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Abstract 

In the Northeast U.S. increasing stream temperatures due to climate change pose a 

serious threat to cool and cold water fish communities, as well as aquatic ecosystems as a whole. 

In this study, three stream temperature models were implemented for two different case-study 

basins in the Northeast Climate Science Center region.  Two coupled hydrology-stream 

temperature (physical) models were used:  VIC-RBM and SWAT-Ficklin et al. (2012).  The third 

model implemented was a nonlinear regression (statistical) model developed by Mohseni et al. 

(1998).  Metrics were developed to assess these models regarding their prediction skill, data 

input requirements, spatial and temporal resolutions, and “user-friendliness.”  This 

comprehensive assessment will be employed by aquatic resource managers in need of projected 

stream temperatures for management decisions in the face of climate change.  Additionally, these 

models were used to predict stream temperatures under a range of future air temperature and 

precipitation scenarios for the study basins.  These basins were the Westfield Basin (1,338 km2) 

in western Massachusetts and the Milwaukee Basin (2,220 km2) in Wisconsin.  The climate 

change analysis was performed using a range of potential precipitation changes and air 

temperature increases (similar to a climate stress test).  Precipitation scenarios ranged from 90% 

of observed to 130% of observed (in increments of 10%) and daily air temperature increases 

ranged from 0° C to 7° C (in increments of 1° C); the combinations of 5 precipitation scenarios 

and 8 air temperature scenarios yielded 40 different climate scenarios that were evaluated by 

each model.  The impacts of climate change on these temperature and precipitation ranges was 

determined for the two watersheds and during specific seasons of the year. 
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1. Introduction 

“Freshwater habitats are the most endangered worldwide.” 

Peter Moyle, Distinguished Professor, University of California Davis 

1.1 Problem Statement and Objective 

Freshwater fish species have suffered significantly from anthropogenic influences on 

their habitat including, but not limited to: chemical pollution, dams and other infrastructure, 

land-use changes, and thermal degradation (Caissie 2006; Coutant 1999; Hester and Doyle 2011; 

Poole and Berman 2001; Revenga and Kura 2003).  Fish habitats will continue to be impacted by 

the most dramatic and concerning phenomena of our time – climate change.  Natural resource 

management is challenging due to the natural variability of our climate, our lack of 

understanding of species and population dynamics, and our inability to forecast with precision 

the impact of management action on complex biological systems (Cilliers et al. 2013).  Natural 

systems typically have a large number of dynamic and interrelated components.  Many of these 

impacts are experienced directly, while others create nonlinear feedback loops.  Also, natural 

systems vary temporally and are affected by prior system states (Cilliers 1998; Cilliers et al. 

2013).  Quantifying the impacts of projected climate change on such complicated systems is 

challenging.       

When considering the incorporation of climate change projections into aquatic resource 

management plans, decision makers must consider not only the broad global forecasts that are 

readily available but also forecasts that are representative of local changes.  To do so, managers 

must select from a number of diverse models that are available to ensure the effectiveness of 

their potential actions.  
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Climate change is causing significant alarm among aquatic resource managers, because it 

alters the hydrologic cycle, stream characteristics and extreme temperatures.  For example, 

Hodgkins and Dudley (2006) analyzed 80 stream gage stations in North America north of 41° 

north latitude, finding 64% have significantly earlier winter-spring streamflows over an 80 year 

period.  This result is corroborated by Campbell et al. (2011), who observed at Hubbard Brook 

Experimental Forest in New Hampshire from 1965-2008 that peak discharge due to snowmelt is 

occurring earlier and at reduced magnitudes due to earlier snowmelt and reduced snowpack.  

Isaak et al. (2010) observed that from 1993-2006 basin annual mean stream temperature 

increased by 0.38° C and maximums increased by 0.48° C for a river network in central Idaho.  

In the Columbia River Basin average summer stream temperatures are projected to increase 5.2° 

C by the 2080s under RCP 8.5 emissions scenario (Ficklin et al., 2014).  These changes in flow 

regimes and stream temperatures will influence the aquatic species that can be sustained in 

various rivers and streams and their potential management.         

Stream temperature is strongly correlated with local air temperature (Mohseni et al. 1998; 

Caissie et al. 2001; Morrill et al. 2005; Ficklin et al. 2012; Yearsly 2012), suggesting that 

projected increases in air temperature will result in increases in stream temperatures in the future 

(Peterson and Kitchell 2001; Morrison et al. 2002).  For aquatic resource managers, changing 

stream temperatures are of great concern.  Managers are constrained by limited historical data for 

many streams and an incomplete understanding of the extent to which changes in air temperature 

and precipitation will impact streamflow and water temperature.  Computer models containing 

forecasts of future air temperatures and precipitation can offer insight into predicted changes in 

flow regimes and stream temperatures. 
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In recent years a myriad of stream temperature models have become available, with a 

wide range of required model inputs and with different spatial and temporal resolutions.  Each 

model has unique strengths and weaknesses.  The selection of one or more suitable stream 

temperature models depends significantly on the intended use and management actions for 

simulated stream temperatures.  For this work, three widely used stream temperature models that 

have potential value to resource managers were implemented in two different basins in the 

Northeast Climate Science Center region with the goal of providing guidance to aquatic resource 

managers in stream temperature model selection (including for climate change analyses).  This 

was done to promote efficiency and effectiveness in resource management.  When able to 

quickly select the model that best meets their needs, managers will be better equipped for 

decision-making and subsequently management actions.  The chapters of this thesis are 

organized as follows:  Chapter 2 provides background on climate change and natural resource 

management, the impacts of stream temperature on aquatic ecosystems, a history and description 

of water quality models, details the specific study basins, describes the Structured Decision 

Making (SDM) method, and outlines the metrics to be used for assessment.  Chapter 3 presents 

the research methodology of implementing and assessing the models, as well as a description of 

the climate change analysis.  The results of the model comparison and climate change analysis 

are presented in Chapter 4 and the conclusions and future work are presented in Chapter 5. 
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2. Background 

An important goal of natural resource management is to conserve or create a healthy 

ecosystem.  In this research a healthy ecosystem is defined as one that is able to maintain its 

structure and function over time when it encounters external stress (Costanza and Mageau 1999).  

Anthropogenic alterations to the natural environment have imposed significant stresses on the 

health of various ecosystems.  Climate change, in particular, poses extreme threats to ecosystem 

health, to an extent that is not easily quantified due to the complexity of both the systems and the 

stressor.  The major concerns in natural resource management regarding climate change include 

the following general categories: fitness, habitat, phenology, and survival.   

2.1  Stream Temperature and Aquatic Ecosystems 

Stream temperature is a critical component of aquatic ecosystem health.  It affects the 

chemical processes occurring in streams, and more directly for aquatic biota it impacts 

abundance, distribution, vitality, growth, survival, and phenological indices.  Freshwater fish 

species are of particular interest to natural resource managers because of their importance in the 

ecosystem and their diminished populations as a result of anthropogenic alterations – historical 

and contemporary – to river corridors (including water quality degradation).  As a result of this 

elevated level of interest and concern, species-specific thermal ranges for life-cycle stages have 

been relatively well-studied and documented for many fish, including “adult migration, 

spawning, egg incubation, embryo development, juvenile rearing, smoltification, and juvenile 

migration” (Coutant 1999).  Hester and Doyle (2011) found that aquatic species are more 

sensitive to temperatures higher than their thermal optima than they are to temperatures lower 

than the optima.  They also observed that fish are more sensitive to water temperature changes 

than invertebrates. Cold water fish species are of particular concern in the Northeast due to 
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observed and projected stream temperature increases as a result of climate change. Eaton et al. 

(1995) used field surveys to determine maximum temperature tolerances for various species 

presented in Table 1.   

 

  Table 1: Tolerable maximum weekly average temperature for select species 

Species Deg. C 

chum salmon 19.8 

pink salmon 21.0 

brook trout 22.4 

mountain whitefish 23.1 

cutthroat trout 23.3 

coho salmon 23.4 

chinook salmon 24.0 

rainbow trout 24.0 

brown trout 24.1 

walleye 29.0 

smallmouth bass 29.5 
 

Many studies examined the impact of stream temperature on abundance.   Ebersole et al. 

(2001) observed an inverse correlation between mean ambient maximum stream temperature and 

abundance of rainbow trout.  Using downscaled GCM output, Morrison et al. (2002) predicted a 

1.9° C increase in water temperature for the years 2070-2099 versus the historical period (1961-

1990) in the Fraser River.  This increase in temperature would significantly reduce spawning 

success and increase by a factor of 10 the exposure of salmon to water temperatures greater than 

20° C.   Morrison et al. (2002) determined this by comparing the current rates of salmon 
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exposure to “excessively warm” stream temperatures with projected exposure rates.  The number 

of 10-km reaches and hours where stream temperature exceeds 20° C were summed to determine 

cumulative exposure in degree reach hours (DRH).   

Changes in aquatic species distribution due to thermal changes in stream can be 

explained by the “River Continuum Concept” (Vannote et al. 1980).  This approach describes 

relationships between physical characteristics of river habitat and resident communities of 

aquatic biota.  It suggests that both seasonal and daily variations of water temperatures are 

important determinates for aquatic species distribution, with anthropogenic changes in water 

temperature causing aquatic communities to along the stream corridor. Butryn et al. (2012) 

predicted brook trout distribution in the Dog River, Vermont using summer temperature metrics 

as predictor variables, with 92% correct classification of the observations. From 1993 to 2006 

Isaak et al. (2010) estimated that bull trout in central Idaho lost 11-20% of their cold water 

spawning and early juvenile rearing habitat as a result of an annual mean stream temperature 

increase of 0.38° C (maxima increased by 0.48° C).  These temperature increases only minimally 

affected the thermally-suitable habitat of rainbow trout, with small shifts toward higher 

elevations as reaches that had previously been too cold warmed.  Mohseni et al. (2003) studied 

764 stream gaging stations in the contiguous U.S. to project the potential habitat changes of 57 

fish species under climate change.  Using GCM projections and a stream temperature model, 

(Mohseni et al. 1998) they predicted a 36% decrease in the number of stations with habitat 

suitable for cold water fishes and a 15% decrease for cool water fishes; whereas, thermally 

suitable habitat for warm water fishes was projected to increase by 31%.    

