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ABSTRACT

An Investigation of the Organization of
the Cerebral Cortex in the Rat: The Use of

Horseradish Peroxidase and Fast Blue to Evaluate
the Columnar Hypothesis

May 1984

Anton Blaine Dodek, B.A., Middlebury College

M.S., University of Massachusetts

Directed by: Professor Paul Herron

The topographical organization of corticocortical and cortico-

bulbar neurons in the sensory and motor areas in the rat were

examined using the retrograde transport of horseradish peroxidase

and of the fluorescent dye, fast blue (FB) . HRP injections into

the first motor area (MI) resulted in vertically-oriented clusters

of labeled cells (250-400 ym wide) in Layers II, III, V and VI of

the ipsilateral first somatic sensory area (SI). FB injections

into the fifth motor nucleus (Mo5) of the brainstem demonstrated

the distribution of corticobulbar cells in the sensorimotor

cortex. These injections resulted in slabs of labeled cells con-

centrated in Layer V. In animals which received both injections,

an overlap of the corticocortical and corticobulbar systems in the

sensorimotor cortex was evident. Areas exist in MI and SI that

contain both corticocortical and corticobulbar efferents. The
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results of this study are taken as support of the columnar hypothesis

of cortical organization. Because certain corticofugal cells are

restricted to specific laminae, dual tracer studies may show the

borders of these columns more distinctly.
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CHAPTER I

INTRODUCTION

For many years extensive research efforts have focused on the

role of the cerebral cortex in the elicitation and control of

behavior. By describing the attributes of neuronal populations, a

better understanding of the functional connectivity of the cortex

has developed. This knowledge has aided in the elucidation of the

physiology of behavior. Certain structural features of the

cerebral cortex such as its horizontal lamination have long been

established. In 1909 Brodmann described six cytoarchitecturally

distinct layers within the cerebral cortex. The outermost layer,

Layer 1, contains few, relatively small cells and stains lightly in

color. Layer II consists of a considerable number of small densely

packed stellate cells and has a granular appearance. Layer III is

a relatively wide lamina and contains pyramidal cells of varying

sizes* The inner granular layer. Layer IV, is composed of densely

packed stellate cells. Layer V is considered the ganglionic layer

and is characterized by the presence of pyramidal cells. And,

finally, Layer VI is a polymorphic layer consisting of cells of

different forms

.

Despite intensive efforts, certain aspects of the structural

and functional organization of the cerebral cortex remain contro-

versial. As Towe (1975) mentioned there are basically three



theories of cortical organization: '

topographic, columnar, and cyto-

architectonic. According to the topographic hypothesis, a small shift

in the site of peripheral stimulation would result in a small shift

of maximal cerebral activity. Similarly, a smaller shift in the

site of stimulation causes a smaller shift in the site of maximal

cerebral activity. In opposition to this theory is the columnar hypo-

thesis which asserts that the cortex is divided into discrete units.

Marked homogeneity exists within these units and there are definite

distinctions between units. Therefore, a small shift in the site of

peripheral stimulation would result in either no change in the site of

maximal cerebral activity (same column) or in a marked shift (dif-

ferent column). And, thirdly, the cytoarchitectonic theory states that

cytoarchitectonic differences underlie functional differences. More-

over, this hypothesis asserts that there is uniformity of function

within a cytoarchitectonic field.

It is the columnar hypothesis, first proposed by Lorente de No

(1938), that has generated the most rigorous research in this field.

Lorente de No (1938) presented evidence that the vertical spread of

certain dendritic and axonal arborizations were responsible for a

vertically-oriented functional cortical unit:

"Studies on the fine structure of the cortex have revealed
that, although in architectonic pictures the horizontal
stratification seems to be the most important fact in
cortical organization, the intracortical connections are
established chiefly in vertical directions so that the
whole vertical section of the cortex must be considered
as a unitary system. The cortical cells are arranged in
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architectonic layers indicate onlywhere the bodies of cells, which are similar links in thechains, are located. But these cells, by means of longdendrites, establish connections in other layers "

(Lorente de No, 1938)

Physiolog ical Evidence Supporting the Columnar Hypothesis

Many years later Mountcastle (1957) and Powell and Mountcastle

(1959a, b) presented physiological evidence showing distinct tran-

sitions in response patterns in the horizontal plane of the cortex.

