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ABSTRACT

VARIATION IN HUMAN-INTENSIVE SYSTEMS:
A CONCEPTUAL FRAMEWORK FOR

CHARACTERIZING, MODELING, AND ANALYZING
FAMILIES OF SYSTEMS

MAY 2015

BORISLAVA I. SIMIDCHIEVA

B.S., Computer Science, STATE UNIVERSITY OF NEW YORK, COLLEGE AT

BROCKPORT

B.S., Computational Science, STATE UNIVERSITY OF NEW YORK, COLLEGE

AT BROCKPORT

M.S., Computer Science, UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leon J. Osterweil

A system model—namely a formal definition of the coordination of people, hardware

devices, and software components performing activities, using resources and artifacts, and

producing various outputs—can aid understanding of the real-world system it models.

Complex real-world systems, however, exhibit considerable amounts of variation that can

be difficult or impossible to represent within a single model. This dissertation evaluates

the hypothesis that the careful characterization and representation of system variation

can aid in the generation and analysis of concrete system instances related to one another

in specified ways and manifesting different kinds of variation.
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When a set of closely related systems can be characterized by a compelling set-membership

criterion, it is often useful and appropriate to characterize the set as a family of systems.

In this dissertation, a variety of system variation requirements and corresponding needs

for family specification criteria are identified. We focus on two specific kinds of variation,

namely functional and agent variation, and suggest an approach for meeting these needs

both at the level of requirements specification (problem-level variation), as well as at the

level of implementation specification (solution-level variation).

We present a framework for generating and analyzing new system instances, using the

Little-JIL process definition language as an experimental vehicle to study what process def-

inition language capabilities are necessary to support the explicit modeling of variation

at the solution level, and thereby to address needs at the problem level. We define a for-

mal notation for specifying functional and agent variation in human-intensive processes

and describe a prototype system to accommodate this specification within an existing

modeling framework. Once a family of systems is formally defined and characterized at

the solution level, different analysis techniques can be applied to make assurances that all

members of the family share certain kinds of properties. These analysis results can then

be used to inform variation needs at the problem level.

To evaluate the applicability of the approach, we study and model the variation ob-

served in two real-world, human-intensive systems from the domains of conflict resolu-

tion and elections. Both case study domains have been observed to employ functional

variants of their processes, and, given their complex coordination of human and software

agents, both domains require agent variation, therefore fostering a fruitful application of

our approach.
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CHAPTER 1

INTRODUCTION

This dissertation examines variation in families of systems. For the purpose of the

research questions and challenges presented in this dissertation, we define a “system,” as a

collection of processes that orchestrate the complex coordination of activities performed

by human and automated agents who use some collection of resources and use, mod-

ify, delete, or create some collection of artifacts. Specifically, the kinds of systems that

are of interest are complex, real-world, distributed, human-intensive systems. A human-

intensive system (HIS) is a collection of processes where humans are responsible for com-

pleting critical tasks, such as handling exceptional situations, and making sophisticated

decisions throughout the process. Each of this processes can in turn be thought of as a

human-intensive system, and we tend to use the terms system and process interchange-

ably in this thesis. This explicit inclusion of humans within the system boundary intro-

duces additional levels of variation not usually manifested in traditional software systems.

These new kinds of variation call for novel techniques for modeling variation and reason-

ing about it. In fact, our previous research has demonstrated that models of real-world

processes have requirements for variation that are similar, but indeed may be still more

diverse and challenging than those in software systems [67–70]. This similarity indicates

that solutions to process variation problems may draw useful inspiration from solutions

that are effective for system variation, but that meeting the need for variation in processes

is likely to also require some new approaches.

A successful system- or software-development project rarely aims to produce a single

system or a single piece of software. If the project is successful, then its resulting software
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product or service will provide a capability that will need to run in many different envi-

ronments, is likely to present itself to different types of users in different ways, may need

to run faster for some users, and have different sets of features for different kinds of users.

In such cases it can be very ungainly to respond to differing requirements by building a

single system or piece of software that is capable of meeting all of these needs. Instead,

these needs are typically met by building different variants of the system or software,

with each of the variants being developed to meet different combinations of these needs.

Variants may differ from one another in the functionality they provide, their speed, ro-

bustness, or in any of a number of other aspects; this difference between variants is called

variation.

Note that variation may occur in a single or along multiple dimensions, including the

ways in which activities within and between processes are coordinated, the hardware and

software subsystems and components that are used, or the choices of agents and services

that are made. Despite increasingly complex and demanding requirements that lead to

the creation of ever larger sets of such variants, it is important that the different variants

retain well-understood relations to each other. If such well-understood relations exist,

the variants, comprising what we refer to as a family, can be expected to share certain

potentially useful properties. We will refer to families of variants of software artifacts as

software families, families of variants of processes as process families, and families of variants

of systems as system families. If variants share some high-level architectural or process

specification, we call this specification a common core. The common core contains one or

more variation points. A variation point is only abstractly specified in the common core

and it is left up to different variants to provide detailed implementations. These different

ways in which variants can then extend the variation points within common core are

referred to as abstractions or elaborations once they have been instantiated.

A certain amount of variation exists in virtually all real-world systems and processes.

Such systems and processes either 1) incorporate certain variation explicitly, or 2) antic-
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ipate acceptable variability through abstracting out the details of a part that may be ex-

pected to vary, or 3) provide mechanisms for the exclusion of certain variants typically in

an attempt to assure that permitted variants all share certain desirable properties. For ex-

ample, in the election domain, which is the domain of some of the evaluative case studies

to be explored in this dissertation research, many variations have been observed among

processes from different jurisdictions within the same state, or even within the same ju-

risdiction, based on context and circumstances. The research approach presented in this

dissertation aims to support the ability to specify process variation (and resulting pro-

cess families) sufficiently precisely so that it is possible to determine whether all family

members conform to certain pre-specified properties, or, if not, to help determine what

family members may violate the property. Doing this requires a model that faithfully rep-

resents the real world by explicitly representing existing variation, even across multiple

dimensions, in ways that are accurate and amenable to reasoning. This usually requires

elevating variation to be a first-class construct within the representation being used. A

key goal of this research is to investigate approaches that are effective in supporting the

modeling of such variation and the families thereby defined. Moreover, we seek to iden-

tify analysis techniques that could be used to verify that all members of suitably defined

process families must necessarily adhere to certain kind of properties in dimensions such

as functionality, security, and safety.

We suggest that semantic relations can define what variants are members of a system

family (i.e., relations that define membership constraints and criteria), and, if that is the

case, that it may be possible to then generate new variants as transformations of exist-

ing variants. Moreover, if such a transformation exists, the generation activity may be

amenable to constraints that would assure that any newly created variant must have cer-

tain desirable properties by construction. Once the relations among variants are well

defined, then it may be possible to go a step further and make assurances about the entire

collection of variants and whether the family itself and all its variants conform to certain
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properties. In the case of elections, for example, one property that every variant in the

family would have to satisfy is that every eligible voter is allowed to cast no more than

one vote.

A key goal of this dissertation is to demonstrate that there are numerous kinds of vari-

ation relations that might be helpful in supporting such reasoning, and to indicate that dif-

ferent kinds of variation relations lead to families whose members share different proper-

ties. As suggested above, some kinds of variation relations define families whose members

differ only in performance. Other kinds of variation define families whose members of-

fer functionality that differs only in relatively small, well-circumscribed ways. Still other

kinds of variation relations define families whose members all achieve similar, or identi-

cal, goals, but do so in very different ways. In earlier work [70], we suggested that there

are different canonical approaches that are useful in meeting such diverse requirements

for variation. In the research presented here we will explore ways to assure that, while

the members of a process family may differ in a variety of different ways, they may also

share important similarities. One way to evaluate similarity is to ensure that they all sat-

isfy certain properties along dimensions of interest such as safety and security. Thus this

research explores two main research goals:

• RG1: Generation—how can variation be characterized in a way that facilitates the

creation of new family members at the solution level that best satisfy a set of given

variation needs at the problem level, and also meet the membership criteria of the

family with respect to the dimensions of variation it aims to model? and

• RG2: Analysis—how can the family representation be leveraged to facilitate the ap-

plication of different reasoning techniques to the entire family, for example to prove

that all variants have desired properties? How can the generation activity be con-

strained to ascertain that newly created variants satisfy certain properties by con-

struction?
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Specifically, we hypothesize that the careful definition, characterization, and catego-

rization of different variation relationships would shine light on such questions and facili-

tate achieving both of these research goals. For generation, the formal definition of either

a shared common core or a set of properties that all members of a family must satisfy may

facilitate different generation approaches. For analysis, the relationship among variants

may determine what analysis approaches the family is amenable to, or kinds of assertions

can be proven about current or future variants in the family. A particular approach to cre-

ating a family might facilitate the fulfillment of only one of these research goals. Thus, for

example, some approaches may make it easy to generate a new family member but may

impede analysis. Conversely, a family might be defined in such a way that reasoning about

certain properties of the family as a whole is easy, but generation of future members is

limited to variants that are known to be “safe,” which may impose onerous restrictions on

the size and nature of the family. We believe that there is considerable value in identifying

different approaches to generating families, and to understanding which types of variation

requirements they meet under what circumstances, what kinds of reasoning they support

or facilitate, and what advantages they offer.

The rest of this dissertation is organized as follows. Chapter 2 describes the conceptual

framework for variation modeling and management at two levels of abstraction. Chapter

3 contains two motivating case studies, one on variation within a process guidance exam-

ple in negotiations, and the other on variation within security and privacy requirements in

elections. Chapter 4 presents the technical framework used in supporting the application

and evaluation of the approach. Chapter 5 details the results of applying our approach

and methodology to some real-world problems, including an extensive case study. These

results are discussed in Chapter 6. In Chapter 7, we discuss the limitations of the approach

and propose some possible mitigation strategies. Chapter 8 then provides an overview of

related work and Chapter 9 outlines some promising avenues for future research.

5



CHAPTER 2

CONCEPTUAL FRAMEWORK

2.1 Problem- vs solution-level variation dichotomy

To aid understanding, management, and implementation, variation can be viewed

from two perspectives, namely a problem or requirements perspective akin to domain

engineering in software product line engineering (SPLE), and a solution or system per-

spective similar to application engineering in SPLE [68]. From the problem perspective,

as in the case of software families, process and system families often must meet require-

ments for variation in functionality, variation in performance, variation in the platform

on which they must run, variation in security assurance, and variation in robustness. In

addition, however, complex systems and their processes often must also satisfy require-

ments for variation in the types of services that they will employ, the modes of interac-

tions with the humans participating in the system or process, and the strategies that they

will employ in using needed resources [70]. These variation requirements may overlap,

and may even be inconsistent.