Vitality of fish species is also affected by climate change.  Eliason et al. (2011) studied 

cardiorespiratory physiology in adult sockeye salmon, finding that aerobic performance required 
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more energy in warmer water.  Expending greater amounts of energy to survive reduces overall 

fish vitality.  In the case of the sockeye, a reduction in fitness has been documented as climate 

change-induced increases in stream temperatures during summer migration has led to elevated 

mortality during spawning migration, meaning fewer fish are able to reproduce.  Using a 

bioenergetics model driven by data from 1933 to 1996 in the Columbia River, Peterson and 

Kitchell (2001) predicted predation rates on juvenile Pacific salmonids by northern squawfish to 

be 68-96% higher for the warmest (water temperature) year compared to the coldest year.    

Researchers developing growth models for various fish species have developed species-

specific growth-rates based on stream temperature.  Examples include brown trout predictive 

growth models (Elliott 1975a, b; Elliot and Hurley 1995; Elliott et al. 1995; Jensen 1990), and an 

Atlantic salmon growth model (Elliott and Hurley 1997).  Although specific optimum 

temperature ranges differ between fish species, growth rates according to temperature can be 

generalized as follows:  growth rates increase as temperature rises (below the optimum thermal 

range), growth rates plateau over the thermal optimum range, growth rates decline rapidly above 

the optimum temperature range, loss of body mass occurs slightly below lethal temperatures 

(Coutant 1999).   

Lethal water temperatures resulting from climate change are of great concern for cold 

water fish species in the Northeast.  In the well-documented thermal ranges for different fish 

species and their respective range of life-stages, ultimate (survivable for ten minutes) and 

incipient (survivable for up to one week) lethal water temperatures have been documented.  For 

fish in temperate latitudes, 0° C is typically the lower bound of survivable temperatures with 

upper bounds varying significantly between species (Coutant 1999).  Table 2 presents the lower 
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and upper incipient and ultimate temperature ranges for three different fish species at three 

different life-cycle stages (Elliott and Elliot  2010).      

 

Table 2:  Critical temperatures (deg. C) for survival at different life stages of 
Atlantic salmon, brown trout, and Arctic charr as presented by Elliott & Elliott (2010) 

 

 

 

Phenology is the relationship between climate and periodic biological phenomena.  

Temperature initiates many life events for flora and fauna.  Water temperature is a very 

important phenological indicator for aquatic species, including fish.  Juanes et al. (2004) 

examined 23 years of data on the migration timing of Atlantic salmon from two locations in the 

Connecticut River watershed.  They found that both the dates of first capture and median capture 

dates have shifted earlier by approximately 0.5 days/year in correlation with long-term changes 

in temperature.  These results were corroborated by observed shifts to earlier peak migration 

times in Maine and Canada (Juanes et al. 2004).  In a spawning phenology study conducted by 

Warren et al. (2012), a correlation was observed between elevated summer temperatures and a 

delay in spawning for brook trout (Salvelinus fontinalis) in a mountain lake.  An increase of 1° C 

in the summer mean of maximum daily air temperatures delayed spawning by approximately 1 

week (Warren et al. 2012).  
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The effects of stream temperature on fish species extends to the ecosystem level, 

including prey abundance.  In benthic insect communities of small and medium-sized streams, 

Haidekker and Hering (2008) observed quantitative differences in community composition 

correlated with water temperature parameters.  Daufresne and Boet (2007) performed a meta-

analysis assessing the effect of climate change on stream organisms.  They observed “important 

changes in total abundance, structures and diversity of fish communities, significantly linked to 

the temperature during reproduction.”  Broad awareness of anthropogenic thermal degradation of 

rivers and streams began in the environmental movement of the 1970s.  

2.2 Water Quality Modeling 

2.2.1 History 

Early “sanitary engineers” were very interested in water quality for several reasons, 

including the transmission of disease through water ways and the development of anaerobic 

conditions in rivers due to the discharge of human wastes.  Streeter and Phelps (1925) developed 

the first widely used water quality modeling concepts, long before the availability of computers.  

These early approaches to water quality modeling were well establish by the early 1970, when 

the availability of computing increased and the need to estimate the impacts of wastes on 

receiving water increased dramatically due to the passage of the Clean Water Act (CWA, or PL 

92-500) in 1972.  This federal law established the Environmental Protection Agency’s (EPA’s) 

regulatory authority over point-source pollution through the National Pollutant Discharge 

Elimination System (NPDES).  Section 316 of the CWA specifically addresses thermal 

discharges as a form of water pollution.  Water quality models branched in three separate but 

related directions – dissolved oxygen modeling due to the discharge of wastes, 



18 

 

nutrients/algae/toxins modeling that tracked oxygen demand and the transport of toxics 

discharges, and temperature modeling, which focused on steam temperature and its impacts on 

other rate coefficients.  Shanahan (1985) summarized the applications of early water temperature 

modeling:  “Computations of water temperature are employed to determine the environmental 

impacts of thermal discharges, to evaluate the performance of cooling ponds used to dispose of 

waste heat from power plants, or to evaluate the hydrothermal characteristics of water bodies in 

general.  They are an essential part of the design of waste heat disposal structures and systems, 

and in the assessment of environmental effects of waste heat disposal.”  Perhaps the most well-

known and widely used of the earliest water quality models was QUAL-II, developed for the 

EPA. In its early form, QUAL-II could simulate up to thirteen water quality constituents, 

including:  dissolved oxygen, biochemical oxygen demand, temperature, algae as chlorophyll a, 

ammonia as N, nitrite as N, nitrate as N, dissolved orthophosphate as P, and coliforms in 

dendritic, well-mixed streams in one-dimension along the main direction of flow (Roesner et al. 

1981).    

Due to significant advances in computing capabilities, a multitude of stream temperature 

models have been developed.  These models fall into two major categories:  physically-based 

and statistical.  Physical models are built on mathematical equations governing physical 

processes.  They employ energy budgets and/or water balance equations to calculate stream 

temperatures.  Statistical models rely heavily on air temperature data inputs to predict stream 

temperatures, coupling them by statistical relationships.  These models are described in detail 

below, noting strengths and weaknesses.  
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2.2.2 Physical Models 

Physical stream temperature models typically perform energy balances of heat fluxes in 

river environments and mass balances of water in river systems.  Physical models simulate 

stream temperature in one or more dimensions, with the simplest models estimating temperatures 

along the principle axis of stream flow.  One-dimensional models are used in rivers and streams 

that are well-mixed.  In more complex environments (such as lakes and estuaries) models with 

higher dimensions may be necessary to estimate temperatures that vary spatially.  In river 

environments, heat exchange occurs at the air-water interface and streambed-water interface; 

managed/impacted rivers also experience heat exchange through thermal effluent and water 

extractions. At the air-water interface, heat flux occurs via solar radiation, net long-wave 

radiation, evaporation, and convective heat transfer.  Heat flux at the streambed-water interface 

occurs through geothermal heat conduction and advection from groundwater and hyporheic 

flows (Caissie 2006).          

Water quality temperature models that are physically based can require significant data 

input (e.g. meteorological data, stream geometry, land use, and hydrology), but provide an 

opportunity to evaluate changes in temperature through broad scenario evaluation.  Modeled 

scenarios can include changes in land use, altered hydrologic regimes, introduction of water 

impoundment structures, and projected climate change.  

A recently developed physical stream temperature (Yearsley 2009) uses a semi-

Lagrangian approach to solve the time-dependent equations of the one-dimensional thermal 

energy budget.  The River Basin Model (RBM) utilizes existing extensive gridded data sets (for 

model-forcing functions) for the assessment of water temperature.  Yearsley (2012) later coupled 

a macroscale hydrologic model (Variable Infiltration Capacity, or VIC) with RBM.  VIC, 
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developed by Liang et al. (1994) is a physically-based model that balances water and/or surface 

energy budgets on a per grid cell basis.  Inputs required include meteorological forcing files, soil 

parameters, vegetation parameters, and snowband information.  VIC (and associated routing 

algorithms) output disaggregated meteorological forcings and gridded channel flows, which are 

then input to RBM to estimate hydraulic properties, stream speed, and thermal energy fluxes at 

the air-water interface (per grid cell).  Initial conditions for RBM are obtained from the Mohseni 

et al. (1998) nonlinear stream temperature regression model.  Like the regression model, stream 

temperatures are predicted on a weekly time-step.  Van Vliet et al. (2012) developed a 

framework to refine the temporal resolution of the coupled VIC-RBM model to simulate daily 

river discharge and temperatures. This was done by utilizing the Mohseni et al. (1998) nonlinear 

regression modified by van Vliet et al. (2011) to output stream temperatures on a daily time-step 

to determine initial conditions.  Figure 1 presents the inputs and outputs for VIC-RBM, as well 

as the full suite of model components. 
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Figure 1: Flow Diagram for VIC-RBM (Fig. 2 from Yearsley 2012) 

 

 A second example of a commonly used hydrology model coupled with a new stream 

temperature model is the Soil and Water Assessment Tool (SWAT) paired with a stream 

temperature model developed by Ficklin et al. (2012).  Developed to evaluate the impacts of 

different management scenarios on water resources in river basins – particularly non-point 

source pollution – SWAT is a continuous-time, semi-distributed, process-based river basin 

model (Arnold et al. 1998).  SWAT utilizes an internal statistical stream temperature component 

for modeling various in-stream biological and water quality processes.  The internal stream 

temperature model employs a linear relationship between air temperature and water temperature 

developed by Stefan and Preud’homme (1993), which functions at minimum on a daily time-

step.  The stream temperature model developed by Ficklin et al. (2012) incorporates 
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meteorological (air temperature) and hydrological conditions (streamflow, snowmelt, 

groundwater, surface runoff, and lateral soil flow) into stream temperature calculations while 

utilizing existing inputs to the SWAT model.  Stream temperature is calculated through three 

components: temperature and amount of local water contribution within the subbasin; 

temperature and inflow volume from upstream subbasin(s); and heat transfer at the air-water 

interface during the streamflow travel time in the subbasin. 