In the 1957 study, Mountcastle performed 59 experiments on anes-

thetized cats involving the modality and topographic characteristics

of 685 single neurons. These authors concluded that an elementary

cortical unit of organization is comprised of neurons organized in

vertical columns extending from Layer II to Layer VI. Cells within

this unit were activated by stimuli applied to the same class of per-

ipheral receptors from similar peripheral receptive fields and at

latencies which were not significantly different for cells at various

layers. Furthermore, Powell and Mountcastle (1959a, b) obtained sim-

ilar data using macaque monkeys as subjects. All neurons, responsive

to mechanical stimuli, were grouped into one of four categories

according to their responses. The four categories included hair,

pressure, joint, and fascia. Those cells responsive to hair and

pressure receptors were termed cutaneous while joint and fascia res-

ponding neurons were called deep.
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Anatomical Evidence Supporting the Columnar Hypothesis

In addition to the physiological evidence reported by Mountcastle

et al., other researchers have found anatomical data supporting the

existence of the cortical column (Jones and Powell, 1973; Jones,

1975a, b). This evidence is derived mainly from Golgi studies and

demonstrates the existence of horizontal layers within the cortex

which are unified by pyramidal and stellate cells whose axonal and

dendritic patterns are essentially vertically oriented. Hence,

interneurons with vertically distributed axonal and dendritic arbor-

izations cross the cortical layers and connect constituent neurons

(Jones and Powell, 1973).

Many of the morphological characteristics of these interneurons

have been determined. Jones and Powell (1970) found that afferent

input synapses mainly on stellate cells in Layers IV, Illb, and upper

II of the cortex in the monkey. As Jones (1975b) demonstrated in a

later study using squirrel monkeys stellate cells are located in

Layer IV at the termination of specific thalamic afferents. Moreover,

Jones (1975b) has distinguished between several cell types in the

cortex. The neurons he termed types 3 and 7 have the necessary dis-

tribution of axonal and dendritic processes to receive afferent

terminals from the thalamus. Located mostly in Layers II and upper

III, the type 3 cell axon may travel as far as Layer V and, therefore,

is capable of exciting a large unit of cortex. Thus, the characteris-

tics of type 3 stellate neurons are conducive to distributing afferent

information entering the upper layers of the column to lower cortical

\
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layers. In addition, the type 7 cell, located in Layer IV, has

similar attributes.

Evidence of Columnar Organization in All Cortical Areas

The characteristics of columnar organization appear to be

present throughout the cortex. Data supporting the columnar hypothe-

sis has been reported in studies dealing with various cortical areas

including somatic sensory, visual, auditory and motor.

Somatosensory cortex
*

In the somatic sensory cortex, studies determined the existence

of columns electrophysiologically by oblique microelectrode pene-

trations. Evidence of columnar organization resulted when receptive

fields shifted due to increased depth of the penetration. These

studies were performed in a variety of species and under differing

experimental conditions. For example, several investigators have

reported columnar organization in the first somatosensory cortex (SI)

of unanesthetized
,

neuromuscularly blocked macaque and squirrel

monkeys (Werner and Whitsel, 1968; Mountcastle et al., 1969; Whitsel,

Dreyer, and Ropollo, 1971; Dreyer et al., 1975). Also, evidence has

been found in support of the columnar hypothesis in SI of waking,

behaving macaque monkeys (Carli, Lamotte, and Mountcastle, 1971) and

in anesthetized neonatal (Armstrong-James, 1975) and adult rats

(Welker, 1971). Furthermore, columnar organization has been observed

in the second somatic sensory cortex (SII) in anesthetized cats



(Carreras and Anderson, 1963) and in SI in neuromuscularly blocked

macaque monkeys (Whitsel, Petrucelli, and Werner, 1969).

In the rat, a special anatomical cell distribution was found

in SI which may provide a morphological basis for the columnar

hypothesis. Woolsey and Van der Loos (1970) found that each sinus

hair of the contralateral face is physiologically correlated with a

particular column of cells that is shaped in a "barrel" form.

Visual cortex

Some of the most extensive evidence for the existence of

cortical columns is derived from the visual cortex. The elegant

work of Hubel and Wiesel (see 1977 review) has provided evidence for

columnar processing in area 17 of the visual cortex. Using electro-

physiological and anatomical methods, these researchers discovered

vertical slabs of cells that respond alternat ingly to left eye and

then right eye stimuli. In horizontal sections, the visual cortex

manifested alternating stripes about 400 ym thick. This pattern of

ocular dominance columns has been supported by autoradiographic data

(Wiesel et al.
, 1974) and by data obtained in studies of tangential

microelectrode penetrations showing abrupt transitions (Albus, 1975).

Auditory cortex

Electrophysiological evidence exists for columnar organization

in the primary auditory cortex. Abeles and Goldstein (1970) recorded

from cells by passing a microelectrode down a vertical column. The

cells they encountered responded to a nearly identical frequency

.



Motor cortex

The motor cortex has also been shown to possess characteristics

of the columnar hypothesis. Asanuma and Rosen (1972a, b) produced

movements of distal joints in cells arranged in a vertical column

0.5-1,0 mm in diameter by using intracortical microstimulation.

These researchers were also able to define afferent input to motor

cortical cells in the direct surroundings by recording through the

stimulating electrode. In a follow-up study, Asanuma and Rosen

(1973) used two microelectrodes to record and stimulate simul-

taneously. They found that stimulation in the upper cortical layers

produced excitation locally as well as in lower layers in cells

vertically oriented towards each other. This column of neurons was

approximately 1 mm in diameter and was bordered by a pericolumnar

zone of inhibition. When deeper layers were stimulated local ex-

citation and the same pericolumnar inhibition resulted.

