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ABSTRACT

MENTAL ARITHMETIC SKILL AND ITS RELATION

TO COMPLEX MATHEMATICAL PROBLEM SOLVING ABILITY

SEPTEMBER 1997

LOEL N . TRONSKY , B . A . , DARTMOUTH COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James M. Royer

This study had two main objectives. The first was to provide

the reader with a comprehensive account of how it is that a

child is able to develop skills to become mathematically

competent. The second objective was to conduct research that

furthers the current understanding of how mental arithmetic

proficiency is related to higher problem solving abilities in

mathematics. Several studies have been conducted to analyze

this relationship (e.g., Zentall, 1990; Muth, 1985, Balow,

1964) but the studies often suffer from a number of

methodological flaws, the most serious being the assessment

of mental arithmetic ability using imprecise paper and pencil

measures. In this study, students in grades 5 through 8 from

a local middle school were given a mental calculation test

via computer and completed a more complex paper and pencil

math computation and word problem test. It was found that

1.) basic mental calculation speed was a significant

predictor of complex computational and word problem solving

ability and 2.) these relationships changed from 5th to 8th

grade

.
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CHAPTER 1

THE DEVELOPMENT OF MATHEMATICAL SKILL

Introduction

How is it that children become proficient in

mathematics? In order to properly address this question it

is necessary to review theory and research in several areas

of mathematics, beginning with children's concept of number.

One of the first things children must learn to do is count,

and to do that they must know that number names and their

graphemic representation are used to represent quantities.

For instance, children must be able to answer questions like,

"What does it mean to have five pieces of candy, and how does

one arrive at that conclusion?" The first area that will be

examined, therefore, is children's concept of number,

followed by an analysis of how this affects children's

acquisition of the ability to count. Once the ability to

count has been attained, a child can then begin to develop

strategies that enable him or her to mentally add, subtract,

multiply, and divide numbers. Research in the area of

children's strategy use, problem difficulty in arithmetic,

and arithmetic error patterns has led several researchers to

formulate models that attempt to explain how basic arithmetic

facts are stored in long term memory and how these facts are

subsequently accessed. Currently three models dominate the

research literature. I will explain these models in detail

and delineate their strengths and weaknesses.
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Once children have the basic building blocks of

mathematics skill, namely the arithmetic skills mentioned

above, it is important to examine how these fundamental

skills in turn affect other more complex problem solving

abilities in mathematics . Several researchers (e.g.,

Zentall, 1994; Muth, 1984; Geary, 1994) have studied this

phenomenon and have concluded that mental arithmetic

abilities most likely do affect the acquisition of more

complex skills in mathematics. More specifically, these

researchers state that the ability to "automatically" access

arithmetic facts frees up working memory resources that

allows a child to focus on more complex aspects of word

problem solution. Before reviewing the research on the

relationship between mental arithmetic and word problem

solving ability, however, it is necessary to engage in a

discussion about the processes that are involved in word

problem solution, automaticity, and working memory and mental

arithmetic. Finally, upon reviewing the relevant research

that establishes the relationships among working memory,

mental arithmetic abilities, and word problem solving

abilities, the methodology and results of a new study

conducted by the author concerning mental arithmetic and

complex mathematical abilities is reported. Several

methodological problems exist in the study of arithmetic

proficiency and its relation to word problem solving ability

to date, and the study reported in this thesis has addressed
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some of those shortcomings. Let me first, however, describe

how it is that a child becomes arithmetically competent.

Concepts of NmnhRr

Innate Abilities

Several researchers have examined the possibility that

the concept of number is pre-linguistic and have determined

that humans may have the ability to abstractly represent

small numbers immediately after birth (e. g. , Starkey &

Cooper, 1980; Antell & Keating, 1983; Starkey, Spelke, &

Gelman, 1983). Still other investigators claim that infants

as young as 5 months old have an understanding of very simple

addition and subtraction (Wynn, 1992a) and that these innate

abilities are the structure on which later developing number

skills are built (Dehaene & Mehler, 1992; Gelman, 1990).

While research centered around the understanding of a child's

innate mathematical knowledge is interesting, much of it is

still controversial and I have mentioned the above studies

mostly as an aside. I will instead concentrate on older

children's developing concept of number.

Nijmber Words

Before learning to count and hence how to mentally

calculate, a child first must learn the number words used in

his or her language and must learn to what these number words

correspond. A child learns, usually by rote, the number

words in his or her language. By 4 years of age a child in

the U.S. typically has memorized the number words from one to

ten in their correct order (Fuson, 1988). Learning the
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niimber words for numbers above ten proves to be very

difficult for children in the U.S. and other countries with

European based languages (e.g., Fuson & Kwon, 1992b). The

difficulty lies in the fact that the niimber words (in

European based languages) used to represent quantities

between 10 and 100 do not correspond to the underlying base-

10 nuinber system. In contrast, most Asian languages use

number words that do reflect the underlying base-10 system

(e.g., Fuson & Kwon, 1991). For instance, compare the number

word for 18 in Chinese, translated as ten eight, with the

number word in English, eighteen. The number word in Chinese

directly flows out of the base-10 system while the English

equivalent does not.

After learning the number names and sequence of numbers

used in counting, a child must learn the correspondence

between number words and the quantities that they represent--

the mapping of number words onto number concepts. It is then

that a child may begin to learn how to count.

Number Concepts

Children at about three years of age start to use number

names when they count (Gelman & Gallistel, 1978) . Their

first attempts at counting are characterized by a number of

things. First of all, it may be noted that they have trouble

counting even when the quantity to be counted is minimal.

They may even use other labels for quantities such as letters

instead of numbers. Two things do seem to be immediately

apparent in children's initial mapping of number names to
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quantity: they seem to implicitly know that each niimber word

refers to a specific quantity, and that sequence is

significant when counting. Before the age of 3, however,

children still may not know which number refers to which

quantity. Wynn (1992b) has noted that it might take up to a

year of counting experience (from ages 2 to 3 ) for children

to be able to consistently map number words on to

representations of quantity, and even then are probably only

able to do so for small quantities. Gallistel and Gelman

(1992) agree, stating that this mapping may still be

incomplete for four year-olds for numbers less than ten. It

is even more difficult for children in Western countries to

learn the n\jmber words for quantities greater than 10. As

mentioned before, many number words in European based

languages provide no clue as to the underlying base-10 system

of numbering. As Fuson and Kwon (1991) have noted, this fact

also leads to difficulty for children in Western cultures in

conceptually understanding the base-10 number system .

From Number Concepts to Counting

Processes in Counting

To be able to count objects successfully a child must

know more than numbers, what they represent, and their

sequence in counting; they must also be able to perform the

processes of tagging and partitioning of groups of objects.

Tagging refers to assigning an object one (and only one)

number and partitioning refers to the ability to keep track

of those objects that have been counted and those items yet
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to be counted. Tagging and partitioning are activities that

need to be coordinated when counting, and young children

usually perform these two processes by either physically

moving an object from one location to another or (more

advanced) by pointing to the objects as they are counted.

Errors in counting most often are a result of an error in the

tagging/partitioning coordination (Fuson, 1988) as when a

child counts "2, 3, 4," saying "3" without pointing to an

object, or pointing to one object while saying the first

syllable of the word seven and pointing to another while

saying the second syllable of seven. According to Geary

(1994), even though children are prone to errors in these two

processes, they usually arrive in kindergarten with the

ability to count sets of objects, especially smaller sets.

The next two critical abilities in counting are the learning

of cardinality, the concept that the last number tag assigned

is to be used to represent the total quantity of objects

present, and the learning of ordinality, that subsequent

number names refer to larger and larger quantities.

Cardinality

Children at about 3 or 4 years of age usually do not

have an understanding of the concept of cardinality. When a

child of this age is asked to count out a set of objects, he

or she does so but when subsequently asked how many objects

are present he or she will recount them, not understanding

the significance of the last word tag used in the first

count. Some 4 year-olds can answer the second question
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without recounting and seem to show an understanding of

cardinality. Often times these children are using the "say

the last word rule" and do not really understand the concept

of cardinality. If you ask these children to retrieve a

certain number of objects from a box for you they will

typically display no knowledge of cardinality; they will just

grab a handful of items without counting (Wynn, 1990)

.

A complete understanding of cardinality typically does

not occur until about the second grade (Piaget, 1965)

.

Children as young as 4 or 5 can display advanced

understanding of cardinality but are often convinced to

override this knowledge in light of persuasive perceptual

cues such as spreading out the to-be-counted objects (density

cue) and comparing them to the same number of objects with

less space between them (Beck, 1993). It is only at about

age 7 or so that children reliably reject perceptual cues in

determining set size and use their knowledge of cardinality

exclusively.

Ordinality

There is some evidence (e.g., Bullock & Gelman, 1977)

that children as young as 2 1/2 display knowledge of

ordinality in experiments where the memory demands of the

task are minimal and the sets of objects that are compared

are small. The ability to determine the relative quantities

of sets of larger numbers happens much later which begs the

question, is understanding the ordinality of small sets of

7



numbers (2 is less than 3) the same as understanding the

ordinality of larger sets (13 is less than 14)?

Another point to be made is the interconnectedness of

cardinality and ordinality. When older children are given

sets of numbers to make ordinal judgments about they

typically compare the sets by counting the number of objects

in each set and then comparing the counts. A child's ability

to do this is tied to his or her understanding of

cardinality. To count and compare sets of objects a child

must know the quantities of the two sets are represented by

their cardinal values and since this ability does not

reliably emerge until about 7 years of age, ordinality

judgments are also subject to perceptual influences as well.

So the ability to make ordinal comparisons of larger numbers

develops gradually as does the ability to understand

cardinality (Fuson, 1988) .

Now that I have touched on all the concepts a child

needs to become a proficient counter, I would like to provide

an overview of how a typical child's counting ability

develops. I would also like to begin to show how a child's

emerging counting ability has implications in the acquisition

of mental arithmetic skills.

Development of Counting and Its Relation to Ari thmetic

One of the most extensive and coherent developmental

outlines of counting has been delineated by Fuson (1992)

.

Much of her model pieces together what has been reviewed in
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the preceding pages involving children's growing knowledge of

nuitiber, nuitiber concepts, and counting.

In Fuson's model, the first counting sequence level is

what is called the String Level and is characterized by

children counting by saying a string of often

undifferentiated numbers such as "onetwothreefour .
" The next

level is called the Unbreakable List Level during which

children begin to differentiate the number words in a string.

Following this is the children's pairing of objects to words

in a one-to-one correspondence without any understanding of

the cardinality of a number. If you ask a child in this

stage to count a number of objects, he or she will count from

one and pair each niomber with an object until there are no

more objects to be paired. If you ask the child again, he or

she will again start from one and pair objects to numbers

arriving at the number of objects. Youngsters are soon able

to understand the cardinality of numbers by relating the last

number word said in a sequence to the cardinal meaning of the

group of counted objects (Fuson, 1988). At this sequence

level, children are able to add by counting out a number of

objects, counting out another set of objects, and then

finally counting all of the objects, which is called a

counting all adding procedure that will be described in

detail later.

The next level is called the Breakable Chain Level in

which children are able to count from an arbitrary number

word. For example, children can begin to use a "counting all
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starting with the first addend method" for arriving at a sum

(still tied to concrete objects). This method involves

counting out the first addend of a problem and then counting

on the second addend from the end of the first addend to find

the sum.

The Numerable Chain Level is characterized by children

being able to break the association of number names from

objects and work with the words alone to solve addition and

subtraction problems. During this stage the counting on

procedure is used but children can keep a "running tab" to

solve the problem instead of using concrete objects. For

example, if a child is asked to add 2+3, the child can use

his or her knowledge of cardinality to immediately start with

the value 2 and add on by one until the value of the second

addend, 3, is reached, all the while keeping track of the

running sum: "2 plus one is three (one) , plus one is four

(two), plus one is five (three). The answer is five."

Keeping track of this running sum can be accomplished in a

number of ways including using fingers or auditory patterns

in addition to the aforementioned double counting method

(Fuson, 1982)

.

When children reach the final level, what is termed the

Bidirectional Chain/Truly Numerical Counting Level, numbers

finally take on a sequential and a cardinal meaning at the

same time. Children can see all of the pairs of addends that

make up the sum of a number and many children see the

relationship between addition and subtraction, namely that

10



they are reciprocal operations (Fuson, 1992) . At this level

children are able to use the derived fact strategy to solve

addition problems. In the following section I will elaborate

on the derived fact and other counting strategies alluded to

in this section that are used to solve arithmetic problems

and will also discuss how these counting strategies develop

over time.

Counting .'Strategies and Mental Arithmetic

Mental Addition

As mentioned earlier, children employ many different

addition and subtraction counting strategies, and these

strategies can be arranged into a three level developmental

framework (Fuson, 1992) . A summary of these strategies

appears in Table 1 on pages 65 and 66. At the first level,

the strategies of concrete counting all (CCA) and counting

all starting with the first addend (CAF) are ordinarily used

(Fuson, 1992; also Baroody, 1987a) . CCA involves counting

all of one set of objects beginning with 1, counting all of a

second set of objects beginning with 1, and then counting all

of the objects together starting with 1. Children as young

as 3 years of age may be able to use this counting strategy

to add small sets of objects in every day contexts (Geary,

1994) . The CAF strategy involves counting out the first

addend from 1, and then counting the second addend beginning

with the last number stated while counting the first addend.

Often children use these strategies with the aid of fingers,

but eventually mentally keep track of the operations they are

1 1



performing (Baroody, 1984a). In fact, about half of the

simple arithmetic problems that kindergartners encounter are

solved using a verbal, as opposed to finger, counting

procedure (in Baroody 1987b; Geary & Burlingham-Dubree, 1989;

Siegler & Shrager, 1984)

.

At Level II, children invent newer, more efficient ways

to add and subtract numbers. The CAF strategy is abandoned

for a counting on from the first addend procedure (COF) , but

this procedure is employed for only a short period of time

(Baroody & Gannon, 1984; Baroody, 1987a). During this stage,

children have learned about cardinality and can simply take

the first addend without counting up to it and directly count

the second addend on top of it. While using this strategy

does save some mental effort, it involves the same amount of

"mental bookkeeping" as the CAF strategy and therefore is

short lived, if it is used at all (Baroody, 1987a)

.

The next strategy that is used may initially appear to

be a bit of a regression. It is termed a counting all

starting with the larger addend (CAL) (Baroody, 1984b;

Baroody & Ginsburg, 1986). It appears to be a regression

because children ignore the cardinality of the larger addend,

but it turns out to be a more efficient strategy than CAF

because the mental bookkeeping needed is minimized as a child

must keep track of a double count for a minimum number of

steps. This can easily be seen by comparing the mental

bookkeeping involved in the COF procedure with that needed

for the CAL procedure for a problem such as 1 + 6 .
In this

12



problem, the COF procedure requires six double counting steps

while the CAL procedure only requires one. The last shortcut

strategy developed in Level II of Solution Procedures is the

counting on from the larger addend (COL) strategy where

children use the cardinal value of the larger addend and

simply add on the smaller addend in increments of one

(Baroody, 1987a)

.

Level III is the final level that children reach

entitled "Derived Facts and Known Procedures." At this level

youngsters may use information from problems they already

know how to solve to help them solve somewhat more difficult

problems, or may use a memory retrieval strategy to find an

answer. To illustrate the first point, let me use an example

of a slightly more difficult problem such as 8 + 6 . A child

may see the tie problem 6+6 (it is a tie problem because

both addends are the same) embedded in the larger problem 8 +

6 and will be able to solve the problem easily by retrieving

the answer to the problem 6 + 6 and then complete the problem

by adding the left over 2 to the retrieved sum, 6 + 6 = 12,

12 + 2 = 14.

In this section I have focused mainly on the development

of strategies in the realm of addition. I would again like

to refer you to Table 1 if a summary or review of these

strategies is needed by the reader before moving on to the

operations of subtraction, multiplication, and division.

1 3



Mental Subtraction

It is interesting to note that strategies much like

those used in addition are also implemented in subtraction;

for a siimmary of these strategies you should refer to Table 2

(pages 67-69) keeping in mind that Fuson's three levels of

addition described above also apply to subtraction. Children

start out using concrete objects for subtraction problems

and, according to Carpenter and Moser (1984) , use three

different types of concrete manipulative procedures. The

first is called "separating from" which involves counting out

(using objects) the larger number (minuend) , then removing

objects from that set until the smaller number (subtrahend)

is reached, and finally counting out the number of objects

that are left to arrive at the answer. The second type of

concrete procedure is an adding on procedure where a child

first counts the subtrahend of a problem using objects, then

adds a number of objects until the minuend is reached, and

the child either concurrently keeps track of the number of

objects added on or counts the number of objects in the

"added on set" at the end of the procedure. The last

procedure using manipulatives is termed a matching procedure

and it involves using objects to form a one-to-one

correspondence between the set of objects representing the

minuend, and the set of objects representing the subtrahend.

The child will then count the objects in the minuend set that

have no corresponding objects in the subtrahend set.

14



The manipulative strategies are then abandoned for more

complex strategies. A counting fingers method is often

employed by counting out and holding up a number of fingers

to represent the minuend and then folding down fingers as the

subtrahend's value is counted out; the remaining fingers

represent the answer. This strategy is deserted for a mental

procedure that involves the same double counting procedure

explained in the discussion of certain addition strategies.

This "counting down" technique entails repeatedly subtracting

one until the subtrahend is reached, keeping track of the

result after each step. Once the subtrahend is reached the

child reports the answer (Baroody, 1987a) . This procedure is

very difficult for children because it involves counting

backwards, a much more demanding cognitive process for

children than normal counting (Baroody & Ginsburg, 1983).

Problems with large subtrahends require children to develop

another procedure to reduce the amount of mental bookkeeping

needed. Children create a counting on subtraction procedure,

or finding the missing addend approach (Carpenter & Moser,

1982) . It is very helpful to use this strategy in a problem

such as 15 - 12 because a child minimizes the number of times

he or she must double count: 1 is 13 , 2 is 14, and 3 is 15;

the answer is 3

.

Another strategy to solve a subtraction problem is to

use a complementary addition fact. By retrieving the fact

that 4+5=9, a child might be able to quickly solve 9-5

= ? by filling in the missing number in the subtraction

15



problem with the corresponding value in the known addition

problem.

The results of cross cultural research (e.g., Fuson &

Kwon, 1992a; Fuson & Kwon 1992b; and Hatano, 1982) has

revealed two more subtraction strategies for problems

involving minuends that are greater than 10. One strategy is

called the down-over-the-ten method. This strategy involves

subtracting 10 from the minuend, subtracting that difference

from the subtrahend, and then subtracting that difference

from 10 to arrive at an answer. For the problem 15 - 7 a

child would first solve 15 - 10 = 5. The next step is to

take 7, the minuend, and subtract 5 from it leaving the child

with 2. Finally, by subtracting 2 from 10 a child would

arrive at the correct answer, 8. The second decomposition

strategy is called the take-from-the- ten method. For the

above problem a child subtracts the subtrahend from 10 and

notes the answer, 3. The child then subtracts 10 from the

minuend and notes the answer, 5. The two intermediate

answers are then added together, 5 + 3, to arrive at the

correct answer, 8.

According to Fuson and Kwon (1992a), these two

decomposition strategies are used much more frequently by

Asian students than by American students. One reason for

differential use of strategies in different cultures is, once

again, language differences. As was mentioned before, Asian

based languages use number names that reflect the underlying

base-10 number system that is used. It is therefore
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extremely easy for a native speaker of Chinese to use either

of the ten's methods mentioned above because subtracting 10

from a teen number simply involves removing the word ten from

the beginning of the teen number word in Chinese. It is also

interesting to note that American children can be taught to

use these strategies (Steinberg, 1985) and that in our

educational past young children did use such strategies more

often than they do now (Ilg & James, 1951) . It appears to be

the case, though, that it is a more naturally occurring

strategy in Asian cultures than in European based cultures

due to the difference in number words.

Derived facts and known procedures strategies are

applicable in subtraction as well. For example, students may

break a problem such as 13 - 6, into its constituent parts 13

- 3 = 10, and 10-3, to find the answer, 7. There is also

evidence that children can make accurate judgments about

which one of the aforementioned procedures is most prudent to

use in a particular situation (Woods et al . , 1975),

Mental Multiplication

Multiplication lends itself to a similar type of

strategy analysis (see Table 3, pages 70-71), although using

the types of counting procedures in multiplication that are

used in addition and subtraction can be very time consuming

and inefficient. Baroody (1987a) has noted a few of the

strategies used in multiplication problem solving called rule

governed, informal computing (which seems to be an extension

of the counting on process), known combinations, skip
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counting, or some mixture of the above. Rule governed

solution involves the use of a well learned rule to solve a

problem such as n x 0 = 0, n x 1 = n, or n x 10 = nO.

Informal computing involves simply starting off with the

cardinal value of the first operand and counting all up to

the answer, making note of how many operand increments) have

been made (i.e., noting how many groups of 4 have been

incremented while solving the problem 3x4). The known

combination, or repeated addition approach, involves a series

of addition problems: 3x4 is 3+3=6, 6+3=9, 9+3=
12. Skip counting, or counting by n, involves skipping over

the in-between numbers, in effect going through the multiples

of an operand to find an answer: 3 x 4 is 3 , 6, 9, 12.

In other research, Siegler (1988b) identified four

different types of strategies in his application of the

distribution of associations model (described in the next

section) to mental multiplication. He identified the

following strategies: counting sets of objects which

involves making groups of tally marks on a paper and then

counting each tally mark (really analogous to a counting all

strategy), repeated addition (analogous to Baroody's known

combination approach) , retrieval, and simply writing down the

problem and after no other overt behavior producing an answer

(probably also retrieval) . Again, some students are able to

use derived facts (e.g., Geary, 1994) to help them solve

problems such as representing 3 x 4 as the addition of two

easy tie problems, (3+3)+(3+3).
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Mental Division

Most of the strategies used to solve problems involving

the three arithmetic operations already mentioned are also

used in mental division (see Table 4, page 73), although

research in the area of division is much more scarce than for

the other three operations. Children seem to rely heavily on

addition and multiplication when first trying to solve

division problems. When presented with a division problem a

child may use addition to count up the number of divisors

(smaller niimber) that make up the dividend (the larger

number) . A strategy called multiplication reference, similar

to the addition reference strategy used in subtraction, might

be used as well where a child retrieves a complementary

multiplication fact to solve a division problem (using the

knowledge that 7 x 9 = 63 to solve the problem 63 h- 7 = ?) .

