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CHAPTER 1

INTRODUCTION

Background

Within the study of motor control, one topic of scientific interest is that of

movement planning. Given the existence of some control structure that is capable of

implementing a movement once it has been planned, we are still left with the question:

"What sorts of criteria are important in the planning of movements?" When faced with a

given movement goal (say, picking up some object, and moving it to some specified

location), there will generally be an infinite number of movements that allow for the

achievement of that goal. Some of the movements can be effected more quickly than

others, some more efficiently, some more gracefully, and so on. Remarkably, the motor

system reliably produces unique solutions to such movement planning problems, with such

a high degree of success that we are seldom aware of any alternatives to the actual

movement we execute.

There are different levels at which movements are planned. For example, a person

might choose to grab a piece of paper from the desktop using his/her left hand, thus leaving

the right hand free to reach for the drawer into which he/she will place the paper. This sort

of "high level" movement planning wiU certainly be characterized by some degree of

variabiUty, due perhaps to some interference from other cognitive functions (on any given

day, the person might absent-mindedly grab the paper with his or her right hand). Within

this large scale movement, however, we can examine several lower levels of movement

planning. Consider the simple left-handed reaching movement which is part of the large

scale movement in the present example. To some extent, this movement must also be

"planned" in terms of what trajectory the hand will take, at what speed, etc. There are even

lower levels of analysis, such as muscle activation patterns, or even motoneuron

activations. An obvious question is the following: At what level must large-scale.
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"everyday" movements be planned? Obviously the muscle groups, and even the

motoneurons must finally be activated in order to perform the movement, but must they

also be planned explicidy in the same way as the high-level features of voluntary actions?

Perhaps there are such things as pre-programmed 'motor subroutines' (e.g., reaching,

grasping), which automatically prescribe the activation of their low-level constituents.

Traditional interpretations of human motor control have often been devoted to the

^dea of motor prognims. In their simplest form, these structures are precisely the "motor

subroutines" described above (perhaps the "reaching", or the "grabbing" would be

examples of traditional motor programs). This 'old view' motor program is essentially a

stored subroutine which contains the set of motor commands necessary for the

implementation of some particular movement. According to the theory (Schmidt, 1982,

ch.7), these programs are retrieved by some planning executive, and then ballistically

triggered, not to be interrupted or altered once they have been set running. Hence the

movements governed by motor programs are automatic, with littie or no room for feedback

processes. They exemplify the idea of open-loop control .

There have been several valid criticisms of this simple form of motor programming

theory. For instance, the automaticity of the structures described above would lead us to

expect an entire class of errors in which a person would begin a movement, wish to

discontinue or alter the movement, but be forced to complete it because of the open-loop

nature of the controlling motor program'. Capacity arguments have also been leveled

against the template-like structures of the 'old view': Would different motor programs be

required to control movements which were only subtly different? As a result of these

criticisms, motor programming theory has undergone considerable modification. For

instance, the implementation of the motor program is now seen as being open to

contingencies of the movement context. One way to realize such modifiability is to have



3

adjustable parameters such as ampUtude, intensity, and time-scaling. The notion of a

^eneralizahle motor program has gained broad support as a theory of motor control

(Schmidt, 1982, ch.8).

Nicolai Bernstein (1896-1966), a Soviet physiologist, was one of the first major

opponents to the motor programming perspective (Bernstein, 1967). He criticized the

motor programming approach on the grounds that it treated the movement control system as

if it were independent of the external environment. Not only are motor programs unable to

respond to spontaneous changes in their extemal context, he argued, they are also based on

an oversimplified account of the actual bodily movement to be performed. Bernstein

maintained that there are some factors involved in movement control -inertial and reactive

forces, for instance- which depend completely upon the extemal context in which the

movement is executed; such factors may actually change within the course of the

movement itself Hence, context must play a role in movement planning, as well as in

movement execution. Bemstein formulated a new approach to interpreting the mechanisms

of movement control, which he looked at as a problem of coordinating and controlling a

complex system of biokinematic links. His study focused on the functional synergies in

the human motor system, including muscular forces as well as inertial and reactive ones.

Synergistic Control

A strong argument used by Bernstein and others in support of the notion of

synergistic control structures is that the number of degrees of freedom initially associated

with even the most simple movement would make any sort of closed-loop control a

computationally taxing process. Synergies provide a set of constraints tiiat effectively

reduce the total number of degrees of freedom, and tiius the computational load associated

witii the control problem. A synergy can be biomechanical, as in the human leg, where

the knee and the hip are configured in such a way that tiiey only bend in opposite

directions, and tend to facilitate one another in doing so. Or a synergy can be a set of
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functional (as opposed to mechanical) dependencies in the motor system, as in the

coupling of the two eyes. When it is of this latter form, the synergy is said to be

controlled by a cpordinqtive ^tnigturf. in the motor system. In either case, the presence of

a synergy tends to diminish the problem of control.

Coordinative Stnictiir^-«^

The general idea of synergistic control has gained broad support as a means of

modelling many facets of motor control. One relevant illustration of this research is the

phenomenon reported by Yamanishi, Kawato and Suzuki (1980), where subjects were

instructed to oscillate tiie two forefingers in an antisymmetric ("out of phase") motion, at a

gradually increasing frequency of oscillation. Yamanishi et al. (1980) discovered that, at a

certain frequency, the movements of tiie opposing fingers shifted into phase with one

anotiier (from antisymmetric to symmetric), much as in the gait transitions commonly

observed in two and four-legged animals. Haken and Kelso (1985) interpreted this

behavior as a case of mutual synchronization , in which two oscillators, when linked

together, tend to become synchronized. They have taken this as evidence of a coordinative

structure known as a limit cvcle oscillator . TuUer, Turvey and Fitch (1982) have also

argued that the limit cycle oscillator is superior to the motor program as a model of motor

control, partly because it provides a clear account of such behavior as mutual

synchronization^.

One strategy that has been used to explore the nature of coordinative structures is to

find a movement or class of movements which demonstrates synergistic behavior, then

experimentally manipulate tiie context of the movement so as to be able to draw inferences

about the structure of the controlling synergy (or synergies). Kelso et al. did tiiis in their

study of the mutual synchronization of hand movements, and eventually arrived at the

inference that tiiere is a limit-cycle type of synergy at work in tiie oscillatory movement of

human hands. Hollerbach and Flash (1982) also pursued such a strategy in their study of
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human hand-arm movements. After observing the tendency for such movements to result

in straight-line hand trajectories, they argued that movement planning must occur at the

joint level. Atkeson and Hollerbach (1985) extended this theory, advocating a planning

strategy which seeks to simplify the underlying dynamical problem, thus easing the

computational burden associated with planning in a many degree-of-freedom system.

Coordinative structures, because they represent functional synergies in the motor system,

will generally reduce the computational problem in planning.

There has been a substantial body of research aimed at exploring the issue of

computational efficiency, and how it might best be achieved by the motor control system.

But results such as those of Kelso et al. suggest that a question of other contributing factors

still remains. Certainly, it seems reasonable that any executive movement planner would be

concerned with computational facility, but perhaps such a planner would be willing to

deviate from the most computationally efficient strategy in order to facilitate certain

perceptual processes as they try to cope with the effects of the movement (i.e., perhaps the

most computationally efficient movement would not be the easiest to visually perceive).

Another factor which might provide constraint in movement planning is the energetics of a

movement. That is, perhaps movements are planned to some extent according to their

energetic efficiency. For example, in lifting a heavy suitcase from the floor to a nearby

table top, one might very well abandon the most computationally efficient movement

(especially if it happened to be a straight line trajectory) in favor of one which took more

advantage of the physical context involved.

Physical Context

This suggests a complimentary type of planning strategy- one which makes

decisions about how to perform a particular movement based on the physical properties of

the actual joints and muscles in the context <9/the given movement task. Bernstein was

most concerned with constraints of this nature, as they were context dependent, and thus
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not controUable from an open-loop r.tructure such as the motor program. Nelson (1983),

Hogan (1984, Hogan &Flash, 1987), and Uno, Kawato & Suzuki (in press) have all

suggested that planning might occur as a process of optimizing a certain physical quantity

(e.g., force, velocity, or jerk.). Candidate movements are evaluated with respect to this

quantity according to some cost function (specified by tiie model). In this sense, the least

"expensive" movement would then be selected for the task (e.g., the movement with the

lowest peak velocity). In general, the cost function approach has proved to be an effective

means of including physical context in the process of movement planning.

Another type of model in which physical context has been successfully included as

a constraint in movement control is the mass-spring model . In this approach, the joint is

modelled according to a simple mass- spring system. Physical context is included in these

models in the form of physical parameters such as the mass, the spring constant, and the

coefficient of resistance. Fel'dman (1973) has hypothesized that the motor control system

might accomplish movements by utilizing the mechanical properties of the muscle. This

idea has been included in many mass-spring models by representing the flexing and

extending muscles of the joint as two opposing springs. Joint flexion or extension is then

accomplished by altering the stiffness in these springs in such a way that the disparity in

spring force across die joint is sufficient to cause the desired movement. Cooke (1980)

provided a mass-spring model which accords quite well with empirical data from simple

limb movements, and even provides an explanation for the observed linear relation between

movement amplitude and peak velocity (see Jeannerod, 1984; Kay, Kelso, Saltzman &

Schoner, 1987). It has been generally accepted that, at least for simple single-joint

movements, a mass-spring model can provide an accurate description of movement control.