Hence, it has been well established that there exists in the

cerebrum a certain amount of vertical organization. However, the

definition of such a cortical column is somewhat vague. The original

hypothesis of Lorente de No (1938) was of a functional unit composed

of a vertical chain of interconnecting neurons. On the other hand,

Jones (1975b) defined two types of columns anatomically: one of a

comparatively small diameter (250 ym) unified by the input of a

common vertically-oriented stellate cell and the other of a larger

diameter (1.0 mm) unified by the input from one thalamic afferent

fiber. He concluded that the larger column was the functional
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cortical unit since its dimensions were better correlated with the

physiological data. However, there are some criticisms of the

columnar hypothesis. In Towe's opinion (1975), this theory lacks

critical support to be considered valid. He argued that the

following data are necessary to evaluate the columnar hypothesis

more fully: the number of distinct modalities, the number of

columns for each modality, and the exact sizes and shapes of the

columns. At present, it is unclear what physiological characteristics

determine the boundaries of a vertical unit and whether these boun-

daries are sharp or fuzzy. As Lemon and Porter (1976) demonstrated

in the motor cortex of monkeys some cortical units overlap and may

gradually fade into each other when studied physiologically. Clearly

a better description of the attributes of a cortical column is

needed in order to increase our understanding of the functional

connectivity of the cortex and its role in behavior.

Connectivity Data Supporting the Columnar Hypothesis

One approach to this problem has been the use of anterograde

and retrograde tracing methods. Much information has been gathered

concerning cortical connections and the columnar hypothesis by

employment of techniques such as horseradish peroxidase (HRP) histo-

chemistry, autoradiography, and fluorescent tracing techniques.

Jones, Burton, and Porter (1975), using tritiated amino acids (antero-

grade) and HRP (retrograde) in monkeys, found that commissural and

corticocortical fibers terminate in discrete terminal groupings.



Also, these researchers reported that the cells of origin of these

fibers are arranged in distinct clusters 0.5-1.0 mm in width. In

a later study, Jones, Coulter and Wise (1979) found that the bundles

of callosal fibers which terminate in column-like zones in SI origin-

ate from neurons in Layer Illb and form reciprocal connections. More-

over, studies concerning corticotectal (Wise and Jones, 1977) and

corticothalamic (Jones, Wise, and Coulter, 1979) connections add

credence to the columnar hypothesis. Wise and Jones (1977) injected

HRP into the rat superior colliculus and found labeled cells in SI

that were clustered in columns 250 ym in the mediolateral plane and

1.0 mm in the anteroposterior dimension. In the monkey, Jones, Wise

and Coulter (1979) found that aggregates of cells within the ventro-

basal complex of the thalamus project to cortical zones less than 1.0

mm in width. Adjacent columns in SI were connected with clusters of

cells situated in adjacent lamellae of the ventrobasal complex. This

study employed both autoradiographic and HRP histochemical techniques.

Purpose of the Present Study

The characteristics of the cortical column as determined physio-

logically differ from those suggested by the anatomical evidence.

The column diameter reported in anatomical studies is approximately

250-600 ym. This is in contrast to the physiologically determined

column dimension of approximately 800-1000 ym (Mountcastle , 1974).

Furthermore, the physiological evidence describes the column boun-

daries as more distinct than the anatomical data. Thus, the present
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study was designed to elucidate some of the remaining questions con-

cerning the organization of the cortex and the columnar hypothesis

by utilizing the retrograde tracers HRP and the fluorescent dye,

fast blue (FB). By evaluating the relevance of the columnar hypoth-

esis to cortical organization a better understanding of the connec-

tivity of the cortex and the physiology of behavior may be obtained.

Much work has been completed concerning the connections of the soma-

tosensory cortex. For example, Jones and Powell (1973) reported that

SI and SIX are reciprocally connected in the cat }^ Wise (1975) re-

ported that in the rat neuronal clusters in SI project to homotopic

clusters in contralateral SI and SII. Furthermore, Killackey (1973)

found clustering of thalamocortical fibers from the VPL nucleus

ending in Layer IV of each barrel of a barrel subfield in the mouse.

In a more extensive study of cortical connections, Jones and Wise

(1977) reported that specific corticofugal fibers are confined to

certain layers of the cerebral cortex. These authors reported that

corticopontine , cort icorubral , and corticobulbar f ibers arise from

pyramidal cells in middle Layer V whereas corticocortical fibers

originate from Layer III pyramidal cells.

In the present study, dual tracer injections were used to

further research the connections between MI, SI, and the fifth

motor nucleus of the brainstem (Mo5) to determine the validity of

the columnar hypothesis and to refine the definition of a cortical

column. Since it is known that corticocortical cells and cortico-

bulbar cells are situated in different layers such a paradigm is
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useful in studying both the vertical and horizontal organization of

the cortex. By analyzing two different types of corticofugal

connections in one area of the cortex, it should be possible to

better evaluate the columnar hypothesis. In order to substantiate

this hypothesis, the results of this study must meet certain criteria.