Obviously a derived fact or decomposition procedure can be

used as well. If a child knows that 60 12 = 5 and that 24

12 = 2 , he or she may be able to use these two facts in

determining that the answer to 84 ^ 12 is simply the addition

of the answers to the two known problems, or 5 + 2 = 7

.

In solving problems involving any of the four arithmetic

operations, when counting procedures have been used many

times to solve problems, children are eventually able to rely

on the most advanced strategy for solving problems, direct

retrieval of an answer from a network of facts. Currently,

four models of how basic arithmetic facts are stored in, and

are subsequently accessed from memory have been formulated.
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It is important to describe these models and evaluate their

strengths, weaknesses, and explanatory power. I will do so

beginning with Ashcraft's Network Retrieval Model, but first

an historic note- -a description of the first model of mental

arithmetic problem solution.

From Counting Strategies to Memorv Retrieval Models

The first noteworthy model for the mental solution of

basic arithmetic facts was formulated by Groen and Parkman

(1972) . Initially these researchers formulated three

possible models to explain what caused the variability in

response latencies to different basic addition problems of

the form a + b. One model proposed that reaction times to

solve such problems would be governed by both addends;

reaction times would be a function of the time necessary to

count from 0 to the first addend and then count the second

addend on top of that. In equation form the reaction time

would be a + b. A second model under consideration was one

that was analogous to the assumption of a counting on from

the first addend (COF) strategy. The reaction time would

simply be governed by the magnitude of b in the above

equation. A third possible model would be that the reaction

time would be best predicted by a or b in the equation,

whichever addend was smaller, which is essentially equivalent

to assuming the use of a counting on from the larger addend

(COL) strategy is being used. Groen and Parkman tested first

graders, older students, and adults and invariably the data

came out in support of the third model mentioned above (COL
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model), with the curious exception that tie problems were

often solved more quickly than other problems with smaller

addends. What Groen and Parkman were basically claiming was

that the difference in response times for adults as compared

to children was merely due to a change in the adults' speed

in using the COL counting procedure.

Ashcraft and Battaglia (197 8) were skeptical that the

COL model of Groen and Parkman was sufficiently able to

account for the performance of older children and adults. To

test this they used the same basic addition facts that Groen

and Parkman used although they used a different type of task.

Where Groen and Parkman used a production task in which

subjects had to produce the answer to a problem, Ashcraft and

Battaglia used a verification procedure in which subjects

were given a problem and needed to identify a given answer as

being correct or incorrect by pressing a button. The results

of experiments using samples of various age groups (e.g.,

Ashcraft & Fierman, 1982; Ashcraft & Stazyk, 1982; Ashcraft,

1987; Koshmider & Ashcraft, 1991;) revealed that Groen and

Parkmans ' model did not predict the data well and that the

best predictor was instead some sort of memory retrieval

strategy. These findings directed Ashcraft to study how

basic number fact representation changes developmentally and

led to the formulation of the Network Retrieval Model of

Arithmetic

.
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Conimon Findings in Mental Arithmetic Studies

Before moving on to Ashcraft's model, it is first

necessary to define and explain some well documented effects

in research conducted on simple arithmetic (for a good

review, see Ashcraft, 1992): the problem size/difficulty

effect, error effects, relatedness effects, and strategies of

processing. These effects will provide a basis for

evaluating the three arithmetic fact models to be described.

Problem Size/Dif ficultv Effect

This effect simply stated is that problems in addition

and multiplication (and certain related problems in division

and subtraction) that have larger addends and multipliers and

in turn larger sums and products, are more difficult for

people to solve as evidenced by longer response times and

higher error rates. The robustness of this effect is well

documented in research involving all four operations (e.g.,

Ashcraft & Battaglia, 197 8; Campbell 1985; Campbell & Graham,

1985; Siegler, 1987b); when using either response time or

error rates (e.g.. Miller, Perlmutter, & Keating, 1984;

Siegler, 1988b) ; it holds for both production and

verification methods of research previously mentioned (e.g.,

Geary, Widaman, & Little, 1986; Miller et al . , 1984); and it

holds across the entire range of ages from kindergartners

(e.g., Koshmider & Ashcraft, 1991) to the elderly (Geary &

Wiley, 1991) . One exception to the problem size effect has

been noted and that is what is called the tie problem effect.

Problems that have addends that are the same or multipliers
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that are the same such as 7 + 7 and 7 x 7 are actually more

quickly solved and are less error prone compared to other

problems with similar sized components and even many non-tie

problems with smaller addends or multipliers . This is why

problem size effect was deemed a misnomer and was changed to

the problem difficulty effect. These tie problems although

large are not difficult so are not grouped with other

problems that are difficult.

Error Effects

This effect involves the types of errors that people

most often make when performing mental arithmetic. Campbell

and Graham (1985) set out to test what proportion of errors

on simple multiplication problems fell into each of three

categories. One of the categories was named table related

errors, errors that were answers to other multiplication

problems of one or both of the operands in the original

problem (saying 3 6 to 9 x 6 is a table related error as 3 6 is

an answer to 9 x 4 and 6x6). A second category was named

table unrelated errors, errors that were answers to other

combination of operands (saying 49 to 9 x 6) . The third

categoiry were miscellaneous errors that were not part of the

times tables at all (saying 9 x 6 is 57). One would expect

that if errors to multiplication problems were random that

14% would be table related, 19% would be table unrelated, and

67% would be miscellaneous (Campbell and Graham, 1985). In

one study subjects in grades 3, 4, and 5 as well as adults

were used to conduct error analyses (Graham, 1987) .
The
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results were intriguing: table related errors dominated

across grade levels starting at 43% errors for grade 3 and

peaking at 7 9% for adults, table unrelated errors started at

a 21% rate for grade 3 and dropped to 14% for adults, and

miscellaneous errors started at a 3 6% rate for grade 3 and

declined steadily, bottoming out at 7% for adults. So for

these adults more than 90% of their errors were not

miscellaneous; they were answers to other multiplication

problems. Almost 80% of those table errors were table

related errors, while a little over 10% of the errors were

table unrelated.

Relatedness Effects

Researchers using the verification method in their

studies of simple mental arithmetic have found that subjects

have a more difficult time rejecting false problems that have

answers that are correct if a different arithmetic operation

is performed (e.g., Zbrodoff & Logan, 1986). In other words,

people take longer to decide that 7+2=5 (a correct

statement if the plus sign is changed to a minus sign) is

incorrect than they do in deciding that 7 + 2 = 11 is

incorrect. The relatedness effect is not, however, merely an

operation confusion effect, it also can occur within an

operation. In multiplication, people are slower and more

error prone to judge that false problems are incorrect if the

products that are given are table related products (e.g.,

Zbrodoff & Logan, 1986) . For example, people are slower and

more error prone in judging that 7 x 4 = 21 is an incorrect
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problem than judging 7 x 4 = 18 is an incorrect problem.

Both of these types of problems affect accuracy of responses

in production tasks as well.

Strategies of Processing

Again we have touched on this notion already that at any

given time children (and even many adults) may use a variety

of strategies to solve arithmetic problems including several

different types of counting strategies as well as memory

retrieval. Therefore it is necessary in models of arithmetic

processing to have a component devoted to fact retrieval

(declarative knowledge) and another component dedicated to

strategy use (procedural knowledge)

.

Ashcraft ' s Network Retrieval Model

The Model

In its most general sense, Ashcraft's model for basic

addition and multiplication fact representation in memory is

an organized network of information that can be accessed by a

process of spreading activation (Ashcraf t, 1992) . In more

explicit terms, basic math facts are stored in a network that

relates parent nodes (e.g. addends or operands) to an

"answer" node (my own term) , and each of these problem to

answer nodes has a strength or degree of accessibility

associated with it. Also, problems and answers in near

neighbor nodes are associated, with the degree of relatedness

of near neighbor nodes being much stronger than that of more

distant nodes. The spreading activation that leads to the

selection of an answer is triggered by three sources:
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addends (or operands), the answer stated in a problem

(remember, Ashcraft's model is based on the verification

paradigm mentioned above), and the nodes in the network that

are activated during the retrieval stage. Spreading

activation is a parallel process and leads to different nodes

having different degrees of activation in response to a

particular problem. Whatever answer node receives the

highest level of activation is selected as an answer to the

problem and the time to retrieve the answer depends on the

accrued activation at the selected node (Ashcraft, 1992).

The strength of association of problems with their answers

depends on practice on those problems (Ashcraft, 1987) . Let

us now turn to a discussion of research that delineates the

strengths and weaknesses of Ashcraft's model and its

predictions

.

Evidence /Support for the Model

According to what was mentioned above, the strength and

interconnectedness of stored problems in Ashcraft's model are

dependent on practice on those problems. Practice is in turn

largely dictated by the frequency and order of occurrence of

problems in (especially elementary) textbooks. In light of

this, Hamann and Ashcraft (1986) hypothesized that response

time to arithmetic problems should correlate highly with

frequency of occurrence of arithmetic problems in elementary

texts. They also hypothesized that the frequency of

occurrence of different problems probably remains the same

from grade to grade and therefore response time to text
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frequency correlations should be larger than correlations of

response times from grade to grade.

The results were in line with predictions. It was found

(Hamann & Ashcraft, 1986) that arithmetic problems with

smaller addends and multiplicands are presented earlier and

more frequently than larger problems, with the exception of

problems involving 0 and 1 which are presented about as often

as larger problems (these problems have been shown to be

solved using rules as opposed to retrieval procedures

[Baroody, 1984]). It was also determined that problem RT's

correlated highly with their frequency of occurrence for

students in grades 1, 4, 7, 10, and college (range of

correlations -.55 to almost -.70) and that these correlations

were significantly greater than correlations of problem RT's

between grades. It is not difficult to see that this is one

explanation for the problem difficulty effect mentioned

above. Problem difficulty is explained as a lack of strength

of association between problem and answer nodes that results

largely from the lower frequency with which more difficult

problems are encountered over the span of a student's

schooling

.

The model also makes predictions about priming effects.

According to the model, whenever nodes are activated the

activation is spread out over the network and decays over a

short period of time (Ashcraft, 1992). A problem that is

presented during this activation period will have its

solution reaction time altered by the already activated
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nodes. Many studies have shown this (e.g., Lefevre, Bisanz,

& Mrkonjic, 1988) and Ashcraft and Koshmider (1991) have

shown how (excitatory as well as inhibitory) priming effects

change as a function of problem difficulty and age.

Lastly, the model is also able to account for what are

called confusion and split effects using an argument similar

to the one above that involves spreading activation. In the

confusion effect, a false problem such as 6 x 4 = 18 is

difficult to reject, as the problem's answer is one multiple

away from the correct answer. According to Ashcraft 's model

both answer nodes 18 and 24 will be highly activated; the

node 24 because it is the parent node of 6 x 4 and 18 because

of the high degree of spreading activation of a near neighbor

node. The attenuation of response time to these problems

results because the process of choosing one of the answers

over the other is disrupted due to their activation being

both high and similar in magnitude. A split effect, the

quicker rejection of a false product or sum that is very

distant from the correct product or sum (e.g., 6x4= 48),

can also be explained via spreading activation. Activation

of near neighbor nodes (answers) will be high but a distant

answer in a false problem will receive very little spreading

activation, if any, and the decision process of choosing an

answer will likely not be disrupted. Several studies to date

have documented split and confusion effects (e.g., Stazyk et

al., 1982; Zbrodoff & Logan, 1986).
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Criticisms /Weaknesses of thf^. Model

While Ashcraff s model does adequately explain the above

effects including problem difficulty, relatedness, and

priming, it fails in three main areas. The first is in its

lack of description of a decision mechanism. According to

the general description of the model, the overall magnitude

of activation of an answer node determines what answer is

selected from the many activated nodes. If that is the case

how are incorrect answers ever selected? If incorrect

answers may be selected how does such a process work?

Ashcraft is not explicit about this. The second drawback to

the model is its lack of a procedural (strategic) component.

Ashcraft (1992) briefly mentioned that in young children two

types of answer searches, retrieval and some sort of backup

(counting) strategy may be activated simultaneously and may

compete in a "race horse" fashion to arrive at a correct

answer. Ashcraft ' s treatment of this procedural component is

cursory at best and was part of the impetus for Siegler

(1988b) to formulate the model that I will explain in the

next section. A final drawback is the verification technique

used in all of Ashcraft 's studies. While it is helpful in

relaying knowledge about things such as split effects and

priming effects, to me it seems more important to emphasize

the study of production of answers instead— especially when

one would like to relate proficiency in the domain of simple

mental arithmetic to proficiency in another domain such as

word problem solving that almost always calls for a student
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to produce, as opposed to verify, answers in order to solve a

problem. Furthermore, an implicit assumption in Ashcraft's

model is that verification of a correct sum or product

involves both producing an answer to the problem and then

comparing that to the given answer. Zbrodoff and Logan

(1990) have challenged this assumption and have shown that

people might process the verification problems as a whole

most of the time instead of going through two separate

phases

.

Siegler's Distribution of Associations Model

The Model

This model was initially developed in 1984 by Siegler

and Shrager to represent strategy choices used in children's

subtraction, although descriptions of the model appear in

many articles (e.g. Siegler, 1988a; Siegler, 1988b; Ashcraft,

1992) where it has been applied to the operations of addition

and multiplication as well. In this model a distribution of

answers is associated with each arithmetic problem; it is a

distribution of the correct answer as well as incorrect

answers previously generated. Each time a child encounters a

problem and arrives at a solution, the associative strength

of that answer to that problem gains in strength relative to

the strength of associations of other answers to the problem.

If a child uses a counting procedure to find the sum of 6 + 7

and generates an answer of 10, that association, albeit

incorrect, will gain in strength relative to other answers

associated with the problem. Errors can occur either when a
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counting procedure fails or when retrieval accesses an

incorrect answer. According to the model, different problems

will have different shaped answer distributions. A problem

such as 2 + 3 which is fairly simple to compute using a

counting strategy will have what Siegler termed a "peaked"

distribution (see Figure 1 on page 32 for an example of this

distribution)
. Most of the time children solve this problem

correctly and therefore the strength of the association with

5 will be relatively high compared to the strength of

association with 4 or 6 or other incorrect solutions. The

problem 6+7 probably will have a "flat" distribution (see

Figure 2 on page 33) as children solve this problem

incorrectly more often than problems with smaller addends,

and the associative strength to the correct answer 13 will

not be as high relative to other incorrect associations

(Siegler 1988a; Ashcraft 1992).

The second aspect of the model involves which strategy a

child uses to produce an answer. In the original model there

were three different ways a child could arrive at an answer

for a problem and any of the three could end the process.

The three strategies were retrieval, elaboration of

representations, and use of algorithms, and they occurred

across all distributions of associations. Siegler noted that

the retrieval phase of this model was similar to phases in

many other memory models (Anderson, 1983; Gillund & Shiffrin,

1984) . Retrieval was governed by two parameters, a

confidence criterion and a search length, both of which were
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assigned at the outset of a retrieval attempt. A child would

give an answer only if the predetermined confidence criterion

was exceeded by the associate strength of the answer

retrieved. If the confidence criterion was not exceeded for

a retrieved answer, the child would continue to search

answers until the predetermined search length parameter had

been equaled, in which case the search would be terminated

and some sort of counting strategy would be used.

Probability of retrieval of any specific answer was based on

its relative associative strength compared to other answers.

For example, for the problem 5 + 7 a child may have a

distribution of associations that looks like this:

associative strengths of .4 for 12, .2 for 13 and 14, and .1

for 11 and 10. To explain how the model works, let's assume

for this problem a child is using a search length parameter

of 3 and a confidence criterion of .35. If the child first

retrieves the answer 12, that answer will be verbalized as it

is above the level of the preset confidence criterion. If,

however, a child retrieves the answer 11, it will not be

uttered as its associative strength of .1, is less than .35

(confidence criterion) and another retrieval will take place.

If the child then retrieves 14 and 13 on successive searches,

no answer will be stated and the child will abandon retrieval

for one of the other two strategies because the preset search

length (3) has been equaled.

On a percentage of trials where the search length

parameter is reached, Siegler {1988b) claimed that children
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used something called "sophisticated guessing" where they

would make one last retrieval effort and set their confidence

criterion to 0 and would report whatever answer happened to

be retrieved (although Siegler is not explicit about why this

is "sophisticated" I would assume it is because the most

probable answer is often going to be the correct answer as

its strength and probability of being retrieved on any one

trial will usually be greater than the probability of any

other single answer) . If retrieval did not produce an answer

and children did not use the sophisticated guessing approach

they could use an elaboration technique where they would

write down the problem and retrieve an answer.

The third and final strategy a child could use is the

algorithm strategy where one of the counting procedures

mentioned previously in this paper would be employed. The

specific type of algorithm used would be governed by the

properties of the problem.

Updates of Siegler 's Model

A more recent version of this distribution of

associations model was recently presented by Siegler and

Jenkins (1989) . Siegler and Jenkins noted that a shortcoming

of the earlier model was that it said nothing about how

different strategies might be selected; the model merely

stated that retrieval was always the first strategy attempted

and that the backup strategies were just that, backups when

retrieval was not successful. Under the new model any one of

the three strategies could be selected at the outset and in
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fact more than one strategy would be selected and would

compete in a race horse fashion to arrive at the (correct)

answer (this is basically the same race horse example

explained above in Ashcraft's model, although Siegler's

exposition is a bit more detailed. More than likely, both

researchers incorporated this parallel search mechanism into

their models in response to research [Compton & Logan, 1991]

that provides evidence that retrieval and counting strategies

are probably simultaneously accessed in trying to solve a

problem and one method ends up "winning" and supplies an

answer) . In the new model not only are problems related to

answers, but (counting) strategies are related to individual

problems, specific types of problems, and classes of problems

as a whole, and these relations become stronger or weaker

based on the speed and accuracies that have been recorded on

previous trials using these strategies. So, for example, for

the problem 2+7 three strategies might be used to arrive at

an answer: a counting on from larger addend strategy, a

counting on from first addend strategy, or a retrieval

strategy (I am only using three strategies to keep the

example simple) . Response time would be faster if the COL

strategy were used; one only needs to increment twice while

counting using the COL strategy while for COF one needs to

increment 7 times. Accuracy also is greater using COL rather

than COF because COF requires that a person double count

seven times. Hence, the strategy of COL would be strongly

associated with this particular problem and problems similar
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to it (such as 2 + 8) and would likely compete in a race with

retrieval to arrive at a correct answer to the problem.

In summary, according to the updated model the important

determinants of strategy choice and arrival at the correct

solution are threefold. One determinant is the strength of

association between the problem and answer (s), another is a

child's preset confidence criterion, and a third is the

strength of association between a problem and strategies or

procedures that have been used in the past for solving such a

problem or similar problems.

Siegler and Jenkins also tackled the problem of new

strategies and how they come to gain strength in light of

other strategies that are, so to speak "tried and true."

They offered an explanation using a term called "novelty

points" (Siegler & Jenkins, 1989) that are awarded to new

strategies that are used to solve problems. This notion was

inspired by Piaget's view (1970) that people like to try out

newly acquired cognitive abilities. The novelty points allow

a person to try a new type of strategy out even though it has

no previous record of accuracy or speed, and in turn no

relative associative strength to any problems. Each time a

person uses the new strategy, novelty points diminish. In

exchange, however, valuable knowledge about speed and

accuracy of the new strategy is gained and if the new

strategy is fast and accurate, the strength of association

(with a particular problem and/ or types of problems) that

this strategy gains, outstrips the amount of novelty points
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that are lost. It is not difficult to see how this might

explain how a child comes to use the novel strategy of

retrieval after using a counting procedure that had

previously been successful. Computer simulations of this new

model although not perfect, seem to work very well (Siegler &

Jenkins, 1989; Siegler & Shipley, 1995).

Evidence /Support for the Model

Evidence for support of Siegler 's model comes from many

different pieces of research. For example, Siegler 's model

does a good job of predicting response time, errors, and

solution strategy distributions in research on children's

addition (e.g., Siegler & Shrager, 1984), subtraction

(Siegler, 1987b Sloboda) , and multiplication (e.g. , Siegler,

1988b) and also has been successfully applied to children's

performance in the domain of spelling (Siegler, 1986) . Geary

and Burlingham-Dubree (1989) collected strategy choice data

in an effort to assess the external validity of Siegler 's

strategy choice model for addition and found strong support

for convergent validity of the model as well as modest

discriminant validity. Probably the most impressive evidence

that has been compiled for the model is the research that has

been conducted largely by Siegler and associates and Geary

and associates applying the model to examine performance of

subpopulations of children. Siegler (1988a) was able to

identify three subgroups of children in an experiment that

involved addition, subtraction, and reading measures. Using

a cluster analysis procedure he was able to identify good
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students (fast and accurate on all tasks), not-so-good

students (relatively slow and inaccurate on all tasks), and

perfectionists (named so because they had high confidence

criterion and even though as fast and as accurate as the good

students, they used retrieval to solve problems significantly

less often)
. Achievement tests were also administered and as

one would predict good students on average scored

significantly higher on the 3 math (computation, problem

solving, and total) and the 3 reading (word recognition,

reading comprehension, and total) measures. Perfectionists

scored nonsignificantly lower on the math measures and

significantly lower on reading measures than the good

students and scored significantly higher on the math measures

and nonsignificantly higher on the reading measures than the

not-so-good students.

