1.2). SC C02 has also been shown to swell but not

dissolve most common polymers, the exceptions being a few fluoropolymers and

polysiloxanes. The SC C02-induced swelling acts to plasticize the polymer matrix, thus

lowering its glass transition temperature. The effect of C02 on the glass transition

temperature of polystyrene is shown in Figure 1.3. This plasticization effect can be

utilized in the production of microcellular foams at temperatures much lower than the

bulk glass transition temperature.
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TEMPERATURE

Figure 1.1. P-T phase diagram illustrating the position of the supercritical fluid region.

The critical point for carbon dioxide is 31.1 °C and 1070 psi.
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Figure 1.2. Pressure-temperature-density curves for C02 , illustrating the tunable

solvating strength in the supercritical region. Listed in the table are other defining

characteristics of SCFs in comparison to conventional liquids and gases.
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Microcellular foams are defined as materials having cell sizes less than 10 urn. Potential

uses for these materials are in the areas of separation membranes, thermal and electrical

insulation, and the generation of materials with enhanced mechanical properties. There

are several methods by which microcellular foams can be generated. The first and most

common method is termed thermally induced phase separation (TIPS). 19-20 a schematic

diagram of this process is shown in Figure 1.4. TIPS employs the dissolution of a

nonsolvent in a polymer melt (e.g. polystyrene in cyclohexane) at a temperature and

composition where only one phase exists (homogeneous solution). This mixture is then

quenched into a two-phase region where the mixture undergoes liquid-liquid phase

separation until either the polymer reaches its glass transition temperature or the

nonsolvent reaches its freezing point (Tf). The phase separation leaves behind pores of

nonsolvent trapped by a glassy polymer, and a microcellular foam is generated by

removal of the nonsolvent by freeze-drying or supercritical extraction. Complete solvent

removal can be difficult, and surface forces encountered during solvent removal can

damage or destroy the microcellular structure.

Homogeneous
Solution

Liquid/Liquid

Phase Separation

Composition

Figure 1.4. Schematic drawing of the TIPS process for producing microcellular foams.
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Another method for the generation of microcellular foams was pioneered by Suh

et. sd 21-22 This method involves the saturation of a polymer specimen with an inert gas

such as C02 or N 2 at moderate pressures and near-room temperatures. The sample is then

removed from that environment and quickly immersed in a temperature bath. The

temperature of the bath needs to be above the normal glass transition temperature of the

polymer sample, at which point the polymer softens and the sorbed gas expands.

Thermal quenching of the sample brings it back below its T
g ,

vitrifying the polymer, and

locking in the resulting foamed structure. A schematic of this method is shown in Figure

1.5.

saturat

RT

(

>

vent

growth

heat above T
nucleation

Figure 1.5. Schematic representation depicting the generation of a microcellular foam

using sorption of inert gases.

A drawback to such a process is the need to heat the sample above its normal glass

transition temperature, which for some polymers can be very high (e.g. polyimide, T
g
>

300 °C). Also, foams generated by this process were found to possess a non-porous skin

This can be attributed to a rapid diffusion of gas molecules from the free surface of the
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sample, which leads to a depletion layer where no nucleation occurs. This depletion layer

has been shown to be dependent on foaming conditions.

Recently Beckman et. all3.l4,23 reported a novel way of creating microcellular

foams by use of SC C02 . Using this method, a polymer sample is exposed to SC C02 ,

which plasticizes the matrix and lowers the apparent T
g
to near ambient temperatures.

Upon rapid depressurization, the polymer matrix becomes supersaturated with C02 gas.

Nucleation of cells occurs as a result of this supersaturation and cell growth continues

until the polymer vitrifies. The T
g
rises as C02 leaves the matrix, and the polymer

vitrifies when the apparent T
g
of the polymer equals that of the operating temperature.

The degree of supersaturation is dictated by the equilibrium uptake of C02 by the

polymer, which in turn is related to the density of the fluid. The major advantage to this

method is that it allows foaming of a material well below its ambient glass transition

temperature. Another advantage is that SC C02 has no surface tension, which eliminates

any damage to the cellular structure as the C02 diffuses out of the substrate.

We recently reported 16 '24 studies on polystyrene foams prepared using Beckman's

technique. We found that temperature, initial pressure, depth of the pressure quench,

decompression rate, decompression profile, and geometric constraints of the foaming

vessel can be used to control cell size, cell size distribution, and cell shape as well as the

compressive properties of the foams. Shown in Figure 1.6 are the effects of temperature

and initial pressure on the average cell diameter of the microcellular foam. Here, we

report the investigation of several other parameters that may affect the foaming process

using SC C02 as the blowing agent. We address the effects of polymer molecular weight

and polydispersity on the final structure of the foam using polystyrene and blends of
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polystyrene prepared by mixing samples with narrow molecular weight distributions. We

also report the effect of a low molecular weight component found in commercial

polystyrene samples and show that its presence dramatically changes the resulting foam

structure. By varying the concentration of this oligomer, control of the cell size in foams

can be achieved.
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1.2. Experimental

1.2.1. Materials

All materials were purchased from Aldrich and used as received, unless otherwise

indicated. Carbon dioxide (Coleman grade) was purchased from Merriam Graves and

was dried by passing it through activated alumina to remove polar impunt.es and a I
copper catalyst (Q-5 - Engelhardt) to remove traces of oxygen. For radical

polymerizations, styrene was distilled from CaH2 and azobisisobutyronitrile (AIBN) was

recrystallized from methanol. Polymer molecular weights and distributions were

determined by gel permeation chromatography (GPC) relative to calibration with

polystyrene using a system equipped with Polymer Laboratories PL gel columns (10
4

,

10
3

,
10

2
A), a Polymer Laboratories LC 1 120 HPLC pump with THF as the mobile phase,

and an IBM LC9563 Variable UV detector set at 254 nm. Differential scanning

calorimetry (DSC) was performed using a DuPont Instruments DSC2910 and a heating

rate of 10 °C/min. The polystyrene samples, PS514K
and ps

1050K
and the 580 g/mol

styrene oligomer were purchased from Polymer Laboratories; the 285 g/mole sample was

obtained from Polysciences. Commercial polystyrene samples,
COM

PS',
C0M

ps
2

, and

coMpg3
were pUrchaseci

from Acros anci Aldrich, respectively.

1.2.2. Polymerizations

Homopolymers of polystyrene were synthesized using anionic polymerization

techniques as described in Appendix A. Bulk radical polymerization of styrene was

carried out in a 100 mL round bottom flask to which AIBN (0.020 g) and styrene (50 mL)

10



were introduced. This mixture was heated at 90 °C for 4 h, cooled, diluted with toluene,

precipitated in methanol, recovered and dried under vacuum at 70 °C for several days.

1.2.3. Sample Preparation

Homopolymer blends were prepared by solvent casting from THF onto glass

slides. The films were allowed to dry at room temperature for 1 day, dried under vacuum

for 1 day, and finally dried at 120 °C for 6 h to remove last traces of solvent. The blends

were then compression molded into 1/32-in. plaques at 175 °C. Homopolymer samples

were compression molded under the same conditions.

1.2.4. Foam Preparation

Foams were prepared in 316 stainless steel high-pressure vessels using an ISCO

syringe pump to fill the vessels with SC C02 . A range of foaming conditions (P,T) were

explored throughout this research and are too numerous to expound upon here, so an

example is shown as follows. Samples were placed in high-pressure vessels, heated to 60

°C in a circulating bath, and filled to a pressure of 2050 psi (14.1 MPa) in convenient

incremental stages. The vessels were then transferred to a circulating oil bath (100 °C)

and maintained at this temperature for 3 h. At the end of this period, vessels were

depressurized in ~4 sec at constant temperature. It should be noted that a slight cooling

occurs inside the vessels due to the rapid expansion of the CO2, thus the actual

depressurization temperature is less than 100 °C. The vessels were then removed from

the temperature bath, allowed to cool to room temperature, and the samples were

recovered.
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1.2.5. Foam Characterization

The foams were characterized primarily by scanning electron microscopy (SEM).

Samples were cryo-fractured after immersion in liquid N2 , sputter-coated with -200 A of

gold, and viewed using a JEOL 35CF SEM. The resulting micrographs were analyzed by

Zeiss Image Analysis software to determine average cell diameters. Cell densities were

calculated according to method proposed by Kumar and Suh.22 First, the number of cells

nucleated per cm of foamed material (Nf) was calculated using the following equation:

N,=
' nM 2

(I)

where n is the number of cells in the micrograph, M is the magnification factor, and A is

the physical area of the micrograph in cm2
. The volume fraction of voids (Vf) in the

sample can be then be calculated as follows:

,6,
D'N

f (2)

where D is the average cell diameter as determined by image analysis, and N/is

calculated as described above. But, <V/cells were actually nucleated in (l-Vf ) cm
3
of

original material. Therefore, the number of cells nucleated per cm3
of unfoamed material

(N0) can be calculated as follows:

N
fN0

=—f— (3)
l-V

f

This is the number (7V„) that will be presented as cell density in this work.
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1 .3. Results and Discussion

Sorption experiments'* indicate that polystyrene can be swollen with supercritical

carbon dioxide (SC C02 ) to a maximum level of -12 wt%. This swelling lowers the

glass transition temperature to slightly above room temperature. Upon decompression

of the SC solution, the polystyrene foams as the sample becomes supersaturated with CO;

gas. As the concentration of C02 in the polystyrene decreases (by partitioning into the

pores), the glass transition temperature increases and when it exceeds the temperature of

the experiment, the sample vitrifies, freezing in the foam structure. The number and size

of the pores in the foam depend on the concentration of C0 2 in the polystyrene, the

number of nucleation sites and the growth rate of the pores. The rate at which the C0 2

diffuses from the matrix to the growing pores depends on the temperature of the

experiment, the pressure of the experiment and the viscosity of the swollen polymer. As

a result of the viscosity dependence, the molecular weight and polydispersity of the

polymer should influence the structure of the foam developed during decompression.

Foaming experiments were performed on a series of narrow molecular weight

distribution polystyrenes and commercial polystyrene samples of molecular weight and

polydispersity summarized in Table 1.1. The polymer of choice for these experiments

was polystyrene due to its commercial availability as well as the ease of synthesis by

living anionic techniques. Figure 1 .7 shows the GPC chromatograms of three different

commercial polystyrene samples purchased from SP , Aldrich, and Acros. These

materials are designated
C0MPS\

COM
PS

2
, and

mM
PS

3

,
respectively. As seen in the

chromatograms, these materials have broad molecular weight distributions and possess

13



Table 1.1. Polymer sample characteristics.

sample Mn (kg/mol) Mw (kg/mol) Mw/Mn T

pS
6K

6.6 6.8 1.03 95

PS25K
24.4 25.4 1.04 104

pg62K
62.1 64.0 1.03 107

pS
147K

147 153 1.03 108

p^514K
514 540 1.05 107

pg!050K
1030 1080 1.05 109

COMpgl
66.5 204 3.07 105

COMPS 2
65.7 246 3.74 103

C0MPS3
120 288 2.38 105

PS
R

96 214 2.22 106

B
ps

l

61 188 3.07

B
ps

2
12.8 179 13.95

B
ps

3
8.4 175 20.76
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very similar number and weight average molecular weights. Scanning electron

micrographs of foams produced by decompression at 100 °C and 3400 psi (23.4 MPa) are

shown in Figure 1.8 for the three commercial samples. The results of image analysis of

these micrographs are shown in Table 1.2. The commercial samples exhibit average cell

diameters of 20-25 urn and cell densities of 10
7
cells / cm3

. This is in good agreement

with the results of Arora et. al 16 for these conditions.

Next, polystyrene samples possessing well-defined molecular weights and narrow

molecular weight distributions were prepared by living anionic techniques. Figure 1.9

shows the GPC chromatograms of four polymers with increasing molecular weight, with

the chromatogram of
COM

PS' included for comparison. The narrow molecular weight

distribution materials are designated with the following notation: PS25K
, PS

147K
, PS

514K
,

and ps
1050K

, where the superscript indicates the weight average molecular weight of the

polymer. Scanning electron micrographs of foams produced by decompression at 100 °C

and 3400 psi (23.4 MPa) are shown in Figure 1.10. Cursory examination of these

micrographs shows a striking difference between the commercial and narrow molecular

weight distribution polystyrene samples. The cell size (diameter) in each of the narrow

molecular weight distribution polymer foams is ~5 um. The results of image analysis of

these micrographs are shown in Table 1.2. The cell size is independent of molecular

weight over a very large molecular weight range. The only exception to this is the PS

sample that shows a smaller cell diameter (2.2 |nm), which may be a result of the

molecular weight being fairly close to the entanglement molecular weight of polystyrene.

The PS
25K

sample was brittle after compression molding, and the foamed sample easily

crumbled during handling, making characterization precarious. In marked contrast to

15
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Figure 1.7. GPC chromatograms of three different commercial polystyrene samples:

(from top to bottom)
COM

PS' (SP
2
),

COM
PS

2
(Aldrich), and

C0M
PS

3
(Acros).
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Figure 1.8. SEM micrographs of fracture surfaces of foams prepared from three different

commercial polystyrene samples: (a)
C0M

ps' (SP
2
), (b)

( OM
PS

2
(Aldrich), and (c)

C0MPS3

(Acros). Foaming conditions were 100 °C and 3400 psi.

17



0 5 10~ 15 20 25 30
~35

Figure 1.9. GPC chromatograms of one commercial and four narrow molecular weight

polystyrene materials: (from top to bottom)
C0M

PS', PS
25K

,
PS

I47K
,
PS

5I4K
, and PS

105()K
.
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(a) (b)

(c) (d)

Figure 1.10. SEM micrographs of fracture surfaces of foams prepared from four narrow

molecular weight polystyrene materials: (a) PS
25K

, (b) PS
I47K

, (c) PS
514K

, and (d) PS
1050K

Foaming conditions were 100 °C and 3400 psi.
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this, the commercial foamed polymer exhibits a cell diameter of -24 jun; the cell

diameter is nearly five times larger and the cell volume is more than 100 times that of the

narrow molecular weight distribution polystyrenes.

The most obvious difference between the narrow molecular weight distribution

polymers and the commercial materials is the molecular weight distribution. The large

disparity between cell sizes indicates that either the nucleation density of the pores is

much greater in the narrow molecular weight distribution polymers or that the growth

rate of the pores is much faster for the broad molecular weight distribution polymers.

This may arise from a change in the free energy associated with the formation of a

nucleus of critical size or, in the case of homogeneous nucleation, a change in the growth

rate of the pores. The increase in pore size for the broad molecular weight distribution

polymers can also suggest that both high and low molecular weight components are

necessary to support the large cell structure. The high molecular weight component

would serve to enhance the number of intermolecular entanglements, whereas the lower

molecular weight component would promote rapid cell growth.

To address the latter possibility, a polydisperse sample was prepared by blending

several narrow molecular weight distribution polymers to yield a sample that had

approximately the same MnandMwas^PS 1

. This blend was comprised of six

different molecular weight polystyrene samples, PS
6K

, PS
25K

, PS
62K

, PS
I47K

, PS
5,4K

and

pgio50K jQ determine the blend ratio, a GPC chromatogram of all six narrow molecular

weight samples was obtained and is shown in Figure 1. 11. The peaks were then

overlayed onto the GPC chromatogram of a commercial sample (

( OM
PS') and rectangles

were constructed of equal width. The position of the rectangles corresponded to the peak

20



elution time for each of the narrow molecular weight materials. By measuring the height

of the rectangles at the point of intersection with the chromatogram, an area could be

calculated for each molecular weight. The individual peak areas were then divided by the

sum of all the areas and these ratios were used for determining blend composition. This

process is illustrated in Figure 1.12. The simulated polydisperse sample had molecular

weights of Mn = 61K, Mw = 188K (M„/Mw = 3.07); the GPC chromatogram of this blend

B 1

( PS ) is shown in Figure 1.13. Foams from this sample, however, showed cell sizes in

the range of 5-6 u,m (see Figure 1.18.). The similarity in the cell size of the foams

produced from the simulated polydisperse material and from the narrow molecular

weight distribution polymers indicates that polydispersity is not critical in defining cell

size. This was further demonstrated by foaming a polystyrene sample prepared by bulk

free radical polymerization of styrene. GPC indicates that this sample (PS
R
) has Mn =

96K and Mw = 214K (Mw/Mn = 2.22). The chromatogram is shown in Figure 1.14. The

sample was foamed under identical conditions and the cell sizes were ~5 urn, identical to

that of narrow molecular weight distribution polymers and the simulated polydisperse

sample (see Figure 1.15).

This result prompted a closer examination of any differences between the

commercial materials and those prepared in our laboratories. The commercial samples

show a peak in the size exclusion chromatogram at a retention time of -28 minutes which

corresponds to a molecular weight of -270 g/mole. This indicates the presence of a low

molecular weight material, lower than any component of the simulated polydisperse

sample. Consequently, a seventh component was added to the 6-component simulated

polydisperse system (

B
PS

1

): a styrene oligomer of molecular weight of 580 g/mole. Two
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Figure 1.11. GPC chromatogram of six narrow molecular weight polystyrenes used in

calculating blend compositon.
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Figure 1.12. Geometric construction for determining the percentage of each molecular

weight to be added to the blend.
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Figure 1.13. GPC chromatogram of a simulated polydisperse polystyrene sampie,
B
PS\

which is a 6-component blend of PS
6K

, PS
25K

, PS
62K

, PS
I47K

, PS
514K

and ps
105ok
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Figure 1.14. GPC chromatogram of a polystyrene sample (PS ) prepared by bulk radical

polymerization initiated by AIBN in toluene at 70 °C.
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(c)

Figure 1.15. SEM micrographs of fracture surfaces of foams prepared from (a) PS as

well as (for comparison) (b)
C0M

PS' and (c) PS
147K

Foaming conditions were 100 °C and

3400 psi.
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Figure 1.16. GPC chromatogram of the simulated polydisperse polystyrene sample PS ,

which contains the samples in
BPS

!

plus 7.4 wt% of a 560 g/mol styrene oligomer.
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Figure 1.17. GPC chromatogram of the simulated polydisperse polystyrene sample
B
PS

3

,

which contains the samples in
B
PS' plus 13.0 wt% of a 560 g/mol styrene oligomer.
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(c) (d)

Figure 1.18. SEM micrographs of fracture surfaces of foams prepared from the simulated

polydisperse polystyrene samples (a)
B
PS \ (b)

,J

PS
2

, (c)
B
PS

3
, and (d)

com
ps' (for

comparison). Foaming conditions were 100 °C and 3400 psi.
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blends were prepared with this oligomer, one with 7.4 wt% oligomer
(

B
PS 2

) and one with

13 wt% oligomer (

B
PS 3

). The size exclusion chromatograms for these blends are shown

in Figures 1.16-1.17 and the foam structures prepared with these samples are displayed

in Figure 1.18. The average cell diameters were in the range of 6-8 urn, which is slightly

greater than those of the narrow molecular weight distribution samples but still much

smaller than those of the commercial samples.

Using a different strategy to determine whether the low molecular weight

component is responsible for the increase in cell size, this component was extracted from

COMPS l

prior to foaming.
COM

ps' was reprecipitated from a THF solution into methanol,

filtered and vacuum dried as described earlier. The first reprecipitation lowered the

concentration of the oligomer from 3.8% to 1.3% as is shown in Figure 1.19. The

percentages reported here are area percentages obtained by dividing the area under the

peak at 270 g/mole by the total area of the entire distribution, excluding the area due to

the toluene flow marker (-31 min) and beyond. The resulting foam (

C0M
ps

IEX1
) shows

pore sizes of 8.9 [im, as indicated in Figure 1.20. Second and third reprecipitations

lowered the concentration of low molecular weight material to 0.9% and 0.1%

respectively. The cell diameters in foams of these samples (

C0M
ps

IEX2
and

COM
ps

1EX3
),

as shown in Figure 1.20, are 7.2 um and 5.9 um, respectively, essentially identical, in the

case of PS , to those prepared with narrow molecular weight distribution samples.

These results indicate that manipulating the concentration of this low molecular weight

component can control cell size of the resulting foam.

The filtrate could then be isolated by evaporation of the solvent and characterized,

This was accomplished by rotary evaporating the filtrate and recovering the product. An
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interesting observation was made during this process. As solvent was removed, a solid

product precipitated and was separated by filtration. Further removal of solvent from the

filtrate resulted in the same sequence of events, and another solid product was recovered.

This process was repeated several times with the same results, with the exception that the

precipitate became more of a viscous substance than a solid, but could still be isolated.

The transition from recovering a solid product to recovering a viscous liquid suggests that

molecular weight of each aliquot is decreasing. Therefore, the samples were then

characterized by GPC to identify the molecular weight of each material. The I
chromatogram from this experiment is shown in Figure 1.21. Interestingly, it appears

that the rotary evaporation process results in a fractionation of the filtrate that was

extracted out during the reprecipitations. Even more interesting is that the first aliqout

recovered from the rotary evaporation fractionation is fairly high in molecular weight

(-2000 g/mol), indicating that the extraction process removes part of the low molecular

weight tail in the polydisperse sample. The final aliquot overlaps perfectly with the low

molecular weight oligomer seen in the ^ps 1

trace, and the trace clearly reveals the

presence of three fragments of discrete molecular weights. This final fraction was also

characterized by both IR and NMR to probe for the presence of specific functional groups

that might enhance interactions between the SC C02 and the sample containing this

oligomer. No detectable functionality, such as carboxyl or hydroxyl groups, was found in

the oligomer. All characterization methods indicated that the material was styrenic in

chemical nature.
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Figure 1.19. GPC chromatograms showing the removal of a low molecular weight

(LMW) component from
C0M

ps' by repeated reprecipitation from THF in methanol:

(from top to bottom) ^ps 1

(3.8% LMW component),
C0M

ps
1EX1

(1.3% LMW
component),

C0Mps 1EX2
(0.9% LMW component),

C0M
ps

1EX3
(0.1% LMW component).
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(c) (d)

Figure 1.20. SEM micrographs of fracture surfaces of foams prepared from the extracted

polydisperse samples: (a)
coKlPS\ (b)

C0MPS lEX
\ (c)

«™
ps

ii&
and (d)

™
PS

1EX3
.

Foaming conditions were 100 °C and 3400 psi.
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Figure 1.21. GPC chromatograms of the fractionated products recovered after repeated

rotary evaporation of the filtrate from extraction of
COM

PS' by reprecipitation.
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To determine whether this low molecular weight component acted in a unique

manner to affect the observed foam structure, a polystyrene standard (styrene oligomer)

having a molecular weight of 285 g/mole and a PDI of 1 .20 was purchased. This low

molecular weight sample was blended with PS 147K
. Three different samples were made

containing 3.6 wt% (

B
PS4

), 7.3 wt% (

B
PS 5

), and 9.9 wt% (

B
PS6

) of the 285 g/mole

oligomer. The GPC chromatograms are shown in Figure 1.23. Foamed samples of pure

PS ,47K
exhibit cell diameters ~5 urn (Table 1.2) before addition of any low molecular

weight component. Upon addition of the 285 g/mole component, the resulting foams

show an increase in cell size up to 19 urn for the 9.9 wt% sample, as shown in Figure

1.24. This indicates that there is nothing unique about the low molecular weight impurity

found in the commercial samples, and that the effect of this low molecular weight

component can be reproduced by the addition of a low molecular weight polystyrene

standard. While the overall efficiency of the low molecular weight impurity in the

commercial samples may be greater than that seen for the low molecular weight

polystyrene (3.8 area% compared to 9.9 wt%), the end result in terms of pore density and

increased pore size is the same. The presence of a low molecular weight component

having a molecular weight of 270-285 g/mole, but less than the 580 g/mole (that was

added in the simulated polydisperse blends), leads to the formation of large cells with

dimensions in the range of 19-24 [Lm.