Firstly, injection of a tracer must result in clusters of groupings

of cells resembling a cortical column. Although it is not necessary

for the dimensions of this clustering to be strictly defined, there

must be definite zones of labeled neurons segregated from each

Other by areas devoid of labeled cells to support the columnar

hypothesis. Random labeling of cells would clearly negate the

columnar hypothesis. The patterning of the two types of label may

take one of three forms. For example, following an injection of FB

Into Mo5 and HRP into SI there may be total overlap of areas con-

taining the two labels in MI. Conversely, MI may contain a population

of FB-Iabeled cells totally segregated from clusters of HRP-labeled

cells. Or, perhaps, clusters of HRP-labeled cells may partially

overlap FB-labeled neurons. If, however, there exists a random

patterning of the two labels the validity of the columnar hypothesis

would be questionnable.



CHAPTER II

METHODS

Animals and surgical procedure

Ten albino male rats weighing 150-250 g were used as subjects and

were anesthetized by an intraperitoneal injection of 2.5 ml/kg Equi-

thesin. The animals were placed in a stereotaxic instrument and an

incision made in the skin down the midline of the skull. After folding

back the skin, the muscle and fascia were dissected away. The bone

(approximately 4 mm in area) was then removed with a dental drill and

rongeurs exposing the dura above the left somatosensory cortex (SI),

the left side of the motor cortex (MI), or the cerebellum (for brain-

stem injections) depending on the injections made. The MI-SI boundary

was determined electrophysiologically in pilot studies and confirmed

by histology. At this point, the dura was removed by opening a hole

with a .22 gauge net^dle and then dissecting it away with forceps. The

exposed cortex was covered with saline or agar at 42*^0.

Neuroanatomical tracers

Neuroanatomical tracing methods take advantage of the neuronal

properties of axonal transport. Through a network of microfibrils

and microtubules the neuron is capable of transporting proteins and

other essential molecules in either an anterograde or retrograde

direction relative to the cell body. Exogenously administered neuro-

anatomical tracers can be taken up at axon terminals through

12
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endocytosis and transported back to the cell body where they accumu-

late. Depending on the tracer used, specific methods are used to

visualize the labeled cell bodies resulting from an injection. In

this study, HRP, an enzyme which forms a blue reaction product

following a histochemical reaction with tetramethylbenzidine was

used as one tracer. The second tracer, fast blue, is visualized

when exposed to a fluorescent excitation wavelength of 360 nm.

Inj ection techniques

The ten animals were divided into three groups. Five rats

received only an HRP injection in MI. A FB injection in Mo5 was

given to two animals. And three animals received both an HRP and

a FB injection.

HRP injection in MI . A HRP micropipette was inserted into the

left motor area normal to the surface of the cortex at a depth of

approximately 1700 ym. The depth of the motor cortex which is

slightly more than that of the sensory cortex was determined in pilot

studies. HRP micropipettes were made from glass capillaries pulled

to a tip diameter of approximately 100 ym (see Mori et al., 1981).

The tip of the pipette was dipped in liquid paraffin (m.p. 57^C)

allowing the paraffin to be drawn into the pipette by capillaiy

action. The paraffin at the outer 250 ym of the tip was then dis-

solved in ether for 15 minutes. After a tvjo hour waiting period to

ensure that the ether had evaporated the newly exposed tips were

gently packed with crystalline HRP. The micropipette remained in the

cortex for 30 minutes during which time the crystalline HRP diffused
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into the brain. During the diffusion, the micropipette was raised

300 \xm every five minutes to ensure thac all layers of the cortex

would be labeled

.

FB injection in Mo5 , A pressure injection of FB (4% solution)

was made using a 1 ul Hamilton syringe and a microdrive assembly

attached to the stereotaxic apparatus. The coordinates of the tri-

geminal motor nucleus were determined stereotaxically (Paximos and

Watson, 1982). One microliter of the tracer was injected over a

period of 30 minutes.

HRP injection in SI or MI with FB injection in Mo5 . For these

experiments, the HRP injection was performed as described above for

MI injections. The somatosensory injection was placed in the barrel

subfield of SI as described by Welker (1976) . Three days prior to

the HRP injection in SI or MI, FB was injected into the trigeminal

motor nucleus of the pontine region of the brainstem. The protocol

for the FB injection in Mo3 is as described above.

Histological procedure

The MI injections were followed by a 48 hour postoperative

survival period. The animals were anesthetized with 1 cc Nembutal

and perfused transcardially with three solutions: 50 ml saline,

500 ml fixative (1.25% glutaraldehyde , 1% paraformaldehyde in a

0.1 phosphate buffer at pH 7.4 at 21°C) , and 500 ml of the same buffer

at 4*^C to which 10% sucrose was added. The brain was then excised

and stored in the 10% sucrose buffer solution over night at 2-5°C.