Other subpopulations have been examined as well. Geary,

Brown, and Samaranayake (1991) used the strategy choice model

to assess differences in strategy choice between normal and

mathematically disabled children. First graders were given

single digit addition problems to solve and their strategy

use in solving the problems was recorded. The students were

again tested one year later to document any changes in their

arithmetic strategy choices. It turned out that the normal

group increased their reliance on retrieval over time,

decreased their reliance on counting to solve problems, and

decreased their error rates. The math disabled group,

however, showed no change over time in reliance on retrieval
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and counting and showed only improvement in their error rate

on counting trials. No difference in strategy choice was

noted between the two groups at time 1, but the normal group

at time 2 used the retrieval strategy more often with fewer

errors and used a verbal counting strategy less often than

the math disabled group.

A number of cross cultural studies have also been

conducted using the strategy choice model to determine

differences in mathematical abilities of U.S. and Chinese

children (e. g., Geary, Fan, Bow-Thomas, 1992; Geary, Fan,

Bow-Thomas, Siegler, 1993). In Geary et al . , (1993) addition

problems were presented to kindergarten aged students on a

computer and accuracy, response time, and strategy data were

collected for each student. A numerical memory span test and

written addition test were administered as well. Results

were that Chinese students used counting strategies more

frequently than U.S. children and used a verbal counting

procedure significantly more often than U.S. children. U.S.

children in turn used retrieval significantly more often than

Chinese children, however, Chinese children had a

significantly lower error rate on retrieval trials (1%) than

U.S. children (33%) did. The Chinese children also had an

advantage in verbal counting and retrieval response times as

well as a 3 to 1 advantage in the number of correct answers

on the speeded written addition test. When taking into

account the numerical span data in conjunction with strategy

choices of the two groups it was concluded that the initial
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advantage for Chinese children in math (arithmetic) is at

least partially due to shorter number words in the Chinese

spoken language. Shorter number words contribute to a

greater memory span and accelerated speed of counting. This

in turn allows Chinese children to count out solutions to

arithmetic problems more quickly, increasing the probability

that the problem and answer are associated in working memory,

which in turn leads to a quicker development of the use of a

retrieval strategy over subsequent problem presentations.

There are other studies that supply additional evidence

to support Siegler's model that will not be considered here

but should be noted (e.g., Geary, 1990; Geary & Brown, 1991;

Goldman, Mertz, & Pellegrino, 1989; Goldman, Pellegrino, &

Mertz, 1988). Furthermore, Siegler's model can explain many

of the effects described in the previous section. According

to the model, the problem size effect occurs because when

counting strategies are being used initially to solve

problems it is more likely that a counting error will be made

in trying to solve a problem that is larger which requires

more counting and mental bookkeeping steps. More errors will

lead to a flatter distribution of associations for larger

compared to smaller problems. Response times will be greater

for larger problems either because no answer will be peaked

enough to exceed a person's confidence criterion and

therefore a time consuming backup strategy will have to be

used, or a person may make several retrieval attempts if many

different answers have associative strengths greater than his
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or her confidence criterion. If we add to the mix the notion

that small problems are encountered more by people in texts

and everyday life as Hamann and Ashcraft (1986) would lead us

to believe, according to the model the effect will be even

more pronounced as larger problems will have even flatter

distributions. It should be noted that Ashcraft (1992) is

not convinced that such an argument can extend to the problem

difficulty effect still existing for adults who largely use

retrieval strategies and may have fairly peaked distributions

for even difficult problems.

As for the relatedness effect, Ashcraft (1992) also

concedes that the model predicts these effects even though no

data exists as Siegler has conducted experiments using

production instead of verification tasks. It is not

difficult to see, however, that the many incorrect answers in

a distribution of associations for a problem would be

multiples of one or both of the operands and would act as

interference in a verification task, just as a problem such

as 3 x 6 = 24 would interfere by activation of near neighbor

nodes in Ashcraft 's model. The split effect (quicker

rejection of false problems with answers much larger or

smaller than the correct answer) would also be predicted

because the strength of incorrect answers immediately

surrounding the correct answer peak would be much stronger

than incorrect answers far from the correct answer peak.

Siegler 's model explains certain error effects well,

too. Operand errors in multiplication (e.g., 7x8= 49) can

42



be explained by the fact that in using a counting strategy a

person has either added one too few, or one too many times.

This will lead to fairly strong associations of the problem

with incorrect answers that are one or two multiples away.

Such an argument would also explain why operand errors are

usually errors that are very close to correct answer.

Another type of mistake when using a backup strategy in

multiplication is to add incorrectly, such as adding 7

eight ' s in the above problem and arriving at an answer of 57

.

An error of this type is called a nontable error (Campbell,

1987) and although less common than other errors, it does

occur and can be explained in Siegler's model.

Criticisms /Weaknesses of the Model

Other types of errors are more difficult for the model

to account for, namely table and operation errors. According

to Campbell and Graham (1985) table errors occur about twice

as much as nontable errors. When an error is committed using

a repeated addition strategy the result would most likely

involve either adding too few or too many times or adding

incorrectly within +/- 2 (Geary, 1994). Siegler (1988b)

assumed that when using such a counting strategy, errors

should be approximately normally distributed around the

correct answer for a problem. Using this assumption one

would expect people to make almost twice as many nontable

errors as table errors (McCloskey, Harley, Sokol, 1991) ,
the

complete opposite of what actually happens. Operation

confusion errors according to McCloskey et al. (1991) are
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difficult for Siegler's model to explain as well, especially

when considering a confusion effect where a multiplication

answer is given to an addition problem. As these researchers

state, how is it that "a child attempting to solve 8+5
through the use of a backup strategy arrives at 40?" (p.

389) . Siegler has countered this notion by saying that these

errors are not a result of backup strategy errors but rather

a confusion of related operations. While this might be true,

in postulating such an error mechanism it is important to

determine why it might be so specific (why would this

confusion effect only occur across operations and not within

operations as well?)

.

Lastly, Siegler's model also has trouble explaining the

priming effects found by, among others, Koshmider and

Ashcraft (1991) and Campbell (1987b). Because each problem

has a distribution of answers associated with it, inhibitory

or facilitation effects should not be found. If a person has

just processed the problem 5x9 arriving at the answer 45,

according to Siegler's model it should not affect subsequent

processing of the problem 6x9 that has its own distribution

of answers associated with it. While 45 may be one of the

incorrect answer associations with 6x9, the model does not

say anything about how immediately preceding processing of

such an answer may affect response latency to a related

problem.
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Campbell and Graham's Network Interference Model

The Model

The network interference model shares many properties

with Ashcraft's and Siegler's models (Campbell, 1987a;

Graham, 1987; Graham and Campbell, 1992; McCloskey, et al . ,

1991). Like Ashcraft's model, Campbell and Graham's model

involves activation that is driven by the two operands given

in a problem. Unlike Ashcraft's model, however, Campbell and

Graham believe that the problem as a whole also drives

activation. As in Siegler's model described above, problems

can be associated with incorrect as well as correct answers.

When counting strategies produce errors those incorrect

solutions are associated in the network. There are also

associations in Campbell ' s model that do not exist in the

models of Ashcraft and Siegler, answer-answer associations

and problem-general magnitude associations. According to

Campbell and Graham (1985) answers that share digits (14 and

24 for example) are somewhat associated. The problem-general

magnitude association involves the linking of problems to

representations that specify the approximate magnitude of the

correct answer (e.g., 8x4 might be labeled as a small-

medium magnitude) and answer nodes may in turn be associated

with this approximate magnitude as well.

The idea of a network stems from the assumption that

problems that share an operand activate memory structures

common to both problems. When a problem is presented, the

appropriate operand and problem nodes are activated with the



activation spreading to both correct and incorrect associated

answer nodes and general magnitude nodes. Activation then

may in turn spread from answer to answer nodes and general

magnitude to answer nodes. How an answer is actually

selected is not entirely specified in the model. Supposedly

the most highly activated answer node is selected, and the

latency to make a selection is determined by the degree of

activation of competing answer nodes. The interference part

of the model occurs as a result of the activation of

incorrect answers that compete with the activation of the

correct answer. An incorrect answer may be selected or may

simply increase response time in selecting a correct answer

by reducing the magnitude of the difference between the

activation of correct answer and competing answers.

Strength of association between the various nodes is a

function of frequency and order of presentation. Problems

that are presented more frequently will in turn have (most

likely correct) answer associations that have greater

strength relative to less frequently presented problems.

Order of presentation is also important because problems that

are studied first have less proactive interference with which

they must contend. In learning answers to one's first

multiplication problems there are not many competing

interference associations established. When trying to learn

problems that are introduced later (larger problems) there is

a great deal of proactive interference from the smaller,
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already practiced problems that already have many well

established associations.

Evidence /Suppor t for the Model

The information that Campbell and Graham (1985) used to

formulate their theory was experimental data that many

researchers overlooked- -error patterns. Graham and Campbell

found that errors to simple multiplication problems were

systematic, as opposed to random in nature. Errors are

largely table related, meaning that they are answers to other

multiplication problems involving one of the operands (54 is

a table related error to the problem 8x6). In addition to

errors being table related, Campbell and Graham also

discovered that the incorrect responses were clumped very

close to the correct answer and found that this effect

increased across grade level. Another interesting phenomenon

discovered was the error priming effect (Campbell, 1987a)

.

To review, the priming effect refers to a retrieved answer on

one problem trial interfering with retrieval of an answer on

a subsequent trial; when errors do occur, the probability

that that incorrect answer had been retrieved on a recent

prior trial is 10% - 20% higher than chance dictates (the

priming effect can facilitate or disrupt subsequent trials

depending on the time lag between trials, [see Campbell

1987a] ) . These two phenomena are evidence that retrieval is

both problem and operand driven.

A number of interesting predictions are made from

Campbell and Graham's model that are alternatives to what



em
Ashcraft and Siegler offer. As mentioned before, the probl

difficulty effect is explained by the other models as

occurring as a result of differential presentation, namely

easier problems are encountered in elementary texts more

often (e.g. Siegler 1988b; Hamann & Ashcraft, 1986). There

is no evidence to contradict that this does not occur

throughout school and beyond. Campbell and Graham (1985) do

not doubt that this is possible but offer the explanation

that teaching (learning) order is the culprit. In other

words, the memorization of the smaller operand multiplication

problems have a profound proactive effect on learning the

larger problems that are invariably introduced at a later

date (Campbell & Graham, 1985) . An engaging experiment was

conducted (Graham & Campbell, 1992) to test the proactive

effect, in which subjects had to learn a system of

alphaplication. The system is basically multiplication

problems using letters. The letter combinations (A * I) = (I

* A) = X, would be an example of an alphaplication problem.

In this system once problems are learned only retrieval can

occur--there is no such strategy as counting. Subjects in

this experiment first learned a set of letter operand and

product combinations and then learned a second set to see if

there was a proactive interference effect as measured by

increased errors and reaction time to the second set of

problems. The results supported the hypothesis that there

would be proactive interference and although the scope of the

results were somewhat restricted because the experiment only
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mQc^eled real multiplication, it is evidence that Campbell and

Graham may be correct about proactive interference in

multiplication.

Another intriguing interpretation formulated by Graham

and Campbell (1992) is their explanation of tie problems. In

multiplication and addition, problems with repeat operands or

addends (6x6, 7+7) are processed significantly faster

than nonties by children and adults, even ties that have

relatively large digits. Again, the aforementioned models

indicate this is due to greater practice on the problems as a

result of the significantly greater presentation of these

problems in text books (e.g. Siegler, 1988b; although

contrary findings in Hamann & Ashcraft, 1986). This is

feasible. The explanation offered by the network

interference model, however, that there is differential

interference in tie and nontie problems is plausible as well.

Nontie problems have two different operands that activate two

different interfering sets of answers while tie problems with

only one true operand activate only one set of interfering

answers. Less interference means faster response times.

Finally, another major strength of Campbell's model

involves his extensive empirical demonstrations of priming

effects. Campbell has shown that relatedness of primes can

lead to enhancement or debilitation of performance. For

short lags between trials, recently solved problems are

inhibited while at longer intertrial intervals they are

promoted as errors (Campbell, 1990, 1991). Ashcraft (1992)
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has noted that the inter-trial error priming effect is

analogous to similar effects in other domains of research

such as the semantic memory literature.

Criticisms /Weaknesses of the Model

Criticisms of the model center around three main areas:

the overdevelopment of the model, in some areas the

underdevelopment of the model, and the lack of a procedural

component in the model.

Ashcraft (1992) cites criticism that the different types

of associations that are eniimerated in the model are less

parsimonious than is desirable. McCloskey et al. (1991) also

argue that the network model is overdeveloped and at the same

time argue that some aspects of the model are underdeveloped;

I would have to agree. One example of underdevelopment of

the model is the omission of the description of the mechanism

that chooses among answer nodes with different levels of

activation, a criticism that is justifiably leveled here as

well as against Ashcraft 's model. It is also not possible to

ascertain the comparative importance of the different types

of associative strengths at present; what is the relative

strength of an operand-answer association compared to a

problem-answer association, for instance? The

overdevelopment of the model lies in the fact that there are

so many different associations. Often times it is

conceivable that a subset of these associations is adequate

to explain a phenomenon and it is then unclear as to why all

of the associations are necessary.
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Lastly and maybe most importantly, very little attention

if any is given to a procedural component, a criticism that

was leveled against Ashcraft's model earlier. How is it that

these associations change over the course of development?

How is it that children know the most efficient strategies to

solve problems? These questions cannot be answered within

the network retrieval model as it currently exists.

Overall Conclusions About the Models

All three groups of researchers agree in general that

the theories they have put forth are compatible. Campbell

and Graham's model shares with Ashcraft's model a network

framework and operand driven activation. The idea of

interference is central to both the model of Campbell and

Graham and Siegler's model. All three groups of researchers

agree that strengths of answers are associated with problem

presentation and practice.

There are also, however, significant differences among

the models. While the network interference model and the

distribution of associations model both incorporate

interference effects, the distribution model claims that

interference occurs within a specific problem, and that the

distribution of associations for problems are completely

independent of one another, something Campbell and Graham see

as incorrect. And, of course, the two network models, in

emphasizing the study of retrieval, largely ignore the fact

that children use many different strategies, retrieval being

only one of them. At present, although the models have
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differences, there is no evidence that any one of the models

is superior to the others. At this point it is beneficial to

have these three different vantage points as they bring

different hypotheses to light (e.g. the tie problem

explanation that Graham and Campbell give compared to Siegler

and Ashcraft's explanation). In addition, Ashcraft has made

an attempt to assimilate some of the theoretical aspects of

the other models into his model (Ashcraft, 1992), an

indication that it may be possible to eventually weave the

theories into a coherent whole.

My personal bias is to favor Siegler 's distribution of

associations model. The evidence mentioned in a previous

section of this paper concerning the models external validity

(Geary & Burlingham-Dubree, 1989) and the many studies that

have been carried out that apply the model to specific

subpopulations of children (e.g., Geary & Brown, 1991;

Siegler, 1988a; Goldman, Pellegrino, & Mertz 1988; Geary,

Fan, Bow-Thomas, Siegler, 1993) make starting with Siegler 's

model the most appealing option. I agree with McCloskey et

al. (1991) that of the three models the distribution of

association model is "more complete, more explicit, and more

tightly constrained than other current models of arithmetic

fact retrieval" (p. 389) . The challenge for the model is to

be able to make the necessary adjustments so that it can

better explain certain phenomena (e.g., priming effect,

operation confusion effect) without radically altering its

composition so as to lose its present predictive power.
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Now that the discussion of mental arithmetic is complete

let me turn your attention to another important aspect of

mathematical development --problem solving or mathematical

reasoning. Soon after children are introduced to arithmetic

problems, the problems are embedded in contextual situations.

These new types of problems require children to form

representations and reason as well as do computation. In the

next section I will focus on a particular area of problem

solving in mathematics, namely word problems.

Word Problem Solving

There are many different aspects of problem solving and

it would take an enormous amount of time and space to cover

all topics in this domain. I will therefore focus on one of

the dominant areas of problem solving, word problem solving,

which will be part of the focus of the study soon to be

described. Two of the sub-areas of word problem solving that

I will focus on are features of word problems, semantic

features of word problems in particular, and on processes

that children use to solve word problems. As the focus of

Chapter 2, I will try to show that developing the arithmetic

skills mentioned above, most importantly being able to

rapidly and almost effortlessly retrieve arithmetic facts

from memory, plays a profound role in the development of

mathematics word problem solving skills and mathematics

reasoning skills in general

.
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Semantic Structure of Basic Word Problems

Semantic structure, in its most general sense, refers to

the meaning of sentences in word problems and how they are

interrelated. Riley, Greeno, and Heller (1983) put together

a comprehensive classification system based on the semantic

structure of addition and subtraction word problems. Their

work has also been extended to multiplication and division

word problems by other researchers such as Lewis (1989) and

Lewis and Mayer (1987), but since most of their research was

conducted using addition and subtraction problems, that is

what will be focused on here.

Riley, et al . (1983) identified four major semantic

categories of word problems and labeled them change, combine,

compare, and equalize problems. I will be discussing these

types of problems extensively so to avoid confusion I have

provided the reader with Table 5 (adapted from Riley, Greeno,

& Heller, 1983) on page 73 that lists the four types of

problems and gives examples of each; the letters in

parentheses at the end of each problem refer to their

relative dif ficulty-- (E) asy, ( I ) ntermediate or (D) if ficult--

judgments that have been determined by a number of studies

using samples of children of many different ages (e.g..

Carpenter, Hiebert, & Moser, 1981; Nesher, Greeno, & Riley,

1982; Riley, Greeno, & Heller, 1983).

The first type of problem that appears in Table 5, the

change type of problem, implies that an action is taking

place. In the first change problem, Jane has three toys to
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begin with and Bill gives (the action or change part of the

problem) her 4 more toys. This action leads to a change of

inventory, so to speak, for both children. Bill has 4 fewer

toys than he did before the action and Jane now has 4 more.

This problem requires that a child be able to count on 4

units from Jane's original 3.

The first combine problem requires this same solution

strategy of counting on 4 (or 3) to solve the problem, yet

the conceptual nature of the problem is totally different.

In this type of problem there is no action per se, neither

Jane nor Bill is giving or receiving toys, but rather their

inventory of objects are being combined. A child has to

realize that neither of the two subsets are being changed but

rather are being combined to form a new superordinate set

that encompasses both of the subsets.

The next set of problems, compare problems, like the

combine problems involve static relationships. Again Bill

and Jane do not experience a change in their overall supply

of toys but one unknown set of toys is being compared to

another to establish the quantity in that unknown set of

toys. Equalize problems are similar to compare problems in

that an action is performed to change the quantities of one

of the sets. The difference is that in the equalize problems

there is a constraint on the change so that one set of

quantities must be acted on until that constraint is reached;

there is no such constraint with compare problems.



Research has been conducted on what types of counting

strategies young children use to solve the four types of word

problems described above. Results of research in this area

indicate that the types of actions that are implied in a

problem, which is determined by a problem's semantic

structure, affects what type of arithmetic strategy

elementary school children will select to try to solve a

problem (Carpenter, et al., 1981; De Corte & Verschaffel,

1987). For example, De Corte and Verschaffel found using

manipulatives that 7 5% of their elementary aged sample used a

strategy called an adding method to solve the first change

problem in Table 5. The adding method involves counting a

set of objects that represents the augend of a problem (first

number) and then counting out a set to represent the addend,

and finally counting out all of the objects. Similarly, the

researchers also found children used a manipulative strategy

called the no move strategy 68% of the time when solving the

first type of combine problem. Even more interestingly, De

Corte and Verschaffel found that semantic features of

problems also dictated verbal counting strategies used to

solve problems; a COL strategy was used much more frequently

for combine problems than change or compare problems. In

summary, it seems that semantic features of word problems

dictate the strategies children use to solve them. This,

however, is only one of many processing steps a child must

use to solve a problem as can be seen in the next section.
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Problem Solving Processes

Mayer (1985) has argued that arithmetic word problem

solving involves four separate steps: problem translation,

problem integration, solution planning, and solution

execution. The processes of translation and integration are

used by a child to form a representation of the problem and

solution planning involves transforming that representation

into a strategy that can be used to solve the problem.

Because in large part I have already gone over solution

execution in going over the strategies used to solve simple

arithmetic problems, the focus of this section will be on

representation of problems and solution planning.

A child's ability to solve different problems depends on

how well he or she is able to represent a problem which, in

turn, largely depends on understanding the text that outlines

the problem (e.g., Kintsch & Greeno, 1985). This

comprehension process involves understanding the meanings and

mathematical implication of certain words (such as more,

increase, less, etc.) as well as the composition of the

problem as a whole. The way a problem is presented has a

strong influence on how difficult it is to form a

representation. To illustrate this, let us examine two

compare problems from Table 5, the 3rd and 4th problems.

Problem #4 is more difficult largely due to the second

sentence in the problem. Let's examine why.

One reason that problem #4 is more difficult has to do

with the relational word "less" in the second sentence of the
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problem. The mathematical implication of this word is that

the operation of subtraction should be used to solve the

problem. This is not the case. Several researchers have

documented that even college students have trouble solving

problems correctly that contain what is termed inconsistent

relational statements such as the "less" statement in problem

#4 (Bovenmyer-Lewis & Mayer, 1987; Bovenmyer-Lewis
, 1989;

Mayer, Lewis, & Hegarty, 1992).

Also important in the second sentence of #4 is how the

problem is structured. When a child or adult reads the first

sentence of a problem he or she will use what is called a

schema, which is a "general format for extracting and

representing or translating the basic meaning of a problem"

(Geary, 1994, p. 105). The organizing feature of the first

sentence of problems #3 and #4 are the same, quantity. This

is further elaborated by the reference to the who, what, and

how many stated in the sentence. The important features of

the first sentence of problem #3 might be concretely

represented by the diagram at the top of Figure 3 on page 59.