The first question to be asked is where does this low molecular weight material

come from? And why is it present in commercial materials but not in materials

synthesized in-house, even by free-radical polymerization? The answer may lie in the

initiation step of the polymerization of styrene prepared by commercial processes.
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Radical polymerization of styrene can be initiated either by adding an external initiator

(e.g. AIBN) that decomposes either thermally or by exposure to light, or it can be self-

initiated (thermal polymerization). Thermal polymerization involves heating neat styrene

to induce a Diels-Alder reaction between two styrene monomers, which rearranges to

form radical species A and B. This reaction is illustrated in Figure 1.22.

- m - OQ *

h pi, H Ph

B

Figure 1.22. Thermally-induced initiation of styrene, producing radical species that can
recombine to form inactive oligomers.

The radical species can either initiate polymerization or they can recombine through a

radical cage-effect. The potential reactions that could lead to the formation of inactive

oligomers are as follows: (a) B-proton - 106:g/mol, (b) A-proton - 208 g/mol, (c) B-B -

208 g/mol, (d) A-B - 3 1 1 g/mol, and (e) A-A - 414 g/mol. Reaction (a) would be

masked by the toluene flow marker in the GPC chromatograms, but reactions (b) through

(e) could be the discrete steps in molecular weight seen in Figure 1.21. Therefore, it is

speculated here that the source of the oligomer present in the commercial polystyrene

samples is simply the decomposition products of the thermally initiated polymerization of

styrene, and no steps are taken to remove this material before processing the polymer into

pellet form. Hence, polymerization initiated using AIBN (as performed in-house) would

not contain this oligomer, and therefore behaves very differently during the foaming

process.
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Figure 1.23. GPC chromatograms of blends prepared from PS
147K

and a 285 g/mol

styrene oligomer:
B
PS

4
(3.6 wt% oligomer),

B
PS

5
(7.3 wt% oligomer), and

B
PS

6
(9.9 wt%

oligomer).
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(c) (d)

Figure 1.24. SEM micrographs of PS
147K

with added oligomer: (a) PS
147K

(0.0 wt%
oligomer), (b)

B
PS

4
(3.6 wt% oligomer), (c)

B
PS

5
(7.3 wt% oligomer), and (d) PS

6
(9.9

wt% oligomer). Foaming conditions were 100 °C and 3400 psi.
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Lesion o^

v

sc
a

r0:
e" size diameters and ce" densities of foams pr<x,uced "y^

sample avg. Cell

diameter (urn)

iii
cell density

f# cells/cm \

pS25K
2.2 4 llxlO 10

pS 147K
5.3 4 28xI09

pg514K
5.9 2.16xl0

9

pgl050K
5.7 3 74x i

n

9

PSR 4.7 2 36x10°

COM
PS

1

24 6.54xl0
7

COM
PS2

24 1.21xl0
7

COMpg3
19 1.83xl0

8

B
ps

l

5.2

B
ps

2
5.8

B
ps 3

7.9

B
ps4

1 1 Q1 1 .7 y. /yxiu

B
ps5

13.9 5.18xl0
8

B
ps

6
18.4 3.27xl0

8

COMpglEXl
8.9 1.12xl0

9

COM
PS

IEX2
7.2 1.97xl0

9

COMpglEX3
5.9 3.24xl0

9

Superscripts with K indicate narrow molecular weight distribution samples, with COM
indicate commercial broad molecular weight distribution samples, with a B indicate a

blend and with EX indicate extracted samples.
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are

The second question to be asked is what role does this oligomer play in the

supercritical foaming of polystyrene? A few observations can be made which allow for

certain arguments to be dismissed. From the image analysis data, we can calculate the

number of pores nucleated per cm3
of the foam by applying a method proposed by Kumar

and Suh.22 The cell densities obtained for most of the samples discussed earlier

shown in Table 1.2. What is immediately obvious from these data is that the presence of

this low molecular weight component (270 g/mol) has a dramatic influence on cell

density. Nearly a two-order of magnitude decrease in the cell density is evident. Since

the glass transition temperature of the polymers and the extent of swelling of the

polymers with SC C02 is the same, i.e. the depressed glass transition temperatures of the

swollen polymers are essentially the same, we cannot attribute this difference to the rate

of cell growth. No evidence was found for cell coalescence. Consequently, the

differences caused by the presence of the low molecular weight component must be

attributed solely to a reduction in the number of nucleation sites.

Colton and Sun,21 '25 *26 using classical nucleation arguments, derived an

expression for the rate of nucleation of pores in microcellular foams. Whether the

nucleation occurs by a homogeneous or heterogeneous process, the nucleation rate N is

given by

N
i
- ffio exp(-AG<* IkT) (4)

where the subscript i denotes whether the nucleation is homogeneous or heterogeneous,/

is a frequency factor of gas molecules merging with the nucleus, Ca is the concentration

of gas molecules and AGj is the Gibbs free energy associated with the formation of a

nucleus. If the nucleation is homogeneous,
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3(AP)
2 W

where y is the surface energy at the cell-polymer interface and AP is the pressure exerted

by the SC C02 on the cell walls. In the case of heterogeneous nucleation,

3

3(AP)
2 w

where the factor/(0Ml/4)(2+cos0)(l-cos0)2
and 0is the contact angle of the

polymer/nucleation site/gas interface.

The dramatic changes in N observed in our studies cannot be explained by

changes in either/ or C0 . Ca is dictated by the swelling of the polymer by the SC C02 ,

which is the same in all cases. While there may be changes in/ due to the presence of

the 270 g/mol component, a two-order of magnitude change in /, would not be expected

based on the concentration of the impurity. Therefore, the change in nucleation density

must originate with changes in AG*, provided the mode of nucleation, i.e. homogeneous

versus heterogeneous, remains unchanged. If N
t
and A// are the cell nucleation rates in the

absence of and presence of the low molecular weight component and the decrease in the

nucleation rate is two orders of magnitude, then (assuming/ and C0 are constant),

ln(^) = ln(0.01) = - AG *
- AG

'

(7)
N

t
kT

With a pressure drop of 3400 psi (~2.34xl0
8
erg/cm

3
), and using equations (2) or (3), the

change in the surface tension of the cells by the addition of the 270 g/mol would be

y' -y - 9.2erg/cm
2

. This result, however, shows that the presence of the low molecular
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weight component must increase the surface tension to bring about a reduction in the

nucleation rate, a result that would contradict most results found in the literature.

Can the change in the nucleation rate be associated with a change in the mode of

nucleation? Examination of all the cell structures produced in this study shows that the

cell sizes are uniform, i.e. the distribution of cell sizes is narrow. A narrow cell size

distribution requires that the nucleation sites be uniformly distributed in the system and

that the nucleation of all the pores occurs within a narrow time regime. This is

characteristic of a heterogeneous nucleation process with a uniform distribution of

nucleation sites. Similar behavior is seen, for example, in the nucleation of polymer

spherulites where, after crystallization, the spherulites have a characteristic size.

Homogeneous nucleation, on the other hand, requires that nucleation occurs over a broad

time period and would necessarily give rise to a broad distribution of cell sizes. No

evidence was found in our studies to indicate that homogeneous nucleation occurred.

Indeed, for most polymer systems, attaining conditions suitable for homogeneous

nucleation is extremely difficult. Thus, contrary to the findings of Colton and Suh, where

a dramatic reduction in the nucleation density was attributed to a change from

homogeneous to heterogeneous nucleation, our data suggest that no such change has

occurred.

Consequently, arguments based on nucleation and growth of cells fail to explain

the observations described here. An alternative mechanism that needs to be considered is

that of spinodal phase separation followed by a coarsening process. The system of SC

C02-swollen polymer is quenched into a metastable regime by a rapid pressure drop.

Upon quenching, concentration fluctuations with many different length scales are present.
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With time, as a result of the balance between thermodynamics, which favors cell

formation, and dynamics, which requires transport of the C02 molecules to the less dense

regions, a characteristic wavelength begins to emerge. The amplitudes of the

concentration fluctuations continue to grow until the saturation point, at which time, a

cell forms and begins to coarsen. The presence of the low molecular weight component

could, in fact, serve to suppress the shorter wavelength fluctuations and lead to a

reduction in the number of effective nucleation sites. Such a mechanism would lead to a

uniform distribution of cells and, consequently, to a narrow distribution of cell sizes. A

key element in this alternative mechanism of cell formation is the growth of I
concentration fluctuations with a characteristic wavelength. Studies are currently in

progress using time-resolved x-ray scattering from quenched systems to investigate this.

If the spinodal mechanism is active, a maximum in the scattering profile will be evident

prior to cell formation, whereas with nucleation and growth, only a monotonic decrease

in the scattering will be observed.

1.4. Conclusions

The effects of both molecular weight and sample polydispersity on SC C02

expansion of polystyrene has been examined in some detail. The data suggest that

molecular weight and polydispersity do not significantly affect the foaming process. The

presence of a low molecular weight component (-270 g/mole), however, was found to

greatly influence the final structure of the foam. The chemical nature of the oligomer has

been determined to be styrenic, possessing no detectable functionality that would enhance
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size can

interactions with the supercritical fluid. The ongin of this oligomer has been speculated

to be the remnants of the thermal initiation of styrene polymerization used in commercial

processes. This component does not have to present in large amounts « 4%) to cause a

substantial increase in cell size, and by adjusting its concentration, control of cell

be achieved. Addition of a low molecular weight oligomer to polymer samples offers a

way to control cell structure in SC C02 foaming systems. Small amounts of a low

molecular weight polystyrene component produce nearly a two-order of magnitude

decrease in the nucleation density following the quenching of SC C02-swollen PS. This

reduced nucleation density gives rise to a 3-10-fold increase in the average cell diameter.

Classical nucleation theory fails to explain the observations, suggesting that an alternative

mechanism of cell formation, perhaps a spinodal mechanism, is active. Another

hypothesis that remains unproven is that the presence of the oligomer lowers the

depressed Tg of polystyrene further, allowing for foaming to occur for a slightly longer

period of time before vitrification of the polymer occurs.
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CHAPTER 2

POLYMER ADSORPTION TO SILANE-MODIFIED SURFACES

2.1. Introduction

There has been considerable theoretical '-5 and experimental^ 3 interest in the

adsorption of functionalized polymers to solid/liquid interfaces, which makes use of one

or multiple functional groups on the polymer to pin the polymer to an "attractive" wall.

This concept has been utilized in such areas as colloid stabilization,^^ enhanced wetting

and adhesion, > 6,n fabrication of chemical microsensors,i8 and biocompatibility.'^o

Recently, significant attention has been given to the adsorption of A-B type block

copolymers where one block interacts preferentially with the surface, which serves to

anchor the polymer to the solid/liquid interface. End-functionalized polymers such as

PS-COOH represent the simplest A-B type block copolymer, having a single anchoring

point (i.e. carboxylic acid) that exhibits a preferential interaction with a silica surface.

The trends in the adsorption of such end-functionalized polymers should provide basic

insight into how more complex macromolecules may adsorb under similar experimental

conditions.

Polymer adsorption is a thermodynamic process that requires the global free

energy of the system to be negative. Unlike small molecule adsorption, polymer

adsorption results in the loss of conformational entropy due to pinning the polymer to a

solid surface. This loss in entropy must be compensated by gains in enthalpic

interactions of the polymer with the surface. Those interactions can be defined as
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follows: polymer segment-solvent (F.ory-Huggins x parameter), solvent-surface, and

po.ymer segment-surface, the difference in the latter two being the exchange free energy

associated with replacing a solvent molecule with a po.ymer segment. Thus, by changing

the chemistry of the polymer (monomer repeat, block copolymers, etc.) or by changing

the adsorbing solvent
ft), one can dramatically modify the adsorption behavior of a

polymer to a given surface. As an example, the effect of solvent quality is shown

schematically in Figure 2. 1
.

In a good solvent, the polymer chains adopt a highly

expanded conformation, which excludes neighboring chains from packing closely to one

another. In a theta solvent, the polymer chains arc in a condensed globular conformation,

having a smaller excluded volume that allows for a higher packing density.

GOOD SOLVENT
I HHTA SOLVENT

Figure 2. 1
.
End-grafted polymer adsorption as a function of solvent quality.

Simple homopolymcr adsorption results in the formation of loops and ti ains, the

numbers of which are dictated by the total number and distribution of adsorbing sites

along the polymer backbone. In end-grafted polymer adsoiption, the situation becomes

less complicated as there is only one monomer unit at the end of the polymer that can

interact with the surface (increased surface affinity). The remaining monomer units are

assumed to have a non-favorable or repulsive interaction with the surface. Theoretical

arguments predict that the adsorbed thickness (L) is dependent on the number of repeals
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(N) in the polymer, the grafting density (a) and monomer length (a), and can be

summarized by the following scaling relationship:

L~Naa 1/3

(1)

The non-adsorbing block extends away from the surface and into the solution. Steric

requ,rements dictate that the polymer chains stretch perpendicular to the surface, forming

what is referred to as a polymer brush. In this highly stretched state, the polymer chain

adopts a conformation that deviates greatly from the equilibrium chain dimensions in

solution.

When studying the adsorption of copolymers, there exists two possible adsorption

regimes termed buoy-dominated and anchor-dominated adsorption (see Figure 2.2)21

Buoy-dominated adsorption occurs when the adsorbing block (footprint) is small in

comparison to the non-adsorbing block (solvated), and the osmotic forces among the

buoy blocks dictate the grafting density. Anchor-dominated adsorption occurs when the

adsorbing block (footprint) is large with respect to the buoy block, and grafting density is

limited by the packing efficiency of anchor block on the surface. In end-grafted polymer

adsorption, the grafting density is directly proportional to the number of end-groups

adsorbed to the substrate, with the remaining portion of the chains extended away from

the surface. This can be viewed as a variation of buoy-dominated adsorption behavior.

When the grafting density exceeds a critical value, repulsive interactions between chains

cause the adsorbed layers to stretch away from the substrate forming a polymer brush.

Considerable attention has been given to the adsorption of polymers to a variety

of surfaces, including mica, silica, metal oxides, and liquid-air interfaces. A large

volume of literature focuses on the adsorption of end-functionalized polymers due to the
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buoy-dominated adsorption anchor-dominated adsorption

gimes for copolymer adsorption: buoy-dominated
Isorption.

simplicity of the system. Experimental and theoretical work has even been carried out to

elucidate the effect of surface roughness on the adsorption of end-functionalized

polymers.22 There lacks, however, a literature base concerned with the adsorption of

end-functionalized polymers to chemically heterogeneous surfaces. Chemically

modifying silica surfaces provides a rich and robust route to study the trends in the

adsorption of these types of polymers to chemically heterogeneous surfaces.

Reaction of silicon surfaces with alkyltrichlorosilanes provides a simple and

effective way to vary the surface properties from hydrophobic to hydrophilic.23 -2* These

surfaces are termed self-assembled monolayers and consist of close-packed alkyl chains

where the primary interaction between neighboring chains is van der Waals interactions.

One drawback to this process is that it is very dependent on the surface preparation and

reaction conditions. Depending on the extent of hydration of the surface silanol groups,

the reaction of trichlorosilanes can lead to the formation of oligomeric species that are

sparsely attached to the surface via covalent bonds. In contrast, monochlorosilanes can

also be used to modify the surface properties and wettability of a substrate, but the nature

of the chemistry requires that every silane group be covalently attached to the surface.

Dimeric species can be formed in solution but those species are no longer reactive and

thus cannot participate in surface reactions. Typical monochlorosilanes include alkyl,
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fluoroalkyl, aryl, and haloalkyl. Mixed monolayers can be prepared by using a

combination of two organosilanes, but since this process relies on competitive adsorption

the extent of mixing is rarely known and hardly reproducible. Depending on the kinetics

of each individual silane reacting with the surface, the react,on may lead to a uniformly

mixed monolayer (k,=k2 ) or a surface enrichment of one silane (k,»k2 ).

An alternative approach has been proposed which utilizes a two-step technique

involving the formation of a submonolayer of a single chlorosilane, then subsequent

reaction of that surface with a second chlorosilane. This approach has proven to be very

successful, albeit more time consuming, in the creation of a wide range of binary mixed

monolayers.25,26 The major drawback t0 this technique is that the distribution> Qr levd Qf

mixing, of the two components is dictated solely by the distribution of the first

component during reaction. If component 1 reacts in a patchy fashion (i.e. island

formation), the mixed monolayer will be patchy; if it reacts randomly, the mixed

monolayer will be randomly mixed. Recently, Fadeev et al.27 described the preparation

and properties of tris(trimethylsiloxy)silyl monolayers (Tris(TMS)) and their use as

patterns for the synthesis of uniformly mixed binary monolayers of organosilanes on

oxidized silicon wafers. The chemical structure of Tris(TMS) is shown in Figure 2.3.

Due to the bulky nature of this molecule, the packing efficiency of Tris(TMS) on a

surface is very poor. Contact angle studies using probe fluids of increasing molecular

size showed that even closely packed monolayers of Tris(TMS) have interstitial holes

(nanopores) that can be used to modify the surface further. The results of this experiment

are shown in Figure 2.4. If the molecular size of the probe fluid is smaller than the

average separation distance between Tris(TMS) molecules, the probe fluid can penetrate
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Figure 2.3. Chemical structure of tris(trimethylsiloxy)chlorosilane, Tris(TMS)-Cl

through the Tris(TMS) layer and interact with the underlying surface (Si-OH). Thus, the

probe fluid senses' a heterogeneous surface, wh,ch causes the measured hysteresis to be

large (~ 10°). If the molecular size of the probe fluid is larger than the average separation

distance between Tris(TMS) molecules, the probe fluid is excluded from penetrating the

monolayer and only 'senses' a homogeneous layer comprised of Tris(TMS) molecules.

In this case, the observed hysteresis will be low (~ 2°). The transition from penetrating to

non-penetrating probe fluids is an indication of the average pore size of the Tris(TMS)

monolayer. In the case of a fully covered Tris(TMS) surface, the size of the pores was

shown to be between 0.49 and 0.54 nm2
.

Adsorption of polymers to such surfaces should be rich and enlightening. The

surface is no longer a continuum of surface silanols (attractive) but now contains varying

amounts of Tris(TMS) groups (repulsive). Also, the polymer chain must adopt a

conformation that allows for the carboxylic acid group to interact and adsorb to the

surface. Increasing the molecular weight of the polymer chain incurs two disadvantages:

the concentration of end-groups decreases, while the probability that the chain end is

buried deep within the polymer coil increases. The polymer chain must also adsorb
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Figure 2.4. Contact angle hysteresis as a function of molar volume of the probe fluid for
Tris(TMS) surfaces prepared in the vapor phase for 3 days. The observed transition in

hysteresis allows for determination of an average pore size.27

53



between Tris(TMS) groups, which for a completely reacted Tris(TMS) surface is -0.5

nm2

.
Thus, there are several factors that will dictate the extent of adsorpt.on to these

modified surfaces: polymer molecular weight, solvent quality, Tris(TMS) coverage, and

the strength of interaction between the surface and the polymer end group. These

parameters will be explored in some detail in this chapter.

Several studies have utilized end-grafted polymer brushes to aid in preventing the

dewetting of polymer thin films. These approaches typically involve spin casting a

mixture of the functionalized and non-functionalized polymers onto a substrate, followed

by annealing the film to allow for diffusion of the functionalized polymer to the

polymer/substrate interface.28-3i The resulting monolayer modifies interfada]

interactions and promotes entanglements, thereby suppressing dewetting. For example,

Kajiyama et. al.32 prepared films containing proton-terminated, monocarboxyl-

terminated, and dicarboxy-terminated polystyrenes and observed their dewetting behavior

on clean silicon as well as on amino-functionalized silicon. These experiments utilized

adsorption of PS-COOH and HOOC-PS-COOH from a bulk film upon heating the

samples above the bulk glass transition temperature. The authors observed retarded

dewetting of both carboxy-terminated samples, with respect to the proton-terminated PS,

when the films where prepared on clean silicon. They also observed no dewetting of

either carboxy-terminated film when prepared on the amino-silanized surfaces. If, on the

other hand, the polymer brush is formed prior to spin coating the non-functionalized

film33 -34 (in contrast to forming the brush in situ as described above), a phenomenon

termed autophobic dewetting occurs where a densely packed polymer brush monolayer is

formed. It then becomes entropically unfavorable for the non-grafted film to diffuse into
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occurred

to

such

the brush layer. These films were shown to be highly unstable and dewetting

rapidly. The studies here will utilize the tempting ability of Tris(TMS) monolayers

direct and control the grafting (brush) density of PS-COOH chains to the surface,

that a densely packed brush layer is not formed. Also, the underlying surface will be

comprised of a non-interacting layer of Tris(TMS) molecules, in contrast to the typical

silicon oxide layer found in other experiments. The adsorbed chains of PS-COOH will

help anchor the overlying film to this non-interacting Tris(TMS) layer, and could

suppress the dewetting process of an overlying film.

Another targeted application for these templated surfaces is in the formation of

single, isolated chains on the surface, which can then be used to measure the mechanical

properties of a single polymer chain. The widespread emergence of atomic force

microscopy (AFM) in the research environment has allowed for pioneering work to be

done on single-chain elasticity studies. Maaloum et al 35 used chemisorption of telechelic

PEO to a hydrophobized AFM tip to 'pick up' a polymer chain and measure the elastic

restoring force exerted by the adsorbed chain. Yamamoto et al 3« prepared surface-

grafted PMMA by surface-initiated ATRP and end-capped the PMMA with a short block

of PVP, where the PVP segment could adhere to the hydrophilic AFM tip. Ortiz et al.37

prepared isolated poly(methacrylic acid) (PMAA) chains by mixed monolayer adsorption

of alkanethiols and thiol-functionalized PMAA on gold, and again relied on physisorption

of the polymer to the hydrophilic AFM tip. The surfaces to be prepared in this work have

significant advantages over the aforementioned studies. Although the reaction of

Tris(TMS) is a random, ballistic process, the surfaces have been shown to have a very

well defined pore size. Surfaces having high Tris(TMS) coverage should dictate the

55



latera, distance between adsorbed chains more contro„ab,y than relying on random

processes such as competitive adsorption of alkanethiols or physisorption on

hydrophobized surfaces. The research discussed m this chapter win not address this

of study, but there is no reason the chemistry could not be modtfied to tackle these

questions.
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2.2. Experimental

2.2.1. Materials

All chemicals were used as received unless noted otherwise. Toluene (HPLC),

cyclohexane (HPLC), toluene (anhydrous), ethanol (anhydrous), sulfuric acid, sodium

dichromate, and hydrogen peroxide (30%) were purchased from Fisher. All silane

reagents were purchased from Gelest with the exception of 4-(aminobutyl)dimethyl

methoxysilane, which was purchased from United Chemical. Ethyldiisopropylamine and

hexadecane (anhydrous) were purchased from Aldrich. Carboxylic acid end-

functionalized polystyrenes were synthesized as described in Appendix A. House-

purified water (reverse osmosis) was used in substrate preparation and cleaning.

2.2.2. Pretreatment of Silicon Substrates

Silicon wafers (4") were obtained from International Wafer Service (100

orientation, P/B doped, resistivity of 20-40 Q/cm) and were cut into 1.5 x 1.5 cm pieces

to facilitate handling and XPS measurements. The samples were placed in a custom-

designed holder and placed into a modified Schlenk tube (Figure 2.5). The samples were

then submerged in a freshly prepared solution of HzSCyNazC^CVHzO!. The sodium

dichromate (~5 wt %) was first dissolved in stirring concentrated sulfuric acid (30 mL).

Hydrogen peroxide (15 mL) was then poured directly into the Schenk tube containing the

wafers to be cleaned, and the ^SCV^C^O? solution was poured directly on top of the

peroxide/wafers. The solution turns from red-brown to green upon mixing, warms up

considerably, and bubbles profusely due to the formation of ozone and oxygen. The
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samples were .eft submerged overmgh, for convenient. The wafers were rinsed with

copious amounts of water to remove a.1 traces of the deaning solution, and were dried ,„

a clean oven at 130 °C for Wi hours.