To begin addressing how these requirements might be met, we need to consider them

from the solution perspective. Note that as these are variation requirements, they should

be technology-independent and focus on defining the needs for variation, not the details

of how that variation can be implemented. The solution perspective focuses on study-

ing how specific approaches to achieving variation can help to generate new variants and

to support analyses that apply to all variants in a family. Because the solution perspec-

tive begins to discuss specific approaches, it inevitably leads to specific technologies as

well. However, this variation framework is designed to be widely applicable irrespective
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of the technology used. For demonstration purposes, a certain representation will be

used to present solution-level variation in this dissertation, but the approach aims to be

representation-agnostic. A key element of this approach is the proposition that a problem-

level variation metamodel can be used to connect needs for different kinds of requirements

variation to appropriate solution-level family implementation approaches. A brief, non-

exhaustive classification of some of the kinds of problem-level variation we have observed

in the two case studies of negotiation processes and election processes follows.

• Functional Variation: Variants differ in the details of one or more of the different

functional capabilities specified.

• Functional Invariance: Variants are equivalent (for a pre-specified equivalence func-

tion) in their functionality, but their underlying implementations differ.

• Goal Invariance: Variants achieve the same goal (for a pre-specified goal condition,

e.g., produce a specific set of artifacts), but the process to achieve the goal varies

among variants.

• Robustness Variation: Variants differ in the ways in which they are able to recover

from incorrect or abusive use.

• Performance Variation: Variants all provide the same functionality, but differ in the

speed with which they execute.

• Interaction-Based Variation: Variants provide identical functionality but interact

with users in different ways.

• Service1 Variation: Variants differ from each other in the services or agents they

utilize to provide different functional capabilities.

1A direct parallel can be drawn between agents in a process and service providers in a system built using
Service-Oriented Architecture (SOA) principles so we use the terms agent variation and service variation
interchangeably. However, human agents introduce additional complexities and existing SOA and SPLE
techniques must be carefully adapted and extended to accommodate such differences.
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• Security Variation: Variants differ in the system security they provide.

• Privacy Variation: Variants differ in the level of privacy protection they accomplish.

This dissertation will focus on exploring two of these problem-level variation dimen-

sions, namely functional variation and agent variation, and follow their realization at the

solution level. Functional variation has been extensively modeled and studied in the soft-

ware domain and is in fact what most software product line approaches focus on. Func-

tional variation is frequently achieved through the composition of different features that

implement variation in the low-level behavior (i.e. in the details of the behavior) of the

software being generated. Functional variation has also been studied in the context of

processes and workflows, though not quite as extensively. Agent variation, on the other

hand, has not been thoroughly studied but is of pivotal importance when it comes to

human-intensive systems, such as negotiations and elections. We hope to be able to apply

some of the techniques that have been found to be particularly useful for feature modeling

and analysis in software to processes and systems and to use this experience to inform the

problem of modeling and analyzing process and system families exhibiting agent varia-

tion.

Note that in addition to the dimensions listed above, there are other ways to define

relationships that may be the bases for process families. Some of these relationships may

indeed be more clearly defined by specifying what stays constant among variants within a

family, as opposed to what varies. Such invariance could be ascertained through the veri-

fication of all variants in the family against a set of carefully predetermined properties. A

couple of such invariance relationships that seem to form the basis for specifying useful

families include functional invariance and security invariance. In the case of functional

invariance, variants provide exactly the same functionality, but this functionality is imple-

mented in different ways. Membership in a security invariance family on the other hand

can be determined through the verification of all family members against a set of security

properties. Newly created variants can then be verified against these properties to decide

8



if they can be safely added to the family, or their generation may be constrained so that

they are security-invariant by construction (for example by not including any events that

may result in the violation of the properties).

  

Solution Space
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Agent behavior change

Nominal flow change

Exceptional flow change

Agent behavior to 
process structure

Process structure to 
agent behavior

Problem Space

Functional variation 

Functional invariance

Goal invariance
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Privacy variation

Agent variation
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Artifact change

Figure 2.1. Example mappings from the abstract problem space to a solution space in a
process definition language.

In order to represent processes faithfully, a process modeling notation with rich se-

mantics is necessary. Such a notation must be well-defined and broad enough to allow

for the precise specification of the many different aspects of processes that may vary. The

notation must support the specification of both nominal and exceptional control flow

as well as provide capabilities for rigorous data flow specification. Given the necessity

for abstraction to support the specification of architecture-level common core, a nota-

tion with good provisions for abstraction specification and hierarchical dependencies is

paramount. Since this dissertation places a heavy focus on human-intensive systems, sup-

port for agent assignments that allow for both software components and human actors

would greatly facilitate modeling and reasoning about service variation. Lastly, most ex-

isting representations and notations do not support variation natively, so the ability to

easily extend an existing notation would be helpful. Extending a notation to elevate vari-

ation to a first-class construct becomes easier when a good separation of concerns along
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the different dimensions of variation is already part of the language specification. Provid-

ing initial support for creating families of process variants, which cover many commonly

used workflow constructs, should lead to useful insights about supporting variation in

different process definition languages and other system representations as well. Some ex-

ample representations that could be pursued include service-oriented architecture (SOA)

systems, component-based distributed systems, and other human-intensive systems, such

as mobile deployed applications, process-guidance applications, etc.

Figure 2.1 illustrates the dichotomy between problem-level and solution-level varia-

tion discussed in this section. Within the solution space on the right, process-specific

techniques are identified that may address one or more of the variation needs identified

in the problem space on the left. We assume a representation with a good separation of

concerns between the comprising components of its process definitions, namely the coor-

dination of activities, the services or agents carrying out these activities, different security

policies, the input and output artifacts of procedures or components, and so on. Given

such a representation, some of these dimensions of solution variation may be amenable

to orthogonal changes. For example, changes in the coordination specification may be

specified independently and then combined with variation based on changes in the agent

behaviors.

Each problem-level variation dimension may be met by one or more solution-level

variation implementation technique. For example, consider an election process require-

ment for functional variation based on jurisdiction, where casting a ballot may entail dif-

ferent steps, involve different technology, and necessitate different levels of assistance from

an election official. The different variants in this functional variation family correspond

to different elaborations of a ballot-casting activity that are invoked in specific higher-level

contexts within the election process. Such different elaborations of the ballot-casting sub-

process entail differences in the nominal flow of the overall election process definition.

10



Hence in Figure 2.1 we connect the Functional variation dimension in the problem space

to the Nominal flow change dimension in the solution space.

In fact, nominal flow changes at the solution level, and specifically elaborations of cer-

tain steps with different details, seem to have the potential to address both functional and

agent problem-level variation requirements quite well and may potentially provide partial

support for some other problem-level variation dimensions. Therefore, elaboration will

be the initial kind of solution-level variation explored in this dissertation.

2.2 Formalizing Variation

Given this dichotomy in variation, between problem-level variation driven by require-

ments, and solution-level variation driven by implementation choices, our conceptual

framework accordingly also necessitates the specification of variation at both levels.

2.2.1 Specifying problem-level families

At the problem-level, we can specify families at a high level, by defining a character-

ization that applies to all members. Two simple approaches to doing this are to specify

the family by induction (i.e. determine a starting process and build members by adding

onto this process, which effectively defines the family by construction), or to specify the

family according to certain properties that all of its members must meet (thus effectively

defining membership criteria that can be applied to newly generated variants retroactively

to determine if they are members of the family or not).

To build families by induction, one can specify an initial common process definition

core C , and a set of elaborators, E , and define a family Φ to be all process definitions that

can be generated by a sequence of applications of elaborators from E to C initially, and

inductively to any variant generated by applying a sequence of elaborators to C . E.g., let

C be a single high-level process definition, and E be the replacement of any unelaborated

step in C by any elaborating subprocess. Such a family may contain a variant in which a
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core function fA, is decomposed into a set of subfunctions, corresponding perhaps to sub-

processes, say fA1, fA2, and fA3, whose composed capabilities, when transformed by some

other function g , achieve the required functionality of fA (i.e. fA→ fA= g ∗ ( fA1, fA2, fA3).

Although such a process family can easily be generated if the function decomposition can

be identified, it is not clear what analysis approaches could readily be used to determine

whether all members of this family satisfy some given properties. Depending on C and

E , it may indeed be possible to construct variants that violate the well-formedness rules

of the language in which C was written. This difficulty could be addressed by restricting

family membership only to those generated processes that are well-formed. But adding

well-formedness constraint checking to this approach complicates variant generation, al-

though it can facilitate analyses whose results are applicable to all variants.

A way to address this tension is to consider using induction to initially generate process

family members, but also applying the idea of a set of membership criteria as described

above, possibly in the form of conservative comparisons for trace equivalence, to decide

when generated variants are to be allowed to become family members. If it is possible

to specify the behavior we want to enforce with very few events of interest, and define a

regular language for the acceptable sequences of these events, we can build a finite-state

automaton (FSA), T , to recognize this language (perhaps using a tool to facilitate this

process such as PROPEL [74]). We could further annotate each family member’s possible

executions with these events for example by using an annotated control flow graph, or

translating it to a more suitable representation, such as a trace flow graph (TFG). A TFG,

as employed in FLAVERS [31], leaves out parts of the CFG that do not contain events of

interest or change the control flow and includes consideration for different interleavings

of events of interest. We could then consider a functional variation process family Φ to

be a collection of process variants pi , and we could determine whether they are all trace-

equivalent with respect to the property, T , if they all satisfy the property (meaning that

there does not exist a trace through any one variant’s TFG that leaves the FSA T in a non-
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accepting state at the end of that trace). By this definition, for example, all variants that

can never cause an event included in T will be considered trace-equivalent. Similarly, all

members of a family defined as trace-equivalent will have the same attribute of adherence

(or if not, the same sequence of violation) to T . I.e. ∀{pi , p j | i 6= j } ∈ Φ, pi uT p j (uT

denotes trace equivalence with respect to T ). This is so because under this definition only

events pertinent to the property are considered in determining trace equivalence, and thus

two variants must be trace-equivalent if and only if none of their elaborations contains

events of interest with respect to the property, or the order of events coincides for both

variants over all traces. More complex rules for rapidly determining family membership

could perhaps be developed for cases where elaborations incorporate the possibility of

certain kinds of event sequences that demonstrably cannot lead to differences in adherence

to T .

2.2.2 Specifying solution-level families

In order to generate and analyze solution-level families, a specific representation must

be used. We focus on the Little-JIL process definition language as a case study because

Little-JIL is a good example of a process modeling notation that meets the requirements

outlined earlier. Little-JIL already supports a considerable amount of variation within a

single process definition, and it allows for the specification of complex coordination and

concurrency, abstraction, resources, and agents, among other features [86]. However,

we have found that attempting to model too much variation in a single Little-JIL process

definition leads to process definitions that can be turgid and worryingly complex, espe-

cially in cases where one choice early in the process dictates choices later in the process.

A single process definition without consideration for modeling these choices as variants

and attempting to capture their interactions may fail to communicate this trend. Investi-

gation of other process definition languages suggests that this difficulty is not unique to

Little-JIL, and that, moreover, it may be a problem common to all attempts to represent
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broad process families with a single process definition, regardless of the process language

used. Accordingly, we explore the use of these Little-JIL language features as the basis for

creating process families that provide broader amounts of variation that can readily be

provided by a single process, and can do so more transparently and simply.