Traditional mass-spring models have not been concerned with the issue of

movement planning, however. For example, tiie model presented by Cooke (1980) is able

to account for the observed relation between peak velocity and movement amplitude; it does

so by varying die spring constant in a step-wise fashion. But no underlying principle is
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used to motivate the assignment of the spring constant's value. The model as presented

makes no pretense of explaining why certain movements are chosen spontaneously. It

simply offers a mechanism (the second order mass-spring system^) which can be used to

describe the given movements, assuming that some higher-level executive has provided the

appropriate values of certain parameters (in tiiis case, the spring constant). In that sense,

tiien, the traditional mass-spring approach has served to model movement control rather

than mowQmtnt planning. Furtiiermore, existing mass-spring models (such as the one

outlined by Cooke) are typically confmed to single joint movements, and are thus unable to

provide any account of more complicated movements (e.g., movements requiring more

than one joint). So it appears that a sunple mass-spring model will require some higher-

level planning mechanism in order first to decide upon the optimal movement, and then to

specify any necessary parameters.

Energetics

Consider the following single-joint planning problem. A person is asked to

oscillate his/her hand at some fixed amplitude, and is asked to do so at whatever rate of

oscillation feels most comfortable. If we assume a simple mass-spring model of the wrist-

joint, then we are still left with the theoretical problem of deciding what kind of planning

structure decides upon the most preferable movement rate. Or altematively, we could take

the position that no planning occurs, that the movement starts off at a completely random

rate, and relies on the process of feedback in order to solve the "planning" problem. Let us

take the hypoUiesis that some planning structure exists, and is of the form advocated by

Nelson, Hogan, Uno et al, and others: that it is some cost function which evaluates the

proposed movement rate, and decides whether or not it would be economical. In that case,

we must propose some criterion according to which the cost function may be evaluated.

In this thesis, I propose that movements are planned according to a cost function

which evaluates their anticipated consumption of muscle metabolic energv. It is well
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known that muscle fibers are limitted in the degree to which they can exert force, according

to the amount of metaboUc energy which is available to them at any given point in ume; this

metabolic energy (which comes in the form of chemical sugars) is used as a "fuel" for

muscle flexion and extension. In general, a movement will consume this energy to a

greater or lesser extent depending on its physical context. Given a cost function which

takes as input a proposed movement, and returns some measure of the degree to which the

movement is energetically favorable, it is possible to hypothesize a planning strategy which

chooses the most economical movement. The movement planning problem described

above can be solved, then, by simply associating "most comfortable" with "most

energetically favorable."

I have developed an explicit model of single-joint movement planning according to

this reasoning. The wrist joint is approximated as a simple mass-spring system, driven by

two opposing muscles, and damped by a resistive component. A proposed movement is

evaluated according to a cost function which uses knowledge of the muscle output

characteristics in order to decide on the feasability of the movement. Muscle output is

limited by metabolic energy constraints, which are included in the model in the form of two

classic physiological relations: the length-tension relation, and the velocity-tension relation

(to be reviewed below). The model calculates the required muscle activation, and compares

it to the known maximum muscle output (as determined by the length and velocity

relations). If the required muscle activation is too close to its maximum, then the

movement is rejected by the planner on the grounds that it requires too much metabolic

energy and will therefore be uncomfortable. This model is presented in full detail in the

appendix, including a fit to experimental data. The success of the fit, taken together with

the intuitive appeal of the model, has provided support for the idea that metabolic energy is

an imponant constraint in the planning of oscillatory movements in a single joint.

The movement planning problem is more complicated, however, in movements

requiring several different joints, because such movements will involve many more degrees
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of freedom than the single joint planning problem described above. In a discussion of

multi-joint movement planning, it is worthwhile to consider the human hand and

arm,because it is a complex system with a substantial number of joints and joint degrees of

freedom. Furthermore, it is a system used in a wide range of movements and movement

contexts, so that many different synergies are required in the control of everyday

movements (For instance, the simple task of writing on a chalkboard makes use of the

same joints as throwing a baseball, but the synergies involved in controlling those

movements are likely to be quite different.) While computational or perceptual factors will

most likely contribute to the planning of a complex hand-arm movement, I argue that the

energetics of the movement must also enter as a planning constraint.

It seems reasonable that metabolic energy constraints are important in a repetitive

task, where a given muscle is required to perform the same routine over and over again.

Oscillatory movements occur naturally in such tasks as walking, running, swimming,

using a handsaw, or kneading bread. In the following section, I will suggest one possible

strategy which could be used in evaluating the metabolic constraints in multi-joint

movements of this nature. The strategy is based on the principle of resonance behavior^,

particularly as it applies to the behavior of classical multimodal svstems . I will suggest the

interpretation of the human hand-and-arm as a system of linked oscillators, and show how

this interpretation provokes Uie idea that the resonance response characteristic of an

individual limb segment (finger, hand, or forearm) can serve as an adequate predictor of

that segment's contribution to a multi-joint movement. To this end, I will begin with a

discussion of single-joint characteristics, but only because the discussion will serve to

motivate a multi-joint planning strategy. The general hypotiiesis that metabolic constraints

in the individual limb segments are a reliable source of constraint in multi-joint movement

planning will be referred to as the energetics hypothesis .
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CHAPTER 2

THE ENERGETICS HYPOTHESIS

When a system such as the one in Figure la is displaced by some arbitrary distance

X, and then released, it will oscillate at a unique frequency known as the naniral frequency .

CO. The frequency of oscillation of such a system is determined by the mass, m, of the

object, and the spring constant, k.^ The expression which relates these three quantities is

derived from Newton's second law, as it applies to the system in Figure la: co =^^{kIm).

This relationship is true only for ideal "Hooke's law" springs, but serves as a fair

approximation in many other circumstances. It tells us that increasing the mass of the

system will result in a decreasing frequency of oscillation. Similarly, increasing the

stiffness of the spring (making "k" larger) will result in an increased natural frequency.

When the system is driven by a sinusoidal driving force, as in Figure lb, it will

tend to oscillate more readily as the driving frequency approaches the undriven system's

natural frequency, co. In general, an oscillatory system (be it mechanical, acoustical, or

electrical) will have what is known as a response characteristic , which is often described in

terms of a response curve (pictured in Figure 2), This is a mathematical (or numerical)

relationship describing the degree to which the system responds to a driving force of any

particular frequency. The "peak", or maximum value of this curve will generally be

associated with a driving frequency equal to the system's natural frequency. In other

words, driving a system at its natural frequency results in a maximal response from the

system. This characteristic is referred to as resonance behavior. The natural frequency of a

system is known as its resonant frequencv . In general, the resonant frequency is the most

energetically efficient driving frequency. (Anyone who has ever tried to topple a tree by

periodically shoving it will probably find this idea of resonance to be intuitively appealing.)

In considering a simphfied wrist joint (free only to flex and extend along the major

axis of rotation), we observe that it seems very much hke a simple mass-spring system:
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displace it from its equilibrium (using some external force), and it will be relumed by some

spring-like force which becomes weaker as the joint returns to equiUbrium (hence, roughly

like a Hooke's law spring). We can attempt to model this spring-Uke behavior with the

system shown in Figure 3. The model in this figure consists of a cyUndrical mass (the

"hand"), free to pivot about one end. Two opposing springs provide forces which tend to

restore the hand to its equilibrium, and the pivot also provides a viscous (velocity

dependent) damping force, which resists movement of the limb. It is possible to estimate

the resonant frequency of this system, and draw a response curve like the one pictured in

Figure 2. This would allow us to immediately determine the most preferable driving

frequency, thus solving the single-joint planning problem.

But the real-world wrist joint is somewhat more comphcated than the ideal system

of Figure 3, for the following reasons. The system of Figure 3 contains an ideal spring,

meaning that the spring constant involved does not change, even at extreme amplitudes or

frequencies of oscillation. The spring forces in the human wrist, however, are not ideal.

Because the wrist joint has only a finite ampUtude of displacement, the restoring force

exerted by the wrist muscles must be non-linear, at least at large amplitudes of oscillation

(see Figure 4). Matters are further complicated by the fact that, in the joints of the human

arm, the muscles act as both the springs and the drivers. This presents the problem that

muscles in action and relaxed muscles will tend to have different spring constants.

All of this does not mean that we are unable to say anything useful about the

resonance properties of the wrist joint. It does mean that the challenges involved in

accurately modelling the joint as a self-driving mass-spring oscillatory system are

nontrivial.6 Nonetheless, there are some things that we can infer without an explicit model.

First, we know that all oscillatory systems have a response characteristic. In non-ideal

spring systems, the natural frequencies are amplitude-dependent (i.e., a non-ideal system

will in general have different resonant frequencies for different amplitudes of oscillation.);

hence, different response curves are needed to describe the resonance of such a system at
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different ampUtudes of oscillation. Second, it is reasonable to assume that most oscillatory

systems (unless they are critically damped or highly nonlinear^) will have some resonance

behavior, and that the resonant frequency will correspond to the peak(s) of the response

characteristic. Finally, by definition, the most energetically ejflcientfrequency at which to

drive an oscillatory system will be the system's own resonance frequency, regardless of

any depanure from the Hooke's law conditions.

The actual biokinematic structure of a complex system like the human hand-arm

yields a further restriction on the use of energy related context information. The different

actuators (fingers, hand, elbow, shoulder) are interconnected in such a way that it is

impossible to consider the motion of any individual component of the system without

simultaneously considering the state of the whole (positions, velocities, torques). Thus,

the energy characteristics of, say, the hand depend on the instantaneous condition of the

entire hand-arm system. In general, this means that any decision about the contribution of

the hand to a more global hand-arm motion cannot be made independentiy of the global

hand-arm state. This observation suggests that a planning strategy which considers the

energy characteristics of tiie hand-arm system should be unable to decide on the

contribution of the hand without taking into account the final states of the arm and

forefinger. Likewise, it would be unable to know the final states of the arm and finger

without first knowing the contribution of the hand. Such a circular planning routine would

present computational problems, especially in complex movements. It seems more

desirable to pursue a planning strategy which immediately suggests some response for all

of the limb segments involved.