2.2.3 Statistical Models 

Statistical water temperature models seek mathematical relationships to estimate potential 

changes in temperatures as functions of pre-specified variables.  Statistical models require 

significantly less input data than physical models, making them more appealing for certain 

applications.  Early statistical stream temperature models used a linear regression to correlate air 

temperatures with predicted stream temperatures (Smith 1981).  However, linear regressions are 

often inappropriate for use in modeling stream temperatures year-round as linearity is an 

inappropriate approximation at the highest and lowest temperatures (due to increased evaporative 

cooling and freezing respectively) and it does not account for hysteresis.  To address these 

issues, Mohseni et al. (1998) developed a four-parameter nonlinear regression model that is 

widely applied.  The model employs an S-shaped function to better fit the relationship between 

air and stream temperature and applies separate functions for warming and cooling seasons.   The 

four parameters of the nonlinear function are estimated minimum and maximum stream 

temperatures, slope of the function, and air temperature at the inflection point.  Highly impacted 

streams may not fit the S-shaped function and the nonlinear regression cannot be applied.  The 

Mohseni et al. (1998) nonlinear regression operates on a weekly time-step, which in some cases 

may not adequately represent a temporal resolution sufficiently detailed for resource managers.  
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In response to this need, van Vliet et al. (2011) increased the temporal resolution of the Mohseni 

et al. (1998) nonlinear regression to a daily time-step.  This was accomplished by incorporating 

site-specific time-lags relating changes in air temperature to changes in water temperature and 

replacing daily maximum air temperature inputs with daily mean temperatures.  Additionally, 

van Vliet et al. (2011) introduced a fifth parameter, a river discharge variable, into the existing 

nonlinear regression, which was particularly successful for stream temperature prediction during 

periods of heat waves and drought.  Additional types of statistical models that have been applied 

to water temperature modeling include autoregressive models, periodic autoregressive models, 

artificial neural networks, and k-nearest neighbors (Benyahya et al. 2007). 

2.2.4 Model Summary  

Table 3 presents a summary of strengths and weaknesses of  physical and statistical 

models. 

Table 3: Summary of Model Type Strengths and Weaknesses 

Model Type Strengths Weaknesses 

Physical 
• Can model different scenarios 

(e.g. landuse and climate) 
• Visual interfaces 

• High data input requirements 
• Challenging to 

initiate/calibrate 

Statistical • Easy to initiate/calibrate 
• Low data requirements 

• 0-dimensional 
• Can’t model scenarios 
• Low temporal  resolution  

 

2.3  Study Basins 

This research focuses on basins within the Northeastern U.S. (defined in this case, as 

New England and the Great Lakes states).  The two basins selected for this study are 

representative of typical basins in the Northeast, allowing for region-wide trends in stream 
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temperature due to climate change to be determined.  These two basins are the Westfield River 

Basin in western Massachusetts and the Milwaukee River Basin located in southeastern 

Wisconsin.  These basins have extensive stream temperature data available, U.S. Geological 

Survey (USGS) GAGES-II reference gages, relatively unimpaired flows, and natural resource 

management concerns.     

2.3.1 Westfield Basin 

The Westfield river basin is a sub-basin of the Connecticut River, originating  

in the Berkshire Mountains.  It is approximately 1,344 km2 and contains the longest uncontrolled 

river in the state of Massachusetts, the West Branch of the Westfield River.  The Westfield basin 

hosts an excellent cold water fishery, supporting naturally reproducing or wild populations of 

brook trout and brown trout (Pioneer Valley Planning Commission 2006).   There are eighty-two 

lakes, ponds, and impoundments in the basin, more than half of which (forty-eight) are larger 

than ten acres.  The nearly 6,000 acres of open water in the Westfield river basin are utilized for 

recreation, wildlife habitat, industrial processing, waste assimilation, hydroelectric power, water 

storage, and drinking water supplies (Pioneer Valley Planning Commission 2006).  There are 

five major water supply reservoirs in the basin, including the 22.5-billion gallon Cobble 

Mountain Reservoir, the biggest water body in the state second only to the Quabbin Reservoir 

(Boston water supply).  Home to nearly 100,000 residents, the population density across the 

whole basin is 193 persons/sq. mile, which is divided starkly into distinctly rural (upper reaches 

of the watershed) and distinctly urban areas (southeastern portion of the basin).  The majority of 

the population (~82%) is centered in the cities of Springfield, West Springfield, Agawam, and 

Holyoke – which comprise about 18% of watershed area (Pioneer Valley Planning Commission 

2006). The average annual flow at USGS gage #01183500, located near the outlet of the 
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watershed with a contributing drainage area of approximately 1,287 km2, from 1915-2013 is 27 

cms (953.2 cfs).   

 

Figure 2:  HUC 8 Map of Massachusetts (Westfield Basin shaded in red) 

 

2.3.2 Milwaukee Basin  

The Milwaukee River Basin discharges into Lake Michigan and is approximately 2,220 

km2 in area.  The Milwaukee Basin is comprised of six sub-basins:  Cedar Creek, Kinnickinnic 

River, Menominee River, Milwaukee River East-West, Milwaukee River North, and Milwaukee 

River South.  The basin encompasses a population of about 1.3 million people.  The city of 

Milwaukee is located at the basin outlet, contributing to the high population density in the 

southern portion of the basin (approximately 90% of the population resides in the basin’s 

southern quarter).  Land in the northern half of the basin is predominately in agricultural use.        

There are about 600 miles of perennial streams and about 450 miles of intermittent streams in the 

Milwaukee river basin.  A majority of this aquatic habitat is suitable for warm water fish, with 

only 12% capable of supporting cold water fish communities (Wisconsin Department of Natural 
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Resources 2001).    The approximate average annual flow at the outlet (USGS gage #04087000 

in Milwaukee) for a drainage area of 1,802 km2 is 12.8 cms (451.1 cfs). 

 

Figure 3:  HUC 8 Map of Wisconsin (Milwaukee Basin shaded in red) 

   

2.4 Stream Temperature and Resource Management 

2.4.1 Structured Decision Making 

Structured Decision Making (SDM) is “the collaborative and facilitated application of 

multiple objective decision making and group deliberation methods to environmental 

management and public policy problems” (Gregory et al. 2012).  It aids and informs decision 

makers and supports their ability to effectively apply decision theory and risk analysis.  

Supporters of SDM describe it as a comprehensive, clear, transparent, and defensible 

framework for understanding and generating alternatives for complex decisions.  Both the 

USGS and U.S. Fish and Wildlife Service (USFWS) have extensively employed SDM and 
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provide training in its application.  Additionally, these agencies have integrated SDM into 

Adaptive Resource Management (ARM), creating a protocol for implementing SDM in 

decisions iterated over time for long-term responsive resource management as well linked 

decisions.       

 

 

 

 

 

 

 

 

 

 

Figure 4:  Structured Decision Making Steps (from USFWS, 2008) 

 

 The application of SDM requires addressing the following seven questions:  1) What is 

the context, scope, and/or bounds of the decision?; 2) What objectives and performance 

measures will be used to evaluate alternatives?; 3) What alternative actions or strategies are 

being considered?; 4) What are the expected consequences of these respective actions or 

strategies?; 5) What are the important uncertainties and how do they impact management 

choices?; 6) What key trade-offs among consequences are there?; and 7) How can the decision 
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be implemented in a way that promotes learning over time and provides opportunities for 

adaptive management (Gregory et al. 2012)?  Modeling is an important part of understanding the 

consequences of different alternatives, which are used to develop and understand trade-offs 

(Figure 4).  The modeling tools that support the SDM process are incorporated into this stream 

temperature model comparison, as a means of streamlining the process for resource managers 

and ensuring the most suitable modeling results are obtained for specific applications.   

This research uses an SDM framework to promote efficient and effective decision 

making for stakeholders concerned with climate change impacts on stream temperature in the 

northeast.  As SDM is highly utilized in natural resource management, it is appropriate to apply 

it to this research.  This framework addresses the management decisions that need to be made, 

data availability, and model output needs.  In order to establish an understanding of stakeholder 

needs, a survey was developed for resource managers.  The results of this survey were used to 

develop the assessment criteria applied to the three stream temperature models.     

The electronic survey was distributed to the NESC’s network of professionals working with 

stream temperature.  Twenty-seven responses were received primarily from employees of state 

agencies (~41%), federal agencies (~30%), and academia (~19%).  Two responses were received 

from local government employees and one response from a non-profit.  The majority of 

responders’ field of expertise was aquatic/fisheries biology or ecology (~63%), followed by 

water or natural resource management (~19%).  Two responders identified engineering as their 

field of expertise, with terrestrial biology or ecology, policy, and hydrology/biogeochemistry 

identified as the field of expertise for one respondent each.  When asked to identify the stream 

temperature format most important to their resource management decisions, 12 responded spatial 

watershed-wide snapshots, 8 responded time-series at specific locations, 1 replied both spatial 
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snapshots and time-series, and 5 responded “other”.  Of the 18 responses for the least dense 

stream temperature network acceptable for decision making, 72% chose 5km (6 responses) or 

10km (7 responses), with ~22% (4) selecting 25km and 1 selecting 50 km – indicating a need for 

more dense stream temperature networks.  The majority (16 responders) selected mean as the 

most important stream temperature statistic for their work, with 10 selecting maximum (1 did not 

select an answer).  When asked to rank the importance of hourly, daily, monthly, seasonal, and 

annual time-steps for stream temperatures, ~48% ranked hourly as the most important and ~26% 

ranked daily as the most important.  Approximately 44% ranked daily as the second most 

important stream temperature time-step.  These rankings indicate a need for high temporal 

resolution. Summer (June, July, August) was identified as the season of greatest management 

concern by 19 respondents (~70%), 5 chose all seasons, 2 selected spring (March, April, May), 

and no respondents selected fall (September, October, November) or winter (December, January, 

February).  This is consistent with significant concerns among resource managers regarding 

maximum lethal temperatures of aquatic species.  When asked to rank the importance of specific 

river scales for their resource management work (headwaters, tributaries, mainstem, outlet), 

~41% ranked headwaters as the most important; ~30%, ~19%, and ~1% ranked tributaries, 

mainstem, and outlet as the most important (respectively).  Headwaters were ranked second in 

order of importance by ~22% of respondents and tributaries were ranked second most important 

by ~56% of participants.  This research responds to a clearly articulated need (of resource 

managers) for stream temperature models with appropriate spatial and temporal resolutions, 

model skill, and ease of implementation. These survey results were used to develop the model 

assessment metrics outlined in the following section. 
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2.4.2 Assessment Metrics 

This research assesses a series of temperature models based on a consistent set of metrics 

chosen to characterize the model’s function and the model’s applicability.  These metrics are:  

model skill, data input requirements, spatial and temporal resolution of modeled output, and 

“user friendliness” (Table 4). The model’s skill or ability to accurately estimate water 

temperature is the metric of interest related to quantitative, statistical measures of model 

accuracy and are evaluated using Nash-Sutcliffe efficiency (NSE) and normalized root-mean-

square error (RSR).  RSR is the ratio of the root mean square error to the standard deviation of 

observed data.  The simulated hydrology of VIC and SWAT will also be evaluated using NSE 

and RSR, as well as percent bias (PBIAS).  NSE ranges from -∞ to 1, with 1 being ideal.  RSR 

ranges from 0 to ∞, with 0 being ideal.  For PBIAS, a negative value indicates that the model is 

underestimating, a positive value indicates overestimating, and 0 indicates a perfect estimate.  In 

accordance with the guidelines Moriasi et al. (2007) for calibrating hydrologic models, the 

threshold of successful calibration for each statistic is as follows:  NSE > 0.5, RSR ≤ 0.7, and 

PBAIS between ± 25%.    
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Table 4: Model Performance Statistics (from Cambell et al., 2011) 

Measure Abbreviation Description Mathematical Definition 

Nash-Sutcliffe 
Efficiency NSE Variation of measured values 

accounted for in the model 1 −
∑ (𝑌𝑖 − 𝑌�𝑖)2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌�)2𝑛
𝑖=1

 

Normalized Root 
Mean Square 
Error 

RSR 
Ratio of the root-mean-square 
error and standard deviation 
of observed values 

�∑ (𝑌𝑖 − 𝑌�𝑖)2𝑛
𝑖=1

�∑ (𝑌𝑖 − 𝑌�)2𝑛
𝑖=1

 

Percent Bias PBIAS 
Difference between observed 
and simulated values 
expressed as a percent 

∑ (𝑌𝑖 − 𝑌�𝑖)𝑛
𝑖=1
∑ (𝑌𝑖)𝑛
𝑖=1

× 100 

 

Data requirements are given a qualitative ranking of low, medium, or high.  The spatial and 

temporal resolution metrics will be presented numerically.  For the highly qualitative “user 

friendliness” metric, an ordinal ranking of 1 to 3 will be given (with 1 being the most user 

friendly model). 