2.2.3. Preparation of Substrates via Solution Ration

Silicon wafers were cleaned and dried as described above. The wafers were

immediately placed into the reaction flasks and purged with N2 for 30 minutes. Dry

toluene (-20 mL) was then cannulated into the reaction tube and ethyldiisoproylamine

(0.3 mL) was added via syringe as a promoter, followed by the organosilane (0.5 mL) of

choice. The reaction tube was placed in an oil bath and heated to 68 ± 1 °C for 3 days,

unless otherwise noted. After silanization, the wafers were rinsed in the following order:

2 x 10 mL toluene, 3 x 10 mL ethanol, 2 x 10 mL ethanol/water mixture (1 : 1), 2 x 10 mL

water, 2 x 10 mL ethanol, 2 x 10 mL water and then dried in a clean oven at 130 °C for

10-15 min. The samples were then placed into scintillation vials for storage until

characterization or further use. Reactions involving aminosilanes were carried out as

described above with the exception that no amine promoter was added to the reaction

(self-promoted).

2.2.4. Preparation of Substrates via Vapor Phase Reaction

Silicon wafers were cleaned and dried as described above. The wafers were

immediately placed in a reaction tube containing the organosilane of choice. Samples

were placed in a custom-made wafer holder and suspended in a reaction tube containing

0.5 mL of silane (see Figure 2.5). There was no direct contact between the silane and the
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suspended wafers

silane

Figure 2.5. Schematic of the Schlenk tube used for vapor-phase reaction of
monochlorosi lanes. Similar reaction flasks were used for solution reactions with the
exception that the top included a 4mm Teflon joint capped with a rubber septum to

facilitate cannulation and additions via syringe under an inert atmosphere.
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silicon substrates. The reaction tube was placed in an oil bath and heated to 68 ± 1
°C for

3 days, unless otherwise noted. After silanization, the wafers were nnsed in the

following order: 2 x 10 mL toluene, 3 x 10 mL ethanol, 2 x 10 mL ethano./water mixture

d:l), 2 x 10 mL water, 2 x 10 mL ethanol, 2 x 10 mL water and then dned in a clean

oven at 130 °C for 10-15 min.

2.2.5. Adsorption of PS-COOH to Silane.-mnHifi.H Surfaces

Solutions for adsorption were prepared by dissolving PS-COOH in toluene at a

concentration of 1 mg/mL. The solutions were filtered using a 0.45 urn Acrodisc filter

just prior to adsorption. The surfaces prepared by vapor phase reaction of Tris(TMS)

and/or ABDMS were placed in scintillation vials containing 5 mL of the PS-COOH

solution. Adsorptions were carried out at 23 ± 1 °C for 24 h. The solutions were then

decanted from the vials and the wafers were rinsed with 2 x 5 mL of toluene for 2 min.

This removes any PS that is not chemisorbed to the surface. The samples were dried

under vacuum for 1 day and characterized by ellipsometry, contact angle, AFM, and

XPS. Adsorptions from cyclohexane (theta-solvent) were carried out as described above

with the exception that the temperature was kept at 35 ± 0.1 °C. This ensures that the

polymer is indeed adsorbing and not precipitating onto the surface.

2.2.6. Dewetting Studies

Several samples from each adsorption study were kept for studying the dewetting

of thin polymer films from these surfaces. Dewetting studies were performed on

Tris(TMS) surfaces before and after adsorption of 1 IK PS-COOH from toluene and from
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cyclohexane. Initially, the overling polymer fi.m was compnsed of polystyrene, but the

study was expanded to include several other polymers. A 0.75% solution of each

polymer was prepared in toluene and spin-coated onto the samples at 4000 rpm. This

resulted m a 230 * 10 A film as determined by ellipsometry. The films were then

annealed at 160 °C for 24 h, and then quenched rapidly to room temperature to freeze in

the dewetted structure. Quenching was accomplished by placing the samples onto an

aluminum block at room temperature immediately upon removal from the oven. The

dewetted structures were examined by both optical microscopy and AFM.

2.2.7. Characterization

Contact angle measurements were made with a Rame-Hart telescopic goniometer

equipped with a Gilmont syringe and a 24-gauge flat-tipped needle. Probe fluids used

were water and n-hexadecane. Advancing (0A ) and receding (6R ) contact angles were

recorded while the probe fluid was added to and withdrawn from the drop, respectively.

pH dependent contact angles were measured using buffer solutions prepared as described

elsewhere. X-ray photoelectron spectra (XPS) were obtained on a Perkin-Elmer Physical

Electrons 5100 with Mg Ka excitation (400W). Spectra were taken at two take-off

angles, 15° and 75° (between the plane of the surface and the entrance lens of the detector

optics). The attenuation of the Si
0
peak was used to determine layer thickness. Film

thickness was also measured using a Rudolph Research ellipsometer equipped with a

helium-neon laser (A, - 6328 A) at an incidence angle of 70°. AFM images were obtained

using a Digital Instruments Dimension™ 3100 Scanning Probe Microscope operated in
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tapping mode. Optical micrographs were obtained on an Olympus BX-60 microscope

operated in reflectance mode.

2.3. Results and Discussion

. Preparation of Trisftrimethy l siloxvYsilyl
(Trjs(TMS^ Surfaces

Chemically grafted (sub)monolayers of Tris(TMS) were prepared by reaction of

Drresponding chlorosilane in both the vapor phase and the solution phase. Reaction

-s between silanol groups on the surface and the chlorosilane, liberating HC1 gas as

Molecular modeling of the Tris(TMS) molecule shows that it has a height of 0.7 nm and

a diameter of 1.5 nm. The height of the Tris(TMS) molecule was experimentally verified

108/96). The refractive index used was that of the corresponding hydridosilane (n =

1.385) since the refractive index of Tris(TMS)-Cl was not available. The cross-sectional

area, or molecular footprint, of the Tris(TMS) molecule would be -177 A2
, which is

considerably larger than simple alkyldimethylsilyl groups (-32-38 A 2
) as well as

alkyltrichlorosilane SAMs (-20 A 2
). It has also been shown that the surface density of

the by-product (see equation 2).

(2)

to be 7 A by conducting ellipsometry on a fully covered Tris(TMS) surface (CA -
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silanols on the native oxide of silicon is approximately 5 silanolsW.™,<> Therefore h

can be estimated that for every Tris(TMS) molecule thai reacts with the surface, there

remains at least four unreacted s.lanols that are now blocked from reaction with

subsequent Tris(TMS) molecules due to steric constraints. Since the attachment of

monochlorosilanes to the surface occurs by a random process, the actual number of

unreacted silanol groups on the surface after reaction with Tris(TMS) will be greater than

estimated above due to the poor packing efficiency of Tris(TMS) molecules. This

concept is illustrated in Figure 2.6.

Due to the high degree of steric hindrance of the reactive site, the kinetics of the

Tris(TMS) reaction was expected to be very sluggish. To follow this in more detail, the

kinetics of both the vapor phase and solution phase reactions were explored in some

detail. The extent of reaction can easily be monitored by measuring the water contact

angle of the surface as a function of reaction time. The upper limit for contact angle is

assumed to be the angle for a completely covered TMS surface (108°), since it presents a

high density of methyl groups to the probe fluid yet lacks the perfection of a C 18 SAM

(1 14°). The results of the kinetic experiments conducted in both the vapor phase and in

the solution phase are shown in Figures 2.7 and 2.8, respectively. It is clear that the

solution reaction occurs much more slowly than the corresponding vapor phase reaction,

but it is unclear whether the vapor phase reaction results in a more densely packed

monolayer than the solution reaction. The kinetics of the solution phase reaction may

simply lag behind the vapor phase reaction.

With this in mind, the vapor phase reaction allows for a variety of surface

coverages to be prepared in the shortest amount of time (0-5 days), and so will be the

63



Figure 2.6. Schematic illustrating the reaction of Tris(TMS)-Cl with surface silanol
groups, leaving unreacted silanol groups which can be used for subsequent modification
of the surface.
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Figure 2.7. Kinetics of the Tris(TMS)-Cl vapor phase reaction as monitored by
advancing (•) and receding (O) water contact angles. It is assumed that an advancing

CA of 108° is complete coverage.
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Figure 2.8. Kinetics of the Tris(TMS)-Cl solution phase reaction as monitored by
advancing (•) and receding (O) water contact angles. It is assumed that an advancing

CA of 108° is complete coverage.
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Table 2.1. Contact angle data for Tris(TMS) surfaces prepared by vapor phase reactionfor increasing amounts of time.
p dse reacnon

sample eA/eRo
water hexadecane

coverage'

clean Si spreads spreads 0%
Tris(TMS) lh 62/51 24/9 52%
Tris(TMS) 4h 67/53 24/11 58%

Tris(TMS) 24h 81/70 31/20 76%

Tris(TMS)51h 86/75 30/20 81%

Tris(TMS) 72h 94/82 34/22 89%

Tris(TMS) 93h 103/90 36/33 96%

as calculated from the Israelachvili-Gee equation (3).
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reaction of choice for all subsequent expenments. As seen in F.gure 2.7, the vapor phase

reaction results in a rapid increase in contact angle to - 60", followed by a slow but

steady increase up to angle of - 106°. This is due to the bulkiness of the Tris(TMS)

molecule and its inability to pack efficiently on the surface. Initially the surface is barren

and contains an abundance of available reactive sites, allowing for a high number of

reaction events to take place on the surface. As the surface becomes partially covered

with Tris(TMS) molecules, it becomes increasingly more difficult for subsequent

molecules to find reactive sites as well as have the right orientation for successful

reaction with the surface. Thus the reaction kinetics slow down dramatically as the

density of Tris(TMS) groups on the surface increases. The contact angle reaches a final

plateau of -106° which is in good agreement with the upper limit of 108° established

earlier. This slow but steady increase in water contact angle allows for the preparation of

a series of surfaces having a range of surface coverages of Tris(TMS) simply by

controlling the time of the vapor phase reaction of Tris(TMS)-Cl. Figure 2.9 shows a 2-

D representation of the range of surfaces that can be prepared by vapor phase reaction of

Tris(TMS)-Cl for varying amounts of time. The discs on the surface represent single

Tris(TMS) molecules.

The contact angle data can be analyzed in a manner proposed by Israelachvili and

Gee40 for molecularly mixed heterogeneous surfaces. The observed contact angle, Bobs,

can be described in terms of the mole fractions of each component,/} and/2 , as well as

the contact angles for the pure surface of each component, 0, and G2 , by the following

equations:
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Schematic illustrating the 2-D above-view of Tris(TMS) surfaces of

surface coverage.
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(1 + cos(0„
fe ))

2
= /, (1 + 008(0, ))

2
+ /2 (1 + COS(0 2 ))' (3)

/,+/2 =l

In this study the surface was treated as a mixture of trimethylsilyl groups (TMS) (0, =

lOSy! and s.lanols (ft = 0"). It should be noted that the advancing contact angle was

used for ftfa in all of these studies (see Table 1). Using this method, the percentage of

Tris(TMS) covering the surface was calculated by measuring the contact angle. The

residual silanols, not blocked by Tris(TMS), are sites available for adsorption or chemical

reaction.

2.3.2. Synthesis of Mixed Tris(TMSVABDMS Surfaces

Mixed surfaces containing Tris(TMS) and amino groups were prepared by

subsequent reaction of the Tris(TMS) surfaces with 4-(aminobutyl)dimethyl-

methoxysilane (ABDMS) in the vapor phase (see Figures 2.10 - 2.1 1). Mixed

monolayers with different compositions were prepared by controlling the initial reaction

time of Tris(TMS). The chemical composition of the mixed monolayers was determined

by XPS. The XPS data along with the contact angle results are shown in Table 2.2. The

carbon-to-nitrogen ratio increases as the amount of Tris(TMS) increases, showing that

there are fewer sites available for subsequent reaction with ABDMS, as expected. From

the carbon-to-nitrogen ratio of the pure ABDMS and Tris(TMS) surfaces, the relative

ratio of Tris(TMS) to ABDMS for each of the surfaces was determined. The contact

angle measured for a pure ABDMS surface was 73/39, and the contact angles for the

mixed surfaces increase as the amount of Tris(TMS) originally on the surface increases

and the contribution from the ABDMS decreases. The contact angle data, combined with
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1
OSi(CH3)3 OSi(CH3)3

Figure 2.10. Schematic illustrating the reaction of Tris(TMS)-Cl with surface silanol

groups, followed by subsequent reaction of remaining silanols with a second silane (e.g.

ABDMS).
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Figure 2.1 1. Schematic illustrating the 2-D above-view of Tris(TMS) surfaces (large

circles) that have been further reacted with ABDMS (small circles).
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XPS
T"* a"gle d3ta f0I-™^MS)/ABDMS mixed surfaces preparedby consecutive vapor phase reactions.

sample C/N ratio ratio eA/eR (°) eA/eR (°

-XPS- Tris:ABDMS before after

Clean Si / ABDMS 12/1 0: 1 spreads 73/39

Tris(TMS) lh/ ABDMS 14/1 1 : 3.9 62/51 73/54

Tris(TMS) 4h/ ABDMS 15/1 1 :2.4 67/53 77/57

Tris(TMS) 24h / ABDMS 17/1 1 : 1.6 81/70 85/69

Tris(TMS) 72h / ABDMS 23/1 1 :0.8 94/82 94/73

Tris(TMS) 93h / ABDMS 1:0 103/89 103/89
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ve in

the XPS results, is direct evidence that the original Tris(TMS) surface is effecti

templating the surface to subsequent reactions and modifications.

Tris(TMS)/ABDMS mixed surfaces were also characterized by measurement of

the contact angle using water solutions having different pHs. This approach, referred as

contact angle titration, is widely used for the characterization of acid-base surface

properties of polymers,42,43 0xides 44 and supported monolayers 45-47 Flgure 2 n shows

advancing contact angles for different Tris(TMS)/amino mixed surfaces plotted as a

function of the probe fluid pH. With decreasing pH, a transition in the contact angle from

a more hydrophobic to less hydrophobic surface is observed at a pH ~ 3.5. This

transition is most evident for the pure amine surface, and gradually decreases in

magnitude for mixed surfaces containing less amine functionality. It is worth noting that

this transition can still be detected for the pure Tris(TMS) surface, which obviously does

not contain any amine groups. This behavior can be explained with the schematic shown

m Figure 2.13. For pH>4, the amine groups are protonated by the residual surface

silanols, exposing methylene groups from the butyl segment, and producing a more

hydrophobic surface. Such protonation has been observed directly by a variety of

spectroscopic techniques.4^ Near pH ~ 3.5 the acidic buffer solution competes with the

surface silanols (pKa - 4)39 to protonate the amine. This frees the amino group to

interact with the probe fluid and produces a less hydrophobic surface. Since this

transition can be seen even without the presence of amine, the data show that the silanol

surface is being titrated.
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Figure 2.12. pH-dependent contact angles for pure Tris(TMS) (•), mixed

Tris(TMS)/ABDMS (i I), and pure ABDMS (A) surfaces.
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Figure 2.13. Schematic illustrating the transition of ABDMS from being protonated bvsurface sHanoI groups at neutral PH to being protonated by external acid at low pH

2.3.3. Adsorption of PS-COOH to Silane-mndified Surfaces

The adsorption of carboxylic acid end-functionalized polystyrene on Tris(TMS)-

modified surfaces is shown schematically in Figure 2.14. The adsorption of PS-COOH

onto these surfaces is rapid and irreversible. Contact angle data for the Tris(TMS)

surfaces before and after adsorption are given in Table 2.3. The water contact angle for a

smooth film of PS was measured to be 95779°, whereas the contact angle for 1 IK PS-

COOH adsorbed onto clean silicon was 89749° The difference observed could arise

from either chemical heterogeneity of the surface (i.e. penetration and interaction of the

water to the underlying oxide), surface roughness of the adsorbed layer, or surface

restructuring. It should be noted that, although the advancing water contact angle

remains constant for the first four samples, the receding contact angle steadily increases.

This again indicates that the probe fluid is penetrating the adsorbed layer and sensing the

underlying layer, which is no longer the hydrophilic oxide but rather the hydrophobic

Tris(TMS) surface. For the Tris(TMS) 72 h sample, the underlying Tris(TMS) layer

begins to influence the advancing contact angle, hinting at the possibility that the
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(CH3)3
SiO-Si^OSi(CH3)3 (CH3)3SiO-^OSi(CH }

9 9H OH OH i

Figure 2.14. Schematic of adsorption of solvated PS-COOH onto a Tris(TMS)-modified
surface.
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Table 2.3. Contact angle data for 1 IK PS mow a
Tris(TMS) surfaces.

^-COOH adsorption from toluene onto

sample

before adsorption

9A/eR (°)

H2° C 16H34

after adsorption

©a/Or (°)

H2° C 16H34

clean Si spreads spreads

Tris(TMS) lh 62/51 24/9
Tris(TMS) 4h 67/53 24/11

Tris(TMS) 24h 81/70 31/20
Tris(TMS)51h 86/75 30/20

Tris(TMS) 72h 94/82 34/22

Tris(TMS) 93h 103/90 36/33

89/49

90/50

89/54

90/67

90/68

94/75

103/89

8/0

8/0

10/0

20/7

19/10

22/10

36/32
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adsorbed PS layer has become partially discontinuous whnch exposes Tris(TMS). At the

highest coverage of Tns(TMS), the water contact angle regains unchanged before and

after adsorption, indicating that either no PS-COOH adsorbs to this surface or the contact

line of the probe fluid can eas.ly contort around the adsorbed chains on the surface. The

hexadecane contact angle behaves very similarly, with the exception that hexadecane

begins to probe the underlying surface earlier than seen in the water contact angle.

Again, methylene groups (PS backbone) will yield a hexadecane contact around

approaching 0° while methyl groups (Tris(TMS)) will exhibit hexadecane contact angles

up to 36°. Thus, hexadecane is an effective probe to differentiate between the adsorbed

polymer chains and the underlying Tris(TMS)-modified surface.

The kinetics of adsorption of 1 IK PS-COOH was determined on a series of

surfaces having different Tris(TMS) coverages. The thickness of the PS-COOH layer as

a function of adsorption time is shown in Figure 2.15. Ellipsometry was conducted

before and after adsorption to determine the adsorbed layer thickness, using the refractive

index of bulk polystyrene (n = 1.591). As seen, the adsorption of PS-COOH occurs

quickly, even for surfaces that contain high amounts of Tris(TMS). One might expect

that as the number of adsorption sites diminishes, the conformational restrictions placed

on the polymer increases, requiring the polymer to explore a vast number of

conformations before adopting the correct one that allows for adsorption. The surface is

also very hydrophobic and lyophobic at high coverages of Tris(TMS), which could also

complicate the adsorption kinetics. But these kinetics data indicate that in all cases the

adsorption of PS-COOH saturates within 24 h. Therefore, all remaining experiments

were conducted for this amount of time.
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Figure 2.15. Adsorption kinetics of 1 IK PS-COOH from toluene onto surfaces having
increasing Tris(TMS) surface coverage: 0% Tris(TMS) (clean Si) (•); 55% Tris(TMS)

(O); 81% Tris(TMS) (A); 89% Tris(TMS) (A); and 96% Tris(TMS) ().
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The adsorption data of 1 IK and 41K PS-COOH to Tris(TMS) surfaces from

toluene, as well as UK PS-COOH from cyclohexane (35 °Q are shown in Figure 2.16 .

As expected, the amount of adsorbed polymer decreases with increasing Tris(TMS)

coverage, demonstrating that the Tris(TMS) surfaces are effective in molecularly

templating the oxide surface and dictating the adsorption behavior of PS-COOH. This

will be further venfied by AFM in a later section. Also, the 41K PS-COOH shows a

decrease in the amount of adsorption. For a given number of chains anchored to the

surface, an increase in the total adsorbed thickness would be expected as the molecular

weight of the polymer increases. The observed decrease can be understood by a fine

balance between the energetic gain of pulling the chain into solution (buoyancy effect)

and the energy associated with anchoring the chain to the surface. The entropic loss of

pinning a polymer of that size to a solid surface is greater than the enthalpic gain of a

single hydrogen bond with the surface. 12 Adsorbing from cyclohexane (theta-solvent)

offers versatility in the process by allowing thicker layers to be obtained. This is due to

the polymer adopting a more globular conformation, which results in a higher packing

density on the surface in comparison to adsorption from a good solvent (toluene). The

adsorption results for 1 IK PS-COOH to mixed Tris(TMS)/ABDMS surfaces are also

shown in Figure 2.16. To ensure that the ABDMS was not protonated by external acidic

groups, the adsorption protocol was altered to include a rinse with EDIPA just prior to

adsorption. Adsorption to these mixed monolayers resulted in thinner adsorbed layers,

which can be attributed to the lower surface energy of the amine surface compared to the

silanol surface as well as the decreased availability of the amine group due to surface

protonation.
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coverage Tris(TMS)

Figure 2.16. Adsorbed thicknesses, as determined by ellipsometry, of PS-COOH
adsorption to Tris(TMS) surfaces: 1 IK adsorbed from cyclohexane (A) and toluene (•);
41K adsorbed from toluene (O); and 1 IK adsorbed from toluene to mixed
Tris(TMS)/ABDMS surfaces ().
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Finally, AFM was used to study in detail the surface topography for the 1 1 K PS-

COOH adsorbed to Tns(TMS)-modified surfaces. Figures 2,7 and 2,8 show AFM
images for a silica surface and one modified with Tris(TMS) prior to adsorption,

respectively. In companson to a clean substrate, the mod.fied surface exhibits texture

arising from the incomplete coverage of the surface with Tris(TMS). It could be further

argued that the texture seen on the Tris(TMS) surface is due the presence of the

nanopores on the surface as a result of the poor packing efficiency of Tris(TMS)

molecules. This is a reasonable argument since we know the Tris(TMS) molecule has a

height of 7 A and the height image from AFM is on a 1 nm scale. Figures 2.19 through

2.24 show images obtained for 1 IK PS-COOH adsorbed to surfaces having Tris(TMS)

coverages ranging from 0% (clean silicon) to 86%. One would expect that PS-COOH

adsorbed to clean silicon would appear fairly smooth since the polymer layer should be in

a brush-like conformation. The AFM image clearly shows that this is not the case, and

aggregates are evident on the surface. These aggregates are most likely due to a solvent-

induced dewetting of the adsorbed polystyrene chains as the sample was dried. It is well

known that polystyrene will dewet clean silicon oxide, but the lateral length scale of the

dewetting in the case presented here is limited due to the fact that the polymer chains are

physically anchored to the surface.

Aggregation is also evident for the adsorbed layers on Tris(TMS) surfaces, again

possibly due to a dewetting process with the minor difference that the oxide is slowly

being replaced with an equally non -attractive Tris(TMS) surface. As the coverage of

Tris(TMS) increases, the lateral correlation of these aggregates decrease as the polymer

chains become more separated from one another by a sea of Tris(TMS) molecules. At
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high coverages of Tns(TMS) (Figures 2.23 and 2.24), i, appears that the Tris(TMS)

surface has separated individua, po,ymer chains from each other since the size scale of

the features does not change between these two samples. The separation distance

between features increases as the coverage of Tris(TMS) mcreases further, clearly

indicating that the surface is effective in diluting the grafting density of adsorbed polymer

chains.

Analysis of the AFM images for adsorption of 1 IK PS-COOH onto clean silicon

(Figure 2.19) shows aggregates of polystyrene having an average height of 1.2 nm and

diameter of 22 nm. Contact angle data, however, show that the entire surface is covered

with polystyrene. If there is no lateral broadening due to the AFM tip shape, then the

average number of chains within one of these aggregates can be calculated. Using the

bulk density (1.05 g/cm') of PS, the volume occupied by one PS chain (V„,„) can be

written as:

Vma = (-)(~)
(4)

P N
A

w

where M is the molecular weight, p is the bulk density, and NA is Avogadro's number.