Similarly the second sentence could also be concretely

represented as shown by the second diagram, the only

difference being the unknown quantity. As children solve

more and more of these types of problems it is thought that

they do not have to continually build these schemas but can

simply call up the schema and fill in the bubbles for how

many, who, and what (Stigler, Fuson, Ham, & Kim, 1986) .
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Figure 3 . Possible schema formed to solve a compare word

problem. Adapted from Geary (1994) .
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For compare problem #4 (refer to Figure 4 on page 61),

children use the same schema to represent the first sentence;

it is identical to that of problem #3. The difficulty comes

in representing the meaning of the second sentence. The word

"she" refers to Jane and if we try to represent this sentence

with the schema used for the first sentence of the problem,

we once again come up with Jane in the who bubble, toys in

the what bubble, and 2 in the how many bubble. There is no

way to represent Bill in this sentence using the above schema

and an answer to the question, "How many does Bill have?"

cannot be answered.

One way that children might be able to solve this

problem is to set up a third representation that makes Bill

the subject rather than the object of the second sentence

(Mayer & Lewis, 1987) . This would involve setting up a third

representational schema, shown as the third relationship in

Figure 4, that switches from having Bill as the object to the

subject of the sentence as well as changing the relational

statement from less to more. Because a child may have to set

up a third representation for this problem it is no wonder

children, and even adults, find this problem more difficult

to solve than other compare problems. First, a child may not

be able to set up and use this reversal schema and second,

working memory demands are increased in performing this

representational/reversal operation which would also increase

the possibility of error.
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Figure 4 . Possible reformulation of a schema to solve an

inconsistent language compare word problem. Adapted from

Geary (1994).



After a child has represented the basic meaning of a

problem, a second type of schema needs to be composed that

represents the relationship between important features of

the problem instead of the meanings of each sentence. This

process is part of the problem integration process. One way

to understand relational schemas is shown in Figure 5 on page

63 . The individual schemas are defined by the quantity

dimension. This dimension depicts the most important feature

of each individual sentence and the features are depicted as

the horizontal line in the figure. For problem #3 Jane's

position on the number line is the first quantity represented

as the quantity associated with her is given in the first

sentence of the problem. The relationship between how much

candy Bill has in comparison to Jane is shown by his relative

position to her on the number line. His name is placed to

the left and this placement is guided by the relational word

"more" in the problem.

In problem #4 the same use of this relational schema

would result in a child solving the problem incorrectly.

Again, Jane would be placed on the number line first as the

first sentence gives us the quantity associated with her.

Trying to represent the relationship between Jane ' s and

Bill's number of toys is difficult because the relationship

needs to be extracted from the statement "She has one candy

less than Bill." The word "less" is very striking in this

problem and often leads people to incorrectly locate Bill to

the left of Jane on the number line and eventually make an
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Diagram for Comparft Problem #3

Jane

More

Sue

Diagram for Compare Problem #4

More

Sue
9

Jane

Figure 5 . Possible relational schemas for solving two

compare word problems. Adapted from Geary (1994)

.
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error in trying to solve the problem. Lewis (1989) showed

with a sample of college students that if trained in

representing relationships on a graph in this way, students

could significantly reduce the number of errors made on these

types of problems.

The next step in the solution process is solution

planning or the choosing of the best strategy to solve a

problem. Riley et al . (1983) have argued that a third type

of schema called an action schema bridges the gap between the

relational schema and the actual selection of a strategy to

solve the problem. Action schemas do this by providing

implicit knowledge about the results that various arithmetic

strategies produce, and the contexts in which they are most

typically used. One example would be the adding method that

was described earlier when reviewing the research of De Corte

and Verschaffel (1987). The actual strategy used to solve a

problem depends on "the best fit between the actions implied

in the problem representation and the actions associated with

the schemas that represent the outcome of each of the

strategies available to the child" (Geary, 1994, p. 109) . In

more simple terminology, solution planning involves

associating a child's representation of the important

relationships of a problem with the child's best available

(arithmetic) strategy for acting on that relationship.
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strategies used to solve addition problems.

Simple Mental
Addition

Strategy Description Example

Counting Manipulatives

(CCA)
The problenn's augend and
addend are represented using
objects. The objects are then
counted starting from 1

.

To solve 3 + 4, a child would
count out 3 blocks, count out

4 more blocks, and then count
out the entire set of 7 blocks.

Counting fingers The problem's augend and
addend are represented using
fingers. At first, the fingers are
counted from 1

.

To solve 3 + 4, a child raises 3
fingers on one hand, then
raises four fingers on the

other, and finally moves each
finger as he or she counts all 7
fingers starting from 1

.

Verbal Counting

Counting all starting

with the first addend
(CAF)

The problem's augend is

verbally counted out and the

addend is counted on top of it.

To Solve 3 + 4, a child counts
"1,2, 3, 4 is 1,5 is 2, 6 is 3,

and 7 is 4. The answer is 7."

Counting on starting

with the first addend
(COF)

The child counts on the

second number from the

cardinal value of the first.

To solve 3 + 4, a child counts,

"3, 4 is 1 , 5 is 2, 6 is 3, and 7 is

4. The answer is 7."

Counting all starting

with the larger addend
(CAL)

The larger of the augend and
addend is counted out from

one and the remaining number
is counted on top of it (this

strategy is quickly abandoned,
if used at all).

To solve 3 + 4, a child counts,

"1,2, 3, 4, 5 is 1,6 is 2, and 7

is 3. The answer is 7."

Counting on from

larger (COL or nnin)

The cardinal value of the larger

value in the problem is used as

the starting point and the

smaller value is counted on
from there. This taxes working

memory resources less

because a child needs only to

keep track of a minimum
number of counts.

To solve 3 + 4, a child counts,

"4, Sis 1,6 is 2, and 7 is 3.

The answer is 7."

Continued, next page
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Table 1 continued.

Strategy Description

Rule An answer is based on a
learned rule of addition that can
be retrieved and applied to a
problem such as n + 0 = n, or 0
+ n = n.

To solve 5 + 0, a child simply

states 5 on the basis of

retrieving the rule that states

any number plus 0 is itself.

Derived facts

(decomposition)
A problem is broken down into

two simpler problems, one (or

both) of which may be retrieved

from lona term mpmnrv Onrp1 wi 1 1 t\yt 1^ iwl III II Id 1 iv/i y , Iv^v?

the fact is retrieved, the value
of the second problem is

added on.

To solve 8 + 7, a child may
break the problem into (8 + 2)

+ 5. The child may be able to

cdoiiy rciiifcjvc iiic proDiem o +
2 = 10 and therefore may
decompose 7 into 2 + 5. Once
the child retrieves 8 + 2 = 10,

the remaining 5 is most likely

added on using one of the

stratpoips ahnvpOil m^^i ctL/w V ^

.

Fact Retrieval The problem is solved by
directly stating an answer
retrieved from long term
memory.

Rptripvinn 7 to <;nl\/p + 4i 1^ 1 1 1^ V 1 1 IVJ / K\J ovy 1 V ^ \J 1 ^ .

Complex Mental Addition

Verbal counting on from
larger

The same as COL strategy

described above
To solve 21 + 5, a child counts,

"21,22 is 1,23 is 2, 24 is 3, 25

is 4, and 26 is 5. The answer is

26."

Rpfirouninn Thp aunpnH and addpnd arp

decomposed into their ten and
unit values so that the tens

units can be combined, the unit

values can be combined, and
these two sums combined to

arrive at a solution.

To solve 43 + 29'

Stepi: 43 = 40 + 3

Step 2: 29 = 20 + 9

Step 3: 40 + 20 = 60
Step 4: 9 + 3 = 12

Step 5: 60+12 = 72

Columnar addition using

retrieval

The problem is solved by

retrieving columnwise sums
and trading or carrying when
necessary.

To solve 43 + 29:

Step 1: 3 + 9 = 12

Step 2: note the trade (carry)

Step 3: 4 + 2 = 6

Step 4: 6 + 1 (trade) = 7

Step 5: combine 7 from tens

column and 2 from ones

column to state answer of 72

66



Table 2. Strategies used to solve subtraction problems.

Simple Mental
Subtraction

Strategy Description Example

Manipulatives

Separating from The value of the minuend is

counted out using objects.

The subtrahend is subtracted
by removing one object at a
time and the answer is stated

after the remaining objects

have been counted from 1

.

To solve 4 -2, a child counts

out four blocks, then removes
two from that set of four, and
finally counts the blocks that

are left, "1,2. Two is the

answer."

Adding on The value of the subtrahend is

ouuiiicu (jui using oujecis.

Objects are added one by one
until the value of the minuend
is reached. The child keeps
track of the number of objects

added on and states this

number.

To solve 4 -2, a child counts

out two blocks. The child then

counts on, "3 is 1 , 4 is 2. The
answer is 2."

Matching Two rows of objects are lined

up III a orie-io-one

correspondence; one row
represents the value of the

minuend and one the value of

the subtrahend. The answer is

determined by counting the

number of unmatched objects.

To solve 4 - 2, a child lines up a

row or 4 DiocKS wiin a row oi d

blocks in one-to-one

correspondence and counts

the blocks that do not have a

match, "1
, 2. The answer is 2."

Counting fingers The value of the minuend is

represented by holding up the

aoDrooriate number of finaers

The subtrahend is represented

by folding back down the

appropriate number of fingers

and the remaining fingers are

counted and an answer is

stated.

To solve 4 - 2, a child counts

and holds up 4 fingers, "1
, 2,

3, 4," and then counts and

folds down 2 fingers, "1, 2,"

and counts the fingers that are

still up, "1
, 2; the answer is 2."

Continued, next page
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Table 2 continued.

Strategy Description Example

Verbal counting

Counting up Involves counting up from the
subtrahend until the minuend
is reached. The child verbally

keeps track of the number of

counts completed.

To solve 4 - 2, a child counts,
"2, 3 is 1, and 4 is 2. The
answer is 2."

Counting down Involves counting down from
the minuend until the

subtrahend is reached. Again,
the child verbally keeps track of

the number of counts

completed.

\r\ QnK/fi A. ~ 0 a oHilH /"vm into

"4, 3 is 1, and 2 is 2. The
answer is 2."

Addition reference A problem is solved by
retrieving a complementary
addition fact.

To solve Q - 3 a rhilH mav
retrieve the answer to the

complementary addition

problem, 6 + 3 =9, and use
that information to state the

answer, 6

Rule An answer is based on a
learned rule of subtraction that

can be retrieved and applied to

a problem such as n - 0 = n.

To solve 5 - 0, a child simply

states 5 on the basis of

retrieving the rule that states

that 0 subtracted from any
number leaves the original

number unchanged.

Fact retrieval The problem is solved by

directly stating an answer
retrieved from long term

memory.

Retrieving 3 to solve 7 - 4.

Complex Mental
Subtraction

Verbal counting

Counting down Same as described above To solve 1 7 - 4, a child counts,

"17, 16 is 1, 15 is 2, 14 is 3,

13, is 4. The answer is 13."

Continued, next page
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Table 2 continued.

Strategy Description Example

Decomposition

Down over the ten Involves first subtracting 10
from the minuend. This

difference is subtracted from
the subtrahend and this

difference is then subtracted
from 10.

To solve 16-8:
Stepi: 16-10 = 6
Step 2: 8-6 = 2

Step 3: 10-2 = 8

Take from the ten Involves first subtracting the
subtrahend from 10. Ten is

then subtracted from the
minuend. These two
differences are then summed
to arrive at an answer.

To solve 16-8:
Step 1: 10-8 = 2
Step 2: 16-10 = 6
Step 3: 6 + 2 = 8

L^cicic lub rule Involves increasing the value of

the subtrahend to 10 and then
subtracting 10 from the

minuend. The difference

between 10 and the

subtrahend is then added to

arrive at an answer

To solve 43-7:
Stepi: 7 + 3 = 10
Step 2: 43-10 =33
Step 3: 33 + 3 = 36

Columnar retrieval The problem is solved by
retrieving columnwise
differences and trading or

Dorrowing wnen necessary.

To solve 32-9:
Stepi: 30 -10 = 20 (trade)

Step 2: represent 20 in

working

memory
Step 3: 10 + 2 = 12

Step 4: 12-9 = 3

Step 5: 20-0 = 20
Step 6: 20 + 3 = 23
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strategies used to solve multiplication probl

Simple Mental
Multiplication

Strategy Description ExanriDleifKU III 1^ 1 W

Repeated addition The value of the multiplicand is

added the number of times the
multiplier dictates to get an
answer.

To solve 6 X 4, a child

represents it as 6 + 6 + 6 + 6
and adds, "6 is 1 , 6 + 6 = 12 is

2, 12 + 6 = 18 is3, 18 + 6 = 24
IQ ^ THa £)nc\A/or ic OA "
lo 1 lie? dl loWc;i lo ^H.

Counting by n A problem is solved by
counting up the number of

multiples of the multiplicand

that the multiplier specifies.

To solve 6 X 4, a child counts
by multiples of 6, "6 is 1 , 1 2 is

2, 1 8 is 3, 24 is 4. The answer
is 24."

Rule An answer is based on a
learned rule of multiplication

that can be retrieved and
applied to a problem such as n

X 0 = 0, n X 1 = n,

n X 10 = nO, and n x 1 1 = nn.

To solve 5 X 1 , a child simply

states 5 on the basis of

retrieving the rule that states

any number times 1 is itself.

Derived facts

(decomposition)
A problem is broken down into

two simpler problems, one (or

both) of which may be retrieved

from lona term mpmorv Onrp
the fact is retrieved, the value

of the second problem is

added on.

To solve 6 X 7, a child may
break the problem into (6x6) +

(6x1). Both facts may be
rptripx/pH from lonn tprm

memory as the tie problems

(6 X 6) are quickly committed to

memory and the rule for 6 x 1 is

easily retrieved as well. These
two simpler solutions are then

added together.

Fact retrieval A problem is solved by directly

stating an answer retrieved

from long term memory.

Retrieving 42 to solve 6x7.

Continued, next page
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Table 3 continued.

Complex Mental
Multiplication

Strategy Description Example

Decomposition Involves solving a problem by
breaking the multiplicand into

its ten and unit values. The
multiplier is then applied first to

the tens value and then to the
units value. These two
products are then added .

To solve 43 X 6:

step 2: 40 X 6 = 240, hold in

working memory
Step 3: 6x3 = 18
Step 4; 240 + 1 8 = 258

Columnar retrieval The problem is solved by
retrieving basic facts from long

term memory by column,
holding in working memory,
and carrying as needed.

To solve 43 X 6:

Step 1: 3x6 = 18
Step 2: Note to trade value 10
to

next column
Step 3: 40 X 6 = 240
Step 4: 240 + 10 = 250
Step 5: 250 + 8 = 258
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e 4. Strategies used to solve division problems.

Simple Mental
Division

Strategy Description ExanriDle

Repeated addition The value of the divisor is

added the number of times
necessary to reach the value of

the dividend.

To solve 24 + 6, a child

represents it as 6 + 6 + 6 + 6
and adds, "6 is 1 , 6 + 6 = 12 is

2, 12 + 6= 18 is 3, 18 + 6 = 24
IQ A. TKa stDcvAyAr ic A "
lo H. 1 1 lo cti loWUi lo H.

Counting by n A problem is solved by
counting up the number of

multiples of the divisor to reach
the value of the dividend.

To solve 24+ 6, a child counts

by multiples of 6, "6 is 1 , 12 is

2, 18 is 3, 24 is 4. The answer
is 4."

Multiplication reference A problem is solved by
retrieving a complementary
multiplication fact.

To solve 24 + 6, a child may
retrieve the answer to the

complementary multiplication

problem, 6 x 4 = 24, and use
that to state the answer 4

Rule An answer is based on a

learned rule of division that can
be retrieved and applied to a
problem such as n + n = 1

.

To solve 7 + 7, a child states 1

on the basis of retrieving the

rule that states anything

divided by itself is one.

Derived facts

(decomposition)
A problem is broken down into

two simpler problems, one (or

both) of which may be retrieved

from long term memory. Once
the fact is retrieved, the value

of the second problem is

added on

To solve 72 + 8, a child may
break the problem into (64 i 8)

+ (8 + 8). Both facts may be
retrieved from long term

memory as 64 i 8 is the

complement of a multiplication

tie problem which are quickly

committed to memory, and the

rule for 8 I 8 may be easily

retrieved as well. The two

simpler solutions are added
together, "8 + 1 = 9. The
answer is 9."

Fact retrieval A problem is solved by directly

stating an answer retrieved

from long term memory.

Retrieving 9 to solve 72 + 8.
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Table 5

.

Semantic classification of word problems.

Change Problems

Jane had three toys. Bill gave her four more toys. How many toys
does Jane have now? (E)

Jane had four toys. Then she gave three toys to Bill. How many
toys does Jane have now? (E)

Jane had six toys. Bill gave her some more toys. Now Amy has nine
toys. How many toys did Bill give her? (I)

Jane had some toys. Then she gave two toys to Bill. Now Jane has
five toys. How many toys did Jane have in the beginning? (I)

Combine Problems

Jane has two toys. Bill has four toys. How many toys do they have
altogether? (E)

Jane has five toys. Three are dolls and the rest are trucks. How
many trucks does Jane have? (I)

Compare Problems

.ne has three toys. How many fewer toys does1

.

Bill has five toys

.

Jane have than Bill?

2 . Bill has seven toys

.

Bill have than Jane?

3 . Jane has three toys

.

does Sue have? (D)

4. Jane has three toys

.

does Sue have? (D)

1. Bill has five toys

.

have to buy to have

She has two less toys than Sue. How many toys

Equal 1 z e

Jane has two toys . How many toys does Jane

Jane has three toys. If she buys three more toys, then she will
have the same number of toys as Bill. How many toys does Bill have?

(I)

Bill has six toys. If he loses three toys he will have as many as

Jane. How many toys does Jane have? (I)

Jane has four toys. If she buys two more toys then she will have

the same number of toys as Bill. How many toys does Bill have? (I)

Jane has three toys. If Jane loses one of her toys Bill will then

have as many toys as Jane. How many toys does Bill have? (I)
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CHAPTER 2

AUTOMATICITY AND WORKING MEMORY IN ARITHMETIC AND

THEIR RELATION TO MATHEMATICAL PROBLEM SOLVING ABILITIES

Introduction

I would like to start off this section with a brief

introduction to explain why I have included exposition of the

topics automaticity, working memory, and complex mathematics

in the same section. The availability of working memory

resources is a very important factor in children's ability to

solve more complex mathematical problems such as word

problems. In order to study the effect that mental

arithmetic abilities have on more complex abilities such as

word problem solving, it is first necessary to determine if

there is a savings of working memory resources when

arithmetic problems are committed to memory. To ascertain

whether working memory is saved, it is important to discuss

studies involving automaticity and related constructs such as

the autonomy and modularity of cognitive processes as they

relate to mental arithmetic. In the following pages then, I

will discuss mental arithmetic and automaticity followed by a

related discussion of mental arithmetic and working memory

resources. This introduction will conclude with an

examination of issues surrounding word problem solving

abilities in children, and how working memory/ complex

mathematical abilities might relate to each other. First,

let me turn your attention to the definitions of autonomy,

automaticity, and modularity.
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Autonomy. Automat

i

citv . and Modul ar

i

The topic of automaticity as it relates to retrieval of

basic arithmetic facts is a more difficult concept to define

than it might seem at first. Use of the term automatic, or

automaticity, is very loose in much of the mathematics

literature as well as in the literature in other domains.

Zbrodoff and Logan (1986) set out to test whether the

processes that are used by adults to solve simple addition

and multiplication problems were autonomous. In the

introduction to their study they do an excellent job of

defining the distinctions among automaticity, autonomy, and

modularity. They define a process as being autonomous if it

can be activated without intention and once it has been

activated it runs to completion, unable to be arrested

(Zbrodoff & Logan used the term "ballistic"). The concept of

automaticity is closely linked to autonomy, it actually has

the properties of autonomy within its definition. Recent

theorist have defined processes that are automatized as being

fast, effortless, unconscious, and autonomous (e.g., Laberge

& Samuels, 1974; Logan, 1980; Posner & Snyder, 197 5) and seem

to believe that automaticity is a unitary phenomenon.

According to Zbrodoff and Logan, this is where theorists

start to run into trouble. Zbrodoff and Logan believe that

there was no reason that all of the above mentioned

properties had to co-occur and other researchers (Regan,

1981; Paap & Ogden, 1981) have backed up this claim. Work

such as this has led to belief in the dissociation of

75



automaticity components; even though the components may be

highly intercorrelated that cannot be assumed and different

methods of measuring speed of processing, obligatory

activation, capacity usage, and intentionality must be used

(Stanovich, 1990) for each of these components.

Modularity of processing and autonomy have a

relationship that is analogous to the relation between

automaticity and autonomy. Modular processes are autonomous

by definition, they do, however, have many properties in

addition to autonomy (functional autonomy, encapsulation, or

cognitive impenetrability are all terms used to describe

autonomy as it relates to Modularity Theory [Stanovich,

1990]). According to Fodor, (1983) there are nine properties

other than autonomy that compose modular processes. Zbrodoff

and Logan point out that determining whether a process is

autonomous or not can (and should) be pursued separately from

both determining whether processes are automatic and/or

modular

.

Arithmetic. Autonomv. and Automaticity

What did Zbrodoff and Logan (1986) initially conclude

regarding the autonomy of the processes of simple addition

and multiplication? From the outset, based on previous

research on cross operation confusion effects (e.g.. Miller

et al., 1984), they determined that addition and

multiplication processes could be started unintentionally and

that these two arithmetic operations must be either partly or

fully autonomous. In order to assess whether they were fully
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autonomous, they conducted a number of experiments, the first

using a verification task. Subjects in one condition were

given a pure block of addition problems with some associative

lures in them such as 3 + 4 = 12 (if you replace the plus

sign with a multiplication sign the statement is true)

.

Subjects in a second condition were given a block of mixed

problems that from trial to trial could be either

multiplication problems or addition problems, that had

associative lures mixed in as well. At the outset, both

groups of subjects were told what types of problems they were

about to receive; the pure block group was told they were

only going to receive addition problems and the mixed group

was told they would receive both types of problems . The

addition only group therefore should never have intended to

do multiplication. The researchers reasoned that if the same

amount of interference was evidenced in both conditions, then

the process of addition was not affected by intention. If

the interference (RT's) was greater in the second condition,

it would provide evidence that in the second condition the

subjects were intending to perform one operation as often as

the other and associative lures would have more effect than

when subjects were only concerned with one operation. The

experiment was also repeated using multiplication blocks as

the pure condition.