Coronal sections of 40 ym in thickness were cut serially using a
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freezing microtome, and reacted according to the tetramethylbenzidine

(TMB) protocol (Mesulam, 1978) for demonstrating the HRP reaction

product. According to this procedure, the sections are briefly

washed in three changes of distilled water. Free-floating sections

are then immersed in a pre-reaction soak for 20 minutes at room tem-

perature. The pre-reaction solution consists of two solutions which

are mixed together immediately prior to introduction of the sections.

Solution A contains 92.5 ml distilled water, 100 mg sodium nitro-

f errocyanide, and 5 ml of 0.0 acetate buffer at pH 3.3. Solution B

contains 5 mg TMB in 2.5 ml absolute ethanol. Following the pre-

soak, the tissue undergoes the enzymatic reaction for 20 minutes at

25^C. This is initiated by adding 2-4 ml of 0.3% per 100 ml of

the medium. Following the reaction the sections are rinsed in six

5-minute changes of acetate buffer solution (pH 3.3) before mounting.

The sections were mounted on chrom-alum subbed slides, air dried,

and counterstained with neutral red.

Animals which received FB and HRP injections or a FB injection

only were given a six day survival time following the FB injection.

This allowed three days for the transport of HRP in the dual injec-

tion experiments. These animals were perfused as described above

for the MI injection. However, after excising the brain the cortex

was removed and flattened (see Welker, 1971). Three sets of 40 ym

sections (2 cortical; 1 brainstem) were cut tangentially using a

vibrotome immediately following the perfusion. One cortical set

was reacted according to the TMB protocol (Mesulan, 1978) for
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demonstrating the HRP reaction product, mounted on chrom-alum subbed

slides, air dried, and countcrstained with neutral red. The second

set of cortical sections was immediately mounted on chrom-alum subbed

slides after sectioning and air dried. Without cover-slipping these

sections were analyzed using a fluorescent attachment to a light

microscope. Under an excitation wavelength of 360 nm, FR fluoresces

blue. Photomicrographs were taken recordinp, the distribution of

FB-labeled cells. Sections reacted with lllB were also analyzed for

FB labeling prior to counterstaining. A third set of 40 pm sections

consisted of brainstem sections confirming the FB injection site in

Mo5. Sections not reacted according to the TMB procedure were counter-

stained with thionln. The data was analyzed for the pattern and dis-

tribution of labeled cells in MI and SI. The number and distribution

of labeling was recorded either by microphotographs (FB-labeled cells)

or plotted under a light microscope (l!RP-labeled cells).



CHAPTER III

RESULTS

The results of this study are separated into four classifications:

1) the distribution of labeled cells in SI as deterr.ined by HRP in-

jections in MI; 2) the distribution of corticofugal cells in MI and

SI as determined by FB injections in Mo5; 3) the interaction of the

distribution of FB and HRP labeled cells in MI following injections in

SI and Mo5; 4) the interaction of the distribution of FB and HRP

labeled cells in SI following injections in MI and Mo5. For each set

of data, descriptions of the injection placements will be followed by

an analysis of the distribution of labeled neurons. Table 1

summarizes these data.

Injection of HRP into MI

Injection placement . The first somatosensory cortex (SI) of the

rat is heterogenous; consisting of granular cortex and agranular areas,

The granular cortex, characterized by a densely packed layer of

stellate cells (Layer IV), accounts for the majority of SI cortex.

Agranular cortex contains relatively few Layer IV stellate cells and

does not have a granular appearance. Within this granular layer there

exists the cortical "barrel" field described by Welker (1976). Each

cortical barrel is responsive to a single contralateral vibrissa. The

motor area of the rat lies rostral and medial to SI and a second

somatosensory area (SII) lies ventrolateral to SI (Figure 1).

17
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Fig. 1. Representation of the body surface of the rat as
determined by cytoarchitecture and microst imulation mapping. (From
Donoghue & Wise, 1982).
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The MI injections were placed within the vibrissal representati

region of MI. Injection by the packed micropipette method of Mori et

al. (1981) ensures a strictly localized injection site. The injected

regions corresponded to the region of rat frontal cortex identified as

the vibrissal representation in MI (Hall and Lindholm, 1974). The

extent of the dense HRP reaction product was approximately 600 ym wide

and concentrated in layers III-VI (Figure 2). In two other animals,

the injections extended into the white matter. However, any extraneous

labeling due to this fact has no bearing on the results of this study

which is concerned mainly with the ipsilateral corticocortical

connections

.

Corticocortical projections . HRP-labeled cells were observed in

Layers II, III, V, and VI in SI. The majority of labeled cells

appeared in Layers III and V. In some cases, the amount of retro-

gradely transported HRP was great enough to illustrate the dendritic

configuration of Layer III pyramidal cells (Figure 3). In addition,

labeled cells in SI were grouped into vertically oriented clusters

250-400 jam wide (Figure 4). These clusters were also observed in the

contralateral homotopic areas of MI (Figure 5). The HRP labeled

somata were observed throughout SI as far as 2.5 mm caudal to the in-

jection site. Figures 6 through 10 illustrate the extent of labeling

in the five animals which received the HRP injection in MI only.