Note that, while our expectation is that the outlined methodology can be applica-

ble in the abstract to many different process specification languages (perhaps with minor

modifications necessary to accommodate specific differences in semantics) we expect to

gain important specificity of results by restricting our attention to one specific language.

Little-JIL exhibits many of the desirable properties that a process definition language may

need, such as rigor, rich semantics, and considerable flexibility, and so it seems like an

appropriate choice for us to use as our example language. Our preliminary investigation

had suggested that the language’s semantics would have to be expanded and amended to

accommodate the specification of variation within a process as a first-class construct. Ac-

cordingly, the language was extended correspondingly as outlined later in Chapter 4.

To allow for easier tracking of variation within a Little-JIL process definition, we de-

vise a formal specification of the elements comprising a Little-JIL process as follows. This

formalization can be easily defined for other process and system representations by iden-

tifying clear correspondences between language components. For clarity, the notation

below uses capitalized names to denote sets and all-lower-case names to indicate set ele-

ments.

A Little-JIL process LJ P can be specified as a three-tuple comprising a coordination

structure, C oo r d , a set of artifacts, Ar t s , and a set of resources, Re s :

LJ P = {C oo r d ,Ar t s , Re s}

Each of these elements is further defined as follows:

C oo r d = {St e p, Dc m p, r oot}, where

• r oot ∈ St e p is a handle to the root step of this coordination structure; and St e p, Dc m p

together define a set of s t e p elements structured by the Dc m p hierarchy relation:

14



– St e p = {(pat h,At t r )}, namely a set of s t e p elements where each element

is defined by its pat h (the name of the step it describes, preceded by a com-

plete or partial path2 that points to a specific appearance3 of the step within

the process definition)4, and a set of one or more attributes. Note that because

of this path specification each s t e p element by default specifies one concrete

appearance of a step type within a process definition and, furthermore, we can

use this specification to perform operations on the path, such as path concate-

nation. The attributes are further defined as

∗ At t r = {(name , val ue)} (each at t r ∈ At t r is a name , val ue pair).

Some expected attributes in the case of Little-JIL include the step name,

step kind, the agent responsible for the step’s execution, as well as other

resources necessary, incoming, outgoing, and local parameters, exception

specifications and so on.

– Dc m p = {(s1, s2),nominal|exceptional}, s1, s2 ∈ St e p where s t e p elements

are organized in a structure by the ordered binary parent/child relation (i.e.

s1 is the parent of s2 and the edge connecting them is either blue (a nominal

flow edge) or red (an exceptional flow edge)). Note s1 and s2 are step appear-

ances according to the definition of St e p, therefore multiple references to the

same step type (i.e. multiple appearances of a step with the same name) can be

resolved unambiguously.

Ar t s = {ent i t y} (each member, ent i t y, of the artifact set Ar t s may have a different

internal structure, which is abstracted away in this specification. Each ent i t y specified

2The paths will be specified using the XPath specification language [3]

3Step “appearance” refers to a concrete invocation of a step type within the static coordination specifica-
tion of the process definition. We refrain from using the term step “instance” because we reserve that term
for a specific invocation of a step within the dynamic structure of an executing process.

4A more complete explanation of the notion of context is given in Chapter 4
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is also considered to be an artifact type, so the notation does not support differentiating

among multiple instances of the same artifact type. This is a direction that may be ex-

plored as future work.)

Re s = {(C a p s ,At t r )}(each resource entity is made out of a set of capabilities and

a set of attributes. Note that this description abstracts away many of the features and

advantages that the current resource management system in Little-JIL can provide, but

suffices for elaboration specifications.) Capabilities are further specified as

• C a p s = {(s t e p,{LJ P})},∀LJ Pi ∈ {LJ P}, |Re si |= 1 (each capability is a tuple made

out of a step corresponding to a step that some agent is capable of performing (note

once again that steps are specified at the appearance level, allowing for different ap-

pearances to have different agents bound to them), as well as a set of agent behavior

elaborations, each one of which is a separate Little-JIL process definition (because

the definition of LJP is general enough to accommodate the specification of a sub-

process rooted at a specified step). Note further that unlike in the general definition

of a process fragment elaboration where the coordination of several different agents

may be required, agent behavior elaboration implies that a single agent is responsi-

ble for the execution of all steps within the elaboration. Therefore, to implement

this restriction, we specify the size of the resource set of the subprocess, Re s , to be

one. This distinction is explored in detail in Chapter 4, but for now just note that

we can distinguish between an elaboration specifying a process fragment coordinat-

ing multiple agents or an elaboration describing a single agent’s behavior through

restricting the size of the Re s set.)

Once a Little-JIL process is defined using this specification, we can start to define dif-

ferent kinds of families based on different elaboration techniques, as briefly described in

the agent behavior specification above. Below we present two increasingly complex cases

of elaboration, namely elaborating one or multiple (including all) appearances of an elab-

oration step (at a prespecified path within the process definition) with exactly one given
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elaboration and then extending this definition to allow for elaborating one or multiple

(including all) appearances of a given elaboration step with more than one predefined elab-

oration. For example, a functional variation family LJ Pne w where two appearances of the

step sk , s 1
k and s 2

k , within a process definition LJ Pi will be elaborated with a given variant

LJ P j is defined as follows:
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(a) Core process with two step ap-
pearances to be elaborated, s1

k and
s2
k .
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(b) Core process with the elaboration r oot j grafted on.

Figure 2.2. Illustration of E l abmas e elaboration scenario.

LJ Pne w = E l abmas e
5(LJ Pi , LJ P j , Sk),{Sk ⊂ St e p si ∧ ∀sk ∈ Sk , sk is an elaboration

step6}= (C oo r dne w ,Ar t sne w , Re sne w) where

• C oo r dne w = {St e pne w , Dc m pne w , r ooti}

• St e pne w = {St e pi ∪ St e p j }

5M as e stands for “multiple appearances, single elaboration.” Note that a most likely use for this kind of
elaboration would be in the case where all appearances of steps having the same name are to be elaborated
in the same way.

6This can be further formalized as a check on the prespecified attribute that contains the step kind.
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• Dc m pne w = {Dc m pi ∪Dc m p j ∪Dc m pk}, where Dc m pk = {∀sk ∈ Sk , (sk , r oot j ,

nominal)} i.e., as depicted in Figure 2.2, the hierarchy for the new process com-

prises the original process (shown in Figure 2.2(a)) unioned with the elaboration,

plus extra added edges between each step appearance to be elaborated and the sub-

process describing the elaboration (which is the same for all sk ∈ Sk and is rooted at

r oot j ), as shown together in Figure 2.2(b). Note that superscript numbers in these

figures are used to illustrate multiple appearances of the same step, not different step

specifications (subscripts, on the other hand, are part of the step name, which serves

as a unique identifier).

• Ar t sne w =Ar t si ∪Ar t s j

• Re sne w = Re si ∪Re s j

The elaboration r oot j is shown as grafted explicitly (i.e. with its corresponding sub-

process definition) under its first appearance in Figure 2.2(b) for simplicity of presenta-

tion, but in the underlying Little-JIL representation it is actually grafted on as a separate

subprocess and then simply referred to from each eponymous elaboration step. This re-

moves the need from considering the first appearance as a special case, and simplifies the

case of elaborating a single step appearance by allowing it to be handled identically.

Finally, we tackle the case where different alternative process variants may be consid-

ered as possible elaborations of different step appearances. This kind of elaboration seems

to be very useful for studying ways to address issues in RG1: Generation because users

would be able to quickly see all the possible elaborations for a certain step, which should

help them to identify specific behaviors that could be what is needed in order to gener-

ate a needed process variant. Perhaps more important, this kind of elaboration would

facilitate RG2: Analysis by allowing for a direct application of different analyses to the

different possible variants, which should help to determine what variants satisfy certain

properties, what other variants may be unsafe, and in what way. At the high level, in
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order to specify that any of several different variants, say sia, si b , and si c might be used to

elaborate the step si , the transformation that is applied is that the elaboration step si is

associated an intermediate choice7 step, and that choice step has all variants, in this case

sia, si b , and si c , as its children. Effectively, this states that si can be performed by perform-

ing exactly one of the alternatives sia, si b , and si c , which is exactly the goal. Note that as

previously explained, care must be taken to avoid generating large process families with

multiple elaborations grafted at each elaboration step to avoid complexity. Large process

families may be helpful for performing analysis on the entire family, but this approach

also affords the process developer the flexibility to generate single, targeted process in-

stances containing appropriate variants. This type of elaboration can be thought of as

being performed in two major steps. First, we essentially generate an augmented LJ Pi

that has one additional choice step for every step appearance to be elaborated, then all

possible variants LJ P j 1, LJ P j 2, . . . LJ P j n are grafted as children of every new choice step,

s c hoi c e
k , thus creating an “elaboration of elaborations.”

Using the above notation, this kind of elaboration is specified formally as follows:

LJ Pne w = E l abmame
8(LJ Pi ,{LJ P j }, Sk),{Sk ⊂ St e p si ∧∀sk ∈ Sk , sk is an elaboration

step}= (C oo r dne w ,Ar t sne w , Re sne w) where

• C oo r dne w = {St e pne w , Dc m pne w , r ooti}

• St e pne w = {{St e pi ∪ St e p∪j ∪ S c hoi c e
k }, where St e p∪j = ∀LJ P j {

⋃

{St e p j }}, and a

newly-created9 set S c hoi c e
k .

7We use a choice step instead of creating a new step sequence paradigm because, conceptually, it accu-
rately represents that only one option will be selected as dictated by Little-JIL semantics. However, there
are other means to achieve the same result and they are discussed in Chapter 7.

8M ame stands for “multiple appearances, multiple elaborations.” Note we are allowing for more than
one appearance of a step to have multiple elaborations, but for the case when only one appearance should
be elaborated with multiple variants, this definition can be trivially modified by restricting the cardinality
of Sk to 1, analogously to how E l abmas e would handle a single appearance.

9S c hoi c e
k is a new set constructed according to the following definition: S c hoi c e

k = ∀sk ∈ Sk ,{s c hoi c e
k =

sk ⊗ (/s c hoi c e
k )∧ s c hoi c e

k .kind= c hoi c e}.
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(b) Core process with the elaborations r oot j 1 and r oot j 2 grafted onto
additionally added choice steps.

Figure 2.3. Illustration of E l abmame elaboration scenario.

I.e., an additional set of steps are added, that are essentially duplicates of all step

appearances to be elaborated, but they are choice steps, which will allow for the

attachment of multiple elaborations (illustrated in Figure 2.3(b). Moreover, each

newly-created step appearance is created with the correct path by concatenating the

corresponding step appearance’s path with the new extra scope. This will allow

for the newly-created choice steps to be attached as children of their corresponding

elaboration steps, with the appropriate Dc m p relation.