The results showed that interference was not equal in

both the mixed and pure blocks, although the difference was

smaller in the experiment that used pure blocks of

77



multiplication. Because of these results, Zbrodoff and Logan

concluded that answering the question of whether arithmetic

processes are autonomous or not is not best served by a

dichotomous response; perhaps a better answer would be to

place the process on an autonomy continuum. They concluded

that arithmetic was at least partially autonomous.

Zbrodoff and Logan then carried out an experiment to

test the second part of the autonomous process definition,

whether the process of mental arithmetic would continue in a

ballistic fashion once it was started. The paradigm used was

a stop sign condition where subjects were shown arithmetic

problems on a computer screen and were interrupted during

some trials when a tone was sounded 100, 300, 500, or 700 ms

after an arithmetic problem disappeared. The stop sign

signaled that the subject should try to inhibit their

processing of that problem. Subjects later completed a

memory test to determine which problems subjects recognized.

Two experiments were conducted, one in which subjects had to

verify answers to arithmetic problems and one in which

subjects had to produce answers to problems. The hypothesis

in each experiment was that subjects would remember

significantly fewer problems when they tried to stop their

processing. The results of the memory test supported the

hypothesis that subjects could stop their processing and that

these simple arithmetic procedures were not ballistic. At

least one question lingers, however; is it possible that the
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response to the stop signal disrupted memory whether the

arithmetic process was inhibited or not?

More recently, Klapp, Boches, Trabert, and Logan (1991)

have redefined automaticity . These researchers criticize

"property- list" approaches to automaticity such as Laberge

and Samuels (1974) who define automaticity using the terms

fast, effortless, and autonomous, because these approaches

are merely descriptive and do not supply a mechanism that

would allow for predictions about what needs to be done to

attain automaticity. Klapp et al. also criticize resource

theory definitions of automaticity because even though they

allow the properties of automaticity to be deduced they, like

the property-list approaches do not specify a learning

mechanism.

The definition of automaticity that Klapp et al . embrace

is a memory retrieval definition. In this type of theory

(e.g., Logan, 1988) automaticity is achieved when performance

is a result of single-step retrieval of solutions from

memory. According to this theory, memory retrieval is always

in competition with algorithms. Algorithmic procedures win

the race when retrieval of answers is slow and inefficient,

as for example, when a child is in the beginning stages of

learning multiplication; memory retrieval will be attempted

but will usually be beaten out by algorithmic procedures.

Automatic retrieval is therefore fast because memory

retrieval is fast, is obligatory because memory retrieval is

obligatory, and is effortless compared to algorithms because
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memory retrieval only wins the race when associative strength

is high and conditions ripe for retrieval are present (Klapp,

et al., 1991). Let us now move to a discussion of obligatory

activation of processes.

Arithmet ic and Obliaatorv Activation

Originally tasks called Stroop (1935) tasks were used in

domains other than mathematics, such as word identification,

as evidence for the existence of automaticity . As mentioned

above, the idea that obligatory activation of processes

always co-occurs with resource free processing is not

necessarily true. In the case of word recognition, some

children as early as first grade were reaching asymptote on

Stroop measures of automaticity which was in direct conflict

with the general belief that the development of prelexical

automaticity was responsible for comprehension development

over a long period of time (Stanovich, 1990) . We now know

that the Stroop task is a good indicator of intentionless

activation but that it does not necessarily directly indicate

capacity use.

Some studies using Stroop and Stroop- like tasks have

been conducted recently in the domain of arithmetic to assess

obligatory activation. One such study was conducted by

Lefevre et al . (1988). The Stroop tasks for their subjects

involved a verification task. Subjects were shown an

addition problem and immediately following the addition

problem a probe digit was presented. It was the subject's

responsibility to press a yes button if the probe matched one
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of the addends in the addition problem and to press a no

button if the probe matched neither of the addends in the

addition problem. Time between the presentation of addition

problem and probe (termed stimulus onset asynchrony, or SOA)

was varied. The crucial trials in this experiment were the

"no" trials that involved a probe number that was actually

the correct sma to the presented addition problem (e.g. 5 +

2; probe is 7). If addition is an obligatory process, one

would expect reaction times for correct sum probes to be

greater than non correct sum probes for the no trials. That

is exactly what the researchers found for both the 60 and 120

millisecond SOA conditions. They also found the effect for

word presentations as opposed to digit presentations (five +

two; probe is seven) and for trials where the plus sign was

removed (5 2; probe is 7). Later studies revealed that

(college) subjects that were skilled at multi-digit

arithmetic showed more obligatory activation for the probe

type problems mentioned above than subjects who were less

skilled at multi-digit arithmetic (LeFevre & Kulak, 1994)

,

and similar effects have been demonstrated for elementary

school children (Lemaire, et al. 1994), as well as elderly

subjects (Rogers & Fisk, 1991)

.

Koshmider and Ashcraft (1991) wanted to document the

change in this obligatory process over development and used a

priming paradigm and students at four different grade levels

to investigate this. Subjects were given true-false

multiplication verification problems that were each preceded
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by a number prime. The number prime was either a correct

answer to the problem (relevant prime), an incorrect answer

to the problem but a correct answer to another multiplication

problem (irrelevant prime), or a line of two dashes (neutral

prime)
.

One would expect that relevant primes would reduce

response times, irrelevant primes would interfere with

verification judgments and raise RT's, and the neutral primes

would have no effect. Another prediction would be that the

effects would become greater over time as one becomes more

proficient at arithmetic. The researchers conducted

statistical analyses on the benefits (relevant prime

condition RT's compared to neutral prime condition RT's) and

costs (irrelevant prime condition RT's compared to neutral

condition RT's) of priming. The results were somewhat mixed.

For easy multiplication problems the benefits across the 225,

450, and 1400 millisecond SOA's were significant for (all)

grades 3, 5, 7, and college students. Hard problems showed

significant benefits for the three older age groups at the

two longer SOA's. Koshmider and Ashcraft noted that these

findings contradicted the findings of Campbell (1987b) using

an SOA of 300 ms, but that this contradiction was probably

due to processing differences between the verification task

used in this experiment and the production task used in

Campbell ' s study.

Analyzing costs, Koshmider and Ashcraft found that easy

problems at all SOA's were significant across all grade

levels. The medium and difficult problems showed a trend
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toward non-significance as SOA and grade level increased, a

finding that is in agreement with earlier presented findings

of LeFevre et al . (1988) and Lemaire et al . (1994).

Koshmider and Ashcraft drew two main conclusions: 1.) the

experiment showed that interference is not the only priming

effect, facilitation also occurs, a finding consistent with

Campbell (1987b), and 2.) that facilitation is larger with

increased SOA indicating that conscious processes might be

aiding in the activation in the network. In terms of

development, benefit increases for hard problems at longer

SOA's and older ages while costs are present at all ages for

easy problems, but diminish as age and difficulty of problem

increases

.

In summary, there is much evidence to show that

arithmetic procedures are at least partially autonomous. As

the work of Koshmider and Ashcraft (1991) and Zbrodoff and

Logan (1986) point out, however, in certain contexts these

autonomous effects can be altered.

Working Memory and Arithmetic

Working memory is a construct that is related to

automaticity ; it is the amount of resources used during

processing. Working memory in the context of this paper can

basically be described as the ability to keep information in

memory while mentally acting on that information or other

information related to it. The trading or carrying of

numbers in complex mental addition reflects such a process;

in mentally computing 24 + 28 one might decompose the problem
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into two simpler problems such as (20 + 20) + (8 + 4). in

order to complete this problem one must compute 8 + 4 = 12,

hold that answer in working memory, use working memory to

solve 20 + 20 = 40, and then combine the two answers.

Available working memory resources are an important factor in

children being able to successfully solve more complex types

of mathematical problems. I would like to discuss several

studies that try to assess the working memory resources that

are needed to perform mental arithmetic. Ashcraft, Donley,

Halas, and Vakali (1992), Kaye et al . (1989), Logie et al

.

(1994), and Klapp, et al . (1991) have all studied this,

although in slightly different ways.

Ashcraft et al . (1992) examined how much working memory

resources were used during single and double digit addition.

It has already been established that double digit addition

taxes working memory resources (Hitch, 1978) so that aspect

of the study about to be described is really a replication of

previous work. The arithmetic task used in this study, as in

most of Ashcraft ' s studies, was a verification task.

Addition problems were presented with either incorrect or

correct answers and subjects were instructed to press one

button if the sum was correct and another if the answer was

incorrect. In order to assess how much working memory was

required to complete this task, Ashcraft et al . had subjects

engage in concurrent tasks (a dual task paradigm) ,

specifically letter and word tasks that consumed working

memory resources but that did not interfere with the
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arithmetic task. One of the letter tasks, the control task,

was simple letter repetition where subjects would see four of

the same letter appear on a computer screen and simply had to

repeat the letter until the arithmetic problem came on the

screen and the person solved it. The tasks that were used to

manipulate working memory load were a word generation task

and an alphabetization task. In the word generation task

subjects would see four letters appear on a computer screen

and were required to rapidly generate words that began with

those letters until the arithmetic problem appeared and was

solved. In the letter alphabetization condition four letters

again appeared on the screen and subjects were required to

recite them as they appeared on the screen and then, as

rapidly as possible, recite them in their alphabetic order.

The conclusions that Ashcraft et al . (1992) were able to

draw from the statistical analysis was mixed (as an aside,

only correctly answered arithmetic problems were used in the

analyses) . There was no task by problem difficulty

interaction found. One interpretation of this was that

having to perform a task concurrently with a mental addition

verification task did not affect arithmetic performance

(speed) . Problems did arise in this interpretation when the

details of the reaction times for each concurrent task were

analyzed and when subject behavior was taken into account.

The word generation and alphabetization task increased RT

about 400 and 600 ms respectively while the letter repetition

control task only increased RT about 250 ms. It was also
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noted during the experiment that subjects often slowed their

verbal response rate in the word generation and

alphabetization conditions (even after reminders that they

should do this task as rapidly as possible) . Hence the 400 ms

and 600 ms increases may have been larger in the two

conditions if the subjects had kept their vocalization speeds

to a maximum. Ashcraft et al . , because the dual task load

may actually have been greater in the above experiment if

subjects had not slowed their vocalizations during the

alphabet and word task, left open the possibility that some

working memory resources are needed for people to solve

simple addition problems.

Kaye et al . (1989) carried out research on working

memory and arithmetic as well, although it differed in many

respects from the design used in Ashcraft et al . (1992)

above. In order to assess the amount of working memory

resources that were required to solve simple addition

problems, Kaye et al. used an auditory probe detection task

that included a unique procedure for assessing processing

loads at different stages of the solution process. The

addends of an addition problem were presented on a computer

screen 750 ms after the beginning of a trial, and the answer

to be verified was presented 1750 ms after the beginning of a

trial. The primary task was for subjects to verify whether

the addition statements were true or false. On half of the

trials, an auditory probe was presented. The subjects'

secondary task was to respond to this auditory probe by
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pressing a button. The onset of the auditory probe was

varied (it occurred 500, 750, 1000, 1250, 1500, 1750, 2000,

2250, or 2500 ms after the addends were presented) allowing

the researchers to assess the demands on working memory at

different times during the solution process. For example, if

the auditory probe was presented when the addends were

presented, the elevation in response time to the probe as

compared to probe response time with no processing demands

was a measure of addend encoding demands. Another main

objective of the experiments was to see how working memory

demands changed over development. In order to evaluate the

developmental change, subjects from grades 2, 4, and 6, and

college students were included in the study.

In their analyses, Kaye et al . used combined RT's for

the arithmetic verification task and the probe detection task

because the probe task affected performance on the primary

task, and therefore dual task reaction time was a more

accurate measure of working memory load. A very definite

developmental pattern was found. Second graders showed the

most inefficient processing as evidenced by large increases

in RT as a function of onset of the probe which would be

expected, as numerous studies have shown that at this grade

few students have begun to retrieve number facts directly,

and counting strategies are very prevalent (e.g. Kaye, Post,

Hall, & Dineen, 1986) . Fourth graders showed that early

processing demands of the task were greater than later

demands. Sixth graders had less of a processing demand than
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the fourth graders, and demands were equal during both the

encoding and computational stages of processing. College

subjects showed very efficient performance (mean RT = 649

ms), but there were still effects of probe interval on

combined response time. Overall the results seem to indicate

that even for college students that presumably are most

skilled at arithmetic fact retrieval, some working memory

resources are needed to verify the truth of addition facts.

A third study conducted by Logie, Gilhooly, and Wynn

(1994) using adults and a double digit mental addition task

yielded similar results. The researchers found that certain

secondary tasks lead to disruption of double digit mental

addition and that this disruption occurred whether subjects

were administered mental addition problems aurally or

visually.

The last dual task study I would like to mention is

Klapp et al. (1991). The arithmetic task used in their study

was quite unique. The general hypothesis they wished to test

was whether overtraining subjects on an addition task would

lead to reduced interference when overtrained subjects were

then asked to verify addition problems while performing a

concurrent task; in other words does overtraining lead to the

saving of working memory resources when trying to solve

addition problems. Klapp and his colleagues wanted to have

three groups of subjects to compare: novices, subjects that

had automatized addition problems, and subjects that had

practice beyond automatization. One way to examine the
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acquisition of automaticity in addition is to select and

compare children of different ages. There is a problem,

however, in that general processing speed varies greatly from

grade to grade making it difficult to determine when the

addition process becomes automatic. Another problem is that

the amount of practice may vary widely from child to child

within grades with no way to control it.

To sidestep these problems a task called alphabet

arithmetic was designed. In alphabet arithmetic (AA) one

addend of a problem is a number and the other is a letter.

The answer to a problem is found by starting at the letter

addend and moving forward through the alphabet the number of

letters specified by the number addend in the problem. So if

the problem is D + 4 = ?, one must count from D four letters

forward: E is one, F is two, G is three, H is four, H is the

answer. The beauty of this task is that the researchers can

be assured that the amount of practice a subject receives is

tightly controlled and it bears a close resemblance to normal

addition; people have to use counting algorithms to initially

solve problems but eventually progress to where answers can

be retrieved. It also is beneficial to use this task because

adults who have processing speeds that are generally quick

and relatively stable can be used as subjects.

The basic nature of the experiments was as follows.

Klapp et al. trained groups of subjects to three different

levels of skill. One group was a novice at AA, one group was

trained to automaticity, and one group was trained beyond
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automaticity. Automaticity was considered to be present when

the memorability of a problem no longer depends on the size

of the addends in the problem. In other words, if response

time and digit magnitude are plotted linearly the slope of

that line should approach zero; if someone were using a

counting strategy to solve AA problems the slope of this line

would be approximately 400-500 ms (Klapp, et al
. , 1991).

Each group was required to perform two different types of

secondary- tasks while performing the primary task of

verifying the correctness of AA problems. One concurrent

task was repetitive speech (repeating January over and over)

and in another experiment nonrepetitive speech (reciting the

months in order) was used. The results of the experiments

were in line with predictions. Novice subjects experienced

interference when doing either concurrent task (increased RT

and errors compared to a control condition) , the automatized

group experienced interference with the AA task only during

the sequential month saying task, and the overlearned group

did not experience interference while performing either

concurrent task.

In addition to the working memory studies outlined

above, other related research has been conducted that shows

there is a relationship between another working memory

measure, digit span, and mental arithmetic strategy choice

and abilities (Geary, et al., 1993; Ellis and Hennelly, 1980;

Ellis, 1992). These studies involved children of different

nations and showed that digit span length is related to the
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pronunciation rate of number words in different languages.

Children that have longer digit memory spans because of

shorter number words may progress to using more advanced

counting strategies (including retrieval) sooner than other

children

.

What is the significance of these studies? They have

provided us with evidence that while some working memory

resources ^re used during basic computation, mental

arithmetic processes are at least partially automatic and

working memory demands can be reduced by overlearning basic

arithmetic facts.

In summary I would like to echo one of the concluding

statements in Kaye et al . (1989) that "The next steps to be

taken in this type of chronometric research on the

development of mathematical ability would involve direct

measurement of the processing savings accrued while subjects

are performing more complex mathematical tasks that require

efficient arithmetic computations as part of their solution"

(p. 479) . A more general statement would be that we need to

determine the link between degree of automatization and

ability to solve more complex mathematical problems.

Basic Number Facts and Mathematics Achievement

In a number of articles, researchers have correlated

measures of basic number fact mastery with scores on

different achievement tests. Does automaticity of basic math

facts correlate with performance on achievement test sections

that deal with more complex problems? A number of studies
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suggest that knowledge about basic arithmetic facts is

related to computational scores and mathematics concept

scores on achievement tests. In Siegler's (1988a) work, with

good students, not-so-good students, and perfectionists

mentioned earlier there were significant differences between

the good and perfectionist groups compared to the not-so-good

students on the math computation and math problem solving

subtests of the Metropolitan Achievement Test. Students that

were either quickly able to retrieve arithmetic problems from

memory or that were able to quickly retrieve arithmetic

problems on some problems and quickly count using a backup

strategy for others, performed better on arithmetic

computational and problem solving achievement measures.

Another study, reported by Resnick and Ford (1981) gave

an example of how computer aided instruction in math

computation for students in grades 1-6 helped to

significantly improve Stanford Achievement Test scores from

one year to the next. Compared to a control group, students

improved not only on sections testing their computational

ability, but also on sections that tested their knowledge of

mathematics concepts and how to apply them.

Still other studies have examined the relationship of

both basic math fact abilities and reading abilities with

word problem solving abilities. For instance, Muth (1984)

studied the relationship of reading and computational skills

to the ability to solve arithmetic word problems. She

conducted regression analyses using 6th graders' scores on a
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15 item word problem test as the criterion variable and using

scores on the reading comprehension and arithmetic

computation subtests of the Comprehensive Test of Basic

Skills as predictor variables. A significant amount of

variance (54%) was accounted for by the reading ability and

computational skills together with 8% of that being unique to

computation. Balow (1964) conducted a similar analysis using

subtests of the Stanford Achievement Test as measures of

reading, computational, and mathematical reasoning abilities.

After controlling for IQ, Balow found, like Muth, that

reading ability and computational abilities were significant

predictors of mathematical reasoning abilities.

Research on the relationship between mental arithmetic

abilities and word problem solving abilities extends into

research with subpopulations as well. Zentall (1990)

conducted a study with normal, learning disabled, and

attention deficit disorder students in the seventh and eighth

grades. Zentall was attempting to determine the relationship

between reading comprehension, cognitive skills, behavioral

scores (measures such as bottom/ torso movements that were

operational definitions of attention) , and math-fact

retrieval time with number of problems correctly solved on a

math word problem test. Only behavioral scores and math- fact

retrieval time correlated with percentage of word problems

correctly solve and only math- fact retrieval time correlated

significantly with absolute number of word problems correctly

solved.
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How might arithmetic skill and its development in turn

affect the development of problem solving abilities? At a

somewhat obvious and mundane level, accuracy and speed of

arithmetic problem solving aids in accuracy and speed of

complex problem solving--the more accurately and more quickly

a person can carry the solution process of a word problem the

more problems that person will get correct on a test of

mathematic abilities--especially if it is timed. There is

evidence, however, that accuracy probably does not account

for much of the variability in word problem solving past

grade 5. Previous research has shown that by grade 6

students have achieved about 95% of adult accuracy on simple

arithmetic problems but only about 65% of adult speed

(Mercer, 1979). It is safe to assume that incorrect problem

solution will infrequently occur due to failure to do

computations correctly. Another piece of research by

Morales, Shute, and Pellegrino (1985) supports this claim as

well. These researchers found that for their fifth/sixth

grade sample of students, somewhere between 80-90% of

incorrect solutions of word problems were due to conceptual

not computational errors.

Another more theoretically interesting hypothesis does

exist, however. Hiebert (1990) offered the suggestion that

making the basic math facts automatic frees more space in

working memory to think about how to apply facts in a

problem. Several other researchers have echoed this thought

(e.g. Geary, 1994; Geary & Widaman, 1992; Silver, 1987; for
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an opposing viewpoint see Rabinowitz & Woolley, 1995).

Resnick and Ford (1981) have also offered a similar answer,

stating that "number facts... need to be developed to the

point of automaticity so they can avoid competing with

higher-level problem-solving processes for limited space in

working memory" (pp. 32-33) and drew an analogy to research

in reading where automaticity of word recognition is

associated with higher levels of reading comprehension

(LaBerge & Samuels, 1974; Perfetti & Hogaboam, 1975).

Geary (1994) in his review of the cognitive literature

involving basic mathematical abilities and mathematical

reasoning abilities came to a similar conclusion, that people

that have well developed mathematical reasoning abilities are

able to do three things : 1 . ) they are able to quickly and

automatically solve basic arithmetic problems, 2.) they have

developed schemas to help their problem solving, and 3.) they

are able to hold things in working memory while carrying out

other procedures.

Where might these working memory savings help in solving

a problem? What I propose is that the working memory load

reduction allows a child to keep representational aspects of

a problem in mind longer so that those representational

aspects may more likely be linked to the specific strategy or

procedure that is used to eventually solve the problem. It

also should help, especially in multi-step problems, when

children have to keep the representational aspects of a

problem in mind, translate that information into a solution
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procedure, and finally carry out that procedure. If a person

is slow in retrieving arithmetic facts to carry out the

solution procedure, he or she will have a hard time keeping

the steps of the procedure in mind and will be more likely to

make an error. So I propose that the working memory savings

helps within a problem by allowing a person to keep a

solution procedure in mind long enough to solve a problem and

helps between problems in that a person is able to

concentrate on linking specific types of problems to specific

types of solution procedures and will more readily solve

analogous problems in the future.
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CHAPTER 3

PURPOSE AND METHODOLOGY OF THE CURRENT STUDY

Purpose

The research conducted had two main purposes: to study

the relationship of basic addition, subtraction, and

multiplication abilities (speed and accuracy) with ability to

solve more complex computational problems and, more

importantly, to solve single and multi-step word problems.