In addition to providing background on the role of stream temperature in aquatic ecosystems, 

this chapter discussed decision-making in the context of natural resource management and gave a 

history of water quality modeling (specifically regarding temperature).  The models are reviewed 

in Chapter 3 and ranked and Chapter 4.     
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3. Model Review 

In this research, the VIC-RBM, SWAT-Ficklin et al. (2012), and Mohseni et al. (1998) 

nonlinear regression models are applied to each of the study basins (the Westfield and 

Milwaukee) and assessed according to the metrics outlined in Chapter 2.  This chapter presents 

observations and details from implementing the models for the study basins, which will be 

synthesized into an assessment of the models presented in Chapter 4.        

3.1 Data 

3.1.1 USGS Flow Data 

Streamflow data used in this research were obtained from the USGS GAGES-II 

(Geospatial Attributes of Gages for Evaluating Streamflow) database (Falcone 2011).  This 

database, released in 2011, is an updated version of the original GAGES database developed by 

the USGS National Water-Quality Assessment (NAWQA) Program that was published in 2010.  

USGS flow gages were selected for inclusion according to criteria designating them as being 

minimally affected by direct human activities.  Flow gages presented in Table 5.   

 

Table 5: Hydrology Calibration Gages 

Basin USGS ID Name Latitude Longitude 

Westfield 01181000 West Branch Westfield River at 
Huntington, MA 42.237312 -72.895654 

Milwaukee 04086600 Milwaukee River near Cedarburg, 
WI 43.280283 -87.942866 
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3.1.2 Stream Temperature Data 

Stream temperature observations for the Westfield basin were collected by the Massachusetts 

Department of Environmental Protection.  Data was sub-daily (one-hour intervals) and was 

aggregated into daily average stream temperatures.  Data site “MAKear55” was used for 

calibration due to its long period of record (Table 6).  Stream temperature observations for the 

Milwaukee basin come from the Wisconsin Department of Natural Resources (DNR).  The site 

chosen for calibration was the Menominee River at Menominee station (site ID #04087030), 

located in a cool-warm headwater stream.  It was chosen for both the long period of record and 

its proximity to the USGS flow gage used for calibration (Table 6).    

 

Table 6:  Temperature Data Sites 

Site (Basin) Latitude Longitude Period of Record 

MAKear55 (Westfield) 42.43621 -72.92976 7/21/2005 – 4/15/2008 
Menominee River @ 
Menominee (Milwaukee) 43.1728 -88.1039 11/8/2008 – 11/12/2013 

 

 

3.2 VIC-RBM 

3.2.1 Implementation and Model Skill 

The Connecticut River VIC model (which includes the Westfield basin) was calibrated 

prior to this study (Polebitski et al. 2012).  The daily streamflow for the Westfield basin was 

calibrated to a Nash-Sutcliffe Efficiency value of 0.54, with peak flows typically under-

simulated.  The modeled average annual flows have a -7.5% bias compared with observations, 
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with a root mean square error (RMSE) of 252 cfs over the calibration period (135% of the 

average flow for the time period).  

    

 
Figure 5:  Daily Streamflow (from Polebitski et al. 2012) 

  

The RBM model was calibrated to a NSE of 0.772 for the calibration period (1/1/2007 – 

4/15/2008) and a RSR of 0.478.  This yielded a NSE 0.684 and a RSR of 0.593 for the validation 

period (7/21/2005 – 12/31/2006) for the Westfield basin.  The combined calibration and 

validation periods has a NSE of 0.721 and a RSR of 0.528.   
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Figure 6: VIC-RBM Stream Temperature Calibration Period 

 

 

 

Figure 7: VIC-RBM Stream Temperature Validation Period 
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In the VIC-RBM calibration and validation plots, the following can be noted.  First, there 

is potentially some over-calibration:  in the validation period, VIC-RBM simulates rapid 

decreases in water temperature in the fall months (2006 and 2007) that are uncorrelated with 

observed temperatures.  When examining the calibration period, the observed water temperatures 

exhibit a steep decline in the fall that the model is capturing very well.  Over-calibration can 

partially be explained by the lack of data available for calibration and validation.  Another 

notable model output characteristic is that the spring water temperature predictions are 

consistently too high relative to the observations.  These model output patterns are consistent 

with those observed by van Vliet et al. (2012) in the Lena basin (in Russia).  The VIC-RBM 

output for that basin exhibited a falling limb during August-October that is too rapid and the 

decrease begins too soon.  It was also observed that VIC-RBM over estimated spring water 

temperatures, as the model was not accounting for ice and meltwater inflow.     

3.2.2 Data Input Requirements 

Data requirements for VIC-RBM include:  precipitation, maximum air temperature, 

minimum air temperature, and wind speed files which have been developed nationally and are 

available as gridded meteorological datasets (Maurer et al. 2002).  These datasets are 

periodically updated; version 5.7.2.14 (08/19/2009) was used in this research.  Additional 

parameter files include soil, vegetation, vegetation library, and snowband files.  A flow direction 

file must be developed to route flows between grid cells.  The RBM model requires output from 

the Mohseni et al. (1998) nonlinear regression model to provide boundary conditions for 

headwater temperatures.    
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3.2.3 Spatial and Temporal Resolution 

The VIC model is a “Continental” scale model, originally designed to simulate 

hydrological processes in very large river systems.  The limiting factor in spatial resolution is the 

availability of high-resolution gridded input data.  This work was performed using 1/8 degree 

gridded data (~12.5 km) meaning VIC-RBM simulates one temperature per grid cell (~140km2).  

Recently, 1/16 degree gridded data sets have become available, creating the potential for 

increased spatial resolution (Livneh et al. 2013). 

The VIC-RBM extends the VIC model by simulating mean daily water temperatures.  

The VIC model is capable of computing sub-daily energy fluxes at a 3-hour time-step, which 

may potentially be incorporated into future versions of RBM.  For this research, the model was 

applied at a spatial resolution of 1/8 degree with a mean daily water temperature temporal 

resolution. 

3.2.4 User Friendliness 

The VIC-RBM model operates in a Linux environment.  It was developed as a research 

tool, and thus, assumes a high level of experience in modeling hydrologic processes.  Computer 

coding experience is required for implementation and trouble-shooting.  The VIC-RBM model 

lacks a visual-oriented user-interface, and as such is not ideal for engaging stakeholders in the 

modeling process. 
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3.2.5 Summary Table 

A summary of the VIC-RBM model performance according to the performance metrics is 

presented in Table 7. 

 

Table 7: Summary of VIC-RBM Metrics 

Metric Summary 
Skill (Validation) NSE: 0.648 RSR: 0.593 

Data Requirements Gridded meteorological data and parameter 
files, flow direction file, Mohseni parameters 

Spatial Resolution 1/8 degree (~140 km2 area) 
Temporal Resolution Mean daily water temperature 

User Friendliness Requires high degree of modeling knowledge 

 

 

3.3 SWAT-Ficklin et al. (2012) 

3.3.1 Implementation 

ArcSWAT 2009.93.7b was used for its compatibility with the Ficklin et al. (2012) stream 

temperature model.  Calibrations of both the SWAT hydrology and the temperature model were 

performed manually.  For each basin, the hydrology of the SWAT model was calibrated and 

validated before progressing to the Ficklin et al. (2012) stream temperature model.  The 

Westfield Basin SWAT hydrology was manually calibrated to a NSE of 0.511 and a RSR of 

0.699 for the calibration period (1/1/2001-12/31/2010).  The simulated hydrology exhibited a -

2.6% bias versus the observations for this period.  This yielded a NSE of 0.510, a RSR of 0.700, 

and a PBIAS of -8.7% for the validation period (1/1/1990-12/31/2000).  For the entire period of 
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record (1/1/1990-12/31/2010) this resulted in a NSE of 0.511 and a RSR of 0.699.  The PBIAS 

versus the observations was -5.7%. 

 

Figure 8:  SWAT Hydrology Calibration, Westfield 
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Figure 9: SWAT Hydrology Validation, Westfield 

 

The water temperature was calibrated to an NSE of 0.935 and an RSR of 0.256 for the 

calibration period from 1/1/2007 – 4/15/2008.  The validation period (7/21/2005 – 12/31/2006) 

yielded an NSE of 0.664 and an RSR of 0.579. This yielded an overall NSE of 0.678 and RSR of 

0.567. 
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Figure 10:  SWAT-Ficklin et al. (2012) Temperature Calibration, Westfield 

 

 
Figure 11:  SWAT-Ficklin et al. (2012) Temperature Validation, Westfield 
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The SWAT hydrology for the Milwaukee Basin was manually calibrated to a NSE of 

0.465 and a RSR of 0.731 for the period 1/1/2001-12/31/2010.  The simulated hydrology 

exhibited a -1.6% bias versus the observations for this calibration period.  The validation period 

(1/1/1990-12/31/2000) yielded a NSE of 0.472, a RSR of 0.726, and 13.8% bias.  For the period 

of record (1/1/1990-12/31/2010), the model had a NSE of 0.469 and a RSR of 0.729.  The 

PBIAS was 6.1%. 