• Dc m pne w = {Dc m pi∪Dc m p∪j ∪Dc m p c hoi c e
k ∪Dc m pk}, where Dc m p∪j = ∀LJ P j

{
⋃

{Dc m p j }}, Dc m p c hoi c e
k = ∀sk ∈ Sk ,{((sk , s c hoi c e

k ),nominal)} (this adds the new

choice steps as children of the original elaboration steps), and finally, Dc m pk =

∀s c hoi c e
k ∈ S c hoi c e

k ×∀LJ P j ∈ {LJ P j }(s c hoi c e
k , r oot j ,nominal)} i.e. as illustrated in

Figure 2.3, the hierarchy for the new process comprises the original process (shown

by itself in Figure 2.3(a)), extended with choice steps attached to every step appear-

ance to be elaborated, and in turn, extra edges between every newly-created choice
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step and all subprocesses describing the elaboration (in this case rooted at r oot j 1 and

r oot j 2, respectively), as shown in Figure 2.3(b). We use Cartesian product of the

two sets of choice steps (S c hoi c e
k ) and elaborations ({LJ P j }), respectively, to ensure

correct enumeration of all possible elaboration scenarios.

• Ar t sne w =Ar t si ∪Ar t s j

• Re sne w = Re si ∪Re s j

Using this notation to define processes represented in Little-JIL as well as their poten-

tial composition into new families allows for the exploration of many interesting research

questions raised within the two domain areas that seem to be approachable in ways that

should shed light on issues in our two research goal areas. The next chapter describes the

two case study domains in detail and provides motivating examples illustrating situations

where the above variation relations have been observed.

2.3 Analysis and Variability Management

Depending on the problem-level variation needs, we expect that some solution-level

approaches will better support analysis and variability management than others. This

dissertation explores what analysis techniques can be applied to which solution-level vari-

ation approaches. It seems that compositional analysis techniques should be effective in

supporting the analysis of process families that are built by function elaboration, as all

members of such a family share a common core and vary from each other only by differ-

ent elaborations of specific functionality.

The analysis of families of processes that are functionally invariant, on the other hand,

seems more suitable for other kinds of analysis such as limited trace comparisons (only

with respect to certain events of interest) as outlined earlier. In that case, all variants

within a family can be compared according to a set of predefined important properties

that the family must satisfy to determine if the variants are functionally equivalent with
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respect to the properties that matter. Our research will focus on two kinds of problem-

level variation and a solution-level technique to support them, and study the different

kinds of analysis that can be applied.

Variability management would also differ based on the variation relation. Different

approaches such as variation points can be applied at the problem level to specify variants

that elaborate the same functionality differently, or additional annotations, constraints,

and obligations to specify variation dimensions that focus more on resources and artifacts

rather than the activities within a process definition.
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CHAPTER 3

MOTIVATION

This chapter describes variation needs observed in the two case studies featuring two

different domains and, more important, two very different sets of requirements. The first

case study is in the domain of negotiation and alternative dispute resolution, with a focus

on the need for supporting process guidance and how variation can facilitate better train-

ing and even allow for the inception of self-adaptive process guidance systems. security

and privacy.

3.1 Case Study I: Variation in the context of process guidance

Needs for variation in negotiation processes were initially observed during the elici-

tation of an Online Dispute Resolution (ODR) process from multiple mediators at the

National Mediation Board (NMB). Although all mediators had been trained to use the

same process, it was apparent that there were differences in the way individual mediators

handled certain parts of the process that were not clearly specified in the training mate-

rials or that required flexibility based on group dynamics, negotiation setting, and other

factors. Details of the process were elicited from the mediators as the basis for creating

a precise definition of NMB’s core ODR process. The process thereby defined was then

made the basis for a system called STORM2 that executes the defined process for interest-

based negotiation1 as carried out by the NMB.

1Interest-based negotiation is a process based on Interest-Based Bargaining (IBB), but adapted for
grievance mediation.
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3.1.1 The STORM2 Online Dispute Resolution (ODR) System

The STORM2 ODR system was designed to provide very flexible support for guiding

disputing parties towards the resolution of their disputes. Our approach to providing flex-

ibility was based principally on defining dispute resolution as a precisely specified process

definition that could be edited to create different ODR systems.

Figure 3.1. Three major components comprise the STORM2 system.

Figure 3.1 shows a very high-level sketch of the architecture of STORM2. The STORM2

framework consists of a precise and rigorous definition of a negotiation process that guides

execution (shown on the left), a user interface (right), and middleware to integrate the two

(center). Much of the negotiation process definition focuses on how data artifacts (e.g. is-

sue statements, opinions, and questions offered by participants) are created by some users

at some times, and then routed from the users that have created these data artifacts to

other users and to data management tools that require them in order to perform their

own tasks. STORM2’s users (i.e. the disputants and mediator) are asked to submit in-

puts at specified times, and allowed to submit their replies at other times. STORM2 is

responsible for being sure that submitted inputs are routed correctly and in a timely way

without violating any restrictions on confidentiality, and without violating agreements

about anonymity. The right-hand box in Figure 3.1 represents the screens through which

STORM2 users interact with the system. The initial implementation of this interface is
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based on the Tapestry framework [1], which makes the interface user-accessible online

through a web browser without requiring the user to install any software. A new variant

of the STORM2 system is currently being created where the interface is based upon the

Google Web Toolkit (GWT) [2] framework to provide more flexibility in the user experi-

ence without compromising portability. This is an excellent example of interaction-based

variation, which is one of the problem-level variation kinds we have identified. Our pre-

liminary assessment is that this kind of problem-variation is not likely to be very well

addressed by the solution-level variation approaches that we will investigate initially in

this dissertation. We will, however, revisit this assessment as our work proceeds.

The middle box in the diagram represents a Little-JIL middleware system, formerly

called the Dispatcher, and currently being improved and replaced by its successor, Janus,

named after the two-faced Roman god. This middleware component communicates re-

quests and responses between the executing process on the left and its users through their

user interfaces on the right. The Dispatcher and Janus are both written in the Java pro-

gramming language, and integrate the process definition with the interface by passing

messages and commands between them, based on a binding script that provides a map-

ping between the two. This three-component architecture, consisting of the Little-JIL

process definition, the online user interface, and a message-passing intermediary, makes

STORM2 very flexible and is intended to allow for easy modifications to explicitly model

and accommodate different kinds of variations in the negotiation process. Thus, it seems

to be a very promising vehicle for supporting the research we present here.

3.1.2 Process Guidance

At a high level, STORM2 provides software support for performing negotiations in or-

der to achieve dispute resolution or bargaining between two parties. To do so, it enforces

the dictates of a predefined process (part of which is illustrated in Figure 3.2(a)) that guides

the negotiations, being able to provide important guidance to the mediator when needed.
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It is important to note, however, that STORM2 provides tailored process guidance. That

is, since the way that the system executes can be changed by simply changing the process

definition, STORM2 can easily be customized to support negotiation processes that can

differ depending upon whatever seems appropriate. This can be done by designing and

defining a custom-built negotiation process, but more efficiently by making changes and

modifications to an existing process. STORM2 thus does not mandate that a mediator fol-

low a rigid process that is unsuitable for the current situation, but only provides the type

of guidance that is felt to be needed, and only under circumstances that have been speci-

fied to be appropriate in accordance with the specifications of the underlying mediation

process definition. This process definition can be customized with different functional

variants or agent variants as illustrated next.

At a high level, the process consists of four main stages, or phases, that generally hap-

pen one after the other. Initially, the two negotiating parties must agree on an “issue

statement,” representing a summary of the issue that is being disputed. Each party then

generates a collection of interests, or facts that they would like to be true when the nego-

tiation is complete. The main brainstorming phase is then entered, during which a par-

ticipant in the dispute first performs propose option to generate a list of possible solutions

to the issue at stake, or, after an initial period of brainstorming, choose to clarify option

by asking a clarifying question about someone else’s submission. Finally, the fourth stage

consists of the two party leaders voting for the set of options that their respective parties

have found acceptable.

Several problem-level variation requirements have emerged out of consideration of

the family of negotiation processes that seem useful in guiding STORM2. Examples of

functional and agent variation follow.
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(a) The process core definition of a negotiation process.
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(c) Another elaboration of present
issue.

Figure 3.2. Two sample process fragment elaborations for a given process core.

3.1.3 Functional variation in issue statement elaboration

The first phase of the interest-based negotiation process, the activity of presenting

an issue statement, involves soliciting issue statements from the representatives of both

negotiating parties and then constructing a combined issue statement that encompasses

both sides’ initial statements. This subprocess can be performed differently by different

mediators. Some mediators iteratively refine the combined issue statement using explicit

votes from all party representatives, while others create a single combined statement and

go with it unless a party representative objects.
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At the solution-level, this functional variation family can be modeled with a Little-JIL

elaboration family as illustrated in Figure 3.2(a), which shows a high-level specification of

the negotiation process, where the present issue step is an elaboration step. Two sample

elaborations of the present issue step are presented in Figures 3.2(b) and 3.2(c), respectively.

Figure 3.2(b) specifies the iterative approach where the mediator performs the step propose

combined issue statement to suggest a starting issue statement representing both parties’

interests, and each party representative can optionally (indicated by the question mark)

choose to disagree with combined issue statement, resulting in a recursive reinvocation of

present issue, so that the mediator can keep revising the initial statement until both party

representatives agree with it. In Figure 3.2(c), on the other hand, each party representative

(indicated by the agent+ notation) will propose party issue statement appropriate to the

party he or she is representing, and afterward the mediator will propose combined issue

statement, reflecting the input received from all parties. Either approach could be utilized

in order to successfully complete the present issue stage of the negotiation process.

3.1.4 Agent variation to provide different levels of anonymity

Given the differences and similarities between process fragment elaboration and agent

behavior elaboration, in some cases both approaches may be equally suitable and it may

be up to the process developer to choose which approach better represents the observed

variation, better suits anticipated future variation needs, and better fits with existing ab-

straction specifications within the process model. As an example of agent behavior varia-

tion that has been used to model observed variation in the negotiation domain, consider

Figure 3.3.

The STORM2 ODR system discussed in Chapter 3.1 provides several anonymity set-

tings for data that participants submit to the system. This anonymization is carried out in

the process entirely within a software agent called the Redactor, which, according to the

mediator’s choice, either conceals or reveals the author. Two of the anonymization set-
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tings, encapsulated in different Redactor agent behaviors, are illustrated in Figures 3.3(a)

and 3.3(b). Figure 3.3(a) illustrates the case when the mediator chooses to set the nego-

tiation process to fully-attributed in which case the Redactor passes on information as

submitted without making changes. On the other hand, Figure 3.3(b) details the case

when anonymization is required and set to fully anonymous, in which case the Redactor

removes author information from each piece of information before passing it on.

