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ABSTRACT:  

  Installation torque has been used in the design of helical anchors (Screw-Piles) since the late 

1960s. KT factors released by the manufacturer relating ultimate capacity of Screw-Piles to installation 

torque allow engineers to calculate a design installation torque which is necessary to achieve the 

design capacity in the field. These KT factors have been based on shaft geometry alone (Hoyt and 

Clemence 1989). Recent full-scale uplift tests in both clay and sand have shown that the traditional 

methods of analysis for estimating uplift capacity based on microscale tests are not representative of 

macroscale behavior. A soil wedge does not fully develop in many cases and failure is a result of local 

bearing capacity in the soil immediately above the lead helix and side resistance along the pipe shaft. 

The relative contribution of these two components to the uplift capacity depends on the specific 

geometry of the Screw-Pile, not only the shaft geometry, but also the configuration of the helices, the 

soil type, and depth of embedment of the helical plate (Lutenegger 2015). Full-scale installations and 

load tests were performed on anchors of varying lead section geometry, shaft geometry, number of 

helices, soil type, and depth of embedment. Both direct (TORQ-PIN and Chance Digital Indicator) and 

indirect (hydraulic pressure) methods were used to monitor torque during installation. The direct 

methods were used to evaluate the reliability of hydraulic pressure readings and how different 

combinations of machine, torque head, and operator can affect the torque during installation. This 

paper will investigate how these factors affect KT and also determine the factors that affect the 

accuracy of torque measurement in the field.  
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CHAPTER 1: INTRODUCTION 

1.1 RESEARCH OBJECTIVES 

The relationship between installation torque and uplift capacity of helical anchors, developed 

based solely on the shaft geometry of the helical anchor, has been used in the design of Screw-Piles 

since around the advent of the technology to monitor torque during installation. This research project 

was undertaken to determine other factors that influence this torque to capacity relationship. These 

factors include 1) number of helices; 2) geometry of helices (tapered vs. cylindrical); 3) soil type; 4) 

shaft geometry; 5) depth of embedment; and 6) aging effects. An additional objective was to determine 

differences, if any, between direct and indirect torque monitoring devices and to develop a relationship 

between torque and pressure differential measured during the installation of helical piles using 

different configurations of equipment. Also, speed of installation was varied to understand the 

difference between full-throttle and normal throttle installation. 

1.2 SCOPE OF RESEARCH 

 

63 helical anchors were installed and tested in axial uplift load tests at 2 different sites of 

varying stratigraphy within the Pioneer Valley from September 2014 to June 2015. Both shallow and 

deep helical foundations were part of the testing program, including steel helical pipes piles (HPP), 

steel pipe piles (PP), round-shaft helical anchors (RS), and square-shaft helical anchors (SS). In 

addition to initial loading tests, the majority of the piles were subjected to reload tests in order to 

investigate aging effects on the behavior of various foundations.  

A series of trial helical installations were performed at each of the sites using two different 

torque heads and two different pile geometries. An RS2875 pile with lead section geometry consisting 

of an 8/10/12 triple helix configuration was installed to depths of 30’ to determine the variations in 

torque measurement obtained by using different torque heads and installation rates in varying 

subsurface stratigraphy. 

In situ tests were performed in series with the testing regimen at each site that was used in this 

project from September 2014 to May 2015. Tests performed included Mini Field Vane Tests, 

Miniature Drive Probe Torque Tests, and Sowers Dynamic Cone Penetrometer Tests. Samples were 

collected for moisture contents at each location and Fall Cone Tests were conducted in the laboratory 

on the samples collected from the clay sites to evaluate remolded strength. The remolded strength was 
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used to determine the relative loss of strength during installation of the helical anchors. Ground water 

level measurements were taken prior to load testing using a water level meter that was lowered into 

open standpipe piezometers located at each site.  

1.3 ORGANIZATION 

 The work performed for this research project is presented in this report as follows: 

Chapter 2 provides background information on Screw-Piles and Helical Anchors, methods of 

designing them, and the factors that affect the torque-to-capacity relationship. Also presented is a 

discussion of the findings in the recent literature pertaining to this torque correlation factor. 

Chapter 3 presents the site locations, subsurface conditions, and the geology of each site on 

which research was conducted. In addition, results from various site characterization tests are included. 

Chapter 4 details the methods of investigation used for this project. Included is a description of 

the in situ tests and laboratory tests performed to determine properties of the soil along with the 

procedure in which helical anchors were installed and tested in uplift.  

Chapter 5 includes the presentation and discussion of results from the in situ tests, trial 

installations, and load testing regimen that was implemented as part of this project. 

Chapter 6 lists the conclusions determined from the results of the research conducted and offers 

suggestions for continuing research to help verify the conclusions made and expand upon areas of 

interest related to this project that were not evaluated. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 INTRODUCTION 

 This chapter presents a brief history of screw-type foundations and the typical design methods 

used for deep installations in both clay and sand. Also included is a literature review on the influence 

of torque head specifications, specifically differential pressure correlations, and factors affecting the 

torque correlation factor. 

2.2 HISTORY OF SCREW-TYPE FOUNDATIONS 

 Screw-type foundations have been in use for almost 180 years, supporting a vast array of civil 

engineering structures from light posts to light houses. Because of their clever design, helical anchors 

allowed for construction projects normally thought to be unsafe or too expensive, to be completed. 

Since the use of helical anchors during the mid to late 1800s was so commonplace, sparse detailed 

documentation that is project specific can be found on the subject. This lack of information is 

responsible for the scarcity of technical literature on the subject of their use during this period 

(Lutenegger 2011). A self-proclaimed civil engineer by the name of Alexander Mitchell is credited 

with the invention and application of helical anchors as a solution to the problem of mooring ships to 

the ocean floor. The bearing plate, or helix, resists the tensile load produced by the harsh turbulence of 

the ocean. The design required less energy and resulted in a higher uplift capacity than its driven pile 

counterpart. Screws during this time period were installed using various clever methods of manually 

rotating the screw, allowing the torque being applied at the plate to screw the anchor into the 

subsurface.  

Among one of these innovative method’s was Mitchell’s endless rope, shown in Figure 2.1. It 

allowed the men to stand on the already completed portion of the pier and install the piles sequentially 

from the land to the sea (Lutenegger 2011). 
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Figure 2.1 Diagram Showing Construction of Courtown Pier (Lutenegger 2011). 
 

Today, the A.B. Chance Company, a division of Hubbell Power Systems, Inc., is the leading 

manufacturer of helical foundation products (CHANCE 2015). In the late 1950’s, A.B. Chance 

Company came out with the patented PISA® (Power Installed Screw Anchors) system. This system 

involved all-steel components, including one or two helical plates welded to a square hub, a rod 

threaded on both ends, a forged guy wire eye nut, and a special installing wrench. Rods come in 5/8”, 

¾” and 1” diameters and installation times were boasted at 8 to 10 minutes (CHANCE 2014). Round 

Rod (RR) anchors came next in 1961. Although the 1-1/4” diameter shafts were sufficient in weak, 

surficial soils, improvements for a wider range of applications needed to be made, resulting in the 

development of high-torque, shaft-driven, multi-helix square shaft (SS) anchors in 1964-1965. 

Requirements for higher capacities and larger dimensions led to the introduction of large diameter 

round shaft (RS) piles. Larger diameter RS anchors of 2-7/8”, 3-1/2”, 4-1/2”, 6”, and 8” had much 

higher capacities and were utilized as foundations for utility substations and transmission towers. 

Modern technology, including hydraulic equipment, digital torque indicators, and more advanced load 

testing capabilities, have changed the helical anchor industry, allowing for installation and testing of 

screw-piles almost anywhere. Backhoes, skid-steer loaders and mini-excavators can be adapted to fit a 

torque head in order to install helical anchors inaccessible to the larger equipment necessary to install 

typical deep foundations. This versatility, coupled with new advances in helical foundation design, 
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have led to the replacement of H-piles in solar arrays, drilled shafts for lightly loaded light posts, and 

concrete piers for structural deck columns (Toombs 2013). Helical anchors are now being utilized in 

earth-retaining systems as tie-backs and also used in underpinning residential structures to reduce 

settlement.  

 

2.3 DESIGN METHODS FOR HELICAL ANCHORS 

There are three main factors affecting ultimate bearing capacity of helical anchors: strength of 

the soil, the projected area of the helix plates which is a function of the net helix area, and the depth of 

embedment. Soil strength can be evaluated using a variety of field and laboratory tests. The Field Vane 

Test is one of the most efficient tests for directly measuring undrained shear strength in softer clays to 

use in the bearing capacity equation for helical anchors. This test will be described in detail in the 

methods section. Screw-Piles and helical anchors are classified as either “shallow” or “deep” 

foundations depending on the depth of embedment, measured from ground surface to the top helix, 

usually with respect to the average helix diameter. Various researches have defined the delineation 

between shallow and deep equal to between three and eight times the helix diameter. CHANCE® 

provides a minimum recommended embedment depth for helical piles and anchors to be five helix 

diameters (5D).  

Two main failure modes are considered when analyzing helical anchors for ultimate capacity, which 

require two separate methods of analysis. For helical anchors with helix spacing greater than or equal 

to three times the diameter (s/B ≥ 3), considered wide spacing, the method used is the Individual Plate 

Bearing Method; for close helix spacing (s/B ≤ 3), the Perimeter Shear Method is used. These 

methods, which represent different modes of failure, are illustrated in Figure 2.2.  
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Figure 2.2 Individual Bearing and Perimeter Shear Models for Helical Piles with Slender Shafts 
(Chance 2015). 
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The Individual Plate Bearing method determines helix capacity by calculating the unit bearing 

capacity of the soil at each helix and multiplying the result by the helix’s projected area. For square 

shaft piles, shaft resistance is neglected due to the lack of a smooth interface that develops during 

installation. However, round shaft piles will develop side resistance during installation and over time, 

and therefore needs to be considered in the calculation of ultimate capacity for this type of geometry. 

The Perimeter Shear Method assumes that a prism of soil will develop between the helix plates due to 

the close helix spacing and fail along a plane shown in Figure 2.2b.  

2.3.1 Uplift Capacity of Helical Anchors in Saturated Clays 

 The current approach for determining ultimate capacity of a helical anchor in axial uplift is to 

consider the problem as an inverse bearing capacity problem with the concern of failure reaching the 

surface and producing a “breakout” of the helical plate. To avoid this, CHANCE® suggests not 

installing helical anchors at vertical depths less than 5 ft. for tension loading. Instead of a Bearing 

Capacity Factor, NC, that is typically used for analysis of a helical anchor under compression loading, a 

Breakout Factor, FC, is used. Das (1990) related the breakout factor to the ratio of depth of embedment 

and plate diameter, referred to as relative embedment of the plate (D/B), expressing a linear 

relationship for D/B ≤ 9 to be FC = 1.2(D/B). At D/B ≥ 7.5, which is considered to be the transition 

from shallow to deep behavior under tension in saturated clays, FC = 9. This relationship, shown in 

Figure 2.3, shows a steady increase in the breakout factor with increasing relative embedment.  

 

2.2a INDIVIDUAL PLATE BEARING 2 2b PERIMETER SHEAR 
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Figure 2.3 Breakout Factor vs. Relative Helix Embedment (D/B) (Chance 2015). 
 

The uplift capacity of the helix is presented in Equation 2.1 (Chance 2015). 

 

𝑄𝑄𝐻𝐻𝐻𝐻 = 𝐴𝐴𝐻𝐻(𝑐𝑐𝐹𝐹𝐶𝐶 + 𝛾𝛾′𝐷𝐷)          [2.1] 

where: 

QHU = Ultimate Uplift Capacity 

c = “cohesion”; for φ’ = 0 c = undrained shear strength = su 

FC = Breakout Factor for φ’ = 0; FC = 1.2(D/B) ≤ 9 

γ’ = effective unit weight of soil above helical anchor plate 

D = Depth of Embedment 

 

At lower Breakout Factors, the ultimate uplift capacity decreases due to the failure plane propagating 

to the ground surface, creating a heave in the ground surface. Figure 2.4 displays both the shallow 

“global” failure mode and the deep “local” failure mode. For deep installations i.e., (D/B > 7.5), the 

Breakout Factor has a default value of 9 and Equation 2.1 is simplified to Equation 2.2. 

 

𝑄𝑄𝐻𝐻𝐻𝐻 = 𝐴𝐴𝐻𝐻(9𝑆𝑆𝑢𝑢 + 𝛾𝛾′𝐷𝐷)          [2.2] 

 

Depending on the number of helices and quality of installation, sometimes undrained shear strength is 

reduced to a value closer to the remolded value. High disturbance factors coupled with multiple helices 

passing through the soil will remold the soil which will be mobilized during tension loading, lowering 

the undrained shear strength of the soil, especially in soft clays. 
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Figure 2.4 Uplift Failure Modes of Helical Screw Anchors (Toombs 2011). 
 

For multiple helix anchors, the capacity can be taken as the summation of the capacity of the individual 

plates.  

 Round Shaft (RS) helical piles or anchors exhibit some shaft side resistance which is a function 

of the shaft geometry and the style of shaft couplings. In clays, an adhesion factor used in the “Alpha” 

method available in most textbooks is the available adhesion between the shaft and the clay which is 

merely a percentage of the undrained strength that is available for resistance along the shaft. Equation 

2.3 shows this relationship. 

 

𝛼𝛼 =  𝑓𝑓𝑠𝑠
𝑠𝑠𝑢𝑢

             [2.3] 

where: 
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α = Adhesion Factor 

fs = Unit Side Resistance 

su = Undrained Shear Strength of the Clay 

The relationship between the undrained adhesion factor and the undrained shear strength of clays is 

shown in both Figure 2.5 and 2.6. 

 

 

Figure 2.5 Adhesion Factor as a Function of su (Canadian Foundation Manual 2006). 
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Figure 2.6 Variation in Adhesion Factor with Undrained Shear Strength of Clays (Stas & 
Kulhawy 1984) 

 

The value of α is typically obtained from any of the numerous published charts in which fs has been 

back calculated from actual pile load tests. Generally it is sufficient to select an average value of the 

adhesion factor for a given undrained shear strength to use for design. The total shaft resistance of the 

pile can then be obtained from Equation 2.4: 

 

QS = (fS)(π)(d)(L)            [2.4] 

 

where: 

QS = Total Shaft Resistance 

d = Diameter of Central Shaft 

L = Length of Round Shaft in Contact with Soil 
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2.3.2 Uplift Capacity of Helical Anchors in Sands 

 

In sands, the tensile capacity of a helical anchor is typically assumed to be equal to the 

compression capacity given that the soil above the helix is the same as the soil below the helix in a 

zone of about 3 helix diameters (Chance 2015). Since in clean, saturated sands the cohesion factor is 

taken as zero and because the net helix area, which accounts for the contribution of the “width” term to 

ultimate capacity, is relatively small, the uplift capacity equation is reduced to: 

 

QH = AH(q’Nq)           [2.5] 

 

 

Figure 2.7 Reported Values of Nq for Deep Foundations in Sands (Winkerkorn & Fang 1983) 
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Figure 2.8 Recommended Bearing Capacity Factor, Nq, for Deep Screw-Piles and Helical 
Anchors in Sand (Chance 2015). 

 

Figure 2.7 presents values of Nq from the literature based on the angle of internal friction, while Figure 

2.8 includes recommended values from the Chance Design Manual (2015).  

 

2.4 FACTORS INFLUENCING TORQUE-TO-CAPACITY FACTOR, KT 

Lutenegger (2013) explained the logic behind torque-to-capacity relationships, asserting that it 

stems from the inherent factors influencing both measurements. The ultimate capacity of a Screw-Pile 

or Helical Anchor is a function of the specific geometry of the pile/anchor, i.e. net helix area, shaft 

shape and surface area and soil properties, i.e., soil strength: 

 

Qult = f(pile/anchor geometry; soil strength)       
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In parallel, the installation torque is generally assumed to also be a function of the pile/anchor specific 

geometry and soil properties: 

 

T = f(pile/anchor geometry; soil strength) 

 

Therefore, a sensible conclusion is an expected relationship between ultimate capacity and installation 

torque. A common equation seen in the literature is Equation 2.6. 

𝑄𝑄𝑢𝑢 = 𝐾𝐾𝑇𝑇 ∗ 𝑇𝑇            [2.6] 

where: 

Qu = ultimate capacity of the helical anchor in uplift 

KT = empirical factor 

T = average installation torque 

Hoyt & Clemence (1989) performed an analysis of 91 square and round shaft single and multi helical 

anchors in uplift in a variety of soils using three methods: the individual plate bearing method, the 

cylindrical shear method, and the torque correlation method. Individual bearing and cylindrical shear 

methods are traditional geotechnical design methods used to predict helical pile capacity (Perko 2009). 

The torque correlation method proved to provide the least amount of scatter of the three methods. A 

histogram comparing calculated to measured capacity presented by Hoyt & Clemence is provided in 

Figure 2.10, showing a large amount of scatter above and below.  
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Figure 2.10 Histogram of Results from Torque Correlation Analysis (Hoyt & Clemence 1989) 
 

The ratio of actual uplift capacity to calculated uplift capacity ranged from about 0.3 to 4.5. The 

conclusion from the analysis was that this torque-to-capacity relationship “…is more suited to on-site 

production control than design in the office.” Many in the literature ignore this conclusion and still use 

their KT values, provided in Table 2.1, for design.  

Table 2.1 Suggested Values of KT by Hoyt & Clemence (1989) 

Shaft Type Shaft Outer Diameter (in.) KT (ft-1) 
Square & Round <3.5 10 

Round 3.5 7 
Round Extensions 8.63 3 
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AC358, a paper by the International Code Council entitled Acceptance Criteria for Helical Foundation 

Systems and Devices, has a similar table of KT values that are provided in Table 2.2. 

Table 2.2 Suggest Values of KT by AC358 (2007) 

Shaft Type Shaft Outer Diameter (in.) KT (ft-1) 
Square 1.5 10 
Square 1.75 10 
Round 2.875 9 
Round 3 8 
Round 3.5 7 

 

These proposed correlations only consider one variable, difference in shaft geometry, in selecting KT 

values, but there are many other factors influencing KT. Lutenegger (2013) presented factors affecting 

KT and splits them up into appropriate categories, factors affecting installation torque and factors 

affecting ultimate capacity, included in Table 2.3.  

Table 2.3 Summary Table of Factors Influencing KT 

 
The majority of these factors that are a function of pile/anchor geometry and soil properties overlap the 

two categories. The two sub-categories that stand alone on each side of the torque-to-capacity 

relationship are contractor factors and load test factors. For the installation side of the project, the 

contractor factors that were varied included rotation rate and advance rate, while the other factors were 

held constant for each site. Down force, or sometimes referred to as crowd, is the amount of downward 

force applied to the pile during installation. At the current time, there is no efficient way to measure 

this in a quantifiable way and therefore it cannot be monitored or controlled to any precise extent. 

Inclination, or the plumbness of the anchor being installed, was monitored by both the operator and 

inspector during installation.  
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For the current installation study, an RS2875 8/10/12 triple helix anchor was selected to 

eliminate any variability from the pile geometry.  For piles being load tested, contractor factors were 

held constant along with load test factors. The test procedure was conducted in the same direction, with 

the same loading rate, the same waiting time between piles, and the results were all interpreted the 

same way. 

An initial set of trial installations with varying speed were conducted at both the UMass DOE 

Site and the UMass AF-GT Site using an SS5 single-helix anchor. A single 12” helical anchor was 

installed at the UMass DOE Site at slow and regular throttle, and a single 14” helical anchor was 

installed at the UMass AF-GT Site at similar variations in speed. The same contractor, using the same 

excavator and torque head configuration was used to install the anchors at both sites. The results are 

shown in Figures 2.11-2.13 and indicate installation speed affects measured torque during installation 

of helical anchors. Figure 2.11 shows that a decrease in installation speed of about 5 RPMs, a 

difference shown in Figure 5.12, results in an average decrease in installation torque of about 100 ft-lbs 

in each anchor. The installation disturbance factor of the four trials is plotted versus depth in Figure 

2.13 and indicates no significant difference with a change in speed. These results necessitated further 

investigation and therefore trial investigations using a round shaft triple-helix anchor were conducted 

to determine rate of installation effects. 
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Figure 2.11 Effects of Speed Variation on Torque Profile  
at the UMass DOE Site and UMass AF-GT Site 
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Figure 2.12 Effects of Speed Variation on Rotation Speed and Advance Rate  
at the UMass DOE Site and UMass AF-GT Site 
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Figure 2.13 Effects of Speed Variation on Advance  
at the UMass DOE Site and UMass AF-GT Site 

2.5 VARIATIONS IN KT FROM THE RECENT LITERATURE 

 Many axial uplift tests on helical anchors of varying shaft geometries and helical configurations 

have been performed and published in the recent literature. The focus of this section will be on six 

papers from the last seven years that report results from a wide range of soil types, shaft diameters, and 

helix geometries.  

 Beim & Luna (2012) from Pile Dynamics performed installations and load tests at the National 

Geotechnical Experimentation Site of the University of Massachusetts (UMass DOE Site of this 
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Report) on eight RS2875 8/10/12 triple helix anchors at 3D spacing. The nomenclature refers to the 

helix diameter in inches from the lead to the trailing helix, i.e. an 8/10/12 helical anchor has an 8 in. 

plate which leads to pile into the soil, followed by a 10 in. plate and finally a 12 in. plate. 3 piles were 

installed to a depth of 12 ft. and 5 piles were installed to a depth of 18 ft., all in the local Connecticut 

Valley Varved Clay by the same contractors. Both dynamic load tests (DLTs) and static load tests 

(SLTs) were performed on these piles. The DLTs were performed approximately 2.5 months after 

installation, and the SLTs were conducted 20-30 days after the DLTs. The method for choosing the 

appropriate installation torque for each pile to calculate an appropriate KT value was not discussed in 

this paper. Uplift capacity was calculated using the Davisson method (1972). This method defines the 

failure load as the load necessary to produce displacement exceeding the elastic deformation of the pile 

by a value of 0.15 in. Elastic deformation of the pile is calculated using Equation 2.7. 

  

𝑆𝑆 =  𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

+ 𝑑𝑑
120

+ 4(𝑚𝑚𝑚𝑚)          [2.7] 

where: 

S = the displacement in mm 

P = applied load to the pile 

L = length of the pile in mm 

A = cross-sectional area of the pile material 

E = Young’s modulus of the pile material 

d = pile diameter in mm 

The results from Beim & Luna (2012), displayed in Table 2.4, produced significant scatter in KT. This 

may be due to waiting to test the piles much longer than the typical 7 days, testing the piles at energies 

that produced different sets per blow prior to performing static load tests, and choosing inappropriate 

values for installation torque. Although it was not discussed, the tabulated values for installation torque 

seemed to correspond to the final value of torque measured during installation, which was a lower 

bound value and generally drove the KT values up. Values of KT closer to the suggested values might 

have been determined if the method of averaging the torque values equal to the final penetration 

distance of 3 average helix diameters.  

The Davisson method of interpreting load tests was originally developed for driven steel piles 

with small diameters up to 12 in. Sakr (2011) described the main problem with applying Davisson’s 

criteria to helical piles. The offset criteria was initially developed to satisfy movements necessary to 

mobilize toe resistance of driven steel piles with small toe diameters. Since helical piles derive most of 
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their uplift resistance from plate bearing capacity, up to 90% in cohesionless soils (Mathias et al. 

2014), the use of the Davisson criterion yields significantly lower capacities than traditional 10% 

methods suggested by AC358 and do not reflect the actual capacities of helical piles.  

Sakr tested large diameter, high capacity helical piles in both cohesionless (2011) and cohesive 

(2012) soils in Alberta, Canada. Shaft diameters of 12.75 in. and 16 in. were tested in both studies with 

helix diameters ranging from 30 to 36 in. Torque was measured at the end of installation and axial 

capacity was determined using the 5% displacement method, i.e. the load necessary to produce a 

displacement of 5% of the average helix diameter. Sakr (2011) noted that torque-to-capacity 

relationships reported in the literature are for small-diameter anchors resisting uplift loads and 

therefore the correlations should be used with caution to estimate uplift capacity of larger diameter 

piles. Low KT values are expected for such large diameter piles (Deardorff 2007), and the results 

confirmed this assumption. Less scatter was observed in the cohesive soil tests than the cohesionless 

soil tests. Size (scale) effects, shape of the shaft, and the probable large amount of crowd associated 

with the installation of these massive piles would certainly affect this torque-to-capacity relationship. 

In addition, some of the pilot holes for the cohesionless soil site were predrilled to facilitate pile 

installation through frozen and hard soils. Still other piles necessitated the trimming of the leading 

edge of the helices to help installation through cobbles. During installation in the dense sands, dilation 

occurs which show particularly higher torque values which do not necessarily represent long-term soil 

conditions. With such large diameter shafts and no data regarding quality of installation, i.e. rotations 

per foot, it is hard to accept the correlation factors presented in this paper. Geometry, soil type, and 

range of KT values are provided in Table 2.4.  

Gavin et al. (2014) installed a single helix anchor with a 4.33 in. shaft diameter and 16 in. helix 

in dense fine sand located at the University College Dublin. Both compression and tension load tests 

were performed to determine the capacity of the anchor. An army of strain gauges were placed along 

the shaft and helix of the anchor to meticulously monitor any movement during the tests. Shaft 

resistance increased during the uplift tension test and plateaued around displacement equal to 5% of 

the average helix. From the strain gauges, it was observed that the majority of the resistance was 

occurring at the portion of the shaft immediately above the helix until displacements of about 1% of 

the average helix diameter, where resistance at this point spiked to zero. Torque was taken as the final 

measurement before advance was terminated and the uplift capacity was computed as the load 

necessary to produce displacement equal to 10% of the helix diameter. The KT value of 3.9 is 

consistent with a decrease with an increase in shaft diameter. However, tests were performed on the 
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same day of installation and therefore no time was given for the pile to set itself in the soil, possibly 

resulting in a lower capacity and consequently a lower value of KT. More tests of a similar shaft 

diameter and differing helix diameters at this site is recommended to evaluate scatter associated with 

single helix anchors is very dense sands. 

El Naggar et al. (2008) conducted a full-scale testing program on the Environmental site at the 

University of Western Ontario, London to evaluate the axial performance of square shaft helical 

anchors. 11 square shaft helical anchors with an 8/10/12 helix configuration were installed and tested 

in a variety of soils, from cohesive to intermediate to cohesionless soils to evaluate their performance 

in each soil type. Installation torque was averaged over the final 3 ft. of penetration in order to 

calculate a torque-to-capacity relationship. El Naggar et al. (2008) observed that generally, the near-

linear failure region occurred at net displacements greater than 8% of the largest helical diameter and 

therefore developed their own method for determining ultimate capacity. The criterion is again related 

to the elastic displacement of the pile, and the equation is provided in Equation 2.8:  

𝑆𝑆 =  𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴

+ 0.08𝐷𝐷           [2.8] 

where: 

S = the displacement 

P = applied load to the pile 

L = length of the pile 

A = cross-sectional area of the pile material 

E = Young’s modulus of the pile material 

D = pile diameter 

The values of KT calculated in this study are presented in Table 2.4 and show that the torque-to-

capacity relationship is dependent on soil type, with the lowest values observed in the clayey silt and 

the highest values in the sand. 

 El Naggar (2014) performed another set of axial uplift tests in Ponoka, Canada on round shaft 

helical anchors. Helical anchors with large diameter shafts, 12.75 in., and large helix diameters, 24 in., 

with varying spacing were the focus of this study.  Similar methods used in his previous paper for 

monitoring installation torque, but for determining ultimate capacity, 3.5% of the helix diameter was 

used and proposed for large-diameter helical piles since it identifies the failure load within the 

nonlinear region of the load-displacement curve. Again, a range of soil types were investigated and 

interhelical spacing of 1.5D, 3D, and 4.5D were used. All piles were close-ended with a flush closure 

steel plate to prevent plugging during installation. Two piles were tested 9 months after installation 
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while the others were tested 2 weeks post-installation. The piles that were allowed to age showed much 

higher KT values. Thixotropic properties of soil in parallel with increased shaft resistance over time 

due to the disturbed soil healing may lead to an increased shaft capacity. Shaft resistance contribution 

increased from about 20-40% to around 65% after the 9 month period.  

 A new approach to investigate torque-to-capacity relationships was undertaken by Mathias et 

al. (2014). Quadruple helical anchors with a RS2875 10/12/14/14 configuration were outfitted with 

strain gauges to measure the installation torque and uplift capacity of each individual helix and shaft in 

attempt to isolate the components of the anchor that contribute to the torque correlation factor. In 

addition, extensions 4 inches in diameter were coupled to the lead sections to evaluate the efficiency of 

larger diameter extensions in shaft resistance. The results of this study show that the KT factor is 

greater when the shaft resistance contributes 50% of pullout capacity compared to the anchor which 

resulted in very low shaft resistance. It also indicates that the addition of the fourth helix contributes 

more to the installation torque than to pullout capacity.  