For an UK PS chain, Vmol = 1.7xl0
4 A 3

. The volume of a cylindrical disk is given by

V =—h
(5)

Using the height and diameter data from the AFM image, the average volume of the

observed clusters is 4.6xl0
5 A3

. This corresponds to -26 polystyrene chains in each

cluster. This represents an upper limit since we are assuming the tip to be infinitely

sharp. Similar calculations were performed for the remaining samples and the results are

shown in Table 2.4. If we assume that the diameter of the tip is 5 nm, a first order
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Figure 2.17. AFM images obtained in tapping mode of clean silicon. The images are

height (top), surface (middle), and phase (bottom) plots of a 0.25 urn
2
sampling area.
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Figure 2.18. AFM images obtained in tapping mode of Tris(TMS)-modified silicon. The
images are height (top), surface (middle), and phase (bottom) plots of a 0.25 urn

2

sampling area.
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Figure 2.19. AFM images obtained in tapping mode of 1 1 K PS-COOH adsorbed from
toluene to clean silicon at 23 °C and 1.0 mg/mL for 24h. The images are height (top),

surface (middle), and phase (bottom) plots of a 0.25 \im
2
sampling area.
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Figure 2.20. AFM images obtained in tapping mode of 1 IK PS-COOH adsorbed from

toluene to Tris(TMS) lh at 23 °C and 1.0 mg/mL for 24h. The images are height (top),

surface (middle), and phase (bottom) plots of a 0.25 um 2
sampling area.
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Figure 2.21. AFM images obtained in tapping mode of 1 IK PS-COOH adsorbed from
toluene to Tris(TMS) 4h at 23 °C and 1.0 mg/mL for 24h. The images are height (top),

surface (middle), and phase (bottom) plots of a 0.25 urn
2
sampling area.
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Figure 2.22. AFM images obtained in tapping mode of 1 IK PS-COOH adsorbed from
toluene to Tris(TMS) 24h at 23 °C and 1.0 mg/mL for 24h. The images are height (top),
surface (middle), and phase (bottom) plots of a 0.25 urn

2
sampling area.
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Figure 2.23. AFM images obtained in tapping mode of 1 1 K PS-COOH adsorbed from
toluene to Tris(TMS) 51h at 23 °C and 1 .0 mg/mL for 24h. The images are height (top),

surface (middle), and phase (bottom) plots of a 0.25 u.m
2
sampling area.
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Figure 2.24. AFM images obtained in tapping mode of 1 IK PS-COOH adsorbed from
toluene to Tris(TMS) 72h at 23 °C and 1.0 mg/mL for 24h. The images are height (top),

surface (middle), and phase (bottom) plots of a 0.25 |xm
2
sampling area.
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^i'n^K*
Cham ******* " *^*—« *°m

sample

dimensions of aggregates

in AFM image

D/H (nm) # chains

corrected for a

tip diameter of 5 nm
D*/H (nm) # chains

clean Si 22/1.2 26

Tris(TMS) lh 36/1.8 105

Tris(TMS) 4h 32/1.2 55

Tris(TMS) 24h 19/1.0 16

Tris(TMS)51h 12/0.8 5

Tris(TMS) 93h 12/0.9 6

17/1.2 15

31/1.8 78

27/1.2 39

14/1.0 9

7/0.8 1

7/0.9 1
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mage is a co„vo,utio„ of the tea, image and the tip shape. The data ,„ Tabie 2.4 slro„g ,y
suggest ,hat singie PS mo,ecules are being observed for h,gh Tris(TMS) eoverages.
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i|m!ionTri ,
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,
r
.

PS films, 230 A in thickness, were spin eoated onto surfaces modified with

Tris(TMS) and onto surfaces to which 1 1 1C ps: rnnu j • ,iiwi i iiv ro-LUUH was adsorbed onto Tris(TMS)

surfaces from either toluene or cyc.ohexane. The surfaces were then annea.ed at 160 °C

for 24 h, giving the polymer film mobility, and allowing for dewetting. The procedure is

illustrated in Figure 2.25. Also shown in this figure is an optical micrograph of the

dewetted structure typically seen in these films after annealing. The film dewets into

droplets that form a typical Voronoi pattern of polygons. Several droplets on the surface

can then be imaged using AFM to yield the quasi-equilibrium contact angled It should

be noted that the contact angle of a dewetted droplet actually should resemble a receding

contact angle since the material is being withdrawn across the surface. The results of the

dewetting studies are shown in Table 2.5. For the surfaces treated only with Tris(TMS)

dewetting was found in all cases with little change in the contact angle of the dewetted

droplets as a function of coverage. NOTE: The contact angle described here is of the

static, dewetted droplet of PS on the surface as measured by AFM, and should not be

confused with the dynamic contact angle of a liquid probe fluid described earlier. For the

surfaces to which PS-COOH was anchored, the dewetted contact angles were highly

dependent on the grafting density. For Tris(TMS) coverages greater than 60%, no

substantial improvement in the wetting characteristics was found. However, as the
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thickness of the adsorbed PS-COOH layer increases, a considerable reduction in the

contact angle and consequently, the interfacal energy is observed. It should be noted that

PS does not wet the surface covered with PS-COOH due to an autophobic dewetting

process described by Leibler30 and subsequently Stall."

Obviously, what is lacking in this system (PS-COOH/PS) is an enthalpic gain that

could offset the entrop.c loss of stretchmg the surface-grafted chains, allowing for a net

gain in total energy in the system and wetting to occur. Therefore, other polymers were

studied that exhibit strong, favorable interactions with polystyrene and which are

misdble with polystyrene in the bulk. These polymers included poly(2-chlorostyrene),

poly(n-butyl methacrylate), poly(cyclohexyl methacrylate), and polyvinyl methyl ether).

These polymers will be abbreviated PoCIS, PnBMA, PCMA, and PVME, respectively.

The chemical structures of these polymers are shown in Figure 2.26 and the physical

properties are listed in Table 2.6. The dewetting of polystyrene was performed again in

this section as a control experiment, and can be compared with the previous results

described earlier. The results of the dewetting experiments for these selected polymers

are shown in Table 2.7. A few noteworthy points can be made in light of this data.

Polystyrene, as seen in the previous experiments, dewets not only the Tris(TMS) surfaces

but also those surfaces with anchored PS-COOH chains. Interestingly, PoCIS does not

dewet the same surfaces with or without an anchored PS-COOH layer. It is not clear at

this time why this behavior is observed. Either the surface energy of the PoCIS is quite

different than polystyrene, which drives the system to wet the surface, or the molecular

weight of the PoCIS is so high that the mobility of the chains is too low to allow for

large-scale dewetting on the surface. Both acrylate polymers wet all the surfaces studied.
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Figure 2.25. Schematic illustrating dewetting experiments conducted on Tris(TMS)
surfaces having anchored PS-COOH chains with an overlying, spun-cast film of PS
Shown on the right is a typical optical micrograph of the dewetted structure.
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coverage

(%)

adsorbed

thickness

(A)

R/H

(um)

eE

(°)

Tris(TMS)

Tris(TMS)

11KPS-COOH

toluene

0

52

59

76

81

0

52

59

76

81

0

0

0

0

0

19

13

12

8

5

1.17/0.48

1.45/0.66

1.43/0.63

1.09/0.57

0.94/0.44

1.88/0.24

2.09/0.57

1.88/0.68

0.98/0.47

1.21/0.56

42

46

45

52

47

14

28

37

48

46

Tris(TMS)

11KPS-COOH

cyclohexane

0

30

42

75

80

36

24

23

10

8

2.87/0.20

14.5/0.90

4.65/0.42

1.15/0.48

0.82/0.36

7

7

10

42
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This is most likely due ,o no, only the miscibility of the powers w,,h polygene but

also their strong at.ract.on and interaction w.th the underlying substrate (sillcon oxjde)

Unfortunateiy, the purpose of this work, in part, was to negate the strong interactions of

an overlying poiymcr film with the underlying substrate while maintaining a wetting

film. This is obviously not the case when dealing with acrylate polymers as was

observed in these dewetting studies.

Even more interesting is the wetting behavior of PVME on these adsorbed layers.

PS/PVME exhibits weakly attractive interactions that result in phase mixing at moderate

temperatures, but undergoes phase separation (LCST) upon heating due to the inability of

this weakly attractive force to offset the increasing entropic loss of keeping the chains in

close proximity to one another. When PVME was cast onto the Tris(TMS)/PS-COOH

layers, the films were stable at room temperature for several days. The T
g
of PVME is

well below room temperature (see Table 2.6), so the film has more than enough mobility

at room temperature to dewet if it needed to. Annealing the films above 160 °C negates

the weakly attractive interaction between PS/PVME and so the film undergoes phase

separation-induced dewetting. This behavior is shown in Figure 2.27. Unlike the
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Table 2.6. Molecular weight and T
g data for the polymers used in the dewetting studies,

polymer Mw
(g/mole)

pdi

(°C)

poly(styrene)

poly(2-chlorostyrene)

51k

420k

1.03

2.30

105

119

poly(n-butyl methacrylate) 188k 2.49 27-34
poly(cyclohexyl methacrylate) 75k 2.98 83 - 104

poly(vinyl methyl ether) 90k 3.00 "3
1 - 22
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230 A PVME film

RT
/////// Si ///////

anneal

160 °C

wmm

Figure 2 27. Schematic illustrating dewetting experiments conducted on Tris(TMS)
surfaces having anchored PS-COOH with an overlying, spun-cast film of PVME Shown
are typical optical micrographs of the dewetted structure.
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AFM s,„ce the PVME droplets are above^^^^^ ^
•o a continuous film since Che system is now back beiow the LCST. The kinetics of this

process is unknown, and the experts conducted here did no, address tha, possibility

2.4. Conclusions

Chemically grafted (sub)monolayers of Tris(TMS) were prepared by vapor phase

reaction of the corresponding monochlorosilane. By controlling reaction kinetics, a

series of surfaces were prepared having increasing coverages of Tris(TMS). The

inherently poor packing efficiency of such a bulky silane allowed for the preparation of a

unique class of surfaces that can be used as templates for polymer adsorption. The

adsorption behavior of a model polymer system, carboxylic acid end-functionalized

polystyrene, was studied extensively as a function of Tris(TMS) surface coverage. The

adsorbed thickness of PS-COOH can be controlled by a number of variables such as

polymer molecular weight, adsorption solvent, and surface chemistry. The topography of

the adsorbed layers indicated the presence of aggregate structures on the surface, and the

size scale of these aggregates diminished as Tris(TMS) surface coverage increased. The

wetting properties of an overlying polymer thin film of polystyrene were investigated on

these surfaces. As the Tris(TMS) coverage increases, and consequently the amount of

adsorbed polymer chains decreases, the wettability of these surfaces diminishes as probed

by contact angles measured by AFM. Replacing the overlying film with polymers having
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strong e„ tha,pic mteractions with the adsorbed polymer layer results in drastically

differ, wetting behav.ors. Po,y(2-c„,oros,yrene> wets the Tns(TMS,/PS-COOH ,ayer

regardless of Tris(TMS) coverage. The acrylate polymers we, these layers as we,., hut

.his observation couid be a resuh of a tunneling effect of the acry,a,e chains to the

underlying oxide surface. Polyvinyl methy, ether, films we, a„ the surfaces at room

temperature »we„ above the T
g of PVME) bu, dewet when annealed above the LCST of

PS/PVME. The dewetting of PVME from adsorbed PS-COOH layers can be more

accurately described as a 2-D phase separation on a surface.
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CHAPTER 3

PROTEIN ADSORPTION TO SILANE-MODIFIED SURFACES

3.1. Introdiirfinn

There has been a concerted effort to understand the comp,ex factions between

proteins and surfaces.-. When a biomedical device is implanted in the body
, ^ fa and

probably most significant reaction that occurs at the interface of the device is protein

adsorption. Th,s newly adsorbed protein layer, not the surface of the original biomaterial,

will then dictate the ensuing cascade of biolog1Cal reactions, such as platelet adhes10n,

blood coagulation and thrombus formation. Interestingly, surfaces with a pre-adsorbed

layer of albumin have been shown to inhibit thrombus formation^ thus decreasing the

chance that the body will reject the surface when implanted. Therefore, many studies on

protein adsorption have focused on understanding the adsorption behavior of albumin

(either human or bovine serum albumin). Serum albumin is a single polypeptide chain

with a molecular weight of approximately 66,000 D, and is highly soluble in water. It

has a diffusion coefficient of 6 x 10"7 cm2
/sec and has an isoelectric point of 4.9, so at

physiological conditions (pH - 7.4) it carries a net negative charge. The exact structure of

albumin is still debatable. Original evidence showed that it could be modeled as a

rotational ellipsoid having dimensions of 14 x 4 x 4 nm 3
.2 More recent studies have

proposed that the structure of albumin is more heart-shaped, having a maximum width of

8 nm and a depth of 3 nm.W Ribbon diagrams of the two most accepted structures for
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"

Pr°P0Sed nbb°n dmgramS f°r albumin: r0" ellipsoid or heart-

albumin are shown m Figure 3.1. Serum albumin plays a large role in the maintenance of

osmotic pressure in the blood and also serves to transport free fatty acids.

Because of albumin's high binding affinity for fatty acids, surfaces possessing

long alkyl chains have been the focus of a flurry of recent studies.™ Most of these

studies have focused on using trichlorosilane self-assembled monolayers (SAMs) as

model surfaces to systematically investigate certain effects such as surface

hydrophobicity/hydrophilicity on the adsorption behavior of albumin. In general, it has

been shown that albumin adsorbs in greater amounts to hydrophobic surfaces such as

long-chain alkyl or fluoroalkyl SAMs. The adsorption of protein to hydrophobic surfaces

serves to attenuate the unfavorable interactions between the aqueous liquid phase and the

hydrophobic surface. However, there are several limitations in using SAMs to probe the

effects of surface chemistry on protein adsorption. In order to form these highly ordered

SAMs, one must exercise judicious choice of reaction conditions, 17 " 19 and even minor

deviations from these protocols can have dramatic effects on the quality of SAMs. This

in turn can have a tremendous impact on the adsorption behavior of proteins to these
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surfaces, as was shown recently ny Foster et al * A,so, the range of function, groups

that can be tncorporated into SAMs ,s hmited due to the recrement that the chains pack
into a dense, close-packed layer.

In contrast, recent work by Fadeev et al.20,21 has shown^ monochlorosilane

(Cl-SiR3) monolayers are equally as robust and versatile as SAMs. The reaction of

monochlorosilanes with silicon oxide results in well-defined monolayers where every

organoS1 lane must be covalently attached to the surface. Th1S class of surfaces has been

termed covalently attached monolayers (CAMs). It has been shown that the packing

density of CAMs on a surface is slightly lower than SAMs due to the larger cross-

sectional area of simple alkyldimethylsilane CAMs (-32-38 A2
) in comparison to

alkyltrichlorosilane SAMs (-20 A2
). Yet, a multitude of functional groups can be

incorporated into these monolayers, and molecularly mixed monolayers can be prepared

using this method,2i,22 making them an aUractive alternatiye tQ SAMs for ^
effects of surface chemistry on protein adsorption. We report here a detailed study of the

adsorption behavior of a single protein, albumin, to covalently attached monolayers

(CAMs) to better elucidate the response of the protein to the surface chemistry presented

at the solid/liquid interface. Further, the morphology of the adsorbed protein layer will

be examined by AFM and correlated to the chemical and physical properties of the

surface.
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3.2. Experimental

3.2.1. Materials

All chemicals were used as received unless noted otherwise. Toluene (HPLC),

toluene (anhydrous), ethanol (anhydrous), sulfuric acid, sodium dichromate, and

hydrogen peroxide (30%) were purchased from Fisher. Ethyldiisopropylamme, bovine

serum albumin (fatty acid free), phosphate buffer saline tablets, hexadecane (anhydrous),

borane (1M in THF), polyethylene glycol (Mw - 400 g/mol), and potassium hydroxide

were purchased from Aldrich. PEG was dried by distillation of benzene from a

PEG/benzene solution just prior to use. All silane reagents were purchased from Gelest

and used without further purification. House- purified water (reverse osmosis) was used

in substrate preparation and cleaning. For adsorption studies, the RO water was further

purified using a Millipore Milli-Q system and had a final resistivity of 10
18
Q/cm,

3.2.2. Pretreatment of Silicon Substrata

Silicon wafers (4") were obtained from International Wafer Service (100

orientation, P/B doped, resistivity of 20-40 Q/cm) and were cut into 1 .5 x 1 .5 cm pieces

to facilitate handling and XPS measurements. The samples were placed in a custom-

designed holder and placed into a modified Schlenk tube. The samples were then

submerged in a freshly prepared solution of HzSOVNazCrzOy/HzOz. The sodium

dichromate (~5 wt %) was first dissolved in stirring concentrated sulfuric acid (30 mL).

Hydrogen peroxide (15 mL) was then poured directly into the Schenk tube containing the

wafers to be cleaned, and the ^SOV^C^Ot solution was poured directly on top of the
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cons.derably. and bubbles profusely due ,o the formation of ozone and oXyge, The
samples were .eft submerged overnight for convenienee. The wafers were nnsed with

copious amounts of water to remove ail traces of the cleaning solution, and were dried in

a clean oven at 130 °C for 90 min

were

3.2.3. Preparation ofSubstrggs via Solution Q»^n

Silicon wafers were cleaned and dried as described above. The wafers

immediately placed into the reaction flasks and purged with N 2 for 30 minutes. Dry

toluene (-20 mL) was then cannulated into the reaction tube and ethyldiisopropylamine

(0.3 mL) was added via syringe as a promoter, followed by the organosilane (0.5 mL) of

choice. The experimental setup is illustrated in Figure 3.2. The reaction was carried out

at 23 ± 1 °C for 3 days. After silanization, the wafers were rinsed in the following order:

2x 10 mL toluene, 3 x 10 mL ethanol, 2 x 10 mL ethanol/water mixture (1:1), 2 x lOmL

water, 2 x 10 mL ethanol, 2 x 10 mL water and then dried under vacuum overnight. The

samples were then placed into scintillation vials for storage until characterization or

further use. Reactions involving aminosilanes were carried out as described above with

the exception that no amine promoter was added to the reaction (self-promoted). As a

control, C )8 self-assembled monolayers were prepared as described elsewhere.23 C, 8

CAMs were Soxhlet extracted with hexanes for 24 h to remove any silanes unbound to

the surface. Trivinylsilyl surfaces were oxidized to the triol using BH3/H202/KOH as

described elsewhere.24 Mercaptopropyltriethoxysilane was oxidized to the sulfonate
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silane solution

in toluene

suspended wafers

Figure 3.2. Schematic of the Schlcnk tube used lor solution reactions that included a4mm Tellon jo.nt capped with a rubber septum to facilitate cannulahon and additions via
syringe under an inert atmosphere.
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in H202/HOAc a, room temperature for 30 min. PEG surfaces were prepared by
subset reaction of isocyanatopropyidimethyisdy,

surfaces with „eat PEG (dry) a, 70
°C for 4 days. XPS data indicate that the - 50% of the ,socya„a,e groups on the surface

had reacted with PEG. Mixed monomers were prepared using the reaction of

tris(,rime<hy,si,o>y>ch,oros„ane (Tris(TMS)) in the vapor phase for varying amounts of

time, then subsequent reaction of the (sub)monolayers of Tris(TMS) with a second

si lane. 21 >
22

3.2.4. Adsorption of Protein, to Silane-mnHifi^ guiftees

Phosphate buffered saline (PBS) solutions were prepared by dissolving one PBS

tablet in 200 mL of deionized water. This results in a stock solution containing 0.01M

phosphate buffer, 0.0027M potassium chloride, and 0.137M sodium chloride and having

a PH of 7.4 at 25 °C Si lane-modified wafers were placed in a custom-made wafer holder

and suspended in a reaction tube. The wafers were submerged in PBS solution overnight

to equilibrate the surfaces. Just prior to the adsorption experiment, a fresh BSA solution

was prepared by dissolving 10 mg of BSA in 10 mL of PBS solution, resulting in a

concentration of 1 mg/mL. The old PBS solution was then cannulated out of the reaction

tube and 1 8 mL of fresh PBS solution was added via syringe followed by 2 mL of BSA

solution (1 mg/mL). The final concentration of BSA was 0.1 mg/mL. This procedure

was developed to prevent exposure of the wafers to the protein-air-water interface, which

could lead to protein adsorption via a Langmuir-Blodgett deposition. The reaction tube

was placed in a circulator bath maintained at 37 ±0.1 °C for 1 h. After adsorption, the

protein solution was removed by dilution with fresh PBS solution five times. Again, this
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was chosen to prevent exposure of ,he wafers ,o the protei„-a,r-water interface After

wfth deionized wafer to remove any physisorbed safts on the surface. The samples were

Placed in a dessicator for at least 1 day to dry the samples, and were then characterized by

ellipsometry, contact angle, AFM, and XPS.

3.2.5. Characterization

Contact angle measurements were made with a Rame-Hart telescopic goniometer

equipped with a Gilmon. syringe and a 24-gauge flat-tipped needle. Probe fluids used

were water and „-hexadecane. Advancing (6A) and recedmg (6R) contact angles were

recorded while the probe fluid was added to and withdrawn from the drop, respecttvely.

X-ray photoelectron spectra (XPS) were obtained on a Perkin-Elmer Physical Electrons

5100 with Mg Ko excitation (400W). Spectra were taken at two take-off angles, 15° and

75° (between the plane of the surface and the entrance lens of the detector optics). Film

thickness was measured using a Rudolph Research elhpsometer equipped with a helium-

neon laser (X = 6328 A) at an incidence angle of 70° AFM images were obtained using a

Digital Instruments Dimension™ 3100 Scanning Probe Microscope operated in tapping

mode.
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3.3. Results and Discussion

reaction

,3.3.1. Substrate Characterization

Covafcntly attached monolayers (CAMs) were prepared by the solution

of monochlorosilanes at room temperature. The reaction of monochloros.lanes in the

vapor phase has been shown to yie,d the highest bonding densities.* but the low vapor

pressure of the higher mo,ecu,ar we.gh, siianes prevented the use of vapor phase reaction

here. An amine promoter (EDIPA) was added to the reaction m.xture in order to increase

the reaction yie]d and obtain higher bonding dens.ties. The amine promoter aiso serves

to scavenge the by-product of the reaction of ehlorosilanes with silica (HC1). Reactions

were carried out for 3 days to achieve maximum bonding density, unless otherwise noted.

Two types of surfaces were prepared for this study: one-component (pure, and two-

component (mixed) surfaces.

One-component (pure) surfaces were comprised of a single organosilane reacted

under conditions that lead to maximum bonding density with the substrate. A few of the

surfaces were prepared by subsequent reactions of monolayers (i.e. TVS-OH, PEG),

while others were prepared from dichloro- and trichlorosi lanes to further complete the

study. The surfaces were characterized by contact angle, ellipsometry, and XPS. Contact

angle and thickness data for these one-component surfaces are listed in Table 3.1, along

with the structure and abbreviation of each silane. For convenience, the surfaces are

listed in order of decreasing advancing contact angle. The thickness data for both the

DMDC and MPTES reactions indicate that these surfaces are not monolayers but rather

oligomeric. DMDC surfaces were prepared by vapor phase reaction; monolayers of
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DMDC have been prepared by so.ution phase react.on* and the reported ,h,ck„ess of
these surfaces was 3, A. MPTES was used since a monofunctiona, sdane having a ,h,o,

end group was not commercially availah.e, and we wanted to probe the specific

interaction of albumin with -SH groups.

Two-component (mixed) surfaces were achieved by the step-wise reaction of

Tns(TMS) m the vapor phase for mcreasmg amounts of time, followed by subsequent

reaction of the surface with a second silane. The vapor phase reaction of Tris(TMS) is a

random process and the surface has been shown to contain 'nanopores' due to the

inefficient packing ability of the bulky Tris(TMS) molecules 21,22 This allows for

subsequent reaction of a second silane to form mixed monolayers. The second silanes

were chosen such that mixed hydrophobic/hydrophilic surfaces were created. Four

different Tris(TMS) surfaces were prepared by judicious cho.ce of reaction times in order

to prepare surfaces with sufficient differences in surface coverage. The reaction of the

second silane was carried out in the solution phase for 3 days to ensure complete reaction

of all remaining silanols on the surface. The surfaces were characterized by contact

angle, ellipsometry, and XPS. Contact angle and thickness data for these two-component

surfaces are listed in Table 3.2, along with the identity of the second silane used for the

subsequent reaction of the Tris(TMS) (sub)monolayers.