With respect to orthogonality between agent variation and process fragment varia-

tion, let us consider one more example. Recall the two subprocesses in Figures 3.2(b) and

3.2(c) illustrating different elaborations of the present issue step. Because we have differ-

ent types of agents involved, process fragment elaboration is clearly needed to specify the

two functional variants for the present issue step. However, note that both subprocesses

specify a step named propose combined issue statement, executed by an agent who can fill

the role of a mediator. Although variants for this step may be specified as process frag-

ment elaborations, agent behavior elaboration is more appropriate here because all steps

within the subprocess will be executed by the same agent, namely the mediator. The me-

diator must act differently for the two abstractions–in Figure 3.2(b), a new issue statement

must be composed from scratch for the party representatives to approve, while in Figure

3.2(c), the party representatives propose issue statements first that is then combined by

the mediator. These different agent behaviors can be grafted onto the different process

fragments to create nested families (i.e. families where an agent behavior elaboration step

can be specified within a process fragment elaboration variant). Specifically, recall that in

Figure 3.2(b), either party representative can cause the reinvocation of the present issue, in

which case the mediator would revise the original issue statement and proceed to check if

both party representatives agree with it. Therefore, in the case of a reinvocation, it is the

second agent behavior, where the statement is combined, that would need to be grafted
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onto the first process fragment to achieve the intended effect2 and create a nested agent

variation family from the existing functional variation family.

3.2 Case Study II: Variation in the context of secure and private elec-

tions

Elections are a cornerstone of the democratic process in countries such as the United

States. Every citizen of the US above the age of 18 is entitled to participate in elections by

casting a vote. Although all elections held in the US must satisfy many general require-

ments (e.g., no eligible citizen may cast more than one vote), there are some additional

requirements that some election districts place on their elections, and these additional re-

quirements may vary from one district to another. For example, all voters must always

identify themselves to an election official, but different districts perform different pro-

cesses for voter identification. In some districts voters are required to register their votes

using electronic vote recording devices, and in other districts voting is done by placing

marks on sheets of paper, which are then read either by election officials or by automated

scanners. Thus it seems that election processes in the US can clearly be partitioned into

different problem-level families, which could then be used to create different solution-level

families. The solution-level families can be analyzed in order to reason about different se-

curity and privacy properties, which are critical in this domain. This case study is based

on an ongoing collaboration with researchers at the University of California, Davis and

election officials in Yolo and Marin counties in the state of California and shows how

Little-JIL can be used to support the representation of some different kinds of such fam-

ilies, and indicates how these family representations can support our goals of generation

and analysis to varying degrees.

2Note that in this case, agent variation at the problem-level, and the corresponding agent behavior elab-
oration at the solution-level, seem to be particularly suitable vehicles for explicitly modeling how rework
is achieved through multiple subsequent executions of an activity that was not completed successfully the
first time, as described in [17].

30



3.2.1 Challenges due to conflicting requirements and needs for variation

Some of the problem-level families concern different requirements in the privacy and

security dimensions, either for variation or for invariance. Some desirable problem-level

families are in fact based on properties that are in direct conflict with each other, so this

case study provides illuminating insights on whether different dimensions of problem-

space variation can be reconciled and whether they can be addressed by the same solution-

space approach (namely elaboration), or how we can reason about more than one relation

at a time. This is not unlike the kinds of reasoning identified and discussed in [63]. An

example of conflicting requirements is that the voter confidentiality privacy requirement

(no one but the voter should know how the voter voted) may raise potential conflicts

with the one person-one vote security requirement (an eligible voter must be able to vote

no more than once); different approaches to addressing these problem-space variation re-

quirements may lead to the desirability of different approaches to solution-level variation

in process variants. Specifically, we are interested how such interactions can be managed

effectively, how families may be defined to satisfy the need for variation in some dimen-

sions (e.g. agent variation to accommodate different voting machines) while maintaining

invariance in other dimensions (e.g., security invariance to guarantee every machine con-

forms to a set of predefined properties). Thus, the members of a family of processes may

all satisfy the same security property, and this may be the membership criterion for the

family. Such invariance could be assured through the application of carefully selected anal-

ysis techniques that focus on predetermined properties and relevant events in the variants

within the family. Note that such techniques clearly support our goal of supporting the

analyzability of families as variants within the process family would clearly all satisfy given

properties. However, although newly created variants could be checked for conformance

to the properties quite straightforwardly, their initial generation may not be supported

very well by these techniques.
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3.2.2 Functional variation in ballot casting and provisional voting

Figure 3.4 presents how an example functional variation process family is modeled

with a solution-level family consisting of a process core and two possible pairs of abstrac-

tion elaborations. The diagrammatic representation of a simplified, partial common core

process for holding an election is shown in Figure 3.4(a) (for illustrative purposes, only

a small part of the overall election process is shown here). This part of the election pro-

cess indicates how a voter is identified and authenticated to cast a ballot and under what

circumstances a provisional ballot is used instead.

As illustrated by the Little-JIL diagram, in order for a voter to pass authentication and

vote, he or she must first present ID, then an election official will perform pre-vote authen-

tication, and check off voter as voted, and, finally, the voting system of choice will record

voter preference, as indicated by the name over each black step bar. The perform pre-vote

authentication step indicates that the voter must pass a certain authentication procedure

in order to be allowed to cast a ballot. If as part of that procedure it is determined that

the voter has already been checked off as voted, then the authentication will fail and an

exception of the type Voter Already Checked Off will be thrown.

The Voter Already Checked Off exception is handled by a handler that is attached via a

red edge to the pass authentication and vote step. This exception is handled by performing

the let voter vote with a provisional ballot step; the check mark in the annotation indicates

that after invoking the exception handler, the process will continue to execute by regard-

ing the entire pass authentication and vote step to be completed, with the result being that

the step record voter preference is not executed and thus the voter is not allowed to cast a

regular ballot in addition to the provisional.

Note that Figure 3.4(a) does not specify the details of how a regular or provisional

ballot is to be cast. That is because there can be different variants on how to perform

these steps. For example, Figures 3.4(b) and 3.4(c) demonstrate different ways a voter can

cast a regular ballot, respectively by filling out a paper ballot and submitting it into a ballot
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box in Figure 3.4(b), or by filling out an electronic ballot, which is rendered by a DRE

machine, confirmed by the voter, and then submitted to the memory of a DRE machine

(the Help America Vote Act (HAVA) mandates that all DRE machines employed in the

United States require voters to confirm their choices before a ballot can be cast) in Figure

3.4(c). Two different elaborations of the let voter vote with a provisional ballot are also

illustrated in Figures 3.4(d) and 3.4(e). Note that when a provisional ballot is being cast,

these two variants require that an election official perform the final step, submit provisional

ballot, regardless of the kind of voting technology being utilized (a paper provisional ballot

being cast into a provisional ballot box in Figure 3.4(d) or an electronic provisional ballot

in Figure 3.4(d)).

3.2.3 Agent variation to facilitate reasoning about different voting devices, detect

fraud and collusion, and formalize attack modeling

Requirements to incorporate the use of different devices for the recording of votes

creates the need for agent or service variation process families within this domain as well.

Specifically, the submit ballot step that is the last child of the record voter preference step

from Figure 3.4(b), is to be performed by an appropriate voting device. There are many

such devices in use today, some of which are electronic (e.g. Direct-Recording Electronic

(DRE) machines), and some of which are of other types (e.g. mark-sense reader devices).

The activity decomposition structures of the process definitions within which these dif-

ferent devices are used do not differ from each other, but the processes are different in that

the agent behaviors for the submit ballot step are different, as shown in Figure 3.5.

All DRE machines must remember the voter’s intent by committing the completed

ballot to memory, so all three behaviors include that step, and the behavior in Figure

3.5(a) completes after this step. However, most states require that if DRE machines are

employed, they issue a Voter-Verified Paper Audit Trail (VVPAT), or a receipt stating that

the ballot has been recorded. A behavior requiring this additional step is shown in Figure
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3.5(b). Finally, instead of a VVPAT, some approaches have been proposed indicating that

ballots can be assigned unique identification using cryptography that would allow a voter

to verify if her ballot has been counted in the total tally or not without revealing her

preference, as illustrated in Figure 3.5(c). Note that while these three variants could be

represented as one behavior with appropriate optional steps, that would not faithfully

represent the real world because a machine is either VVPT-compliant or not and that

attribute should not change from one voter casting a ballot to the next if they are both

using the same machine.

As illustrated by the examples in this chapter, many cases of observed variation from

our real-world case study domains present themselves as functional or agent variation.

We have indicated how this variation can be modeled and analyzed at the solution level

through the exploitation of a common core that variants share with variant-specific elab-

orations that can be attached as appropriate. The conceptual framework for generating

different kinds of Little-JIL process elaboration families presented in Chapter 2 is decon-

structed into its technical components next.
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Figure 3.4. Two pairs of sample abstraction elaborations (in this case process fragments)
for a given election process core.
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CHAPTER 4

TECHNICAL APPROACH

This dissertation outlines an approach for modeling, understanding, and reasoning

about system variation to support the two research goals of RG1: Generation of new sys-

tem variants based on provided desiderata and RG2: Analysis of entire families of systems

based on different variation relations. Two main contributions are presented: 1) a model-

ing framework for specifying process variation and process families to support RG1 and

2) an analysis harness for reasoning about entire families of processes with respect to dif-

ferent properties they need to satisfy to fulfill RG2.

The outlined specification of Little-JIL process definitions from Chapter 2 is helpful

in formally defining different kinds of elaboration-based families; the successful imple-

mentation of this framework, however, also necessitates the provision of adequate tool

support. This chapter provides a specification of the system implementation to achieve

the goals of RG1 and RG2.

4.1 Generating Families with The Little-JIL Elaborator

This section details an implementation plan with respect to the conceptual frame-

work outlined above. The research prototype tool presented, the Little-JIL Elaborator, is

guided by the research challenges and variation needs encountered in our two case study

domains—negotiations and elections. In Appendix A, we outline a vision for an ambitious

framework, called Process Line Analysis, Generation, and Evaluation (PLAGE), for care-

fully specifying process families using different constraints and conditional requests–and

perhaps employing different repositories–for abstractions, whether they be agent behav-
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iors specifications or process fragments. In this chapter, we focus on the finished pro-

totype product, the Little-JIL Elaborator, which can generate process families based on

developer-guided selections of abstractions, and supports their analysis. The appendix de-

tails how the prototype fits within the overall PLAGE system architecture and outlines all

the system components and interfaces that have been implemented to support the future

integration.

The Little-JIL Elaborator is a research prototype that supports the implementation of

some solution-space approaches and allows for empirical evaluation of the usefulness and

applicability of the described approach to meet the stated hypotheses of improved support

for generation (RG1) and analysis (RG2). The Little-JIL Elaborator is implemented as an

extension to the existing Visual-JIL framework, and allows for the definition of families

of Little-JIL processes along several different variation relations. As a research prototype,

the Elaborator support the specification of a certain kind of process families, namely ones

that all share a common core and differ at lower levels of abstraction. This class encom-

passes process families that seem to be potentially capable of addressing the need for sev-

eral different kinds of problem-level variation discussed in this dissertation, including, but

not limited to, functional variation, robustness variation, performance variation, service

variation, and interaction-based variation. For each of these kinds of variation relations,

we have observed variation needs in one or both of the case study domains that would

successfully be modeled with a process family that is built around a common core (some

example families are outlined below as well as in Chapter 3 above.