The interconnectedness of the limb segments in the hand-arm system does not

necessarily preclude an energy approach to planning, however. One possible approach to

movement planning is suggested by the classical physics of multimodal oscillatory

systems. For an example of a multimodal system which is akin to the human arm, consider

the system of linked oscillators shown in Figure 5a. This system is not meant to be an
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exact model of the three-Umb system used by subjects in the experiment; rather, it is simply

meant to be qualitatively similar, especially with respect to the mass-spring characteristics

involved. To a first approximation, this system can be said to have three modes of

oscillation, as depicted in Figure 5b. Each mode is characterized by its own natural

frequency of oscillation and resonance response chnrnrtpri<;tir
,
That is to say, when the

system as a whole is being driven, a given mode wiU respond with more amplitude of

motion when the driving frequency is closer to that mode's resonant frequency. This

behavior is illustrated in Figure 6a-c, where the system is being driven at 3 different rates

(frequencies). In Figure 6a, the resonant frequency of the forearm (mode #1) is being used

as driving frequency, and consequently the arm mode is most responsive. Similarly, in

Figure 6b, the system is being driven at the same location (i.e., the driving force is being

applied to the exact same point: at the base of the forearm), but with a driving frequency

equal to the resonant frequency of the hand (mode #2); hence, we fmd not as much

response from the forearm, but much more from the hand. In Figure 6c, the system is

being driven at a rate somewhere between the resonance of the finger and hand; this results

in fairly equal response from the two distal limbs, but not very much at all from the

forearm. Such behavior is characteristic of all multimodal systems. In general, when a

system of linked oscillators is driven at a prescribed frequency, it will oscillate in some

complicated movement form which is simply the superposition of the responses of its

individual modes (Kittel, Knight & Ruderman, 1973).

Perhaps when the human arm is to be oscillated at a given amplitude and frequency,

the movement planning system also makes use of the response characteristics of its

individual modes (finger, hand, and arm). According to such a strategy, a limb segment

contributes most to a given movement when it can do so most efficientiy (i.e., when it

would move in resonance). So for example, in an oscillatory movement where the

amplitude and frequency are close to the resonance conditions for a given subject's hand,

we would expect to see a relatively large contribution from the hand. In this way, the
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planning system could easily arrive at the most energetically favorable movement lorm. Of

course, the human hand-and-arm is somewhat more complicated than the simple linked

systems of Figures 5 and 6. There are at least three driving forces involved-one for each

limb segment, each one of which will be independently controlled. Still, in oscillatory

movements of the arm, all limb segments must generally oscillate at the same rate, and they

all have reliable preferences for movement at that rate. Mence, under the consu-aint of

metabolic efficiency, it is sensible to depend on these relative preferences as a strategy for

movement planning.

To test the hypothesis that multi-joint movements are planned in terms of the

underlying energetics of individual limb segments, the following movement planning task

was devised. Subjects were instructed to move the forearm, hand, and forefinger back and

forth in a horizontal plane such that the tip of the forefinger crossed over two fixed

endpoints, keeping rhythm with a computer metronome. They were explicitly instructed to

use the movement which felt "most comfortable and natural." Because there were an

excess number of degrees of freedom associated with the task, subjects had to plan their

movements in terms of the contribution of the three limb segments involved. Different

amplitudes and frequencies of movement were presented and the energetics hypothesis was

used to make explicit predictions about the movement form chosen by subjects in the

different conditions.



Figure 1 Simple Oscillatory System, a: Undriven b: Driven
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Driving Frequency

Figure 2 Resonance Response Characteristic
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Forearm

Figure 3 Idealized Model of Wrist Joint ( 1 degree of freedom)
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non-linear,

real spring

Figure 4 Ideal vs Real Spring Force



Figure 5 Linked oscillatory system with three oscillatory modes
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Figure 6 Response pattern depends on the driving frequency
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CHAPTER 3

PILOT STUDY

A pUot study was run to explore the viabUity of the proposed multi-joint planning

task as an experimental paradigm. Because of various inconsistencies in the procedure,

particularly with respect to the task instructions used, the data from this study are not

completely reliable. But the purpose of the study was fulfilled, in that it provided

substantive evidence that the task was a valid one, and that energetics may be an

important constraint in movement planning. The pilot was also successful in suggesting

many technical and procedural improvements. To this end, it is useful to review the

method and results of the study. In particular, I will discuss the measurement technique

developed by Barnes, Vaughan, Jorgensen and Rosenbaum (1988), and the process of

analysis used in evaluating measures of movementform .

Method

The apparatus is shown in Figure 7. A single wooden board with six 3/8" holes

drilled through it was used to define the movement amphtude. Beneath each hole was

placed a single light-sensitive diode. Theses diodes detected the crossing of the

forefinger's shadow, and were used for two purposes: to verify that movements were of

the appropriate amplitude, and to record the times that the finger crossed over the target

locations. Diode activation signals were sent to an I/O device which was controlled by a

Macintosh computer with supporting software. The same computer was used to provide

the metronome frequencies. Subjects were seated in front of the board, as shown in

Figure 7. Ink marks (easily washed off) were placed on the fingertip, knuckle, wrist,

and forearm, and a video camera (with a high-speed shutter, so as to faciUtate frame-by-

frame viewing) was arranged directly above the board, in order to record the movement

trajectories for purposes of analysis. Movement amplitude was specified by the
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instruction, "Move at die small (medium, or large) distance", meaning that the subject

was required to move his/her hand and arm such that the shadow of the fingertip crossed

over the appropriate pair of diodes. Actual movement amplitudes, as well as movement

form were measured by means of a special digitization technique (discussed below).

Within a trial, subjects were instructed to move the finger, hand, and foreami in

any manner tiiey desired, as long as tiiey moved at the prescribed ampUtude, keeping

rhythm with the metronome frequency. After several subjects were run, subjects were

told expUcitiy to use the most "comfortable, natural movement". This change in

instruction was prompted by tiie tendency of some subjects to choose a single strategy

(such as keeping the finger and hand stiff, and performing the entire movement using

only the forearm) for all conditions based on a misunderstanding of the task

requirements.

The videotaped movements were projected onto a computer screen and digitized

according to the metiiod of Barnes, Vaughan, Jorgensen, and Rosenbaum (1988). This

method uses a half-silvered mirror, so that the image of the videotape is viewed as if it

were occurring on tiie computer screen (see Figure 8). By "clicking" the mouse on each

of tiie four ink marks at terminal positions within the movement, it is possible to deduce

the movement amplitude of each individual limb (finger, hand, and arm). The movement

form was thus measured in terms of the contributions of individual limb segments, as

depicted in Figure 9.

Three movement amplitudes were used: 2 cm, 6.5 cm, and 20 cm, as well as

three movement frequencies: 3.75 Hz, 2.5 Hz, and 1.5 Hz. These values were chosen as

approximate "resonance conditions" for the finger, hand, and arm, respectively,

according to the logic that longer limbs will have larger resonant amplitudes and slower

resonant frequencies. Frequency and amplitude variables were crossed, resulting in nine

conditions, which were presented to subjects in a random order. The beginning of a trial



23

was marked by the first metronome tone. The subject began moving his/her hand and

arm, "caught up" to the metronome, and continued moving until the last metronome tone

was heard. A trial was considered successful if the minimum movement ampUtude

requirement was meti, if the measured movement rate was within 20% of the metronome

frequency, and if the coefficient of variation of the mQYemenLtimes_(time for the

completion of one half movement cycle) was less than 0.5. Subjects were required to

immediately repeat an unsuccessful trial. Seven subjects volunteered for the smdy,

which took approximately 45 minutes to complete. One subject was omitted from

analysis due to an inability to meet the timing requirement

Results and Discussion

If the hand arm system is like a multimodal oscillatory system, in that its

energetics can be evaluated in terms of the response characteristics of its individual

modes, tiien we can make some clear predictions about the pattem of limb use in the nine

conditions of tiiis task. In particular, we predict that a higher contribution is made by a

given limb in conditions where the amplitude and frequency of movement are close to that

limb's resonance conditions. For example, we would expect a heightened response from

the hand whenever the movement condition includes either the handamplitude (6.5 cm),

or the hand frequency (2.5 Hz). This approach of looking at the response of individual

modes suggested the following strategy for analysis. Three separate analyses are

performed- one for each limb segment. This avoids the problem of multiple dependent

measures (there is only one dependent measure in each analysis: finger use for the finger

analysis, hand use for the hand analysis, and arm use for the arm analysis). Predictions

can be easily tested by evaluating two planned contrasts in each analysis: the first is a

contrast of mean limb use (measured in degrees) at the resonant amplitude (2cm for

finger, 6.5 cm for hand, 20 cm for arm) vs. mean limb use at the other two amplitudes;

the second is the contrast of mean limb use at the resonant frequency (3.75 Hz for finger,
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2.5 Hz for hand, 1.5 Hz for arm) vs. mean limb use at the other two frequencies. In

both of these contrasts, we predict a greater measure of limb use in the resonant condition

than in the two non-eronant conditions.

Figure 10 shows the pattern of means and standard errors for 6 subjects. Finger

and arm data show some suggestion of accordance with the hypothesis, while data from

the hand is ambiguous, and probably reflects a poor choice of conditions (i.e., 20 cm at

2.5 Hz was not a suitable approximation of the resonant conditions of subjects' wrist

joints in this experiment). The contrast of arm use at the long (20 cm) amplitude vs arm

use at die medium and short amplitudes proves significant, F(l,10) = 18.99, p < 0.005,

thus supporting die hypotiiesis. A similar test of fmger use at die short amplitude vs

finger use at the medium and long amplitudes was not significant, F(l,10) = 2.44, p <

0.15, aldiough die pattem of means is encouraging. More important, perhaps, to the

energetics hypothesis is the effect of movementfrequency on limb contributions.

Aldiough no significant effect of frequency was measured for finger use, there is some

suggestion that subjects preferred to use their fingers at the fast frequency more than at

the slower frequencies. A corresponding pattem of means is evident in the arm data,

where movement conditions which require the slow frequency are evidently preferred.