XPS spectra were obtained to further characterize all of the monolayers prepared

for this study, and were used as a qualitative method to ensure the surface composition

was correct. The XPS atomic concentration data (75° take-off) is tabulated in Appendix

C for reference.
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Table 3.1. Contact angle and thickness data for

surface

(abbreviation)

one-component (pure) surfaces

si lane
eA/eR o

H20 C 16H16*134

thickness

A

Q>Fl3 C6F,3(CH2)2Si(CH^,-C] 117/100 62/47 8

32

OTS SAM CigH^Si-CK
113/103 37/36

OTS CAM Ci8H37Si(CH3)?-Cl 108/95 33/30 15
DMDC (CH3 )2Si-Cl2 99/92 36/32 ll

a

Tris(TMS) (CH3SiO)3Si-Cl nn to 099/88 35/32 7
TMS (CH3 )3Si-Cl 98/89 33/32 5
CF3 CF3(CH2)2Si(CH3 )2-Cl 97/91 42/38 6
Carbomethoxy CH3O(O)C(CH2) 10Si(CH3)2-Cl 87/78 15/0 8

MPTES SH(CH2)3Si-Cl 3 84/52 14/0 32
a

MPTES-SO3H SH(CH2)3Si-Cl 3 / oxidation 62/21 15/0 32
a

TPS (Ph)3Si-Cl 80/56 10/0 11

Acetoxy CH3C(0)0(CH2)2Si(CH3)2-Cl 77/67 14/0 5

APS NH2(CH2)3Si(CH3 )2-Cl 72/45 10/0 10

PEG OCN(CH2)3-Si(CH3)2-Cl / PEG 49/40 13/0 13

TVS-OH (CH2=CH2)3Si-Cl / hydroboration 48/30 9/0 8

Si-OH clean silicon oxide 5/0 0/0 0

thickness data indicate that these surfaces are oligomeric layers, not monolayers
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Table 3.2. Contact angle and thickness data for two-component (mixed) surfaces.

surface

(abbreviation)

second si lane eA/e

H20

r(°)

C16H34

thickness

A

Tris(TMS) lh -
65/55 26/16 5

Tris(TMS) 24h -
78/67 30/20 6

Tris(TMS) 72h -
92/80 35/29 6

Tris(TMS) 140h -
99/88 35/32 7

Tris(TMS) lh TMS 101/95 34/30 6
Tris(TMS) 24h TMS 100/95 34/28 7
Tris(TMS) 72h TMS 102/95 32/28 7
Tris(TMS) 140h TMS 106/98 30/27 8

Tris(TMS) lh APS 70/52 15/0 9
Tris(TMS) 24h APS 74/57 14/6 11

Tns(TMS) 72h APS 80/61 20/15 10

Tris(TMS) 140h APS 91/74 29/22 10

Tris(TMS) lh TVS-OH 67/56 18/13 9

Tris(TMS) 24h TVS-OH 72/59 20/14 11

Tris(TMS) 72h TVS-OH 79/64 21/14 9

Tris(TMS) 140h TVS-OH 93/78 22/15 10
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3.3.2. Protein Adsorption Protorol

To e,ucidate the effects of surface chemistry on protein adsorption, the protocol

for protein adsorption was kept constant in this study. Others have studied a single

surface (i.e. C 16 SAMs) while varying other expenmental conditions such as

concentration, shear rate, adsorption time, temperature, pH and ionic strength of the

aqueous solution. Here, a single concentration of protein solution was used (0.1 mg/mL)
while the temperature (37 °C) was chosen to mimic physiological conditions. At a

concentration of 0.
1
mg/mL, the adsorption behavior of albumin should be diffusion-

limited, resulting in slow amval of protein to the interface. Previous studies^ have

shown that adsorption of albumin saturates after 30 min as followed by total internal

reflectance fluorescence (TIRF). Therefore, the time of adsorption was kept constant at 1

h, ensuring that the adsorption was complete. After adsorption, the samples were rinsed

with fresh PBS solution and dried. Since the samples were rinsed with PBS solution after

adsorption, only the irreversibly adsorbed proteins could be observed in any of the

measurements.

All measurements of the adsorbed protein layers were conducted after drying. It

is understood that exposure of the protein layers to air can influence almost all

measurements, but it is presumed that any process that could occur (i.e. denaturing) is

limited and subtle on the length scales being measured. The primary tool for determining

the amount of adsorbed protein on each surface was ellipsometry. The biggest

disadvantage of using ellipsometry for protein adsorption is that it is highly dependent on

the model used in the analysis. It is understood that ellipsometry yields an average layer

thickness over the sampling area (beam size), and error is introduced into the
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AFM analysis of the surfaces inches that some of the prote,„ layers are,, fact no,

contmuous. Therefore the adsorbance
(r, ea,cu,ated from e„ipsometry can on,, he a

Stenberg and Nygren- the adsorbance (r) Qf ,^^^^^ ^
calculated using the following equation:

r(ng mm 2
) = K(gml')<*(nm)

(1)

where if = 1.2 g ml"
1

is the density of the protein in air, and d is the thickness of the

adsorbed layer in nanometers. The refract.ve index for BSA has been reported to be „BSA

= 1.542.2' This method is reviewed by Tengvall et al.30 and is the method of choice for

this study.

XPS spectra of the surfaces after protein adsorption were obtained as verification

of atomic composition of the adsorbed layers. The appearance of nitrogen in the XPS

spectra corroborates the presence of the protein on the surface. Unfortunately, the

attenuation of the Si
0
peak cannot be used as a secondary technique for determination of

the adsorbed thickness due to the aforementioned non-uniformity of some of the adsorbed

protein layers. Therefore, XPS was used only as a qualitative validation of trends seen in

the adsorption behavior of albumin. The XPS atomic concentration data (75° take-off) is

tabulated in Appendix C for reference.
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3.3.3. Protein Adsorptionjo^nj^^^

Protein adsorption was carded out on each of the surfaces prepared as descnbed

in the previous section. The thickness of the adsorbed protein ,ayer was determined by

ellipsornetry, and the total adsorbed amount of protein for each surface was calcu.ated

using equation (1). The results of the adsorption expenments on one-component (pure)

surfaces and two-component (mixed) surfaces are listed in Tables 3.3 and 3.4,

respectively. The observed results of a few surfaces are worth noting. First, a

measurable amount of albumin adsorbed to clean silicon oxide (T - 0.48 ng mm 2
). At

first glance, it is unclear whether or not the layer being measured is actually albumin,

since silicon oxide is a high-energy surface and will adsorb contaminants quickly in air.

However, the presence of nitrogen in the XPS strongly suggests the adsorbed layer is

composed of albumin. One would expect that a hydrophilic surface such as silicon oxide

would inhibit the adsorption of albumin due to a large fraction of bound water on the

surface, coupled with the fact that silicon oxide has a net negative charge at neutral pH.

Recall that albumin carries a net negative charge at neutral pH and thus should be

repelled by a negatively charged surface. This ionic repulsion is seen more clearly in the

MPTES-SO3H surface (r - 0.24 ng mm 2
), which at neutral pH also carries a net negative

charge. The PEG400 surface showed strong resistance to albumin adsorption as well. It is

well known that PEG surfaces inhibit protein adsorption31^ due to its fluidity and high

degree of hydration. Interestingly, the thickness of the PEG layer is quite low, yet still

inhibits the adsorption of albumin.

Whitesides et al.33 has also calculated the theoretical adsorbance (O for BSA for

a complete monolayer of protein. This calculation assumes that albumin has average
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B?Aadso^,o
n

„

laCt an8 'e adSOrba"Ce dMa f°r °--compo„en t (pure) surfaces after

surface

(abbreviation)

before adsorption

eA/eR (°)

H20

after adsorption

©a/Or (°) thickness adsorbance

AH20 (ng mm'2
)

Q)Fl3 117/100 96/31 22 2.64
OTS SAM 113/103 80/18 20 2.40
OTS CAM 108/95 94/18 23 2.76

DMDC 99/92 89/24 29 3 48
Tris(TMS) 99/88 80/18 25 3.00

TMS 98/89 70/11 23 2.76

CF3 97/91 85/22 30 3.60

Carbomethoxy 87/78 77/20 27 3.24

MPTES 84/52 65/17 21 2.52

MPTES-SO3H 62/21 52/17 2 0.24

TPS 80/56 70/11 11 1.32

Acetoxy 77/67 78/12 17 2.04

APS 72/45 68/16 17 2.04

PEG 49/40 49/38 0 0.00

TVS-OH 48/30 76/15 7 0.84

Si-OH 5/0 31/10 4 0.48
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adS°rbanCe data f°r component (mixed) surfaces after

before adsorption

surface eA/eR (°)

(abbreviation) j^q

eA/eR (°)

H20

after adsorption

thickness

A

adsorbance

(ng mm"2

)

Tris(TMS) lh UJ/JJ 75/19 n 1.32

1.44

1.92

Tris(TMS) 24h
/ o/u / 77/27 12

Tris(TMS) 72h 92/80 73/17 16

Tris(TMS) 140h

Tris(TMS)lh / TMS

Tris(TMS) 24h /TMS

99/88

101 /OS1 U1/7J

100/95

80/18

87/21

80/18

25

22

20

3.00

2.64

2.40
Tris(TMS) 72h /TMS 102/95 91/28 24 2.88
Tris(TMS) 140h/TMS 106/98 92/29 26 3.12
Tris(TMS)lh /APS 70/52 73/20 10 1.20

Tris(TMS)24h /APS 74/57 74/24 13 1.56

Tris(TMS) 72h /APS 80/61 71/19 14 1.68

Tris(TMS) 140h / APS 91/74 70/18 16 1.92

Tris(TMS) lh /TVS-OH 67/56 71/20 11 1.32

Tris(TMS)24h /TVS-OH 72/59 74/21 15 1.80

Tris(TMS)72h /TVS-OH 79/64 76/15 18 2.16

Tris(TMS) 140h/ TVS-OH 93/78 80/19 21 2.52
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///// sV7777 y^^m
End-on Adsorption Side-on Adsorption

Figure 3 3. Schematic illustrating the two possible modes of adsorption for albuminSssr* to the surface) -d side- aongrŝ ii
b^

dimensions of 14 x 4 x 4 nm3
. If the protein adsorbs to the surface in an end-on

orientation (long axis being perpendicular to the surface), the maximum adsorbance

should be r = 6.00 ng mm 2
. The maximum adsorbance for side-on adsorption (long axis

being parallel to the surface) should be T = 2.50 nm mm" 2
. Therefore if a surface shows

an adsorbance greater than 2.50 nm mm"2
, it can be concluded that a fraction of the

protein (if not all) has adsorbed in an end-on conformation. Conversely, one cannot

assume that if the adsorbed amount is less than 2.50 nm mm"2
the protein has adsorbed

exclusively in the side-on conformation. Instead, the adsorbed state could be a

combination of end-on and side-on adsorption, and the adsorbed amount measured could

then be a simple average of the two states. Inspection of the values listed in Table 3.3

shows that for many surfaces the adsorbance (F) is greater than the limiting value of 2.50

ng mm" for side-on adsorption, indicating that those layers could be comprised of either

entirely end-on adsorbed proteins or a combination of end-on and side-on adsorption.

Those surfaces having an adsorbance below 2.50 nm mm"2
could be adsorbed in the side-
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-=onfoIm.tio„.but othWtechIUque..uchasAFMmultbee ^
between the two modes of adsorption.

The adsorption data ean he analyzed hy correlating the amount of protein

is related to the surface energy of a substrate hy Young's equation^

(2)

Where 0, is the equilibrium contact angle, and Ysv , Yls , and y , v m lhc^ {_
between the sohd/vapor, liquid/solid, and liquid/vapor phases, respectively. Shown in

Figure 3.4 is a master plot of adsorhance (D versus the cosine of the advancing water

Contact angle (cos 9A) lor both the one-componcn, (pure) surfaces and the two-

COmponent (mixed) surfaces prepared in this study. The PEG and MPTES-SO3H

surfaces, which were noted ahove to inhibit protein adsorption hy mechanisms different

Horn simple hydrophohic/hydrophihe interactions, arc no. included in this plot. The data

in Figure 3.4 clearly show that there is a strong dependence of adsorption of albumin on

hydrophohicity/hydrophiheity (as measured hy contact angle) lor CAMs, and the

dependence is nearly linear with increasing hydrophohicity of the substrate, Again, the

amount of adsorbed protein is measured postmortem, so only the irreversihly adsorbed

protein can he ohserved, while the loosely adsorbed proteins are rinsed away. Other

methods (i.e. T1RF, surface plasmon resonance), that can detect protein adsorption in

situ, measure the total surface excess of protein at the interlace and thus will he able to

detect those proteins that are loosely hound to the surface. In general, though, the
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Figure 3.4. Master plot of adsorbance (r) as a function of surface energy (cos 0A) for all

surfaces studied, showing a linear increase of adsorbance with increasing hydrophobicity
of the surface.
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^^2S2ffiK£ surfaces reported ,n n— for

surface r (ng mm"2

)

Cn SAM33
2.10

C I6 SAMio 2.10

C 16 SAM27
2.40

C 18 CAM7
2.49

Polyethylene35 2.60

C l8 SAM 2.40

C 18 CAM 2.76
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adsorbance measured via eUipsome.ry agrees c,ose,y to H.era.ure daca for a,kyl SAMs
and CAMS (see Tao.e 3.5), confining that eUipsome.r, is an aeeep.abie t0 measure

adsorbed protein layer thickness.

3.3.4. AFM Studies of ArWbed Protein Moipholoa;

Atomic force microscopy (AFM) was undertaken to gam a detailed physical

understand of the morphology of the adsorbed protein layers. In the previous section,

the surface chemistry of the substrate was shown to play a vital role m controlling the

amount of protein adsorbed to each surface, so it is anticipated that the morphology of the

adsorbed layers may also show a strong dependence on the chemistry of the surface.

Shown in Figures 3.5 - 3.17 are the AFM images for the one-component (pure) surfaces

after protein adsorption. Recall that these measurements are made after the samples were

removed from the adsorption medium and dried. The images in Figures 3.1 1 - 3.17 show

uniform surface coverage of albumin, and therefore leave little to be discussed about

them at the moment. The most interesting images are of the highly hydrophobic surfaces

(Figures 3.5 - 3.10). Recall from Table 3.3 that these surfaces exhibit the highest

adsorbance (T) of all the surfaces studied. Strikingly, the surfaces exhibit vastly different

morphologies as seen in the AFM images. Previous studies*.«» 5 have observed similar

structures as those seen in Figure 3.8 for albumin adsorption on SAMs, but the authors

neglect to comment on the origins of the observed morphology.

To better understand the origins of the observed patterns, let us focus first on the

morphologies of the C, 8 CAM and TMS surfaces (see Figures 3.5 and 3.9). The amount

of protein adsorbed to each of these surfaces are identical (f - 2.76 ng mm"2
), yet the
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exhibit, non-uniform coverage and a highIy boohed, frnger-like pattern, whi.e ,hc

analyses for the C„ CAM and TMS surfaces are shown ,„ Figures 3. , 8 and 3.19,

espcevcy. [merely, ,hc ARM section analysis on the C,8 surface .ndica.es the, the

observed morphology has an average hc,gh, of 8. , nm, sugge.s.ing ,ha , the protein has

adsorbed predominantly in the end-on orientation. For the TMS surface, the average

heigh, was found to he 4.6 „m, wh.ch corresponds to a mammy of protein being

adsorbed in the side-on orientation with some in the end-on state. One explanation lor

.he Observed behavior can he detailed as follows. [, has heen speculated that albumin

initially adsorbs in the end-on conformation due to the high density of hydrophobic

groups located on the 'tip' of the molecule. If necessary, ,he molecule can then 'roll

over' to the side-on adsorbed stale to increase the number on contact points with the

surface and help anchor the protein to the surface. This can be accompanied hy slight

denaturing of the albumin's secondary structure to expose more hydrophobic groups to

the underlying surface. This interfacial reorientation has been targeted as one means hy

which albumin can increase its molecular footprint on a surface, ' ' thus increasing the

tenacity of adsorption.

It is argued here that reorientation of albumin occurs predominantly on rigid

hydrophobic surfaces (i.e. TMS, CF3) that present only a limited number of contact points

to the protein in the end-on orientation (see Figure 3.20). This forces the protein to roll

over in order to maintain adequate interaction with the surface, such that the protein

becomes irreversibly adsorbed. For surfaces that arc not rigid (i.e. C, g CAM, CcFi*), the
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resist

protein can penetrate the mono.ayer h the end-on onentat.on and increase the total

number of hydrophobic/hydrophobic contact points. Th.s should stabilize the adsorbed

protein such that it does not need to roll over to the side-on orientation in order to

desorption. Due to the high affinity of a.bumin for binding and transporting fatty acids, it

has been speculated that some port.ons of the monolayer cou.d even become intercalated

within the protein structure -o The transition from flexible, soft surfaces to ngid surfaces

can be observed by following the changes in morphology from F.gure 3.5 through Figure

3.10. The morphology shifts from a very open, fractal structure to a more closed,

uniform structure as the ngidity of the underlying surface increases. This argues that the

ngidity of the underlying surface is playing a critical role in directing the adsorption of

albumin to hydrophobic surfaces. The most noticeable significance is that the rigidity of

the surface dictates the need for the protein to reassemble from the end-on adsorbed state

to the side-on adsorbed state in order to increase protein-surface interactions.

Let us now focus on the observed structures for the C l8 CAM and C6F 13 surfaces

(Figures 3.5 and 3.6), and contemplate the origins of this very open, fractal structure.

Recall that the adsorption protocol was chosen such that the adsorption is conducted

under static conditions (not under shear) and at low concentrations, both of which result

in slow arrival of protein to the interface (diffusion-limited adsorption). Therefore, the

albumin molecules are relying on simple diffusion to approach and adsorb to the surface.

From the AFM section analysis shown in Figure 3.18, it is clear that the protein has

adsorbed in an end-on conformation. Moreover, the adsorbed proteins are ordered into a

fractal-like structure on the surface, which closely resembles patterns observed in

diffusion-limited aggregation (DLA) of particles. DLA is one of the simplest models for
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fractal growth, and results in a very open structure containing a high degree of branching

(dendritic, In this model, the surface originally contain, a single 'seed' particle, which is

immobilized on the surface. A second particle is introduced and is allowed to randomly

diffuse (random walk) on the surface until it comes into contact with the seed particle, at

which time the second particle becomes irreversibly immobilized and becomes part of the

aggregate. If this cycle is repeated numerous times, the aggregate structure will be highly

branched and fractal in nature. A fractal structure develops because the faster growing

branches 'shield' the penetration of particles from diffusing into the internal parts of the

aggregate. The fractal dimension for DLA has been shown to be Df~ 1.75, which relates

the number of particles n within a cluster of size r by the following equation:

To assess whether this could explain what was observed in these experiments, a Fourier

transform was performed on the AFM image of BSA adsorbed to the C 18 CAM. Curve

fitting these data on a log-log plot yields a slope (Df) ~ 1.64, indicating that the protein is

adsorbing in a fashion similar to that seen for DLA of particles.

The data suggest the following scenario. The protein approaches the surface in an

end-on orientation, followed by weak adsorption to the surface through van der Waals

interactions. These interactions are apparently insufficient to irreversibly adsorb the

albumin molecule to that surface. If the surface is rigid, the albumin molecule must roll

over to the side-on orientation and possibly denature to a limited extent in order to

increase its footprint area and number of contact points with the surface. As other protein

molecules adsorb, the previously adsorbed protein gains protein-protein interactions in

addition to the already formed protein-surface interaction. Collectively, these adsorbed

protein molecules form a continuous layer on the surface, as shown by AFM. If, on the
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other hand, the surface is soft, the album, molecule has sufficient interaction with the

surface to keep it temporarily bound in the end-on state, but the protein retains lateral

mobility/diffusion such that it can add to the growing aggregate structure observed by

AFM. The phrase 'temporarily bound' is used here because there is no indication that

single albumin molecules exist on the surface outside the aggregate structure, suggesting

that those molecules not attached to the aggregate structure are reversibly adsorbed to the

surface and can be rinsed away. This scenario argues that protein-surface interaction

itself is not sufficient to irreversibly adsorb albumin to a hydrophobic surface, but rather

a complex combination of protein-protein and protein-surface interactions are necessary

to render the protein resistant to desorption. More experiments need to be conducted to

further strengthen this scenario.

AFM images for a few of the two-component (mixed) surfaces are shown in

Figures 3.21 - 3.26. Let us focus first on the surfaces where albumin was adsorbed to the

original Tris(TMS) surfaces prior to being reacted with a second silane

(Tris(TMS)/silanol). At the lowest coverage of Tris(TMS) (Figure 3.21), the morphology

of the adsorbed layer is very uniform with minimal amount of texture in the image. In

could be argued that the texture seen in the height image is a result of albumin's inability

to adsorb in the areas containing a high concentration of silanol groups (hydrophilic),

thus limiting adsorption to the most hydrophobic areas. As the coverage of Tris(TMS)

increases, the adsorbed layer becomes more non-uniform with areas (holes) on surface

remaining uncovered, with the size of the patches increasing with increasing Tris(TMS)

coverage. This transition can be rationalized to occur in a similar fashion as was

postulated for the one-component surfaces. At low Tris(TMS) coverage, the number and
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iatera, dens.ty of hydr0phobic groups on the surface are ,ow, forcmg the adsorbed protein

to roll over from the end-on to s,de-on conformat.on to increase protein-surface

factions. As the Tris(TMS) coverage increases, the dens.tv of hydrophob.c groups on

the surface increases, thus increasing the number on contact points the protein can make

with the surface. Recall that the TrisfTMS) molecule is very flexible due to the ability to

rotate along the Si-O-Si bonds, making the TrisfTMS ) layer a fairly 'soff surface as

described earlier. This allows the protein to adsorb in the end-on orientahon to a larger

extent, but not to the degree as seen for the highly flexible C„ CAM. Subsequent

reaction of TrisfTMS) with TMS leads to a slightly different morphology as seen in

Figure 3.25. In this case, the TrisfTMS) layer has been mixed with a rigid, hydrophobic

surface (TMS) and so the morphology again appears to argue for reorientation to the side-

on conformation. The adsorbed layer appears more uniform since the hydrophilic

silanols have been replaced by hydrophobic TMS moieties. Similar results are seen for

TrisfTMS) / TVS-OH mixed surfaces as seen in Figure 3.26.
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Figure 3.5. AFM images obtained in tapping mode of BSA adsorbed to a C| 8 CAM for

Ih at 37 °C and 0. 1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 jxm sampling area.
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Figure 3.6. AFM images obtained in tapping mode of BSA adsorbed to a C6F 13 surface
for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase
(bottom) plots of a 1 urn

2
sampling area.
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Figure 3.7. AFM images obtained in tapping mode of BSA adsorbed to a DMDC surface
for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 ujti
2
sampling area.
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Figure 3.8. AFM images obtained in tapping mode of BSA adsorbed to a d 8 SAM for

lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 |im sampling area.
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Figure 3.9. AFM images obtained in tapping mode of BSA adsorbed to a TMS surface

for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 |nm
2
sampling area.
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Figure 3.10. AFM images obtained in tapping mode of BSA adsorbed to a CF3 surface

for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 u.m
2
sampling area.
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Figure 3.1 1. AFM images obtained in tapping mode of BSA adsorbed to a carbomethoxy

surface for lh at 37 °C and 0. 1 mg/mL. The images are height (top), surface (middle),

and phase (bottom) plots of a 1 u,m
2
sampling area.
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Figure 3.12. AFM images obtained in tapping mode of BSA adsorbed to an acetoxy

surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle),

and phase (bottom) plots of a 1 \xm
2
sampling area.
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Figure 3.13. AFM images obtained in tapping mode of BSA adsorbed to a

mercaptopropyltriethoxysilane surface for lh at 37 °C and 0.1 mg/mL. The images are

height (top), surface (middle), and phase (bottom) plots of a 1 jam
2
sampling area.
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Figure 3. 14. AFM images obtained in tapping mode of BSA adsorbed to a TPS surface
for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase
(bottom) plots of a 1 \xm

2
sampling area.
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Figure 3.15. AFM images obtained in tapping mode of BSA adsorbed to an APS surface

for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle), and phase

(bottom) plots of a 1 ujti
2
sampling area.
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Figure 3.16. AFM images obtained in tapping mode of BSA adsorbed to a TVS-OH
surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle),

and phase (bottom) plots of a 1 urn
2
sampling area.
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Figure 3.17. AFM images obtained in tapping mode of BSA adsorbed to elean silicon for
Ih at 37 °C and 0.