 
Figure 12: SWAT Hydrology Calibration, Milwaukee 
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Figure 13: SWAT Hydrology Validation, Milwaukee 

 

The water temperature was calibrated to a NSE of 0.896 and a RSR of 0.322 for the period from 

11/8/2008-12/31/2009.  The validation period (1/1/2010-12/31/2010) yielded a NSE of 0.910 and 

a RSR of 0.300.  For the entire period of record (11/8/2008-12/31/2010) the overall NSE was 

0.904 and the RSR was 0.309. 
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Figure 14: SWAT-Ficklin et al. (2012) Temperature Calibration, Milwaukee 

 

 
Figure 15: SWAT-Ficklin et al. (2012) Temperature Validation, Milwaukee 
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3.3.2 Data Input Requirements 

The ArcSWAT interface for the SWAT-Ficklin model utilizes publicly available spatial 

datasets to delineate the watershed of interest, as well as smaller subbasins and even smaller 

Hydrologic Response Units (HRUs).  Digital Elevation Models (DEMs) were obtained from the 

National Hydrography Dataset Plus (NHDPlus) website.  The Version 2 HydroDEM was used 

for the Westfield basin, whereas the Version 1 DEM was used for the Milwaukee due to SWAT 

incompatibility issues.  Land use spatial data was obtained from the National Land Cover 

Dataset (NLCD) – with the most recent data used for both basins.  The most recent STATSGO 

soils data was obtained from the USDA Geospatial Data Gateway.  Weather observation inputs 

to the model include precipitation, air temperature, relative humidity, solar radiation, and wind 

speed.  These data are available as a gridded data set through the SWAT website 

(www.swat.tamu.edu) and is provided by the National Centers for Environmental Prediction 

(NCEP) Climate Forecast System Reanalysis (CFSR).   

3.3.3 Spatial and Temporal Resolution 

SWAT is a landscape-scale hydrological model.  The spatial resolution in SWAT varies 

according to the specific watershed being analyzed, but was similar for the Westfield and 

Milwaukee basins.  The Ficklin et al. (2012) model is able to produce a stream temperature for 

every individual reach within the SWAT hydrologic model.  SWAT delineated 113 stream 

reaches (~451 km of river) in the Westfield, producing on average one temperature per every 4 

km of river mile (or 12 km2 of watershed area).  The larger Milwaukee basin was delineated into 

123 stream reaches (~679 km of river), producing one temperature per every 5.5 km of river mile 

(or 18 km2 of watershed area) on average.  It is important to note, the Ficklin et al. (2012) stream 
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temperature model is unable to calculate water temperatures when the flow in a stream is less 

than 0.01 cms.  Like the VIC-RBM model, the SWAT-Ficklin et al. (2012) model simulates 

mean daily streamflows and mean daily water temperatures.  

3.3.4 User Friendliness 

The SWAT-Ficklin et al. (2012) model has an excellent visual user-interface (through 

ArcGIS), allowing for visual demonstrations with stakeholders.  The geospatial data needed for 

implementation is readily available and easy to acquire.  The time and difficulty involved in 

calibration differs significantly from one basin to the next according to size and watershed 

complexity.  The calibration process can be made much simpler by the use of an automated 

calibration software package.  The program is designed to be applied by individuals without a 

great deal of programming experience.    

3.3.5 Summary Table 

A summary of the SWAT-Ficklin et al. (2012) model performance according to the 

performance metrics is presented in Table 8. 

 

Table 8: Summary of SWAT-Ficklin et al. (2012) Metrics 

Metric Summary 
Westfield Milwaukee 

Skill (Validation) NSE: 0.664 RSR: 0.579 NSE:  0.910 RSR: 0.300 

Data Requirements Spatial data (DEM, land use, soils) and meteorological data 

Spatial Resolution ~4 km of river/ ~12km2 
of watershed area 

5.5 km of river/ 18km2 of 
watershed area 

Temporal 
Resolution Mean daily water temperature 

User Friendliness Easily acquired data inputs paired with excellent visual user-
interface. Calibration can be difficult. 
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3.4 Mohseni et al. (1998) Nonlinear Regression 

3.4.1 Implementation 

Mohseni et al. (1998) presents a temperature modeling approach based on a nonlinear 

regression model.  This has been implemented and calibrated/validated using R statistical 

software, with an optimizing function to determine the best fit for the four parameters – α, β, µ, θ 

– using the Shuffled Complex Evolution (SCE) method (Duan et al. 1993).   The Westfield basin 

was calibrated to an NSE of 0.956 and a RSR of 0.209 for the period 1/1/2007 – 4/15/2008.  The 

validation period (7/21/2005 – 12/31/2006) yielded a NSE of 0.931 and a RSR of 0.262.  This 

resulted in a NSE of 0.946 and a RSR of 0.233 for the combined calibration and validation 

period. 
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Figure 16: Mohseni S-shaped Regression, Westfield Basin 

 

Figure 17:  Mohseni et al. (1998) Calibration, Westfield 
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Figure 18: Mohseni et al. (1998) Validation, Westfield 

 

For the Milwaukee basin, the model was calibrated to a NSE of 0.946 and RSR of 0.231 

for the period 11/8/2008-12/31/2009.  The validation period (1/1/2010 – 12/31/2010) yielded an 

NSE of 0.945 and an RSR of 0.235.  This yielded a NSE of 0.940 and a RSR of 0.245 for the 

period of record (11/8/2008-12/31/2010).  Air temperature data was obtained from the National 

Climatic Data Center (NCDC) Global Historical Climatology Network (GHCN) Database for 

site #USC00475474 (located in Milwaukee at Mt. Mary College).  
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Figure 19: Mohseni S-shaped Regression, Milwaukee Basin 

 

Figure 20:  Mohseni et al. (1998) Calibration, Milwaukee 
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Figure 21: Mohseni et al. (1998) Validation, Milwaukee 

 

3.4.2 Data Input Requirements 

To implement the model at a point of interest, one must have stream temperature 

observations at that location as well as air temperature observations.  There is ambiguity as to the 

period of record necessary to generate a robust regression, but a minimum of 3 years of data is 

recommended (Mohseni et al. 1998).     

3.4.3 Spatial and Temporal Resolution 

The Mohseni et al. (1998) nonlinear regression is zero dimensional (0D), meaning 

temperatures are predicted only at specific sites, with multiple site predictions carried out 

independently (Caissie 2006).  The Mohseni et al. (1998) non-linear regression model cannot be 

applied to sites that do not exhibit the S-shaped curve relationship between air and water 
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temperature – in the original Mohseni et al. (1998), 1.9% of stations were not well-modeled by 

the S-shaped curve.  The Mohseni et al. (1998) model was developed for predicting weekly mean 

water temperatures.  In this research it was applied on a daily time-step, which is successful in 

many, but not all locations (Benyahya et al. 2007; Morrill et al. 2005).  It is important to note 

that as the regression model fits data better over longer time scales (originally implemented 

weekly) the four parameters of the model may vary across different time scales of application.  

Thus it is recommended that the regression model be re-calibrated when applied to different time 

scales.  The model has been used to predict maximum and minimum weekly stream temperatures 

(Mohseni et al. 2003) indicating that there may be potential for application on a daily time-step 

for maximum and minimum stream temperatures.   

3.4.4 User Friendliness 

The Mohseni et al. (1998) model is very easy to implement with knowledge of statistical 

software coding and can be executed quite quickly.  Complications in implementation may arise 

with formatting observations for use in the model or insufficient observations of water and air 

temperatures. 
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3.4.5 Summary Table 

A summary of the Mohseni et al. (1998) model performance according to the 

performance metrics is presented in Table 9. 

 

Table 9: Summary of Mohseni et al. (1998) Metrics 

Metric Summary 
Westfield Milwaukee 

Skill (Validation) NSE: 0.931 RSR: 0.262 NSE:  0.945 RSR: 0.235 

Data Requirements Stream and air temperature observations for point of 
interest 

Spatial Resolution Zero Dimensional 
Temporal 
Resolution 

Max weekly, mean weekly, or mean daily water 
temperature 

User Friendliness Easy to implement with statistical computing software 

 

3.5 Climate Change Analysis 

A range of possible future climate scenarios were evaluated with the VIC-RBM, SWAT-

Ficklin et al. (2012), and Mohseni et al. (1998) models for the Westfield basin utilizing a method 

similar to the bottom-up decision-centric method developed by Brown et al. (2012).   For this 

analysis, the precipitation and air temperature inputs to VIC-RBM and SWAT-Ficklin et al. 

(2012) were altered to reflect possible future situations.  Precipitation inputs were based on the 

original observations used to inform the models and altered by percentages – meaning each daily 

precipitation amount was altered by the specific percentage.  These percentages ranged (in 

increments of 10%) from 90% of observed to 130% of observed (for a total of 5 different 

precipitation scenarios).  Daily air temperature observations used to inform the models were 

altered by a number of degrees Celsius (in increments of 1° C) ranging from 0° C to 7° C (for a 
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total of 8 different air temperature scenarios).  Each precipitation scenario was combined with 

each individual air temperature scenario, yielding 40 final scenarios to be evaluated with each 

model.  The scenario of 100% of observed precipitation and 0 ° C air temperature increase was 

used as a control.  As the Mohseni et al. (1998) model does not require precipitation inputs (there 

is no hydrology component), only the range of air temperature increases were input into the 

model for analysis.     
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4. Results 

4.1 Model Comparison 

This research compares three water temperature models using the following criteria: model 

temperature prediction skill (NSE and RSR), data input requirements, spatial and temporal 

resolution of modeled output, and “user friendliness.” 

The respective skills of these models in predicting stream temperatures in each study basin, 

as assessed using NSE and RSR, are presented in Table 10, Table 11, and Table 12.  Results are 

presented based upon calibration period, validation period, and the period of record (calibration 

and validation periods combined).  “IP” indicates that work on the particular model is in progress 

and will be completed in the future by Dr. Austin Polebitski of the University of Wisconsin 

Platteville. 