Specifically, the Little-JIL Elaborator is designed to provide the following functional-

ity to address the indicated key research goals by supporting two main kinds of elabora-

tion specification, namely process fragment elaboration and agent behavior elaboration.

This set of functionality is expected to provide substantial support for exploring several

fundamental research questions that are described in more detail below.

39



4.1.1 Process Fragment Elaboration

Currently, Visual-JIL supports six different step kinds as building blocks to a process

definition, namely sequential, parallel, choice, try, leaf and reference. A reference step is used

as an invocation mechanism to any of the other five step kinds. We have added support

for an elaboration annotation for the reference step kind (hereafter referred to as an elabo-

ration step kind), which works similarly to a reference but instead of resolving to a single

step definition allows the elaboration step to be replaced by any of a number of different

pre-specified abstraction elaborations. This enables a step that may have previously been

modeled as a leaf step to be replaced with a placeholder elaboration step indicating that

elaborative details are to be provided by appending a new abstraction to it. This capabil-

ity greatly facilitates the generation of new process variants, thereby supporting Research

Goal #1 (RG1).

In order to facilitate RG1, process family generation, from a usability standpoint, these

elaboration steps can be modified to contain interface information and therefore allow for

the specification of variants and process navigation. As currently defined, reference steps

do not have an interface specification accessible to the process developer, but the step dec-

laration that the reference resolves to can easily be accessed on-demand and inspected to

see those interfaces. Since an elaboration step by definition may resolve to multiple elab-

orations, this approach no longer seems feasible or user-friendly. Additionally, current

Little-JIL developers have indicated that such a globally-accessible interface specification

would be helpful for normal reference steps as well, and this usability enhancement is con-

sidered as future work.

4.1.1.1 Examples from the case study domain

As presented in Section 3.1, mediators can choose to perform the present issue step

differently when executing the overall negotiation process. The suggested process core

and two possible process fragment elaborations for present issue are shown in Figure 3.2.
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On the other hand, in the domain of elections, voters can also have their voter preference

recorded differently, as shown in Figure 3.4(a).

In both of these case, functional variation seems to be accommodated well by the dif-

ferent elaborations of the same high-level step (present issue or record voter preference).

The variants presented exemplify some possible applications of functional flow changes

to achieve functional variation. Note that in the case of negotiations, agent behavior vari-

ation may also be utilized to model lower-level behavior differences for the mediator or

party representatives, but that does not seem to be the most appropriate approach to

meeting this specific problem-space variation requirement.

To allow for “elaborating” a process core with different abstractions implementing

different variants, there are several problems that must be considered. First, the vari-

ants must satisfy syntactic and semantic constraints to ensure compatibility between the

declared interfaces of the elaboration step and any process fragment or agent behavior dec-

orating that step. The existing Little-JIL semantic checkers extend to reference steps but

do not currently allow for reasoning beyond one single definition of a step that a reference

invokes. Management of such multiple definitions is one of the main goals of the Elabora-

tor in order to meet RG1. Second, in order to address RG2, the abstraction elaborations

must be checked for adherence to different properties (e.g., safety, robustness, or security

properties), to ensure that any variant that can be generated is an acceptable member of

the family with respect to the pre-specified membership criteria. For the negotiation ex-

ample presented, all the party representatives and the mediator must be available for the

successful completion of any possible elaboration, and each elaboration should result in

the creation of an issue statement artifact capturing what the parties will be negotiating.

For the election example, both the voter and an appropriate voting device must be avail-

able for the successful completion of any elaboration and additionally, an election official

is required to cast a provisional ballot. Each elaboration should result in the creation of a

ballot artifact capturing the voter intent. The Little-JIL notation seems particularly adept
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at supporting the specification of such a family, as this requires only that there be a specifi-

cation of a set of service providers that have the capabilities needed to carry out the submit

ballot step. As outlined in Chapter 2, these variants can all be grafted onto the appropriate

core process as the children of a choice step connected to the step being elaborated. This

would allow the user to explore the adoption of different variants or perform analysis

encompassing all possible alternatives.

Furthermore, because the agent and coordination specifications in Little-JIL are inde-

pendent, agent variation families provide the opportunity for interesting analyses looking

into agent collusion scenarios to detect corrupt election officials, or juxtaposing the agent

behaviors vs the process specification to identify vulnerabilities against malicious agents

and devise protections against them. As noted in Figure 2.1, given Little-JIL as the system

representation used within the solution space, agent behavior can often be transformed

into process structure (where the behavior is specified as a process fragment and the agent

assigned to each step within that fragment is the original agent), and process fragments

can sometimes be abstracted out as agent behaviors (where the root step of the process

fragment becomes a leaf step and the details of its elaboration become the specification

of the agent behavior). Additionally, note that process fragment elaboration and agent

behavior elaboration as described and illustrated in Figures 3.4 and 3.5 are not necessar-

ily orthogonal to one another. Indeed, they intersect, and nested families can be created

recursively by applying different elaborations of the submit ballot agent behaviors to dif-

ferent process fragment elaborations of record voter preference as noted. Therefore, we

often use the term abstractions, or abstraction elaborations, to refer to any elaboration

that would semantically fit onto an elaboration step.

Some examples clearly indicate which approach is more suitable; note that in the ex-

ample shown in Figure 3.4, there are multiple types of agents responsible for the execution

of the substeps of both the record voter preference and the let voter vote with a provisional

ballot steps, and therefore abstracting these subprocesses as single-agent behaviors seems
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problematic. In fact, for initial versions of the Little-JIL Elaborator, we define agent be-

havior variants to be a subset of process fragment variants such that the executing agent

for every step within the abstraction is identical. Moreover, we impose the restriction

that agent behavior elaborations can only be performed at elaboration steps where the

executing agent is specified as a new resource acquisition, as opposed to a resource use1.

Even though functional variation tends to be quite well modeled and accommodated

by traditional software product line engineering (SPLE) approaches, there has been con-

siderably less attention targeted at service, or agent variation. One of the strengths of

the Little-JIL process definition language as compared to other variation modeling plat-

forms is the fact that it does not discriminate between human and computer agents, and,

furthermore, allows for a very flexible definition of agent behaviors. Providing support

for agent variation is therefore a major focus of this work. Agent variation raises many

challenges, both from a research and implementation standpoints. From a research stand-

point, there are two different approaches to considering agent variation, namely whether

behavior variation is considered on an instance or type basis (that is, if a step specifies that

two different agent behavior variants may be used to execute it, does that mean that one

behavior will be chosen every time that step is executed, or will one behavior be chosen

some of the time, and the other at other times?; would the choice be constrained by the

context within which the step is invoked?; would a choice of agent behavior at one step

influence a choice at another step because of overall process constraints? Some of these

questions are revisited in the request language specification later in this section). From an

implementation standpoint, the representation used to specify agent behaviors becomes

quite important.

1Given the hierarchical nature of Little-JIL and many other process definition languages, every step
that is elaborated is effectively replaced by the composition of its children and therefore no “real work” is
performed at non-leaf steps. Therefore it is not clear what might be meant by specifying agent behavior
variation for a non-leaf step, and thus restricting agent behavior variation to newly acquired agents seems
reasonable.
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4.1.2 Architecture and Separation of Concerns

The Elaborator prototype provides initial support for the specification of abstractions,

usually represented as process fragment elaborations for analyzability2. Since agent behav-

ior specification in Little-JIL is orthogonal from coordination specification, the Elabora-

tor must maintain appropriate separation of concerns while allowing for maximal reuse.

The current architecture of the tool is shown in Figure 4.1 and shows three main compo-

nents, namely the current Visual-JIL editor, a query engine middleware component, and

an abstraction repository. Each component is described below in more detail.

Figure 4.1. High-level architecture sketch of the Little-JIL Elaborator.

4.1.2.1 The Abstraction Repository

The abstraction repository is a data store for different variant elaborations. Since in

the prototype versions of this framework, agent behaviors are specified as Little-JIL sub-

process elaborations to facilitate analysis, an agent behavior becomes a special case of a pro-

cess fragment where all substeps are assigned to the same agent (the agent whose behavior

this subprocess is describing). Moreover, to support broad analysis (RG2), both process

fragments and agent behaviors are used to decorate a Little-JIL process definition. Ac-

cordingly, storing both abstractions in the same repository seems to not only effectively

2We have previously discussed how agent behavior can be elaborated as part of the process hierarchy
and parts of the process hierarchy can sometimes be abstracted away as agent behavior, provided the entire
abstraction is performed by the same agent
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support reuse but also some of the solution-level variation accommodation techniques

shown in Figure 2.1, such as “agent behavior to process specification” and “process speci-

fication to agent behavior.” More important, specifying the repository as an abstraction

repository allows for easy extension to accommodate desired variant specifications dis-

cussed in future work, such as using code fragments encoded in heterogenous languages,

or sockets to communicate with URLs for online service providers to plug in as agent

behaviors.

The high-level schema for the repository is specified as:

{s t e p, t y pe , i d , [at t r i b u t e]∗,acce s s}

A description of each element of the schema follows:

• s t e p (a character string) is the full or partial path specification3 of a step appearance

for which this abstraction specification is an elaboration. The step appearance spec-

ification can be used as the primary way to search for appropriate variants when

there are multiple matches as described below.

• t y pe (an enumerated value) is the type of abstraction that this specification de-

scribes. The two types currently supported are “process fragment” and “agent be-

havior” as specified above.

• i d (a numeric) is the primary key for the schema and is an automatically-generated

number to uniquely identify an abstraction.

• [at t r i b u t e]∗ (a list of character string tuples) is a list of zero or more attributes

defined as {t y pe , val ue} tuples, stored separately, where examples of t y pe might

be “agent name,” “performance score,” “corrupt flag,” “input constraint,” “output

constraint,” and so on, and the values would be the corresponding settings.

3Partial specification refers to the ability to specify multiple appearances of a step within a process defi-
nition using the XPath language, as outlined in Chapter 2.
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• acce s s (a pointer or reference) is a mechanism to allow access to the actual abstrac-

tion stored in memory.

4.1.2.2 The Visual-JIL editor and Query engine middleware

Little-JIL process definitions consist of three main parts–a coordination diagram, a

resource specification, and an artifact specification. These specifications are independent

from one another but get combined through the specification of interface declarations

within the coordination diagram.

Process fragment elaboration is achieved through the elaboration step mechanism de-

scribed above. Specifically, when an elaboration step in a coordination diagram is spec-

ified, this results in the editor consulting the query engine middleware, which in turn

will consult its Process Fragment Manager (PFM) subcomponent. In adding a new vari-

ant, the PFM will conduct the necessary well-formedness checks (these are called Critics

within the Eclipse Visual-JIL development environment) to ensure that the new abstrac-

tion conforms to Little-JIL syntax and that its interface specification is appropriate given

the elaboration step it will be decorating. The PFM will then add the new fragment to

the abstraction repository annotated with any appropriate attributes as described in the

variant specification. In retrieving existing variants, the PFM will provide the repository

with a set of attributes that the variants must match, and return the results it gets. By

default, all abstractions matching the name of the elaboration step will be returned, but

additional mechanisms for filtering depending on additional attributes can be provided

through the extensions described in Chapter A. For example, referring back to Figure 3.4,

both variants will be returned by default if the PFM asks for variants for the step present

issue, however in cases when there is a limited amount of time to carry out a negotiation,

indicating the need for a certain performance variant, then only the variant presented
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in Figure 3.2(b) would be returned because it tends to lead to a faster completion of the

“present issue” phase4.