Arm use was significandy higher at the slow frequency than at die faster frequencies,

F(l,10) = 18.99, p < 0.005, an effect which is most prominent in the long ampUtude

conditions.

In running the subjects and digitizing the data for this study, it became obvious

that the choice of conditions was not sufficient to test the hypothesis. While the chosen

values were probably a fair approximation of the resonance conditions for certain

subjects, they were in fact very inappropriate for others. One subject had very long

fingers, so diat the medium amplitude (6.5 cm) was probably a suitable approximation

for thefinger's preferred amplitude rather dian die hand's, Anodier subject became
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fatigued very quickly, and complained that the fast frequency was too fast. In the

condition where the amplitude was shon (2 cm), and the frequency was fast (3.75 Hz),

this subject chose to use the arm instead of the predicted finger, because the arm was the

most powerful limb. In other words, the movement amplitude and frequency in this

condition were, for this particular subject, a poor approximation of the finger's resonance

conditions. However, because the conditions (amplitudes and frequencies) used in this

study were chosen somewhat arbitrarily, and all subjects received the same set of

conditions, tiie observed pattern of results is actuaUy quite encouraging. The pilot was

successful, then, as it provided valuable insight conceming the movement task, the

instructions given to subjects, the movement conditions, and the analysis of data.



Figure 7 Apparatus used in pilot study



Figure 8 Bird's Eye View of Digitizing Process.

1 . Videotape is played frame by frame.

2. Two images appear superimposed on the computer screen.

3. Digitizer "clicks" mouse on image of joint markers (placed at fingertip,

knuckle, wrist, and forearm) to record final movement posidons.

4. Computer program calculates individual limb displacements based on

recorded positions of two successive movements.



Figure 9 Obtaining measures of individual limb use.

1. Coordinates of two successive movement endpoints are recorded.

2. Using trigonometry, a computer program calculates individual limb contributions.
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CHAPTI'R 4

EXPI<RIMI<NT 1

In order to perform a more appropriate/rclevent/exact/bettcr/? test of the energetics

hypothesis, a new experiment was conducted which used the same task and basic design

as the pilot study but allowed the movement conditions (amplitudes and frequencies) to

vary between subjects. It was hoped that the resonance conditions of each subject's limb

segments could be more closely approximated, and that these approximations would

provide more relevent movement conditions for the experiment. To obtain tliese subject-

specific movement conditions, subjects were first required to participate in a norming

Siudy, where the preferred amplitudes and frequencies of single-joint movements were

measured in various conditions. These preferred movement conditions were then used to

obtain estimates of the preferred amplitude-frequency combination for each of the three

limb segments for each subject. When a subject returned (usually on the following day)

to run in the main experiment, s/he performed the same nine conditions used in the pilot,

but with the amplitudes and frequencies that approximated the resonance conditions of

his/her own limbs.

Norming Study

The energetics hypothesis stipulates that when a subject is given a fixed amplitude

of movement, and asked to oscillate his/her hand at its most comfortable rate, the

resulting movement can be viewed as an approximation of the resonance conditions of the

limb, because it represents the most energetically efficient driving conditions. These

resonance conditions will to some extent be cmplitudc dependent, meaning that for

different amplitudes of movement (in a given limb), a subject will tend to have different

preferred frequencies of movement. Since we wished to obtain just a single, best

estimate of the resonance conditions, it was necessary to choose from among these
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frequency-amplitude pairs in some principled way. The following procedure was used

to derive a reliable estimate of the preferred movement conditions for a subject's finger,

hand, and arm.

Method

In the first block of the norming study, comfortablefrequencies were measured at

four amplitudes for each of the three effectors. During the "finger trials", the subject's

forearm and hand were anchored in place (using wooden dowels), ensuring that all

movement were due solely to the finger. Similarly, during the "hand trials", the forearm

was held in place (subjects had no trouble in keeping the forefinger rigid). No restraining

device was used during the forearm trials- subjects were simply asked to keep their hand

and forefinger rigid. As in the pilot study, ampHuides were constrained only in terms of

a minimum distance requirement, defmed by two photodiodes at the endpoints of the

distance. The subject was given the amplitude of oscillation, and asked to move his/her

limb at its most comfortable frequency. Actual movement amplitudes (obtained by

digitizing the videotaped movements) were used in evaluating the data. Each trial lasted

twenty-five seconds, during which the subject simply moved his/her forefinger, hand, or

forearm back and forth at a comfortable rate. Ten seconds into the trial, the photodiodes

were enabled, thus allowing frequency data collection to begin. The photodiodes

remained enabled for ten seconds. Two criteria had to be met during the data collection

period in order for the trial to be acceptable: the minimum amplitude requirement had to

be maintained, and the coefficient of variation of the movement times (one half of a

complete movement cycle) had to be less than 0.5. Within the trials for a limb, the same

four amplitudes were used for all subjects, and were presented in random order. The

following amplitudes were chosen in an effort to approximately span the range of each

effector- they comprised the movement conditions for every subject: Finger: 2, 4, 6, 8
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cm; Hand: 4, 8, 12, 16 cm; Forearm: 8, 16, 24, 32 cm. After completing the four

conditions for each of the three effectors (fifteen conditions in all), a subject performed

the comfortable amplitude trials.

In the second block of trials, frequency of movement was constrained, while

amplitude was aUowed to vary. These were caUed the "comfortable ampUtude"

conditions. There were twelve comfortable amplitude conditions, corresponding exactiy

to the twelve comfortable frequency conditions. Once again, the larger effectors were

anchored during trials in which movement is restricted to smaller ones. In each trial, the

subject was presented with a metronome frequency, and was required to oscillate the limb

at whatever ampUtude felt most comfortable, keeping rhytiim with the metronome. In the

finger trials, the four comfortable frequencies (obtained in block 1) for the finger were

used as die metronome frequencies. In this way, the finger was required to move only at

its own comfortable rates. Similarly, the four "hand trials" were run at the hand's

comfortable frequencies, and likewise for the arm. Each trial lasted twenty-five seconds,

during which the subject simply moved his/her finger, hand, or forearm back and forth at

a comfortable amplitude. Ten seconds into the trial, a hght emitting diode (visible to the

video camera, but not the subject) was turned on by the computer, marking the beginning

of the segment of tape to be digitized. Comfortable amplitudes were dius measured by

means of the digitizing technique described above. As the presence of time-recording

diodes was a potential distraction to subjects (who had previously been instructed to

associate the diodes with amplitude boundaries) it was decided to forego any direct

measure of timing accuracy. ^ Hence all trials were deemed successful a priori, and the

actual movement frequency was approximated by die delivered metronome frequency.

Four comfortable amplitude trials were performed for each limb, and the order of

presentation of trials was randomized.
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Results and Discussion

Nine subjects completed the norming study, but two were unable to return for the

main experiment. Only the data from the seven subjects who completed both parts of the

experiment are reviewed here. The results from the norming study
, pooled over 7

subjects, are shown in Figure 11. Figure 11a represents preferred frequency given

amplitude (the first block of trials); Figure 1 lb represents preferred amplitude given

frequency (the second block of trials). In Figure 1 la, the preferred frequency of

oscillation decreases (i.e., fewer movements per second) approximately linearly with

increasing constrained amplitude, thus confirming the amplitude dependency in the

resonance response. A linear relation was also obtained in the second block of trials

(Figure 1 lb), though the slope is much shallower than that of Figure 1 la. This result is

at first surprising, as we might expect the subjects' performance in the second block to

mirror that of the first- so we would obtain in both cases the same set of amplitude-

frequency pairs. The slope discrepancy is understandable, however, given that the set of

amplitudes used in the first block was chosen so that extreme joint angles were enforced

in some of the trials. One would not expect subjects spontaneously to oscillate their

hands, say, at extremely large amplitudes. Hence subjects always moved a joint within a

narrower range of amplitudes in the second block than in the first, reflecting the tendency

to avoid extreme joint angles.

If, for an individual subject, the two graphs that correspond to Figure 1 1 are

plotted on the same axes, there is a point of intersection. This point can be taken as the

unique amplitude-frequency pair that could have been obtained from either block in the

norming study. This amplitude and frequency combination was selected as the reliable

measure of a single joint's resonance conditions. From the twenty-four conditions in the



34

norming study, one amplitude/frequency pair was derived for each limb segment. These

values were used as the movement conditions in the main experiment, where subjects

were free to move all three limb segments, as in the pilot study.

Main Experiment

Method

The procedure followed in this experiment was practically identical to that of the

pilot study described above, except that the amplitude and frequency conditions used in

the experiment were obtained from subject-specific measures in the norming study.

There were three amplitudes and three frequencies, corresponding to the preferred

amplitudes and frequencies of a subject's three limb segments. These were combined to

form nine conditions, which were presented to subjects in a random order. Amplitude

was once again defined in terms of the minimum distance to be covered by the fingertip,

and was specified using two photodiodes. Because actual movement amplitudes (as

recorded in digitizing) were typically 20-30% larger than the given minimum ampUtudes,

the diodes were purposely set at a distance 20% less than the amplitude condition derived

from the norming study.

A new apparatus was constructed, which allowed the diodes to be adjusted in

order to accomodate the varying amplitude conditions of the different subjects. There

were two photodiodes, each embedded in the base of a block of wood (2cm x 2cm); a

3/16" diameter hole was drilled through the wood so tiiat light could reach the diode (see

Figure 12a). The two wooden blocks were free to move within a straight rectangular

track which was perforated, at 1 cm intervals, with 1/8" diameter holes (see Figure 12b).