 

  Table 10:  Model Temperature Skill (Calibration) 

Model Westfield Basin Milwaukee Basin 
NSE RSR NSE RSR 

VIC-RBM 0.772 0.477 IP IP 

SWAT-Ficklin 0.931 0.262 0.896 0.322 

Mohseni 0.956 0.209 0.946 0.231 
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Table 11:  Model Temperature Skill (Validation) 

Model Westfield Basin Milwaukee Basin 
NSE RSR NSE RSR 

VIC-RBM 0.648 0.593 IP IP 

SWAT-Ficklin 0.664 0.579 0.910 0.300 

Mohseni 0.931 0.262 0.945 0.235 
 

 

Table 12: Model Temperature Skill (Combined Calibration and Validation Periods) 

Model Westfield Basin Milwaukee Basin 
NSE RSR NSE RSR 

VIC-RBM 0.721 0.528 IP IP 

SWAT-Ficklin 0.678 0.567 0.904 0.309 

Mohseni 0.946 0.233 0.940 0.245 
 

 

 The Mohseni et al. (1998) model had the best prediction skill of the three models 

assessed.  As a statistical model, the calibration process was simpler and required less time and 

effort than the two physical models.  However, the historical stream temperature datasets 

available for both the Westfield and Milwaukee basins were not particularly long.  Future 

research should investigate the results of applying the Mohseni et al. (1998) model to settings 

with longer periods of recorded data.  All three models exhibited periods when they dramatically 

over and under predicted temperatures, and these were often associated with dramatic and rapids 

changes in the estimates (with the exception of winter stream temperatures predicted by the VIC-

RBM model, which were fairly constant at 0° C in the winter).    
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Figure 22: Validation Period of 3 Models, Westfield Basin 

 

Figure 23: Validation of 2 Models, Milwaukee Basin 
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VIC-RBM had the greatest data input requirements, followed by the SWAT-Ficklin et al. 

(2012) model.  The Mohseni et al. (1998) model had the lowest data input requirements, needing 

only air and water temperature observations.   

 The SWAT-Ficklin et al. (2012) model had the highest spatial resolution, followed by 

VIC-RBM.  As the Mohseni et al. (1998) model is zero-dimensional it doesn’t have a spatial 

resolution, only yielding output on a per-location basis (the exact point where it is implemented). 

 The temporal resolutions of the models vary with the VIC-RBM and SWAT-Ficklin et al. 

(2012) models providing daily mean water temperatures and the Mohseni et al. (1998) model 

providing weekly mean water temperatures, with the capability of generating daily mean water 

temperatures in certain locations. The required temporal resolution for decision making varies 

according to the specific resource management concern and/or aquatic species.    

From a “user friendliness” perspective, the Mohseni et al. (1998) model is the simplest to 

use, only requiring the use of simple statistical computing software.  The calibration was quite 

straightforward and nearly instantaneous using the SCE method within an R program.  The user-

interface of the SWAT-Ficklin et al. (2012) model in addition to a well-developed support 

website lends to its ranking as second of the three models in “user friendliness.”  The calibration 

process can be expedited through additional SWAT-specific software such as SWAT-CUP 

(Calibration and Uncertainty Programs) used with parallel computing technology.  The VIC-

RBM model requires linux and the development of multiple input files, lending to its rating as 

the least “user friendly” of the three models being compared.  All of this information is 

synthesized in Table 13. 
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Table 13: Model Comparison 

 

Model 
Data 

Inputs 
Spatial 

Resolution Temporal Resolution 
User 

Friendliness 
VIC-RBM High Medium Daily Mean 3 
SWAT-Ficklin Medium High Daily Mean 2 

Mohseni Low 0 Dimensional 
Weekly and/or Daily 

Mean 1 
 
 

4.2 Climate Change Analysis 

To analyze the results of the climate change analyses across the three different models, 

results from the climate change model runs were compared to the original modeled scenario 

(which is represented by the 100% precipitation rate 0° C air temperature increase scenario).  

The changes in water temperature versus the originally modeled water temperatures were 

assessed to predict warming rates due to air temperature changes and precipitation rate changes, 

as well as compare model effectiveness.  Table 14 presents the changes (in degrees Celsius) in 

mean water temperature over the period of record; Table 15 presents this information as changes 

in mean seasonal water temperature. 
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Table 14: Mean Change in Water Temperature for Period of Record vs. Original Modeled 
Scenario 

 

   
Temperature Increase 

   
0° C 1° C 2° C 3° C 4° C 5° C 6° C 7° C 

Pr
ec

ip
ita

tio
n 

Ra
te

 

90% 
Mohseni 0.00 0.46 0.92 1.38 1.85 2.31 2.78 3.25 
SWAT-Ficklin 0.09 0.72 1.37 2.09 2.81 3.56 4.22 5.12 
VIC-RBM 0.00 0.48 0.98 1.51 2.06 2.62 3.19 3.80 

100% 
Mohseni 0.00 0.46 0.92 1.38 1.85 2.31 2.78 3.25 
SWAT-Ficklin 0.00 0.62 1.27 1.99 2.70 3.43 4.09 4.90 
VIC-RBM 0.00 0.47 0.97 1.50 2.04 2.59 3.17 3.78 

110% 
Mohseni 0.00 0.46 0.92 1.38 1.85 2.31 2.78 3.25 
SWAT-Ficklin -0.09 0.52 1.19 1.89 2.58 3.30 3.95 4.73 
VIC-RBM 0.00 0.46 0.96 1.48 2.02 2.57 3.13 3.73 

120% 
Mohseni 0.00 0.46 0.92 1.38 1.85 2.31 2.78 3.25 
SWAT-Ficklin -0.16 0.43 1.09 1.79 2.47 3.16 3.80 4.59 
VIC-RBM 0.00 0.46 0.95 1.46 1.99 2.54 3.10 3.70 

130% 
Mohseni 0.00 0.46 0.92 1.38 1.85 2.31 2.78 3.25 
SWAT-Ficklin -0.22 0.36 1.02 1.70 2.38 3.07 3.69 4.45 
VIC-RBM 0.00 0.45 0.93 1.44 1.97 2.51 3.06 3.65 
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Table 15: Mean Seasonal Changes in Temperature vs. Original Modeled Scenario 

   
Temperature Increase 

   
0° C 1° C 2° C 3° C 4° C 5° C 6° C 7° C 

Pr
ec

ip
ita

tio
n 

Ra
te

 

90% 

Winter(DJF) Mohesni 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44 
Spring(MAM) Mohseni 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35 
Summer(JJA) Mohseni 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82 

Fall(SON) Mohseni 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30 
Winter(DJF) Ficklin -0.03 0.40 0.77 1.27 1.72 2.23 2.70 3.41 

Spring(MAM) Ficklin 0.09 0.81 1.63 2.40 3.17 3.84 4.58 5.44 
Summer(JJA) Ficklin 0.36 1.27 2.34 3.40 4.28 5.13 6.00 6.87 

Fall(SON) Ficklin 0.18 0.91 1.66 2.54 3.47 4.57 5.25 6.40 
Winter(DJF) VIC-RBM 0.00 0.02 0.06 0.12 0.25 0.45 0.77 1.24 

Spring(MAM) VIC-RBM 0.02 0.80 1.58 2.33 3.04 3.73 4.46 5.27 
Summer(JJA) VIC-RBM 0.05 0.36 0.68 1.01 1.35 1.71 2.07 2.48 

Fall(SON) VIC-RBM -0.06 0.76 1.64 2.60 3.59 4.55 5.41 6.18 

130% 

Winter(DJF) Mohesni 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44 
Spring(MAM) Mohseni 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35 
Summer(JJA) Mohseni 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82 

Fall(SON) Mohseni 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30 
Winter(DJF) Ficklin 0.07 0.47 0.95 1.40 1.84 2.26 2.68 3.18 

Spring(MAM) Ficklin -0.23 0.44 1.19 1.95 2.64 3.34 4.07 4.83 
Summer(JJA) Ficklin -0.97 -0.14 0.76 1.77 2.81 3.75 4.69 5.77 

Fall(SON) Ficklin -0.36 0.30 0.96 1.66 2.37 3.26 3.86 5.07 
Winter(DJF) VIC-RBM 0.00 0.01 0.05 0.11 0.23 0.43 0.74 1.21 

Spring(MAM) VIC-RBM -0.04 0.74 1.53 2.30 3.01 3.70 4.42 5.22 
Summer(JJA) VIC-RBM -0.14 0.07 0.29 0.53 0.79 1.07 1.37 1.68 

Fall(SON) VIC-RBM 0.15 0.95 1.83 2.79 3.78 4.74 5.60 6.36 
 

4.2.1 Precipitation Changes 

Analysis of the precipitation scenarios indicates that the changes in precipitation between 

90% and 130% of observed are fairly negligible regarding changes in mean water temperatures 

for the period of record (7/21/2005– 4/15/2008).  The differences in mean change in temperature 

for the period of record (versus the modeled 100% precipitation 0° C air temperature increase 

scenario) are presented in Table 16.   
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Table 16:  Difference in Temperature Changes between 130% and 90% Precipitation 
Scenarios, per Temperature Increase Scenario 

 

 Air Temperature Increase 

 
0° C 1° C 2° C 3° C 4° C 5° C 6° C 7° C 

Mohseni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SWAT-Ficklin -0.31 -0.36 -0.36 -0.39 -0.43 -0.49 -0.53 -0.66 
VIC-RBM 0.00 -0.03 -0.05 -0.07 -0.09 -0.11 -0.12 -0.15 

 

There are no changes due to  precipitation in the Mohseni et al. (1998) model as these 

changes are not incorporated into the calculations for stream temperature.  The Ficklin et al. 

(2012) model showed the greatest response to changes in precipitation, with the 90% 

precipitation scenario being the warmest and 130% being the coolest scenario and the changes 

becoming more exacerbated as the increase in air temperature became greater.  The VIC-RBM 

model followed this same pattern, although to a lesser degree.  This is consistent, as more 

precipitation means greater streamflows and thus more energy required to heat the greater 

volume of water.  The precipitation scenarios (all for 0° C air temperature increase) for the 

Ficklin et al. (2012) model are plotted in Figure 24 and Figure 25 organized into “winter” 

months (October-March) and “summer” months (April-September).  
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Figure 24: Projected Stream Temperatures in Summer by Precipitation Scenario 

 

Figure 25:  Projected Stream Temperatures in Winter by Precipitation Scenario 
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To examine mean changes in seasonal temperatures, the results are presented by season 

with the seasons  defined as:  Winter – December, January, and February; Spring – March, April, 

May; Summer – June, July, August; and Fall – September, October, and November (versus the 

modeled 100% precipitation 0° C air temperature increase scenario).  A reduction in precipitation 

(90% of observed) resulted in slightly greater increases in seasonal temperatures.  For example, 

the differences in mean changes in seasonal water temperatures for winter in the VIC-RBM 

model ranged from <0.01° C to 0.03° C between the 90% precipitation and 130% precipitation 

scenarios. A possible explanation for this is that water temperatures of smaller stream flows are 

more responsive to warming from solar radiation and ambient air temperatures (less thermal 

mass).  Although not necessarily captured by the models, less winter precipitation (i.e. snow) 

results in less cold snow meltwater entering streams during winter and spring warming events – 

leading to warmer water temperatures.   