The PFM will be integrated within the existing Little-JIL infrastructure to augment

the current resolution activity that conducts a search over the coordination diagram defi-

nition to resolve reference steps to their unique explicit elaborations. The new Resolution

activity for reference steps annotated as elaboration steps will find and return all elabora-

tions of a reference instead of a unique elaboration as currently defined. Upon request,

when the user is ready to perform analysis (RG2) on the whole process family, the elab-

oration step will be elaborated as a choice step and all variants matching the user request

will be grafted onto the coordination diagram as children of that choice step (as shown in

Figure 2.3).

From the user’s perspective, agent behavior is currently handled the same way. How-

ever, in future iterations, the system can be extended to integrate the ROMEO resource

manager [60] as a plugin and instead handle agent behavior variation through the current

resource specification mechanism within Visual-JIL. Within a Little-JIL process defini-

tion, at every step where an executing agent is declared, the specification of the agent

declaration is used by a resource manager to identify the appropriate agent for the execu-

tion of the step. When there is no agent specification, a default query is launched to get

all agents that are capable of performing the specified step. The query engine middleware

could be modified to hand any new agent behavior variant specification to a resource man-

ager to store in the abstraction repository, and when retrieving existing agent behavior

variants, ROMEO could be modified to identify all agent behaviors matching the user

request and return the appropriate behavior specifications, with the same defaults as for

the PFM.

4This preference has been indicated by mediators in multiple experiments when a time limit is imposed.
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Figure 4.2. Current architecture of the ROMEO resource manager, as specified in [60].

The current architecture of ROMEO is shown in Figure 4.2. Currently, the Assign-

ment Management component is configured to select exactly one agent instance that best

matches the request received from the Resource Client. The Assignment Management

component would therefore be bypassed in order to allow the user to retrieve any num-

ber of agent behaviors that match the desirable criteria. Moreover, the Request Manager

and Request Scheduler would have to be modified to reflect the need for returning all

matching agent behavior specifications and the abstraction repository would be used as

the Resource Characteristics Model. However, unlike process fragment elaboration, agent
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behaviors would not be analyzable within a Little-JIL process specification given the cur-

rent constraints on the analysis framework, so extensive additional changes to the analysis

harness would need to be performed to make such families easier to reason about.

4.1.3 Storing, Managing, and Organizing Abstractions

The Elaborator will facilitate the specification of multiple variants of several kinds and

will provide support for the storage and organization of these variants within repositories.

Variants may be defined according to the different variation relations already discussed.

For example, there may be a repository of process elaboration fragments, another reposi-

tory for different agent behaviors, and a third repository for collections of properties that

an entire family must satisfy. Variant repositories will be organized by the constraints

and membership criteria defined by the variation relationships among variants. (RG1)

There are apparent implementation challenges that need to be considered in order

to provide adequate support for the storage and navigation of process variants, such as

appropriate representation, performance, and sufficient querying capabilities. However,

from a research standpoint, one of the most interesting questions would be the appli-

cation of appropriate membership criteria to constrain what variants should be allowed

to be members of a certain repository, and, moreover, selecting variants from a given

repository based on desiderata they must satisfy (to support RG1). If variants can be se-

lected based on desiderata related to the properties they are guaranteed to satisfy (while

also meeting problem-space variation needs), then newly generated variants may under

certain circumstances be guaranteed to be safe by construction, thus facilitating RG2.

4.1.4 Request language specification

Specifically, in order to address some of these challenges and retrieve only the appro-

priate variants from the Abstraction Repository based on a set of user-supplied desiderata,

we define the following request language specification. A request for variants will have

the general form:
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r eq ue s t{name , t y pe , cont e x t∗,at t r i b u t e∗, b e s t∗}

A description of each element of the request follows:

• name (a character string) is ether the (complete or partial) path specification of the

step for which variants are being requested, or the name of the type of agent whose

behavior the user wants to vary, or both. Figure 3.4 illustrates the case in which

lookup would be performed by step appearance, whereas in the case of Figure 3.3

both a step appearance specification and an agent name would be required. Using

only an agent name as the name allows for the “corrupt election official” use case

described above where an additional flag may be set indicating that certain agent

behaviors are corrupt, indicating the need for collusion analysis.

• t y pe (an enumerated type) specifies whether the variants requested should be pro-

cess fragments or agent behaviors

• cont e x t∗ is a list of zero or more partial or complete paths to specific step ap-

pearances within a process definition. The purpose of cont e x t is to allow for the

elaboration of only certain appearances of elaboration steps depending on where in

the process definition they are invoked. If no context is specified, then all elabora-

tion steps matching the original path specification of name are elaborated with the

resulting set of variants by default, as is the case with reference steps currently.

• at t r i b u t e∗ is a list of zero or more attributes that the set of variants should satisfy.

If no attributes are specified, all variants matching the name and optional cont e x t

will be returned.

• b e s t is an optional flag for restricting the set of returned variants to exactly one.

This option is available specifically to allow for the generation of explicit variants

either for the purposes of dynamic execution, simulation, or analysis, and is meant

to mimic the ROMEO Assignment Management module that is being bypassed.

50



Note that the term “best” is used liberally and does not imply optimality, but only

that a single variant that matches the criteria will be returned.

4.2 Analyzing Families with the Little-JIL Analysis Toolset

4.2.1 Finite-State Verification

Finite-State Verification (FSV) is an analysis technique that considers a conservative

representation of a process definition or program to determine if there exists a trace that

could violate a predefined property. To verify whether a Little-JIL process definition

satisfies or violates a given property, we use the FLAVERS [31] analysis engine. In order to

determine if all traces through the process definition adhere to the property specification,

FLAVERS must know the correspondence between the alphabet of the property (i.e. the

events of interest), and the steps of the process.

Therefore, analyzing a Little-JIL process definition with FLAVERS consists of three

main steps: 1) creating a formal specification of the “legal” property, defined as a set of

sequences of events, 2) specifying a set of bindings that indicate the correspondence be-

tween steps in the process definition and events in the property’s alphabet, and 3) running

the analysis engine to determine if there is a trace through the process definition that can

possibly generate a sequence of events that is not a member of the “legal” sequence. If

such a trace is found, FLAVERS provides an example trace as a counterexample.

System requirements are usually high-level desiderata that are most useful when de-

composed into multiple lower-level, more precisely defined properties that can be for-

mally specified to support automated analysis, and to avoid any possible ambiguity. We

use the PROPEL tool [74] to define properties. PROPEL provides guidance for property

specification by means of an English-language question tree, and automatically generates a

finite-state automaton (FSA), based on the answers to the questions. PROPEL properties

are specified independently from the Little-JIL process definition, and represent the set of

allowable event sequences against which process traces are to be compared.
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FLAVERS constructs a finite model of the process definition that represents all the

possible event sequences, for the events in the property’s alphabet, that could occur over

all possible traces through the process definition. It then determines if this model is con-

sistent with the property specification. If the model is not consistent with the property,

then a counter example trace through the model is shown so the user can see the process

execution trace and corresponding event sequence that causes the property FSA to fail

to terminate with an accepting state (e.g. by entering a violation state). This inconsis-

tency could indicate imprecision within the finite model, an incorrectly defined property

or process definition, or it could indicate an error in the actual process that was repre-

sented in the corresponding process definition. If the process definition being analyzed

represents a process family, a violation may indicate that one or more variants lead to a vi-

olation, and a process developer may use this information to iteratively remove identified

culprits from the process family to determine if a smaller family may satisfy the property.

To analyze a process family that has been specified as a process core and elaborations of

different kinds at the pre-specified elaboration steps, we could use the Little-JIL Elaborator

to explicitly graft all possible elaborations (variants) onto elaboration steps. Note that

not all possible combinations of elaborations may be appropriate; for example, the use of

one variant at one elaboration step appearance may preclude another variant from being

used elsewhere in the process. The PLAGE architecture includes provisions allowing for

such constraints to be specified as attributes in the request to the Little-JIL Elaborator to

ensure that only reasonable combinations of variants are explicitly grafted on for analysis,

avoiding nonsensical combinations that may lead to spurious violations. The resulting

process would then contain the possible traces for all appropriate variants, and could then

be analyzed using the existing FLAVERS finite-state verifier for Little-JIL to achieve RG2.

For large numbers of possible grafts (and indeed it is possible to contemplate an infinite

number of grafts) this approach becomes either impractical or impossible.
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Thus, we consider approaches that help with analyzing larger families in discussions

of future work. One obvious step is to prune all agent and functional variants that do not

contain events from the property alphabet, as they cannot influence the outcome of the

analysis. The analysis engine already performs some such optimizations, but pruning at

the process definition level would facilitate addressing other concerns, such as automati-

cally generating instances for self-adaptive systems. Another, more interesting technique

would be to allow the Little-JIL Elaborator to selectively graft variants based on differ-

ent constraints that may mandate that the same agent behavior cannot be used in more

than one step appearance, for example, or that a certain functional variant is always used

with a certain agent variant (this is actually a common case in elections, where different

voting machines–i.e. different voting machine agent behaviors–mandate different func-

tional variants for ballot casting). Such sophisticated constraints are anticipated, but not

currently supported within PLAGE.

4.2.2 Fault Tree Analysis

In addition to finite-state verification, there is another form of analysis called fault

tree5 analysis (FTA) [16, 19, 32], which determines how hazards may occur as a result of

the incorrect performance of certain activities in the process. A hazard is an undesirable

or unsafe state of the system that may allow for a critical failure or accident to occur. At

a high level, a fault tree is a hierarchical structure that has a root corresponding to this

hazard, which is then decomposed into events that may lead to the hazard occurring if

some combination of the events occurs. The decomposition semantics are defined using

logical gates, much like a circuit, where an AN D gate indicates all subevents must occur

for the composite event to occur, whereas an OR gate means at least one subevent must

occur. The structure is defined inductively starting at the root and decomposing each

5Fault trees are similar to attack trees [64], however, we do not assume a malicious intent and consider
all possible ways that could lead to a hazard, including accidents or negligence.
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level of the tree until the leaves of the tree correspond to leaf steps, or simple events in the

process.

The FTA Toolset for Little-JIL provides automatic derivation of fault trees given a

Little-JIL process and a hazard specification. Once a fault tree is derived, it can be reduced

to an algebraic equation consisting of the root event on the left and the decomposition

on the right (recursively substituting each event with the expression for its subevents con-

nected with the appropriate logical operator. If the root is assigned a truth value, this

equation can then be solved using standard satisfiability techniques to determine the min-

imal combinations of variables on the right that would need to be true for the hazard to

occur. Given that the variables on the right correspond to events (e.g., the occurrence of

an exception and how it is handled or not handled, incorrect performance of a step, prop-

agation of a key artifact, and others) from the process definition, these reduce to minimal

combinations of events that may cause the hazard will occur. Each combination is called

a minimal cut set (MCS), and a MCS of size one indicates a single point of failure.