 Table 2.4 presents a summary table of the repute of KT from the reviewed literature (since 

2008).  

Table 2.4 Summary Table of Reported KT Values from Recent Literature 

Shaft 
Geometry 

Shaft 
φ 

(in.) 
Diameter of 

Helix (in.) 
Pitch 
(in.) D/P Soil Type 

Kt    

(ft-1) Source 
Tension or 

Compression 

RS 4.33 16 4 4.0 Dense Fine Sand 3.9 
Gavin et al. 

(2014) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 6.5 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 8.1 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 7.5 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 7.3 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 9.0 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Clayey Silt 7.6 

El Naggar 
et al. 

(2008) Tension 
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SS 1.75 8/10/12 3 3.3 Dense Silt 9.5 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Dense Silt 6.6 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Dense Silt 11.1 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Sand 7.4 

El Naggar 
et al. 

(2008) Tension 

SS 1.75 8/10/12 3 3.3 Sand 10.0 

El Naggar 
et al. 

(2008) Tension 
RS 12.75 30/30 3* 10.0 Very Hard Clay 1.7 Sakr (2012) Tension 
RS 16 36 3* 12 Very Hard Clay 1.5 Sakr (2012) Tension 
RS 16 32/32 3* 10.7 Very Dense Sand 1.5 Sakr (2012) Tension 
RS 16 32/32 3* 10.7 Very Stiff Till 1.9 Sakr (2012) Tension 
RS 12.75 30/30 3* 10 Very Dense Sand 2.9 Sakr (2011) Tension 
RS 16 36 3* 12 Very Dense Sand 1.3 Sakr (2011) Tension 
RS 16 32/32 3* 10.7 Very Dense Sand 2.6 Sakr (2011) Tension 
RS 16 32/32 3* 10.7 Very Dense Sand 1.7 Sakr (2011) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 16.2 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 14.3 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 13.5 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 10.1 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 9.9 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 12.6 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 13.1 
Beim et al. 

(2012) Tension 

RS 2.875 8/10/12 3 3.3 CVVC 11.6 
Beim et al. 

(2012) Tension 

RS 12.75 24 6 4 Very Stiff Silty Clay 10.2 

El Naggar 
et al. 

(2014) Tension 

RS 12.75 24 6 4 Clay Till 20.5 

El Naggar 
et al. 

(2014) Tension 

RS 12.75 24/24 6 4 Clay Till 26.5 

El Naggar 
et al. 

(2014) Tension 
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RS 12.75 24/24 6 4 Silty Sand 11.6 

El Naggar 
et al. 

(2014) Tension 

RS 12.75 24/24 6 4 Stiff Clay 10.0 

El Naggar 
et al. 

(2014) Tension 

RS 12.75 24/24 6 4 Stiff Clay 11.3 

El Naggar 
et al. 

(2014) Tension 

Combo 2.875 10/12/14/14 3 4.2 Sandy Silt 4.8 
Mathias et 
al. (2014) Tension 

Combo 2.875 10/12/14/14 3 4.2 Sandy Silt 3.3 
Mathias et 
al. (2014) Tension 

RS 8.62 14/14/14 3* 4.7 Stiff Silty Clay 8.9 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14/14 3* 4.7 Stiff Silty Clay 10.3 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14 3* 4.7 Stiff Silty Clay 10.8 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14/14 3* 4.7 Stiff Silty Clay 9.5 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 14/14/14 3* 4.7 Stiff Silty Clay 6.9 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 14/14 3* 4.7 Stiff Silty Clay 9.2 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 14/14/14 3* 4.7 
Loose to Compact 

Silty Sand 10.5 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14/14 3* 4.7 
Loose to Compact 

Silty Sand 10.3 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14 3* 4.7 
Loose to Compact 

Silty Sand 8.5 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 14/14/14 3* 4.7 
Loose to Compact 

Silty Sand 7.1 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 14/14/14 3* 4.7 
Loose to Compact 

Silty Sand 4.4 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 14/14 3* 4.7 
Loose to Compact 

Silty Sand 7.5 

Tappenden 
& Sego 
(2007) Tension 
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RS 7 18 3* 6 Stiff Silty Clay 8.3 

Tappenden 
& Sego 
(2007) Compression 

RS 8.62 18 3* 6 Stiff Silty Clay 7.7 

Tappenden 
& Sego 
(2007) Compression 

RS 7 18/20 3* 6.33 Stiff Silty Clay 11.8 

Tappenden 
& Sego 
(2007) Compression 

RS 9.6 18/20 3* 6.33 Hard Clay 9.9 

Tappenden 
& Sego 
(2007) Compression 

RS 10.75 30 3* 4.2 Hard Clay Till 12.8 

Tappenden 
& Sego 
(2007) Compression 

RS 10.75 30/30 3* 10 Hard Clay Till 14.1 

Tappenden 
& Sego 
(2007) Compression 

RS 10.75 30 3* 10 Hard Clay Till 9.8 

Tappenden 
& Sego 
(2007) Tension 

RS 10.75 30/30 3* 10 Hard Clay Till 10.9 

Tappenden 
& Sego 
(2007) Tension 

RS 16 30 3* 10 
Very Dense Sand 

Till 7.9 

Tappenden 
& Sego 
(2007) Tension 

RS 8.62 15.75 3* 5.25 Stiff Clay Till 8.9 

Tappenden 
& Sego 
(2007) Compression 

RS 12.75 36/36 3* 12 Stiff Silty Clay 8.0 

Tappenden 
& Sego 
(2007) Compression 

RS 5.5 20/20/20 3* 6.67 Stiff Silty Clay 13.7 

Tappenden 
& Sego 
(2007) Compression 

RS 4.5 18/18 3* 6 Stiff Silty Clay 18.1 

Tappenden 
& Sego 
(2007) Compression 

RS 4.5 18 3* 6 Stiff Silty Clay 21.1 

Tappenden 
& Sego 
(2007) Compression 

RS 8.625 24 3* 8 Clay 3.5 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 8.625 24 3* 8 Clay Over Sand 4.3 

Hawkins 
and 

Thorsten Compression 
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(2009) 

RS 8.625 24/30 3* 9 Clay Over Sand 5.0 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 8.625 8/16/16/16/16 3* 4.8 Clay Over Sand 4.6 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 8.625 8/24 3* 5.3 Clay Over Sand 5.1 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 8.625 16/16/16/16 3* 5.3 Clay Over Sand 5.6 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 8.625 24 3* 8 Clay Over Sand 5.8 

Hawkins 
and 

Thorsten 
(2009) Compression 

RS 12.75 30 3* 10 
Stiff to Very Stiff 

Clay Till 1.7 
Padros et 
al. (2012) Compression 

RS 16 36 3* 12 
Stiff to Very Stiff 

Clay Till 1.7 
Padros et 
al. (2012) Compression 

RS 20 40 3* 13.3 
Stiff to Very Stiff 

Clay Till 1.3 
Padros et 
al. (2012) Compression 

RS 20 40 3* 13.3 
Stiff to Very Stiff 

Clay Till 1.3 
Padros et 
al. (2012) Compression 

RS 20 40/40 3* 13.3 
Stiff to Very Stiff 

Clay Till 1.6 
Padros et 
al. (2012) Compression 

RS 20 40/40/40 3* 13.3 
Stiff to Very Stiff 

Clay Till 1.8 
Padros et 
al. (2012) Compression 

RS 12.75 30/30 3* 10 
Stiff to Very Stiff 

Clay Till 2.5 
Padros et 
al. (2012) Compression 

RS 16 36/36 3* 12 
Stiff to Very Stiff 

Clay Till 2.2 
Padros et 
al. (2012) Compression 

RS 8.62 20/20 3* 6.7 
Stiff to Very Stiff 

Clay Till 3.4 
Padros et 
al. (2012) Compression 

RS 12.75 30 3* 10 
Stiff to Very Stiff 

Clay Till 1.9 
Padros et 
al. (2012) Compression 

RS 8.62 30/30 3* 10 
Stiff to Very Stiff 

Clay Till 3.6 
Padros et 
al. (2012) Compression 

*Note: Pitch values not mentioned, assumed traditional pitch of 3" 
 



29 
 

 

Figure 2.11 Variation of Reported KT from the Recent Literature as a Function of Shaft 
Diameter (All Data) 

 

Figure 2.12 Variation of Reported KT from the Recent Literature as a Function of Shaft 
Diameter (Single vs. Multi-Helix) 
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Figure 2.13 Variation of Reported KT from the Recent Literature as a Function of Shaft 
Diameter (Compression vs. Tension Tests) 

 

Figure 2.14 Variation of Reported KT from the Recent Literature as a Function of Shaft 
Diameter (Clay vs. Sand) 
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Figure 2.11 further illustrates the scatter found in the literature for results of reported KT. The 

majority of this scatter can be attributed to the variability in how KT is calculated, e.g. definition of Qult 

and zone of measurement of torque. The definition of the appropriate installation torque to use when 

computing KT is still not agreed upon i.e., which measurement to use. Similarly, a variety of methods 

for determining ultimate uplift capacity are being used, without one standing out as the most popular. 

The results from the reported literature were further delineated into groups in an attempt to develop 

reasonable trends based on factors affecting KT. Figures 2.12-2.14 show the data broken up into single 

vs. multi-helix anchors, compression vs. tension tests, and clay vs. sand sites, none of which provide 

much insight on relevant trends. A summary table of the different methods for determining 

components that comprise KT from Table 2.4 is provided in Table 2.5. 

Table 2.5 Summary Table of Methods for Determining KT in the Recent Literature 

Installation Torque Used Method to Determine Qult Source 
Final Value 10% Gavin et al. (2014) 

Average of Final 3 ft. 8% Naggar et al. (2008) 
Final Value 5% Sakr (2012) 
Final Value 5% Sakr (2011) 
Final Value Davisson Beim et al. (2012) 

Average of Final 3 ft. 3.50% El Naggar et al. (2014) 
Average of Final Penetration = 3D 10% Mathias et al. (2014) 

Final Value 5% Padros et al. (2012) 
Average of Final 3 ft. Davisson Hawkins and Thorsten (2009) 
Average of Final 3 ft. Brinch-Hansen 80% Failure Criterion Tappenden and Sego (2007) 
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Given all this disagreement for the most appropriate method for determining both installation 

torque and ultimate uplift capacity to obtain a relevant value of KT, a necessity to standardize this 

process is obvious. AC358 provides specific criteria that should be followed if a torque-to-capacity 

relationship is to be used to predict capacity. The majority of the criteria, provided in Table 2.6, refer 

to the geometry of the helical anchor, but 11 and 12 are installation guidelines that deal with quality 

assurance and quality control for which both the contractor and inspector are responsible for. This list 

does not apply to large diameter piles because they are not used nearly as much as the typical anchors 

that are referred to by AC358. If the industry adopts this criteria, values of correlation factors can be 

easily compared since the process to arrive at them is identical. Standardization for using torque-to-

capacity relationships would narrow the path to a more accurate explanation for the specific 

mechanisms affecting the correlation. 

Table 2.6 Torque Correlation Conformance Criteria (AC358 2007). 
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CHAPTER 3: SITE DESCRIPTIONS 

3.1 INTRODUCTION 

 Two sites with varying stratigraphy within the Pioneer Valley region were used to conduct this 

research. This chapter presents a description of each location, the site geology, and the general site 

characteristics.  

Table 3.1 Summary Table of Site Location Use. 

Site Activity Company Machine Drive Head 

UMass 
AF-GT 

Load Tests, Torque Installation 
Monitoring, Pitch Series Tests UMass Bobcat 

T190 

Eskridge  50K 
(Small Head) 

Eskridge 77BD 
(Large Head) 

UMass 
DOE Site 1 Load Tests, Field Vanes Diversified Bobcat 435 

G-Series 
Eskridgre 77BD 

(Large Head) 

UMass 
DOE Site 2 

Load Tests, Torque Installation 
Monitoring 

Sea & Shore 
Construction, Inc. 

Mustang 
ME8003 Pengo 12K 

Diversified 
Construction, Inc. 

Bobcat 435 
G-Series 

Eskridge  50K 
(Small Head) 

Eskridge 77BD 
(Large Head) 

 

3.2 UMASS GEOTECHNICAL EXPERIMENTATION SITE: (DOE) 

 

3.2.1 Site Location and Description 

The UMass Geotechnical Experimentation Site is located towards the south end of campus at 

the University of Massachusetts Amherst, as seen in Figure 3.1.  
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Figure 3.1 UMass-DOE Test Site Locations 
 

This site, colloquially referred to as the Department of Energy (DOE), is located in the Connecticut 

River Valley in Western Massachusetts, east of MA-116 on the corner of N Hadley Rd and Mullins 

Way, just south of the Amherst Wastewater Treatment Facility. The site has gated access along with a 

gravel road that leads into both sites. The first site is located immediately to the right of the entrance 

off the gravel road and the other is beyond the set of four test bridge piers to the left of the access road. 

Site 1 was used to determine values from reload tests on multiple piles with the same shaft geometry, 

lead section geometry, and installation procedure to evaluate any scatter due to operator effects. Mini 

Field Vane Tests over helical anchors were also run in parallel with load tests on a SS5 12- series (SS5 

12, SS5 12/12, and SS5 12/12/12) to determine aging effects on peak undrained shear strength and 

ultimate uplift capacity. Site 2 was used for torque installation monitoring and load testing helical piles 

of varying shaft geometries and lead section geometries to evaluate effects on ultimate uplift capacity.    

3.2.2 Site Geology 

 The test site is located within the boundary of glacial Lake Hitchcock. The depositional 

environment of the UMass DOE Site is a product of the ancient Laurentide Ice Sheet melting, 

retreating, and forming a large ice dam near Rocky Hill, Connecticut (Lutenegger 2000). The resulting 

lacustrine deposits consist of seasonal depositions of varved clay and silt, locally known as 

Connecticut Valley Varved Clay (CVVC). During the summer, layers of silt and sand were deposited 
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due to the high flow rate of the melt water, and during the winter the clay settled out due to the 

decrease in flow rate.   

 At present, a surface layer of loosely compacted fill comprised of fine-grained soils deposited 

as a result of the construction of the Amherst Wastewater Treatment Facility extends to about 5 ft. The 

natural lacustrine deposits below reach depths of approximately 100 ft. A stiff, overconsolidated upper 

crust of CVVC has developed that extends to about 15 to 20 ft. which transitions to a soft, nearly 

normally consolidated layer of CVVC. 

3.2.3 Site Characterization 

Connecticut Valley Varved Clay is a low plasticity silty clay that was deposited in generally 

horizontal alternating layers of silt and clay of varying thicknesses on the order of 2 to 8mm thick. This 

site has been characterized through numerous subsurface investigations and in-situ tests as part of 

research and development and academic purposes (Lutenegger 2000). Subsurface investigations at 

each site consisting of continuous sampling with a 4.25 inch Hollow-Stem Auger and a 2 inch Split 

Spoon sampler driven with a 140 pound Safety Hammer using a 30 inch drop height were conducted in 

general accordance with ASTM D6151 Using Hollow-Stem Augers for Geotechnical Exploration and 

Soil Sampling. SPT blow counts ranged from N60 = 5 to N60 = 16 blows per foot which would classify 

the consistency of the clay to be medium to stiff (Terzaghi et. al. 1996).   

Unit skin friction values obtained from SPT-Torque measurements confirm these assertions of 

consistency, ranging from fs = 30 kPa to fs = 87 kPa in the upper 10 feet of the site. Figures 3.3 to 3.7 

show the results from various in situ tests performed at the UMass DOE Site by Khalili (2013). A plot 

of sensitivity versus depth from mini field vane tests performed by the Author is provided in Figure 3.8 

which shows the sensitivity of the CVVC to range on average from about 4 to 6. From 10 to 20 feet, 

the crust transitions to a soft clay overlying a very soft, nearly normally consolidated deposit of the 

CVVC. Groundwater levels at this site fluctuate seasonally from about 7 feet below ground surface to 

at the ground surface based on piezometer readings taken on site over 20 years. The subsurface profile 

of the site is provided in Figure 3.2. 
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Figure 3.2 Generalized Subsurface Profile at the UMass DOE Site (Ball 2002). 
 

 

Figure 3.3 Results of DCP Tests from the UMass DOE Site (Khalili 2013). 
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Figure 3.4 Analysis of DCP Tests at the UMass DOE Site (Khalili 2013). 
 

 

Figure 3.5 Results of MDP-T and MSP-T Tests at the UMass DOE Site (Khalili 2013). 
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Figure 3.6 Unit Side Resistance Results of MSP-T and MDP-T at the UMass DOE Site (Khalili 
2013).  

 

 

Figure 3.7 Undrained Shear Strength Plot Derived From Field Vane and Fall Cone Tests at the 
UMass DOE Site (Khalili 2013). 
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Figure 3.8 Sensitivity Plot from Field Vane Tests at the UMass DOE Site. 
 

This site provides a good range of consistencies, from high OCR to near normally consolidated clay. 

The high OCR layer is expected to exhibit equal contribution from shaft resistance and plate bearing to 

ultimate capacity. As the pile is advanced into the softer clay, less of the capacity developed from the 

plate will contribute to capacity, leaving shaft resistance as the majority contributor to ultimate 

capacity of the pile.  

3.3 UMASS AGRONOMY FARM: GEOTECHNICAL SITE (AF-GT) 

  3.3.1 Site Location and Description 

 The UMass Agronomy Farm located at 89-91 River Rd. west of the Connecticut River in South 

Deerfield, MA was the site of a test location referred to as UMass Ag-Farm GT Site. The Agronomy 

Farm is primarily used for agricultural purposes, but the sections outlined in Figure 3.9 have been 

reserved for geotechnical investigations such as in situ testing and load testing of pipe piles, H-piles, 

Screw-Piles and helical anchors, and finned pipe piles. The topographic map of the site is shown below 

in Figure 3.10. 
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Figure 3.9 UMass-Ag-Farm Test Site Locations 

 

 
Figure 3.10 UMass-AF-GT Site Location and Topography 

 

3.3.2 Site Geology 

 The Agronomy Farm is located at the site of the former Glacial Lake Hitchcock. The site is 

indicative of the lake slowly receding, as river terraces can clearly be seen along the site grading 

towards the Connecticut River. The site is on an alluvial floodplain at the base of Mt. Sugarloaf where 
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thick lake bed deposits of CVVC can be found overlain by silty sand grading to medium to coarse 

sand.   

3.3.3 Site Characterization 

 

 The UMass Ag-Farm GT Site has a fine to medium sand in the upper 13 feet that overlays a 

thick clay deposit of low plasticity CVVC from about 13 to 40 feet. The subsurface profile is provided 

below in Figure 3.11.  

 

 

Figure 3.11 Generalized Subsurface Profile at the UMass AF-GT Site (Howey 2004). 
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SPT blow counts range from N = 6 to N = 24 blows per foot in the sandy layer and from N = 3 to N = 

7 blows per foot in the clay layer. Figure 3.6 shows data for both a 2.5 inch and 3 inch diameter SPT 

Hammer driven to 40 feet. This data is consistent with a loose to medium dense layer of sand that 

transitions to soft clay at about 13 feet. Figure 3.13 and Table 3.1 show that the upper meter or so is 

dominated by silty sand, which transitions to a medium to coarse sand until about 13 feet. This site will 

be useful for analyzing helical anchors with lead sections embedded in different soil types than the 

shaft extensions above the helices. 

 

Figure 3.12 Large Drive Cone Penetration Data for the UMass AF-GT Site 
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Table 3.2 Grain-Size Analysis of the UMass AF-GT Site (Orszulak 2012). 
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CHAPTER 4: METHODS: 

4.1 INTRODUCTION 

The following chapter presents the methods of investigation used to obtain site characteristics 

of the UMass DOE Site, the procedures used to conduct uplift load tests, and the methods used to 

monitor installation of helical anchors. Each test or procedure is described in detail followed by an 

explanation of the main objective. The laboratory testing program consisted of water (moisture) 

content determinations and Fall Cone on remolded samples of the Connecticut Valley Varved Clay. 

The in situ test performed at the UMass DOE Site was the Miniature Field Vane Test in the upper 12 ft 

of the subsurface to look at su over 3 square shaft anchors. In situ monitoring consisted of ground water 

level measurements taken at the beginning of every testing and installation day. Figures 4.1 and 4.2 

provide the Site Plans of the UMass DOE Site and the UMass AF-GT Site indicating the location of 

each foundation. 
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Figure 4.1 UMass-DOE Site Plan 
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Figure 4.2 UMass-AF-GT Site Plan 
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4.2 IN SITU TESTS 

4.2.1 Groundwater Monitoring 

Ground water levels were monitored using an open-standpipe piezometer installed at the 

eastern side of the UMass DOE Site (Ball 2002). The piezometer was installed in a 2 in. hand auger 

hole. The piezometer consists of a 1.0 ft. section of 1.0 in. inner diameter machine slotted PVC 

connected to a solid-wall PVC riser pipe approximately 9.4 ft. long. The auger hole space outside the 

well screen was backfilled with filter sand and a bentonite seal was used to backfill the remaining 

length of the hole adjacent the riser pipe (Ball 2002). Ground water level readings were taken prior to 

each day of load testing and foundation installation conducted at the site using a Slope Indicator Co., 

Model 51453 Water Level Indicator. 

4.2.2 Miniature Field Vane Testing 

In order to determine the undrained shear strength over helical anchors & any effect of 

installation, miniature field vanes were performed in general accordance to ASTM D2573-08 Standard 

Test Method for Field Vane Shear Test in Cohesive Soil.  Tests were conducted at the DOE site over 

the SS5 12 series, which consisted of single 12, 12/12, and 12/12/12 helical anchors on a 1.5 in. by 1.5 

inch square shaft, in the Spring of 2013 and again in 2015 to evaluate any aging effects that may 

influence uplift capacity. In order to compare the disturbed values with undisturbed values, a control 

field vane test was performed in soil in which no pile had been installed. A 2 in. diameter hand auger 

was used to advance the borehole 8 in. so that when the vane was pushed the standard 6 inches, the test 

could be conducted at a depth of 1 ft. below ground surface. Tests were run at 1 ft. intervals, 

approximately 3.5 in. from the pile in order to evaluate the influence of installation disturbance of 

single and multi helix anchors, to a depth of 12 ft. below ground surface.  A vane with a length of 2 in. 

and a diameter of 1 in., H/D = 2, was used in this test along with a CDI Multitorq Torque Data 

Acquisition system that measured the torque during rotation. Peak torque, and subsequently peak 

undrained shear strength, was focused on for this project because it is the main constituent for 

determining uplift capacity for helical anchors in clay. Torque was converted to undrained shear 

strength using Equation 4.1: 

𝑠𝑠𝑢𝑢 = 6𝑇𝑇
7𝐷𝐷3

            [4.1] 

where: 

su = undrained shear strength 

T = torque 
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D = Diameter of Vane 

4.2.3 Sowers Dynamic Cone Penetrometer (SDCP) 

 As part of an independent study conducted at the UMass DOE Site, the Sowers Dynamic Cone 

Penetrometer (SDCP) was used to determine the resistance of the soil. The SDCP, illustrated in Figure 

4.3, consisted of a 15-lb steel mass that is raised against a stainless steel stopper to a height of 20in. 

and released to strike an anvil, the force of which drives a 1.5in diameter 45 degree cone that has been 

seated in the bottom of a hand augured hole. The blows for the first 2” are recorded, and then blows for 

two more increments of 1.75in. each are recorded for a total drive of 5.5in. This process was 

performed in 1 foot intervals at the UMass DOE Site to a depth of 12 feet. Samples were collected at 

each interval for moisture content determinations. 

 

Figure 4.3 SDCP Setup and Resistance Curve 

4.2.4 Mini Drive Probe Torque Tests (MDPT-T) 

 Mini Drive Probe Torque Tests (MDPT-Ts) were conducted in parallel with the SDCP. 60° 

cones with varying diameters were driven using a 22lb hammer dropped from a height of 19.625” into 

an anvil. Three straight probes with diameters of 2”, 1.5”, and 1” along with two tapered probes, one 
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with a 1° taper and one with a 2° taper, were driven along with a mini cone and mini SPT at 3in 

intervals, with blows recorded for each interval. Dimensions of each probe are included in Figure 4.4. 

After the final 3in of penetration, a torque meter in series with a socket wrench was attached to the top 

of the probe using an adapter the probe was rotated in order to measure both the peak and residual 

torque of the soil. Skin friction was calculated from the values of torque using the specific geometry of 

each probe. 

 

Figure 4.4 Probe Dimensions 

4.3 LABORATORY TESTS 

Fall Cone Tests were performed on remolded samples of the Connecticut Valley Varved Clay 

obtained during Sowers Cone Tests. These tests were performed according to the BS1377:1975, Test 

2(A) standard. A sample of the soil was placed in a 55mm diameter and 40mm deep brass cup and rid 

of any voids using a spatula to carefully compact the soil in the container. A stainless steel cone of 

100g was positioned so that the tip barely touched the sample and released from the device. 

Penetration was measured after 5 seconds of contact with the soil. The remolded undrained shear 

strength was calculated using Equation 4.2: 

𝑠𝑠𝑢𝑢𝑢𝑢 = 𝐾𝐾𝐾𝐾
ℎ2

            [4.2] 
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where: 

sur = remolded undrained shear strength 

K = cone factor, 0.8 for 30° cone (Hansbo 1957) 

W = weight of the cone 

The water content of the soil at the UMass DOE Site was obtained from these samples and 

samples collected from Miniature Field Vane Tests for depths of 1.5 ft. to 12.5 ft. at 1 ft. intervals in 

the Fall of 2013 and again for depths of 1 to 12 ft. at 1 ft. intervals in April of 2015. Water contents 

were determined in general accordance with American Society for Testing and Materials (ASTM) 

D2216-92 Standard Test Method for Laboratory Determination of Moisture Content of Soil and Rock. 

Samples were collected using a 2 in. diameter hand auger and were immediately placed into sealed 

Ziploc® bags that were kept out of the sun and labeled for site, borehole, and depth and transported to 

the Geotechnical Engineering Laboratories in Marston Hall at the University of Massachusetts 

Amherst. Specimens with a total mass of approximately 20 to 30 grams were taken from each sample 

and oven-dried at 110°C for 24 hours to determine the in situ moisture content of the soil. 

 

4.4 INSTALLATION OF HELICAL ANCHORS  

 Each helical pile was installed with an excavator or skid steer with an adapter to attach a 

hydraulic drive torque head that provide the necessary torque to screw the helical anchor plumb into 

the soil at a consistent rate, which was generally about 30 seconds per foot. For single helix anchors, 

measurements of progressive advance were measured from the center of the helical plate. For double 

and triple helix installations, measurements were taken in the middle of the two plates and at the 

central plate respectively in order to embed the pile to the desired depth.  

 Helical piles were installed using a variety of machines and torque heads to determine the 

variability between different setups. The different combinations of machines and torque heads are 

provided in Tables 4.1 and 4.2. Variability between machine hydraulics and the torque head gearing 

lead were investigated to evaluate effects on installation torque.  

4.4.1 Trial Installations 

 A single RS2875 tapered 8/10/12 triple helix was used in various trial installations at both the 

UMass AF-GT Site and the UMass DOE Site to determine the variability in results from using 

different machinery, torque heads, installation rates, soil types and operators. Only one configuration 
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of helical anchor was chosen to hold the pile geometry factors that influence installation torque 

constant throughout the trials so that other factors could be isolated and evaluated. 

 

4.4.2 Installations for Load Tests 

 Many Screw-Piles were installed to perform load tests to determine torque-to-capacity 

relationships. These anchors were monitored with the same equipment as the trial installations, but 

installation rate was kept as constant as possible to maintain uniformity. Consistency during 

installations for load tests was important so that torque-to-capacity relationships could be developed by 

isolating as many variables as possible to determine the most important factors that influence KT. 

Table 4.1 UMass-AF-GT Site Equipment List 

Machine Hydraulic Flow Rate (GPM) 

Bobcat T190 
16.9 (Standard Flow) 

26.4 (High Flow) 
Drive Head Torque Capacity (ft-lbs.) 