A 1/8" diameter bolt was fitted through each block; this bolt fit snugly into the holes, thus

allowing a block to be anchored in its position along the track. In this way, the diodes

could be repeatedly moved to specified amplitudes with some degree of accuracy. The

track was placed on a table, directly in front of the seated subject (see Figure 13). Above
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the table was a iOO watt lamp (used to create crisp shadows for the photodiodes), and the

video camera, which was used to record all of the movements. The photodiodes were

wired into a digital circuit that allowed them to behave as simple switches. When the

shadow of the forefinger crossed a diode, it triggered an interrupt on an VO device which

recorded the identity of the diode and the crossing time with 1 msec accuracy. This

information was then sent to a Macintosh computer, where it was interpreted by a

controlling program. The same program was also responsible for enabling/disabling the

I/O box, supplying the metronome frequencies, and keeping track of all data and trial

conditions.

The subjects had markers affixed to the fmgertip, knuckle, wrist-joint, and

forearm. These four markers (washable ink) were visible in the videotape, and were

used in digitizing the movements. Digidzing was performed according to the method

described earUer. Subjects were instructed to move their hand and arm back and forth so

that the shadow of the forefinger crossed over a diode at each end of the movement,

keeping rhythm with the given metronome frequency. Subjects were explicidy instructed

to choose "the most comfortable, natural motion," and were alerted when the trial was

about to begin. Upon hearing the first tone from the metronome, they began their

movements. After forty metronome tones (approximately 15 seconds), an LED (visible

only to the video camera)was turned on by the computer, signalling that digitizing should

begin at that point. Also at that time, the computer began sampling data from the

photodiodes. Ten metronome tones later, the LED was turned off (again, for digitizing

purposes), and the photodiodes were disabled. After thirty more tones, the metronome

ceased, and the trial was complete. All trials cosisted of eighty metronome tones. This

meant that some trials were longer than others (because the tones occurted at a slower

frequency), but ensured that a constant number of movements was performed in all trials.

Trials were judged successful if the minimum amplitude was maintained, if the movement
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frequency was within 20% of the metronome frequency, and if the coefficient of variation

of the movement times was less than 0.5. Unsuccessful trials were immediately

repeated.

Results and Discussion

Results from the seven subjects who completed this experiment are shown in

Figure 14. Once again, they are divided into three separate measures: finger use, hand

use, and arm use. Because the actual frequencies and amphtudes used as experimental

conditions were different for each subject, the data have been plotted along the abscissae

according to the abstract quantities: fmger frequency, hand frequency, and arm

frequency. These values tended to be quite varied among the different subjects,

according to their preferred movement conditions. In fact, on several occasions a

subject's preferred finger frequency was acuially slower than his/her preferred hand

frequency (in marked contrast to the assumptions made in designing the pilot). By

plotting the data as shown in Figure 14, however, all subjects can be directly compared.

By hypothesis, we are testing the same questions as we did in the pilot: Do

subjects use more of a limb in trials that correspond to the limb's resonant conditions?

Three seperate ANOVAs were performed, as in the pilot study, for the three different

limbs. In aU three analyses, there was a significant main effect of amplitude (see Figure

15 for table of significance tests), meaning that the use of a limb was dependant on the

amplitude of the movement. Furthermore, the planned contrast of Umb use at resonance

amplitude vs nonresonance amplitudes was significant in all three analyses (e.g., for the

hand this was a contrast of hand use at the hand amplitude vs hand use at arm and finger

amplitudes). Thus a limb segment is likely to contribute more in a movement if the

amplitude condition is its resonance amplitude (as determined in the norming study). A

main effect of frequency was significant in all three analyses, as was the contrast of limb

use at resonance frequency vs limb use at nonresonance frequencies. Thus a limb is used
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most in trials where the movement frequency matches its own preferred (resonance)

frequency. There was no hint of an ampUtude-frequency interaction in any of the three

analyses. These results are encouraging for the hypothesis that muscle metabolic energy

plays a constraining role in the planning of multi-joint movements. A limb is favored in

an oscillatory movement if the conditions of the movement are such that they approximate

the resonance conditions of that limb. In this way, the most energetically efficient

movements are selected by the planner.
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light strikes diode

bolthead

Figure 12 Components of apparatus used in Experiment 1.

Above: wooden block assembly with diode; Below: track used for adjustable amplitude.
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Figure 13 Bird's eye view of apparatus used in Experiment 1
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Finger Hand Arm
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Figure 14 Experiment 1 : Individual Limb Use (7 subjects)
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Finger Factor Test

Amplitude Main Effect:

F(2,12)= 8.922

Contrast: 05F - 0.25W - 025A
F(l,6)= 9.373

Frequency Main Effect:

F(2.12)= 8.815

Contrast: 05F - 025W - 025

A

F(1.6)= 10.898

Ampl X Freq Interaction:

F(4.24)= 1.52

Significance

p < 0.005

p < 0.05

p < 0.005

p < 0.05

n.s.

Hand Factor Test

Amplitude Main Effect:

F(2.12)= 11.488

Contrast: -025F + 0J5W - 025

A

F(1.6)= 13.033

Frequency Main Effect:

F(2.12)= 11.73

Contrast: -025F + 05W - 025A
F(1.6)= 20.928

Ampl X Freq Interaction:

F(4.24)= 0.955

Significance

p < 0.005

p < 0.05

p < 0.005

p < 0.005

n.s.

Arm Factor Test Significance

Amplitude Main Effect:

F(2.12)= 37.393 p < 0.0001

Contrast: -025F - 025W + OJA
F(1.6)= 40.599 p< 0.005

Frequency Main Effect:

F(2.12)= 15.957 p< 0.005

Contrast: -0.25F - 025W + 05A
F(1.6)= 20.741 p<0.05

Ampl X Freq Interaction:

F(4,24)= 0.923 n.s.

Figure 15 Experiment 1: Significance Tests
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CHAPTER 5

EXPERIMENT 2

Experiment 1, though successful, has still not completely addressed the question

of movement planning. The measures in Experiment 1 were taken during a measurement

interval embedded within the trial; a full twenty seconds of oscillatory movement

occurred before the movement form was digitized. This leaves open the possibility that

the earliest movements in a trial- say the first or second-- were selected randomly, or

without reference to the task at hand. If this were the case, then only through feedback

did the movement form evolve into the systematic pattern observed in Experiment 1. To

test the hypothesis that movement forms were planned, we would need to measure the

initial movement forms, and verify that they resulted in the approximate partem of limb

use produced in Experiment 1.

Of course the entire movement history of each trial in this experiment is recorded

on videotape, and we could simply digitize the first several movements in each condition

in order to perform the required test. But an element of the procedure in experiment 1

could contaminate such an analysis. When subjects were preparing themselves for a trial

(e.g., after they had been warned that the trial was about to begin), they had more

information about amphtude than frequency. They were well-informed about the

amplitude of the trial, because they were able to see the diodes (which had been recently

moved into place by the controller). However, they had no idea about the metronome

rate, because its onset marked the beginning of the movement. It is conceivable,

therefore, that subjects planned the initial movement(s) of a trial based on amphtude

information alone. Because this would result in confounding effects within the data

(such as a large effect of amphtude, but none of requency), the following experiment was

designed in order to examine the movement form at several different times within the

trial.
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Method

This experiment was an exact replication of Experiment 1, except that the subjects

were given an auditory pre-cue of the metronome frequency before each trial. Subjects

performed the norming study as in Experiment 1, so that a measure of the resonance

response was obtained for each limb segment. Within the main experiment, trial

conditions were again determined by the results of the nomiing study. Individual trials in

the norming study and the main experiment were procedurally identical to those of

Experiment 1, with a single exeption: Subjects were informed that all trials would begin

with a 4 second interval during which they would hear the metronome playing at the

frequency of the coming movement. After four seconds of metronome tones, there was

an additional four second period of silence, followed again by the meu-onome. Subjects

were told not to move any limb during the first sequence of tones, but that the second

onset of the metronome was their signal to begin moving. Once again, they were

instructed to use the most comfortable, natural movement form in accomplishing the trial.

All trials consisted of eighty metronome tones. At three times within a trial, an LED

(visible only to the video camera) was turned on by the computer, and then was turned

off after a period of ten metronome tones: once at the beginning of the trial (as miu-ked by

the first tone); once in the middle (as marked by the thirty-fifth tone); and once near the

end of the trial (the seventieth tone). The onset of the LED allowed us to identify the

early, middle, and late phases of movement during later digitizing. Six subjects

participated in the experiment, although one subject was uncooperative, and was

excluded from the analysis.
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Results nn^ Disciissiop

Figure 16 shows mean finperiisc in the nine conditions as a function of the Uiree

measurement \m\ pp^ition^ (early, middle, and latei). Two qualitative results can be

immediately perceived in the data. First, the frequency and amplitude dependencies were

practically identical to those recorded in Experiment 1-- that is, subjects used more finger

in the finger frequency conditions and in the finger amplitude conditions. Second, there

were no qualitative differences in the pattern of finger use in the early, middle, and late

phases of the trial (i.e.,between the three time intervals). In other words, subjects used

tiie finger preferentially according to the predictions of the energetics hypothesis, and

they did so from the start of the trial.

This qualitative interpretation is borne out in statistical analysis. The planned

contrast of finger use at tiie finger amplitude vs tiie hand and arm amplitudes was

significant, F(l,8) = 27.35, p < 0.001, as was the contrast of finger use at the finger

frequency vs the hand and arm frequencies, F(l,8) = 15.22, p < 0.005, tiius supporting

the energetics hypothesis. The interaction of trial position (tixrly, middle, late) with

frequency is not significant, F < 1 , nor was the interaction of trial position with

amplitude, F < 1. Thus, the frequency and amplitude of movement played a constraining

role in the choice of finger amplitude, even in the early part of the trial.