1 mg/mL. The images are height (top), surface (middle), and phase
(bottom) plots of a 1 j-im

2
sampling area.
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Figure 3.18. AFM section analysis of BSA adsorbed to C 18 CAM showing the
height (8 nm) of the observed features on the surface.
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Figure 3.19. AFM section analysis for BSA adsorbed to TMS showing the typical height
(4.6 nm) of the observed features on the surface.
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Figure 3.20. Schematic illustrating two possible modes of adsorption of BSA to
hydrophobic surfaces: rigid surfaces that force restructuring of the albumin to increase
contact points, and soft surfaces that allow for a large number of contact points without
the need to restructure.
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Figure 3.21. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS) lh
surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface (middle),

and phase (bottom) plots of a 1 urn
2
sampling area.
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Figure 3.22. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS)
24h surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface

(middle), and phase (bottom) plots of a 1 Jim
2
sampling area.
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Figure 3.23. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS)

72h surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface

(middle), and phase (bottom) plots of a 1 \irn sampling area.
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Figure 3.24. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS)
140h surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface

(middle), and phase (bottom) plots of a 1 um 2
sampling area.
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Figure 3.25. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS) lh

/ TMS surface for lh at 37 °C and 0. 1 mg/mL. The images are height (top), surface

(middle), and phase (bottom) plots of a 1 urn
2
sampling area.
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Figure 3.26. AFM images obtained in tapping mode of BSA adsorbed to a Tris(TMS) lh

/ TVS-OH surface for lh at 37 °C and 0.1 mg/mL. The images are height (top), surface

(middle), and phase (bottom) plots of a 1 \xm sampling area.
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3.4. Conclusions

Covalently attached monolayers (CAMs) were prepared by solution reaction of

vanous monochlorosi lanes. CAMs present a versatile technique to survey a range of

surface chemistry typically inaccessible by traditional self-assembly methods. The

monolayers were utilized to probe the effects of surface chemistry on the adsorpt.on of a

specific protein, albumin. It was determined that the adsorbance (F) was linearly

dependent on the surface energy of the monolayers, as shown by plotting the adsorbance

as a function of the cosine of the advancing contact angle. Two surfaces showed

exceptional protein repellency: surface-grafted PEGs and sulfonate monolayers. The

morphology of the adsorbed protein layers were examined by AFM, and correlated to the

chemical and physical properties of the surface. For hydrophobic surfaces, it was found

that the rigidity of the monolayers played a critical role in directing the orientation of the

adsorbed protein molecules. Highly rigid surfaces (i.e. SAMs) offer very few contact

points between the surface and the adsorbed protein, requiring the protein to roll over

from the end-on to the side-on adsorbed state to increase the strength on interaction. This

resulted in a fairly uniform surface coverage of protein molecules. Soft surfaces (i.e.

long alkyl or fluoroalkyl CAMs) could stabilize the end-on orientation due to the larger

number contact points as well as the presence of specific binding sites for long alkyl fatty

acids. The protein, though, appears to maintain sufficient mobility in-plane to order in a

fractal-like pattern that closely resembles diffusion-limited aggregation of particles. It

was argued that both protein-surface interactions and protein-protein interactions are

necessary to render the adsorbed proteins irreversibly adsorbed such that they are not
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nnsed away with fresh buffer solution. More experiments need ,o be conducted ,o

strengthen the arguments presented here, which should yield more insight on the

adsotption mechanism of albumin to hydrophobic surfaces.

3.S. Future Wnrlt

There are numerous questions that have been left unanswered concerning albumin

adsorption to silane-modified surfaces. There will always be skepticism that the

observed structures presented earlier are simply due to the drying process. Although I

highly doubt that this is the case, the data would be more credible if AFM was conducted

in situ so that the morphology of the protein layer remains unperturbed. Also, it would of

interest to study the formation of this fractal-like structure shown in Figure 3.6 or 3.7 by

conducting a kinetics experiment of adsorption. Desorption experiments could also be

conducted as a function of surface rigidity to further establish the tenacity of adsorption

more quantitatively than experiments conducted by Foster et al? Another interesting

series of experiments would be to prepare a homologous series of n-alkyl CAMs (methyl,

ethyl, butyl,...., octadecyl) to strengthen the argument regarding the role of surface

rigidity on albumin adsorption, as well as to observe whether or not there is a critical

alkyl chain length that stabilizes albumin adsorbed in the end-on state. Albumin has also

been shown to interact even more strongly with oleic acid (mono-unsaturated) than

stearic acid or even linoleic acid (di-unsaturated). Therefore, it might be interesting to

study the effects of unsaturation of long alkyl chains on the adsorption of albumin to

silane-modified surfaces. Outside the realm of albumin, it should also be enlightening to
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conduct experiments on other prote.ns (i.e. ,ysozyme
, fibrinogen) and„^^

of surface chemistry on adsorption of those protems to CAMs. Collaborates are also in

Place to study the adsorption and spreadmg rate of several proteins on CAMs, and the

initial results are very promising and should lead to a more complete understand.ng of

protein adsorption to this class of surfaces.
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APPENDIX A

LIVING ANIONIC POLYMERIZATION

A.l. Introduction

Anionic polymerization is an elegant and versatile tool that, once mastered,

affords the synthetic polymer chemist the ability to prepare polymers with well-defined

chemical structures, predictable molecular weights and narrow molecular weight

distributions. Sequential addition of monomers permits the synthesis of linear block

copolymers having controlled composition and molecular architecture. The chemistry

used to terminate the polymerization also allows for precise control of end-group

functionality as well as the ability to form star-branched block copolymers. However,

living anionic polymerization requires rigorous purification of monomers and solvents,

while all material handling has to be done either under high vacuum or inert gas

atmospheres to exclude atmospheric contaminants and moisture. To do this, the synthetic

polymer chemist must build an understanding of the possible sources of contamination

and how to circumvent them. This requires judicious choice of chemicals, drying

methods, handling procedures and some creativity in glassware design. Once mastered,

this powerful technique can be used to prepare a multitude of unique materials such as

homopolymers, block copolymers, and end-functionalized polymers. Several reviews of

living anionic polymerization exist in literature. 1 "3

Anionic polymerization involves the generation of a carbanion propagating

species that proceeds to be active with respect to monomer addition until terminated by

an externally added electrophile, and requires the absence of chain transfer and
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Figure A.l. Schematic mechanism for living anionic polymerization with controlled
termination.

termination throughout the polymerization reaction. This process was first described by

Zeigler in the 1930's4"* and was later demonstrated in full by Szwarc in 1956,7.8 and is

shown schematically in Figure A.l. These polymerizations can be termed 'living' only

when the propagating anion retains its reactivity throughout the polymerization reaction,

and thus can reinitiate polymerization if more monomer is added. The degree of

polymerization, or molecular weight, can simply be calculated by the ratio of monomer to

initiator concentrations [M]/[I] given that the rate of initiation is faster than the rate of

propagation (kj» k
p). These rates are highly dependent on the chemical nature of the

initiator and monomer, solvent, counterion and the possible addition of Lewis bases. If kj

» k
p , the molecular weight of the resulting polymer can be described by a Poisson

distribution and typical has a polydispersity index (Mw/M„) of less than 1.10.

Monomers that can be polymerized anionically include styrenes, dienes,

methacrylates, epoxides, episulfides, and cyclic siloxanes. When preparing block

copolymers, the sequence of monomer addition is critical due to large disparities in chain

end reactivities. Thus, one must identify the pKa values for the respective chain ends to

determine the sequence of addition, and note that chain ends will initiate polymerization
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for monomers having equal or lower pK, values, bu, no. higher. For example, s.yrene

(PKa = 41) will initiate methacrylates
(PKa = 27) bu. ox.ranes (pK, = 17) will no, initiate

dienes (pKa = 43).

The termination reaction can be altered to yield a variety of functional polymers.

Reaction of living anions with carbon dioxide yields carboxylic acid-terminated

polymers. Termination with ethylene oxide yields the corresponding hydroxy-terminated

polymer. Amine functionality can be introduced by reaction with a protected imine or by

reaction with methoxyamine. Sulfonation can be achieved by reaction of the living

polymer with 1,3-propanesultone, but only after first reacting the anion with either

ethylene oxide or diphenylethylene. Fluorescent labels can be introduced by reaction

with derivatized diphenylethylenes, and can be included at either the chain end of a

homopolymer or at the junction point of a diblock. Other functionalities can be

introduced by using protected initiator chemistries, as well as by the use of protected

monomers.

Living anionic polymerization was used throughout the research presented in the

previous chapters. This appendix will serve to describe in detail the experimental

conditions and chemistries used to synthesize the polymers needed for the work

contained in this thesis, as well as those polymers synthesized to supplement current and

future work within the department. This includes polymerization of homopolymers and

end-functionalized homopolymers as well as block copolymers.
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A. 2. Experimental

A.2.1. Materials

The following chemicals were used as received: calcium hydride,

tetramethylethylenediamine, dibutylmagnesium, triethylaluminum, anthracene, 2-

acetylphenanthrene, aluminum trichloride, acetic anhydride, phenylmagnesium bromide,

and ^c-butyllithium (all purchased from Aldrich); benzene, nitrobenzene, acetic acid,

magnesium sulfate, tetrahydrofuran, methanol, ethanol (anhydrous), hexanes,

hydrochloric acid, potassium hydroxide, and acetone (all purchased from Fisher). All

wash solvents were HPLC grade. Carbon dioxide (Coleman grade) was purchased from

Merriam Graves and was dried by passing it through activated alumina to remove polar

impurities and a copper catalyst (Q-5 - Engelhardt) to remove traces of oxygen. House

nitrogen was used for purging glassware and for creating an inert atmosphere. All

indications show that house N2 was more than adequate for anionic polymerizations.

The following chemicals were used after rigorous purification as outlined in the

appropriate sections: styrene, methyl methacrylate, and diphenylethylene (all purchased

from Aldrich). Deuterated styrene was purchased from Cambridge Isotopes and was

purified in the same manner as its hydrogenated counterpart. Polymerization solvents

(benzene, THF) and dilution solvents (hexanes) were purified as described elsewhere9

and were available on a solvent line for dispensing. This consisted of passing the solvent

through activated alumina to remove polar impurities and a copper catalyst (Q-5 -

Engelhardt) to remove oxygen. THF will react with the catalyst Q-5; therefore it was

purchased degassed and was sparged with N2 before installation on the solvent line.
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The initiator of choice for all polymerization reactions was sec-butyllithium. A

stock solution of sec-butyllithium was prepared by diluting an aliquot of 1.3M sec-BuU

by a factor of lOx with hcxanes obtained from the solvent line. The concentration of the

stock solution was checked initially by synthesizing a homopolymcr of polystyrene, and

was continually checked by observing the accuracy of molecular weights obtained in later

polymerizations.

A.2.2. Methods

All syntheses were performed using Schlenk techniques under nitrogen

atmosphere. This involves transfer of chemicals within a contained inert environment.

This can be achieved by judicious design of purification glassware and polymerization

flasks, which utilize antechambers that can be purged with N 2 prior to the opening of a

sealed joint to the air-sensitive reactants. A female 14/20 ground glass joint that is

capped with a rubber septum and attached to 4mm Teflon® stopcock joint can create this

antechamber. Through experience, it was determined that 4mm Teflon® stopcock joints

are very sensitive to scratches and other damage that renders them unreliable for air-

sensitive chemistry. It was found that 3mm Rotaflo® joints (Ace Glass) were more

durable and reliable over longer periods of time. Therefore, all glassware described here

contains these Rotaflo® joints unless otherwise noted. Also, ground glass joints were

avoided due to possible contamination by high-vacuum grease (other than the 14/20 joints

connecting to vacuum).

Prior to any reaction, all glassware was cleaned in a base-bath and rinsed with

copious amounts of house purified (reverse osmosis) water. The glassware was then
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dried at 135 °C for at least 12 h, assembled hot, flamed under vacuum with a heat gun

and then back-filled with nitrogen three times before addition of any reagents. Gas-tight

syringes, needles and cannulae were rinsed with THF, hexanes, 1 M HC1, 1 M KOH,

water and acetone, in that order. Syringes were dried at 135 °C for at least 12 h, flushed

with nitrogen while cooling, and then fully assembled under constant nitrogen flow.

Cannulae were dried at 135 °C for at least 12 h and flushed with nitrogen while cooling.

Monomer purification was carried out in a custom-designed trap-to-trap

distillation apparatus. A schematic of this glassware is shown in Figure A.2 (A). It

consists of two 100-mL round-bottom flasks connected by a 0-3 mm Teflon® joint (Ace

Glass). A glass-covered stirbar was permanently placed inside the left half of the

apparatus. Antechambers were created using female 14/20 joints connected to Rotaflo®

stopcocks. The angle of the Rotaflo® joint had to be decreased to allow for the insertion

of 22-gauge cannulae. After the glassware was properly dried as described earlier, a

given volume of monomer was added to the left bulb along with the appropriate drying

agent. Once the monomer was dry as observed by color indication, the monomer was

then distilled under vacuum and condensed to a solid in the second bulb using liquid N2 .

It should be noted that some monomers are very sensitive to heat (especially in the

presence of the respective drying agent) so all distillations should be carried out at room

temperature, unless otherwise noted. As the monomer evaporates and distills, the bulb

will become quite cold and will limit the rate of further evaporation, so gentle heating

with one's hands is adequate in speeding up the process. When enough monomer was

collected in the distillate bulb, the purified monomer was then allowed to warm to room

temperature and could then be measured out via syringe.
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Figure A. 2. Custom-designed glassware for monomer purification (A) and

polymerization reactions (B).
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Polymerizations were carried out in a s,milar type of glassware. An antechamber

equipped with a Rotaflo® stopcock was attached to a 250-mL round-bottom flask. Again,

a glass-covered stirbar was permanently placed in the flask. The shape of the stirbar has

a significant effect on the rate of stirring, with ellipsoidal stirrers being ideal. It has been

observed that insufficient stirring leads to broadening of the polymer molecular weight

distribution. A schematic of the polymerization flask used in this work is shown in

Figure A.2 (B).

A.3. Synthesis of Polystyrene Homopolvmers

The synthesis of polystyrene homopolymers became the standard reaction by

which to determine initiator concentrations, test new glassware designs and hone

handling techniques. The result of all this experimentation was a plethora of polystyrenes

having a range of molecular weights, all of which found their way into experiments of

every kind. The solvent of choice for this reaction was benzene because the rate of

propagation is slow. Reactions can also be carried out at room temperature and benzene

inherently has very low water content. Toluene and cyclohexane could have also been

used. The reaction scheme for polymerization of styrene is shown in Figure A.3.

Styrene monomer was purified first by distillation from CaH2 at reduced pressure.

Styrene has a tendency to autopolymerize at elevated temperatures, so distillation was

carried out at reduced pressure (10 mm of Hg), resulting in a boiling point of -60 °C.

Just prior to polymerization, an excess of styrene monomer was stirred over

dibutylmagnesium until a persistent yellow color was observed, indicating dryness. It

was then degassed by several freeze-pump-thaw cycles, followed by trap-to-trap
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Figure A.3. Anionic polymerization of styrene initiated with sec-butyllithium andterminated with a simple alcohol.
uuuinana

distillation to isolate pure, dry monomer. Benzene (-100 mL) was obtained from the

solvent line after flaming the reaction flask under vacuum and backfilling with N2 three

times.

A typical reaction was conducted as follows. Benzene was taken from the solvent

line as described earlier. Monomer was distilled as noted above. Prior to addition of any

reagents, care was taken to ensure that the rate of stirring in the polymerization flask was

sufficient and stable. A calculated amount of diluted sec-butyllithium was added to the

reaction flask via gas-tight syringe. Initiator should be added first since the addition of

the first monomer unit is the fastest step, therefore the rate of monomer addition will not

be as critical. The appropriate amount of styrene monomer was then added again via gas-

tight syringe (-5.0 mL). The solution turns a shade of orange (depending on the

concentration of chain-ends) indicating successful initiation and propagation. The

reaction was allowed to continue overnight for convenience. It should be noted that the

reaction retains its full color overnight, indicating that the glassware is successful in

maintaining a sufficiently dry nitrogen atmosphere over an extended period of time. At

the end of the reaction period, degassed ethanol was added via cannula to terminate the

reaction. The polymer was precipitated by cannulating the solution out of the reaction

flask into stirring methanol and filtered. If the product was too fine a powder to work
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with, the polymer was redissolved in tetrahydrofuran, reprecipitated into an excess of

methanol, filtered and dried under vacuum at 70 °C for several days.

Polymer molecular weights and distributions were determined by gel permeation

chromatography (GPC) relative to calibration with polystyrene. The GPC system was

equipped with Polymer Laboratories PL gel columns (10
4

, 10
3

, 10
2
A), a Polymer

Laboratories LC 1 120 HPLC pump with THF as the mobile phase, and an IBM LC9563

Variable UV detector set at 254 nm. A representative GPC trace of a polystyrene

homopolymer produced by living anionic polymerization technique as described above is

shown in Figure A.4. This particular polymer has a Mn = 147K and a pdi = 1.03. The

peak at -32 minutes corresponds to an internal standard, toluene, that is added to the

solution prior to injection, enabling the software to make minor adjustments due to small

variations in flow rate and injection time.

A.4. Synthesis of Carboxvlic Acid End-functionalized Polystyrene

Quirk et al. 10 studied the reaction of poly(styryl)lithium with carbon dioxide

under a variety of conditions to produce end-carboxylated polymers. It was determined

that under certain conditions one can achieve 100% carboxylation of the living chain-

ends with no evidence of the dimer ketone or trimer alcohol. A schematic representation

of the chemistry involved in producing carboxylated polystyrene is shown in Figure A.5.

This chemistry was easily adaptable to the experimental setup in our laboratories,

therefore making the synthesis of carboxylic acid end-functionalized polystyrene trivial.
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Figure A.4. Representative GPC chromatogram of a polystyrene homopolymer
synthesized by living anionic polymerization.
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In brief, poly(styryl)lithium is synthesized in benzene using sec-butyllithium as

the initiator, as described earlier. Once all monomer is consumed, the addition of CO;

without any precautions would result in 28% of the dimeric ketone and 12% of the

trimeric alcohol, >o since polymeric organolithiums exist as a dimeric species in benzene.

Addition of a Lewis base to organolithiums is known to break up these associations, so

the procedure was modified to include the addition of tetramethylethylenediamine

(TMEDA), resulting in the monomelic organolithium compound. Further isolation of

chain-ends from one another was achieved by freeze-drying the polymer solution before

introduction of C02 . This procedure results in no detectable amounts of the dimer or

trimer species.

A typical carboxylation reaction proceeded as follows. Styrene was purified as

described in the preceding section. Polymerization was initiated in benzene using a

calculated amount of sec-BuLi and was allowed to continue overnight for convenience.

During this time, tetramethylethylenediamine (TMEDA) was purified by distillation from

CaH2 followed by trap-to-trap distillation after addition of a few drops of concentrated

sec-BuLi. A two-fold excess ofTMEDA (calculated from the number of living chain-

ends) was then added to the polymerization flask via syringe. The solution quickly turns

from orange to red in color, proving the efficiency ofTMEDA to break up the
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aggregation of PS-Li. The solution was allowed to stir for 5 mm, at which time it was

placed into liquid N2 to freeze the solution. The reaction flask was then attached to a

vacuum line, and the solid solution was pumped under full vacuum (-10 mTorr)

overnight to completely remove all traces of solvent. The resulting solid retained its

reddish tint throughout the process. Carbon d,oxide was then introduced into the reaction

flask by first purging the antechamber with 15 psi C02 gas, then exposing the solid

poly(styryl) anion to a blanket of C02 overnight. The color of the solid dissipated

quickly upon exposure to C02 , but diffusion of gaseous C0 2 through a glassy matrix

occurs very slowly. Therefore the solid was left under C02 overnight to ensure complete

reaction of the chain-ends. Afterwards, the solid polymer was dissolved in THF

containing 10% v/v 1M HC1 for 12 hr to hydrolyze the lithium salt and yield the

carboxylic acid-terminated polymer. The end-capped polymer was then precipitated into

an excess of methanol, recovered by filtration, and dried under vacuum at 70 °C for

several days.

The efficiency of the carboxylation reaction was checked by TLC with toluene as

the eluent, and compared to PS-H prepared as described in the polystyrene homopolymer

section. Toluene was chosen as the eluent since it was to be the solvent used for

adsorption studies, and should be a clear indicator of whether or not the polymer adsorbs

from this solvent. Several molecular weight PS-COOH samples were prepared, and those

having molecular weights below 41K showed no elution (R f = 0) while those having

molecular weight greater than 4 IK, as well as the PS-H homopolymer, eluted completely

(Rf = 1). This is in good agreement with previous work by Iyengar et al.
1

1
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A.5. Synthesis of P(S-h-MM A) Block Cogajj/^grs

The synthesis of block copolymers of styrene and methyl methacrylate was

undertaken to fulfill the need for materials in the Russell research group. This section

will detail the synthetic approaches used to prepare diblock copolymers, P(S-b-MMA), as

well as diblock copolymers having one block deuterated, P(dS-b-MMA). The ratio of

segments A/B in an AB-type block copolymer will dictate the morphology of the

material. In general, a ratio of 90/10 results in spherical domains of B within a matrix of

A; a ratio of 70/30 results in cylinders of B surrounded by a matrix of A; a ratio of 50/50

yields a lamellar structure of alternating sheets of A and B. These ratios are calculated

based on volume fractions of each component in the block copolymer. It should be

obvious that these types of materials demand the precision and control that only living

anionic polymerization can afford. More recent techniques, such as TEMPO-mediated

polymerizations, 12.^ are making significant advances in the preparation of similar block

copolymers, but it has yet to be determined if materials prepared in this fashion can

compete with those made by anionic methods.

The synthesis of block copolymers of styrene and methyl methacrylate is more

tedious and involved than the preparation of simple homopolymers. The acrylate group

in MMA can undergo several side reactions that must be precluded by careful choice of

reaction conditions. The acrylate anion is also too weak (the pKa of the conjugate acid is

27) to initiate styrene (pKa = 41), so the order of monomer addition is critical: styrene

must be polymerized first followed by methyl methacrylate. But the styryl anion is a

strong nucleophile and will attack the acrylate group on MMA, causing chain transfer

and/or termination. Therefore, the styryl anion must be weakened by reaction with
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diphenylethylene (DPE) prior to addition ofMMA. Reaction of poly(styryl)lith,um with

DPE will lower the pKa of the active anionic center, as well as present an anion that is too

sterically hindered to attack the acrylate group on MMA. The use of a polar monomer

(i.e. MMA) also requires the use of a polar solvent such as tetrahydrofuran (THF), and

lower temperatures must be used to minimize chain transfer and termination reactions. A

schematic representation of the synthesis of P(S-b-MMA) by living anionic methods is

shown in Figure A.6.

Figure A.6. Anionic polymerization of styrene followed by capping with

diphenylethylene, which is then used to polymerize methyl methacrylate to produce a

block copolymer, P(S-b-MMA).