Eskridge  50K (Small Head) 7000 
Eskridge 77BD (Large Head) 6500 

 

 

 

 

 

Table 4.2 UMass-DOE Site Equipment List 

Day 1 Day 2 

Machine Hydraulic Flow Rate 
(GPM) Machine Hydraulic Flow Rate 

(GPM) 
Mustang 
ME8003 

9.7 (Low Flow) Bobcat 435 G-Series 19.81 (Standard Flow) 
 21.8 (Standard Flow) Drive Head Torque Capacity (ft-lbs.) 

Drive Head Torque Capacity (ft-lbs.) Eskridge  50K (Small 
Head) 7000 

Pengo MDT-12K 12000 Eskridge 77BD (Large 
Head) 6500 
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 Measured hydraulic pressure under zero torque was unique for each head. In order to determine 

this pressure, each head was engaged in the air, under no load, at both normal and full throttle. The 

results of these calibrations are provided in Table 4.3. For the large head mounted on the Bobcat T190, 

it was measured to be 120 psi and 130 psi for normal and full throttle respectively, which means there 

is not much variation in the differential pressure necessary for the large head to engage under no load 

at the different speeds. For the small head, a larger amount of differential pressure, 230 psi, was 

necessary to engage the drive head at normal throttle, and a substantial amount more pressure, 640 psi, 

was necessary at full throttle. This differential pressure at zero torque is something that must be 

considered when developing a relationship between torque and differential pressure for each unique 

setup. 

Table 4.3 Drive Head Differential Pressure Calibration 

Machine Drive Head Throttle Differential Pressure 
(psi) 

Bobcat T190 
Eskridge  50K (Small) 

Normal 230 
Full 640 

Eskridge 77BD (Large) 
Normal 120 

Full 130 

Bobcat 435 G-Series 
Eskridge  50K (Small) 

Normal N/A 
Full N/A 

Eskridge 77BD (Large) 
Normal N/A 

Full N/A 

Mustang ME8003 Pengo MDT-12K 
Normal N/A 

Full N/A 
 

4.5 PARAMETERS MEASURED DURING INSTALLATION:  

At each foot of advance the torque, revolutions per foot, time (seconds) per foot, and 

differential hydraulic pressure at each foot were recorded. Two direct and one indirect method of 

measuring torque were implemented in this project. A Chance© digital torque indicator in series with a 

TORQ-PIN© torque transducer and hydraulic hoses complete with two pressure gages to measure 

differential pressure, a setup shown in Figure 4.5, were used to monitor installation torque.  
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Figure 4.5 Torque Monitoring During Helical Pile Installation at UMass-DOE Site Using  
Bobcat 435 and Large Eskridge Hydraulic Head. 

 

The number of revolutions per foot is an indication of the quality of installation. Based on the 

pitch of the helical plate, an ideal installation can be quantified. The pitch of a helix is measured 

vertically from the start of the helix to the end as shown in Figure 4.6, which depicts a typical helical 

anchor.  
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Figure 4.6 Typcial Helical Anchor. 
 

A typical pitch of 3” for a helix would advance exactly 1 foot for every four rotations if it 

followed the path created by the plate, effectively screwing into the soil, yielding a perfect installation. 

However, soil conditions and installation technique often lead to a higher number of revolutions per ft. 

giving “imperfect” installations. “Imperfect” installations can lead to remolding of the soil which 

lowers the undrained shear strength in clay mobilized by the helical anchor to achieve its capacity. 

This may not have a major impact on soils in which sand is the main constituent because they are free 

draining and remolding them has little to no effect on the strength. The severity of this drop in strength 

is most likely related to the sensitivity of fine-grained soils. Therefore, monitoring the number of 

revolutions during installation can give the engineer insight on the quality of the installation. The 

spacing between the helices is also important. Typically multi-helix anchors are spaced at 3D, a length 
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equal to 3 times the diameter of the helix plate, starting with the lead helix. In order to minimize the 

disturbance to the soil during installation, the helical plate should be advanced into the ground at a rate 

of one pitch distance per revolution, and multiple helices should be spaced along the shaft in multiples 

of the pitch, such that the successive helices follow the same path as the leading helix when penetration 

the soil (Ghaly et al. 1991). 

 

Figure 4.7 Typical Spacing for Helical Anchor 
 

One way to quantify this metric has been proposed (Lutenegger et al. 2014) as defining an 

Installation Disturbance Factor to be equal to: 

𝐼𝐼𝐷𝐷𝐹𝐹 = 𝑅𝑅/𝐼𝐼             [4.3] 

where: 

IDF = Installation Disturbance Factor 

R = measured revolutions per unit of advance 

I = ideal revolutions per unit of advance = advance/pitch 
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Values of IDF should be as close to 1 as possible for an ideal installation to give the least disturbed soil 

conditions behind the helices. Figure 4.8 provided below shows two identical round shaft helical 

anchors installed to the same depth. As depth increased, the P anchor required more revolutions to 

advance to the same depth as the SCG anchor, resulting in a higher IDF. 

 

Installation Disturbance Factor
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

D
ep

th
 (f

t.)

0

1

2

3

4

5

6

7

8

9

10

RS2875 SCG 
RS2875 P

 

Figure 4.8 Installation Disturbance Factors for Two Round Shaft Helical Anchors (Lutenegger et 
al. 2014). 

 

IDF plays a role in ultimate uplift capacity because as the number of rotations increase to advance a 

certain depth, the soil is disturbed more during advance. This is especially important for final 

installation depths that represent 1 to 2 diameters above the final embedment of the helix which is 

considered in traditional bearing capacity theory to be the zone of influence contributing to the load 

capacity in clays. This effect of a “poor” installation is illustrated in Figure 4.9. 
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Figure 4.9 Comparison of Load-Displacement Curves for Two Round Shaft Helical Anchors & 
Influence of IDF (Lutenegger et al. 2014). 

 

 

Figure 4.10 Effects of Helices on Undrained Shear Strength in Clays (Lutenegger et al. 2014). 
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It can be seen that soil disturbance due to a high IDF greatly impacts the uplift capacity of the round 

shaft helical anchors, diverging by as much as 8000 lbs. of capacity at large displacements. Even with 

perfect installation, there is still a reduction in strength that occurs due to the helix slicing into the soil. 

A plot of depth versus undrained shear strength is shown in Figure 4.10 which shows the reduction in 

strength with each addition of a helix. The greatest reduction in strength occurs after installation of the 

triple-helix anchor, which lowers the strength by 3000psf at some depths.  

4.5.1 Indirect Methods of Measuring Torque 

 Torque is monitored during installation for a number of reasons. If the torque during 

installation exceeds the capacity of the equipment used to install the helical anchor, damage to the 

equipment will occur, and more seriously, someone may be injured. Another reason is that when there 

is a significant change in instantaneous torque, a new soil stratum may have been penetrated. 

Therefore, torque can be used to indicate changes in stratigraphy. It can also be used to indicate 

variability of stratigraphy across a job site. Torque will decrease if there is no advance and soil strength 

will decrease due to the plate effectively remolding the soil. When designing helical anchors, a certain 

capacity is required and this calculated available capacity considers the measured parameters of a 

known soil type present at the site. A sudden change in torque can be indicative that this desired layer 

has been reached and therefore termination criteria can be met within the target layer. 

 There are two indirect methods of measuring torque during installation of Screw-Piles: using 

hydraulic pressure and differential hydraulic pressure. Figure 4.11 provides examples of each indirect 

method.  
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Figure 4.11 Indirect Methods of Measuring Torque (Hydraulic Pressure and Differential 
Pressure from left to right). 

 

 

Contractors like the use of hydraulic pressure because it is simple inexpensive, but measuring 

hydraulic pressure or differential hydraulic pressure is an unreliable method to determine torque unless 

a proper, site specific correlation is made. When measuring hydraulic pressure, the value measured is 

the inflow pressure. When a gauge for the back pressure is available, differential pressure can be 

calculated by taking the difference of the two values. Deardorff (2011) discovered through many tests 

that each combination of torque head and machine has a unique torque versus differential pressure 

curve. He attributed the variability to the installation flow rate of the torque head and equipment flow 

capacity of the machine. When attempting to convert differential pressure to torque using the 

manufacturer’s published efficiency, the calculated value will generally be underpredicted, leading to 

conservative designs if using torque-to-capacity relationships for termination criteria. The equation for 

the conversion is provided in Equation 4.4: 

 

         [4.4] 

 

where: 

DP = differential pressure across the hydraulic motor (psi) 
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CID = cubic inch displacement of the hydraulic motor (in3) 

PGR = planetary gear ratio of the planetary drive system 

η = the drive head efficiency 

 

Deardorff determined that manufacturer’s almost always over-predict their torque head efficiencies 

leading to conservatively lower values of torque.  

 

4.5.2 Direct Methods for Installing Torque 

4.5.2.1 Chance Wireless Torque Indicator 

Methods of measuring torque directly during installation of helical anchors include using a 

digital indicator, a torque transducer and a shear pin torque limiter. For this project, a CHANCE® 

digital indicator was used. Figure 4.12 shows the indicator mounted in-line between the Kelly bar 

adapter and pile adapter and measures torque using strain gauges.  

 

Figure 4.12 CHANCE® Digital Indicator with Wireless Torque Display 
 

The indicator sends the torque measurement wirelessly to an LED readout so the engineer can be 

constantly monitoring torque at distances of up to 50ft. The device from CHANCE® used in this 

project had the capacity for measuring torque of up to 30,000 ft-lbs., a value almost triple the value of 

the maximum capacity of the largest torque head used in the study. Torque can also be monitored using 

a torque transducer.  
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4.5.2.2 TORQ-PIN by Concept Torque Solutions, Inc. 

A TORQ-PIN by Concept Torque Solutions, Inc. was utilized in this study. It replaces the 

dummy pin that connects the torque head to the excavator and also measures torque using strain 

gauges. The pin, seen in Figure 4.13, is connected using a series of wires to a 4.3” LED display that is 

able to monitor the torque, depth of installation, angle of installation, and also plumbness to the 

selected angle.  

 

Figure 4.13 TORQ-PIN, 4.3” LED TORQ-PIN Display, TORQ-PIN Installation (from left to 
right). 

 

 These data can be downloaded onto a computer in the form of an excel file using a USB drive and 

easily manipulated. The third way of directly measuring torque involves the use of a shear pin torque 

limiter. This method requires multiple shear pins, each able to withstand a torsional force of 500 ft.-lbs. 

The appropriate amount of pins are placed into the slots located where the limiter connects to the Kelly 

bar and torque is indicated when the pins shear. This method limits the user to only one measurement 

and therefore is not an efficient way to monitor installation torque. A shear pin torque limiter should 

only be used as a calibration tool for other devices that directly measure torque. 

 

4.6 LOAD TESTING 

In order to determine the ultimate capacity of helical anchors in uplift, static load tests were 

performed in general accordance with the American Society for Testing and Materials (ASTM) D3689 

Standard Test Methods for Individual Piles Under Static Axial Tensile Load using the incremental load 

method. Only tension tests were performed in this study. The tests utilized an Enerpac hollow ram 60 

ton (500 kN) RCH 606 hydraulic jack. Cribbing in the form of wooden 6x6s were stacked one on top 

of the other as shown in Figure 4.14, to provide a platform for steel I-beams. The cribbing not only 

carried the load from the beams produced by the hydraulic pump and cylinder but also provided 
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enough vertical clearance for the test to be performed. Once the cribbing was stacked to the appropriate 

height two 14 ft. aluminum I-beams were placed perpendicularly to the final row of 6x6s. A circular 

steel plate with a hole in the center was placed on the beams and centered over the anchor to be tested. 

The hydraulic cylinder was connected to the pump by a hose, was placed on this leveled off plate. The 

hole in both the center of the plate and through the center of the cylinder allowed a DYWIDAG rod to 

be run through the center and connected to the pile using a threaded adapter. 

 
 

Figure 4.14 Typical Setup for Uplift Test of Helical Anchor at UMass-DOE Site 
 

A 300 kip (1350 kN) Geokon load cell, sandwiched between two steel plates and connected to 

a Vishay Measurements Group P-3500 digital readout box shown in Figure 4.15, was then placed over 

the DYWIDAG rod so that the incremental load produced by the piston could be measured accurately. 
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Figure 4.15 Vishay Measurements Group P-3500 Strain Indicator 
 

Once this part of the test was secured with a nut that thread onto the DYWIDAG rod, a small 

reference beam with two threaded rods each run through a U-bolt and secured tightly to the beam was 

driven into the ground. This reference beam was leveled and a digital displacement gauge with a 

precision of 0.0005 in. was secured to the reference beam to measure the displacement of the pile. A 

schematized view of the setup is provided in Figure 4.16. 

 

Figure 4.16 Uplift Load Test Schematic (Toombs 2011). 
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Constant load was applied using the hydraulic jack to the helical anchor and displacement was 

measured at increments of 0.5, 1, and 2.5 minutes for a pile-specific load schedule determined from 

calculations based on known capacities of helical anchors in similar soils. The load schedule typically 

represented increments of approximately 5% of the predicted ultimate capacity. Capacity of helical 

anchors was estimated using the empirical correlation factor KT. The load was increased until a 

minimum displacement of approximately 20% of the average helix diameter of the anchor was 

achieved or until load could no longer be maintained. Rapid increase in displacement and constant 

pumping resulting in decreasing load application shown on the readout box were characteristic of a 

Screw-Pile failure. Once either failure or maximum necessary displacement was reached, final 

displacement was recorded and the anchor was allowed to “relax” for 5 minutes at zero load. After 5 

minutes relaxation, the final displacement of the anchor was recorded and the test was complete. 
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CHAPTER 5: PRESENTATION OF RESULTS 

5.1 INTRODUCTION 

This chapter presents and discusses the results of the laboratory tests and in situ tests that were 

conducted as part of this research project. It also includes the results from the trial installations and 

load tests that were performed at both the UMass AF-GT site and the UMass DOE Site from Fall 

2014-Spring 2015. 

5.2 IN SITU TESTS 

5.2.1 Miniature Field Vane Tests 

Miniature Field Vane Tests (MFVTs) were performed at the UMass DOE Site over the blades of three 

SS5 anchors to determine changes in peak undrained shear strength over time. A 12, 12/12, and 

12/12/12 were chosen to perform the tests over to compare data previously collected in the Fall of 

2013. Figure 5.1 shows the results from the in situ tests. In general, the multi helix anchors disturbed 

the soil the most and therefore the corresponding peak undrained shear strengths measured over these 

anchors were less than the single and control by approximately 10 psi on average. As was expected, 

the disturbance from the triple helical anchor was the most severe and resulted in the lowest values of 

undrained shear strength and did not increase over time. There is a transition period at about 6 ft. 

below ground surface where the aged retests of the single and double anchor begin to converge toward 

the control values. The single and double helical anchors showed an increase in undrained shear 

strength over time of about 15 psi beneath the transition period of 6 ft. This may be a result of water 

table fluctuating, but never dropping for long below 6 ft., keeping the clay beneath 6 ft. completely 

saturated. Saturated clays lose strength in response to disturbance more readily than unsaturated clays. 

Tabulated results from the MFVTs are provided in Appendix B. 
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Figure 5.1 Results from MFVTs at the UMass DOE Site 
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5.2.2 Sowers Drive Cone Penetrometer 

 The results from the SDCP tests at the UMass DOE Site are provided in Figure 5.2 and show 

the transition from the stiff overconsolidated crust to the softer more normally consolidated clay at 

about 8ft.  

 

Figure 5.2 Results from SDCP at the UMass DOE Site 

5.2.3 Mini Drive Probe Torque Tests (MDPT-T) 

 Figure 5.3 provides the results from the MDPT tests of the cumulative blow counts per foot at 

each interval. As expected, the larger the probe, the more blows it took to penetrate the soil. This plot 

confirms the transition interface at approximately 8ft. between the stiff crust and soft normally 

consolidated clay that was illustrated in Figure 5.2. 
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Figure 5.3 Results from MDPT-T at the UMass DOE Site  
 

5.3 LABORATORY TESTS 

5.3.1 Moisture Content 

Water content determinations were performed on samples collected from the seven MFVTs 

conducted at the UMass DOE Site. Figure 5.4 presents the moisture content data from the Fall 2013, 

Fall 2014, and Spring 2015. Water contents at 2 ft. range 25-37% and increase linearly with depth to 

moisture contents ranging from 47-55% at the 12 ft. interval. The variation in the upper 6 ft. is caused 

by the sensitivity to water table fluctuations from rainfall. Overall, it is observed that moisture content 
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is for the most part constant over time and between the different seasons. Tabulated results from water 

content determinations are included in Appendix B with the results from the MFVTs. 

 

 

Figure 5.4 Moisture Content Profile at the UMass-DOE Site. 
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from 4000psf to 8500psf, and loses a considerable amount of strength starting at a depth of about 7 

feet, dropping below 300psf in the normally consolidated clay below 8ft.  

 

Figure 5.5 Remolded Fall Cone Results from the UMass DOE Site 
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depth but with a single 12 in. helix in order to separate the components of aging into shaft and helix 

dependency. A summary table of the pile characteristics is provided in Table 5.1. 

 

Table 5.1 Summary Table of Shallow Foundations Evaluated. 

Pile Number Shaft Diameter (in.) Pitch (in.) Depth (ft.) Helix Diameter (in.) 
PP 1 2.875 N/A 4 N/A 
PP 2 2.875 N/A 8 N/A 
PP 3 4.5 N/A 4 N/A 
PP 4 4.5 N/A 8 N/A 
PP 5 6.625 N/A 4 N/A 
PP 6 6.625 N/A 8 N/A 
PP 7 8.625 N/A 4 N/A 
HP 1 2.875 3 4 12 
HP 2 2.875 3 8 12 
HP 3 4.5 3 4 12 
HP 4 4.5 3 8 12 
HP 5 6.625 3 4 12 
HP 6 6.625 3 8 12 
HP 7 8.625 3 4 12 

 

5.4.2 Round Shaft (RS) and Square Shaft (SS) Helical Anchors 

 Numerous RS and SS helical anchors were installed and tested and some retested for this 

project. All RS extensions had an upset end so only lead section was in contact with the soil along the 

shaft. In addition to piles that were installed, existing piles were re-tested and then screwed into the 

ground to be tested at greater depths. Both single-helix and multi-helix anchors were analyzed in this 

project to evaluate the influence of number of helices on torque-to-capacity relationships. For triple-

helix anchors, both tapered and cylindrical configurations were installed and tested to evaluate 

disturbance factors. A tapered helical anchor has progressively larger helices after the lead helix to 

improve uplift capacity while limiting the disturbance felt by the upper helices. A cylindrical anchor 

has uniform diameter helices. The idea behind this design is to maximize bearing capacity contribution 

from the helix if disturbance in the soil is less of a factor, mainly in cohesionless soils. A schematic of 

the two configurations and the zone of disturbance they create during installation is illustrated in 

Figure 5.6. Types of SS piles and RS piles are presented in Tables 5.2 and 5.3 respectively. 
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Table 5.2 Summary Table of SS Helical Anchors Evaluated. 
 

Square Shaft Helical Anchors 
Shaft Size 

(in.) 
Pitch 
(in.) 

Helix 
Spacing 

Helix Diameter 
(in.) Site Tested 

Test Depths 
(ft.) 

1.25 3 N/A 12 UMass DOE Site 2 10 
1.25 3 3D 10/12 UMass DOE Site 2 10 
1.5 3 N/A 12 UMass DOE Site 2 15 
1.5 3 3D 12/12 UMass DOE Site 2 15 
1.5 3 3D 12/12/12 UMass DOE Site 2 10, 15, 20 
1.5 3 3D 8/10/12 UMass AF-GT 10, 20 
1.5 3 3D 10/12/14 UMass DOE Site 2 10, 20, 30, 40 
1.5 3 3D 12/14/16 UMass DOE Site 2 10 
1.5 3 1.5D 14/14/14 UMass DOE Site 2 10, 20, 30 
1.5 3 3D 14/14/14 UMass DOE Site 2 10, 20, 30 
1.5 3 N/A 12 UMass AF-GT 20 
1.75 3 3D 8/10/12 UMass DOE Site 2 10 
1.75 3 3D 10/12/14 UMass DOE Site 2 10, 20, 30 
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Table 5.3 Summary Table of RS Screw-Piles. 

Round Shaft Helical Anchors 

Coating 

Shaft 
Diameter 

(in.) 
Pitch 
(in.) 

Helix 
Spacing 

Helix 
Diameter 

(in.) Site Tested 

Test 
Depths 

(ft.) 
Galvanized 1.25 3 3D 8/10 UMass DOE Site 2 20 
Galvanized 1.25 3 3D 8/10/12 UMass DOE Site 2 10, 20 
Galvanized 1.9 3 N/A 14 UMass DOE Site 1 9 
Galvanized 2.875 3 N/A 10 UMass DOE Site 2 10, 20 
Galvanized 2.875 3 N/A 12 UMass DOE Site 2 10, 20, 30 

SCG 2.875 3 N/A 14 UMass DOE Site 1 9 
Galvanized 2.875 3 N/A 14 UMass DOE Site 1 9 

Plain 2.875 3 N/A 14 UMass DOE Site 1 9 
SCBP 2.875 3 N/A 14 UMass DOE Site 1 9 

SCBP-HCO 2.875 3 N/A 14 UMass DOE Site 1 9 
SCBP-NCH 2.875 3 N/A 14 UMass DOE Site 1 9 
Galvanized 2.875 3 3D 10/10 UMass DOE Site 2 10, 20 
Galvanized 2.875 3 3D 12/12 UMass DOE Site 2 10, 20, 30 
Galvanized 2.875 3 3D 10/10/10 UMass DOE Site 2 10, 20, 30 
Galvanized 2.875 3 3D 12/12/12 UMass DOE Site 2 10, 20, 30 
Galvanized 2.875 3 3D 8/10/12 UMass DOE Site 2 10, 20, 30 
Galvanized 2.875 3 3D 10/12/14 UMass DOE Site 2 10, 20 
Galvanized 2.875 3 3D 8/10/12 UMass AF-GT 10, 20, 30 

Plain 2.875 3 N/A 8 UMass AF-GT 10 
Plain 2.875 3 N/A 12 UMass AF-GT 10, 20 
Plain 2.875 4 N/A 12 UMass AF-GT 10, 20 
Plain 2.875 6 N/A 12 UMass AF-GT 10, 20 
Plain 2.875 3 N/A 18 UMass AF-GT 10 
Plain 2.875 6 N/A 18 UMass AF-GT 10, 20 

Galvanized 3.5 3 N/A 12 UMass DOE Site 2 10, 20 
Galvanized 3.5 3 3D 12/12 UMass DOE Site 2 10, 20 
Galvanized 3.5 3 3D 12/12/12 UMass DOE Site 2 10 
Galvanized 3.5 3 3D 8/10/12 UMass DOE Site 2 10, 20 
Galvanized 3.5 3 3D 10/12/14 UMass DOE Site 2 10, 20 

Plain 4.5 3 N/A 14 UMass DOE Site 2 9 
SCBP-HCO 4.5 3 N/A 14 UMass DOE Site 2 9 
Galvanized 4.5 3 N/A 14 UMass DOE Site 2 9 

SCG 4.5 3 N/A 14 UMass DOE Site 2 9 
SCBP-NCH 4.5 3 N/A 14 UMass DOE Site 2 9 

SCBP 4.5 3 N/A 14 UMass DOE Site 2 9 
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* Note: SCG - Slick Coated Galvinized pile, SCBP - Slick Coated Black Pile,  
SCBP-HCO - Slick Coated Helix Only Black Pile, SCBP-NCH - Slick Coated Shaft Black Pile 
 

Figure 5.6 Disturbance Effects of Tapered vs. Cylindrical Helical Anchors. 
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5.5 TRIAL INSTALLATIONS- INVESTIGATION OF INSTALLATION TORQUE 

5.5.1 UMass-AF-GT Site 

 Various trial installations were performed at the Agronomy Farm located in South Deerfield, 

MA just west of the Connecticut River across River Rd. All trial installations were performed with a 

Bobcat T190 compact track loader equipped with the necessary 1 1/8 in. diameter hydraulic lines to 

provide power to the torque head. Two torque heads were tested at the Agronomy Farm to determine 

the variability in performance given the same machine. Capacity for the two torque heads along with 

the hydraulic flow rate and standard and high flow for the T190 are provided in Table 5.4. 

Table 5.4 Machine and Torque Head Specifications Used at UMass-AF-GT Site 

Machine Hydraulic Flow Rate (GPM) 

Bobcat T190 
16.9 (Standard Flow) 

26.4 (High Flow) 
Drive Head Torque Capacity (ft-lbs) 

Eskridge  50K (Small Head) 7000 
Eskridge 77BD (Large Head) 6500 

 

An RS2875 8/10/12 was installed to a depth of 30 ft. using different combinations of rotation speed 

and torque head configuration. During every trial installation, differential hydraulic pressure, torque, 

rotations per foot, and time per foot of advance were recorded. The Eskridge 50K is referred to as the 

small head because it is about half the size of the larger Eskridge 77BD torque head. They have similar 

torque capacities but are geared differently to produce similar torque at different gear ratios. A trial 

installation using the small head operating at normal throttle was conducted along with 4 trials using 

the larger head; one at low throttle, one at normal throttle, one at full throttle, and the last at normal 

throttle but with measurements of torque recorded at 0.5 ft. intervals.  

Figure 5.7 presents the results of the installations. Although the operator intentionally slowed 

the machine down to an idle in an attempt to advance the anchor as slowly as possible, the resulting 

rotation speed was only about 1 or 2 RPMs slower on average than the normal rate of installation. In 

contrast, the full throttle installation was almost 3 times faster, jumping from an average of around 6 

RPMs to about 15.  



76 
 

 

Figure 5.7 Installation Rate Effects at the UMass-AF-GT Site. 
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Figure 5.8 Installation Rate Effects on Advance at the UMass-AF-GT Site. 
 

Figure 5.9 illustrates that, despite the different installation rates, the number of revolutions per 

foot remained consistent. Therefore, full throttle installation does not contribute to disturbance due to a 

high installation disturbance factor. Figures 5.9 and 5.10 show the installation rate effects on the torque 

and differential pressure profiles. On average, the torque and differential pressure for the full throttle 

installation was about 50% greater than the normal throttle installation. This indicates that increased 

speed does have an effect on the installation torque, but since the geometry of the pile is identical when 

installed at a normal rate, the capacities should be the same, implying that increasing the installation 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

De
pt

h 
(ft

) 

Advance (rotations/ft) 

Small Head Normal Throttle
Large Head Normal Throttle
Large Head Full Throttle
Large Head Slow Throttle



78 
 

rate will decrease the correlation factor KT. Tests need to be performed on helical anchors installed at 

high rates to verify this assertion. 

 

 
Figure 5.9 Torque Profile at the UMass-AF-GT Site for Different Torque Heads and Speeds. 
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Figure 5.10 Differential Pressure Profile at the UMass-AF-GT Site for Different Torque Heads 

and Speeds. 
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Figure 5.11 Small Head versus Large Head Comparison at the UMass-AF-GT Site at Normal 
Throttle. 
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the Eskridge 50K. Figures 5.13 and 5.14 show the variation due to slow and fast installation. The slow 

curve shows a tight linear relationship while the full throttle installation exhibits a lot more scatter. 

This indicates that differential pressure is not a good indicator of installation torque during full throttle 

installation because the correlation has an R-squared value of about 0.66.  

 

Figure 5.12 Normal Throttle Installation Results at the UMass AF-GT Site. 
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Figure 5.13 Large Head, Full Throttle Installation Results at the UMass AF-GT Site 

 
Figure 5.14 Large Head, Slow Throttle Installation Results at the UMass AF-GT Site 
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possible to achieve with the proper monitoring process and any refinement in stratigraphy. Figure 5.14 

illustrates the importance of having good resolution in data collection. At the 15 ft. interval, the value 

that would be interpreted if the engineer was monitoring every 2 ft. would be about 2450 ft-lbs. Using 

the data from the 1 ft. intervals, the value at 15 ft. is actually 1800 ft-lbs. This is a drastic difference, 

espeically when using torque-to-capacity relationships to verify capacity. With 10 ft-1 being a standard 

KT value, that equates to an overestimation of capacity by about 6500 lbs, which is about 25-33% of 

the ultimate uplift capacity of the anchor in this soil. This confirms the need to monitor installation 

torque at the very least every foot. At 0.5 ft. increments the gap shrinks between readings, but is still 

on the order of 200-500 ft-lbs. different.  

 
Figure 5.14 Large Head, Normal Throttle Installation Results – Umass AF-GT Site 
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Figure 5.15 shows an overlay of the original normal throttle trial with the second normal 

throttle trial to show the difference in torque readings when the lead section is plugged. After the first 4 

trials, the RS2875 lead section was plugged for about 4 ft. up the hollow pipe. The plug was cleaned 

out before the final trial to determine resolution effects was conducted. It is observed that the plugged 

trial had significantly lower torque readings, by as much as 1200 ft-lbs at times. 