Similar results were obtained for the measures of hand and arm use. They are

pictured in Figures 17 and 18, respectively. The relevant tests of contrast (in frequency

and amplitude) are all significant: arm amplitude contrast, F(l, 8) = 195.23, p < 0.0001;

arm frequency contrast, F(l, 8) = 48.92, p < 0.0001; hand amplitude contrast, F(l, 8) =

39.31, p < 0.005; hand frequency contrast, F(l, 8) = 4.76, p = 0.06 (marginally

significant). Finally, all interactions with trial position were far from significant (p >

0.15 in all cases).
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These results compliment those of Experiment 1 in two respects. First, they

provide a replication of the basic effect that a limb is used preferentiaUy in multi-joint

movement tasks when the movement conditions are close to that limb's resonant

conditions. Second, they provide evidence that this effect resauhs from movement

Eiannins, and is not just a result of feedback. Whether the effects of energetics can be

seen at an even earlier stage in the trial, say within the first one or two movements, is a

matter for further analysis^. In the meantime, however, the results of Experiment 2

provide encouraging evidence that the muscle metabolic energy characteristics of

individual limb segments are a constraining influence in the planning of oscillatory

movements.



Figure 16 Experiment 2: History of Finger Use (5 subjects)



Figure 17 Experiment 2: History of Hand Use (5 subjects)
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Figure 18 Experiment 2: History of Arm Use (5 subjects)
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CHAPTER 6

GENERAL DISCUSSION

We have seen that the individual Umb segments within the human hand and

are fairly spring-like, and that they can be driven most efficiendy (i.e., moved) at

frequency referred to as the resonant frequency. We have also seen that the hand and

can be modelled as a system of Hnked harmonic osciUators, and that such a model affords

a convenient strategy for movement planning. This strategy considers a multi-joint

movement as a superposition of the activation in the individual Umbs (modes), and relies

on a limb's unique response characteristic in order to make decisions about that Umb's

contribution to the movement This response characteristic is an inherent property of the

limb, and is a result of physical characteristics, such as mass, length, and limbemess, as

well as the metabolic energy constraints of the muscles driving the limb. By measuring

the preferred frequencies of oscillation for various constrained ampHtudes, and the

preferred amplitudes of oscillation for various constrained frequencies, it was possible to

approximate this response characteristic for the forefinger, hand, and forearm of each

subject. These characteristics were then used in making explicit predictions concerning

the pattern of limb use in a multi-joint oscillatory movement task. These predictions were

based on the hypothesis (referred to as the energetics hypothesis) that a limb will be

preferred if it can be moved in energetically favorable conditions. Two experiments were

designed to test these predictions using a movement planning task, and in general the

pattern of results from these experiments were supportive of the energetics hypothesis.

Given, then, that certain movements appear to be planned according to a strategy that

optimizes the consumption of metabolic energy, it is sensible to pursue a detailed model

which can account for this behavior. With such a model, we could make further testable

predictions about the psychological processes underlying human movement planning and

control.
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To this end, I have developed a c,i.a;niiativc muhIcI of the human wrist joint that

makes planning decisions according to an energetic cost function. The tehavior of this

model is such that it produces a response characteristic similar to those obtained in the

nomiing studies of the two experiments reported in this thesis. Because il,c nuxirl is

ba.sed so directly on first principles, it is worthwhile to include it in this discussion. In its

present stage of development, it provides an illustration of the nature of mass-spring

mtxlels. the principles of resonance behavior, the metabolic energy constraint, and the

cost-function approach to movement planning.

In the model, an individual joint (the wrist) is approximated as a simple mass-

spring system driven by two opposing muscles (agonist and antagonist). A movement

planning executive monitors the muscle output (i.e.. the force required of the muscle to

perform a prescribed movement) in temis of its metabolic energy recjuirements. If a

movement requires too much work from the muscle, then the planner docs not allow it to

be implemcntal. These metabolic energy characteristics arc included in tlie model by

simply referring to a classic physiological relation known as the length-tension

characteristic of muscle tissue (Br(xiks. 1986). This is an empirical relation between the

maximum force that can be obtained from a muscle at any point in time and (lie lengili of

the muscle (as measured from rest length) at that time. A similar relation exists lx:tween

the maximum muscle force and the rate of change of muscle length (e.g.. muscle

contraction rate). These relations (descrilx'd in detail Ix'low) are a simple result of the

metabolic energy constraints in the muscle itself, and thus provide a means of

implementing the energy cost ftuK'tion in the mcxiel. The force required of the muscle at

every point in the movement is comixired with the maximum jiossible (orce. as obtained

from the length-tension and vekx:ity-lension characteristics ol llie muscle. If the reciuired

force is too close to its maximum at any point within the movement, then the cost

function will |)rohibil the movement on the grouiuis of melal)()lic expense.
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Elements of the Model

The mass-spring system used in this model is shown in Figure 19. Tlie limh

segmem is modelled as a cylindrical mass, m, of constant density, and hinged at one

end. The hinge is referred to as the joint, and has two important characteristics. First,

the joint provides a conservative restoring torque which is proportional by some spring-

constant, k, to the angular displacement of the limb segment from its equiUbrium

position. The spring constant does not change as a result of any movement conditions; in

other words, the joint is an ideal spring^. The joint also provides a non-conservative

resistive torque, which always opposes the direction of the angular velocity, and is

proportional by some damping coefficient, R, to the magnitude of the angular velocity .

So the joint provides what is known as classical viscous damping (Kittel, Knight &

Ruderman, 1973). Two lever arms , each of length d, extend from the joint in opposite

directions. Affixed to the end of each lever arm is a muscle , which can pull on the limb,

thus providing a driving torque.

The two muscles are perfectly symmetric. That is, there is no disparity in their

respective contributions to movements of the limb. Thus, in symmetric, oscillatory

movements, the force profiles (description of the muscle force as a function of time) of

the two muscles are absolutely identical. Tlie force produced by a muscle is governed by

its maximum force characteristic . Within the model, this characteristic is an

approximation of the length-tension and velocity-tension relations described above. It is

known (Brooks, 1986) that the length-tension curve is approximately bell-shaped, with

its maximum at rest length. As for the velocity-tension curve, the maximum attainable

force occurs in the isometric (velocity = 0) condition, and decreases with increasing

velocity. A single function of two variables can be used to describe this force
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characte ristic; it consists of a gaussian curve (function of length) multipUed by a

hyperbolic (1/v) function of velocity. Algebraically, it is described by the expression:

F =-l-*»-(Vo)'

where Y is a global ampUtude multipher used for scaling purposes, 5 is responsible for

the steepness of the 1/v hyperbola (without this parameter, the maximum attainable force

would be infinite in the isometric condition), and o is the standard deviation of the length-

tension relation. The maximum force characteristic, pictured in Figure 20, provides an

upper bound on the amount of force a muscle can attain as it drives the limb at different

amplitudes and rates. Movements which would require the muscles to violate their

maximum force characteristic are forbidden by the movement planner, which makes its

decisions based on the evaluation of an energetic cost function . At every point in die

movement trajectory, the force required of the muscle must be less than its maximum

attainable force.

Behavior of the Model

In the norming study of Experiment 1, a block of trials was administered in

which single-joint movements were performed at a fixed amplitude. Four different trials

were run for each limb segment, using four different ampUtudes of movement. In a

single trial, subjects were required to oscillate the limb at the prescribed amplitude, and to

do so at whatever rate felt most comfortable. The measured frequencies varied with

constrained amplitude in a systematic way: as constrained amplitude became larger,

preferred movement rate became slower. This behavior was interpreted as an amplitude-

dependent response charateristic of the spring-like limb segments. Our model can

simulate these results.

The execution of the model is conceptually straightforward, and is based on

simple kinematic calculations, taken together with Newton's second law of motion
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(F=ma). A proposed movement is input in the form of a sinusoidal function. The

movement has an amplitude (0 degrees) and frequency (f Hz) which comprise the only

two parameters in the expression of the sinusoid:

e(t) = esin(27ift).

From classical kinematics, we obtain the angular velocity by simply differentiating the

expression for position given above with respect to time:

=
Tt^®^^^^

" ^ (esin(2jcft)) = 027cfcos(27ift)

So once the amplitude and frequency of the movement have been specified, it is possible

to calculate the position and velocity of the Umb at any point in time. The same is true

with the angular acceleration, which is the first derivative of the angular velocity:

a(t) = -^^((0(1)) = ^(027cfcos(27ift)) = -047t^f^sin(2jift)

Because the model generates only sinusoidal movements, it will always be true that the

position, velocity, and acceleration of the limb (as expressed in the expressions above)

will be uniquely determined by the two input parameters: 0 (amplitude) and f

(frequency). The three curves, 0(t), a)(t) and a(t), are plotted in Figure 21 as a function

of time for a movement of amplitude 70 degrees (0 = 35 degrees to either side of

equilibrium) and period 600 msec (f = 1.67 Hz).

The angular acceleration function, a(t), is of special significance, because it

reflects the total torque on the limb at any moment in time. From Newton's second law

(as applied to angular coordinates), we know that the total torque required to produce an

angular acceleration in a cylindrical rod of mass M is directly proportional to the angular

acceleration, with a constant of proportionality known as the moment of inertia, I. For

the case of a cylindrical rod, I = (ML2)/3, where M is the mass of the rod, and L is its

length. So by multiplying the angular acceleration function by the appropriate moment of

inertia, the model readily obtains explicit knowledge of the torque required, as a function

of time, to produce sinusoidal movement of amplitude 0 and frequency f Tliis torque
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will generally be a superposition of torques from three different sources: 1) the spring-

like restoring torque; 2) the damping resistive torque; and 3) the driving torque from the

muscles. Because the spring torque depends only on the angular position of the limb

(from Hooke's law), it too can be completely specified as a function of time- given the

position function. Similarly, the resistive torque is simply a constant multiple of the

angular velocity function. The driving torque, when summed with the spring torque and

the resistive torque, must produce the required torque, as specified by the angular

acceleration function. Hence, we can immediately arrive at a closed form expression for

the driving torque by subtracting the (known) expressions for the spring and resistive

torques from the (known) expression for the required torque:

spring torque + resistive torque + driving torque = \*a

'^'driving = ^required - 'I^spring - 'T^resistive

l^lj
'2.