In addition, it was important to examine the relationship

these simple arithmetic abilities had to standardized

mathematics computation and problem solving/ concept tests.

In order to accomplish these objectives arithmetic accuracy

and response time measures, word problem and complex

computational measures, standardized math test scores, and

reading ability measures were collected.

Three main aspects of the current study distinguish it

from other studies in this domain. The first novel aspect of

this study was that simple mental arithmetic measures were

recorded using a computer. Other studies have looked at the

relationship of more complex computational abilities (e.g.,

the ability to solve problems such as 212 x 37 = ?, or 3/7 +

5/8 = ?) with complex mathematical problem solving abilities

(e.g., Balow, 1964; Muth, 1984) and/or have used imprecise

paper and pencil measures to assess computational ability

(e.g., Balow, 1964; Muth, 1984; Zentall, 1990). By recording

simple mental arithmetic response times via a computer it was

possible to examine if a more basic level relationship
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exists, the simple mental arithmetic /problem solving

relationship, and to do so with a very precise measurement

tool, the computer.

Secondly, in this type of research the dilemma about

what to do with subjects' error trials persists. In the

past, researchers have either deleted children's error trials

from analyses (e.g., Geary, Brown, & Samaranayake
, 1991;

Koshmider & Ashcraft, 1991; Geary & Brown, 1991), assumed the

speed accuracy trade-off is insignificant and have used all

trials in analyses (e.g. Ashcraft & Fierman, 1982), or

deleted error prone subjects and assumed the speed accuracy

trade-off is insignificant (e.g., Ashcraft, et al., 1992;

Graham & Campbell, 1992) . A method of combining accuracy and

response time data has been developed recently in the LATAS

lab at the University of Massachusetts. If this combined

accuracy/response time measure proves to be more predictive

of complex mathematical problem solving abilities in this

study, this new variable may be used in subsequent related

studies and could help to solve the error trial dilemma.

The third and final distinguishing feature of this study

was the addition of a developmental component. In previous

work it has often been the case that only one grade is

sampled for study (e.g., Muth 1984) and no conclusions can be

drawn about how the arithmetic /complex mathematical problem

solving relationship may change from grade to grade. In this

study four grade levels were sampled and it will be possible

to look at how that relationship changes over development

.
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Based on the previous research conducted on mental

arithmetic, math problem solving, and working memory reviewed

in the introduction, several interesting predictions can be

made about the results of this study.

1. ) Arithmetic response times should change over grades,

starting out fairly high at the 5th grade and gradually

approaching a low asymptote with development (grade)

.

2. ) Arithmetic accuracy should change somewhat, starting out

lowest at the 5th grade and gradually increasing with

each grade.

3. ) Arithmetic measures (collected using the Computer-based

Academic Assessment System, or CAAS) and grade will be

significant predictors of complex computational ability

and the CAAS arithmetic measures will be better

predictors of the criterion at the early and/ or middle

grades and poorer predictors at the later grades.

4. ) CAAS arithmetic measures, reading comprehension, and

grade will be predictive of complex math problem solving

abilities and the CAAS arithmetic measures again will be

better predictors of the criterion at the early grades

and/ or middle grades and poorer predictors at the later

grades

.

Methodolocfv

Subjects

Twenty seven grade 5, 28 grade 6, 23 grade 7, and 22

grade 8 students were selected from classrooms from a local

middle school. The classrooms in the school were not grouped
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by ability level (tracked) so it was assumed that students

from different classrooms in the same grade did not differ,

on average, in mathematic ability or intelligence.

Materials

Pencil and Paper Test

A mathematical skills test was administered to all of

the students. This test was constructed in conjunction with

the guidelines set forth by the principal and math teachers

in the participating school (see Appendix, pages 152-155).

Fifty questions were constructed, 22 of which were complex

computational problems and 28 of which were word problems.

The word problems were patterned after problems from previous

word problem research (Compare, Change, and Equalize problems

from Greeno, Riley, & Heller, 1983; relational problems from

Lewis Sc Mayer, 1987, and Lewis, 1989), problems that appear

in the 6th grade Iowa Test of Basic Skills (ITBS) booklet.

Form K Level 12, as well as problems that were suggested by

the Belchertown math teachers. The computational problems

involved the addition, subtraction, multiplication, and

division of single and multi-digit whole numbers, decimals,

and fractions and again were patterned after Iowa Test

problems and problems suggested by the math teachers. An

instruction sheet and answer sheets with ample space to work

out problems were also provided to students.

Reading Measure

Because previous research (e.g., Balow, 1964; Geary,

1994; Muth, 1984; Zentall, 1990) has noted the importance of
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reading ability in problem solving, scores from a reading

test that were administered earlier in the same school year

were collected as well. The reading tests were 96 item,

grade appropriate Sentence Verification Technique (SVT)

reading tests developed by James M. Royer at the University

of Massachusetts. Several articles exist that detail the

construction and psychometric properties of the test and give

examples of passages and questions included in the test

(e.g., Royer, 1990; Royer, Carlo, & Cisero, 1992; Royer &

Sinatra, 1994)

In general, SVT tests are usually composed of 6 story

passages that range from a half to a full page in length.

Each passage has 16 test sentences associated with it and

students are instructed to mark "yes" on their answer sheet

if the test sentence they read means the same thing as a

sentence read in the story and to mark "no" if it does not.

Composing the 16 sentences are 4 sentences selected from 4

different categories of items. Two categories of sentences

preserve meaning while the other two involve meaning changes.

Sentences that preseirve meaning are either exact duplicates

(original) of a sentence from the stoiry or are sentences from

the story that have had some or all of their words changed

without affecting the original meaning of the sentences

(paraphrase) . The meaning change sentences are either

sentences from the story that have had a word or words

altered to change their meaning (but still would fit the

overall topic of the passage) or are sentences that have no
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relation to the passage or any of the sentences in it

(distracter)

.

Computer Testing

Each student was also administered a mental arithmetic

test using the basic skills component of the Computer-based

Academic Assessment System (CAAS) . A Gateway 2000 Colorbook

laptop computer with a 5.5" x 7.5" monitor was used to

administer the CAAS mental arithmetic battery. A total of 4

different computational content areas were sampled: addition,

subtraction, and multiplication (two tests, "easy" and "hard

multiplication") of whole numbers.

Arithmetic test stimuli appeared in the middle of the

computer screen in black against a white background. The

appearance of each stimulus immediately triggered a timing

mechanism in the computer and each stimulus remained on the

screen until the student voiced an answer to the problem into

a microphone interfaced with the computer. The voicing of an

answer stopped the timing mechanism thereby recording the

response time for each trial, accurate to +/- 2 milliseconds.

A scoring box was also interfaced with the computer and

was used by the researcher to record whether the student's

response for a trial was correct or incorrect. The

researcher pressed the left button on the box to indicate a

correct response and the student subsequently heard a bell

and saw the word "correct" appear in the upper right hand

corner of the computer screen. The researcher pressed the

right hand button to indicate an incorrect response and the
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student heard a buzz and saw the word "wrong" appear in the

upper right hand corner of the screen. If the microphone

picked up a noise that was not a student's intended answer

(e.g., a cough, background noise, the child counting out the

solution to a problem) the researcher pressed both buttons

simultaneously and the response time for that problem was not

recorded. In this instance students heard a double buzz and

saw the word "error" appear in the upper right hand corner of

the screen. Once an answer had been scored, the screen went

blank for three seconds until the next stimulus appeared.

The response time and accuracy information for each problem

for each student was written to a score file for each task

that was readily accessible for conducting subsequent

analyses

.

Before each test, directions appeared on the screen

that explained the nature of the task, informed the student

about what to expect after a correct, incorrect, or spoiled

trial, encouraged the student to respond as quickly as

possible while still getting the correct answer, and asked if

the student had any questions. Five practice questions were

also constructed for each test and were administered after

the directions to ensure each student was clear on what

he/she would see and was expected to do. Upon completion of

the practice problems each student was again asked if he/she

had any questions and then proceeded to the actual test

stimuli for which response time and accuracy were recorded.
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Computer Stimni

i

Aggitipn gylpt^gt . Each problem consisted of two whole

niombers separated by an addition sign. There were two

categories of problems. The first category included problems

where both the addend and augend were single digit whole

nuitibers greater than 0. The second category included

problems where either the addend or augend was a single digit

whole number greater than 0, and the other number was a two

digit whole number less than or equal to 20. In the test

bank of problems for category 1 there were 45 single digit

plus single digit problems plus each problem's commutative

complement (e.g., 2+5 and 5 + 2) for a total of 90

problems. In the test bank of problems for category 2 there

were 99 single digit plus double digit problems (from 1+10

up to 9 + 20, inclusive) plus each problem's commutative

complement for a total of 198 problems.

During the running of the task, a total of 20 problems

was selected randomly by the computer, 10 randomly selected

without replacement from the bank of problems in category 1

and 10 randomly selected without replacement from the bank of

problems in category 2

.

Subtraction Subtest . Each problem consisted of two

whole numbers separated by a subtraction sign. There were

two categories of problems. The first category included

problems where both the minuend and subtrahend were single

digit whole numbers greater than 0. The second category

included problems where the minuend was a two digit whole
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number less than or equal to 20 and the subtrahend was a

single digit whole number greater than 0 but less than the

minuend. In the test bank of problems for category 1 there

were a total of 45 single digit minus single digit problems

(from 1 - 1 up to 9 - 9, inclusive). In the test bank of

problems for category 2 there were a total of 165 double

digit minus single digit problems (from 10 - 1 up to 20 - 20,

inclusive)

.

During the running of the task, a total of 20 problems

was selected randomly by the computer, 10 randomly selected

without replacement from the bank of problems in category 1

and 10 randomly selected without replacement from the bank of

problems in category 2

.

Multiplication Subtest . Each problem consisted of a

single digit whole number greater than 0 separated by a

multiplication sign. In the test bank of problems there were

45 single digit times single digit problems plus each

problem's commutative complement (e.g., 2x5 and 5x2) for

a total of 90 problems. During the running of the task, a

total of 20 problems was randomly selected without

replacement by the computer from the test bank of problems.

Hard Multiplication Subtest . Each problem consisted of

one single digit whole number and one double digit whole

number less than 20 separated by a multiplication sign (e.g.,

17 X 7). For half of the problems the double digit appeared

first and for the other half the single digit appeared first.

The test bank contained a total of 20 problems. During the
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running of the task problems were randomly selected without

replacement from the test bank until the problem set in the

test bank was exhausted.

Procedure

The CAAS basic arithmetic assessment was the first test

administered and was given between November and February of

the school year (it was conducted on a grade by grade basis

starting with grade 5 and ending with grade 8) . An area of a

hallway near the principal's office was partitioned off and

students were called out of their classes to be tested during

a time when the hallways were quiet and relatively empty.

The researcher began the computer portion of the experiment

by introducing himself to the student and by briefly

explaining what the student was about to do and how long it

would take to complete. Each student completed the addition

task first, followed by the subtraction, and multiplication

tasks in that order. The researcher read the directions out

loud as the student read them silently. After the

instructions any questions the student had were answered

before moving on to the practice problems. Once the practice

problems were completed the student again had the opportunity

to ask questions before moving on to the actual testing for

which data were recorded. A short break between each of the

subtests was provided if needed. The same procedure of

reading directions, solving practice problems, and solving

test problems was followed for each subtest until all 4 of

them were completed. It took approximately 3 0 minutes to
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complete the whole battery. Once a student finished testing

he or she was thanked for participating. The written

mathematics test was administered in March of the school

year. All of the grades were administered the written test

on the same day during class time, which was approximately 45

minutes

.

SVT reading comprehension tests were administered

earlier, towards the beginning of the school year one grade

at a time in conjunction with a separate project that was

being conducted at the middle school.

SVT tests, as they were answered as yes/no on an answer

sheet that could be scanned, were computer scored and total

scores for each student were subsequently computed by adding

up the number of correct answers each student had on the

test. The written math test was hand scored by the author

and subtest scores were totaled for each student as the total

number of items correctly solved. Item by item scoring for

each student for the two tests was also recorded so that

reliability estimates could be computed. CAAS arithmetic

accuracy and response time data were recorded in score files

by the CAAS program. After the written tests were scored and

totaled, the three sets of measures were then matched by

student and merged into one data file in preparation for

forthcoming analyses

.

In order to test the aforementioned predictions it was

first necessary to gather reliability data on the instruments

used to measure complex mathematical ability and reading

107



ability to determine if the tests had sound psychometric

properties. Analysis of the data then proceeded in the

following manner:

1. ) Response time and accuracy data were analyzed by grade

to note any developmental trends in this area.

2. ) Response time and accuracy measures were combined into a

single measure (to be described) to determine if any

benefit might be gained from using such a measure in

place of response time alone as a predictor of complex

math problem solving ability.

3 . ) Multiple regression analyses were conducted to determine

the significant predictors of written computational

problem solving and word problem solving abilities as

well as the other measures of complex mathematical

abilities obtained from the school.

4.) Regression analyses were performed to determine whether

there was a developmental trend in the basic mental

arithmetic /complex mathematical problem solving

relationship

.
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CHAPTER 4

RESULTS

Student Ahh-rihir^r^

Before going into a detailed report of the data and the

analyses conducted, first it is necessary to report some of

the problems that were encountered while collecting both the

CAAS and written test data. It will then be clear when the

different pieces of data are reported and examined why the

number of students fluctuated (at times dramatically) or

differed from the 100 students that were originally

administered the CAAS arithmetic tests.

The first problem encountered in data collection was

during the administration of the CAAS arithmetic tasks.

Several students did not complete all of the tasks due to a

variety of interruptions. For example, one fifth grade

student was interrupted by a fire drill after only having

finished the addition task.

Another problematic event involved the administration of

the written math test. Because the written test was given to

all students in all grades on the same day as decided by the

principal, some students never took the test due to absence,

dismissal, etc. In total, only 83 of the students that

completed the CAAS arithmetic battery also completed the

written test.

The third and most debilitating problem in data

collection involved the group of sixth grade teachers and the

written math test. Apparently there was some
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"miscommunication" between the principal and the sixth grade

teachers at the middle school because, before giving the

tests back to be scored the teachers intentionally removed

all student identification information from the written

tests. Without any way to match up written test scores with

CAAS data, the 6th grade could not be included in the

regression analyses involving CAAS arithmetic measures and

the 50 item complex computation/word problem test that was

developed for the study. A request was made to the principal

to obtain standardized math test scores so that analyses

could be done using all of the data from the CAAS arithmetic

tasks. Unfortunately, scores from the ITBS were provided for

the 6th grade only. Therefore, two sets of analyses will be

reported, one set involving the 5th, 7th, and 8th grades and

a separate set of analyses involving data from the 6th grade.

Such are the perils of data collection.

Descriptives for Arithmetic and Written Test Data

CAAS Data

A summary of the accuracy and response time means and

standard deviations for the CAAS arithmetic tasks is provided

in Table 6 on page 111. The data reported there are for all

students that took the CAAS arithmetic test. It was

discovered during the testing that many of the students found

the hard multiplication task too demanding and therefore many

students did not attempt or complete that task. In total,

barely half of the students were able to complete this
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Table 6. CAAS arithmetic task means and standard deviati

by grade

.

Operation N Mean ( %

)

Accuracy Mean RT RT Std.
Grade Accuracy Std. Dev. (S€5C. ) Dev.

Addition

Grade 5 27 .
oo . ^ ^1

oz .. bU 1 . 06
Grade 6 28 96.6 KJ . X , .54
Grade 7 23 94.2 QO .

1 .95
Grade 8 21 94. 6 6. 68 1., 84 .87

Subtraction

Grade 5 26 89 . 9 7 . 21
. O . O J

Grade 6 28 96.8 4 . 79 1 fid .42

Grade 7 23 90.9 9

.

81 1 67 1.10

Grade 8 21 94.7 cD . 1 ,, 84 .84

Multiplication

Grade 5 24 82.3 13 .89 3 ,.75 2.20

Grade 6 27 96.1 5. 63 1..97 .78

Grade 7 22 92.3 10 . 14 1..82 .59

Grade 8 21 86.7 11 .71 1., 97 .72

arithmetic task, and therefore only data from the other three

arithmetic measures will be reported here.

There are several trends in the arithmetic data worth

noting. As mentioned previously it has been noted (Mercer,

1979) that by 6th grade students on average have attained 95%
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of adult accuracy (and only 65% of adult speed) on simple

arithmetic tasks. In this sample, with the possible

exception of multiplication, students from each grade were

very accurate on average, scoring around and sometimes well

above 90% on each of the arithmetic tasks. Accuracies,

however, did not increase monotonically with grade level as

was expected.

The response time data, however, was quite different. A

developmental pattern was evident in this data. Arithmetic

response times, as was predicted, decreased as a function of

increase in grade. More specifically, Bonferonni t-tests

indicated that the 5th grade response times for all

arithmetic measures were significantly higher when compared

individually to each of the other three grades (all t's >

2.90). None of the pairwise differences for the 6th through

8th grades were significant.

There are at least two, and possibly three explanations

for the observed difference in arithmetic response time

means. The first explanation is that there is a practice

effect. Older students have had more time and opportunity to

practice solving basic arithmetic problems both in and out of

school. A second possible explanation involves the

development of children's general cognitive processing speed.

As Kail (1991) has demonstrated, overall cognitive processing

speed increases over development according to an exponential

function

.
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The third possible explanation involves the CAAS

arithmetic results of the 6th graders sampled in this study.

As an inspection of Table 6 indicates, 6th graders had the

highest average accuracies and the lowest standard deviations

for both accuracy and response time measures (with the

exception of multiplication). As mentioned before, their

response times on each of the arithmetic tasks were

significantly faster than the 5th graders and were on par

with the 7th and 8th graders. It is possible that the 6th

graders sampled here may have been somewhat more adept at

basic arithmetic than would be predicted. Perhaps during

their schooling more emphasis was placed on automatizing

basic arithmetic facts, and if a different group of 6th grade

students were sampled the response times and their standard

deviations may have been higher. In summary, it is probably

likely that the arithmetic response time patterns obtained in

this study resulted from a combination of differential

practice, general cognitive speed differences, and the

precocity of the 6th grade sample.

Written Math and SVT Test Scores

A summary of the word problem and complex computational

subtests scores from the written math test as well as grade

appropriate SVT tests scores are provided in Table 7 on page

114. Sixth grade written math test scores were not reported

for reasons mentioned in the introduction to this chapter.

Both sets of test items were scored dichotomously as correct

or incorrect and the total number of correct items on each
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Table 7. Mathematics test and SVT test means and standard

deviations by grade.

N # Correct Standard
Grade

Deviation
Word Problem

Subtest

Grade 5 23 12.3 4.72
(jracie / 18 19.1 4.87
Gradp R 16 .

1

5.22

Computation

Subtest

Grade 5 23 6.4 3.55
Grade 7 18 11. 6 4.00
Grade 8 13 8.8 3 .76

SVT

zz 75.9 12 . 57

Grade 6 25 77 . 8 9.99

X / 73 . 5 9 . 89

Grade 8 13 78.2 7.89

test represented, a student's score on that test. Cronbach's

alpha and split half reliability measurements were estimated

for both the math and SVT tests. For the written math test

the alpha was .92 and the split half estimate of reliability

was .82 and .91 when corrected for length of the test using

114



the Spearman-Brown prophecy formula. Reliability measures

were calculated for each grade level SVT separately.

Cronbach's alpha for the four SVT tests ranged from .64 to

.77 with an average of .69. The split-half estimates ranged

from .46 to .74 with an average of .59 (average Spearman-

Brown correction was .73).

The above reliability estimates suggest that the

internal consistency of the items on the math test were high,

that is, a large proportion of the variance in students' test

scores was a result of true score variance on this test. SVT

reliabilities used in this study were considerably lower than

expected, especially given the reliability data already

collected on the SVT that yielded higher reliability

estimates (e.g., Royer, 1990). Further examination of the

test items is warranted if these particular versions of the

SVT are to be used in measuring reading comprehension in the

future

.

In addition to conducting analyses on total scores, an

analysis of errors was also planned. Students were given

ample space on their answer sheets and were instructed to

work out their answers to the math problems in that space.

Unfortunately, many students on the majority of problems did

not (systematically at least) write down their work and

therefore a reliable categorization of errors was not

possible and therefore was not pursued.

Turning to the data, again several points are worth

noting. SVT tests, as they were grade appropriate in
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difficulty, showed similar characteristics from grade to

grade; overall means changed little by grade. The patterns

of math subtest means at first, however, appear to be odd.

As the two math subtests were largely based on material

similar to what would appear on a 6th grade ITBS, one would

expect that students in the upper grades would be able to

solve more problems than students in the younger grades. The

data show that means did increase on both math subtests from

5th to 7th grade but then dropped slightly for the 8th grade.

This drop, however, can be explained at least partially by

the shortened testing time the 8th graders were given. The

eighth grade teachers explained after administration of the

test that their testing time was unexpectedly cut short by

approximately 10 minutes due to a school function. In light

of this information the slight drop in means from 7th to 8th

grade on the math subtests is understandable.

Due to the absence of sixth grade test data, scores from

the ITBS math and reading sections were provided by the

school reported in the form of national percentiles

(eventually converted to standard scores for upcoming

analyses) . Summary descriptives statistics found that on

average students from grade 6 in this study scored in the

65th percentile on the Math Computation subtest (Math Comp.),

the 69th percentile on the Math Concepts and Estimation

subtest (Math Cone), the 64th percentile on the Math Problem

Solving and Data Interpretation subtest (Math PSDI) , and the

61st percentile on the Total Reading battery (Read. Tot.),
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which was a combination of the Reading Comprehension and

Vocabulary subtests of the ITBS.