The exceptions to these general findings were all fall temperature scenarios modeled by 

VIC-RBM and the winter T0-T5 scenarios for the Ficklin et al. (2012) model.  Understanding 

that there are complex physical processes being modeled by VIC-RBM and SWAT-Ficklin et al. 

(2012) and that changes in precipitation can impact a number of related factors (snowpack, soil 

infiltration and saturation, groundwater levels, overland flow, subsurface flow), there are a few 

possible general explanations for these exceptions.  The fall VIC-RBM scenarios for 90% 

precipitation may have smaller increases in temperature than the other precipitation scenarios 

because modeled stream temperatures shift dramatically in the VIC-RBM model in the fall 

months, and if there is reduced thermal mass of the body of water because of smaller streamflow, 

the shift may happen earlier and/or be more pronounced.  The 90% precipitation scenarios run 

through the Ficklin model may be colder in the winter simply because the smaller streamflows, 
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although slightly warmer in the other 3 seasons, have less thermal mass and are more responsive 

to winter air temperatures.  This occurs until the reduced thermal mass is overpowered increases 

in stream temperature imposed by the 6° C and 7° C temperature increase scenarios.       

4.2.2 Air Temperature Increases 

Air temperature increases had a much greater impact on stream temperature than changes in 

precipitation as air temperature is the major driver of local stream temperature (Mohseni et al. 

1998; Caissie et al. 2001; Morrill et al. 2005; Ficklin et al. 2012; Yearsly 2012).  The difference 

in the mean change in water temperature for the period of record (7/21/2005– 4/15/2008) 

between the 7° C increase in air temperature and 0° C increase in air temperature decreased as 

the precipitation rate increased (Table 17).  This can be attributed to lower streamflows having 

less thermal mass and therefore being more strongly impacted by air temperatures.    

 

Table 17: Difference in Temperature Changes between 7° C and 0° C Temperature 
Increase Scenarios, per Precipitation Scenario 

 

 Precipitation Rate 

 
90% 100% 110% 120% 130% 

Mohseni 3.25 3.25 3.25 3.25 3.25 
SWAT-Ficklin 5.03 4.90 4.82 4.75 4.68 
VIC-RBM 3.80 3.78 3.73 3.70 3.65 

 

When analyzing the mean seasonal increases in stream temperature for the period of 

record, Fall had the largest predicted increase in stream temperatures (averaged across all three 

models).  The largest increase for the VIC-RBM model was predicted for the Fall season, with 

the second largest increases for the Mohseni et al. (1998) and Ficklin et al. (2012) models also 

predicted in the Fall.  For the VIC-RBM and Ficklin et al. (2012) models this is most likely due 
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to streams gaining more thermal mass in the summer due to increased air temperatures and 

therefore maintaining higher water temperatures through the fall.  Also, increased air 

temperatures in the fall could substantially reduce the number of snowfall events (with much 

more precipitation occurring as rain instead), meaning the precipitation itself is warmer and 

therefore not cooling streams..  Although the models are not accounting for this directly, it may 

be captured via hydrology (warmer air temperatures and smaller snow packs lead to earlier 

spring peaks of smaller magnitude).  Both hydrology models incorporate snow pack into 

streamflow calculations.  The spring season is the next most impacted, exhibiting the largest 

mean increase in water temperatures averaged across all three models.  The Mohseni et al. 

(1998) model’s predicted water temperature increases were the largest in the spring and fall, and 

the two were very close in magnitude.  Similarly the VIC-RBM model’s   predicted water 

temperature increases were the largest in the spring and fall although they were not as close in 

magnitude as the Mohseni et al. (1998) model results.  The Ficklin et al. (2012) model exhibited 

the largest increases in mean water temperature in the summer, closely followed by the fall.   

4.2.3 Model Assessment 

The VIC-RBM modeled climate change scenarios maintained fairly consistent patterns as 

air temperature changes increased.  Across precipitation scenarios (from 90% to 130%), water 

temperatures began to approach a plateau around 20° C (Figure 26 and Figure 27) as summer 

highs decrease and spring and fall temperatures increase. 
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Figure 26:  VIC-RBM Air Temperature Increase Scenarios: 90% Precipitation 

 

Figure 27: VIC-RBM Air Temperature Increase Scenarios:  130% Precipitation 
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The SWAT-Ficklin et al. (2012) climate change scenario predictions created a very 

similar pattern to the original modeled scenario (100% precipitation and 0° C air temperature 

increase).   However, when air temperatures were increased by 7° C the modeled water 

temperatures appear to be unrealistically high.  This indicates that the model is not capturing 

evaporative cooling effects (Figure 28).   

 Figure 28: Ficklin Model Air Temperature Scenarios, 90% Precipitation Rate 
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Figure 29: Ficklin Model Air Temperature Scenarios, 130% Precipitation Rate 

 

The Mohseni et al. (1998) model fails to capture the highest observed temperatures in the 

Westfield basin, even for all of the climate change scenarios.  That the model fails to meet the 

observed highs even in a scenario with a 7° C increase in air temperature is an indication of the 

failings of applying the model on a daily time-step.  A component of the S-shaped curve 

regression is evaporative cooling at high water temperatures – the model as applied in the 

Westfield basin may be overestimating this evaporative cooling, and as the incremental increases 

in air temperature get higher, the projected high water temperatures begin to level-off around 17° 

C (Figure 30).     
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Figure 30: Mohseni Model Air Temperature Increase Scenarios 

 

The projected water temperature increase per degree Celsius of air temperature increase 

was analyzed across all three models (Figure 31).  The Mohseni et al. (1998) model yielded the 

most conservative result of 0.46 ° C of water warming per 1 ° C of air temperature increase.  

VIC-RBM predicts 0.54 ° C of water temperature increase and SWAT-Ficklin predicts 0.7 ° C of 

water warming per 1° C air temperature increase.  These results are consistent with the findings 

of Morrill et al. (2005) who observed an increase of 0.6-0.8° C per 1° C air temperature increase 

using various statistical models across geographically diverse streams worldwide. 
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Figure 31: Projected Water Temperature Increase per Air Temperature Increase 

 

4.3  Manager Needs 

The survey results indicate that fine spatial resolution is important for resource managers, as 

many are primarily concerned with headwaters or tributaries (~71%).  Examining the spatial 

resolution of the three models, the SWAT-Ficklin et al. (2012) model is the only model capable 

of meeting the needs of ~94% of those surveyed (spatial resolution of 5km-25km).  Examining 

temporal resolution, none of the models selected are meeting the desired resolution of ~48% of 

those surveyed, who desire hourly stream temperature predictions.  However, all three models 

provide mean temperatures, which were desired by the majority of responders.  As the models 

provide the same temporal resolution and statistical output, spatial resolution is the deciding 

factor of whether a model meets their needs.  A flow-chart of model selection is presented in 

Figure 32.    
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Figure 32:  Flow Chart of Model Selection 

  

4.4 Final Ranking 

Under final ranking, relative weights were developed and applied to each metric to clearly 

articulate useful models for resource managers. These weights were informed by the results of 

the manager needs survey.  For this quantitative ranking, the models were given an ordinal 

ranking of 1-3 for each metric, 1 being the best model in that category and 3 being the poorest 

performing model. Spatial resolution was identified as a very important and limiting factor, so it 

was assigned a weight of 0.3.  Because all of the models met the desired temporal resolution, it 

~5-10km ~35km2 or ~140km2 
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was not included in the final ranking.  Data input requirements are not very limiting, as a vast 

majority of the data required for these models is publicly available, therefore it was given a 

weight of 0.1.  It is important to note that data input requirements excludes the water (and air) 

temperature observations necessary to calibrate and validate the models, instead it is referring 

solely to the additional data sets required for model operation (e.g. gridded meteorological 

forcings).   Weights were split evenly with 0.15 each for NSE (represented by 1-NSE, as in this 

ranking a low score indicates better model performance) and RSR.  User friendliness was 

assigned a weight of 0.3.  Table 18 presents the model rankings within each metric and final 

weighted scores.  In this final ranking, SWAT-Ficklin et al. (2012) received the best score, 

indicating that it is the most suited model of the three for resource managers to implement. 

 

Table 18:  Weighted Final Model Ranking 

Model Data 
Inputs 

Spatial 
Resolution 

Skill User 
Friendliness SCORE 

1-NSE RSR 
VIC-RBM 3 2 0.279 0.528 3 1.92105 
SWAT-
Ficklin 2 1 0.082 0.286 2 1.1552 
Mohseni 1 3 0.054 0.233 1 1.34305 
Weight: 0.1 0.3 0.15 0.15 0.3   

 

5. Conclusions and Future Work 

For resource managers selecting a stream temperature model to inform their management 

decsisions, there are three essential questions:  1) What data are available to calibrate and verify 

the model, 2) Are you most interested in generating a time series of temperatures or obtaining a 
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spatially distributed, watershed-wide snapshot?, and 3)  Is a climate change analysis to be 

performed?  

 If a time-series at a specific location is desired, then the Mohseni et al. (1998) model is an 

excellent option, if at least three years of paired air and water temperatures are available to 

inform the regression.  If not, the SWAT-Ficklin et al. (2012) model is an appropriate choice, as 

it has higher spatial resolution than VIC-RBM.  If a climate change analysis is to be performed, 

the Mohseni et al. (1998) model is not an ideal candidate – particularly if daily mean or 

maximum summer temperatures are of specific interest to resource managers.  The Mohseni et 

al. (1998) model does not accurately capture those diurnal variations due to forced evaporative 

cooling (which may be less of an issue if implemented in basins in hotter regions where the 

effects of evaporative cooling are more pronounced).  Additionally, the Mohseni et al. (1998) 

model does not incorporate streamflow changes (propagating from changes in climate).   

If a spatial watershed-wide snapshot is of interest, VIC-RBM and SWAT-Ficklin et al. 

(2012) are most appropriate.  If the study requires a continental-scale perspective, VIC-RBM is 

the more suitable model, whereas SWAT-Ficklin et al. (2012) provides greater spatial resolution 

for more localized resource management.  Although the two have fairly similar data input-

requirements, the SWAT-Ficklin et al. (2012) models have a more “user-friendly” interface 

through an ArcGIS platform – which is particularly good for working with stakeholders and 

visually presenting data and results.  For climate change analysis, both pairs of models are able 

to accept future climate projections and incorporate them into predictions for both hydrology and 

water temperature.    