'^driving =— * a(t) - (-k e(x)) - (-R * cod))

4ML^07U^f^
+ k0

J
sin(27cft) + R027tfcos(27cfr)

This final expression is the torque that must be produced by the muscles (as a function of

time) in order to oscillate the limb at an amplitude 0 and frequency f. Figure 22 is a

graph of the three torques associated with the spring, the resistor, and the driver for the

movement of Figure 21. Also shown is the quantity referred to above as the required

torque'-^. Notice that at all times, the sum of the three torques equals the required, and that

the driving torque must work against the resistor sometimes, but never against the spring.

In order to generate a given torque, X, the muscle itself must pull on its lever arm

with aforce, F, which relates to torque in the following way: F = T/(dcos(6)), where d

is the length of the lever arm and 0 is the angular displacement of the limb (as described

by the time-varying function 6 =9(t) ). Because of the symmetry of the muscle forces in
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the model, it is assumed that only one muscle is responsible for the force at any given

time. If the force required of the muscles is positive (i.e., providing positive

acceleration), then the agonist muscle is doing the work; if the force is negative, then the

load shifts to the antagonist muscle. This pattern of muscle activation is generally

supported by electromyographic evidence (Schmidt, 1982), although in real-life

movements there is some overlap in muscle activation. The first step performed by the

model, then, as it proceeds to evaluate the energetic efficiency of a proposed movement,

is to compute the muscle driving force required to perform the movement. This

calculation must be performed at every time-step (arbitrarily set at 1 msec).

After computing the muscle activation, but within the same time-step, the model

must calculate the maximum allowable force for the muscle. Presumably, the human

motor control system has this knowledge available in terms of the metaboUc energy costs

involved. The model, however, simply refers to the empirical length-tension and

velocity-tension relations. In order to perform this task, it must: a) compute the length of

the muscle at that point in time; b) compute the rate of change of muscle length; c)

calculate the maximum allowable force according to the approximating function described

above. Figure 23 shows the maximum force for a particular movement The amplitude

is 70 degrees (0 = 35 degrees to either side of equilibrium), and the period is 8(X) msec,

(frequency = 1.25 Hz). Because the maximum force depends directly on the length, 1, of

the muscle, and its rate of change, v, these curves are also included in the figure. Notice

that the maximum force is subject to competing factors. At the limits of the movement,

when the muscle is stretched to its greatest length, the rate of change of length is zero.

Hence, at that point, only the length-tension relationship is responsible for any metabolic

energy constraints. Likewise, when the length is zero, at the muscle equiUbrium

position, the rate of change of length is greatest, and so that the velocity-tension relation

is most constraining.
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The model is required to calculate this maximum force at each time step, and to

compare it with the muscle driving activation. This is achieved by means of a cost

function, which simply checks to see if the driving force is too close to the "ceUing"

imposed by the maximum force characteristic. If such a violation occurrs, then the

movement is prohibited. Figure 24 portrays this process as a function of time. In the

upper frame, a movement of 70 degrees with a period of 800 msec (frequency = 1 .25

Hz) is acceptable from an energetics standpoint. The lower frame, however, shows the

same movement amplitude (70 degrees) being perfomied at a higher rate (period = 600

msec, frequency = 1.67 Hz). At this rate, a violation of the maximum force characteristic

occurs, and the movement cannot be comfortably performed. In general, faster

movements are more energetically taxing (according to the velocity-tension relation), as

are larger amplitude movements.

Parameter Values

Only two parameters were used in the fitting process; all others were assigned a

definite value based on reasoning provided below. In the event that any of the parameters

(e.g., the spring constant, or the coefficient of resistance) was grossly under- or over-

estimated, it is likely that the model could still be fit to the data using the same two "free"

parameters. This statement is based on the relative insensitivity of the obtained fit to

changes in other parameter values (i.e., if the spring constant is doubled, and the least

squares fitting program is run in order to obtain the best possible values of the two free

parameters, it will be able to find two parameter values which provide a fit not

significantly worse than that obtained with the original spring constant.). In presenting

the fit of the model, I will begin with a brief discussion of the various parameters and

how their values were assigned. I will then discuss the fitting procedure used, and

present the best fit.
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Let us begin with the mass-spring system pictured in Figure 19. Two

parameters which obviously need to be given values are the mass, m, of the hand, and its

length, L. Given that we are attempting to model the pattern of means obtained in block 1

of the norming study (as shown in Figure 11, and again in Figure 25), the most

reasonable values would be the actual mean mass and length of subjects' hands. In

anticipation of the need for those values, they were recorded at the time of the

experiment. Length was measured (in cm) using a ruler, and mass was measured by

volumetric displacement of water.^ The mean values (over 9 subjects) of mass and

length are given in Figure 26.

There are three parameters in the model which can be seen as inherent properties

of the joint, and should therefore be given fixed values a priori (i.e., they should not be

freely manipulated). These are: the spring constant , k; the coefficient of resistance . R;

and the lever arm , d. Because the spring torque is a property of the joint, and not the

muscle, it is not govemed by the velocity-tension relation. That is, it will provide the

same torque when the limb is isometrically held at a given angle of displacement as it will

when the limb is being driven through that angle at some velocity. The spring constant

represents the inherent "springiness" in the joint, and remains invariant across movement

conditions. Hence, the spring constant could be approximated by simply measuring the

passive force exerted by the musculature when a subject's hand is displaced to various

amplitudes. The force exerted will undoubtedly increase in a roughly linear fashion (at

least over a certain region) with increasing amplitude of displacement, and the slope of

this line will be a reliable estimate of the spring constant. An estimate of the spring

constant was obtained in this way, using the author's hand as a subject. This reasonable,

though somewhat arbitrary value is reported in Figure 26.^ The coefficient of resistance,

R, is also an inherent property of the joint, and in that sense must have some "true"

value. But once again, we were obliged to proceed with only an arbitrary estimate of this
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value, based on the quaUtative reasoning that the damping from the joint should be

substantially less than the critical damping case: Rent = V4km. The ratio of R/Rcrit = 0.1

was tiierefore chosen (see Figure 26). Finally, the value of the lever arm, d, was set at 2

cm. This seems a reasonable value, in Ught of the dimensions of the human hand, and is

consistent with tiie value assumed in related work on muscular contractions of the

forearm (Fenn, 1937).

So all of the physical parameters in the model (m, L, k, R, d) have now been

fixed, using more or less good estimates of the "true" values from the subjects in the

experiment. Four parameters remain. The first is the tolerance : the minimum difference

between required force and maximum force which will be tolerated in movement

planning. This is the reference value used by tiie cost function as it makes its judgement

about whether or not the current muscle activation is energetically prohibitive. Logically,

this tolerance must be greater than or equal to zero (if it were negative, then impossible

movements could be performed). Given that a typical movement (as shown in Figure 24)

will require driving forces of approximately 10 Newtons, it seems reasonable to assume a

tolerance of 1 Newton. In other words, when the driving force required of a muscle

comes within 1 Newton of its maximum (given the length and contraction rate at that

time), then the movement planner will forbid that movement.^

The three remaining parameters are all associated with the maximumforce

characteristic, as expressed in Figure 20: y, the global amplitude of the function; a, the

decav constant of the lengUi-tension factor; and 5, the velocity offset which determines

the steepness of the hyperbolic velocity-tension relation. Of these, we need only two in

order to generate the desired pattern of data. The choice of which parameter to^, then,

must be made according to which of the three is most well-defined by the physical

characteristics of the system^ . The length tension relation offers a reasonable

interpretation of the decay constant, a. In the isometric condition (as in any constant



60

velocity condition), the largest amplitude of movement will be determined by the length-

tension relation alone. Depending on the size of a, the bell-shaped curve will fall more or

less steeply; this promotes the interpretation of a as a decay constant for the length-

tension relation. Because we have a good idea about the maximum isometric amplitude

of the wrist ( approximately 120 degrees), we can infer something about the value of a.

For this reason, a was fixed at the value reported in Figure 26.

The remaining two parameters, y and 6, were used to fit the model to the data.

By looking again at Figure 5A, it is possible to obtain a qualitative interpretation of the

role played by each of these parameters in the functioning of the model. In the figure, the

maximum force characteristic is shown, not as a function of muscle length and velocity

(as in Figure 20), but as a function of time. This curve represents the actual maximum

force characteristic as a function of time for a single cycle with amplitude = 70 degrees

and period = 800 msec. The effect of changes in y, the global amplitude factor, will be to

generically raise or lower this curve for all movement conditions. The velocity offset

parameter, 6, governs the decay rate of the hyperbolic velocity-tension relation. The

effect of changes in its value will be to enhance or diminish the velocity dependence of

the curve shown in Figure 23 (e.g., the "bumps" in the curve corresponding to points

where velocity is zero will increase with a decrease in delta). These two parameters,

along with the fixed parameter a, will completely determine the maximum force

characteristic. They can therefore be used to fit the model, because changes in the

maximum force characteristic will directiy affect the decisions of the movement planner.

Fitting the Data

The model performed tiie movement task in the following way. For a given

amplitude, it tried a very slow oscillation rate (one which would obviously not cause any

violation of Uie maximum force constraint). Within this condition, it stepped through one

cycle of movement, calculating tiie difference between the muscle driving force and the
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maximum aUowable force, and comparing this difference with the fixed tolerance. A
movement was either successfuUy completed without any violations, or it was rejected on

the grounds of energetic inefficiency. If successful, the model performed a movement of

the same amplitude at a sUghtly higher (faster) rate, and continued to increment the rate by

small steps (increasing the period by 5 msec) until a violation occurred. The last

movement which was successfuUy "performed" was chosen by the model as its response

to the movement task (RecaU that the precise instruction was: "Move your wrist back and

forth at this amplitude asfast as you can go withoutfeeling any discomfort orfatigue").