 

 
Figure 5.15 Large Head, Normal Throttle, Plugged vs. Not Plugged Comparison  

UMass – AF-GT Site. 
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5.5.2 UMass DOE Site 

Three days of installations were conducted at the UMass DOE Site with two different 

excavators and three different torque heads. Day 1 and 3 were with Sea & Shore Contracting, Inc. and 

their Mustang ME8003 compact excavator and Day 2 was with Diversified Construction Services, 

LLC and their Bobcat mini-excavator. A summary table showing the machine and torque head 

specifications is included in Table 5.5. 

Table 5.5 Machine and Torque Head Specifications for the UMass DOE Site 

Day 1+3 Day 2 
Machine Hydraulic Flow Rate (GPM) Machine Hydraulic Flow Rate (GPM) 

Mustang ME8003 
9.7 (Low Flow) Bobcat 435 G-Series 19.81 (Standard Flow) 

 21.8 (Standard Flow) Drive Head Torque Capacity (ft-lbs) 
Drive Head Torque Capacity (ft-lbs) Eskridge  50K(Small) 7000 

Pengo MDT-12K 12000 Eskridge 77BD (Large) 6500 
 

The same RS2875 8/10/12 triple helix anchor was used in these trial installations in order to 

keep the pile geometry constant. Day 1 consisted of three identical trials with the same machine, same 

Pengo MDT-12K torque head, and same installation rate to evaluate repeatability. On Day 3, a single 

installation at full throttle was conducted to determine its effect on the results measured both during 

installation and during a load test performed on the anchor that was allowed to rest for 10 days. Figure 

5.16 presents the results from the four trials, showing consistent installation rates via rotation speed 

and advance rate with the only outlier being the installation performed at full throttle as expected. The 

spike at approximately 11 feet during Trial 3 represents the operator accidentally hitting the throttle 

and increasing the rate before returning it to normal throttle for the next interval. Figure 5.17 shows the 

advance of the pile also staying consistent with each trial, despite increasing speed during the full 

throttle installation. 
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Figure 5.16 Repeatability for Mustang ME8003 at the UMass-DOE Site 
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Figure 5.17 Advance Comparison for Mustang ME8003 at the UMass-DOE Site 
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Figure 5.18 Comparison of Installation Rate of Eskridge 50K (Small) and Eskridge 77BD 
(Large) Torque Heads at the UMass-DOE Site 
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Figure 5.19 Comparison of Advance of Small and Large Torque Heads at the UMass DOE Site 
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Figure 5.20 Torque Profiles from Pengo & Chance Digital Readout  
Day 1 at the UMass-DOE Site 
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Figure 5.21 Torque Profiles from Day 2, Eskridge Small Head versus Eskridge Large Head at 
the UMass-DOE Site 
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Figure 5.22 Trial Installation Torque Profiles from the UMass DOE Site 
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Figure 5.23 Torque vs. Differential Pressure for Eskridge Large Head at the UMass-DOE Site 
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Figure 5.24 Typical Load Test Results 

5.6.2 Uplift Reload Tests on Shallow Foundations 
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Figure 5.25 Aged Uplift Capacity versus Aging Period – UMass DOE Site 
 

 

Figure 5.26 Aged Uplift Capacity versus Shaft Diameter – UMass DOE Site 
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Diameter 
(in) 

Diameters 
(in) 

(ft) Rest Qult Qult Qult 

2.875 PP 4 1243 2950 1500 0.51 
2.875 PP 8 1235 4550 7000 1.54 
2.875 12 4 1235 7400 6300 0.85 
2.875 12 8 1298 13300 10000 0.75 

4.5 PP 4 1298 2500 1250 0.50 
4.5 PP 8 1292 8400 5000 0.60 
4.5 12 4 1292 8000 7300 0.91 
4.5 12 8 1297 15250 15800 1.04 

6.625 PP 4 1297 6200 2000 0.32 
6.625 PP 8 1287 11500 9100 0.79 
6.625 12 4 1287 9200 5800 0.63 
6.625 12 8 1298 20000 17400 0.87 
8.625 PP 4 1298 7400 5750 0.78 
8.625 12 4 1296 15800 9000 0.57 

 

5.6.3 Uplift Retests on Round and Square Shaft Helical Anchors 

Reload tests were performed on 68 round shaft and square shaft helical anchors at both the 

UMass DOE Site 1 and 2 to determine if capacity increased with time. Figures 5.27 and 5.28 show the 

results from these tests. Figure 5.27 shows an increase in the aged capacity with an increase in 

diameter for the round shaft anchors. A significant amount of scatter is displayed in Figure 5.27 by the 

square shaft anchors. Square shaft anchors develop very little side resistance in comparison to round 

shaft anchors, and this attributes to the scatter shown in the plot. Figure 5.28 shows a general 

increasing trend in Aged capacity with increasing time. Load test results are provided in Appendix B. 
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Figure 5.27 Ratio of Uplift Capacity vs. Shaft Diameter – UMass DOE Site 
 

 

Figure 5.28 Ratio of Uplift Capacity vs. Aging Period – UMass DOE Site 
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the average value of the final penetration distance equal to three times the average helix diameter. Qult 

was determined as the load necessary to produce a displacement of 10% of the average helix diameter. 

Figures 5.29 and 5.30 show how KT varies with shaft size for round shaft and square shaft anchors 

respectively. In agreement with the results found by Hoyt and Clemence (1989), the correlation factor 

decreases with increasing shaft size for round shaft anchors. Square shaft anchors, however, appear to 

follow the opposite trend as shown in Figure 5.30. Generally, the values obtained during the project are 

much higher than the proposed AC358 values. This may be because the values chosen for the paper 

were on the conservative side. 

 

 

 

Figure 5.29 Round Shaft Correlation Factors – All Tests - Both Test Sites 
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Figure 5.30 Square Shaft Correlation Factors – All Tests- Both Test Sites 
  

An attempt to distinguish factors that had the most influence on the correlation factor was made by 

generating histograms of the correlation factor and grouping different combinations of the various 

factors that are known to influence KT. Figure 5.31 presents the overall histogram for all piles tested in 

this study, before any separation was applied. A significant amount of scatter resulted, with the 

arithmetic mean resulting in a range of 9-11 ft-1. A complete summary table containing all the Qult and 

KT values for each test can be found in Appendix B-3.  

Figure 5.31 Histogram Showing Range of KT for all Piles 
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Figure 5.32 Histogram Showing Range of KT for Piles Reported in Literature 
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Figure 5.33 Single versus Multi Helical Anchors (from left to right). 
 

 

Figure 5.34 Helical Anchors in Sand versus Clay (from left to right) 
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histogram show relatively lower values for anchors seated in the stiff clay compared to those in the soft 

clay. 

 

Figure 5.35 Single vs. Multi Helical Anchors in Clay  
 

 

Figure 5.36 Helical Anchors in Stiff vs. Soft Clay 
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increasing helix diameter on similar shaft diameter piles. Figure 3.37 shows a decreasing trend in KT as 

the helix diameter increases. This is in agreement with the assertion that KT also decreases with an 

increase in shaft diameter, which leads to the conclusion that the bigger the helical anchor, shaft 

diameter or helix diameter, the more effort is needed to install (higher torque), but the increase in 

capacity is not proportional to the increase in necessary installation torque. 

 

Figure 5.37 Variation in KT for RS Single Helix Anchors at the UMass DOE Site  

5.6.8 Pitch Series Results 

A series of six single helix 2.875 in. diameter round shaft Screw-Piles were tested at the UMass 

AF-GT Site to determine the effects of pitch on installation torque and torque-to-capacity relationships. 

Table 5.6 provides a list of the different geometries of the piles in the pitch series. 

Table 5.6 Pitch Series Configurations 

Shaft Diameter (in.) Helix Diameter (in.) Pitch (in.) 
2.875 8 3 
2.875 12 3 
2.875 12 4 
2.875 12 6 
2.875 18 3 
2.875 18 6 

 

Figure 5.38 shows the torque profiles for the pitch series and indicates that as pitch increases the 

installation torque increases. This seems to be more exaggerated in the granular soils in the upper 14 

feet, but is not as pronounced once the Screw-Piles enter the fine-grained CVVC at a depth of 14 ft.  
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Figure 5.38 Torque Profile for Pitch Series at the UMass AF-GT Site 
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Figure 5.39 Torque vs. Differential Pressure for Pitch Series at the UMass AF-GT Site 
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Figure 5.40 Rotation Speed of the Pitch Series at the UMass AF-GT Site 
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Figure 5.41 Pitch Series Installation Results – UMass AF-GT Site 
 

Figure 5.42 presents the results from the load tests performed at the AF-GT. As expected, with 
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Figure 5.42 Load Test Results for the Pitch Series at the UMass AF-GT Site – 10’ Depth 
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Figure 5.43 Load Test Results for the Pitch Series at the UMass AF-GT Site – 20’ Depth 
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After installation of the pitch series, the plug, measured as the amount of soil that filled the end 

of the anchor, of each anchor was measured using a tape measure. The data shows that once the pipe 

has about 18” of soil it will not take on any more plug when advanced an additional 10 ft, effectively 

acting like a closed-end pipe pile. If more soil entered the hollow anchor, friction would develop, 

driving torque values to install the anchor higher, but not proportionally adding to capacity and 

therefore lowering measured KT. The plug length ratio, PLR, remained fairly constant from the clay 

site to the sand site at a depth of 10 ft, indicating that once the helical anchor was plugged, no more 

soil entered the pipe during advance. The PLR decreased at depths of 20 feet which means the amount 

of plug remained the same despite advancing the pipe another 10 feet. 

Table 5.8 Summary Table of Plugging Data  

Pile Geometry Depth (ft.) Plug (in.) PLR 
UMass - AF-GT Site  

RS2875 8" w/ 3" Pitch 10 19 0.16 
RS2875 12" w/ 3" Pitch 10 19 0.16 
RS2875 12" w/ 3" Pitch 20 20 0.08 
RS2875 12" w/ 4" Pitch 10 18.5 0.15 
RS2875 12" w/ 4" Pitch 20 19 0.08 
RS2875 12" w/ 6" Pitch 10 18.5 0.15 
RS2875 12" w/ 6" Pitch 20 25 0.10 
RS2875 18" w/ 3" Pitch 10 13.5 0.11 
RS2875 18" w/ 6" Pitch 10 18 0.15 
RS2875 18" w/ 6" Pitch 20 21 0.09 

UMass - DOE Site 
RS2875 - 12" 10 10.5 0.09 
RS2875 - 12" 10 8 0.07 
RS2875 - 12" 10 7.5 0.06 
RS2875 - 12" 10 11.5 0.10 
RS2875 - 12" 10 16.5 0.14 
RS2875 - 12" 10 20 0.17 
RS2875 - 14" 10 17.5 0.15 
RS2875 - 14" 10 17 0.14 
RS2875 - 14" 10 15.5 0.13 
RS2875 - 14" 10 16 0.13 
RS2875 - 14" 10 15.5 0.13 
RS2875 - 16" 10 16.5 0.14 
RS350 - 10" 10 20 0.17 
RS350 - 14" 10 18 0.15 
RS350 - 16" 10 20.5 0.17 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSTIONS 

The following conclusions are based on the trial installations and load tests on both shallow and 

deep helical anchors performed at both the UMass AF-GT Site in South Deerfield, MA and the UMass 

DOE Site at the University of Massachusetts Amherst in Hadley, MA.  

6.1.1 Installation Torque 

• Helical anchors develop higher installation torque with increasing pitch of helical plates. 

• Increased rotation rate leads to higher measured torque. 

• Each torque head has a unique relationship between differential pressure and torque. Torque to 

differential pressure relationships must be calibrated for each combination of machine and 

torque head.   

• Smaller torque head produces slower rotation rate than larger head at the same throttle on the 

same machine. 

• Installation rate does not affect advance, i.e. IDF. 

6.1.2 Torque-to-Capacity Relationships 

• Tapered and cylindrical Screw-Piles with the same shaft diameter and net helix area develop 

the similar installation torque, but tapered piles have a higher capacity, therefore a higher value 

of KT. 

• KT is dependent upon precision of measurements of installation torque. Only direct methods of 

monitoring installation should be used to determine torque correlation factors. 

• KT increases in soft clay compared to stiff clay. 

• KT is highly dependent upon the failure criterion selected. 

• KT is dependent upon the definition of installation torque. 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

6.2.1 Installation Torque 

• Evaluate the offset of the torque vs. pressure curve. 
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• Monitor installation and perform uplift load tests on different pitched single helical anchors in 

clay. 

• Monitor installation and perform uplift load tests on different pitched multi helical anchors in 

sand and clay. 

• Measure crowd during installation to determine effects on installation torque. 

• Test same machine and torque head at different sites to determine if soil type has effect on 

unique torque-to-pressure relationship. 

 

6.2.2 Torque-to-Capacity Relationships 

• Evaluate tapered vs. cylindrical torque to capacity relationships of multi helical anchors in 

sand. 

• Test capacity of anchors installed with full throttle installation speed. 

• Determine the effects of load testing on helical anchors by installing trial piles to depths where 

tests have been already been conducted. Anchors may be damaged during uplift load tests, 

affecting installation quality and reducing uplift load capacity when advanced and tested at 

subsequent depths.  
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APPENDIX A: AF-GEOTECH 

A-1 INSTALLTION LOGS 

Pitch Series 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8" Helix w/ 3" Pitch 
Extensions 1-5' Plug (in): 19 
Rig Type Bobcat T190 Torque Indicator Chance Digital Indicator 

Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): 
Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 
Revolutions per 

foot 
Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 290 8 1.05 57 8.4 
2 0 300 4.75 0.98 61 4.7 
3 0 330 5 1.36 44 6.8 
4 0 380 5.25 1.22 49 6.4 
5 600 360 5 1.22 49 6.1 
6 600 370 4.25 1.15 52 4.9 
7 900 375 4.25 1.02 59 4.3 
8 1100 450 5 0.98 61 4.9 
9 1100 525 5.5 0.87 69 4.8 
10 1400 555 6 0.94 64 5.6 
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HELICAL ANCHOR INSTALLATION LOG 

Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 12" Helix w/ 3" Pitch 
Extensions N/A Plug (in): N/A 

Rig Type 
Bobcat T190 

Torque Indicator Chance Digital Indicator 
Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): 
Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 
Revolutions per 

foot 
Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 315 4.25 1.76 34 7.5 
2 0 320 4.25 1.46 41 6.2 
3 0 300 4 1.30 46 5.2 
4 600 320 4.25 1.33 45 5.7 
5 800 400 4.25 1.30 46 5.5 
6 1000 485 4.175 1.36 44 5.7 
7 1200 525 4.5 1.30 46 5.9 
8 1200 520 4.25 1.33 45 5.7 
9 1800 720 4.5 1.30 46 5.9 
10 3000 1000 4.5 1.15 52 5.2 
11 1400 460 6 1.09 55 6.5 
12 1200 370 6 1.50 40 9.0 
13 800 300 4.75 1.13 53 5.4 
14 900 320 5.5 1.00 60 5.5 
15 1100 350 4.75 1.33 45 6.3 
16 1100 380 4.75 1.28 47 6.1 
17 1100 370 4.5 1.30 46 5.9 
18 1000 350 5 1.18 51 5.9 

19 1100 370 5 1.22 49 6.1 
20 900 300 4.5 1.33 45 6.0 
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HELICAL ANCHOR INSTALLATION LOG 

Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 12" Helix w/ 4" Pitch 
Extensions N/A Plug (in): N/A 

Rig Type 
Bobcat T190 

Torque Indicator Chance Digital Indicator 
Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): 
Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 
Revolutions per 

foot 
Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 320 3 2.40 25 7.2 
2 0 355 3.175 1.88 32 6.0 
3 0 340 3.25 1.82 33 5.9 
4 700 365 3.175 1.82 33 5.8 
5 1000 425 3.25 1.71 35 5.6 
6 1500 665 3.25 1.76 34 5.7 
7 2100 835 3 1.94 31 5.8 
8 2300 765 3.25 1.71 35 5.6 
9 2500 855 3.25 1.58 38 5.1 
10 3600 1165 3.25 1.46 41 4.8 
11 2000 650 5 1.20 50 6.0 
12 2400 660 4 1.22 49 4.9 
13 1400 590 4.5 1.33 45 6.0 
14 1000 370 5 0.91 66 4.5 
15 1300 460 4.75 1.13 53 5.4 
16 1500 510 3.75 1.43 42 5.4 
17 1600 540 4 1.33 45 5.3 
18 1500 510 4.5 1.13 53 5.1 
19 1500 520 3.5 1.46 41 5.1 
20 1600 560 3.5 1.43 42 5.0 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 12" Helix w/ 6" Pitch 
Extensions N/A Plug (in): N/A 

Rig Type 
Bobcat T190 

Torque Indicator Chance Digital Indicator 

Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): 
Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 
Revolutions per 

foot 
Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 265 2.5 2.61 23 6.5 

2 900 415 2 3.00 20 6.0 
3 900 395 2 2.86 21 5.7 
4 900 375 2 2.61 23 5.2 
5 1300 475 2 2.31 26 4.6 
6 1500 665 2.175 2.86 21 6.2 
7 2200 815 2.175 2.86 21 6.2 
8 2800 965 2.175 2.40 25 5.2 
9 3500 1160 2.175 3.00 20 6.5 
10 4500 1410 2.5 2.07 29 5.2 
11 1900 670 3.75 1.40 43 5.2 
12 2300 740 2.5 1.71 35 4.3 
13 1800 630 2.5 1.76 34 4.4 
14 1500 510 3.5 1.67 36 5.8 
15 1300 430 2.5 2.14 28 5.4 
16 1400 490 2.25 2.50 24 5.6 
17 1600 560 2 2.14 28 4.3 
18 1600 520 2.25 2.31 26 5.2 
19 1700 600 2.25 1.76 34 4.0 
20 1700 570 2.25 3.53 17 7.9 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 18" Helix w/ 3" Pitch 
Extensions N/A Plug (in): N/A 
Rig Type Bobcat T190 Torque Indicator Chance Digital Indicator 

Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 

Revolutions per 
foot 

Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 380 4 1.58 38 6.3 
2 800 415 4.5 1.40 43 6.3 
3 800 415 4.5 1.25 48 5.6 
4 1300 485 4 1.30 46 5.2 
5 1200 465 4.25 1.18 51 5.0 
6 1200 650 4 1.62 37 6.5 
7 1700 710 4.25 1.54 39 6.5 
8 2300 860 4.5 1.46 41 6.6 
9 2500 880 4 1.36 44 5.5 
10 3900 1110 4.25 1.40 43 5.9 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 18" Helix w/ 6" Pitch 
Extensions N/A Plug (in): N/A 
Rig Type Bobcat T190 Torque Indicator Chance Digital Indicator 

Hydraulic Head Small Torque Head Technicians MNR, AJL, MC 

Depth (ft): Torque 
(ft-lbs) 

Differential 
Pressure 

(psi) 

Revolutions per 
foot 

Installation 
Rate (ft/min) Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 240 2 2.40 25 4.8 
2 1200 450 2.175 2.31 26 5.0 

3 1100 430 2.175 2.14 28 4.7 

4 1400 500 2.175 2.14 28 4.7 

5 2000 715 2.175 2.50 24 5.4 
6 2300 940 2 2.40 25 4.8 

7 2500 950 2 4.29 14 8.6 
8 2300 890 2 3.16 19 6.3 
9 3800 1050 2 2.61 23 5.2 
10 6000 1400 1.5 3.00 20 4.5 
11 3900 1300 2.5 2.07 29 5.2 
12 4900 1700 2 2.00 30 4.0 
13 3200 1200 2 3.53 17 7.1 
14 1400 500 2.25 2.22 27 5.0 
15 1900 630 2.5 1.88 32 4.7 
16 1900 620 2.5 2.14 28 5.4 
17 1600 560 2.5 2.14 28 5.4 
18 1700 600 2.5 2.07 29 5.2 
19 1700 610 2.75 1.82 33 5.0 
20 1700 560 2.5 1.82 33 4.5 
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Trial Installations 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/23/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8/10/12 
Extensions: 4-7' Trial: Normal Throttle 

Rig Type: Bobcat T190 Torque Indicator Chance Digital Indicator 
Torque Head: Eskridge 50K Technicians MNR + AJL 

Depth (ft): 

TORQ-
PIN 
(ft-
lbs.) 

Torque 
(ft-lbs) 

Pressure 
Differential(psi) 

Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

Rotation 
Speed 

(RPMs) 

1 N/A 0 475 3.5 1.33 45 4.7 
2 155 0 475 4 1.71 35 6.9 
3 355 0 500 4 1.71 35 6.9 
4 459 500 525 4.5 1.58 38 7.1 
5 721 700 575 3.75 2.73 22 10.2 
6 1123 1200 675 7 1.22 49 8.6 
7 1330 1500 710 5 1.18 51 5.9 
8 1403 1500 720 5.75 1.40 43 8.0 
9 2199 2300 910 4.75 1.40 43 6.6 

10 2634 3000 1090 5.25 1.05 57 5.5 
11 2368 2800 1050 6.25 0.98 61 6.1 
12 1361 1700 785 7 0.87 69 6.1 
13 2142 2400 1020 5.25 1.28 47 6.7 
14 1797 2100 950 5.25 1.58 38 8.3 
15 2345 2800 1100 5.75 1.43 42 8.2 
16 1367 1700 890 6.25 1.11 54 6.9 
17 990 1200 680 6.25 1.15 52 7.2 
18 1297 1300 780 5 1.36 44 6.8 
19 1193 1300 850 4.25 1.50 40 6.4 
20 777 800 680 4.5 1.67 36 7.5 
21 800 900 485 3.75 1.50 40 5.6 
22 908 900 520 4.25 1.30 46 5.5 
23 855 900 510 4.75 1.18 51 5.6 
24 729 800 470 4.25 1.33 45 5.7 
25 1080 1200 550 4.5 1.22 49 5.5 
26 800 900 510 4.25 1.18 51 5.0 
27 810 900 460 4.25 1.30 46 5.5 
28 822 900 470 4.25 1.33 45 5.7 
29 905 900 440 4.5 1.11 54 5.0 
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30 1015 1000 500 4.25 1.20 50 5.1 
Notes: 1) Installed at 1/2 throttle, normal speed. 
               2) Total drive of 30' in 22.9 minutes. 
 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/29/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8/10/12 
Extensions: 2-7', 3-5' Trial: Normal Throttle 

Rig Type: Bobcat T190 Torque Indicator Chance Digital Indicator 
Torque Head: Eskridge 77BD Technicians MNR + AJL 

Depth (ft): Torque 
(ft-lbs) 

Pressure 
Differential(psi) 

Revolutions per 
foot 

Installation 
Rate 

(ft/min) 
Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 210 2.75 2.86 21 7.9 
2 0 170 3.75 1.82 33 6.8 
3 0 230 4.75 1.46 41 7.0 
4 500 230 6.5 1.15 52 7.5 
5 800 330 5.5 1.50 40 8.3 
6 1000 330 4.5 1.43 42 6.4 
7 1100 430 5 0.56 108 2.8 
8 1200 500 4.75 1.28 47 6.1 
9 1400 560 4.5 1.46 41 6.6 

10 2100 780 5 1.18 51 5.9 
11 2600 850 4.75 1.13 53 5.4 
12 2000 700 5.25 1.07 56 5.6 
13 2300 750 5 1.20 50 6.0 
14 1300 550 4.75 1.20 50 5.7 
15 1500 580 4.5 1.36 44 6.1 
16 1600 550 4.75 1.22 49 5.8 
17 1200 480 4.5 1.30 46 5.9 
18 1200 450 4.75 1.30 46 6.2 
19 1100 460 4.5 1.33 45 6.0 
20 800 360 4.25 1.46 41 6.2 
21 1000 390 4.5 1.43 42 6.4 
22 1200 450 4.5 1.33 45 6.0 
23 900 370 4.25 1.71 35 7.3 
24 1100 420 4.5 1.28 47 5.7 
25 900 360 4.25 1.58 38 6.7 
26 800 360 4.5 1.36 44 6.1 
27 900 390 4.25 1.50 40 6.4 
28 1100 410 4.5 1.30 46 5.9 
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29 1100 460 4.75 1.33 45 6.3 
30 1200 480 4.5 1.43 42 6.4 

Notes: 1) Installed at 1/2 throttle, normal speed. 
             2) Total drive of 30' in 23.2 minutes. 

 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/29/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8/10/12 
Extensions: 2-7', 3-5' Trial: Full Throttle 

Rig Type: Bobcat T190 Torque Indicator Chance Digital Indicator 
Torque Head: Eskridge 77BD Technicians MNR + AJL 

Depth (ft): Torque 
(ft-lbs) 

Pressure 
Differential(psi) 

Revolutions per 
foot 

Installation 
Rate 

(ft/min) 
Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 370 3.25 4.62 13 15.0 
2 0 300 4.25 3.53 17 15.0 
3 0 320 4 4.29 14 17.1 
4 800 370 5 3.00 20 15.0 
5 1200 590 4.5 3.33 18 15.0 
6 1500 560 4.5 3.53 17 15.9 
7 1400 590 5 2.40 25 12.0 
8 1700 730 5 3.00 20 15.0 
9 2500 750 5 2.86 21 14.3 

10 2800 720 5 3.00 20 15.0 
11 3400 760 5 2.73 22 13.6 
12 2500 1080 5 2.73 22 13.6 
13 2700 1070 5 2.50 24 12.5 
14 2700 980 5 3.00 20 15.0 
15 2200 900 4.5 2.73 22 12.3 
16 2500 1000 4.75 2.61 23 12.4 
17 2000 720 4.5 3.75 16 16.9 
18 1700 640 4.5 2.61 23 11.7 
19 1800 740 5 3.00 20 15.0 
20 1100 550 4.75 2.86 21 13.6 
21 1000 500 4.5 3.33 18 15.0 
22 1100 510 4.25 3.16 19 13.4 
23 1000 500 4.5 3.53 17 15.9 
24 1100 500 5.25 2.86 21 15.0 
25 1200 560 5 3.53 17 17.6 
26 1300 550 4 2.73 22 10.9 
27 1100 560 4.5 3.53 17 15.9 
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28 1000 640 4.5 2.73 22 12.3 
29 1300 610 4.25 3.16 19 13.4 
30 1400 650 5 2.73 22 13.6 

Notes: 1) Installed at full throttle, faster than normal speed. 
               2) Total drive of 30' in 9.9 minutes. 
 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8/10/12 
Extensions: 2-7', 3-5' Trial: Slow Throttle 

Rig Type: Bobcat T190 Torque Indicator Chance Digital Indicator 
Torque Head: Eskridge 77BD Technicians MNR + AJL 

Depth (ft): Torque 
(ft-lbs) 

Pressure 
Differential(psi) 

Revolutions per 
foot 

Installation 
Rate 

(ft/min) 
Time (s) 

Rotation 
Speed 

(RPMs) 
1 0 120 4 1.76 34 7.1 
2 0 140 4 1.43 42 5.7 
3 0 200 4 1.43 42 5.7 
4 600 240 4.175 1.09 55 4.6 
5 700 280 4.175 1.18 51 4.9 
6 1000 390 4.175 1.09 55 4.6 
7 1200 440 4.5 1.03 58 4.7 
8 1600 590 4.75 0.88 68 4.2 
9 2400 880 5 0.81 74 4.1 

10 2700 980 4.75 0.76 79 3.6 
11 2900 1060 4.5 0.71 85 3.2 
12 2300 800 5 0.76 79 3.8 
13 2500 900 4.5 0.97 62 4.4 
14 3000 1050 4.5 0.85 71 3.8 
15 1700 650 4.25 0.90 67 3.8 
16 2400 850 4.5 0.86 70 3.9 
17 1200 460 4.5 0.90 67 4.0 
18 1400 510 4.175 1.02 59 4.2 
19 1500 550 4.75 0.90 67 4.3 
20 900 360 4.5 0.94 64 4.2 
21 900 350 4.25 1.09 55 4.6 
22 900 360 4.25 1.11 54 4.7 
23 1000 400 4.25 0.94 64 4.0 
24 900 350 4.25 1.18 51 5.0 
25 800 310 4.5 1.05 57 4.7 
26 1000 440 4.5 1.03 58 4.7 
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27 1000 400 4.5 1.00 60 4.5 
28 1200 460 4.5 1.03 58 4.7 
29 1100 410 4.5 1.07 56 4.8 
30 1200 450 4.5 1.05 57 4.7 

Notes: 1) Installed at low throttle, slower than normal speed. 
               2) Total drive of 30' in 30.3 minutes. 