Injection of FB into Mo5

Injection placement . Histology revealed that FB injections into

the Mo5 infringed on other brainstem pathways. In these injections,
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Fig. 6. Montage demonstrating the extent of labeling in

animal TD 1 following HRP injection in MI.



Fig. 7. Montage demonstrating the extent

of labeling in animal TD 2 following HRP injection
in MI.
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Fig. 8. Montage demonstrating the extent of
labeling in animal TD 3 following KRP injection in MI,
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Fig. 9. Montage demonstrating the extent of labeling in

animal TD 4 following HRP injection in MI.



Fig, 10* Montage demonstrating the extent of

labeling in animal TD 5 following HRP injection in

MI.
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the principal nuclei of the trigeminal nerve and the medial lemniscus

were also injected with FB. Figure 11 illustrates a typical FB injec-

tion site.

Cortlcobulbar connections . Figure 12 demonstrates the distribution

of FB- labeled cells in the sensorimotor cortex following injection into

Mo5. As is apparent from the figure, the rat cerebral cortex is

heterogenous with respect to the distribution of cortlcobulbar cells.

These neurons appeared mostly in Layer V and were equally distributed

in both the granular and agranular regions. The frontal pole of the

cortex contained the brightest fluorescent cells and the highest

density of these neurons (Figure 13). The slab of labeling extends

laterally in the more caudal areas of the cortex.

Injection of HRP in ST and FB in Mo5

Injection placements . The HRP injection was placed in the fore-

limb representation area of SI (Donoghue and Wise, 1982). The injection

site was localized and approximately 480 x 600 ym. The Mo5 injection

site was relatively large and included other brainstem structures.

Interaction of cortlcobulbar and corticocortical systems . Figure

14 illustrates that the HRP labeled somata in the sensorimotor cortex

of these animals lie in three distinct foci. One of these foci lie

1.5 mm rostral to the injection site in the motor cortex. Cells of this

focus lie mainly in Layer III. The second focus of labeled somata re-

sulting from this SI injection was located 7.5 ram lateral to the injec-

tion site within the trigeminal representation area of the SI cortex.

The HRP labeled neurons were confined to Layers III and V. The third
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Fig. 12. Reconstruction of the distribution of FB-labeled
cells in the sensorimotor cortex following injection in Mo5,
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Fig. 14. Reconstruction of the distribution of HRP- and

FB-labeled cells in a tengential section of the sensorimotor

cortex following HRP injection in SI and FB injection in Mo5.

A: Anterior; P: Posterior; L: Lateral; M: medial (x =« HRP-

labeled cells, o = FB-labeled cells).
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cluster of HRP-labeled perikarya appeared in Layers III and V of the

head representation region of SI and were situated lateral and caudal

to the injection site in SII.

As can be seen from Figure 14, there is a definite overlap of

FB- labeled slabs and HRP labeled clusters in SI. The FB- labeled cells

are confined exclusively to Layer V in both MI and SI. These vertically

oriented areas of double labeling, situated in granular cortex, in-

dicate heterogeneity of functioning within the rat sensorimotor area.

There appear to be areas in MI and SI that contain both corticocortical

and corticobulbar efferents. Also, regions exist which lack both of

these connections

•

Injection of HRP in MI and FB in Mo5

Injection placements . The HRP injection was placed in the vibrissa

region of MI as described by Hall and Lindholm (1974). The character-

istics of the injection site are similar to those described above for

MI injections. Also, the parameters of the FB injection in Mo5 are

as described earlier.

Interaction of corticobulbar and corticocortical systems . As is

apparent from Figure 15, HRP labeled somata lie in discrete clusters

in the sensorimotor cortex following an MI injection. These clusters

lie in SI directly caudal and slightly lateral to the injection site

and are distinctly separated from each other by areas devoid of

labeling. These HRP labeled cells are situated in Layers II, III, and

V. Figure 15 also illustrates the extent of FB labeling following
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Fig. 15. Reconstruction of the distribution of HRP- and FB-

labeled cells in a tengential section of the sensorimotor cortex

following HRP injection in MI and FB injection in Mo5 . (x = HRP

labeled cells, o = FB-labeled cells).
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injection of that tracer in Mo5. Again, there is a specific topo-

graphical organization corresponding to this corticobulbar projection.

A slab of FB labeling was observed stretching from the frontal pole

to areas in SI situated in a lateral-caudal direction.

Figure 15 shows an overlap of FB labeled slabs and HRP labeled

clusters in SI. The FB labeled somata are restricted to Layer V and

areas of double-labeling are located in the granular region of SI

(Figure 16). As indicated in Figure 17, the SI cortex of the rat is

heterogenous in function. There are discrete vertically-oriented zones

in SI that project to the brainstem and the motor cortex. Furthermore,

there are zones in SI which project to neither the brainstem nor the

motor cortex. There are also areas in SI from which corticobulbar but

not corticocortical fibers originate. Finally, there are areas in SI

from which corticocortical but not corticobulbar fibers originate.
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Fig* 17. Schematic representation of the functional hetero-
geneity of the sensorimotor cortex as determined by the distribution
of corticocortical and corticobulbar cells. (x = HRP-labeled cells,
o = FB-labeled cells).