A typical polymerization proceeded as follows. Styrene was purified as described

in the preceding section. Methyl methacrylate was purified first by distillation from

CaH2 at reduced pressure (-100 mTorr, b.p.~ 60°C). Just prior to polymerization, an

excess ofMMA was thoroughly degassed by several freeze-pump-thaw cycles before the

addition of triethylaluminum (TEA). TEA was added dropwise to the degassed MMA
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monomer can

until a persistent (faint) yellow color was observed. If any oxygen is present in the

MMA, TEA will react with it to form a radical species that will then proceed to initiate

polymerization ofMMA in the flask. Therefore, the MMA was immediately distilled

from TEA by trap-to-trap distillation as described for styrene. The purified

then be measured out by syringe. Diphenylethylene (DPE) was purified by trap-to-trap

distillation after addition of a few drops of concentrated sec-BuU. DPE boils at 270 °C

at ambient conditions, so even under full vacuum DPE must be heated to -65 °C in order

to distill.

Tetrahydrofuran (THF) was obtained from the solvent line just prior to

polymerization. The reaction flask was then cooled to -78 °C using a dry ice/isopropanol

bath. A calculated amount of initiator was then transferred into the reaction flask via gas-

tight syringe, followed by a preset amount of styrene (-5.0 mL). Upon addition of

styrene, the polymerization mixture turned yellow indicating successful initiation. After

15 minutes, a few drops of DPE were cannulated into the reaction flask, and the reaction

mixture turned red proving efficient crossover. At this point, a small aliqout of PS-Li

was removed in order to check the molecular weight of the PS block. Several drops of

the poly(styryl)lithium solution were cannulated directly into degassed ethanol, filtered

and dried before performing GPC. After 5 minutes, a calculated amount ofMMA was

added via syringe at which time the solution turns colorless. After 15 minutes, the

polymerization was terminated by the addition of degassed ethanol. The solution was

allowed to warm to room temperature, precipitated into methanol, filtered, and dried

under vacuum at 70 °C for several days. The polymer was then purified by Soxhlet

extraction with cyclohexane to remove any polystyrene homopolymer as a result of
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termination upon addition ofMMA. Cyclohexane is a theta solvent for polystyrene and a

non-solvent for the block copolymer. At higher styrene contents (i.e. 90/10 P(S-b-

MMA)), the diblock may form micelles and pass through the extraction thimble, making

purification of these diblocks very difficult. The extraction also served to remove

residual DPE since it was used in excess.

Characterization of the block copolymers involved GPC to determine molecular

weight and polydispersity, followed by NMR to calculate the ratio of styrene to methyl

methacrylate. To show how these results are used, examples of each characterization

technique are shown in Figures A.7 - A.l 1. The molecular weight of the PS block was

determined from GPC of the aliquot removed just prior to addition ofMMA. The GPC

chromatogram of the homopolymer is shown in Figure A.7. The GPC chromatogram of

the block copolymer prior to purification is shown in Figure A.8. Clearly, a shoulder can

be seen at longer elution times indicating the presence of PS homopolymer that was

terminated when MMA was added. There also is a considerable amount of residual DPE

in the diblock copolymer sample. After Soxhlet extraction, the homopolymer is

successfully removed as well as the residual DPE. The GPC chromatogram of the

purified block copolymer is shown in Figure A.9. [NOTE: It is imperative that all

residual homopolymer be removed before conducting NMR and before conducting any

experiments since the presence of homopolymer could significantly influence any results

obtained subsequently. Therefore, all diblock copolymers should be extracted with

cyclohexane even if homopolymer cannot be detected by GPC] Unfortunately, the

molecular weight of a diblock copolymer calculated by GPC is incorrect since the

hydrodynamic volume of block copolymer can be drastically different than polystyrene,
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Figure A. 7. Representative GPC chromatogram of P(S-b-MMA) synthesis: aliquot

removed to characterize the molecular weight of the PS block.
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Figure A.8. Representative GPC chromatogram of P(S-b-MMA) synthesis: block

copolymer before extraction to remove residual PS homopolymer and diphenylethylene,

179



Figure A.9. Representative GPC chromatogram of P(S-b-MMA) synthesis: block

copolymer after purification.
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Figure A. 10. Representative
!H NMR trace of P(S-b-MMA) for determination of block

copolymer composition.
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Figure A. 11. Representative quantitative
l3C NMR trace of P(dPS-b-MMA) for

determination of block copolymer composition where one block is deuterated.
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which is used as calibration standards. Therefore, the GPC chromatogram of the purified

diblock serves only to prove removal of homopolymer and DPE as well as provide an

estimate of the polydispersity. The molecular weight of the diblock copolymer can only

be calculated using the ratio of styrene to methyl methacrylate as determined by *H NMR

(Figure A. 10). The peaks of interest in the 'H NMR are the aromatic protons (6.0-7.5

ppm) and the methacrylate protons (3.6 ppm). If deuterated styrene has been used in the

synthesis of the polystyrene block, >H NMR is now useless in determining copolymer

composition, and therefore a quantitative
13C experiment must be conducted. An

example of a quantitative
13C experiment is shown in Figure A.l 1. The peaks of interest

are the carbonyl carbon (-180 ppm) and the aromatic carbons (-125-130 ppm).

A.6. Synthesis of Fluorescentlv Labeled Polystyrene

The synthesis of anthryl- and phenanthryl-label polystyrene was performed to

supplement the research efforts of the Watkins research group. The project was to

explore the diffusion of polymers across interfaces while exposed to supercritical C02

investigated by non-radiative energy transfer (NRET) experiments. The synthesis of

these polymers proved to be more involved than initially expected, requiring the

synthesis of unique monomers. These monomers were derivatives of diphenylethylene

with one phenyl group being replaced by either an anthryl- or phenanthryl-moeity.

Diphenylethylene (DPE) is known to not undergo homopolymerization under anionic

conditions, therefore DPE and its derivatives can be used as capping agents in living

anionic polymerization to yield the end-functionalized polymer. This section will

illustrate the small molecule chemistry involved in the synthesis of the fluorescent
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monomers, as well as the inclusion of these monomers in a capping reaction of

poly(styryl)lithium followed by the purification of the polymer products.

The synthesis of l-(2-anthryl)-l-phenylethylene had been reported.'* The

synthesis of l-(2-phenanthryl)-l-phenylethylene had not been reported, but the 9-

substituted monomer had been " and the 2-substituted monomer was expected to follow

the same chemistry with only minor alterations. The synthetic scheme is shown in Figure

A.12. While 2-acetylphenanthrene was commercially available, 2-acetylanthracene was

not and had to be prepared by Friedel-Crafts reaction of anthracene with acetic anhydride

in the presence of A1C1 3 . This reaction was carried out in nitrobenzene at 15 °C. It

should be noted that Friedel-Crafts acylation results in only single additions to aromatic

rings, which then deactivates the ring to further substitution. Under these conditions, the

reaction favors the formation of the 2-substituted product with the 1- and 9-substituted

products being impurities. These can easily be removed by recrystallization from

benzene/hexanes due to the poor solubility of the 2-substituted product. The purity of 2-

acetylanthracene was checked by 'H NMR, and is shown in Figure A. 13. Prior to

purification, three peaks at 2.7-2.9 ppm, attributed to the 1-, 2-, and 9-substituted acetyl

methyl group, could be observed and only the 2-substituted peak remains upon

purification. The product, 2-acetylanthracene, was then dissolved in warm benzene and

1.5 molar excess of 3M phenylmagnesium bromide was added dropwise via gas-tight

syringe. The solution was refluxed under N2 for 24 hr. The reaction was then poured

into an ice/water mixture and the water layer was extracted with benzene. The organic

layer was dried over magnesium sulfate and rotovaped to yield the alcohol product. *H

NMR showed the presence of the both the alcohol and final, dehydrated product as well.
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Dehydration of the alcohol was accomplished by refluxing in acetic acid for 12 hr to

yield l-(2-anthryl)-l-phenylethylene. The monomer was further purified by

recrystallization from benzene/hexanes. The purity of the monomer was checked by
lH

NMR (see Figure A. 14) and was determined to be -100%.

The synthesis of l-(2-phenanthryl)-l-phenylethylene was carried out in a similar

fashion as the anthryl compound, beginning with treatment of 2-acetylphenanthrene with

phenyl Grignard followed by dehydration of the alcohol to yield the vinyl monomer. The

solubility of the phenanthryl monomer is much higher than the anthryl, which made

purification by recrystallization difficult. Thus, the phenanthryl monomer can only be

obtained at -98% purity as determined by *H NMR (see Figure A. 15).

Preparation of the fluorescently labeled polymers followed the synthesis of

polystyrene homopolymers with the inclusion of the termination with anthryl- and

phenanthryl-substituted monomers. The reaction scheme is shown in Figure A. 16 using

the anthryl-substituted monomer as an example. A typical polymerization proceeded as

follows. Styrene was purified as described in the preceding sections. Polymerization

was initiated in benzene using a calculated amount of sec-BuLi and was allowed to

continue overnight for convenience. During this time, the fluorescent monomers (1.2

molar excess with respect to concentration of chain ends) were added to separate

polymerization flasks that contained 24/40 ground glass joints to facilitate working with

solids. The flasks were heated mildly using heating mantles (-50 °C) overnight under

vacuum. Care was taken not to sublime the materials during this process. Dry benzene

was then added to solubilize the monomers prior to addition of poly(styryl)lithium.
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Figure A. 12. Synthesis of chromophore monomers that contain anthryl (A) and

phenanthryl (B) moieties. Monomer A required synthesis of the starting material, 2-

acetyl anthracene.
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Figure A. 13.
!H NMR of starting material, 2-acetyl anthracene, after purification.
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Figure A.M. ]H NMR of l-(2-anthryl)-l-phenylethylene after purification.
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Figure A. 15. 'H NMR of l-(2-phenanthryl)-l-phenylethylene after purification.
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Figure A. 16. Anionic polymerization of styrene initiated with sec-butyllithium and
terminated with fluorescent monomer (A).

Half of the poly(styryl)lithium solution was then cannulated into the flask containing the

solution of anthryl monomer, while the other half was cannulated into the the flask

containing the solution of phenanthryl monomer. This ensured both the anthryl- and the

phenanthryl-labeled polymers had identical molecular weights and polydispersity. The

experimental setup for the end-capping reactions is shown in Figure A. 17.

The polymerizations were terminated with degassed ethanol, and the polymers were

precipitated in methanol and dried. Since the experiments to be carried out involve the

diffusion of polymer chain ends, any residual monomer trapped in the polymer upon

precipitation could lead to erroneous data and misinterpretation. Therefore, it is vital that

all residual monomer be removed from the polymer before any experiments are

conducted. Purification of the polymers was achieved by reprecipitation, with the

expectation that most of the monomer will remain in the THF/methanol mixture upon

precipitation. The polymer was dissolved in THF and precipitated in methanol several

times until no residual monomer was detected. This purification method was followed by

GPC, as shown in Figure A. 18 and A. 19 for the anthryl- and phenathryl-capped

polymers, respectively. The monomers elute at -31 minutes in the chromatograms (the

internal standard, toluene, elutes at -32 minutes). It can be seen that after three
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reprecipitations all residual monomer is removed. It should also be noted that these

samples contain a small amount « 1%) 0f the coupled dimeric product (PS-PS), but its

presence should not affect the experiments to be conducted.
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Anthryl monomer Phenanthryl monomer

Figure A. 17. One-batch reaction for synthesizing both anthryl- and phenanthryl-labeled

PS having exactly the same molecular weight and polydispersity.
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Figure A. 18. GPC chromatogram of PS-Anth showing the removal of residual anthryl

monomer by reprecipitation.
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Figure A. 19. GPC chromatogram of PS-Phen showing the removal of residual

phenanthryl monomer by reprecipitation.
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APPENDIX B

FOAMING OF THIN FILMS / TRSAXS

size

B.l. Introduction

The use of supercritical carbon dioxide (SC C02 ) in producing microcellular

foams has gained acceptance not only in the academic realm but also in the industrial

sector. But one critical question arises when contemplating the adaptation of SC C0 2

foaming to more intricate and demanding applications such as the production of low

dielectric thin film materials. That question concerns the possible limitations in si

scales of the porosity attainable using SC C0 2 as a blowing agent. Two approaches will

be discussed in this section that seek to better understand the foaming process in general

and aim to quantify the critical length scales that are dominant when striving to foam

smaller and thinner materials. The first approach will be to investigate the foaming of

polymer thin films in order to ascertain the critical thickness at which pore formation

becomes impossible. The second will be to observe the nucleation and growth of pores

via small angle x-ray scattering (SAXS).

It has been well established that rapid decompression of a SC C02 / polymer

mixture results in a microcellular foam encased by a nonporous skin. 13 The formation of

the nonporous skin has been attributed to the rapid diffusion of C02 from the free surface

of the sample, resulting in a depletion layer where nucleation of pores cannot occur. It

has also been shown 1 (Figure B.l) that the thickness of this nonporous skin decreases as

the saturation pressure increases, reaching a minimum plateau at pressures above 4000

psi (27 Mpa). It has been experimentally observed in our labs that the skin thickness
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Figure B.l. Effect saturation pressure on the skin thickness of bulk PMMA foaming

using SC C02 . The solid line is a model prediction. 1
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decreases with increasing foaming temperature in bulk samples. This is counterintuitive

since the diffusivity of C02 increases with temperature and therefore should result in a

thicker depletion layer. But the average cell diameter increases with increasing

temperature, so the surface of the sample will be forced to increase in area to

accommodate the increasing volume of the sample. Therefore, it is impossible to

estimate the actual depletion region due to the large expansion of the sample subsequent

to depressurization. This depleted layer (skin) has been observed to range in thickness

from 100 urn down to 2 Mm. The high diffusion coefficient of SC C02 (D = 2.44 x 10"6

cm2
/s = 244 nm2

/s) will be problematic when trying to foam materials that are thinner

than the thickness of this nonporous skin. The experiments to be conducted will involve

mapping out the pressure and temperature effects on the foaming of polymer thin films.

Confinement of the films between a gas barrier such as a metal layer should circumvent

the problem of diffusion of C02 from the free surface and will be studied subsequently.

The second set of critical parameters to be studied is the nucleation and growth of

pores in the SC foaming process. Goel and Beckman2 applied classical nucleation theory

to the supercritical foaming process in order to develop a model predicting the effects of

temperature and pressure on the resulting cellular structure. In their derivation, it was

shown that the critical nucleus size could be given by the following equation:

2y
r
c
=— (1)

' AP

where rc is the radius of the critical nucleus, yis the surface energy of the bubble

interface, and AP is the pressure drop in the system. Using this equation, the critical

radius can be calculated as a function of C02 pressure for homogeneous nucleation in a
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Figure B.2. Critical radius for homogeneous nucleation as a function of saturation
pressure in a PMMA/C02 system undergoing a rapid pressure quench.2
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PMMA/CO, system as shown in Figure B.2. For pressures above 2000 psi (13 MPa)

there is U«le dependenee of the erUica, radius on Che C02 pressure, and in addition ,he

model predicts a critical radius on the order of 1 5 - 30 A. If this is indeed true, the

nucleation process should be detectable by SAXS, and the growth of these pores could be

followed over a reasonable , range. In order to follow the early stages of nucleation and

growth, experiments will require use of a synchrotron source for x-rays, which will

provide a high intensity of x-rays that enable time-resolved experiments to be conducted

while maintaining reasonable signal-to-noise ratios. A series of pressure quenches (AP)

will be conducted at different temperatures, and the scattered intensity will be recorded as

a function of time after the pressure quench (time-resolved SAXS). The scattered

intensity will be analyzed by methods developed by Guinier, which allows for the

extrapolation of a critical radius of nucleation as well as the growth rate of the pores.

Several reviews and texts are dedicated to SAXS and data analysis."-'
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B.2. Experimental

B.2.1. Sample Preparation

Films of polystyrene (Mn - 147K, pdi - 1 .03) were solution cast onto glass slides

(25 mm x 75 mm) from THF. The glass slides were cleaned with ethanol and dned with

compressed air prior to solution casting. The concentration and total volume of the

solution were used to control the final dry film thickness. Films were removed from the

glass slides by scoring the edges of the slides and gently sliding a razor blade underneath

the film. The films were then placed on larger glass slides (50 mm x 75 mm) to facilitate

annealing. Samples were annealed under vacuum by gradually increasing the

temperature of the oven until the samples were above T
g . Annealing above T

g ensures

complete removal of residual solvent and allows for relaxation of internal stresses in the

film. Digital calipers were used to measure the actual film thickness of each sample

within an accuracy of 0.1 urn. The thickness of each sample was measured at six points

across the sample and then averaged to yield the thickness reported. Each film was then

divided into smaller samples (dimensions - 7 mm x 25 mm) by cutting across the width

of the film.

Thin films of polystyrene (t < 10 u,m) were prepared by using a drawdown

method on silicon wafers. Judicious choice of solution concentration and drawdown bar

allowed for precise control of the dry film thickness. Films were dried at 80 °C under

vacuum for several days to remove residual solvent. The thickness of each film was

measured using a Dektak Profilometer (Veeco Instruments) by scratching the film with a
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razor blade and measuring the step height. The films were removed by floating them off

in water and placing them on glass slides for drying.

Confined films were prepared by evaporating aluminum on one or both sides of

free standing films. While almost any metal could have been used as a gas barrier,

alummum was chosen due to its ease of evaporation. Approximately 300 A of aluminum

was used to coat the samples.

B.2.2. Foaming of Thin Films

Films prepared by either solvent casting or drawdown method were placed in a

high-pressure view cell. The view cell is shown schematically in Figure B.3 (a). This

cell was used in order to maintain the films in a horizontal position throughout the

experiment. Multiple samples could be placed in the view cell, allowing for rapid

surveying of multiple film thicknesses under exactly identical foaming conditions. The

view cell was filled using an ISCO syringe pump to the desired pressure while being

maintained at the experimental temperature. The time required to reach equilibrium

uptake of C02 will be greatly diminished due to the short path length the C02 must travel

in the thin films. Therefore, soak times of 1 h were used in all experiments unless noted.

If the films were metallized on both sides, the path length becomes much greater since

the C02 can only diffuse in from the edges of the sample, therefore the soak time was

increased to 24 h for those samples. At the end of the soak period, the pressure was

rapidly released at which point the samples would foam, and the samples were recovered.

Qualitative analysis of the sample proved whether or not the sample foamed simply by
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observing the opacity of the sample. The foams were further characterized by scanning

electron microscopy (SEM) of the cryo-fractured surface.

B.2.3. TRSAXS

Small-angle x-ray experiments were conducted on the AP-PRT Beamline X27C at

the National Synchrotron Light Source (NSLS) at Brookhaven National Labs, Upton,

NY. The beam had an energy range of 6 - 20 kcV, energy resolution (AE/E) of 1 . 1% at

9.5 keV, and a photon flux of 10
12

photons/s. A high-pressure x-ray scattering cell was

built to conduct these experiments, and is shown schematically in Figure B.3 (b). One

requirement for the cell was it had to have diamond windows for high x-ray transparency

and the ability to withstand high pressures. Samples of polstyrene (M„ - 85K, pdi -
1 .02)

were compression molded as described in Chapter 1. The thickness of the samples was

0.5 mm and the cell volume was less than 3 mL. The cell was filled using an ISCO

syringe pump to the desired pressure while being maintained at the experimental

temperature. After a given soak period (45 min), the pressure was released via an

external trigger connected to a solenoid valve in-line with the x-ray cell. The trigger also

signaled the computer to begin data acquisition. The scattered intensity was measured

using a 1-D gas-filled wire detector due to its fast response time. The number of counts

on either side of the main beam could be added together since the scattering should be

isotropic. This allowed for a doubling of the total intensity to be analyzed and boosted

the signal-to-noise ratio. Background scans were performed just prior to release of

pressure on each sample and were later subtracted from the data.
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(a)

Figure B.3. Schematic drawings of (a) the high-pressure view cell used in the foam
thin films and (b) the high-pressure x-ray scattering cell with diamond windows.
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B.3. Results and Disnnsginn

B.3.1. Foaming of Thin Filmc

A series of films ranging in thickness were prepared either by solvent casting or

by a drawdown method. These films were then subjected to rapid decompression under a

variety of experimental conditions. Initial expenments were conducted with the intention

to quickly survey the conditions that were optimal for foaming of very thin films.

Experiments were conducted at two pressures (3000 psi and 8000 psi) and over a range of

temperatures (40 - 100 °C). The simplest method to ascertain whether or not the sample

had foamed is to examine the film for opacity. If the sample becomes opaque (i.e.

scatters visible light) then it can be safely assumed that the film has foamed. It must be

understood, though, that this simple visual test indicates the presence of pores large

enough to scatter light; the presence of pores smaller than the wavelength of light cannot

be detected using this method, and supplemental analysis must be performed (e.g. SEM,

FESEM).

The results of these experiments are tabulated in Table B.l. Along with the

foaming conditions and the film thickness, the samples are labeled as follows: y denotes

the sample was opaque by visual inspection, 'n' denotes the sample was clearly not

opaque, and indicates that the film was hazy but not completely opaque. Those

samples labeled with were taken as the cutoff point in film thickness below which the

films were too thin to foam under the experimental conditions. Initially, the

depressurization of the high-pressure cell was over a period of 6-8 seconds in order to

alleviate the formation of dry ice, which results from the rapid cooling of the C02 as it
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.1. Foaming of free standing thin films under various conditions.

P=3000 n<ii
1 11 Um - y

T"> flAAAP=8000 psi 14 um - n P=8000 psi 60 um - y
T=40 °C 78 pirn - y T=40 °C 6 um - n T=80 °C 14 um -

y
41 um - ~

5 um - n 10 um - y
10 um - n 4 um - n 9 um - y
8 um - n 3 um - n 8 um - y

P=3000 psi

6 um - y

80 um - y P=8000 psi 60 um - y 5 jxm - ~

T=60 °C 40 um - ~ T=60 °C 14 um - y 4 jim-n
11 u.m - n 6 um— 3 [im - n

6 um - n 5 um - ~

P=3000 psi 80 um - y P=8000 psi 80um-y 1 I P=8000 psi 4 ^im - y
T=80 °C 30 urn - y T=80 °C 32 um - y T=80 °C

a
3 Jim - y

10 um - ~ 10 um - ~ 2 Jim - y

7 um - n 7 um - n 1 Jim - n

used rapid decompression (neglect the fact that dry ice forms in HP vessel due to

temperature drop)
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expands. Utter experiment (as noted in Table B.l) employed an extremely rapid

depressurization (2-3 sec) and ignored the fact that dry ice forms withm the high-pressure

view cell.

As expected, an increase in saturation pressure allowed for foaming of thinner

films. The thinnest films that could be foamed at 3000 psi was -10 urn, while films as

thin as 5m could be foamed at 8000 psi. This is due to the increase in nucleation

density and a corresponding decrease in skin thickness with increasing pressure as shown

by Goel et aU Utilizing the extremely rapid depressurizat,on further lowered the limiting

film thickness, allowing for the foaming of films with thicknesses of 2 urn. This is the

thinnest film that could be foamed in these experiments. It was shown that a 1 urn film

could not be foamed under identical conditions, and free standing films thinner than 1 um

could not be handled easily.

Increasing the foaming temperature resulted in the ability to foam thinner films at

both pressures studied. At 3000 psi, an increase in temperature from 40 °C to 80 °C

pushed the foaming limit from 40 um to 10 um. Similar results were seen for 8000 psi.

This could be due to the decrease in viscosity of the substrate with increasing

temperature, lowering the barrier for cell growth. An increase in temperature also results

in a decrease in C02 density (see Figure 1.2), but it is unclear how a decrease in C02

density would affect the nucleation and growth of pores in thin films.

Several of the thin film foams were characterized by scanning electron

microscopy (SEM). Figure B.4 shows SEM micrographs of films foamed at 40 °C and

3000 psi. The 172 \xm sample clearly foamed similarly to a bulk sample under these

conditions.6 Thinner films begin to deviate from what is typically observed for bulk
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samples. The 78 um sample exh.bits smaller cells and a decreased nucleation density.

This can be expected since more C02 is able to diffuse from the free surfaces, thus

leaving less CG2 for nucleation and growth of pores. The 41 um sample was deemed the

cutoff between foamed and unfoamed samples, and it is clear from the SEM micrograph

that this is indeed a justified conclusion. The pores are very sparse and are on the order

of 1 urn in diameter. Similar results are seen for foaming conditions of 3000 psi and 60

°C SEM micrographs of samples prepared under these conditions are shown in Figure

B.5. Again, the pore diameters approach ~1 - 2 urn for the thinner films. Included in the

figure is a SEM micrograph of the 1 1 um sample. The majority of this sample indeed

had not foamed, but interestingly a few pores could be found along the sample's edges,

indicating that some heterogeneous nucleation occured at the interface in contact with the

glass slide support.