 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 4/30/2015 Location: AF-GT 

Pile Geometry: RS2875 Lead Section: 8/10/12 
Extensions: 2-7', 3-5' Trial: Normal Throttle 

Rig Type: Bobcat T190 Torque Indicator Chance Digital Indicator 
Torque Head: Eskridge 77BD Technicians MNR + AJL 

Depth (ft): Torque 
(ft-lbs) 

Pressure 
Differential(psi) 

Revolutions per 
foot 

Installation 
Rate 

(ft/min) 
Time (s) 

Rotation 
Speed 

(RPMs) 
0.5 0 - - - - - 
1 0 100 4 2.50 24 10.0 

1.5 0 - - - - - 
2 0 160 4 1.76 34 7.1 

2.5 0 - - - - - 
3 600 170 4 1.67 36 6.7 

3.5 600 - - - - - 
4 700 210 4 1.46 41 5.9 

4.5 800 - - - - - 
5 1000 330 4.25 1.36 44 5.8 

5.5 1300 - - - - - 
6 1800 570 4.75 1.15 52 5.5 

6.5 1600 - - - - - 
7 1800 620 4.25 1.30 46 5.5 

7.5 2000 - - - - - 
8 2300 780 5 1.07 56 5.4 

8.5 2300 - - - - - 
9 2600 860 4.75 1.15 52 5.5 

9.5 3000 - - - - - 
10 3300 1150 4.75 0.88 68 4.2 

10.5 3100 - - - - - 
11 3200 1170 4.75 0.97 62 4.6 

11.5 3200 - - - - - 
12 3000 1110 5 1.05 57 5.3 

12.5 2500 - - - - - 
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13 2800 990 5 1.09 55 5.5 
13.5 2800 - - - - - 
14 2500 880 5 1.11 54 5.6 

14.5 2000 - - - - - 
15 1800 670 4.5 1.20 50 5.4 

15.5 1900 - - - - - 
16 2400 830 4.5 1.20 50 5.4 

16.5 1800 - - - - - 
17 1600 560 4.25 1.22 49 5.2 

17.5 1500 - - - - - 
18 1400 480 4.5 1.20 50 5.4 

18.5 1500 - - - - - 
19 1500 580 4.25 1.33 45 5.7 

19.5 1500 - - - - - 
20 1200 380 4.5 1.43 42 6.4 

20.5 1000 - - - - - 
21 900 290 4.5 1.40 43 6.3 

21.5 900 - - - - - 
22 900 310 4.5 1.50 40 6.8 

22.5 1000 - - - - - 
23 1000 350 4.75 1.20 50 5.7 

23.5 1100 - - - - - 
24 1200 420 4.5 1.54 39 6.9 

24.5 1000 - - - - - 
25 1100 390 4.5 1.46 41 6.6 

25.5 1200 - - - - - 
26 1500 490 4.5 1.36 44 6.1 

26.5 1000 - - - - - 
27 1000 350 4.5 1.33 45 6.0 

27.5 1000 - - - - - 
28 1100 400 4.5 1.46 41 6.6 

28.5 1100 - - - - - 
29 1100 370 4 1.54 39 6.2 

29.5 1200 - - - - - 
30 1200 410 4.5 1.30 46 5.9 

30.5 1200 - - - - - 
31 1100 380 4.25 1.43 42 6.1 

31.5 1200 - - - - - 
32 1400 480 4.25 1.40 43 5.9 

Notes: 1) Installed at normal throttle, normal speed. 
               2) Total drive of 30' in 24.8 minutes. 
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Installations for Load Tests 

HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#1 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A 560 N/A N/A N/A 
9 N/A 600 N/A N/A N/A 

10 N/A 1160 N/A N/A N/A 
11 1200 1325 5 1.7 35 
12 1100 1350 5 1.9 32 
13 500 1260 5 1.9 31 
14 400 1300 5 2.1 29 
15 600 1175 5.5 2.2 27 
16 500 1140 5 2.1 28 
17 500 1060 6 1.7 36 
18 600 1200 6.5 1.6 37 
19 800 1010 6.5 1.8 33 
20 600 1160 5 2.4 25 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#2 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A 480 N/A N/A N/A 
9 N/A 1000 N/A N/A N/A 

10 N/A 1040 N/A N/A N/A 
11 1000 N/A 5.5 1.9 32 
12 800 N/A 5.5 1.9 32 
13 500 N/A 5.75 1.8 33 
14 500 N/A 6.25 2.0 30 
15 600 N/A 6.5 1.8 33 
16 500 N/A 5 2.4 25 
17 600 N/A 56 1.8 34 
18 600 N/A 8 1.6 38 
19 400 N/A 5.5 1.7 35 
20 600 N/A 5 2.7 22 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#3 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A 760 N/A N/A N/A 
9 N/A 920 N/A N/A N/A 

10 N/A 880 N/A N/A N/A 
11 800 N/A 6.5 2.1 28 
12 1200 N/A 6.25 2.0 30 
13 600 N/A 5 2.3 26 
14 600 N/A 5.5 1.9 31 
15 400 N/A 9 1.6 38 
16 300 N/A 10 0.6 94 
17 500 N/A 8.5 1.0 59 
18 600 N/A 10 1.3 47 
19 500 N/A 15 0.8 77 
20 500 N/A 7 1.5 40 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#4 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A 480 N/A N/A N/A 
9 N/A 1000 N/A N/A N/A 

10 N/A 1040 N/A N/A N/A 
11 N/A N/A N/A N/A N/A 
12 N/A N/A N/A N/A N/A 
13 N/A N/A N/A N/A N/A 
14 N/A N/A N/A N/A N/A 
15 N/A N/A N/A N/A N/A 
16 N/A N/A N/A N/A N/A 
17 N/A N/A N/A N/A N/A 
18 N/A N/A N/A N/A N/A 
19 N/A N/A N/A N/A N/A 
20 N/A N/A N/A N/A N/A 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#4 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A 480 N/A N/A N/A 
9 N/A 1000 N/A N/A N/A 

10 N/A 1040 N/A N/A N/A 
11 N/A N/A N/A N/A N/A 
12 N/A N/A N/A N/A N/A 
13 N/A N/A N/A N/A N/A 
14 N/A N/A N/A N/A N/A 
15 N/A N/A N/A N/A N/A 
16 N/A N/A N/A N/A N/A 
17 N/A N/A N/A N/A N/A 
18 N/A N/A N/A N/A N/A 
19 N/A N/A N/A N/A N/A 
20 N/A N/A N/A N/A N/A 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: SS5 - 12 - TS#6 
Extensions N/A Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A 320 N/A N/A N/A 
2 N/A 400 N/A N/A N/A 
3 N/A 400 N/A N/A N/A 
4 N/A 440 N/A N/A N/A 
5 N/A 560 N/A N/A N/A 
6 N/A 660 N/A N/A N/A 
7 N/A 680 N/A N/A N/A 
8 N/A 640 N/A N/A N/A 
9 N/A 760 N/A N/A N/A 

10 N/A 1000 N/A N/A N/A 
11 700 N/A 7 1.6 37 
12 700 N/A 6 2.3 26 
13 600 N/A 6.75 1.8 34 
14 400 N/A 7 2.1 29 
15 500 N/A 4.5 2.5 24 
16 400 N/A 4.5 2.9 21 
17 700 N/A 4.5 2.9 21 
18 800 N/A 5.5 2.4 25 
19 700 N/A 5.75 2.2 27 
20 800 N/A 5.5 2.3 26 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013, 11/15/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: Combo 8/10/12 @3D 
Extensions 5', 7' Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): Torque (ft-
lbs) 

Pressure 
(psi) 

Revolutions per 
foot 

Installation Rate 
(ft/min) Time (s) 

Initial: N/A 200 N/A N/A N/A 
1 400 N/A 4.5 2.2 27 
2 400 N/A 5 1.3 48 
3 900 N/A 4.5 2.5 24 
4 1400 N/A 4.5 2.3 26 
5 1600 N/A 5 2.1 28 
6 2100 N/A 5 2.5 24 
7 1900 N/A 5 2.1 29 
8 2800 N/A 4.5 1.9 32 
9 3000 N/A 4.25 2.1 29 

10 3300 N/A 4.25 2.0 30 
11 1700 950 5 #VALUE! N/A 
12 1500 900 5 #VALUE! N/A 
13 1500 900 5 #VALUE! N/A 
14 1400 850 4.5 #VALUE! N/A 
15 1100 740 5 #VALUE! N/A 
16 800 750 4.5 #VALUE! N/A 
17 1400 800 4.5 #VALUE! N/A 
18 1000 720 4.5 #VALUE! N/A 
19 800 675 4.5 #VALUE! N/A 
20 600 660 4.5 #VALUE! N/A 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 7/2/2013, 11/15/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: 8/10/12 @3D 
Extensions 5', 7' Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 400 N/A 5.5 2.2 27 
2 500 N/A 5 2.7 22 
3 800 N/A 6 2.0 30 
4 1100 N/A 5 2.7 22 
5 1200 N/A 5 2.1 28 
6 1400 N/A 5 2.1 28 
7 1700 N/A 5 1.9 31 
8 1900 N/A 5.5 2.1 29 
9 2300 N/A 5 1.8 33 

10 1400 N/A 4.5 1.9 31 
11 800 650 5 #VALUE! N/A 
12 900 675 5 #VALUE! N/A 
13 1100 750 5.5 #VALUE! N/A 
14 800 650 5.5 #VALUE! N/A 
15 900 675 5 #VALUE! N/A 
16 700 640 5 #VALUE! N/A 
17 800 670 5 #VALUE! N/A 
18 600 600 5 #VALUE! N/A 
19 700 610 4.5 #VALUE! N/A 
20 900 660 5 #VALUE! N/A 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 11/15/2013 Location: AF-GT 

Pile Geometry: SS5 Lead Section: RS2875 8/10/12 @3D 
Extensions 5', 7' Plug (in): N/A 

Rig Type Bobcat 435 G-Series Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD (Large Head) Technicians JAE + NVW 

Depth (ft): 
Torque (ft-

lbs) 
Pressure 

(psi) 
Revolutions per 

foot 
Installation Rate 

(ft/min) Time (s) 
Initial: N/A 200 N/A N/A N/A 

1 N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A 
4 N/A N/A N/A N/A N/A 
5 N/A N/A N/A N/A N/A 
6 N/A N/A N/A N/A N/A 
7 N/A N/A N/A N/A N/A 
8 N/A N/A N/A N/A N/A 
9 N/A N/A N/A N/A N/A 

10 N/A N/A N/A N/A N/A 
11 2600 1100 4.5 N/A N/A 
12 3300 1450 4.5 N/A N/A 
13 3400 1475 4.5 N/A N/A 
14 2300 1200 4.5 N/A 112 
15 2100 1050 4.5 N/A N/A 
16 1200 760 4.5 N/A N/A 
17 1000 740 4.5 N/A N/A 
18 700 650 4.5 N/A N/A 
19 900 700 4.5 N/A N/A 
20 1100 750 2 N/A 251 
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A-2 LOAD TEST DATA 

Pitch Series 

Anchor Geometry: RS2875 Lead Section: 8" w/ 3" Pitch Installation Torque 
(ft.-lbs.) 1250 

Installation Date: 4/30/2015 Weather: Sunny, 60s Water Level (fbgs): 9 

Date of Test: 5/2/2015 Site: DOE Depth of Installation 
(ft.): 10 

Technician: MNR Test #: 1 Days Rest 2 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0030 0.0 
2 200 1010 2.5 0.0095 0.1 
3 300 1515 2.5 0.0220 0.3 
4 400 2020 2.5 0.0465 0.6 
5 500 2525 2.5 0.0695 0.9 
6 600 3030 2.5 0.0955 1.2 
7 800 4040 2.5 0.1505 1.9 
8 1000 5050 2.5 0.2160 2.7 
9 1200 6060 2.5 0.3060 3.8 

10 1400 7070 2.5 0.4230 5.3 
11 1600 8080 2.5 0.5640 7.1 
12 1800 9090 2.5 0.7515 9.4 
13 2000 10100 2.5 1.0220 12.8 
14 2200 11110 2.5 1.9335 24.2 

Notes:   
1. Final displacement at 1.9420 inches, rebounded after 5 minutes to 1.8090 inches. 
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Anchor Geometry: RS2875 Lead Section: 12" w/ 3" Pitch Installation Torque 
(ft.-lbs.) 2000 

Installation Date: 4/30/2015 Weather: Sunny, 60s Water Level (fbgs): 9 

Date of Test: 5/2/2015 Site: AF-GT Depth of 
Installation (ft.): 10 

Technician: MNR Test #: 1 Days Rest 2 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0320 0.3 

2 400 2020 2.5 0.0430 0.4 

3 600 3030 2.5 0.0570 0.5 
4 800 4040 2.5 0.0730 0.6 
5 1000 5050 2.5 0.0910 0.8 
6 1200 6060 2.5 0.1120 0.9 
7 1400 7070 2.5 0.1365 1.1 
8 1600 8080 2.5 0.1655 1.4 
9 2000 10100 2.5 0.2375 2.0 

10 2400 12120 2.5 0.3480 2.9 
11 2800 14140 2.5 0.4945 4.1 
12 3200 16160 2.5 0.6875 5.7 
13 3600 18180 2.5 0.9265 7.7 
14 4000 20200 2.5 1.2785 10.7 
15 4400 22220 2.5 1.8230 15.2 

Notes:   
1. Final displacement at 2.5100 inches, rebounded after 5 minutes to 2.0680 inches. 
2. Pile failed at 4700 on the digital readout box. 
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Anchor 
Geometry: RS2875 Lead 

Section: 
12" w/ 3" 

Pitch 

Installation 
Torque (ft-

lbs.) 
1000 

Installation 
Date: 5/4/2015 Weather: N/A Water Level 

(fbgs): N/A 

Date of Test: 5/18/2015 Site: AF-GT 
Depth of 

Installation 
(ft): 

20 

Technician: CZ Test #: 1 Days Rest 14 

Increment # Digital 
Reading Load (lbs) Time Displacement 

(in.) 
S/D 
(%) 

1 50 252.5 2.5 0.0170 0.1 

2 100 505 2.5 0.0175 0.1 

3 150 757.5 2.5 0.0440 0.4 
4 200 1010 2.5 0.0850 0.7 
5 250 1262.5 2.5 0.1435 1.2 
6 300 1515 2.5 0.1830 1.5 
7 350 1767.5 2.5 0.2015 1.7 
8 400 2020 2.5 0.2175 1.8 
9 500 2525 2.5 0.2750 2.3 

10 600 3030 2.5 0.3100 2.6 
11 700 3535 2.5 0.3385 2.8 
12 800 4040 2.5 0.3690 3.1 
13 1000 5050 2.5 0.4235 3.5 
14 1200 6060 2.5 0.4975 4.1 
15 1400 7070 2.5 0.6240 5.2 
16 1600 8080 2.5 0.8830 7.4 
17 1800 9090 2.5 1.3900 11.6 
18 2000 10100 2.5 2.8500 23.8 

Notes:   
1. Final displacement at 2.8685 inches, rebounded after 5 minutes to 2.4360 inches. 
              

 

 

 



140 
 

 

 

 

 

 

 

 

Anchor Geometry: RS2875 Lead Section: 12" w/ 4" Pitch Installation Torque 
(ft.-lbs.) 2800 

Installation Date: 4/30/2015 Weather: Sunny, 70s Water Level (fbgs): 9 

Date of Test: 5/2/2015 Site: AF-GT Depth of 
Installation (ft.): 10 

Technician: MNR Test #: 1 Days Rest 2 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0090 0.1 
2 400 2020 2.5 0.0315 0.3 
3 600 3030 2.5 0.0540 0.5 
4 800 4040 2.5 0.0765 0.6 
5 1000 5050 2.5 0.0975 0.8 
6 1200 6060 2.5 0.1150 1.0 
7 1600 8080 2.5 0.1580 1.3 
8 2000 10100 2.5 0.2025 1.7 
9 2400 12120 2.5 0.2500 2.1 

10 2800 14140 2.5 0.3085 2.6 
11 3200 16160 2.5 0.3910 3.3 
12 3600 18180 2.5 0.4890 4.1 
13 4000 20200 2.5 0.6055 5.0 
14 4400 22220 2.5 0.7650 6.4 
15 4800 24240 2.5 0.9570 8.0 
16 5200 26260 2.5 1.2090 10.1 
17 5600 28280 2.5 1.6820 14.0 
18 6000 30300 2.5 2.7835 23.2 

Notes:   
1. Final displacement at 2.8245 inches, rebounded after 5 minutes to 2.5590 inches. 
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Anchor 
Geometry: RS2875 Lead 

Section: 
12" w/ 4" 

Pitch 

Installation 
Torque (ft-

lbs.) 
1533 

Installation 
Date: 5/4/2015 Weather: N/A Water Level 

(fbgs): N/A 

Date of Test: 5/18/2015 Site: AF-GT 
Depth of 

Installation 
(ft): 

20 

Technician: CZ Test #: 1 Days Rest 14 

Increment # Digital 
Reading Load (lbs) Time Displacement 

(in.) 
S/D 
(%) 

1 50 252.5 2.5 0.0155 0.0 

2 100 505 2.5 0.0330 0.1 

3 150 757.5 2.5 0.0550 0.1 
4 200 1010 2.5 0.0720 0.1 
5 250 1262.5 2.5 0.0855 0.2 
6 300 1515 2.5 0.0935 0.2 
7 350 1767.5 2.5 0.0995 0.3 
8 400 2020 2.5 0.1085 0.4 
9 500 2525 2.5 0.1360 0.6 

10 600 3030 2.5 0.1615 0.8 
11 700 3535 2.5 0.1880 1.0 
12 800 4040 2.5 0.2190 1.3 
13 900 4545 2.5 0.2620 1.6 
14 1000 5050 2.5 0.3515 2.2 
15 1200 6060 2.5 0.4650 3.3 
16 1400 7070 2.5 0.6515 4.9 
17 1600 8080 2.5 1.0270 8.0 
18 1700 8585 2.5 1.5915 12.7 
19 1800 9090 2.5 2.0765 16.8 
20 1900 9595 2.5 2.8220 23.0 

Notes:   
1. Final displacement at 2.8330 inches, rebounded after 5 minutes to 2.4330 inches.             
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Anchor Geometry: RS2875 Lead Section: 12" w/ 6" Pitch Installation 
Torque (ft.-lbs.) 3600 

Installation Date: 4/30/2015 Weather: Sunny, 60s Water Level 
(fbgs): 9 

Date of Test: 5/2/2015 Site: AF-GT Depth of 
Installation (ft.): 10 

Technician: MNR Test #: 1 Days Rest 2 

Increment # Digital Reading Load (lbs) Time Displacement 
(in.) S/D (%) 

1 400 2020 2.5 0.0295 0.1 
2 800 4040 2.5 0.0465 0.3 
3 1200 6060 2.5 0.0755 0.5 
4 1600 8080 2.5 0.1160 0.9 
5 2000 10100 2.5 0.1770 1.4 
6 2400 12120 2.5 0.2585 2.0 
7 2800 14140 2.5 0.3765 3.0 
8 3200 16160 2.5 0.5465 4.4 
9 3600 18180 2.5 0.7835 6.4 

10 4000 20200 2.5 1.0930 9.0 
11 4400 22220 2.5 1.6520 13.7 

Notes:   
1. Final displacement at 2.3455 inches, rebounded after 5 minutes to 2.0425 inches. 
2. Adapter was hitting I-Beam, slipped off at 5200, load relaxed to about 4200 on readout box. Re-
Zeroed and reloaded to 4400, Failure at 4800. 
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Anchor 
Geometry: RS2875 Lead 

Section: 
12" w/ 6" 

Pitch 

Installation 
Torque (ft-

lbs.) 
1667 

Installation 
Date: 5/4/2015 Weather: N/A Water Level 

(fbgs): N/A 

Date of Test: 5/18/2015 Site: AF-GT 
Depth of 

Installation 
(ft): 

20 

Technician: CZ Test #: 1 Days Rest 14 

Increment # Digital 
Reading Load (lbs) Time Displacement 

(in.) 
S/D 
(%) 

1 50 252.5 2.5 0.0020 0.0 
2 100 505 2.5 0.0020 0.0 
3 150 757.5 2.5 0.0040 0.0 
4 200 1010 2.5 0.0115 0.1 
5 250 1262.5 2.5 0.0235 0.2 
6 300 1515 2.5 0.0375 0.3 
7 350 1767.5 2.5 0.0635 0.5 
8 400 2020 2.5 0.1030 0.9 
9 500 2525 2.5 0.1425 1.2 

10 600 3030 2.5 0.1865 1.6 
11 700 3535 2.5 0.2135 1.8 
12 800 4040 2.5 0.2375 2.0 
13 900 4545 2.5 0.2650 2.2 
14 1000 5050 2.5 0.2965 2.5 
15 1200 6060 2.5 0.3910 3.3 
16 1400 7070 2.5 0.6535 5.4 
17 1600 8080 2.5 1.1850 9.9 
18 1700 8585 2.5 1.3605 11.3 
19 1800 9090 2.5 2.3395 19.5 
20 1900 9595 2.5 3.0935 25.8 

Notes:   
1. Final displacement at 3.0935 inches, rebounded after 5 minutes to 2.6915 inches. 
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Anchor 
Geometry: RS2875 Lead 

Section: 
18" w/ 3" 

Pitch 
Installation Torque (ft-

lbs.) 2900 

Installation 
Date: 4/30/2015 Weather: Sunny, 60s Water Level (fbgs): 9 

Date of Test: 5/2/2015 Site: AF-GT Depth of Installation 
(ft): 10 

Technician: MNR Test #: 1 Days Rest 2 

Increment # Digital 
Reading Load (lbs) Time Displacement (in.) S/D 

(%) 
1 400 2020 2.5 0.0330 0.2 
2 800 4040 2.5 0.0675 0.4 
3 1200 6060 2.5 0.1260 0.7 
4 1600 8080 2.5 0.1960 1.1 
5 2000 10100 2.5 0.2805 1.6 
6 2400 12120 2.5 0.3845 2.1 
7 2800 14140 2.5 0.5070 2.8 
8 3200 16160 2.5 0.6390 3.6 
9 3600 18180 2.5 0.7895 4.4 

10 4000 20200 2.5 0.9535 5.3 
11 4400 22220 2.5 1.1435 6.4 
12 4800 24240 2.5 1.3685 7.6 
13 5200 26260 2.5 1.5960 8.9 
14 5600 28280 2.5 1.8230 10.1 

Notes:   
1. Final displacement at 1.8230 inches, rebounded after 5 minutes to 1.1245 inches. 
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Anchor Geometry: RS2875 Lead Section: 18" w/ 6" Pitch Installation 
Torque (ft-lbs.) 4033 

Installation Date: 4/30/2015 Weather: Sunny, 70s Water Level 
(fbgs): 9 

Date of Test: 5/2/2015 Site: AF-GT Depth of 
Installation (ft): 10 

Technician: MNR Test #: 1 Days Rest 2 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 400 2020 2.5 0.0740 0.4 
2 800 4040 2.5 0.1440 0.8 
3 1200 6060 2.5 0.2155 1.2 
4 1600 8080 2.5 0.2855 1.6 
5 2000 10100 2.5 0.3595 2.0 
6 2400 12120 2.5 0.4555 2.5 
7 2800 14140 2.5 0.5665 3.1 
8 3200 16160 2.5 0.7045 3.9 
9 3600 18180 2.5 0.8740 4.9 

10 4000 20200 2.5 1.0670 5.9 
11 4400 22220 2.5 1.2910 7.2 
12 4800 24240 2.5 1.5705 8.7 
13 5200 26260 2.5 1.8790 10.4 
14 5600 28280 2.5 2.2615 12.6 
15 6000 30300 2.5 2.8080 15.6 

Notes:   
1. Final displacement at 2.8110 inches, rebounded after 5 minutes to 2.2150 inches. 
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Anchor Geometry: RS2875 Lead Section: 18" w/ 6" Pitch Installation 
Torque (ft-lbs.) 1700 

Installation Date: 5/4/2015 Weather: N/A Water Level 
(fbgs): N/A 

Date of Test: 5/18/2015 Site: AF-GT Depth of 
Installation (ft): 20 

Technician: CZ Test #: 1 Days Rest 14 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.2180 0.1 
2 200 1010 2.5 0.4285 0.3 
3 300 1515 2.5 0.5835 0.6 
4 400 2020 2.5 0.6885 0.9 
5 600 3030 2.5 0.8310 1.4 
6 800 4040 2.5 0.9445 2.0 
7 1000 5050 2.5 1.0435 2.6 
8 1200 6060 2.5 1.1330 3.1 
9 1400 7070 2.5 1.2235 3.6 

10 1600 8080 2.5 1.3090 4.0 
11 1800 9090 2.5 1.3945 4.5 
12 2000 10100 2.5 1.4845 5.0 
13 2200 11110 2.5 1.5735 5.5 
14 2400 12120 2.5 1.6670 6.0 
15 2600 13130 2.5 1.7735 6.6 
16 2800 14140 2.5 1.8845 7.2 
17 3000 15150 2.5 1.9800 7.8 
18 3200 16160 2.5 2.0800 8.3 
19 3400 17170 2.5 2.1760 8.9 
20 3700 18685 2.5 2.3110 9.6 
21 4000 20200 2.5 2.4545 10.4 
22 4300 21715 2.5 2.5895 11.2 
23 4600 23230 2.5 2.7190 11.9 
24 4900 24745 2.5 2.8685 12.7 

Notes:   
1. Final displacement at 2.8110 inches, rebounded after 5 minutes to 2.2150 inches. 
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Other Load Tests 

Anchor Geometry: SS5 Lead Section: 12 
Installation Torque 

(ft-lbs.) 600 

Installation Date: 7/2/2013 Weather: Cloudy, 
60s Water Level (fbgs):   

Date of Test: 9/16/2014 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: MNR Test #: 2 Days Rest 440 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.2030 1.7 
2 100 505 2.5 0.2790 2.3 
3 150 757.5 2.5 0.3015 2.5 
4 200 1010 2.5 0.3240 2.7 
5 250 1262.5 2.5 0.3380 2.8 
6 300 1515 2.5 0.3555 3.0 
7 350 1767.5 2.5 0.3800 3.2 
8 400 2020 2.5 0.4015 3.3 
9 500 2525 2.5 0.4675 3.9 

10 600 3030 2.5 0.5330 4.4 
11 700 3535 2.5 0.6105 5.1 
12 800 4040 2.5 0.7015 5.8 
13 900 4545 2.5 0.7900 6.6 
14 1000 5050 2.5 0.9235 7.7 
15 1100 5555 2.5 1.0570 8.8 
16 1200 6060 2.5 1.1890 9.9 
17 1300 6565 2.5 1.4035 11.7 
18 1400 7070 2.5 1.5895 13.2 
19 1500 7575 2.5 1.7375 14.5 
20 1600 8080 2.5 1.8505 15.4 
21 1700 8585 2.5 2.0410 17.0 
22 1800 9090 2.5 2.7265 22.7 

Notes:   
1. Final displacement at 2.8130 inches, rebounded after 5 minutes to 2.3280 inches. 
2. Continuous pumping occurred at a digital reading of 1200 or approximately 6060 pounds. 
3. Heard two separate popping sounds during constant load of 9090 pounds. Displacement jumped 
~.2" each time. 
4. The pile seemed loose at the top. Had a decent amount of horizontal play, ~2" of give. 
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Anchor Geometry: SS5 Lead Section: 12 
Installation Torque 

(ft-lbs.) 666 

Installation Date: 7/2/2013 Weather: Sunny, 60s 
no wind Water Level (fbgs):   

Date of Test: 7/3/2013 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: J.L Test #: 1 Days Rest 1 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0070 0.1 
2 100 505 2.5 0.1380 1.2 
3 150 757.5 2.5 0.1690 1.4 
4 200 1010 2.5 0.1990 1.7 
5 250 1262.5 2.5 0.2240 1.9 
6 300 1515 2.5 0.2500 2.1 
7 350 1767.5 2.5 0.2660 2.2 
8 400 2020 2.5 0.2855 2.4 
9 500 2525 2.5 0.3200 2.7 

10 600 3030 2.5 0.3695 3.1 
11 700 3535 2.5 0.4500 3.8 
12 800 4040 2.5 0.5780 4.8 
13 900 4545 2.5 0.7630 6.4 
14 1000 5050 2.5 1.0200 8.5 
15 1100 5555 2.5 1.3230 11.0 
16 1200 6060 2.5 1.6910 14.1 
17 1300 6565 2.5 2.1415 17.8 
18 1400 7070 2.5 2.7810 23.2 
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Anchor Geometry: SS5 Lead Section: 12 Pile Code: #2 