Arithmetic and Written Test Score Raw Correlations

All of the CAAS arithmetic accuracy and response time

data as well as written math and SVT data were correlated

before regression analyses were conducted. One important

piece of information that was needed from inspection of the

correlation matrix was the strength of relationship the

combined accuracy and response time measure had with complex

mathematical measures in this study. The formula developed

m the LATAS lab for combining accuracy and response time

measures into a single index is as follows:

Combined = V{[(100 - Accuracy

)

/SDa] ^ + [Response Time/SDRT]^}

In effect, the index first changes the accuracy measure to an

inaccuracy measure thereby making changes in accuracy mean

the same thing as changes in response time. That is, greater

inaccuracies mean poorer performance, and the lower

inaccuracies mean better performance; the same can also be

said for response time. The formula then divides both

measures by their standard deviations which equates their

scales and allows them to be squared, combined, and then

rooted.

Correlation matrices using the arithmetic accuracy,

response time, and combined measures, and written math and

reading test measures were computed for the 5th, 7th, and 8th
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grade sample (hereafter to be called the 578 sample) and the

6th grade sample separately. These two correlation matrices

appear in Table 8 and Table 9 on pages 119 and 120,

respectively. For ease of inspection, the correlations of

the arithmetic response time measures and the combined

arithmetic measures with the written math test variables and

standardized math measures are presented in bold.

Examination of the arithmetic accuracy/written math test

relationships revealed correlations that were not consistent

with what would be expected if students were trading accuracy

for speed on the CAAS tasks. For the 57 8 sample,

correlations among arithmetic task accuracies and their

corresponding response times ranged from -.17 to -.37, and

for the 6th grade sample the correlations ranged from -.19 to

-.69. These correlations show that the students that were

faster at solving the basic arithmetic problems on average

(decrease in RT) also tended to be the students that were

more accurate at solving those problems (increase in

accuracy) . If many students were trading accuracy for speed

the correlations would reflect that faster students also

tended to be less accurate. In other words, one would expect

the arithmetic accuracy/RT relationships to be close to zero

or possibly weakly positive. Such was not the case.

Turning to a discussion of the correlations of

arithmetic variables with the written math tests, I would

first like to note arithmetic accuracy/written test

relationships. As can be seen from Tables 8 and 9, the
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correlations between arithmetic accuracies and both math

tests were positive and tended to be low ranging from .06 to

.35 for the 5th ,7th, and 8th sample, and ranging from .13 to

.55 for the 6th grade sample.

Arithmetic response time measures on the other hand had

a much stronger relationship with the written math tests in

both samples. For the 578 sample the correlations with the

written math test measures ranged from -.51 for

multiplication RT to -.67 for subtraction RT, and for the 6th

grade sample from -.50 for multiplication RT to -.79 for

addition RT; both were higher than what was recorded for the

accuracy measures. Looking at the relationships between the

combined arithmetic measures and written test performance in

bold in the tables it is worth noting that these values tend

to be (nonsignificantly) smaller than or equal to arithmetic

RT/written test correlations. Taking into account what we

already know about the accuracy data, namely that arithmetic

accuracies in general were high, there appears to be little

or no accuracy for speed trade-off, and that accuracies

tended to have low positive correlations with the written

math tests, it makes sense that the combined arithmetic

measure in these samples is not a better predictor of written

math test performance than arithmetic response time alone.

This is not to say that the combined measure is not

useful, however, in other contexts or with other samples of

students. For instance, in learning disabled populations the

combined measure has been very useful because student
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accuracies tend to be much lower and variable than in non-

disabled populations, and response time alone is not the best

indicator of arithmetic performance and possibly more complex

problem solving performance (e.g., Royer & Tronsky, 1997).

The combined measures also may be informative in students

from elementary grades where strategy use and accuracies may

be better indicators of arithmetic /mathematics performance

(e.g., Geary & Burlingham-Dubree, 1989). Nevertheless, for

the purpose of this study it is safe to conclude that

response time alone is at least as good a predictor of

complex computational and word problem solving ability as the

combined measure and therefore will be used in the regression

analyses that follow.

Statistical Analyses

Due to the many problems that were encountered during

the administration and scoring of the CAAS arithmetic and

written math tests it was necessary to alter some of the

planned analyses. As Meyer and Well (1995) have noted, if we

are to take seriously the multiple correlations that result

from regression analyses it is important that the ratio of

number of cases compared to number of predictor variables is

large (in some cases 30 or more according to Meyer and Well).

When the aforementioned ratio is small a researcher is

capitalizing on chance when reporting Rsample ^ls it grossly

overestimates Rpopulation (other regression issues will be

taken up later in the concluding chapter)

•
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Because the expected N/p ratio was greatly reduced due

to subject/task attrition and the inability to match the word

problem/cortplex computation written test results to CAAS

arithmetic data for the 6th grade, the three arithmetic RT

variables were combined. This was done by first

standardizing each RT variable (converting RT's to z-scores)

using the mean and SD of each arithmetic variable across the

whole sample. Then the z-scores were added together to form

one arithmetic RT variable to be used in all analyses which

from now on will be referred to as the "arithmetic aggregate

variable (ArithAgg) .

" In addition to addressing the N/p

issue the combining of arithmetic response time variables

also addresses another issue in regression, the issue of

multicollinearity . If predictor variables are highly

intercorrelated it can lead to inflated standard errors of

regression coefficients. Returning to the correlation

matrices in Tables 8 and 9, it is evident that the three

arithmetic response time variables are highly

intercorrelated--most of the intercorrelations are .68 or

higher. Combining the three arithmetic RT's into one variable

eliminates the potential problems of using highly

intercorrelated predictor variables in regression analyses.

Analysis of 5th, 7th, and 8th Grade Data

Regression Analvses

For a quick summary of the regression analyses for the

578 data refer to Table 10 (computation problem subscore as

the criterion variable) and Table 11 (word problem subscore
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as the criterion variable) on pages 125 and 127. For each of

the analyses information is given about criterion variables,

predictor variables, sums of squares, mean squares, F ratios

and their associated probabilities, and r2 and adjusted r2

values

.

Computation Suhscorp' Number of computation problems

solved correctly by each student was used as the criterion

variable in the first set of analyses. When entered into a

regression analysis separately both ArithAgg [F(l, 49) =

21.31, p < .0001] and grade [F (2, 51) = 9.39, p < .001] were

significant predictors of computation problem solving (grade

was coded as a dummy variable in this and subsequent

regression analyses) . Only SVT when entered alone did not

capture a significant proportion of variance [F (1, 49) =

. 10, ns]

.

When SVT was entered in a regression analysis along with

ArithAgg, the partial F revealed that SVT did not account for

any variance in the criterion over and above ArithAgg and in

total the two variables accounted for approximately 26% of

the variance in computation subscores . When ArithAgg, SVT,

and grade were then entered into the same regression equation

together both ArithAgg [F (1, 43) = 5.44, p < .05] and grade

[F (2, 43) = 8.89, p < .01] accounted for a significant

proportion of variance in the criterion, while SVT failed to

account for a significant amount of variance in the criterion

[F (1, 43) = 2.02, ns] . In total, the three predictor
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variables accounted for 46% of the variance in computati

subscore

.

Table 10. Summary of regression analyses for 5th, 7th and

8th grade data with computation subscore as the criterion.

Source df Sum of
Squares

Mean
Square

F p r2 Adj .

r2

ArithAgg 1 255 .32 255. 32 21 .31 < . 0001 .30 .29
Residual 49 587 .03 11

.

98

SVT 1 1 .93 1 93 .10 ns 0 0
Residual 49 958 . 11 19 55

Grade 2 265 . 04 132 52 9 .39 < . 001 .27 .24
Residual 51 719 .77 14 11

ArithAgg 1 238 .47 238 47 18 .60 < . 001
O V 1 1 .06 .06 0 ns
Regression 2 241 .67 125 .69 9 .42 < .001 .30 .26
Residual 45 577 . 00 12 .94

ArithAgg 1 51 .64 51 .64 5 .44 < . 05
SVT 1 19 .22 19 .22 2 . 02 ns
Grade 2 168 .74 84 .37 8 .89 < .01
Regression 4 408 .52 102 .13 10 .26 < .0001 .50 .45
Residual 43 438 . 01 9 .95

ArithAgg 1 141 .41 141 .41 22 .67 < .001
SVT 1 27 .77 27 .77 4 .45 < .05
Grade 2 25 . 17 12 .59 2 .02 ns
Arith X Grade 2 152 .54 76 .27 12 .23 < .001
Regression 6 512 .60 102 . 52 13 .99 < .0001 .69 .64

Residual 41 255 .72 6 .24

Finally, when the interaction of ArithAgg with grade was

added to the other three variables in the regression

equation, the partial F-test revealed that the interaction

accounted for significant amount of variance in the criterion

(approximately 19%) over and above the other three predictor
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variables [F (1, 41) = 12.23, p < .001]. A total of 64% of

the variance in the criterion was accounted for using the

four variables as predictors.

This final analysis indicates that the relationship

between arithmetic response time and computation subscore

changed from grade to grade. Looking at correlations grade

by grade revealed that in the 5th grade the correlation

between the two variables was moderate (.39), sharply

increased for 7th graders (.74), and once again dropped off

in the 8th grade (.44). Due to the small samples at each

grade (n's were 20, 18, and 13 for the 5th, 7th, and 8th

grade, respectively) it is dangerous to draw any hard and

fast conclusions from the changing correlations. A possible

explanation will be detailed, however, in the conclusion to

this analysis section.

Word Problem Subscore . Number of word problems solved

correctly by each student was used as the criterion variable

in the second set of regression analyses. Again, when

entered into a regression analysis separately both ArithAgg

[F(l, 49) = 32.93, p < .0001] and grade [F (2, 51) = 9.88, p

< .001] were significant predictors of computation problem

solving. Only SVT when entered alone did not account for a

significant proportion of variance [F (1, 49) = .95, ns] .

When SVT was entered in a regression analysis along with

ArithAgg, the partial F-test revealed that SVT did not

account for any variance in word problem subscore over and
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SLimmary of regression analyses for 5th, 7th and

8th grade data with word problem subscore as the criterion.

Source df Sum of Mean F P r2 Adj .

Squares Square r2

ArithAgg 1 644 68 644 32 .93 < .0001 .40 .39
Residual 49 959 .24 19 .58

SVT 1 230 . 50 30 50 . 95 ns . 02 0
Residual 49 1566 .25 31 96

Grade 2 473 . 03 236 52 9 . 88 < .001 .28 .25
Poo -i 1 D J- 1220 .30 23 .93

ArithAgg 1 538 . 64 296 . 10 14 . 84 < .0001
SVT 1 16 . 64 16 . 64 . 82 ns
Regression 2 589 . 88 294 . 94 14 . 46 < .0001 .40 .36
Residual 46 918 . 00 19 . 96

ArithAgg 1 157 . 41 157 . 41 10 . 03 < . 01
SVT 1 86 .71 86 .71 5 . 53 < .05
Grade 2 243 .37 121 .69 7 .76 < .01
Regression 4 833 .25 208 .31 13 .28 < .0001 . 55 .51
Residual 43 678 .17 15 .41

ArithAgg 1 175 .56 175 .56 12 .23 < .01
SVT 1 100 .39 100 .39 6 .99 < .05
Grade 2 11 .13 5 .56 .39 ns
Arith X Grade 2 86 .00 43 .00 3 .00 ns
Regression 6 919 .25 153 .21 10 .67 < .0001 .61 .55
Residual 41 588 .56 14 .36

above ArithAgg, and in total the two variables accounted for

approximately 3 6% of the variance in computation subscores.

When ArithAgg, SVT, and grade were then entered into the same

regression equation together ArithAgg [F (1, 43) = 10.03, p <

.01], grade [F (2, 43) = 7.76, p < .01], and SVT [F (1, 43 =

5.53, p < .05] accounted for a significant proportion of

unique variance in the criterion. In total, the three
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predictor variables accounted for 51% of the variance in word

problem subscore.

Finally, when the interaction of ArithAgg with grade was

added to the other three variables in the regression

equation, the partial F-test revealed that the interaction

did not account for significant proportion of variance in the

criterion (approximately 4%) over and above the other three

predictor variables [F (1, 41) = 3.00, p = .06]. A total of

55% of the variance in the criterion was accounted for using

the four variables as predictors

.

While the final analysis with the interaction term only

approached significance, it did indicate that the

relationship between mental arithmetic response time and word

problem solving ability might be changing with development.

An examination of the correlations between the two variables

by grade yielded r's of .60 at the 5th grade, .71 at the 7th

grade, and .34 at the eighth grade. Once again it must be

kept in mind that it is dangerous to draw any hard and fast

conclusions from the changing correlations due to each

grade's small sample size.

Analysis of 6th Grade Data

Data Preparation

Before analyses could be conducted, the ITBS scores for

each child on each of the four standardized tests needed to

be converted from national percentiles into z-scores. This

was done by finding the z value from a z distribution that
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corresponded to the national percentile that a student

received on a particular test.

Descriptions of Standardized Tf^sts

The three math subtest scores from the ITBS that were

used as criterion variables in regression analyses in this

study need to be explained in more detail. The Math

Cortputation subtest was very similar to the researcher

generated written computation test in that it contained

problems involving the addition, subtraction, multiplication,

and division of (multidigit) whole numbers, fractions, and

decimals. The Math Concepts and Estimation subtest involved,

but was not limited to, problems that tested students' number

sense, ability to estimate (sums, products, and quotients),

knowledge of geometry (polygons, similar figures, angles,

area, etc.), knowledge and conversion of decimals and

fractions, ability to solve open problem sentences, and

number pattern recognition. The Math Problem Solving and

Data Interpretation subtest required students to solve word

problems similar to those in the researcher produced written

word problem test and also required students to solve

problems by reading and interpreting graphical information.

The Reading Total test was composed of a Vocabulary and

Reading Comprehension subtest. For the Vocabulary subtest,

students were given a phrase with a bold-faced word in it for

which they were to select from a set of 4 choices an

appropriate synonym. For the Reading Comprehension subtest,

students were required to answer multiple choice questions
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after reading either several paragraphs of text or several

lines of poetry.

Some of the problems in both the Concepts and Estimation

and Problem Solving and Data Interpretation sections were

either computationally simple or asked questions that were

void of computations altogether. Several questions in the

Problem Solving section asked the student to determine what

information other than what had already been given in the

problem was needed to solve it. The researcher generated

written test differed in this regard as it contained problems

that all needed to be solved using computation at some point.

The results of these analyses will be of note in that a

strong relationship between basic arithmetic response time

and performance on the conceptual sections of the ITBS Math

test will offer further evidence that the relationship is not

merely due to the fact that the conceptual problems required

computations in their solutions.

Regression Analyses

For a quick summary of the regression analyses for the

6th grade data refer to Table 12, Table 13, and Table 14 on

pages 131, 132, and 133, respectively. For each of the

analyses information is given about criterion variables,

predictor variables, sums of squares, mean squares, F ratios

and their associated probabilities, and and adjusted R^

values

.

Math Computation . When the arithmetic aggregate

(ArithAgg) variable was used as a predictor alone it
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accounted for 45% of the variance in the criterion ITBS

Mathematics Computation subscore [F (1, 24) = 21.36, p

.001] .

Table 12. Summary of regression analyses for 6th grade data

with ITBS Math Computation score as the criterion variable.

Source df Sum of
Squares

Mean
Square

F P r2 Adj .

r2

ArithAgg 1 8. 11 8. 11 21 .36 < .001 .47 .45
Residual 24 9. 11 .38

Read. Total 1 5. 25 5.25 10 .41 < .01 .29 .27
Residual 25 12 . 61 . 50

ArithAgg 1 5. 67 5. 67 18 .79 < .001
Read. Total 1 2. 18 2.18 7 .23 < .05
Regression 2 10. 29 5.15 17 .07 < .0001 .60 .56
Residual 23 6. 93 .30

Reading Total as a lone predictor variable accounted for 27%

of the variance in Math Computation subscore [F (1, 25) =

10.41, p < .01]. When the two predictors were entered into a

regression equation together they accounted for 56% of the

variance in the criterion [F (2, 23) = 17.07, p < .0001].

ArithAgg also accounted for a significant portion of unique

variance in the criterion when Reading Total was entered in

the regression equation [F (1, 23) = 18.79 p < .001].

Similarly, Reading Total also accounted for a significant

proportion of variance in the criterion when ArithAgg was

held constant [F (1, 23) = 7.23 p < .05].

131



Math Concepts and Kstimahion The ArithAgg variable

when entered alone as a predictor variable accounted for 50%

of the variance in the criterion ITBS Math Concepts and

Estimation subscore [F (1, 24) = 26.42, p < .0001].

Table 13. Summary of regression analyses for 6th grade data

with ITBS Math Concepts and Data Estimation score as the

criterion variable.

Source df Sum of
Squares

Mean
Square

F P r2 Adj .

r2

ArithAgg 1 8. 43 8.43 26 .42 < . 0001 . 52 . 50
Residual 24 7 . 66 .32

Read. Total 1 4. 47 4 . 47 9 .26 < .01 .27 .24
Residual 25 12 . 06 .48

ArithAgg 1 6. 13 6. 13 23 .75 < . 001
Read. Total 1 1. 73 1 . 73 6 . 69 < . 05
Regression 2 10. 16 5.08 19 . 69 < . 0001 . 63 . 60
Residual 23 5. 93 .26

Reading Total entered alone as a predictor accounted for 24%

of the variance in the criterion [F (1, 25) = 9.26, p < .01],

and when both predictors were entered together in a

regression equation they accounted for 60% of the variance [F

(2, 23) = 19.69, p < .0001]. ArithAgg accounted for a

significant amount of variance in the criterion with Reading

Total held constant [F (1, 23) = 23.75, p < .001], and

Reading Total accounted for a significant amount of variance

with ArithAgg held constant [F (1, 23) = 6.69, p < .05].
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M^th PrQblem Solving and Da ta IntRrnretation . The same

three regression analyses run with the previous two criterioi

variables were also run with Math PSDI subscore as the

criterion with similar results. ArithAgg alone accounted fo:

44% of the variance in the criterion [F (1, 24) =20.98, p <

.001], Reading Total alone accounted for 35% of the variance

in the criterion [F (1, 25) = 14.92, p < .001], and the two

Table 14. Summary of regression analyses for 6th grade data

with ITBS Math Problem Solving and Data Interpretation score

as the criterion variable.

Source df Sum of
Squares

Mean
Square

F P r2 Adj .

r2

ArithAgg 1 8. 02 8 02 20 .98 < .001 .47 .44
Residual 24 9. 17 38

Read. Total 1 6. 79 6 79 14 .92 < .001 .37 .35
Residual 25 11. 38 46

ArithAgg 1 5. 25 5 25 19 . 88 < .001
Read. Total 1 3 . 09 3 09 11 .70 < .01
Regression 2 11. 11 5 55 21 .01 < .0001 .65 . 62
Residual 23 6. 08 26

predictor variables entered together accounted for 62% of the

variance in the criterion [F (2, 23) = 21.01, p < .0001].

Once again ArithAgg accounted for a significant proportion of

variance in the criterion with Reading Total held constant [F

(1, 23) = 19.88, p < .001], and Reading Total accounted for a

significant proportion of variance with ArithAgg held

constant [F (1, 23) = 11.70, p < .01].
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Summary of Data Analysis

In analyses for both samples of data with all of the

criterion measures one result stands out above all of the

others: the arithmetic response time aggregate variable

accounted for a significant proportion of variance in the

criterion measures. It accounted for a significant

proportion of variance whether entered alone or in

combination with other predictor variables. The response

time aggregate was a significant predictor regardless of

whether the criterion was a computational or problem solving

measure and whether the criterion measure was performance on

a well known standardized test or a researcher/ teacher

constructed word problem test.

Other results were not so consistent. It was expected

that the reading measures used in the two samples should

function differently depending on the criterion measure. It

was expected that the reading measures would have a strong

relationship with any mathematics problem solving ability

measure that involved processing any amount of text—

a

finding that has already been well established (e.g., Balow,

1964; Kintsch & Greeno, 1985; Muth, 1984). Conversely, it

was predicted that any measure such as the written complex

computation measures that were void of text would not have a

significant relationship with the reading measures. Results

of the data sets for the two samples varied within and

between samples. Within the 578 sample, SVT did or did not

account for a significant amount of unique variance in the
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criterion depending on the variables that were entered in any

given regression equation. This held true whether the

criterion was computation or word problem subscore

.

The data analyses for the 6th grade, in turn, differed

from the 5th, 7th, and 8th grade analyses mentioned above.

In these analyses it made no difference which of the three

criterion measures was being used and whether or not the

arithmetic response time aggregate variable was entered as a

predictor along with the reading measure. In each case, both

the arithmetic response time and reading measures were

significantly related to the computational and

conceptual/problem solving dependent variables.

It is not difficult to explain why the reading measure

might be a significant predictor of computation subscore on

the ITBS. The reading total measure may have served as a

proxy for a number of variables, most likely either IQ or,

more interesting in the context of the present study, working

memory resources. What is more difficult to explain is why

the reading measures in both samples did not function

similarly. The low correlations of SVT and the researcher

generated written math test (.04 and .14) is in stark

contrast to the very high correlations of reading measure and

mathematics measures from the standardized tests (.52, .54,

and .61) even taking into account the different sample sizes.

It would be tempting to claim that the two reading measures

were functioning differently in the two samples, however, the

two reading test were also fairly highly correlated (.62).
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Another possibility is that the reading difficulty of the

researcher constructed written math test was lower for the

578 sample than the ITBS math tests were for the 6th graders.

Because the researcher constructed word problem test was

largely based on a 6th grade ITBS problem solving test

section, it could be that the reading difficulty of the test

was not much of a factor for the older (7th and 8th) grades

that took the test, thus lowering the correlation of SVT with

the math subscores. One additional explanation for the

discrepant reading correlations is that the reliability

estimates of the SVT tests were somewhat low overall which

leads to an underestimation of the relationship between

reading comprehension and the two dependent variables.

The final result that deserves mention is the pattern of

arithmetic response time/written test subscore relationships

across grades that was found. The interaction of grade and

ArithAgg accounted for a significant proportion of variance

above other predictors when computation subscore was the

criterion and just missed conventional significance when word

problem subscore was the criterion. When these relationships

were examined at different grade levels, the patterns of

correlations across grades was similar, starting out moderate

at grade 5 , peaking at grade 7 , and dropping down again at

grade 8. Small sample sizes notwithstanding, this pattern is

close to what might be expected.