CHAPTER IV

DISCUSSION

I

Methodological Considerations

This study demonstrates that a double tracer paradigm is a useful

tool in examining the organization of the cerebral cortex. However,

when combining two retrograde tracing techniques certain methodological

issues must be considered. These methods depend on the capacity of

axon terminals to take up and transport to the cell body exogenous

proteins. It is possible that one method may alter the neuronal

properties on which the other depends. In some instances, it is

difficult to discern the label of one tracer from that of another.

For example, it is difficult to distinguish a his tochemical reaction

product in cells stained by the Golgi method. A great advantage of

using HRP in conjunction with a fluorescent dye such as fast blue is

that the two are easily distinguishable. Fluorescent tracing methods

also have other advantages. In contrast to autographic techniques,

fluorescent tracers are less time consuming . In addition , they are

relatively simple to use and very sensitive. The sensitivity of a

neuroanatomical tracing method is a crucial factor in the interpreta-

tion of the obtained results. The absence of labeled cells is as

important to the conclusions of this study as are the observed loca-

tion of such neurons. As in all neuroanatomical techniques there are

48
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certain drawbacks with fluorescent tracers, however. These tracers are

prone to fading after a relatively short period, particularly when

illuminated. Also, some of these tracers (nuclear yellow, in particu-

lar) have a tendency to diffuse out of retrogradely labeled cells. Of

all the fluorescent methods available fast blue was an optimum choice.

It is less likely to diffuse and its fluorescent intensity increases

with survival time (Steward, 1981).

Support for the Columnar Hypothesis in the Rat Sensorimotor Cortex

The results of this work are supportive of the columnar hypothesis

of cortical organization. There exists a specific topographic pattern

of labeling in the sensorimotor cortex as a result of SI, MI, and Mo5

injections. The corticocortical MI-SI connection illustrates a ver-

tically-oriented cluster of cells. This finding confirms the data of

previous reports (see Jones' review, 1981). Previous authors have re-

ported vertical connectivity between the six laminae of the cortex.

Evidence exists for a cell with a limited inhibitory horizontal spread

that may demarcate the boundaries of these vertical clusters (Jones,

1975; Szenthagothai , 1976). The basket cell which has horizontal

branches extending for 1-2 mm is oriented as a flattened disk in a

plahe at right angles to the vertical column. The existence of the

basket cell has implications for the observation that excitation of

one place- and modality-specific column in somatosensory cortex is

accompanied by inhibition in adjacent columns. This anatomical finding

is supportive of the physiological evidence.
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By analyzing the laminar location of corticobulbar cells in re-

lation to corticocortical cells, the present study yields a new

perspective to the columnar hypothesis. Making use of the fact that

certain corticofugal cells are restricted to specific laminae, this

work demonstrates the distinctions between columns more clearly. As

can be seen from Figure 17, there are vertical zones in the sensori-

motor cortex of the rat that are functionally different. There are

areas with 1) corticocortical projections but no corticobulbar fibers;

2) corticobulbar projections but no corticocortical fibers; 3) both

corticobulbar and corticocortical connections; and 4) neither type of

corticofugal fiber. Subsequent studies using injections in other

areas containing corticofugal fibers should further substantiate these

findings. For example, it would be interesting to look at the dis-

tribution of corticothalamic cells (Layer VI) in relation to cortico-

bulbar and corticocortical patterns. Another possibility would be to

use a combination of anterograde tracers injected into the spinal cord

and thalamus to analyze the distribution of cortical afferents. (The

combination of different tracers and subcortical injection sites would

be extensive.)

The Cortical Column Defined

According to Mountcastle (1978) the functional subdivisions of the

neocortex (i.e.
,
motor, somatosensory, visual, auditory) consist of

replicated local neural circuits. These vertical modules or columns

may vary in cell number and extrinsic connections but are similar
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intrinsically. Each column processes incoming information and trans-

forms it into output which is communicated via specific extrinsic

connections. These segregated modules form precisely connected but

distributed systems and it is the interaction among columns that con-

stitute cortical functioning.

A model for the basic functional cortical module is represented

by the data of Rockel, Hiorn, and Powell (1974). These authors reported

that the number of neurons in a 30 ym diameter vertical cylinder across

the cortex is 110 cells. This was a comparative study of five species:

mouse, rat, cat, macaque, and man. The counts were consistent in each

animal in the five areas studied: motor, somatosensory, frontal,

parietal, and temporal. It seems that the enlargement of the neocortex

in phylogeny has resulted in an expanse in surface area without changes

in vertical organization.