Installation Date: 7/2/2013 Weather: Sunny, slightly 
windy Water Level (fbgs):   

Date of Test: 9/12/2014 Site: AF-GT Depth of 
Installation (ft): 20 

Technician: MNR Test #: 2 Days Rest 437 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 75 378.75 2.5 0.0225 0.2 
2 100 505 2.5 0.0250 0.2 
3 150 757.5 2.5 0.0270 0.2 
4 200 1010 2.5 0.0345 0.3 
5 250 1262.5 2.5 0.0430 0.4 
6 300 1515 2.5 0.0640 0.5 
7 350 1767.5 2.5 0.0950 0.8 
8 400 2020 2.5 0.1315 1.1 
9 500 2525 2.5 0.2070 1.7 
10 600 3030 2.5 0.2955 2.5 
11 700 3535 2.5 0.3825 3.2 
12 800 4040 2.5 0.4750 4.0 
13 900 4545 2.5 0.5890 4.9 
14 1000 5050 2.5 0.7035 5.9 
15 1100 5555 2.5 0.8295 6.9 
16 1200 6060 2.5 0.9870 8.2 
17 1300 6565 2.5 1.1620 9.7 
18 1400 7070 2.5 1.3565 11.3 
19 1500 7575 2.5 1.6015 13.3 
20 1600 8080 2.5 1.8670 15.6 
21 1700 8585 2.5 2.1880 18.2 
22 1800 9090 2.5 2.5295 21.1 
23 1900 9595 2.5 2.9525 24.6 

Notes:   
1. Final displacement at 3.5180 inches, rebounded after 5 minutes to 2.9795 inches. 
2. Continuous pumping occurred at a digital reading of 1200 or approximately 6060 pounds. 
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Anchor Geometry: SS5 Lead Section: 12 Pile Code: #2 

Installation Date: 7/2/2013 Weather: Sunny, slightly 
windy Water Level (fbgs):   

Date of Test: 5/7/2014 Site: AF-GT Depth of 
Installation (ft): 20 

Technician: HZ Test #: 1 Days Rest 309 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0185 0.2 
2 100 505 2.5 0.0380 0.3 
3 150 757.5 2.5 0.0575 0.5 
4 200 1010 2.5 0.0775 0.6 
5 250 1262.5 2.5 0.0985 0.8 
6 300 1515 2.5 0.1170 1.0 
7 350 1767.5 2.5 0.1380 1.2 
8 400 2020 2.5 0.1580 1.3 
9 450 2272.5 2.5 0.1760 1.5 
10 500 2525 2.5 0.1935 1.6 
11 550 2777.5 2.5 0.2130 1.8 
12 600 3030 2.5 0.2335 1.9 
13 650 3282.5 2.5 0.2615 2.2 
14 700 3535 2.5 0.2910 2.4 
15 800 4040 2.5 0.3540 3.0 
16 900 4545 2.5 0.4530 3.8 
17 1000 5050 2.5 0.5935 4.9 
18 1100 5555 2.5 0.8040 6.7 
19 1200 6060 2.5 1.0445 8.7 
20 1300 6565 2.5 1.3995 11.7 
21 1400 7070 2.5 1.8540 15.5 
22 1500 7575 2.5 2.4950 20.8 
23 1600 8080 2.5 3.2250 26.9 

Notes:   
1. Final displacement at 3.3720 inches, rebounded after 5 minutes to 2.5540 inches. 
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Anchor Geometry: SS5 Lead Section: 12 Pile Code: #5 

Installation Date: 7/2/2013 Weather: 
Sunny, 
slightly 
windy 

Water Level 
(fbgs): N/A  

Date of Test: 9/12/2014 Site: AF-GT Depth of 
Installation (ft): 20 

Technician: MNR Test #: 1 Days Rest 437 

Increment # Digital Reading Load (lbs) Time Displacement 
(in.) S/D (%) 

1 50 252.5 2.5 0.0090 0.1 
2 100 505 2.5 0.0190 0.2 
3 150 757.5 2.5 0.0300 0.3 
4 200 1010 2.5 0.0425 0.4 
5 250 1262.5 2.5 0.0600 0.5 
6 300 1515 2.5 0.0800 0.7 
7 350 1767.5 2.5 0.1050 0.9 
8 400 2020 2.5 0.1340 1.1 
9 500 2525 2.5 0.1680 1.4 
10 600 3030 2.5 0.2075 1.7 
11 700 3535 2.5 0.2545 2.1 
12 800 4040 2.5 0.3155 2.6 
13 900 4545 2.5 0.4170 3.5 
14 1000 5050 2.5 0.5775 4.8 
15 1100 5555 2.5 0.8130 6.8 
16 1200 6060 2.5 1.0900 9.1 
17 1300 6565 2.5 2.1095 17.6 
18 1400 7070 2.5 2.5080 20.9 
19 1500 7575 2.5 2.9400 24.5 
20 1600 8080 2.5 3.4035 28.4 

Notes: 
1. Final displacement at 3.8190 inches, rebounded after 5 minutes to 3.1730 inches. 
2. Slipping occurred at three points. Slipping was characterized by a noticeable "popping" sound 
followed by a drop in the digital reading. It dropped from 200 to 175, from 300 to 200, and 500 to 
350. 
3. Continuous pumping occurred starting at a digital reading of around 900, meaning the jack had to 
be continuously pumped to maintain constant loading. 
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Anchor Geometry: SS5 Lead Section: 12 Installation Torque 
(ft-lbs.) N/A 

Installation Date: 7/2/2013 Weather: Cloudy, 
60s Water Level (fbgs):   

Date of Test: 9/16/2014 Site: AF-GT Depth of Installation 
(ft): SS5-12" 20' 

Technician: MNR Test #: 2 Days Rest 441 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.2665 2.2 
2 100 505 2.5 0.4400 3.7 
3 150 757.5 2.5 0.5180 4.3 
4 200 1010 2.5 0.5255 4.4 
5 250 1262.5 2.5 0.5470 4.6 
6 300 1515 2.5 0.5700 4.8 
7 350 1767.5 2.5 0.6050 5.0 
8 400 2020 2.5 0.6370 5.3 
9 500 2525 2.5 0.7020 5.9 

10 600 3030 2.5 0.7855 6.5 
11 700 3535 2.5 0.8850 7.4 
12 800 4040 2.5 0.9735 8.1 
13 900 4545 2.5 1.0630 8.9 
14 1000 5050 2.5 1.2120 10.1 
15 1100 5555 2.5 1.3370 11.1 
16 1200 6060 2.5 1.4630 12.2 
17 1300 6565 2.5 1.6780 14.0 
18 1400 7070 2.5 1.8330 15.3 
19 1500 7575 2.5 1.9925 16.6 
20 1600 8080 2.5 2.2405 18.7 
21 1700 8585 2.5 2.4225 20.2 
22 1800 9090 2.5 2.7265 22.7 
23 1900 9595 2.5 2.9525 24.6 

Notes:   
1. Final displacement at 2.9565 inches, rebounded after 5 minutes to 2.4220 inches. 
2. Continuous pumping occurred at a digital reading of 1200 or approximately 6060 pounds. 
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Anchor Geometry: SS5 Lead Section: 12 Installation Torque 
(ft-lbs.) N/A 

Installation Date: 7/2/2013 Weather: Cloudy, 
60s Water Level (fbgs):   

Date of Test: 7/2/2013 Site: AF-GT Depth of Installation 
(ft): SS5-12" 20' 

Technician: HZ Test #: 1 Days Rest 0.1 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.2850 2.4 
2 100 505 2.5 0.3015 2.5 
3 150 757.5 2.5 0.3270 2.7 
4 200 1010 2.5 0.3525 2.9 
5 250 1262.5 2.5 0.3720 3.1 
6 300 1515 2.5 0.3915 3.3 
7 350 1767.5 2.5 0.4150 3.5 
8 400 2020 2.5 0.4400 3.7 
9 500 2525 2.5 0.4740 4.0 

10 600 3030 2.5 0.5115 4.3 
11 700 3535 2.5 0.5630 4.7 
12 800 4040 2.5 0.6580 5.5 
13 900 4545 2.5 0.8450 7.0 
14 1000 5050 2.5 1.1065 9.2 
15 1100 5555 2.5 1.5005 12.5 
16 1200 6060 2.5 2.0605 17.2 
17 1300 6565 2.5 2.6210 21.8 
18 1400 7070 2.5 3.2095 26.7 

Notes:   
1. Final displacement at 3.1985 inches, rebounded after 5 minutes to 2.2240 inches. 
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Anchor Geometry: SS5 Lead Section: 12 
Installation Torque 

(ft-lbs.) 733 

Installation Date: 7/2/2013 Weather: Sunny, 60s 
no wind Water Level (fbgs):   

Date of Test: 9/15/2014 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: MNR Test #: 2 Days Rest 430 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0300 0.3 
2 100 505 2.5 0.0610 0.5 
3 150 757.5 2.5 0.0925 0.8 
4 200 1010 2.5 0.1250 1.0 
5 250 1262.5 2.5 0.1595 1.3 
6 300 1515 2.5 0.1930 1.6 
7 350 1767.5 2.5 0.2295 1.9 
8 400 2020 2.5 0.2860 2.4 
9 500 2525 2.5 0.3655 3.0 
10 600 3030 2.5 0.4590 3.8 
11 700 3535 2.5 0.5650 4.7 
12 800 4040 2.5 0.7135 5.9 
13 900 4545 2.5 0.8970 7.5 
14 1000 5050 2.5 1.1295 9.4 
15 1100 5555 2.5 1.4105 11.8 
16 1200 6060 2.5 1.7705 14.8 
17 1300 6565 2.5 2.2835 19.0 
18 1400 7070 2.5 2.8610 23.8 

Notes:   
1. Final displacement at 3.4735 inches, rebounded after 5 minutes to 2.9345 inches. 
2. Continuous pumping occurred at a digital reading of 800 or approximately 4040 pounds. 
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Anchor Geometry: SS5 Lead Section: 12 
Installation Torque 

(ft-lbs.) 733 

Installation Date: 7/2/2013 Weather: Sunny, 60s 
no wind Water Level (fbgs):   

Date of Test: 7/12/2013 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: J.L Test #: 1 Days Rest 10 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0380 0.3 
2 100 505 2.5 0.0590 0.5 
3 150 757.5 2.5 0.0830 0.7 
4 200 1010 2.5 0.1265 1.1 
5 250 1262.5 2.5 0.1470 1.2 
6 300 1515 2.5 0.1690 1.4 
7 350 1767.5 2.5 0.1925 1.6 
8 400 2020 2.5 0.2180 1.8 
9 500 2525 2.5 0.2755 2.3 
10 600 3030 2.5 0.3975 3.3 
11 700 3535 2.5 0.7020 5.9 
12 750 3787.5 2.5 1.0105 8.4 
13 800 4040 2.5 1.3265 11.1 
14 850 4292.5 2.5 1.6200 13.5 
15 900 4545 2.5 1.9295 16.1 
16 950 4797.5 2.5 2.2665 18.9 
17 1000 5050 2.5 2.5805 21.5 
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Anchor Geometry: SS5 Lead Section: 12 Pile Code: #6 

Installation Date: 7/2/2013 Weather: Sunny, 60s 
no wind 

Water Level 
(fbgs):   

Date of Test: 9/15/2014 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: MNR Test #: RT Days Rest 404 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0275 0.2 
2 100 505 2.5 0.0575 0.5 
3 150 757.5 2.5 0.0900 0.8 
4 200 1010 2.5 0.1265 1.1 
5 250 1262.5 2.5 0.1520 1.3 
6 300 1515 2.5 0.1820 1.5 
7 350 1767.5 2.5 0.2175 1.8 
8 400 2020 2.5 0.2500 2.1 
9 500 2525 2.5 0.3135 2.6 

10 600 3030 2.5 0.3850 3.2 
11 700 3535 2.5 0.4690 3.9 
12 800 4040 2.5 0.5500 4.6 
13 900 4545 2.5 0.6630 5.5 
14 1000 5050 2.5 0.7845 6.5 
15 1100 5555 2.5 0.9265 7.7 
16 1200 6060 2.5 1.1645 9.7 
17 1300 6565 2.5 1.4110 11.8 
18 1400 7070 2.5 1.7155 14.3 
19 1500 7575 2.5 2.0750 17.3 
20 1600 8080 2.5 2.5205 21.0 

Notes:   
1. Final displacement at 3.0890 inches, rebounded after 5 minutes to 2.1345 inches. 
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2. Continuous pumping occurred at a digital reading of 1400 or approximately 7070 pounds. 
              
 

 

 

 

 

 

 

 

Anchor Geometry: SS5 Lead Section: 12 Pile Code: #6 

Installation Date: 7/2/2013 Weather: Sunny, 60s 
no wind 

Water Level 
(fbgs):   

Date of Test: 8/3/2013 Site: AF-GT Depth of 
Installation (ft): SS5-12" 20' 

Technician: J.L Test #: 1 Days Rest 30 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0265 0.2 
2 100 505 2.5 0.0685 0.6 
3 150 757.5 2.5 0.0880 0.7 
4 200 1010 2.5 0.1135 1.0 
5 250 1262.5 2.5 0.1315 1.1 
6 300 1515 2.5 0.1520 1.3 
7 350 1767.5 2.5 0.1680 1.4 
8 400 2020 2.5 0.1835 1.5 
9 450 2272.5 2.5 0.2010 1.7 

10 500 2525 2.5 0.2210 1.8 
11 550 2777.5 2.5 0.2455 2.1 
12 600 3030 2.5 0.2735 2.3 
13 650 3282.5 2.5 0.3145 2.6 
14 700 3535 2.5 0.3430 2.9 
15 750 3787.5 2.5 0.4115 3.4 
16 800 4040 2.5 0.5065 4.2 
17 900 4545 2.5 0.7320 6.1 
18 1000 5050 2.5 1.0205 8.5 
19 1100 5555 2.5 1.4480 12.1 
20 1200 6060 2.5 1.9740 16.5 
21 1250 6312.5 2.5 2.4370 20.3 
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Anchor Geometry: Combo RS2875 + 
SS5 Lead Section: 8/10/12 Pile Code:   

Installation Date: 11/15/2013 Weather: Sunny, 
50s 

Water Level 
(fbgs):   

Date of Test: 11/9/2014 Site: AF-GT Depth of 
Installation (ft): 

SS5 RS2875 
8/10/12 

Combo @20' 
Technician: MNR Test #: 1 Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement 
(in.) S/D (%) 

1 100 505 2.5 0.0540 0.5 
2 200 1010 2.5 0.0890 0.9 
3 300 1515 2.5 0.1310 1.3 
4 400 2020 2.5 0.1695 1.7 
5 600 3030 2.5 0.2665 2.7 
6 800 4040 2.5 0.3655 3.7 
7 1000 5050 2.5 0.4275 4.3 
8 1200 6060 2.5 0.4855 4.9 
9 1400 7070 2.5 0.5590 5.6 

10 1600 8080 2.5 0.6605 6.6 
11 1800 9090 2.5 0.8015 8.0 
12 2000 10100 2.5 1.0220 10.2 
13 2400 12120 2.5 1.9070 19.1 
14 2600 13130 2.5 3.0950 31.0 

Notes:   
1. Final displacement at 3.0950 inches, rebounded after 5 minutes to 2.6310 inches. 
2. Continuous pumping occurred at a digital reading of 2600 or 13130 pounds. Failed at 2600 on read 
out box, could not sustain this load for the full 2.5 minutes. 
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Anchor Geometry: Combo RS2875 
+ SS5 Lead Section: 8/10/12 Pile Code:   

Installation Date: 11/15/2013 Weather: 
Sunny and 

Windy, 
70s 

Water Level 
(fbgs): 9.4 

Date of Test: 4/13/2015 Site: AF-GT Depth of 
Installation (ft): 

SS5 RS2875 
8/10/12 

Combo @20' 
Technician: MNR Test #: RT Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement 
(in.) S/D (%) 

1 100 505 2.5 0.1255 1.3 
2 200 1010 2.5 0.1415 1.4 
3 300 1515 2.5 0.1580 1.6 
4 400 2020 2.5 0.1795 1.8 
5 600 3030 2.5 0.2325 2.3 
6 800 4040 2.5 0.3080 3.1 
7 1000 5050 2.5 0.4005 4.0 
8 1200 6060 2.5 0.5275 5.3 
9 1400 7070 2.5 0.6775 6.8 

10 1600 8080 2.5 0.8965 9.0 
11 1800 9090 2.5 1.1685 11.7 
12 2000 10100 2.5 1.5995 16.0 
13 2200 11110 2.5 2.2355 22.4 
14 2400 12120 2.5 3.1395 31.4 

Notes:   
1. Final displacement at 3.0950 inches, rebounded after 5 minutes to 2.6310 inches. 
2. Continuous pumping occurred at a digital reading of 2600 or 13130 pounds. Failed at 2600 on read 
out box, could not sustain this load for the full 2.5 minutes. 
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Anchor Geometry: SS5 Lead Section: 8/10/12 Installation Torque (ft-
lbs.) 733 

Installation Date: 11/15/2013 Weather: Sunny, 
50s Water Level (fbgs): N/A 

Date of Test: 11/9/2014 Site: AF-GT Depth of Installation 
(ft): 20 

Technician: MNR Test #: 1 Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0185 0.19 
2 100 505 2.5 0.0435 0.44 
3 200 1010 2.5 0.0710 0.71 
4 300 1515 2.5 0.0995 1.00 
5 400 2020 2.5 0.1220 1.22 
6 500 2525 2.5 0.1435 1.44 
7 600 3030 2.5 0.1675 1.68 
8 700 3535 2.5 0.1975 1.98 
9 800 4040 2.5 0.2335 2.34 

10 900 4545 2.5 0.2790 2.79 
11 1000 5050 2.5 0.3420 3.42 
12 1200 6060 2.5 0.4990 4.99 
13 1400 7070 2.5 0.8200 8.20 
14 1600 8080 2.5 1.4275 14.28 
15 1800 9090 2.5 2.8980 28.98 

Notes:   
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1. Final displacement at 3.2415 inches, rebounded after 5 minutes to 2.5510 inches. 
              
 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: SS5 Lead Section: 8/10/12 Installation Torque (ft-
lbs.) 733 

Installation Date: 11/15/2013 Weather: Sunny, 
70s Water Level (fbgs): 9.4 

Date of Test: 4/13/2015 Site: AF-GT Depth of Installation 
(ft): 20 

Technician: MNR Test #: RT Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 133 671.65 2.5 0.0015 0.0 
2 200 1010 2.5 0.0090 0.1 
3 300 1515 2.5 0.0265 0.3 
4 400 2020 2.5 0.0575 0.6 
5 600 3030 2.5 0.1395 1.4 
6 800 4040 2.5 0.2530 2.5 
7 1000 5050 2.5 0.3870 3.9 
8 1200 6060 2.5 0.5445 5.4 
9 1400 7070 2.5 0.7665 7.7 

10 1600 8080 2.5 1.1155 11.2 
11 1800 9090 2.5 1.5925 15.9 
12 2000 10100 2.5 2.4055 24.1 

Notes:   
1. Final displacement at 2.6835 inches, rebounded after 5 minutes to 2.0190 inches. 
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Anchor Geometry: RS2875 Lead Section: 8/10/12 Installation Torque 
(ft-lbs.) 900 

Installation Date: 11/15/2013 Weather: Sunny, 
50s Water Level (fbgs): N/A 

Date of Test: 11/9/2014 Site: AF-GT Depth of 
Installation (ft): 

RS2875 
8/10/12 @20' 

Technician: MNR Test #: 1 Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0465 0.5 
2 200 1010 2.5 0.0800 0.8 
3 300 1515 2.5 0.1180 1.2 
4 400 2020 2.5 0.1505 1.5 
5 600 3030 2.5 0.2385 2.4 
6 800 4040 2.5 0.3180 3.2 
7 1000 5050 2.5 0.3650 3.7 
8 1200 6060 2.5 0.4585 4.6 
9 1400 7070 2.5 0.5375 5.4 

10 1600 8080 2.5 0.6585 6.6 
11 1800 9090 2.5 0.8475 8.5 
12 2000 10100 2.5 1.1785 11.8 
13 2400 12120 2.5 2.2865 22.9 

Notes:   
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1. Final displacement at 3.2415 inches, rebounded after 5 minutes to 2.5510 inches. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS2875 Lead Section: 8/10/12 Installation Torque (ft-
lbs.) 900 

Installation Date: 11/15/2013 Weather: Sunny, 
50s Water Level (fbgs): 9.4 

Date of Test: 4/13/2015 Site: AF-GT Depth of Installation 
(ft): 20 

Technician: MNR Test #: RT Days Rest N/A 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0690 0.7 
2 200 1010 2.5 0.0830 0.8 
3 300 1515 2.5 0.0985 1.0 
4 400 2020 2.5 0.1220 1.2 
5 600 3030 2.5 0.1755 1.8 
6 800 4040 2.5 0.2490 2.5 
7 1000 5050 2.5 0.3445 3.4 
8 1200 6060 2.5 0.4545 4.5 
9 1400 7070 2.5 0.5755 5.8 

10 1600 8080 2.5 0.7180 7.2 
11 1800 9090 2.5 0.8955 9.0 
12 2000 10100 2.5 1.1420 11.4 
13 2200 11110 2.5 1.4780 14.8 
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14 2400 12120 2.5 1.9485 19.5 
15 2600 13130 2.5 2.7600 27.6 

Notes:   
1. Final displacement at 2.6850 inches, rebounded after 5 minutes to 2.1925 inches. 
              

 

 

 

 

 

 

 

 

 

 

 

A-3 SUMMARY TABLE OF LOAD TESTS 

Geometry Depth (ft) Qult (lbs.) Installation Torque (ft-lbs) Kt (ft-1) 

Aged Tests and Repeats on Single-Helix 
SS5-12 #1 20 5500 667 9.2 
SS5-12 #1 20RT 6700 667 11.2 
SS5-12 #2 20 6650 533 12.5 
SS5-12 #2 20RT 6300 533 11.8 
SS5-12 #3 20 6125 533 11.5 
SS5-12 #4 20 5550 667 8.3 
SS5-12 #4 20RT 6250 667 9.4 
SS5-12 #5 20 3950 733 5.4 
SS5-12 #5 20RT 5200 733 7.1 
SS5-12 #6 20 5300 767 6.9 
SS5-12 #6 20RT 6150 767 8.0 

1st Time Tests 
SS5-8/10/12 3D 10 17500 1867 9.4 
SS5-8/10/12 3D 20 7450 733 10.2 
SS5-8/10/12 3D 20RT 7800 733 10.6 

RS2875-8/10/12 3D 10 29000 N/A - 
RS2875-8/10/12 3D 20 10000 900 11.1 
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RS2875-8/10/12 3D 20RT 9800 900 10.9 
RS2875-8/10/12 3D 30 12100 - - 
Combo-8/10/12 3D 10 29500 3033 9.7 
Combo-8/10/12 3D 20 9600 800 12.0 
Combo-8/10/12 3D 20RT 8950 800 11.2 

Pitch Series 
RS2875-8" w/ 3" Pitch 10 9300 1250 7.4 
RS2875-12" w/ 3" Pitch 10 19000 2000 9.5 
RS2875-12" w/ 3" Pitch 20 8950 1000 9.0 
RS2875-12" w/ 4" Pitch 10 26200 2800 9.4 
RS2875-12" w/ 4" Pitch 20 8300 1533 5.4 
RS2875-12" w/ 6" Pitch 10 20600 3600 5.7 
RS2875-12" w/ 6" Pitch 20 8100 1667 4.9 
RS2875-18" w/ 3" Pitch 10 28100 2600 10.8 
RS2875-18" w/ 6" Pitch 10 25750 3650 7.1 
RS2875-18" w/ 6" Pitch 20 19400 1700 11.4 

Time Series 
SS5-12 #1 20 5500 666 9.2 
SS5-12 #2 20 6650 533 12.5 
SS5-12 #3 20 6125 533 11.5 
SS5-12 #4 20 5550 667 8.3 
SS5-12 #5 20 3950 733 5.4 
SS5-12 #6 20 5300 767 6.9 
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A-4 FIELD TESTS 
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APPENDIX B: DEPARTMENT OF ENERGY (DOE) 

B-1 INSTALLATION LOGS 

Trial Installations 

HELICAL ANCHOR INSTALLATION LOG 
Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 3-7' Trial # 1 

Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 
Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

1 N/A 0 N/A 5 2.73 22 
2 N/A 600 N/A 4.5 3.00 20 
3 N/A 700 N/A 5 2.61 23 
4 N/A 1400 N/A 4.5 2.40 25 
5 N/A 1600 N/A 4 2.31 26 
6 N/A 2000 N/A 4 2.22 27 
7 N/A 2100 N/A 4.5 2.50 24 
8 N/A 1900 N/A 4.5 2.31 26 
9 N/A 2000 N/A 4.5 2.40 25 

10 N/A 1700 N/A 4.5 2.40 25 
11 N/A 1500 N/A 4.25 2.31 26 
12 N/A 1100 N/A 4.25 2.40 25 
13 N/A 900 N/A 4.5 2.50 24 
14 N/A 700 N/A 4.5 2.31 26 
15 N/A 500 N/A 4.5 2.40 25 
16 N/A 0 N/A 4.25 2.73 22 
17 N/A 500 N/A 4.25 2.61 23 
18 N/A 0 N/A 4.5 2.31 26 
19 N/A 0 N/A 4.25 2.14 28 
20 N/A 0 N/A 4.5 2.14 28 
21 N/A 0 N/A 4 2.22 27 
22 N/A 0 N/A 4 2.22 27 
23 N/A 0 N/A 4 2.61 23 

Notes: 1) Installed at 1/2 throttle, normal speed. 
             2) Total drive of 23' in 32 minutes. 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 3-7' Trial # 2 

Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 
Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

1 N/A 0 N/A 3.5 3.33 18 
2 N/A 600 N/A 4 2.73 22 
3 N/A 800 N/A 4.25 2.61 23 
4 N/A 1400 N/A 3.75 3.16 19 
5 N/A 1700 N/A 4.25 2.14 28 
6 N/A 1800 N/A 4.25 2.50 24 
7 N/A 1900 N/A 4.25 2.40 25 
8 N/A 2000 N/A 4 2.31 26 
9 N/A 2100 N/A 4 2.50 24 

10 N/A 1900 N/A 4 2.31 26 
11 N/A 1700 N/A 4.25 2.50 24 
12 N/A 1400 N/A 4.25 2.40 25 
13 N/A 1200 N/A 4.25 2.31 26 
14 N/A 800 N/A 4 2.40 25 
15 N/A 600 N/A 4 2.61 23 
16 N/A 0 N/A 4 2.50 24 
17 N/A 600 N/A 4.5 2.86 21 
18 N/A 700 N/A 4.5 2.14 28 
19 N/A 0 N/A 4.25 2.31 26 
20 N/A 0 N/A 4.25 2.40 25 
21 N/A 0 N/A 4 2.50 24 
22 N/A 0 N/A 4.25 2.40 25 
23 N/A 0 N/A 4.25 2.73 22 

Notes: 1) Installed at 1/2 throttle, normal speed. 
             2) Total drive of 23' in 38.6 minutes. 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 3-7' Trial # 3 

Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 
Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

1 N/A 0 N/A 3 2.50 24 
2 N/A 600 N/A 3.5 2.22 27 
3 N/A 700 N/A 4 2.14 28 
4 N/A 1400 N/A 4 2.31 26 
5 N/A 1600 N/A 4 2.40 25 
6 N/A 1900 N/A 4 2.07 29 
7 N/A 1800 N/A 4 2.14 28 
8 N/A 1900 N/A 4.25 2.22 27 
9 N/A 1900 N/A 4 2.31 26 

10 N/A 1800 N/A 4 2.50 24 
11 N/A 1800 N/A 4.25 4.00 15 
12 N/A 1600 N/A 4.25 3.00 20 
13 N/A 1200 N/A 4 2.61 23 
14 N/A 900 N/A 3.75 3.00 20 
15 N/A 600 N/A 3.75 3.00 20 
16 N/A 0 N/A 4 2.73 22 
17 N/A 600 N/A 4.5 3.00 20 
18 N/A 600 N/A 4 2.07 29 
19 N/A 0 N/A 5.5 2.50 24 
20 N/A 0 N/A 5.5 1.82 33 
21 N/A 0 N/A 4.5 2.07 29 
22 N/A 0 N/A 4.5 2.22 27 
23 N/A 0 N/A 4.75 2.31 26 

Notes:  
1) Installed at 1/2 throttle, normal speed. 
2) Total drive of 23' in 18.6 minutes 
3) Significantly faster because 7' extension was left on from previous trial and approximately 14' was 
intsalled at once. 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 11/11/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 4-7' Trial # 1 