For the specific basins studied, the results indicate that changes in air temperature directly 

influence stream temperature.   There changes are a function of the change in air temperature, 
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and are modulated by other factors such as the flow in the stream, the relative input of surface 

water and groundwater, and season (time of year).  Although perhaps not appropriate for all 

streams, in this study changes in air temperature impact stream temperature most significantly 

during fall and spring.  A 1 ° C change in air temperature results in a 0.46 ° C, 0.54 ° C, or 0.7 ° 

C increase in water temperature for the Mohseni et al. (1998), VIC-RBM, and SWAT-Ficklin et 

al. (2012) models respectively (Figure 31).   

Precipitation has a lesser impact on stream temperature for the ranges studies (90% to 130% 

of observed), with changes in water temperature varying by 0 ° C to -0.66 ° C according to the 

specific model and air temperature increase (Table 16).   Increased precipitation rates lead to 

slightly lower water temperatures, with the thermal buffer provided by increased flow rates 

becoming more pronounced as air temperature increases. For the SWAT-Ficklin model, 

precipitation increases from 90% to 130% lowered water temperature by an average of 0.44 ° C.  

For VIC-RBM, water temperatures were lowered by an average of 0.08 ° C.   It is important to 

note that these results apply to the Westfield and Milwaukee basins where the models were 

applied, and were chosen as they are typical  of basins in the Northeast; however, other types of 

streams may not exhibit the same relationships between precipitation, air temperature, and water 

temperature.  For example, streams in the Driftless Area of Wisconsin demonstrate a 

significantly weaker relationship between air and water temperatures as they are highly impacted 

by groundwater.  Research on water temperatures of Driftless Area streams is being done by 

NECSC-funded researchers at the University of Wisconsin Madison.    

Future work includes completing the VIC-RBM model of the Milwaukee, assessing a 

broader suite of models, and tailoring existing models to meet the needs of resource managers 

more fully.    Additional stream temperature models to consider beyond the ones outlined in this 
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work, notably including Isaak et al.’s (2010) spatial statistical stream temperature model (which 

was not assessed in this research because of the prohibitively high stream temperature 

observations requirements) and the pairing of Yearsley’s (2009; 2012) RBM model with a 

different hydrology model, the Distributed Hydrology Soil Vegetation Model (DHSVM) 

(Wigmosta and Burges 1997).  The application of these findings to many streams and regression 

analysis of season changes in steam temperature due to air temperature changes could provide 

very useful and pertinent information to aquatic resource managers in the Northeast Climate 

Science Center region and beyond.   
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Appendix A:  Westfield Basin Model Parameters 
 

A1 Westfield SWAT Parameters 

File Parameter 
Calibrated 

Value Units 

Basin 

SFTMP -1 deg C 
SMTMP 0.5 deg C 
SMFMX 4 mm/C-day 
SMFMN 4 mm/C-day 
TIMP 0.03   
SNOCOVMX 180 mm 
SNO50COV 0.2   
ESCO 0.75   
EPCO 1   
SURLAG 0.1   

Groundwater 

GW_DELAY 10 days 
ALPHA_BF 0.2 days 
GW_QMIN 100 mm 
GW_REVAP 0.2   
REVAPMN 0 mm 
RCHRG_DP 0 fraction 

HRU SLSUBBSN 56 m 
HRU_SLP 0.45 m/m 

Routing CH_K2 40 mm/hr 
Soils SOL_AWC 0.09 mm/mm 
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A2 Westfield Ficklin et al. (2012) Parameters 

Date From Date To Alpha Beta Phi K Lag 
1 65 1.0 1.0 0.80 0.100 5 
66 125 1.0 1.0 0.75 0.050 14 
126 285 1.0 1.0 0.75 0.050 14 
286 366 1.0 1.0 0.80 0.150 7 
 

 

A3 Westfield Mohseni et al. (1998) Parameters 

Parameter Calibrated Value 
Alpha 16.99335 
Beta 12.12728 
Theta 0.7524177 
Mu 5.601222E-06 
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Appendix B:  Milwaukee Basin Model Parameters 
 

B1 Milwaukee SWAT Parameters 

File Parameter 
Calibrated 

Value Units 

Basin 

SFTMP 1.0 deg C 
SMTMP 0.0 deg C 
SMFMX 4.2 mm/C-day 
SMFMN 2.3 mm/C-day 
TIMP 0.007   
SNOCOVMX 200 mm 
SNO50COV 0.5   
ESCO 0.77   
EPCO 0.67   
SURLAG 0.05   

Groundwater 

GW_DELAY 187 days 
ALPHA_BF 0.27 days 
GW_QMIN 700 mm 
GW_REVAP 0.035   
REVAPMN 300 mm 
RCHRG_DP 0.56 fraction 

HRU SLSUBBSN 95 m 
HRU_SLP 0.13 m/m 
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B2 Milwaukee Ficklin et al. (2012) Parameters 

Date From Date To Alpha Beta Phi K Lag 
1 120 1.0 1.0 1.00 0.050 7 
121 325 1.0 1.0 1.00 0.015 7 
326 366 1.0 1.0 1.00 0.050 7 
 

 

B3 Milwaukee Mohseni et al. (1998) Parameters 

Parameter 
Calibrated 
Value 

Alpha 24.75905 
Beta 12.10435 
Theta 0.8456428 
Mu 0.05000733 
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Appendix C:  Changes in Seasonal Mean Water Temperature for 
Climate Change Scenarios vs. Original Modeled Scenario 

 

P90T0 P90T1 P90T2 P90T3 P90T4 P90T5 P90T6 P90T7 P100T0 P100T1 P100T2 P100T3 P100T4 P100T5 P100T6 P100T7

Winter(DJF)_MOHSENI 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44
Spring(MAM)_MOHSENI 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35
Summer(JJA)_MOHSENI 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82

Fall(SON)_MOHSENI 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30

Winter(DJF)_FICKLIN -0.03 0.40 0.77 1.27 1.72 2.23 2.70 3.41 0.00 0.40 0.82 1.35 1.81 2.28 2.75 3.31
Spring(MAM)_FICKLIN 0.09 0.81 1.63 2.40 3.17 3.84 4.58 5.44 0.00 0.71 1.47 2.27 3.03 3.75 4.46 5.20
Summer(JJA)_FICKLIN 0.36 1.27 2.34 3.40 4.28 5.13 6.00 6.87 0.00 0.87 1.82 2.96 4.01 4.92 5.77 6.64

Fall(SON)_FICKLIN 0.18 0.91 1.66 2.54 3.47 4.57 5.25 6.40 0.00 0.74 1.49 2.25 3.03 4.06 4.79 6.09

Winter(DJF)_VICRBM 0.00 0.02 0.06 0.12 0.25 0.45 0.77 1.24 0.00 0.02 0.05 0.12 0.24 0.45 0.76 1.23
Spring(MAM)_VICRBM 0.02 0.80 1.58 2.33 3.04 3.73 4.46 5.27 0.00 0.78 1.57 2.32 3.03 3.72 4.45 5.26
Summer(JJA)_VICRBM 0.05 0.36 0.68 1.01 1.35 1.71 2.07 2.48 0.00 0.29 0.58 0.89 1.22 1.55 1.93 2.29

Fall(SON)_VICRBM -0.06 0.76 1.64 2.60 3.59 4.55 5.41 6.18 0.00 0.81 1.69 2.66 3.65 4.61 5.48 6.25

P110T0 P110T1 P110T2 P110T3 P110T4 P110T5 P110T6 P110T7 P120T0 P120T1 P120T2 P120T3 P120T4 P120T5 P120T6 P120T7
Winter(DJF)_MOHSENI 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44

Spring(MAM)_MOHSENI 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35
Summer(JJA)_MOHSENI 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82

Fall(SON)_MOHSENI 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30
Winter(DJF)_FICKLIN 0.01 0.42 0.88 1.36 1.82 2.27 2.70 3.26 0.05 0.45 0.90 1.38 1.82 2.25 2.68 3.23

Spring(MAM)_FICKLIN -0.09 0.62 1.37 2.13 2.89 3.63 4.35 5.08 -0.16 0.53 1.27 2.02 2.74 3.48 4.22 4.95
Summer(JJA)_FICKLIN -0.43 0.45 1.47 2.48 3.55 4.55 5.51 6.42 -0.73 0.11 1.07 2.17 3.10 4.11 5.10 6.12

Fall(SON)_FICKLIN -0.12 0.56 1.27 2.04 2.81 3.72 4.32 5.73 -0.26 0.41 1.08 1.80 2.57 3.49 4.09 5.29
Winter(DJF)_VICRBM 0.00 0.02 0.05 0.12 0.24 0.44 0.75 1.22 0.00 0.02 0.05 0.11 0.23 0.44 0.75 1.22

Spring(MAM)_VICRBM -0.01 0.76 1.56 2.31 3.02 3.72 4.44 5.24 -0.03 0.75 1.55 2.30 3.02 3.71 4.43 5.23
Summer(JJA)_VICRBM -0.05 0.21 0.48 0.77 1.07 1.40 1.73 2.08 -0.10 0.14 0.38 0.65 0.93 1.23 1.55 1.89

Fall(SON)_VICRBM 0.06 0.87 1.75 2.71 3.71 4.66 5.53 6.29 0.10 0.91 1.79 2.76 3.75 4.70 5.57 6.33

P130T0 P130T1 P130T2 P130T3 P130T4 P130T5 P130T6 P130T7
Winter(DJF)_MOHSENI 0.00 0.22 0.47 0.77 1.11 1.50 1.94 2.44

Spring(MAM)_MOHSENI 0.00 0.57 1.16 1.78 2.41 3.05 3.70 4.35
Summer(JJA)_MOHSENI 0.00 0.40 0.75 1.04 1.29 1.50 1.68 1.82

Fall(SON)_MOHSENI 0.00 0.65 1.30 1.93 2.56 3.16 3.75 4.30
Winter(DJF)_FICKLIN 0.07 0.47 0.95 1.40 1.84 2.26 2.68 3.18

Spring(MAM)_FICKLIN -0.23 0.44 1.19 1.95 2.64 3.34 4.07 4.83
Summer(JJA)_FICKLIN -0.97 -0.14 0.76 1.77 2.81 3.75 4.69 5.77

Fall(SON)_FICKLIN -0.36 0.30 0.96 1.66 2.37 3.26 3.86 5.07
Winter(DJF)_VICRBM 0.00 0.01 0.05 0.11 0.23 0.43 0.74 1.21

Spring(MAM)_VICRBM -0.04 0.74 1.53 2.30 3.01 3.70 4.42 5.22
Summer(JJA)_VICRBM -0.14 0.07 0.29 0.53 0.79 1.07 1.37 1.68

Fall(SON)_VICRBM 0.15 0.95 1.83 2.79 3.78 4.74 5.60 6.36
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