As was discussed in the introduction, columnar organization

appears throughout the cerebral cortex. However, the reported widths

of these columns have varied from 400-1000 ym depending on the location

in the cortex and the experimental method employed. For example,

columns determined physiologically (800-1000 ym) tend to be larger

than those demonstrated anatomically (400-600 ym) . Mountcastle (1978)

termed a column of 400-1000 ym a macrocolumn. A macrocolumn is com-

posed of minicolumns and is defined by the static and dynamic properties

of its neurons. In the case of the somatosensory cortex, place on the body

surface and modality type are the two defining parameters of a macro-

column . In this way , a multi-variab le representation is inherent in

each macrocolumn.



52

Usefulness of Extensive Comparative Data

Investigation of columnar organization in the cortex has been res-

tricted mostly to traditional laboratory animals such as the mouse,

rat, cat, and monkey. Although the consistent pattern of the mini-

column exists in these species, further research on the presence of

columns in other species would be useful to determine the incidence

and variation of the cortical column. To date, the literature lacks a

comprehensive comparative approach to the columnar hypothesis. It

would be interesting to investigate the existence of columns in animals

representing an earlier stage of cortical development in phylogeny.

To this effect, Woolsey, Welker and Schwartz (1975) undertook a

comparative anatomical study of the face area of SI with special

reference to the occurrence of barrels. Barrels are multicellular

units located in Layer IV best visualized in tengential sections. Each

barrel has been shown to be physiologically related to a vibrissa of

the contralateral face (Woolsey and VanderLoos, 1970). The barrel

may provide a morphological basis for the columnar hypothesis.

Woolsey, Welker, and Schwartz (1975) examined seven mammalian

orders : marsupialia (opposum)
,
chiroptera (bat)

, primates (tree

shrew and macaque) , carnovora (dog, cat, raccoon) , lagomorpha (rabbit)

,

and rodentia (15 species). Barrels were found in the Australian

bush-tailed opposum but not in two marsupials from the western hemis-

phere. Barrels were also demonstrated in the rabbit and in thirteen

of the fifteen rodentia species. The results of this study present

two possible conclusions. Barrels may represent a relatively primitive
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pattern of cortical organization because they were found in marsupials

and rodents but not in carnovores or primates. Conversely, they may

represent a sophisticated anatomical solution to certain functional

circumstances

•

Similar comparative studies using electrophysical or neuroanatomic-

al tracing techniques could further our understanding of columnar organ-

ization. It would be interesting to determine if more primitive species

also exhibit the minicolumn. In addition, it would be enlightening to

determine the existence of macrocolumns and their characteristics in

these species

.

Conclusion

The finding that there are functionally different, vertically-

oriented zones in the sensorimotor area of the rat leads to the con-

clusion that the cerebral cortex is heterogenous. This heterogeneity

has been demonstrated in various manners. For example, Wise, Murray,

and Coulter (1979) rep or ted that the cor ticotrigeminal sys tem is

organized somatotopically in the cortex of the rat. Using retrograde

tracing methods, these authors found that there is little overlap be-

tween parts of the sensory cortex which project to one region of the

spinal cord or trigeminal system and those which project to other

spinal regions. Furthermore, in MI the hindlimb representation region

projects to the lumbar enlargement while the forelimb representation

region projects to the cervical enlargement. In another study, Jones,

Burton, and Porter (1975) using tritiated amino acids and HRP found
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that the cells of com.-nissural and corticocortical fibers are segregated

from each other and arranged in distinct clusters in monkeys. Other

researchers have reported that in the rat cells of origin of callosal

fibers are arranged in vertical arrays that are spatially separated

from vertical clusters that project to the thalamus (Akers and

Killackey, 1978; Wise and Jones, 1978). This disparity of function

among vertical units of the cortex is also evident in physiological

studies (e.g., Mountcastle, 1957; Welker, 1976; Asanuma, 1975). In the

monkey, Dreyer et al. (1975) found that a single region in the periphery

is multiply represented in several separate areas of SI. Thus, it

appears that the vertically oriented clusters superimposed upon the

horizontal laminae of the cortex provide a basis for a heterogenous

mosaic of local neural circuits. These circuits maintain a diversity

of connections and, therefore, a variety of functions. In the cerebral

cortex, such distinctions as sensory and motor would then lose much of

their heuristic value.

In fact, this formulation is basic to the original principle con-

cerning the columnar hypothesis as proposed by Mountcastle (1957). He

contends that the brain is a complex of widely and reciprocally inter-

connected systems and it is the connections between systems that is the

essence of neural activity. Mountcastle maintains that within the

neocortex there are modules or local neural circuits that are grouped

into cortical areas by a common extrinsic connection or the need to

replicate a function over a topographic representation. The cortex.
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then, is a composite of specifically connected but distributed systems

performing different functions.

If valid, the columnar hypothesis of cortical organization offers

the fundamental circuit elements that may be the basis of the func-

tional connectivity within the neocortex. The usefulness of this

study, in part, lies in the analysis of the anatomy of the vertical

cluster. The significance of the morphological differences among

these vertical groupings is essential for the understanding of the

physiology of the nervous system and behavior.
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