Rig Type Bobcat 435 Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 77BD Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

1 1780 900 600 4 2.73 22 
2 1763 700 650 4.25 2.73 22 
3 2316 900 700 4.25 1.71 35 
4 2444 1100 750 5 2.22 27 
5 2760 1300 800 4 2.22 27 
6 3048 1500 850 4 2.31 26 
7 3321 1600 900 4.5 2.40 25 
8 3059 1400 850 4 2.50 24 
9 3267 1600 900 5 2.22 27 

10 3426 1800 950 4.5 2.22 27 
11 3102 1700 900 4.5 2.22 27 
12 2654 1200 750 6 2.22 27 
13 1868 800 700 4.5 2.14 28 
14 1810 700 600 4.5 2.86 21 
15 1592 600 600 4.5 2.31 26 
16 1400 500 550 4.5 2.22 27 
17 1362 500 550 4.5 2.40 25 
18 1092 400 500 4.5 2.73 22 
19 1305 500 500 5 2.22 27 
20 1319 500 550 4.5 2.61 23 
21 1156 400 500 4.5 2.50 24 
22 1274 400 500 5 2.31 26 
23 1364 500 550 5.5 2.50 24 
24 960 500 550 5 2.40 25 
25 1182 400 550 4.5 2.31 26 
26 1511 600 550 5.5 2.50 24 
27 1435 500 550 5 2.07 29 
28 1168 400 550 4.5 2.40 25 
29 1336 600 550 5 2.31 26 
30 1420 600 550 5 2.22 27 

Notes: 1) Installed at 1/2 throttle, normal speed. 
             2) Total drive of 30' in 27.5 minutes. 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 11/11/2014 Location: DOE Site 2 
Pile 

Geometry: RS2875 Lead Section: 8/10/12 @ 3D 

Extensions 4-7' Trial # 2 

Rig Type Bobcat 435 Torque 
Indicator Chance Digital Indicator 

Hydraulic 
Head Eskridge 77BD Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate (ft/min) 

Time 
(s) 

1 439 0 400 3.5 3.16 19 
2 1912 800 550 4 2.73 22 
3 1824 800 600 6 2.00 30 
4 1549 700 550 6.5 1.58 38 
5 2038 900 600 6 1.62 37 
6 1842 700 600 7.5 1.30 46 
7 1938 700 600 6.5 1.40 43 
8 1733 700 600 8.5 1.15 52 
9 1513 600 550 6.5 1.25 48 

10 1290 500 550 6 1.43 42 
11 1154 400 500 6.5 1.67 36 
12 1054 400 500 6.5 1.54 39 
13 967 300 500 6 1.82 33 
14 881 300 500 6.5 1.94 31 
15 891 300 450 5 2.14 28 
16 1024 400 500 5.5 1.88 32 
17 863 300 450 6 1.62 37 
18 721 0 450 4.5 2.14 28 
19 886 300 450 3 2.73 22 
20 819 300 450 4 2.31 26 
21 760 300 400 4 2.22 27 
22 850 300 400 4 2.07 29 
23 889 300 450 4 2.14 28 
24 945 300 500 4.5 2.22 27 
25 1016 400 500 5 2.07 29 
26 1021 300 500 5.5 1.88 32 
27 1071 400 500 6.5 1.58 38 
28 1080 400 500 4.5 2.00 30 
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29 1179 400 500 4.5 2.31 26 
Notes: 1) Installed at 1/2 throttle, normal speed. 
             2) Reinstalled pile into same hole as Trial 1 

 

 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 11/11/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 4-7' Trial # 3 

Rig Type Bobcat 435 Torque Indicator Chance Digital Indicator 
Hydraulic Head Eskridge 50K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

1 N/A 400 250 6 1.33 45 
2 N/A 700 250 5 1.71 35 
3 N/A 700 250 4.75 1.82 33 
4 N/A 1300 250 5 1.82 33 
5 N/A 1500 250 5 1.88 32 
6 N/A 1900 250 4.25 2.07 29 
7 N/A 1700 250 4.5 1.82 33 
8 N/A 1900 250 4.5 1.94 31 
9 N/A 1600 250 5 2.14 28 

10 N/A 1500 250 4.5 1.15 52 
11 N/A 1300 250 5 1.50 40 
12 N/A 1100 250 4 2.14 28 
13 N/A 900 250 4.5 1.88 32 
14 N/A 600 250 5 1.88 32 
15 N/A 500 250 4 2.07 29 
16 N/A 500 250 4.5 1.94 31 
17 N/A 600 250 4.5 1.82 33 
18 N/A 500 250 5 1.71 35 
19 N/A 700 250 5 1.76 34 
20 N/A 600 250 5 1.67 36 
21 N/A 400 250 5.5 1.58 38 
22 N/A 400 250 5 1.82 33 
23 N/A 500 250 4 2.07 29 
24 N/A 500 250 5 1.82 33 
25 N/A 600 250 5 1.62 37 



174 
 

26 N/A 500 250 5 1.88 32 
27 N/A 400 250 5.25 1.58 38 
28 N/A 400 250 5 1.94 31 
29 N/A 600 250 5 1.94 31 
30 N/A 600 250 4.5 1.94 31 

Notes: 1) Installed at 1/2 throttle, normal speed. 
               2) Total drive of 30' in 34.7 minutes. 

 

HELICAL ANCHOR INSTALLATION LOG 
Date: 6/10/2015 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 8/10/12 @ 3D 
Extensions 4-7', 1-3" Trial Speed Fast 

Rig Type Mustang 8003 Torque Indicator Chance Digital Indicator 
Hydraulic Head Pengo 12K Technicians MNR + AJL 

Depth (ft): Torque from Chance 
(ft-lbs) 

Revolutions per 
foot 

Installation Rate 
(ft/min) Time (s) Rotation Speed 

(RPMs) 

1 1000 4 4.00 15 16.0 
2 1000 4 3.75 16 15.0 
3 1200 4 3.75 16 15.0 
4 1500 4 3.53 17 14.1 
5 1700 4 3.53 17 14.1 
6 2200 4.25 3.75 16 15.9 
7 2000 4.25 3.53 17 15.0 
8 1800 4.25 3.53 17 15.0 
9 1900 4.25 3.53 17 15.0 

10 1800 4.5 3.75 16 16.9 
11 1700 4.25 3.33 18 14.2 
12 1200 4.5 3.53 17 15.9 
13 1200 4.5 3.33 18 15.0 
14 800 4 3.53 17 14.1 
15 800 4 3.75 16 15.0 
16 700 4 4.00 15 16.0 
17 600 4.25 3.53 17 15.0 
18 600 4.5 3.53 17 15.9 
19 600 5 3.16 19 15.8 
20 600 4.5 3.53 17 15.9 
21 600 4.25 3.75 16 15.9 
22 0 4.5 3.53 17 15.9 
23 0 4.5 4.29 14 19.3 
24 500 4 3.33 18 13.3 
25 600 4 4.29 14 17.1 
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26 600 4.25 3.00 20 12.8 
27 600 4.25 3.53 17 15.0 
28 500 4.25 4.00 15 17.0 
29 500 4.25 3.00 20 12.8 
30 600 4.25 3.75 16 15.9 

Notes: 1) Installed at 1/2 throttle, normal speed. 
               2) Total drive of 30' in 27.5 minutes. 

 

Installations for Load Tests 

HELICAL ANCHOR INSTALLATION LOG 

Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: Single 12 

Extensions 2-5' Plug (in): N/A 
Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 

Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

21.5 N/A 0 N/A 4.5 3.2 19 
22.5 N/A 0 N/A 4 4.3 14 
23.5 N/A 0 N/A 3.5 4.0 15 
24.5 N/A 0 N/A 3 3.5 17 
25.5 N/A 0 N/A 4 3.8 16 
26.5 N/A 0 N/A 3.75 4.3 14 
27.5 N/A 0 N/A 3 4.6 13 
28.5 N/A 0 N/A 3 5.5 11 

Notes: 1) Installed at full throttle. 
               2) 18" measured from the bottom of first extension each time, lost 6" per extension 
               3) Total drive of ~9.5' 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 12/12 @ 3D 
Extensions 2-5' Plug (in): N/A 

Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 
Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

21.5 N/A 0 N/A 6 2.31 26 
22.5 N/A 0 N/A 4 3.53 17 
23.5 N/A 0 N/A 3.5 4.00 15 
24.5 N/A 0 N/A 3 5.00 12 
25.5 N/A 0 N/A 5 2.50 24 
26.5 N/A 0 N/A 4.5 3.16 19 
27.5 N/A 0 N/A 5 3.53 17 
28.5 N/A 0 N/A 4.75 3.53 17 

Notes: 1) Installed at 1/2 throttle. 
               2) 18" measured from the bottom of first extension each time, lost 6" per extension 
               3) Total drive of ~9.5' 
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HELICAL ANCHOR INSTALLATION LOG 
Date: 10/17/2014 Location: DOE Site 2 

Pile Geometry: RS2875 Lead Section: 12/12/12 @ 3D 
Extensions 2-5' Plug (in): N/A 

Rig Type Mustang ME8003 Torque Indicator Chance Digital Indicator 

Hydraulic Head Pengo 12K Technicians MNR + MAH 

Depth (ft): 

Torque 
from 

TORQPIN 
(ft-lbs) 

Torque 
from 

Chance 
Indicator 

(ft-lbs) 

Pressure (psi) Revolutions 
per foot 

Installation 
Rate 

(ft/min) 
Time (s) 

21.5 N/A 0 N/A 7 1.40 43 
22.5 N/A 0 N/A 5.5 1.88 32 
23.5 N/A 0 N/A 5 2.00 30 
24.5 N/A 0 N/A 5 2.07 29 
25.5 N/A 0 N/A 4.5 2.00 30 
26.5 N/A 0 N/A 5 2.31 26 
27.5 N/A 0 N/A 5 2.14 28 
28.5 N/A 0 N/A 5 2.00 30 
29.5 N/A 0 N/A 5 2.22 27 

Notes: 1) Installed at 1/2 throttle. 
               2) 18" measured from the bottom of first extension each time, lost 6" per extension 
               3) Total drive of ~9.5' 
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B-2 LOAD TEST DATA 

Shallow Aged Reload Tests 

Anchor Geometry: RS2875 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 11/15/2011 Weather: Sunny, 
60s Water Level (fbgs): 0.8 

Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 25 126.25 2.5 0.0000 0.0 
2 50 252.5 2.5 0.0000 0.0 
3 75 378.75 2.5 0.0000 0.0 
4 100 505 2.5 0.0025 0.1 
5 150 757.5 2.5 0.0060 0.2 
6 200 1010 2.5 0.0210 0.7 
7 250 1262.5 2.5 0.1650 5.7 
8 300 1515 2.5 1.0605 36.9 

Notes:   
1. Final displacement at 2.2815 inches, rebounded after 5 minutes to 2.2520 inches. 
2. Pile failed at 300 on the digital readout box. 
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Anchor Geometry: RS2875 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/21/2011 Weather: Sunny, 
60s Water Level (fbgs): 1 

Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0035 0.1 
2 100 505 2.5 0.0055 0.2 
3 150 757.5 2.5 0.0070 0.2 
4 200 1010 2.5 0.0085 0.3 
5 250 1262.5 2.5 0.0105 0.4 
6 300 1515 2.5 0.0115 0.4 
7 350 1767.5 2.5 0.0125 0.4 
8 400 2020 2.5 0.0180 0.6 
9 450 2272.5 2.5 0.0200 0.7 

10 500 2525 2.5 0.0245 0.9 
11 550 2777.5 2.5 0.0285 1.0 
12 600 3030 2.5 0.0325 1.1 
13 650 3282.5 2.5 0.0380 1.3 
14 700 3535 2.5 0.0445 1.5 
15 800 4040 2.5 0.0630 2.2 
16 900 4545 2.5 0.0890 3.1 
17 1000 5050 2.5 0.1315 4.6 
18 1100 5555 2.5 0.2055 7.1 
19 1200 6060 2.5 0.3140 10.9 
20 1400 7070 2.5 0.9790 34.1 

Notes:   
1. Final displacement at 1.1445 inches, rebounded after 5 minutes to 1.0455 inches. 
2. Pile failed at 1400 on the digital readout box. 
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Anchor Geometry: RS2875 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
70s Water Level (fbgs): 0.8 

Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 -0.0095 0.0 
2 200 1010 2.5 0.0105 0.2 
3 300 1515 2.5 0.0395 0.4 
4 400 2020 2.5 0.0830 0.8 

5 500 2525 2.5 0.1410 1.3 

6 600 3030 2.5 0.2165 1.9 
7 700 3535 2.5 0.3025 2.6 
8 800 4040 2.5 0.4025 3.4 
9 900 4545 2.5 0.5200 4.4 

10 1000 5050 2.5 0.6615 5.6 
11 1100 5555 2.5 0.8250 7.0 
12 1200 6060 2.5 1.0495 8.8 
13 1400 7070 2.5 1.5675 13.1 
14 1600 8080 2.5 2.6180 21.9 

Notes:   
1. Final displacement at 2.9285 inches, rebounded after 5 minutes to 2.5280 inches. 
2. Pile failed at 1700 on the digital readout box. 
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Anchor Geometry: RS2875 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
60s Water Level (fbgs): 1 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0055 0.0 
2 400 2020 2.5 0.0270 0.2 
3 600 3030 2.5 0.0780 0.7 
4 800 4040 2.5 0.1670 1.4 
5 1000 5050 2.5 0.2605 2.2 
6 1200 6060 2.5 0.3895 3.2 
7 1400 7070 2.5 0.5370 4.5 
8 1600 8080 2.5 0.7195 6.0 
9 1800 9090 2.5 0.9375 7.8 

10 2000 10100 2.5 1.2390 10.3 
11 2200 11110 2.5 1.5785 13.2 
12 2400 12120 2.5 2.1335 17.8 
13 2600 13130 2.5 2.8935 24.1 

Notes:   
1. Final displacement at 2.9045 inches, rebounded after 5 minutes to 2.5140 inches. 
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Anchor Geometry: RS450 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 10/28/2011 Weather: Sunny, 
60s Water Level (fbgs): 1 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 25 126.25 2.5 0.0015 0.1 
2 50 252.5 2.5 0.0080 0.3 
3 75 378.75 2.5 0.0240 0.8 
4 100 505 2.5 0.0550 1.9 
5 125 631.25 2.5 0.0875 3.0 
6 150 757.5 2.5 0.1240 4.3 
7 175 883.75 2.5 0.1910 6.6 
8 200 1010 2.5 0.3475 12.1 
9 225 1136.25 2.5 0.9545 33.2 

Notes:   
1. Final displacement at 1.6265 inches, rebounded after 5 minutes to 1.5725 inches. 
2. Pile failed at 250 on the digital readout box. 
              

 



183 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS450 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/21/2011 Weather: Sunny, 
70s Water Level (fbgs): 0.8 

Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0000 0.0 
2 200 1010 2.5 0.0000 0.0 
3 300 1515 2.5 0.0000 0.0 
4 400 2020 2.5 0.0000 0.0 
5 500 2525 2.5 0.0000 0.0 
6 600 3030 2.5 0.0000 0.0 
7 700 3535 2.5 0.0010 0.0 
8 800 4040 2.5 0.0215 0.7 
9 900 4545 2.5 0.0915 3.2 

10 1000 5050 2.5 1.9420 67.5 
Notes:   
1. Final displacement at 1.9420 inches, rebounded after 5 minutes to 1.9300 inches. 
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2. Pile failed at 1000 on the digital readout box. 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS450 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
70s Water Level (fbgs): 1 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0075 0.1 

2 200 1010 2.5 0.0245 0.2 
3 300 1515 2.5 0.0605 0.5 
4 400 2020 2.5 0.0980 0.8 
5 500 2525 2.5 0.1465 1.2 
6 600 3030 2.5 0.1955 1.6 
7 700 3535 2.5 0.2510 2.1 
8 800 4040 2.5 0.3195 2.7 
9 900 4545 2.5 0.4025 3.4 
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10 1000 5050 2.5 0.4995 4.2 
11 1200 6060 2.5 0.7415 6.2 
12 1400 7070 2.5 0.7285 9.1 
13 1600 8080 2.5 1.1905 13.0 
14 1800 9090 2.5 2.0450 20.1 

Notes:   
1. Final displacement at 2.3800 inches, rebounded after 5 minutes to 2.0725 inches. 
2. Pile failed at 1975 on the digital readout box. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS450 Lead Section: Single 12 Installation Torque 
(ft-lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
60s Water Level (fbgs): 0.8 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0000 0.0 
2 400 2020 2.5 0.0000 0.0 

3 600 3030 2.5 0.0015 0.0 

4 800 4040 2.5 0.0045 0.0 
5 1000 5050 2.5 0.0095 0.1 
6 1200 6060 2.5 0.0185 0.2 
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7 1400 7070 2.5 0.0310 0.3 
8 1600 8080 2.5 0.0475 0.4 
9 1800 9090 2.5 0.0710 0.6 

10 2000 10100 2.5 0.1025 0.9 
11 2400 12120 2.5 0.1980 1.7 
12 2800 14140 2.5 0.3720 3.1 
13 3200 16160 2.5 1.3865 11.6 
14 3600 18180 2.5 2.8650 23.9 

Notes:   
1. Final displacement at 2.8805 inches, rebounded after 5 minutes to 2.5925 inches. 
2. Something popped around 3200, load relaxed to about 1400 on readout box. Re-Zeroed and 
reloaded to 3200. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS6625 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/21/2011 Weather: Sunny, 
60s Water Level (fbgs): 1 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 50 252.5 2.5 0.0015 0.1 
2 100 505 2.5 0.0135 0.5 
3 150 757.5 2.5 0.0350 1.2 
4 200 1010 2.5 0.0680 2.4 
5 300 1515 2.5 0.1875 6.5 
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Notes:   
1. Final displacement at 0.8125 inches, rebounded after 5 minutes to 0.7070 inches. 
2. Pile failed at 400 on the digital readout box. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS6625 Lead Section: PP Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/21/2011 Weather: Sunny, 
70s Water Level (fbgs): 0.8 

Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0000 0.0 
2 200 1010 2.5 0.0030 0.1 
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3 300 1515 2.5 0.0055 0.2 
4 400 2020 2.5 0.0095 0.3 
5 500 2525 2.5 0.0105 0.4 
6 600 3030 2.5 0.0165 0.6 
7 700 3535 2.5 0.0190 0.7 
8 800 4040 2.5 0.0245 0.9 
9 900 4545 2.5 0.0325 1.1 

10 1000 5050 2.5 0.0400 1.4 
11 1200 6060 2.5 0.0605 2.1 
12 1400 7070 2.5 0.0885 3.1 
13 1600 8080 2.5 0.1315 4.6 
14 1800 9090 2.5 0.6605 23.0 

Notes:   
1. Final displacement at 1.9420 inches, rebounded after 5 minutes to 1.9300 inches. 
2. Pile failed at 1000 on the digital readout box. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS6625 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
70s Water Level (fbgs): 1 

Date of Test: 4/19/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 



189 
 

Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 
1 100 505 2.5 0.0040 0.0 
2 200 1010 2.5 0.0145 0.1 
3 300 1515 2.5 0.0320 0.3 
4 400 2020 2.5 0.0560 0.5 
5 500 2525 2.5 0.0845 0.7 
6 600 3030 2.5 0.1285 1.1 
7 700 3535 2.5 0.2050 1.7 
8 800 4040 2.5 0.3190 2.7 
9 900 4545 2.5 0.5085 4.2 

10 1000 5050 2.5 0.7370 6.1 
11 1200 6060 2.5 1.3390 11.2 
12 1400 7070 2.5 2.3705 22.8 

Notes:   
1. Final displacement at 2.3800 inches, rebounded after 5 minutes to 2.0725 inches. 
2. Pile failed at 1975 on the digital readout box. 
              
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS6625 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 

Installation Date: 9/19/2011 Weather: Sunny, 
60s Water Level (fbgs): 0.8 
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Date of Test: 4/18/2015 Site: DOE Depth of Installation 
(ft): 8 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0375 0.3 
2 400 2020 2.5 0.0500 0.4 
3 600 3030 2.5 0.0580 0.5 
4 800 4040 2.5 0.0655 0.5 
5 1000 5050 2.5 0.0740 0.6 
6 1200 6060 2.5 0.0860 0.7 
7 1600 8080 2.5 0.1225 1.0 
8 2000 10100 2.5 0.1785 1.5 
9 2400 12120 2.5 0.2780 2.3 

10 2800 14140 2.5 0.4135 3.4 
11 3200 16160 2.5 0.7480 6.2 
12 3600 18180 2.5 1.4665 12.2 
13 4000 20200 2.5 3.5015 29.2 

Notes:   
1. Final displacement at 3.5225 inches, rebounded after 5 minutes to 3.1800 inches. 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS8625 Lead Section: PP Installation 
Torque (ft-lbs.) N/A 
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Installation Date: 9/21/2011 Weather: Overcast, light 
breeze, 40s 

Water Level 
(fbgs): 0.1 

Date of Test: 4/23/2015 Site: DOE Depth of 
Installation (ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 100 505 2.5 0.0040 0.1 
2 200 1010 2.5 0.0180 0.6 
3 300 1515 2.5 0.0245 0.9 
4 400 2020 2.5 0.0450 1.6 
5 500 2525 2.5 0.0595 2.1 
6 600 3030 2.5 0.0855 3.0 
7 700 3535 2.5 0.1160 4.0 
8 800 4040 2.5 0.1585 5.5 
9 900 4545 2.5 0.2275 7.9 

10 1000 5050 2.5 0.4105 14.3 
11 1100 5555 2.5 1.0545 36.7 

Notes:   
1. Final displacement at 1.3165 inches, rebounded after 5 minutes to 1.1175 inches. 
2. Pile failed at 1150 on the digital readout box. 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anchor Geometry: RS8625 Lead Section: Single 12 Installation Torque (ft-
lbs.) N/A 
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Installation Date: 9/19/2011 Weather: Sunny, 
70s Water Level (fbgs): 1 

Date of Test: 4/23/2015 Site: DOE Depth of Installation 
(ft): 4 

Technician: MNR Test #: RT Days Rest N/A 
Increment # Digital Reading Load (lbs) Time Displacement (in.) S/D (%) 

1 200 1010 2.5 0.0035 0.0 
2 400 2020 2.5 0.0160 0.1 
3 600 3030 2.5 0.0410 0.3 
4 800 4040 2.5 0.0795 0.7 
5 1000 5050 2.5 0.1325 1.1 
6 1200 6060 2.5 0.2300 1.9 
7 1400 7070 2.5 0.3980 3.3 
8 1600 8080 2.5 0.6895 5.7 
9 1800 9090 2.5 1.2515 10.4 

10 2000 10100 2.5 2.6300 21.9 
Notes:   
1. Final displacement at 2.6345 inches, rebounded after 5 minutes to 2.3080 inches. 
2. Pile failed at 2000 on the digital readout box. 
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B-3 SUMMARY TABLE OF LOAD TESTS 

Geometry 
Average 
Diameter 

(in.) 

Depth 
(ft) 

Load "Q" (lbs) Δ @ 
Q10/2 
(in.) 

Δ @ 
Q20/2 
(in.) 

Installation 
Torque (ft-

lbs) 

Kt (ft-1) 

5% 10% 20% 10% 20% 

DOE 

Repeat Tests on Single-Helix RS Coated Piles from 2013 

RS2875-SCBP-HCO 14 9 14600 18800 22800 0.18 0.36 1300 14.5 17.5 

RS2875-SCBP-NCH 14 9 15000 20400 24400 0.40 0.50 1400 14.6 17.4 

RS2875-SCBP 14 9 14000 20000 24950 0.41 0.58 1500 13.3 16.6 

RS2875-SCG 14 9 8200 11850 16400 0.51 0.70 1200 9.9 13.7 

RS2875-Plain 14 9 17100 21100 24400 0.18 0.28 1700 12.4 14.4 

RS2875-GAL 14 9 13500 18000 21600 0.29 0.43 1200 15.0 18.0 

RS450-SCBP-HCO 14 9 18800 21200 25900 0.13 0.22 2500 8.5 10.4 

RS450-SCBP-NCH 14 9 18800 23600 28000 0.20 0.33 2200 10.7 12.7 

RS450-SCBP 14 9 19200 23600 28000 0.20 0.33 2000 11.8 14.0 

RS450-SCG 14 9 15700 19800 23900 0.20 0.34 2100 9.4 11.4 

RS450-Plain 14 9 15400 17600 19800 0.08 0.42 2800 6.3 7.1 

RS450-GAL 14 9 16000 19600 23800 0.12 0.25 2300 8.5 10.3 

Tests on SS5 and RS Anchors Near Coated Piles from 2013 

SS5-12 CP10 12 15 5350 7400 8300 0.2 0.24 467 15.8 17.8 

SS5-12/12 3D CP11 12 15 7050 8200 9100 0.15 0.18 600 13.7 15.2 

SS5-12/12/12 3D CP12 12 15 8150 9000 10400 0.2 0.24 700 12.9 14.9 

RS19 - 14 14 9 7300 11250 15400 0.47 0.77 1067 10.5 14.4 

Repeat Tests on SS5 Anchors Near Coated Piles from 2013 

SS5-14 CP3 14 15RT 5200 6200 7000 0.22 0.28 400 15.5 17.5 

SS5-14 CP6 14 15RT 8150 9250 9600 0.17 0.18 400 23.1 24.0 

SS5-14 CP6 14 15RT 6125 7200 8000 0.22 0.37 312 23.1 25.6 

SS5-14 CP7 14 15RT 6975 8200 9100 0.23 0.31 700 11.7 13.0 

SS5- 10/12/14 CP8 12 15RT 9700 11500 12900 0.23 0.26 867 13.3 14.9 

SS5-12/14 3D CP9 13 16RT 5225 5725 6050 0.22 0.23 700 8.2 8.6 

SS5-10/12 3D CP14 11 15RT 6450 8500 10300 0.24 0.36 550 15.5 18.7 

SS5-10/12 3D CP16 11 15RT 5200 6725 8400 0.15 0.25 500 13.5 16.8 

SS5-12 CP10 12 15RT 5100 6000 6800 0.14 0.18 467 12.8 14.6 

SS5-12/12 3D CP11 12 15RT 4550 6000 7350 0.27 0.38 600 10.0 12.3 

SS5-12/12/12 3D CP12 12 15RT 5500 7300 8975 0.23 0.39 700 10.4 12.8 

Tests on Helical Anchors in Back Field from 2013 

RS2875-8/10/12 3D 10 10 17000 22700 29200 0.21 0.35 2000 11.4 14.6 

RS2875-8/10/12 3D 10 20 3000 6300 8000 0.23 0.28 467 13.5 17.1 

RS2875-8/10/12 3D 10 30 5300 6600 7100 0.28 0.31 467 14.1 15.2 

RS2875-10 10 10 8900 10800 12800 0.14 0.20 800 13.5 16.0 

RS2875-10 10 20 3300 3600 3700 0.08 0.10 300 12.0 12.3 

RS2875-10/10 3D 10 10 9500 12200 15100 0.22 0.30 1400 8.7 10.8 
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RS2875-10/10 3D 10 20 4200 4650 5000 0.18 0.20 500 9.3 10.0 

RS2875-10/10/10 3D 10 10 13000 18300 23300 0.27 0.42 1933 9.5 12.1 

RS2875-10/10/10 3D 10 20 5400 6200 6700 0.20 0.22 600 10.3 11.2 

RS2875-12 12 10 8800 11200 14350 0.15 0.33 1000 11.2 14.4 

RS2875-12 12 20 4125 4375 4550 0.14 0.15 400 10.9 11.4 

RS2875-12/12 3D 12 10 11500 14600 19000 0.30 0.48 1350 10.8 14.1 

RS2875-12/12 3D 12 20 5175 6075 6500 0.23 0.25 500 12.2 13.0 

RS2875-12/12/12 3D 12 10 15800 20800 27400 0.37 0.58 2367 8.8 11.6 

RS2875-12/12/12 3D 12 20 5450 7300 8250 0.40 0.45 650 11.2 12.7 

SS5-12/12/12 3D 12 10 9900 14000 18800 0.35 0.55 1600 8.8 11.8 

SS5-12/12/12 3D 12 20 5300 6350 7100 0.22 0.25 650 9.8 10.9 

SS175-8/10/12 3D 10 10 15200 20500 25200 0.24 0.35 2333 8.8 10.8 

SS175-8/10/12 3D 10 10RT 13500 17600 20600 0.25 0.33 2333 7.5 8.8 

SS175-8/10/12 3D 10 20 5500 6000 6000 0.08 0.08 633 9.5 9.5 

SS5-10/12/14 3D 12 10 16600 22100 25200 0.24 0.32 2200 10.0 11.5 

SS5-10/12/14 3D 12 20 6900 8000 8500 0.23 0.25 567 14.1 15.0 

SS5-10/12/14 3D 12 30 6300 7450 8500 0.28 0.30 533 14.0 15.9 

SS5-10/12/14 3D 12 40 5500 7000 7550 0.33 0.37 467 15.0 16.2 

RS2875-10/12/14 3D 12 10 22100 27300 31800* 0.19 0.25 2933 9.3 10.8 

RS2875-10/12/14 3D 12 20 7800 8750 9350 0.21 0.22 833 10.5 11.2 

RS2875-10/12/14 3D 12 30 7850 9200 9600 0.33 0.34 633 14.5 15.2 

RS2875-10/12/14 3D 12 40 7400 8600 9100 0.32 0.33 600 14.3 15.2 

SS5 RS Combo-10/12/14 12 10 14100 20400 26200 0.35 0.53 2400 8.5 10.9 

SS5 RS Combo-10/12/14 12 20 7800 9000 9400 0.25 0.26 633 14.2 14.8 

SS5 RS Combo-10/12/14 12 30 8000 9100 9600 0.22 0.23 533 17.1 18.0 

SS175-10/12/14 3D 12 10 15800 22500 29800 0.33 0.54 2467 9.1 12.1 

SS175-10/12/14 3D 12 20 6750 8050 8900 0.26 0.32 467 17.2 19.1 

RS125-8/10/12 3D 10 10 11100 17800 22800 0.35 0.53 1467 12.1 15.5 

SS5-14/14/14 1.5D 14 10 12500 16250 19500 0.20 0.30 2933 5.5 6.6 

SS5-14/14/14 1.5D 14 20 6700 7600 8325 0.18 0.20 433 17.6 19.2 

SS5-14/14/14 3D 14 10 12500 18750 25500 0.30 0.55 2400 7.8 10.6 

SS5-14/14/14 3D 14 20 6650 7600 8350 0.17 0.20 767 9.9 10.9 

Repeat Tests on Helical Anchors in Back Field from 2013 

SS5-12/14 1.5D 13 40 5500 7100 7575 0.29 0.43 333 21.3 22.7 

SS5-14/14/14 1.5D 14 20RT 6150 7925 9750 0.3 0.42 433 18.3 22.5 

SS5-14/14/14 3D 14 20RT 6750 8350 9850 0.28 0.35 767 10.9 12.8 

RS2875-12 12 20RT 3850 4375 4900 0.15 0.21 400 10.9 12.3 

RS2875-12/12 3D 12 20RT 4650 6075 6500 0.29 0.35 500 12.2 13.0 

RS2875-12/12/12 3D 12 20RT 5350 7350 9200 0.29 0.42 667 11.0 13.8 

RS2875-8/10/12 3D 10 30RT 6700 7800 8400 0.15 0.16 467 16.7 18.0 

RS2875-10/10/10 3D 10 20RT 5500 6500 7225 0.15 0.17 600 10.8 12.0 

New Screws Installed in Back Field in 2014 
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RS2875-8/10/12 3D Trial 
Pile 10 30 6100 6675 7050 0.19 0.22 N/A #VALUE! #VALUE! 