The results of the previous experiments indicate that films below 2 um cannot be

foamed by the decompression of C02 . Therefore, the next set of experiments explored

the foaming of constrained films of polystyrene. Samples of different thicknesses were

prepared having aluminum evaporated on either one or both sides of the samples. This

metal layer should act to negate diffusion of C02 from the free surface, trapping the C02

in the interior of the film. The drawback to doing this is that longer soak times must be

used to allow for C02 diffusion into the sample from the unmetallized edges of the

sample. Shown in Figure B.6 are foams prepared from three metallized films: (a) 100 um

metallized on only one side, (b) 100 um metallized on both sides, and (c) 50 urn

metallized on both sides. Metallization on only one side of the sample does not appear to

drastically enhance the foaming characteristics of the 100 u,m sample (compare to the 80
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(b)

(c)

Figure B.4. SEM micrographs of fracture surfaces of unconfined thin film foams: (a) 172
[im, (b) 78 u,m, and (c) 41 u.m. Foaming conditions were 40 °C and 3000 psi.
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Figure B.5. SEM micrographs of fracture surfaces of unconfined thin film foams: (a)

u.m, (b) 40 fim, and (c) 1 1 ^m. Foaming conditions were 60 °C and 3000 psi.
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(a)
(b)

(c)

Figure B.6. SEM micrographs of fracture surfaces of confined thin film foams: (a) 100
Urn M/F, (b) 100 jum MM, and (c) 50 jim MM. Foaming conditions were 40 °C and
3000 psi. M denotes metallized surface and F denotes free surface on each side of the
film, respectively.
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m samp,e in Flgure B.4 (b), In marked contrast
, ,he fj|ms^_ ^^

sides exhibited an increase in both ce„ density and ee„ d,ame,er. Another noteworthy

point is that there does no, appear to be any differences in the cellular strueture of the 100

Hm and 50m samp,es when constrained on both sides by a metal. Thus by metalHzing

•he surface of the films, we have eliminated diffusion of C02 from the free surface,

forcing the CO, to undergo nucleation and growth. Therefore, both films have equal

amounts of CQ2 upon foaming and the resulting cellular structure in each sample is

identical

Next, samples were prepared that had metal on one side and only half of the other

side. This would allow a single experiment to be conducted on one sample in order to

study the effect of metallization on only one (M/F) or both sides (MM) of the film

concurrently. The process is outlined in Figure B.7. This greatly reduces the number of

samples needed as well as reduces the characterization time for each sample. This

slow solvent casting

remove from glass slide

, r
and evaporate Al

Figure B.7. Schematic illustrating film preparation having a metallized layer on one
complete side of the film, but only on half of the opposite side.
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method will a,so provide insight as to what happens at the boundary between the two

regions of the sample.

SEM myographs of three samples (100 Mm, 50 urn, and 10 m) prepared by this

method are shown in Figures B.8 - B. 10. Foaming eonditions were 80 °C and 8000 psi.

The SEM micrograph of a bulk sample foamed under tdentical condihons is shown in

Figure B.l 1. The regton of eaeh sample that is confined on both s.des by aluminum

possesses cell densities and cell diameters that are comparable to the bulk sample. On the

other hand, the region of each sample that is confined on only one side of the film

appears to foam in a somewhat anomalous fashion, having a high denstty of very small

cells. Similar results are seen for all three samples, indicating that this effect is real and

reproducible to some extent. A clear transition regton can been seen in SEM, traversing

from the M/F regton to the M/M region. It is not clear why this behavtor is observed.

But it is clear that metallization of the film on both sides can effectively increase the

concentration of C02 remaining mside the film by eliminating diffusion of C02 from the

free surface. Thus, films prepared in this fashion exhibit a cellular structure identical to

bulk samples under the conditions explored here.

213



Figure B.8. SEM micrographs of fracture surfaces of a 100 ujn confined thin film foam
that has been metallized on one side only (top image) and metallized on both sides

(bottom image), along with the transition region. Foaming conditions were 80 °C and
8000 psi.
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20KU X4888 0661 1.8U JEOL

Figure B.9. SEM micrographs of fracture surfaces of a 50 u.m confined thin film foam
that has been metallized on one side only (top image) and metallized on both sides
(bottom image), along with the transition region. Foaming conditions were 80 °C and
8000 psi.
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Figure B.10. SEM micrographs of fracture surfaces of a 10 u,m confined thin film foam
that has been metallized on one side only (top image) and metallized on both sides
(bottom image). Foaming conditions were 80 °C and 8000 psi.
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^ onnn
SEM micr°graPh of the fracture surface of a bulk PS sample foamed at 80C and 8000 psi.
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B,3.2. Kinetics of Foamin g MsSSj by Tiny-v..,^ c
^
v,

Foaming experiments were conducted in the high-pressure x-ray cell illustrated ,n

Figure B.3 (b). The volume of the cell was only a few mL, allowing for rapid

depressurization to be conducted by tnggering a solenoid valve. Samples were prepared

having a thickness of 0.5 pm, therefore reasonably short soak times could be used.

Previous experiments outlined in the previous section indicated that samples of this

thickness would behave similarly to a bulk material under these foaming conditions.

UU experiments explored the effects of foaming pressure as well as foaming

temperature on the scattering pattern observed. Pressure quenches in all cases were taken

to atmospheric pressure (0 psi a ).

Figures B.12 and B.13 display the time-resolved scattered intensity as a function

of q for pressure drops of 2000psi, 3000 psi, 4000 psi, and 5000 psi, all at a temperature

of 40 °C. The raw scattering data has been normalized by background subtraction and 5-

point smoothed. In all cases, the scattered intensity increases with increasing time for the

range of 0.01< q < 0. 1
.
For a AP of 5000 psi, the scattering data quickly reaches an

upper limit within 10 seconds, after which no change in the scattered intensity can be

seen. A AP of 2000 psi shows the greatest degree of time-dependence of the scattering

data, showing good resolution almost 60 seconds after depressurization. Increasing the

foaming temperature to 50 °C produces similar results with regard to pressure

dependence but the time-scales are considerable shorter, as shown in Figures B.14 and

B.15. Since the acquisition times were reduced to 0.1 seconds in these cases, there is

considerably more scatter to the data, even after 5-point smoothing, but the trends are the

same as seen in the experiments at 40 °C.
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85k33 - 2000 psi - 40°C

q (1/A)

Figure B.12. Scattered intensity as a function of q for pressure quenches (AP) of 2000 psi

and 3000 psi at 40 °C.
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Figure B.13. Scattered intensity as a function of q for pressure quenches (AP) of 4000 psi

and 5000 psi at 40 °C.
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85k37 - 2000 psi - 50°C

^
normalized and smoothed (5-point)

0.01

0.1

q (1/A)

85k36 - 3000 psi - 50°C
normalized and smoothed (5-point)

0.01
0.1

q (1/A)

Figure B.14. Scattered intensity as a function of q for pressure quenches (AP) of 2000 psi
and 3000 psi at 50 °C.
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Figure B.15. Scattered intensity as a function of q for pressure quenches (AP) of 4000 psi
and 5000 psi at 50 °C.
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The scattering data was analyzed by several methods. Guinier firs, described the

scattering front a dtlute. monodtsperse system of randomly oriented, isolated partic.es as

function of scattering angie. This universal law is known as Guinier's Law and can be

described as follows:

/<«)«/.«*-S^l)
(2)

where / is the scattered intensity, l0 is the total incident intensity, q is the scattering vector

(q = MX sin (0/2)), and R is the radius of the scatterer. By this equation, plotting ln[%)]

vs. q
2
should give linear curves having slopes of -*2

/3. Departure from linearity can

occur at higher q due to deviation from a monodisperse system of scatterers. Guinier'

Law should also be applied to systems only when qR<\. A Guinier plot of the

scattering data collected for AP = 2000 psi at 40 °C is shown in Figure B.16. The data is

linear over the q range shown, but there is no apparent change in slope of the curves with

increasing time after depressurization. A model Guinier plot is also shown in Figure

B.16 for a critical radius (Rc) of 30 A and a growth rate of 15 A/sec. It is immediately

obvious that the real data are not capturing any nucleation and/or growth of pores in these

experiments. The data was also analyzed by fitting to Porod as well as Debye-Buche

scattering laws, with little success. Fractal scattering was also explored in data analysis

but there is no direct evidence that the porosity is fractal in nature.

Illustrated in Figure B.17 are two possible mechanisms for pore formation in

these experiments. Mechanism (a) corresponds to the original expectations from these

experiments: formation of a critical pore size, followed by growth of these pores with

time. The scattering data strongly suggest that this in not the case. We propose a

different mechanism for generating the observed scattering data. It is conceivable that
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the rate of pore ronton is coo rap.d t0 be de.ected even by TRSAXS, and we are

dense SC fluid phase u> a gas. This ,s i„ustriated in Figure B „ ^^^^
porosttv is formed a.nrost .mmediateiv and the o„,y observabie changes are the difference

in eiectron densities (Ane) between the pores and the matrix. This expianation

sufficiently agrees with the scattering data.

Conducting foaming expenments in the view cell equipped with an external

digital camera and monitor further supported these conclusions. The view cell (Figure

B.3 (a)) was turned on its side so that the sapphire windows were horizontal, and the

digital camera was placed below the bottom sapphire window while the cell was

illuminated through the top sapphire window. Samples could then be placed on the

bottom sapphire window and were directly visible through the window with the digital

camera. Bulk samples of PS were placed in the view cell, and C02 was introduced via

the ISCO pump to the desired pressure (5000 psi) at the elevated temperatures (50 °C).

After a soak period of 3 h, the view cell was vented to atmospheric pressure (AP - 5000

psi). As observed through the video monitor, the sample became instantaneously opaque,

indicating that the size of the pores was already larger than the wavelength of visible

light. Similar experiments were conducted with the variation of adding an isolated dead

volume that the cell could be vented against, thus controlling the depth of pressure

quench. Again, a sample was soaked in C02 at 5000 psi at 50 °C for 3 h. The view-cell

was then vented against the dead volume, resulting in a pressure quench from 5000 psi to

3000 psi (AP - 2000 psi). Again, the sample became immediately opaque. These

experiments indicate that the foaming process is happening on time scales that are too
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q
2
(1/A

2

)

Figure B. 16. Guinier plot for a pressure quench (AP) of 2000 psi at 40 °C. Included is

model Guinier plot for a growth rate of 15 A / sec.
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Figure B.17. Schematic illustrating two possible mechanisms for pore formation defined

in terms of electron densities.
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rap,d ,o be observed even bv TRSAXS. So ,hese experts reinforce the notion ,hat

the scattering experi-nents are not captunng the growth of pores, bu, simply foNowing ,he

change in electron dens.ty as CG2 undergoes the transition from a dense SC fluid ,o a gas

B.4. Conclusions

Experiments were designed to probe the critical length scales and dimensions in

the foaming of polymers using SC CO, A survey of thin film foaming was conducted,

and results indicate that films greater than -100 urn behave very similar to bulk samples

Experiments suggest that rapid diffusion of C02 from the free surface severely hinders

the ability to foam films less than 10m thick. Conditions were optimized to test the

minimum film thickness that can be foamed, and at 8000 psi and 80 °C that limit was

determined to be 2 Um. Confinement between a gas barrier such as an evaporated layer

of aluminum was shown to enhance the foaming ability of thin films by prohibiting

diffusion of C02 from the free surface. This comes at the expense of requiring longer

soak times to allow diffusion of C02 into the sample from the unconfined edges of the

film.

TRSAXS was explored as a technique to study the nucleation process and growth

rate of pores in SC foaming. Scattering data was obtained over a range of pressure

quenches and at two temperatures. The data was analyzed by methods developed by

Guinier, Porod, and Debye-Buche, as well as fractal scattering. The scattering curves

failed to obey any of these universal laws. It was concluded that the experiments failed

to capture the nucleation and growth process, and the data simply reflected the transition

of the SC C02 from a dense fluid to a gas, and the accompanying change in electron
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density/contra This conCusion was further tested by foments conducted in . view
ce„ whi.e moni tori„g the transm,ssion,abs0rbe„cy of visiWe Ugh, !„ these expends
the samp,es became instantaneous,, opaoue indicating the size of the pores was ahead,
on the order of the waveiength of iight. Thus , g0lng back (0^^
the pore size quickly grew «o the order of miero„s, too iarge to be detectable by K-rays.

The data only reflect the change in eiectron densi,y/con,rast of the system as the C02

diffuses out of the sample.
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APPENDIX C

SUPPLEMENTAL DATA FOR CHAPTERS 2 AND 3

C.l. XPS Data for Polymer AdgogtifflU^^

Table C.
1 XPS data (75° take-off angle) for surfaces modified with Tris(TMS)phase reaction for increasing amounts of time

( } via vapor

Sample atomic concentrations (%)

clean Si

Tris(TMS) V* h

Tris(TMS) Vi h

Tris(TMS) 1 h

Tris(TMS) 4 h

Tris(TMS) 24 h

Tris(TMS) 59 h

Tris(TMS) 72 h

Tris(TMS) 93 h

c 0 Si

7.54 43.25 49.21

7.92 42.16 49.92

7.61 43.75 48.64

10.14 43.25 46.61

11.06 42.59 46.35

11.83 42.75 45.42

10.96 42.01 47.03

11.10 41.57 47.33

12.95 41.28 45.77

N
thickness

nm

0

<0.1

0.1

0.3

0.4

0.6

0.7

0.7

0.8
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**» f" «"*«*»^ •» Tris(TMS)/ABDMS

sample

clean Si / ABDMS

Tris(TMS) 1 h / ABDMS
Tris(TMS) 4 h / ABDMS
Tris(TMS) 24 h / ABDMS
Tris(TMS) 72 h / ABDMS

atomic concentrations
(%) thickness

c 0 Si N nm

26.93 33.20 38.15 1.71 1.0

29.34 31.80 36.76 2.09 1.2

30.44 32.45 35.14 1.97 1.5

26.33 34.22 37.93 1.52 1.1

26.10 34.31 38.45 1.13 1.0

Table C.3. XPS data (75° take-off angle) for 1 IK PS-COOH adsorbed from toluene tosurfaces mod,f,ed w.th Tris(TMS) via vapor phase reaction for increasing amounts or

samPle atomic concentrations (%) thickness

O Si

clean Si 50.11 25.79 24.10 2.3

Tris(TMS) Vi h 31.65 32.54 35.81 1.3

Tris(TMS) 1 h 32.79 31.92 35.28 1.2

Tris(TMS) 4 h 33.36 30.33 36.31 1.0

Tris(TMS) 24 h 23.31 36.73 39.96 0.8

Tris(TMS)51 h 21.58 36.39 42.03 0.5

Tris(TMS) 72 h 20.17 37.52 42.31 0.4

Tris(TMS) 93 h 14.93 39.41 45.66 0.2
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Table C.4. XPS data (75° take-off angle) for 1 IK PS mnu a u
(35 °Q to surfaces modified with Tris(TMS via vL^ u

*
dS°™ fr°m cycl°hexane

amounts of time
( } VIa Vapor Phase reacti°n for increasing

sample

C 0 Si

clean Si 67.98 13.89 18.13

Tris(TMS) 1 h 58.59 18.23 23.18

Tris(TMS) 4 h 58.00 18.77 23.23

Tris(TMS) 24 h 34.66 29.81 35.52

Tris(TMS) 72 h 32.31 31.35 36.34

N
thickness

nm

3.4

2.4

2.3

0.9

0.8

Table C.5. XPS data (75° take-off angle) for 41K PS-COOH adsorbed from toluene tosurfaces modified with Tris(TMS) via vapor phase react.on for increasing amounts of

sample

C

atomic concentrations (%)

0 Si N
thickness

nm

clean Si 23.58 37.15 39.27 1.3

Tris(TMS) 1 h 24.37 35.98 39.65 0.8

Tris(TMS)4h 21.89 36.30 41.81 0.6

Tris(TMS) 24 h 17.17 39.17 43.66 0.5

Tris(TMS)51 h 17.98 39.35 42.68 0.5

Tris(TMS) 72 h 18.88 38.83 42.29 0.4
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Table C.6. XPS dala (75° take-off angle) for 1 1 K PS rmu a u ,
surfaces modified with Tris(TMS)/ABDMS via vapor^te^reacHmh ™ '°

sample

clean Si / ABDMS

Tris(TMS) 1 h / ABDMS
Tris(TMS) 4 h / ABDMS
Tris(TMS) 24 h / ABDMS
Tris(TMS) 72 h / ABDMS

atomic concentrations (%) thickness
c 0 Si N nm

42.30 26.83 29.47 1.40 0.9

42.90 25.53 30.10 1.47 0.8

50.76 21.81 25.81 1.62

34.02 30.01 35.13 0.83 0.3

31.23 31.59 35.98 1.20 0.2

Table C.7. XPS data (75° take-off angle) for 1 1 K PS-COOH adsorbed from THF tosurfaces modtfied w,th Tris(TMS)/ABDMS via vapor phase reaction.

sample atomic concentrations
(%) thickness

C O Si N nm

clean Si 30.14 33.03 35.14 1.7 0.4

Tris(TMS) 1 h 28.88 33.09 36.38 1.66 0.1

Tris(TMS) 4 h 30.14 33.43 34.82 1.61 <0.1

Tris(TMS) 24 h 27.40 33.95 37.16 1.50 <0.1

Tris(TMS) 72 h 20.62 36.48 42.22 0.68 <0.1

233



C2. XPS Data for Protein AHc2TtjaiU^jl modified SnHWe

Sff^SSSlSr* ang'e) ««~«- surfaces befo,, a„d

sample
atomic concentrations (%)
0 Si ForS N

C 18 SAM 42.44 29.55 28.00

C, 8 SAM/BSA 51.45 24.51 18.87 S 17J. 1 /

C I8 CAM 21.54 36.34 42.12

C I8 CAM/BSA 39.77 27.67 28.64

C8Fi3 12.11 35.81 41.39 10.70

C8F I3 w/BSA 27.02 30.83 31.79 6.77 3 58

—

TMS 10.17 42.12 47.72

TMS w/ BSA 34.82 29.37 30.44 5 37
TPS 13.27 42.16 44.57

TPS w/ BSA 32.93 30.59 30.02 6.47

APS 14.28 37 91 to.JJ 1.27

APS w/ BSA 39.19 28.03 26.66 6.12

TFP 10.42 40.72 44.96 3.91

TFP w/ BSA 44.51 25.58 23.13 1.84 4.95

Acetoxy 10.57 42.80 46.63

Acetoxy w/BSA 36.18 30.13 27.64 6.05

Carbomethoxy 17.69 37.91 44.40

Carbomethoxy w/ BSA 36.87 26.43 29.70 7.00

DMDC 13.36 40.45 46.20

DMDC w/ BSA 32.68 30.51 31.64 —

•

5.16

PEG 14.31 36.22 48.37 — 1.10

PEG w/ BSA

-continued next page-
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Table C.8. continued.

sample

C
atomic concentrations (%)
0 Si ForS

MPTES
28.68 33.99 30 55 ft 7Qu. /y

MPTES w/ BSA 45.28 25.52 19.46 3.95
MPTES-SO3H 32.02 33.75 27.78 6.45
MPTES-SO3H w/ BSA 36.07 31.35 23.23 5.00
TVS-OH

11.66 41.24 47.09

TVS-OH w/ BSA 1 24.57 33.12 37.04

clean Si 9.77 40.48 49.75

clean Si / BSA 16.28 36.70 46.44

N

5.79

4.34

5.27

0.58

C 18 CAM - octadecyldimethychlorosilane

DMDC - dimethyldichlorosilane

TFP - trifluoropropyldimethylchlorosilane

Abbreviations:

Ci 8 SAM - octadecyltrichlorosilane

TMS - trimethylchlorosilane

TPS - triphenylchlorosilane

C8F I3 - (tridecafluoro- 1 , 1 ,2,2-tetrahydrooctyl)dimethylchlorosilane

APDMS - aminopropyldimethylmethoxysilane

Acetoxy - acetoxypropyldimethylchlorosilane

Carbomethoxy - carbomethoxydecyldimethylchlorosilane

MPTES - mercaptopropyltriethyoxysilane

MPTES-S03H - MPTES oxidized to the corresponding sulfonate (S03H) using H202

PEG - isocyanopropyldimethylsilyl monolayer reacted with PEG40o at 70 °C for 4 days

TVS-OH - trivinylchlorosilane oxidized to the tri-ol using BH3
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SaT«C£ ,ake-°ff a"gte) fM™S<™S
> -ed surfaces before and after

sample

Tris(TMS) 72h w/ BSA 40.43

atomic concentrations (%)
0 Si ForS

Tris(™S > lh H.41 43.45 45 14

Tris(TMS)lhw/BSA 36.38 29 85 27 71

Tris(TMS) 24h 8 .70 42JS ^.52
Tris(TMS) 24h w/ BSA 34.59

Tris(TMS)72h
10 .81 43 i40 4

Tris(TMS) 140h lL99 42 ?3 ^
Tris(TMS) 140h w/ BSA 43.06 26.67 25.17

N

6.05

30.02 29.22 . 6 18

27.88 25.38 - 6<31

5.11

Table C. 10. XPS data (75° take-off angle) for Tris(TMS) / TMS mixed surfaces beforeand after protein (BSA) adsorption.

sample atomic concentrations (%)

C O Si ForS N

Tris(TMS) lh/TMS 11.25 43.19 45.56

Tris(TMS) lh / TMS w/ BSA 37.81 29.69 26.71 5.79

Tris(TMS) 24h / TMS 10.18 42.55 47.26

Tris(TMS) 24h / TMS w/ BSA 38.71 28.89 26.75 5.65

Tris(TMS) 72h / TMS 10.98 42.93 46.09

Tris(TMS) 72h / TMS w/ BSA 39.70 28.51 26.51 5.28

Tris(TMS) 140h / TMS 11.45 43.23 45.33

Tris(TMS) 140h / TMS w/ BSA 34.46 32.14 29.88 — 3.53
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Table C. 1 1
.

XPS data (75° take-off angle) for TrisfTMSl / TVS nu
before and after protein (BSA) adsorption

} °H mUed SUrfaces

sample

C 0

Tris(TMS) lh / -OH 1 1 89 43.03

Tris(TMS) lh / -OH w/ RSA J4.79 30.37

Tris(TMS) 24h / -OH 14.54 41.18

Tris(TMS) 24h / -OH w/ BSA 36.20 29.38

Tris(TMS) 72h / -OH 11.99 42.46

Tris(TMS) 72h / -OH w/ BSA 36.92 29.12

Tris(TMS) 140h / -OH 13.93 41.52

Tris(TMS) 140h / -OH w/ BSA 39.88 28.23

atomic concentrations (%)

Si F or S

45.15

28.59

44.28

28.30

45.55

27.55

44.54

25.99

6.25

6.12

6.42

5.89

Table C.12. XPS data (75° take-off angle) for Tris(TMS) / APDMS mixed surfaces
before and after protein (BSA) adsorption

sample atomic concentrations (%)

C O Si ForS N

Tris(TMS) lh/-NH2 14.73 40.93 43.58 0.76

Tris(TMS) lh / -NH2 w/ BSA 32.79 30.88 29.74 6.59

Tris(TMS) 24h / -NH2 13.55 40.79 45.09 0.57

Tris(TMS) 24h / -NH2 w/ BSA 38.09 28.16 27.05 6.71

Tris(TMS) 72h / -NH2 15.53 41.09 42.91 0.47

Tris(TMS) 72h / -NH2 w/ BSA 36.90 29.23 27.13 6.73

Tris(TMS) 140h / -NH2 13.35 41.24 44.99 0.42

Tris(TMS) 140h / -NH2 w/ BSA 39.22 27.85 26.26 6.67
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