The model's response was completely dependent upon the maximum force

characteristic, which afforded the following convenient approach to fitting the model. A

program was written which performed tiie movement task (exactiy as described in the

preceding paragraph) at four different amplitudes, corresponding exactiy to tiie mean

preferred amplitudes of subjects' hand trials in tiie norming study (see Figure 25). The

model's "preferred frequencies" at tiiese amplitudes were then compared to the

experimental means. Using a least squares technique "7, \h& parameter values which

produced the best fit to the data were obtained.

The results of this fit (shown in Figure 27), are encouraging (a quantitative

evaluation of the fit will be presented at the defense, and included in the final draft). The

mass spring system described by Figure 19, with the physical parameters given in Figure

26, will replicate human behavior in a movement planning task. Because the planning

strategy used by the model was based purely on considerations of the energetics involved

in the various movements, we are encouraged to interpret the experimental results in the

following way: In tiie single joint planning task used in our norming study, limitations

in muscle metabolic energy provided the most important source of constraint in

movement planning.
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Further developments of this model would include more thorough comparisons

of the model's behavior with that of human subjects. For example, the model makes

explicit predictions about patterns of muscle activation. Specifically, it predicts the

profile of agonist/antagonist activity. Using the data, it would be possible, for example,

to incorporate the known antisymmetry of these muscles into the model. This could be

accomplished by raising the global amplitude factor, y, of one muscle with respect to the

other. The model could also be strengthened conceptually by a more careful assignment

of parameter values, making use of known physiological data, and of individual subject

data. It would be interesting to see if individual differences could be reproduced by the

model, using subject-specific parameter values (e.g., mass, length, spring constant).

The final goal in developing the model is to fit the data from the two experiments

reported in this thesis. This will require several intermediate developments. First,

individual limb models (such as the one presented here for the hand) will need to be

developed for the finger and the arm. This can easily be accomplished using the

individual subject data from the norming studies. Second, a cost function which

evaluates the energy requirements of all three limbs will need to be devised Perhaps a

more careful development of the multimodal analogy described earher will result in a clear

idea of how such a cost function might be implemented. Finally, the model will be fit to

the free movement data from the two experiments. If a successful fit is obtained, then the

model will represent a valuable contribution to the theory of movement planning, as it

will be a completely specified model of a fairly high-level planning phenomenon.
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Muscle

Figure 19 Model of a one degree of freedom wrist joint



Figure 20 Maximum Force Characteristic of muscle
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Amplitude = 70 degrees, Period = 600 msec
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Amplitude = 70 degrees, Period = 600 msec
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Amplitude = 70 degrees, Period = 600 msec
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Physical Parameters Maximum Force

Characteristic

m L R k d o 5 Y

0.369 kg 0.176 m
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0.162 N/rad 0.02 m 0.019 m fi^ee parameters

fixed parameters 0.31 m/sec 6.9 N

Figure 26 Summary of parameters in the model
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Goodness of Fit Measure: = 0.96

Figure 27 Least squares fit of model to single-joint movement planning data
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CHAPTER 7

CONCLUDING REMARKS

The research reported here is by no means complete. It is part of an ongoing

search for planning constraints, in the effort to create a theoretical framework which

describes the process of movement planning. This framework has been called a grammar

of action (Rosenbaum and others, in press), and is meant to be a general psychological

theory of action selection. This research has served the development of the grammar of

action by testing a hypothesis concerning the planning of oscillatory movements. The

results of the experiments suggest that muscle metabolic energy is a constraint in this

planning process. The question remains concerning the extent to which other types of

movements are constrained by energetic factors. Perhaps it will be possible to devise an

experiment which tests this question.

In any case, the exploration of oscillatory movements is still a likely prospect for

further research. Using the WATSMART data acquisition system, it will be possible to

obtain complete movement profiles, rather than just the movement endpoints, as was the

case in these experiments. This will open the door to more explicit predictions

conceming trajectory profiles (e.g., peak velocity, or mean squared jerk could be

measured, as in Hogan, 1987). Finally, one could perform various manipulations of the

movement context, for example by constraining the use of one or two joints, or by

requiring some object manipulation within the task, and attempt to make predictions about

subject performance (including errors). Perhaps the data from these experiments could

somehow be incorporated into the model, so that it could be made to reproduce human

behavior, including characteristic errors.
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NOTES

1 This type ol error would be qualiuiuvcly disiincl from ihe case where an uniniended movement is
performed out ol "abseni-mmdedness" or lack ol allcntion (Norman, 19H1).

2 Allhough ii musi be noicd lhal Fuller ei al. have provided no clear reasoning concerning the inability of
the motor programmmg approach U) provide an equally clciir account.

Here "second order" implies the second derivative with respect U) ume, referring U) die dilfercniial equation
which describes a mass-spring system with damping.

When a mass-spring system is driven sinusoidally (i.e., pushed back and forth by a force which varies in

magnitude as a sinu.soidal function of time), the idea of energetic efficiency can best be captured by a
(li.scussion of the system's resonance properties.

^ The force exerteti on a mass by an ideal spring due to some displacement, x, of the spring from
equilibrium (stretching or compressing) is directly proportional U) tliat displacement: F=-kx. This
relationship is called Hooke's Law, and such ideal springs arc referred U) as llooke's law springs. The
proportionality constant "k" is known as the "spring constant".

^ I have successfully prcxluced such a model by assuming that the muscle spring force is linear (i.e., ideal)

and independent of the muscle driving force. Additionally, the muscle driving force is limitted by its own
response characteristic, consistent with empirical data on mu.scle behavior (Brooks, 1986).

^ "Critical damping" refers to the condition where tlie vi.scous resistance is so great that llie limb will not

oscillate at all when di.splaced. Instead, it will simply return monotonically to its equilibrium position, as

if pulled through a jar of tliick syrup. A "highly nonlinear" spring would look like that of Figure 4, but

with little or no linear region.

^ No upper bound was placed on movement amplitudes, as we wanted subjects to move in a relatively

unconstrained, natural enviroment. I lowever, subjects were told to keep tlieir movements within a

reasonable range of the minimum. It did not seem lo require any great effort for subjects to do this.

^ From subject performance in the pilot study, we were satisfied that subjects were well able to keep pace

with the metronome. Tliey did .so quite reliably (as measured by the pholodiodcs in tiic pilot study) at a

fraiuency of 3.75 Hz, which is much faster than any comfortable Irajucncy recorded in tins experiment

(typically, comfortiiblc frequencies were on Uic order of lHz-2.5H/.). Moreover, tlic very same subjects were

monitored as to liming accuracy in the main part of this experiment, and there were no difficulties in

meeting the criteria imposed. In any case, il was never the intent of the experiment to iinpo.se harsh timing

constraints on subjects. Had wc done so, it might have dramatically altered the nature of the "comfortable"

responses.

In the Figure, these arc referred to as: "beginning, middle, and end". This will be changed for the final

drafL

' ' Because every trial is recorded on videotape, and the very first movements of the trial have alreiidy been

digitized as part of the "beginning" lime interval (first eight movements), it will be straightforwiad to

perform this test in the near future.

12 This contrasts sharply with other mass-spring models, such as the one reported by Cooke (1987?), m

which there arc two opposing springs with controllable spring-constants. In these models, the sprmg

constants actually .serve as the means by which the joint is driven.

The required torque, I*a, is tlie torque which mu.st exist at the joint when all three real torques

summed. It is a known quantity, because il is imposed by given amplitude and frequency
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Each subject placed his/her nght hand in a full bucket of water, thus displacing a quantity of water equal
to the volume of the hand. The mass density of the hand was assumed equal to that of water (i.e.. Ig/ml)
By muluplymg the displaced volume by the approximate mass density, an esumate of mass was obtained.

15 Passive restoring forces were measured (using a spring of known stiffness) at various displacements of
the wnst. and a best-fitting line was fit to the data. The slope of this line was chosen as an estimate of the
spring constant of subjects' hands. Unfortunately, no such data was collected for the individual subjects in
the experiment. In any case, it is not clear how well this measure would have correlated with the "Uue"
value required by the model. It seemed therefore reasonable to progress by simply estimating the spring
constant as well as possible (say, to within a factor of 2). If a good fit could be obtained using this

estimate, then presumably one could also be obtained using the "true" value.

16 In fact, the value of this parameter is completely arbitrary-- it could be set to 20 Newtons (though this

would be physically unreasonable), and the results of our fitting would be unaffected. The reason for this is

that one of our free parameters is the ceiling height, g, and any increase in tolerance would be perfectly

offset by a simple increase in the ceiling height. On the whole, it seems most advisable to use the most
physically realistic estimates of these "arbitrary" parameters.

1^ Ideally, they should all be well defined by the physical characteristics of the system. The exact

characteristic of the maximum force attainable by the human wrist is an inherent function of the

musculature. This implies that "true" values could be given for the velocity offset (d), and the global

amplitude (g). We should therefore be able to generate principled approximations for these parameters, as

we did in the case of the length-tension decay constant, s. It is also possible that there is existing data

which could inform an attempt at approximation, such as that reported by Joyce, Rack and Westbury (1969)

for the conu-actile muscle force of the cat soleus. In any case, it is important to note that in fitting these

two parameters, the model is making very testable predictions about the lengih-velocity-tension

characteristic of the muscles in the human wrist joint.

1^ At each of the four amplitudes (36.43°°, 52.77oo, 63.06°° and 71.90°° ), the model's preferred rate of

movement (as measured by the period in msec) was subtracted from the corresponding experimental value.

This difference value was then squared, and added to the squared difference scores of the other three data

points. The resulting sum was minimized by systematic manipulation of the parameters (involving a

coarse search of the parameter space, followed by a fine grain fitting search). In this way, the best fit was

obtained using the two parameter values.
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