RS2875-10/10/10 3D 10 30 5300 7350 8075 0.31 0.36 N/A #VALUE! #VALUE! 

RS2875-10/10/10 3D 10 30RT 5900 6650 7200 0.10 0.12 N/A #VALUE! #VALUE! 

RS2875-12 12 30 3575 4200 4550 0.20 0.24 N/A #VALUE! #VALUE! 

RS2875-12 12 30RT 3000 3200 3500 0.11 0.12 N/A #VALUE! #VALUE! 

RS2875-12/12 3D 12 30 4650 5600 6050 0.28 0.30 N/A #VALUE! #VALUE! 

RS2875-12/12 3D 12 30RT 4050 4700 5050 0.18 0.20 N/A #VALUE! #VALUE! 

RS2875-12/12/12 3D 12 30 4200 6900 8050 0.50 0.53 N/A #VALUE! #VALUE! 

RS2875-12/12/12 3D 12 30RT 5550 6550 7350 0.20 0.33 N/A #VALUE! #VALUE! 

RS2875 10/12/14 3D 12 10 20200 27100 33500* 0.28 0.35 2833 10 11.8 

RS2875 10/12/14 3D 12 20 7050 7800 8100 0.22 0.22 833 9 9.7 

RS2875 10/12/14 3D 12 20RT 7650 8750 9800 0.17 0.20 833 11 11.8 

RS2875 10/12/14 3D 12 30 3900 4450 4500 0.28 0.28 700 6 6.4 

RS350-10 10 10 7800 9700 12300 0.13 0.27 1300 7 9.5 

RS350-12 12 10 9550 13400 17400 0.30 0.49 1367 10 12.7 

RS350-14 14 10 11800 15400 19600 0.18 0.42 2133 7 9.2 

RS350-16 16 10 14200 17500 20200 0.23 0.3 2566 7 7.9 

RS2875-16 16 10 9800 14400 20200 0.43 0.82 1766 8 11.4 

RS350-12 12 20 4175 4300 4550 0.18 0.19 400 11 11.4 

RS350-12 12 20RT 4000 4250 4550 0.05 0.07 400 11 11.4 

RS350-12/12 3D 12 10 9300 14050 21200 0.33 0.75 2133 7 9.9 

RS350-12/12 3D 12 20 5850 6500 6550 0.22 0.22 533 12 12.3 

RS350-12/12 3D 12 20RT 5650 6625 7300 0.15 0.18 533 12 13.7 

RS350-12/12/12 3D 12 10 12800 17900 22200 0.35 0.48 2600 7 8.5 

RS350-12/12/12 3D 12 10RT 19200 23000 26200 0.21 0.26 2600 9 10.1 

RS350-12/12/12 3D 12 20 7000 7800 8100 0.22 0.23 867 9 9.3 

RS350-8/10/12 3D 10 10 14775 20700 27000 0.23 0.41 2300 9 11.7 

RS350-8/10/12 3D 10 20 5350 6050 6075 0.12 0.12 633 10 9.6 

RS350-8/10/12 3D 10 20RT 4800 5750 6250 0.08 0.15 633 9 9.9 

RS350-10/12/14 3D 12 10 22500 28600 36900 0.26 0.40 3067 9 12.0 

RS350-10/12/14 3D 12 20 6500 7600 8100 0.24 0.26 967 8 8.4 

RS350-10/12/14 3D 12 20RT 7000 10900 13100 0.38 0.54 967 11 13.5 

SS125-12 12 10 5000 7400 10475 0.32 0.65 600 12 17.5 

SS125-12 12 10RT 6100 9650 13300 0.45 0.68 600 16 22.2 

SS125-10/12 3D 11 10 3100 4075 5400 0.15 0.36 1333 3 4.1 

RS125-8/10 3D 9 20 4450 5275 5550 0.15 0.15 300 18 18.5 

RS125-8/10/12 3D 10 20 2525 3200 3525 0.33 0.35 200 16 17.6 

RS125-8/10/12 3D 10 20RT 2800 3200 3525 0.13 0.18 200 16 17.6 

SS5-14/14/14 1.5D 14 30 6650 8000 8600 0.23 0.27 467 17 18.4 

SS5-14/14/14 1.5D 14 30RT 5950 7500 8100 0.28 0.30 467 16 17.3 

SS5-14/14/14 3D 14 30 6750 8400 9100 0.28 0.30 467 18 19.5 

SS5-14/14/14 3D 14 30RT 6550 7650 8100 0.17 0.19 467 16 17.3 
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SS5-12/14/16 3D 14 10 12900 18350 24000 0.38 0.62 3400 5 7.1 

SS5-12/14/16 3D 14 10RT 17300 21100 24000 0.25 0.33 3400 6 7.1 

SS5-12/14/16 3D 14 20 6700 8000 9900 0.23 0.37 633 13 15.6 

SS175-10/12/14 3D 12 30 5700 6700 7075 0.22 0.25 500 13 14.2 

SS175-10/12/14 3D 12 30RT 7550 8150 8600 0.1 0.13 500 16.3 17.2 

*Note: Value extrapolated from average capacity ratios of similar piles at same depth 

Repeat Tests on Shallow Helical Anchors in Back Field from 2011 

RS2875 PP N/A 4 - - 2950 - -       

RS2875 PP N/A 4RT - - 1500 - -       

RS2875 PP N/A 8 - - 4550 - -       

RS2875 PP N/A 8RT - - 7000 - -       

RS2875-12 12 4 6000 7400 9400           

RS2875-12 12 4RT 4650 6300 7850 0.31 0.40       

RS2875-12 12 8 10600 13300 16100 - -       

RS2875-12 12 8RT 7200 10000 12500 0.33 0.43       

RS450 PP N/A 4 - - 2500 - -       

RS450 PP N/A 4RT - - 1250 - -       

RS450 PP N/A 8 - - 8400 - -       

RS450 PP N/A 8RT - - 5000 - -       

RS450-12 12 4 6000 8000 10400           

RS450-12 12 4RT 5300 7300 9050 0.27 0.40       

RS450-12 12 8 12750 15250 17500           

RS450-12 12 8RT 14500 15800 17550 0.05 0.07       

RS6625 PP N/A 4 - - 6200 - -       

RS6625 PP N/A 4RT - - 2000 - -       

RS6625 PP N/A 8 - - 11500 - -       

RS6625 PP N/A 8RT - -   - -       

RS6625-12 12 4 8000 9200 10800           

RS6625-12 12 4RT 4750 5800 6800 0.11 0.19       

RS6625-12 12 8 17750 20000 22500           

RS6625-12 12 8RT 15200 17400 19100 0.15 0.18       

RS8625 PP N/A 4 - - 7400 - -       

RS8625 PP N/A 4RT - - 5750 - -       

RS8625-12 12 4 14200 15800 17200 - -       

RS8625-12 12 4RT 7800 9000 9900 0.10 0.13       

Ag-Farm 

Aged Tests and Repeats on Single-Helix 

SS5-12 #1 12 20 4550 5500 6600 0.23 0.28 667 9.2 9.9 

SS5-12 #1 12 20RT 4750 6700 9000 0.34 0.53 667 11.2 13.5 

SS5-12 #2 12 20 4600 6650 8500 0.32 0.58 533 12.5 15.9 

SS5-12 #2 12 20RT 5100 6300 7450 0.25 0.32 533 11.8 14.0 

SS5-12 #3 12 20 5100 6125 6900 0.22 0.25 533 11.5 12.9 
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SS5-12 #4 12 20 4450 5550 6850 0.22 0.32 667 8.3 10.3 

SS5-12 #4 12 20RT 4300 6250 9100 0.39 0.67 667 9.4 13.6 

SS5-12 #5 12 20 3400 3950 4900 0.22 0.65 733 5.4 6.7 

SS5-12 #5 12 20RT 3650 5200 6600 0.38 0.52 733 7.1 9.0 

SS5-12 #6 12 20 4250 5300 6300 0.23 0.3 767 6.9 8.2 

SS5-12 #6 12 20RT 4250 6150 7950 0.38 0.54 767 8.0 10.4 

1st Time Tests 

SS5-8/10/12 3D 10 10 9000 17500 24000 0.45 0.62 1867 9.4 12.9 

SS5-8/10/12 3D 10 20 6100 7450 8600 0.21 0.25 733 10.2 11.7 

SS5-8/10/12 3D 10 20RT 5800 7800 9600 0.22 0.35 733 10.6 13.1 

RS2875-8/10/12 3D 10 10 17000 29000 39000 0.41 0.61 N/A - - 

RS2875-8/10/12 3D 10 20 6300 10000 12250 0.42 0.50 900 11.1 13.6 

RS2875-8/10/12 3D 10 20RT 6950 9800 12300 0.27 0.40 900 10.9 13.7 

RS2875-8/10/12 3D 10 30 7500 12100 15150 0.40 0.50 - - - 

Combo-8/10/12 3D 10 10 19000 29500 42000 0.35 0.62 3033 9.7 13.8 

Combo-8/10/12 3D 10 20 6800 9600 11600 0.33 0.42 800 12.0 14.5 

Combo-8/10/12 3D 10 20RT 6700 8950 10950 0.22 0.34 800 11.2 13.7 

Pitch Series 

RS2875-8" w/ 3" Pitch 8 10 6850 9300 10750 0.25 0.41 1250 7.4 8.6 

RS2875-12" w/ 3" Pitch 12 10 15500 19000 23500 0.19 0.31 2000 9.5 11.8 

RS2875-12" w/ 3" Pitch 12 20 7400 8950 9850     1000 9.0 9.9 

RS2875-12" w/ 4" Pitch 12 10 20100 26200 29600 0.28 0.34 2800 9.4 10.6 

RS2875-12" w/ 4" Pitch 12 20 7150 8300 9350     1533 5.4 6.1 

RS2875-12" w/ 6" Pitch 12 10 16600 20600 24000 0.17 0.24 3600 5.7 6.7 

RS2875-12" w/ 6" Pitch 12 20 6900 8100 9100     1667 4.9 5.5 

RS2875-18" w/ 3" Pitch 18 10 19500 28100 32000* 0.51   2600 10.8 12.3 

RS2875-18" w/ 6" Pitch 18 10 18400 25750 30000*     3650 7.1 8.2 

RS2875-18" w/ 6" Pitch 18 20 10000 19400 - 0.87 - 1700 11.4 - 

*Note: Value extrapolated from average capacity ratios of similar piles at same depth 
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B-4 FIELD TESTS 

Sowers Drive Cone Penetration Tests 

      Site:   DOE   

Date: 20141027   Operators:   
Hagedorn, 
Ruberti   

Location: 
93' S Driveway, 75' W Paved 
Road   

Hammer 
Mass:   15 lb   

Probe: Sowers   
Hammer 
Drop:   20"   

Depth 
(ft) N0-2 N2-3.75 N3.75-5.5 W (%) Casagrande 

(Drops) 

Fall Cone 
Penetration 

(mm) 
1 13 20 20 22.2 N/A 2.1 
2 13 17 18 21.9 N/A 1.4 
3 12 13 14 25.1 N/A 1.5 
4 10 14 11 27.7 N/A 2.9 
5 11 11 8 29.7 N/A 3.8 
6 14 13 17 31.6 N/A 2.7 
7 12 15 20 38.9 N/A 4.0 
8 15 20 24 42.2 >200 7.5 
9 13 19 20 43.1 130 12.0 

10 12 13 15 46.6 150 6.7 
11 10 10 11 49.9 88 11.5 
12 7 8 8 52.9 84 14.0 

 

Mini Drive Probe Torque-Tests 

Results for SP-1 at the DOE Site 

Date: 10/28/14 Site: DOE 
Location: 3' North of SP-3 Operators: MNR - MAH 
Probe: SP-1 Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 
1 12 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 7 7 9 6 102 90 90 78 779.2 687.5 687.5 595.9 
4 6 10 11 12 132 108 124.8 108 1008.4 825.1 953.4 825.1 
6 7 11 14 18 144 120 138 120 1100.1 916.7 1054.2 916.7 
8 9 12 17 20 144 120 144 114 1100.1 916.7 1100.1 870.9 

10 7 10 11 12 102 78 84 72 779.2 595.9 641.7 550.0 
12 5 5 7 7 72 54 60 45.6 550.0 412.5 458.4 348.4 
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Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 

 

Results for SP-2 at the DOE Site 

Date: 10/28/14 Site: DOE 
Location: 3' North of SP-3 Operators: MNR - MAH 
Probe: SP-2 Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 
1.25 12 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 10 19 17 16 180 156 180 150 880.1 762.7 880.1 733.4 
4 12 13 15 16 150 120 132 116.4 733.4 586.7 645.4 569.1 
6 11 21 26 44 210 162 216 153.6 1026.7 792.1 1056.1 751.0 
8 14 19 22 26 300 270 300 240 1466.8 1320.1 1466.8 1173.4 

10 9 12 14 16 120 90 120 84 586.7 440.0 586.7 410.7 
12 7 8 9 10 48 30 0 0 234.7 146.7 0.0 0.0 

Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 
              3) Pocket of water experienced between 3-4' 

 

Results for SP-3 at the DOE Site 

Date: 10/27/14 Site: DOE 
Location: 3' West and 3' North of Sowers 
Cone 

Operators: MNR - MAH 

Probe: SP-3 Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 
Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 

1.5 12 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-
lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 18 24 22 23 240 240 252 216 814.9 814.9 855.6 733.4 
4 15 19 19 20 210 168 192 150 713.0 570.4 651.9 509.3 
6 14 24 38 56 240 216 276 204 814.9 733.4 937.1 692.6 
8 15 25 28 38 360 360 360 336 1222.3 1222.3 1222.3 1140.8 

10 11 16 20 21 72 60 72 60 244.5 203.7 244.5 203.7 
12 8 11 11 11 30 12 0 0 101.9 40.7 0.0 0.0 
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Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 

 

Results for TP-1 at the DOE Site 

Date: 10/30/14 Site: DOE 
Location: 5' North, 3' East of Tapered Cone 1 
(1.414"-0.587") 

Operators: MNR - MAH 

Probe: TP-1 (1.201"-
0.804") 

Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 
1.0025 12 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 6 11 16 21 312 276 324 276 2371.6 2098.0 2462.8 2098.0 
4 5 8 13 15 240 198 228 180 1824.3 1505.1 1733.1 1368.2 
6 6 12 20 28 210 150 204 144 1596.3 1140.2 1550.7 1094.6 
8 5 11 18 27 360 360 348 324 2736.5 2736.5 2645.3 2462.8 

10 4 7 9 13 270 228 252 204 2052.4 1733.1 1915.5 1550.7 
12 3 4 5 7 96 84 102 96 729.7 638.5 775.3 729.7 

Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 

 

Results for TP-2 at the DOE Site 

Date: 10/28/14 Site: DOE 
Location: 3' East of SP-2 Operators: MNR - MAH 
Probe: TP-2 (1.414"-
0.587") 

Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 
1.0005 12 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 5 9 18 25 390 288 408 240 2976.4 2198.0 3113.8 1831.6 
4 4 9 13 20 330 210 360 180 2518.5 1602.7 2747.4 1373.7 
6 9 15 26 37 312 240 336 240 2381.1 1831.6 2564.3 1831.6 
8 5 12 25 41 504 450 480 384 3846.4 3434.3 3663.3 2930.6 

10 4 8 13 18 330 276 312 276 2518.5 2106.4 2381.1 2106.4 
12 3 5 8 11 180 156 168 156 1373.7 1190.6 1282.1 1190.6 
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Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 

 

 

Results for Mini Cone at the DOE Site 

Date: 10/30/14 Site: DOE 
Location: 3' South of Mini SPT Operators: MNR - MAH 
Probe: Mini 
Cone 

Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque Wrench Torque Meter Torque Wrench Torque Meter 

0.996 9 

Depth 
(ft.) N0-3 N3-6 N6-9 N9-12 

TP                       
(in-lbs.) 

TR                  
(in-lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

Peak FS                       
(psf) 

Residual 
FS                       

(psf) 

2 10 13 10 N/A 138 96 126 96 1417.0 985.7 1293.8 985.7 
4 4 5 8 N/A 102 72 79.2 72 1047.3 739.3 813.2 739.3 
6 4 6 10 N/A 120 84 108 81.6 1232.1 862.5 1108.9 837.9 
8 8 13 18 N/A 210 168 186 153.6 2156.3 1725.0 1909.8 1577.1 

10 6 7 9 N/A 120 84 96 78 1232.1 862.5 985.7 800.9 
12 4 4 7 N/A 60 36 51.6 45.6 616.1 369.6 529.8 468.2 

Notes: 1) High range torque meter used (19.9-99.6 ft-lbs) 
              2) New anvil. 

 

Results for Mini SPT at the DOE Site 

Date: 10/30/14 Site: DOE 
Location: 3' South of TP-1 (1.201"-0.804") Operators: MNR - MAH 
Probe: Mini SPT Hammer Mass: 22 lbs Hammer Drop: 19 5/8" 

Diameter: (in) Length (in) Torque 
Wrench 

Torque 
Meter 

Torque Wrench Torque Meter 
0.992 9 

Dept
h (ft.) 

Recover
y (in/in) 

N0-

3 
N3-

6 
N6-

9 
N9-

12 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

TP                       
(in-
lbs.) 

TR                  
(in-
lbs.) 

Peak 
FS                       

(psf) 

Residua
l FS                       
(psf) 

Peak 
FS                       

(psf) 

Residua
l FS                       
(psf) 

2 6.5"/9" 6 9 13 N/A 150 84 120 84 1552.
6 869.5 1242.

1 869.5 

4 6.5"/9" 3 6 7 N/A 96 84 91.2 84 993.7 869.5 944.0 869.5 

6 7.25"/9" 6 10 14 N/A 198 156 189.6 150 2049.
5 1614.7 1962.

5 1552.6 

8 9"/9" 6 10 14 N/A 192 156 180 150 1987.
4 1614.7 1863.

2 1552.6 

10 9"/9" 4 6 8 N/A 114 90 102 87.6 1180.
0 931.6 1055.

8 906.7 

12 4"/9" 2 3 5 N/A 84 60 68.4 60 869.5 621.1 708.0 621.1 
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Notes: 1) High range torque meter used (19.9-99.6 ft-lbs). 

 

 

Miniature Field Vane Tests 

Date: Fall 2013 Site: DOE Site 2 
Location:  CP-10 3" towards WWTP Operators: NW & JE 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12 

Depth 
(ft.) 

Peak Torque 
(in-lbs) 

Peak Su 
(psi) 

Tare 
Weight (g) 

Wet 
Weight (g) 

Dry 
Weight (g) 

Water 
Content (%) 

1.5 60.3 16.45 1.05 27.44 22.32 24.1 
2.5 64.5 17.60 1.41 33.59 26.46 28.5 
3.5 32.2 8.79 1.04 38.61 28.82 35.2 
4.5 45.1 12.30 1.05 52.2 42.03 24.8 
5.5 68.3 18.63 1.05 42.85 33.29 29.7 
6.5 101.9 27.80 1.05 34.6 26.43 32.2 
7.5 128.8 35.14 1.03 40.91 30.8 34.0 
8.5 81.3 22.18 1.04 42.05 30.39 39.7 
9.5 97.2 26.52 1.14 38.72 28.12 39.3 
10.5 84.4 23.03 1.05 58.29 42.28 38.8 
11.5 55.6 15.17 1.04 39.95 27.8 45.4 
12.5 52.8 14.41 1.03 29.14 19.63 51.1 

 

Date: Fall 2013 Site: DOE Site 2 
Location:  CP-11 3" towards 116 Operators: NW & JE 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12/12 

Depth 
(ft.) 

Peak Torque 
(in-lbs) 

Peak Su 
(psi) 

Tare 
Weight (g) 

Wet 
Weight (g) 

Dry Weight 
(g) 

Water 
Content (%) 

1.5 44.1 12.03 2.26 46.54 37.12 27.0 
2.5 64.4 17.57 2.38 50.6 40.48 26.6 
3.5 31.6 8.62 2.26 48.39 36.29 35.6 
4.5 27.7 7.56 2.31 63.76 48.64 32.6 
5.5 45.8 12.50 2.27 58.57 46.56 27.1 
6.5 70.7 19.29 2.26 53.03 40.67 32.2 
7.5 49.6 13.53 2.29 75.71 56.75 34.8 
8.5 30.6 8.35 2.52 77.75 56.26 40.0 
9.5 40.7 11.10 2.34 60.69 43.45 41.9 
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10.5 33.7 9.19 1.04 43.34 30.78 42.2 
11.5 33.7 9.19 1.01 34.14 23.8 45.4 
12.5 24.9 6.79 1.09 24.23 16.17 53.4 

 

Date: Fall 2013 Site: DOE Site 2 
Location:  CP-12 3.5" towards Du Bois Operators: NW & JE 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12/12/12 

Depth 
(ft.) 

Peak Torque 
(in-lbs) 

Peak Su 
(psi) 

Tare 
Weight (g) 

Wet 
Weight (g) 

Dry 
Weight (g) 

Water 
Content (%) 

1.5 50.4 13.75 1.04 28.14 22.3 27.5 
2.5 72.9 19.89 2.34 54.76 41.84 32.7 
3.5 60.4 16.48 2.32 47.29 37.19 29.0 
4.5 74.7 20.38 2.27 50.83 39.23 31.4 
5.5 61.4 16.75 1.04 37.13 28.6 31.0 
6.5 57.3 15.63 1.09 37.95 29.43 30.1 
7.5 52.8 14.41 1.11 44.92 33.16 36.7 
8.5 43.6 11.90 1.04 41.04 29.89 38.6 
9.5 35.1 9.58 1.04 29.42 20.95 42.5 
10.5 34.4 9.39 1.08 64.59 46.01 41.4 
11.5 49.1 13.40 1.05 55.01 38.35 44.7 
12.5 23.6 6.44 1.01 50.88 34.1 50.7 

 

Date: 4/25/15 Site: DOE Site 2 
Location:  CP-10 3" towards WWTP Operators: MNR-MAH 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12 

Depth (ft.) 
Peak 

Torque 
(in-lbs) 

Peak 
Su 

(psi) 

Tare 
Weight 

(g) 

Wet 
Weigh

t (g) 

Dry 
Weigh

t (g) 

Water 
Content 

(%) 
1 43.6 11.90 2.2 26.89 22.27 23.0 
2 83.5 22.78 2.21 19.66 15.89 27.6 
3 59 16.10 2.26 25.43 20.3 28.4 
4 43.2 11.79 2.27 29.04 22.04 35.4 
5 69.3 18.91 2.27 21.51 17.79 24.0 
6 91.4 24.94 2.27 42.16 31.17 38.0 
7 89.3 24.36 2.29 38.36 29.5 32.6 
8 73.7 20.11 2.24 25.13 19.18 35.1 
9 90.1 24.58 2.25 17.77 13.25 41.1 
10 70.4 19.21 2.27 55.64 40.78 38.6 
11 57.6 15.72 2.21 66.83 46.42 46.2 
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12 43.5 11.87 2.21 59.78 41.29 47.3 
Date: 4/25/15 Site: DOE Site 2 
Location:  CP-11 3" towards 116 Operators: MNR-MAH 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12/12 

Depth (ft.) 

Peak 
Torqu
e (in-
lbs) 

Peak 
Su 

(psi) 

Tare 
Weigh

t (g) 

Wet 
Weigh

t (g) 

Dry 
Weigh

t (g) 

Water 
Content (%) 

1 20.9 5.70 2.24 21.81 17.84 25.4 
2 72.1 19.67 2.27 38.34 31.02 25.5 
3 41.7 11.38 2.25 21.34 17.94 21.7 
4 13.2 3.60 2.24 42.07 29.96 43.7 
5 30.1 8.21 2.24 40.49 30.78 34.0 
6 52.9 14.43 2.21 55 40.35 38.4 
7 89.1 24.31 2.26 36.8 28.04 34.0 
8 83.8 22.86 2.3 52.87 38.74 38.8 
9 93.6 25.54 2.25 62.36 44.42 42.5 
10 88.9 24.26 2.23 51.2 35.63 46.6 
11 83.8 22.86 2.22 53.96 37.75 45.6 
12 19.8 5.40 2.24 58.67 39.14 52.9 

 

Date: 4/25/15 Site: DOE Site 2 
Location:  CP-12 3.5" towards Du Bois Operators: MNR-MAH 
Vane Dimensions: 2"-1"-1" Readout: CDI Multitorq 
Shaft Geometry: SS5 Lead Geometry: 12/12/12 

Depth 
(ft.) 

Peak Torque 
(in-lbs) 

Peak Su 
(psi) 

Tare 
Weight (g) 

Wet 
Weight (g) 

Dry 
Weight (g) 

Water 
Content (%) 

1 3 0.82 2.21 20.06 15.42 35.1 
2 70.6 19.26 2.22 35.06 26.2 36.9 
3 58.2 15.88 2.23 33.73 26.08 32.1 
4 47.2 12.88 2.24 49.36 36.64 37.0 
5 79.7 21.75 2.22 31.7 25.98 24.1 
6 51.3 14.00 2.22 23.31 18.45 29.9 
7 53.6 14.62 2.22 43.67 32.62 36.3 
8 39.9 10.89 2.22 42.27 30.75 40.4 
9 43 11.73 2.25 39.01 28.42 40.5 
10 41.4 11.30 2.22 34.69 24.99 42.6 
11 50.6 13.81 2.27 49.16 34.43 45.8 
12 39.2 10.70 2.21 43.32 30.27 46.5 
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