As was mentioned in the introduction to this study, the

argument is that automatizing basic math facts frees up
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working memory to concentrate on more complex aspects of

problems whether they be word problem or complex

computational problems. At younger grade levels where

students are still using solution strategies other than

retrieval for arithmetic problems that are slow and produce

highly variable response times, RT measures might yield low

or moderate correlations with more complex mathematical

problem solving abilities. Once a larger proportion of

children at later grades automatize the arithmetic facts,

response time may become a more powerful predictor of complex

math problem solving and yield much higher correlations.

Once all or almost all children have automatized arithmetic

facts at later grades (and general processing speeds have

become faster and less variable with development) and the

range of response times is restricted, it leads to a decrease

in the arithmetic RT/ complex math problem solving

correlation. This might be what has been demonstrated by the

pattern of correlations in this study across grades although

with such a small sample such a generalization is not

warranted without further investigation.
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CHAPTER 5

DISCUSSION

The discussion section will be laid out in three main

sections. First it is necessary to review some of the

principles of regression to critically examine the

significance of the results that have been reported. The

second section of the discussion will then focus on what can

be said with confidence about the results of the study and

will place the findings of this study in their appropriate

context within research already conducted in this domain.

Third, and maybe most importantly, several recommendations

about future research involving basic mental arithmetic,

working memory, and higher order mathematical problem solving

separately, and as a unit, will be examined.

The Limitations of Correlational Research

Regression analyses must always be interpreted and

generalized from very carefully due to their nature. The

most fundamental caution about correlational research (that

is even today often overlooked) is that significant

relationships that are found do not say anything about

causation, I have been very careful in my claims not to

state or imply that the research conducted here shows that

students that are able to mentally solve arithmetic problems

quickly causes them to be better complex mathematical

problem solvers by freeing up working memory resources. If I

were to conclude that I would be violating the most basic

assumption about correlational research,
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Another important issue in correlation has to do with

sample size. Regression analyses are very susceptible to

being influenced by a small number of data points when the

number of subjects is small from the outset. Reference was

made earlier to this issue of stability in regression and it

was noted that if one really wants to take regression

coefficients seriously, it may be necessary to have as many

as 3 0 subjects for each predictor value entered in an

analysis (Meyer & Well, 1995)

.

It has been indicated that student attrition was very

high in the study. The first problem concerned an inability

in some cases to run students through all the CAAS arithmetic

tasks and absenteeism was a small problem in administering

the written math test. Sample size issues were then made

even more problematic when teachers made some of the 6th

grade data unanalyzable . Steps were taken to try to reduce

the instability created by the above data collection problems

(and address the multicollinearity of predictor variables

issue) by combining variables that were highly related.

While the resulting N/p ratios were improved, they still were

not as high as desired and therefore caution needs to be

exercised when interpreting the results.

Sampling issues do not end with the N/p issue, though.

Correlation coefficients are sample specific. That is, the

estimation of the correlation of variables in a population

are heavily influenced by the variability of the variables in

a sample. If the current study was undertaken at a different
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school, using different grades in the sample, and larger

samples at each grade the results and conclusions could be

slightly or very different.

A final issue I would like to mention is another

sampling issue, the sample of variables that are included in

analyses. The relative importance of a predictor variable's

relationship to the criterion is heavily influenced by the

other variables that are included in a regression equation.

Usually variables are at least somewhat correlated with other

variables being examined in a particular study, or for that

matter other variables that were left out of the study. The

predictive power of variables in a regression analysis will

fluctuate, often wildly, depending on their relationship to

the other predictor variables also entered in the analysis.

It would be very difficult to conclude by this study whether

or not reading is an important predictor of computation

and/ or word problem solving abilities, especially looking at

the results of the 5th, 7th, and 8th grade analyses.

Depending on which variables were entered into those

regression analyses, the SVT variable was at times a

significant predictor of the criterion and at other times was

not. Thankfully there is existing evidence that has been

accumulated that may help to explain these fluctuations.

Conclusions and Implications of the Current Studv

The most important result that was obtained in this

study was that the arithmetic response time variable that was

created was a significant predictor of complex mathematical
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problem solving ability as measured by two separate tests.

Which variables were included in the several regression

analyses did not affect the significance of the relationship.

In light of what was mentioned above about correlation of

predictor variables, an argument could be made that if other

variables were included in the analyses the relationship of

arithmetic RT and math problem solving would be rendered

negligible or, at the very least, would be greatly

diminished. Certainly a claim could be made that IQ as a

predictor would greatly reduce the variance accounted for by

arithmetic RT.

I do not deny that IQ would also be highly predictive of

complex problem solving abilities in math. One of the

subtest of the WISC-R is an arithmetic subtest so the two

variables are inextricably linked. I am going to argue,

however, that several pieces of evidence currently exist

indicating that basic numerical abilities are related to

complex mathematical skills after the effects of IQ are

partialed out. In the aforementioned research conducted by

both Balow (1964) and Zentall (1990) IQ effects were

partialed out of subsequent analyses. In Balow' s study

complex computational measures along with reading ability

were still strongly related to a standardized measure of math

conceptual /problem solving ability. In Zentall 's study the

number of simple arithmetic problems solved on a paper and

pencil test was (the only) significant predictor of number of

word problems correctly solve when IQ was partialed out.
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other evidence also exists in previous studies of

individual differences. As Geary (1994) notes, there have

been numerous factor analytical studies conducted that

identify a number or number facility factor that includes

basic arithmetic abilities. Several researchers (e.g.,

French, 1951; Pawlik, 1966) have gone so far as to claim that

this factor is the best confirmed and clearest aptitude

factor of all. Other researchers (Jensen, 1994; Spearman,

1927) have noted that arithmetic skills have much that is

shared over and above general intelligence. For Spearman,

who was a strong supporter of the explanation of individual

difference in mental abilities by g or general intelligence,

this is a pretty strong statement.

Other findings from the present study that have already

been mentioned are somewhat more muddled. The fact that the

nature of the relationship between reading ability and word

problem solving has already been firmly established in

several other studies (e.g., Jerman & Mirman, 1974; Kintsch &

Greeno, 1985; Muth, 1984) and in this study in the 6th grade,

tends to overshadow the findings that SVT was not highly

correlated with word problem subscore. The low correlation

is further deemed suspect as SVT is strongly correlated with

the standardized measures of problem solving (most highly

with the word problem and data interpretation subtest, r =

.65) as shown by the 6th grade data in Table 9. Reading

ability's relationship to computational ability is still

unknown as previous research on that relationship has not
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been conducted. The conflicting results in this study do not

help much although the possibility that reading measures are

measuring working memory resources and therefore should be

related to computational solving abilities would also be an

interesting hypothesis to test.

A brief comment on the significant interaction effect is

appropriate here as well. Again let me underscore that the

changing arithmetic /complex math ability relationships over

grade are highly suspect due to the very small samples

available for analysis at each grade. It does raise some

interesting possibilities for future research, though. Would

this same effect be found in a more stable analysis with

larger samples and if so when (and why) does this

relationship change over development? Possibly the

correlation change is showing when most children have

switched from solving many basic arithmetic problems by slow

counting methods to only or mostly using a retrieval strategy

which is faster.

In summary, at the very least it has been established

that there is a strong relationship between speed of mental

arithmetic problem solving and more complex mathematical

problem solving. Previously, the idea that computation

abilities are predictive of more complex problem solving

abilities has either been approached using complex

computation abilities (Balow, 1964; Muth, 1984) as predictors

or more inaccurate paper and pencil measures of basic

arithmetic (Zentall, 1990) . This study has established that
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an even more basic arithmetic/complex problem solving

relationship exists and warrants further investigation in a

controlled experimental setting. Now let me again turn to an

exposition of reasons why the mental arithmetic /math problem

solving connection may exist.

Working Memorv. the Development of Skilled Reading

and the Development of Skills in Mathematics

There is really nothing to add to the working memory

account of why the arithmetic /math problem solving

relationship exists as it was extensively outlined in the

introduction to the study and nothing in this study can

directly add to that account. I would, however like to

borrow an example from the domain of reading to illustrate

how skilled reading develops, how an analogous progression

may occur in mathematics, and how working memory is an

important measure in the development of skill in both

domains

.

According to Royer and Sinatra (1994) there are several

component skills a person must possess if he or she is to be

a good reader. Those component skills are:

1. ) Enabling skills--phonological awareness and the ability
to identify letters.

2. ) Word identification— the ability to map phonemes on to

letters and take those letter- sound combinations and
identify them as words. This is highly dependent _ on

working memory and must eventually become automatic for

someone to become a fluent reader.

3 . ) Activation of meaning—development of automatic
activation of word meanings

4.) Syntactic and semantic processing—syntactic processing

is usually fully developed through speech experience
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free from language impairment before the development of
reading skills, and semantic processing or text
modeling requires several higher level skills such as
making unconscious and conscious inferences to pull
meaning of texts together and accessing related
knowledge from memory.

5.) Prior knowledge and metacognitive processing--meaning of
text is constructed through an interaction of the
message within a text, the prior knowledge of the
reader, and the particular context in which reading
occurs. Metacognitive processing is the monitoring of
one's comprehension to determine if /where it is failing.

These five component processes are arranged in a

hierarchy and at least up through the level of syntactic

processing are seen as encapsulated skills that cannot be

affected by conscious strategic activities (in a skilled

reader)
. Failure at one of the lower component skills leads

to a mushrooming impairment in reading termed the "Matthew

effect" (Stanovich, 1986). People that do not develop the

necessary automatic skills at the word recognition level, for

instance, develop overall reading skills and educational

competencies that significantly lag behind those people that

develop automatic word identification skills, and without

remediation this disparity rapidly widens. The delay in

development or lack of automatic word identification skills

has an enormous impact on other components of the reading

process, and as each successive component skill depends on

the previous skill(s), it is not difficult to see why the

"Matthew effect" occurs. It is usually the case as well that

even if repair at a lower level of skill occurs it does not

necessarily transfer to the repair of higher level skills.

Direct repair of the higher level skill may also be needed in
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addition to repair of the lower level skill for such a person

to fully become a competent reader.

It is a very distinct possibility that something similar

happens in the domain of mathematics- -that there is a

hierarchy of more and more complex skills, each one building

on previously learned skill (s) that leads to the building of

a competent mathematician. The simplified path of skills

might go something like this:

nijmber representation > counting knowledge > arithmetic

ability > more complex procedural and conceptual

knowledge > higher mathematical reasoning (problem solving)

It should be noted that this is a simplified version of

what happens. Many other factors feed into this path of

skills. For instance, (less complex) conceptual and

procedural knowledge influences counting knowledge and

arithmetic ability and working memory probably influences

several skills such as arithmetic skills and even higher

mathematical reasoning (see Geary, 1994, for a detailed

diagram and Kaye, 1986, for a similar account of the above

path of mathematics skills)

.

Although simplified, the above path should function

similarly to the previously mentioned hierarchy of the

development of reading skills. It has already been shown

that arithmetic problems have many of the automatic skill

properties that have been attributed to word recognition

(e.g., Lefevre et al., 1988; Lefevre et al., 1994; Rogers &

Fisk, 1991) and the idea of information encapsulation
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therefore may be true in mathematics as well. The

development of skill in math in general should be similar to

reading in that if acquisition of any of the component skills

shown above is impaired or delayed, there may be significant

implications for the learning of higher order skills in the

domain

.

An interesting addendum to what has been mentioned above

is that both the arithmetic and mathematical reasoning

abilities of people in the United States has in recent years

been shown to lag behind other nations (e.g., Stevenson,

Chen, Sc Lee, 1993). Geary (1994) has also noted that

arithmetic abilities are poorer than what they were 40 or 50

years ago when drill and practice of basic arithmetic facts

was much more prevalent in the classroom. Another

interesting finding from Geary, Salthouse, Chen, and Fan

(1996) was that a comparison of samples of older American and

Chinese adults (57 to 85 years of age) showed no differences

in arithmetic abilities, perceptual speed, and spatial

ability while younger American adults (college age) performed

significantly poorer on arithmetic task than Chinese younger

adults but performed equally on the other two ability

measures . These findings seem to indicate that Americans

'

poorer arithmetic knowledge is a recent phenomenon.

More evidence is coming to light about the inadequacy of

adults' basic arithmetic abilities. Until recently, many

researchers have assumed that by adulthood all of the basic

arithmetic facts have been automatized (e.g., Ashcraft, 1992;
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Widaman & Little, 1992). Recent research suggests that this

is not the case; it appears that adults still use counting

strategies rather than retrieval to solve many simple

arithmetic problems (Lefevre, Sadesky, & Bisanz, 1996;

Lefevre, Bisanz, Daley, Buffone, Greenham, & Sadesky, 1996;

Geary, 1996). It could be coincidental that both arithmetic

and math reasoning abilities have worsened over the years in

America reflecting overall educational neglect. It seems

very likely, however, that the two go hand in hand. At least

in part, declines in complex math problem solving ability are

most likely attributable to similar declines in arithmetic

ability.

The Focus of Future Research in Arithmetic and Mathematics

Working Memory Issues

In light of the research evidence presented above, it is

apparent that additional research is needed involving working

memory and its role in simple mental arithmetic. Adult

participants have been used in experiments that have

attempted to measure the amount (or lack of) working memory

resources that are used during simple mental arithmetic. It

has been assumed that the adults sampled in the

aforementioned studies had already committed simple

arithmetic problems to memory (e.g., Ashcraft, Donley, Halas,

Vakali, 1992; Lemaire, Abdi, Fayol, 1996). Several pieces of

evidence indicate that many adults still use counting

strategies to solve some simple arithmetic problems (Lefevre

et al., 1996; Lefevre, Sadesky, & Bisanz, 1996; Geary, 1996).
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Arithmetic working memory resource studies may therefore be

estimating working memory loads that are imposed when adults

are still using counting strategies, not when adults are

using retrieval. Recent work conducted by Klapp et al.

(1991) using alphaplication has shown that when adults were

trained to the point of automaticity and "beyond" on their

arithmetic -like task, the amount of working memory resources

used when a dual task load was imposed was reduced to an

insignificant amount. What needs to occur in the future are

studies that involve training participants in mental

arithmetic to the point of automaticity and beyond, measuring

of participants' strategy use/degree of automaticity, and

then assessing working memory load in mental arithmetic via

various dual task methodologies.

Arithmetic and Complex Mathematics: Experimental Evidence

Obviously, to better study the arithmetic /complex

mathematics ability relationship it is necessary to move the

research into the experimental realm. To my knowledge only

one experimental research project has been conducted that

gave practice to children on computational problems via a

computer and sought to test improvement in computation and

conceptual knowledge in mathematics as indicated by a

standardized test (Suppes, Jerman, & Brian, 1968; Suppes &

Morningstar, 1972). This project, however, was conducted

using practice on complex computational problems.

Experiments need to be conducted where children are trained

on the basic math facts and records are kept of their

149



progress via daily graphing and periodic assessment using a

computer and the CAAS or some other similar system. After

training, students' performance on tests of more complex

computational and conceptual /word problems must then be

compared to a control group that did not receive training to

see if basic arithmetic practice does produce better complex

mathematical problem solving.

In addition, the level of analysis needs to be more

exact. Several researchers have given explanations of why

improving arithmetic abilities improves more complex

abilities. The explanations have all been along the lines of

"it frees up working memory resources to be applied to more

complex aspects of problem solving." That assessment is no

longer adequate. We need to dig deeper in our analysis to

determine exactly how it is that this resource savings might

be working and how it is being applied. We also need to

determine if improvement in arithmetic fact retrieval is more

beneficial (or only beneficial) on certain types of problems

such as those problems requiring calculations versus those

problems where calculations are not required.

Working Memory and the Mathematically Disabled

According to many researchers (e.g., Geary, 1994) the

systematic study of the mathematically disabled (MD) has

lagged well behind the study of reading disabilities even

though math disabilities may be as prevalent or more

prevalent. An increasing amount of research has been

conducted recently on the arithmetically disabled that has
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revealed that working memory problems as well as procedural

problems (such as counting procedures / strategies
) account for

much of MD students problems in math. Research has recently

started to pick up in the area of problem solving and MD

(e.g., Zentall, 1990; Zentall & Ferkis, 1993) as well.

Advances have also been made in the study of working memory

and MD and disabilities in general as researchers have been

able to construct tasks that better capture the dynamic

properties of working memory (e.g., Swanson, 1993). Attempts

have also been made to categorize learning disabilities by

way of working memory analysis (Swanson, 1990) . This type of

working memory research needs to continue and should at least

in part be applied to the study of mathematic disabilities

and arithmetic and mathematical problem solving. Some of the

future research possibilities outlined in this final section

are currently being pursued in our lab and these efforts will

continue

.
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APPENDIX

WORD PROBLEM AND COMPLEX COMPUTATION TEST QUESTIONS

^'^
^illJ^^^ u

^^^""^^ 2^ ^^^^ ^i^^^ Jill 7 morepieces. How many does Jill have now?

^'^
It"^^

'"'''^^^ ^i^^y 5 comic books. Howmany more comic books does Paul have than Cindy?

3. )
It is Jane's birthday and her brother wants to bake hera cake He can't find the one cup measure but did findtne 1/3 cup measure. How many times must he fill up the

flour?^
""^^^ recipe calls for 2 and 1/3 cups of

4. )
On a map of Springfield, 1 inch equals 3 miles. What isthe distance between two parks that are 7 inches aparton the map?

5. )
Frank has 4 different pairs of pants and 3 different
types of shirts. How many different ways could Frank
combine his pants and shirts?

6. ) Monica has 16 pennies. She has 9 more than Laurie. How
many pennies does Laurie have?

7
. ) Write the number that should replace the question mark

in the following number sentence

:

72 + (3x6) - (12 + 9) = ?

8. ) Maria rides her bicycle 9 miles every week. Sara rides
7 times as many miles as Maria. How many miles does
Sara ride in 3 weeks?

9. ) What number should replace the question marks to make
the statement below true?

4 = ??

7 35

10. ) Write a mixed number (a whole number and fraction) that
has the same value as the improper fraction 17/6.

11. ) 5 + 34 + 111 =

12. ) 57
2C 64

13 . ) 345 - 15 =
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14.) 4 X 3 =

9

15. ) 84 - 10 =

16. ) 3 X ^ =
4 15

17.) $5 - 35<: =

Tom and Karen work in a toy factory packaging toys. They can
fit 40 toys in a large box, 30 toys in a mediiim box, and 20
toys in a small box. Use this information to answer the next
three questions.

18. ) A toy store in Amherst would like a small, medium, and
large box of toys sent to them on Monday. How many
total toys will they be getting?

19. ) If Karen gets paid $2.00 for every 100 toys she boxes
and she packs 300 toys every hour, how much money does
Karen make in an hour?

20. ) Tom wants to finish packing 7 large boxes, 2 medium
boxes, and 1 small box before lunch. How long will it
take Tom if he can pack 120 toys every half hour?

21. ) Kate has 13 pencils. Todd has 5 pencils. How many more
pencils does Tom need to have as many as Kate?

22. ) Apples are on sale at the market for $1.06 per pound. A
farmer is selling them for 10 cents ($.10) more per
pound. How much would it cost to buy 5 pounds of apples
from the farmer?

23. ) Ben is a mechanic and can fix 5 sets of brakes in a day.
Susan is also a mechanic and can fix 6 sets of brakes in
a day. How many sets can they fix together in 5 days?

24. ) At Shell, oil costs $1.25 per quart. At Exxon, oil
costs 12 cents ($.12) less per quart than it costs at
Shell. How much would 4 quarts of oil cost at Exxon?

25. ) Teddy has 90 raffle tickets to sell for a charity
raffle. If he can sell exactly 12 tickets each day, how
many days will it take him to sell all of his raffle
tickets?

26. ) Joseph delivers 25 newspapers every day. Tim delivers
1/5 as many papers as Joseph every day. How many papers
does Tim deliver in 7 davs ?
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27.) 3451
+ 274

28. ) 743
- 267

29. ) 714
2C 23

30. ) 11 + 12 + 21 =
41 41 41

31. ) 10.3 + 3.64 +12.2 =

32. ) 2.24 X 9 =

33. ) .03
2c ^

34. ) 1 + 6 =
4 24

35. ) What number must replace the ? to make the following
number sentence correct?

(7 X ?) + 2 = 30

36. ) What is the average (mean) of the following test scores:
85, 90, and 74?

37. ) A local store in John's neighborhood was advertising
football cards for sale. John could buy 3 packs for
$4.00. Each pack of cards has 12 football cards. How
many cards could John buy for $20.00?

38. ) John wanted to sell some of his football cards so that
he could buy tickets to a football game. John had 4
cards worth $5.00 each, 7 cards worth $2.00 each, and 6

cards worth $1.00 each. How many tickets could John buy
if he sold all of these cards and if tickets cost $10.00
each?

39. ) John went to a card show with $25.00 to spend. It cost
$2.00 for admission and John bought an album to hold his
cards in for $5.00. He then bought 2 old football cards
with the money he had left over. If one of the football
cards cost twice as much as the other, how much was the
more expensive card?

40. ) One quarter of the students in Mrs. Smith's math class
are boys. If there are 15 girls in the class how many
students are there total?
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41. )
What is the greatest common factor of (the largest
niomber that divides into both) 3 6 and 72?

42.
)

If two boats 100 miles apart sail towards each other atthe same time, how long will it take for them to meet ifone boat travels 20 miles per hour and the other travels
3 0 miles per hour?

43. ) Filene's is having a sale on women's clothing. Every
Item of women's clothing is 20% off the original price
Sarah buys a dress at Filene's on sale for $56.00 Whatwas the original price of her dress before the sale"?

44. ) 40000
X 127

45. ) 37% of 90

46. ) 360 -5-
. 8

47. ) 23 4

27 9

48. ) 5 ^ 25
3 6

49. ) 7 10 - 3
11

24 24

50.) 1 + 1 + 5

3 6 8
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