To determine where in the process definition key artifacts are created and modified—

and therefore at risk for being corrupted—FTA analyzes the data flow in the model lead-

ing to the step associated with the hazard being examined. The FTA Toolset should not

require modifications in order to be applied to an elaborated process, since the process

would just contain more options for how artifacts can flow through it. Such a process can

be automatically generated in PLAGE with the Little-JIL Elaborator explicitly grafting

the variants of interest onto their respective elaboration steps.

FTA may be useful in detecting agent collusion within a process through studying the

steps in each MCS to determine if they can all be executed by the same agent, and whether

a “corrupt” agent behavior may be used to elaborate the agent in a variant. This technique

may also be used to increase the robustness of a process through adding redundancy and

limiting agent responsibilities in such a way that there are no single points of failure or

single agents who can affect the integrity of the overall process (for example, that there is
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not a single election official with enough power to overturn an election without colluding

with other agents, or causing a voting machine to fail, or other external factors).

The results from FTA can be used to determine what variants can contribute to a

hazard occurring (those whose steps appear in the resulting fault tree), and what variants

can be considered safe. The Little-JIL Elaborator can then be used to generate families that

are provably resistant to certain vulnerabilities, or identify combinations of variants that

mitigate other vulnerabilities (for example, single points of failure can often be mitigated

through the addition of redundancy in the process definition, and PLAGE could be used

to identify variants that may provide that kind of redundancy). Note that the converse is

also true—PLAGE could be trained to select the combination of variants for analysis based

on lateral relationships among these variants, such as grafting two abstractions at different

elaboration steps that are known to often occur together (for example, in elections, an

electronic voting machine agent behavior abstraction usually correlates to a specific vote-

counting functional abstraction).
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CHAPTER 5

EVALUATION

In order to determine if the anticipated contributions outlined in Chapters 2 and 4

have been met satisfactorily, we undertake the following evaluation approach. We de-

scribe the evaluation of the two research goals, Generation (RG1) and Analysis (RG2)

separately, starting with quantitative evaluation and then specifying some qualitative met-

rics as well. Throughout this section, we use a case study of a large family of election

processes describing different remote voting schemes, including scenarios for voting over

the Internet.

5.1 Experimental Setup

We focus on evaluating the scalability of PLAGE, and specifically the applicability of

process family generation and analysis techniques to an extensive case study with more

variation points and more variants than previously considered. We use a specially pro-

duced family of families (i.e., a process family that includes multiple variation points that

interact with one another) that focuses on remote voting. This process family was devel-

oped as a result of collaboration with the National Institute for Standards and Technology,

NIST, as a potential security assessment framework for Internet voting technologies. The

complete family comprises 79 unique steps, including three variation points and twelve

variants with dozens of intricate interactions among them. The total number of variant

combinations exceeds one hundred. You can find the complete specification in Appendix

E, along with coordination diagrams for intermediate steps that are not included in this

chapter.
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There are clearly different aspects of generation and analysis that necessitate different

evaluation strategies. We have previously studied the applicability of the approach to de-

tecting malicious agents through the novel application of finite-state verification to a vote-

in-person election process family based on the complete Yolo county process. For that

case study, a subset of which was presented and evaluated for the 2014 Software Product

Line Conference (SPLC) in [67], we considered how malicious or incorrect agent behav-

iors could be leveraged within a process family for correctness analysis. The extended

SPLC case study uses a slightly larger process family of 98 unique steps, but there are

only nine variants and two variation points. We omit the details here, but the full speci-

fication is available to the interested reader in Appendix C. Despite the small number of

total variants, the case study still surpassed the capabilities of the then existing fault tree

analysis framework and led to the improvements that have made this set of experiments

possible. Scalability and performance results from that extended case study are included

for completeness with the rest of the experiments below.

We focus on two specific kinds of solution-level variation observed in the process fam-

ily, namely functional and agent variation. Agent variation is frequently a special case of

functional variation, so all variants within our case study are presented together as ob-

served activity variation in Table 5.1. The ballot marking subfamily is based on agent

variation because its execution depends solely on the voter agent behavior and the voting

modality used. The rest of the subfamilies are examples of functional variation because

they include teams of election officials as well as voters in some cases. Note that Table

5.1 presents only the nominal, expected agent behaviors. Possible malicious agent behav-

iors are shown in Table 5.2 for completeness, but are not considered for this scalability

assessment. Such specifications can be evaluated using the approach presented in [67], and

would provide interesting insights into socio-technical vulnerability assessments in future

work.
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hhhhhhhhhhhhVariation Point
Process Vote by Mail (VBM) Vote by Fax Vote by Email Vote by Ballot-on-

Demand
Ballot distribution Mail out Fax out Email out Email or mail link to

ballot
Ballot marking On paper, special

ballot stock marked
with precinct num-
ber

On paper, regular
printer paper

Mark then print or
print then mark, de-
pends on the ballot

Log in, mark pdf-
like version of ballot
online and submit it

Ballot collection Mail back Fax back, along with
signed waiver

Fax or mail back a
printout

Log in and access
voters’ submitted
ballots

Other Fax back to ac-
knowledge receipt
of ballot

Voter sign waiver if
faxing; Election offi-
cial fax back

Ballot counting Standard procedure First print all electronic/facsimile/printout ballots that are received
on ballot stock, then follow standard procedure for VBM ballots

Table 5.1. Variation points in different activities in the Remote Voting process family.

Figure 5.1. The main diagram of the vote remotely process family. The mark and return
ballot and collect ballots references in this diagram have been defined as elaboration steps.
Their corresponding abstractions are shown in Figures 5.4 and 5.5, respectively.

At the high level, the vote remotely process family is shown in Figure 5.1, with the

eponymous root step, which is sequential as denoted by the arrow in its step bar. Its first

substep, prepare ballots and send them to voters, is shown in the following Figure 5.2. The

prepare ballots and send them to voters step is itself sequential, comprising acquire list of

voters and distribute ballots. Within the Little-JIL internal form, this step is defined to be

an elaboration step.

Figure 5.3 shows all the abstractions that can elaborate distribute ballots in this case

study. They provide the mechanisms to distribute ballots to voters using modalities for

voting by mail, fax, email, of ballot-on-demand submissions. The full declarations for

steps referenced in these diagrams are available to the interested reader in Appendix E.
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Figure 5.2. The subprocess for preparing and sending out ballots to voters. The dis-
tribute ballots reference in this diagram has been designated an elaboration step, and its
corresponding abstractions are shown in Figure 5.3

The second substep of the vote remotely step in Figure 5.1 ismark and return ballot, a step

that will be executed once for each agent of type Voter known in the system, as indicated

by the agent + notation on the edge leading to the step as well as its interface declaration

specification. This step is also designated an elaboration step in the process definition, and

Figure 5.4 contains all the different ways for a voter to perform it, depending on which

remote voting scheme is being used.

The third substep of vote remotely, collect ballots is also an elaboration step, and the

last high-level variation point in this case study. The different ways for election official

teams to collect and process ballots from voters are specified in Figure 5.5.

Currently, there are few United States jurisdictions we are familiar with that employ

voting over the internet or more generally remote voting through the use of non-standard

ballots that are not printed on ballot stock. In these jurisdictions, all ballots get duplicated

or printed onto ballot stock before being counted. The ballots are then all counted using

the same procedure as the one established for absentee, vote by mail (VBM) ballots. Our

case study reflects this practice, and the last substep of the vote remotely step, count votes

is shown in Figure 5.6. Note that this is an oversimplified subprocess, but it is used here

instead of the full definition in order to facilitate reasoning about the abstraction elabo-
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(a) Because the reference to distribute ballots is designated as an “elaboration step,”
PLAGE automatically generates a choice step and renames and grafts the original ab-
stractions to maintain well-formedness.

(b) First abstraction for distribute
ballots, depicting the vote-by-fax vot-
ing paradigm.

(c) Second abstraction for distribute ballots, depicting the vote-
by-ballot-on-demand voting paradigm.

(d) Third abstraction for distribute
ballots, depicting the vote-by-email
voting paradigm.

(e) Fourth abstraction for distribute ballots, depicting the vote-
by-mail (VBM) voting paradigm.

Figure 5.3. Abstractions and automatically generated elaboration choice step within the
distribute ballots process family. The complete specifications of the subprocesses for ballot
preparation, i.e., prepare individual ballot for digital transmissions and prepare individual
VBM ballot for the VBM counterpart are shown in Figure E.1 in Appendix E.

rations that are employed earlier in the process rather than complicating the results with

extraneous steps that are shared among all variants.

Note that different activities for each variation point may involve different agents de-

pending on the variant selected. This information is presented fully in the family specifi-
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(a) Because the reference to mark and return ballot is designated as an “elaboration
step,” PLAGE automatically generates a choice step and renames and grafts the origi-
nal abstractions to maintain well-formedness.

(b) First abstraction for mark
and return ballot, depicting the
VBM voting paradigm.

(c) Second abstraction for mark and return ballot, depicting the
vote-by-ballot-on-demand voting paradigm.

(d) Third abstraction for mark and return ballot, depicting the
vote-by-email voting paradigm.

(e) Fourth abstraction for mark
and return ballot, depicting the
vote-by-fax voting paradigm.

Figure 5.4. Abstractions and automatically generated elaboration choice step within the
mark and return ballot process family. These abstractions show agent variation, as all activ-
ities within an abstraction are performed by a unique voter agent. The complete specifi-
cations of the subprocesses for ballot transmission, i.e., mail ballot back and fax ballot back
are shown in Figure E.2 in Appendix E.

cation in Appendix E. For example, ballot distribution is always performed by different

teams of election officials and is therefore considered functional variation, but the ballot

marking is the responsibility of every individual voter and can therefore be presented as

service or agent behavior variation. Further, service variation encoding the different ways

in which agents could corrupt the integrity of elections–either through malicious intent
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(a) Because the reference to collect ballots is designated as an “elaboration step,”
PLAGE automatically generates a choice step and renames and grafts the original ab-
stractions to maintain well-formedness.

(b) First abstraction for collect ballots, depicting the
vote-by-fax and vote-by-email voting paradigms.

(c) Second abstraction for collect ballots,
depicting the VBM voting paradigm.

(d) Third abstraction for collect ballots, depicting
the vote-by-email voting paradigm.

(e) Fourth abstraction for collect ballots, de-
picting the vote-by-ballot-on-demand voting
paradigm.

Figure 5.5. Abstractions and automatically generated elaboration choice step within the
collect ballots process family. The complete specifications of the subprocesses for ballot
processing, e.g., process envelope or process internet ballot are shown in Figure E.3 in Ap-
pendix E.

or through accidental misperformance can also be specified for the different subfamilies,

as outlined in Table 5.2.
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Figure 5.6. The subprocess for count ballots. As per existing practices, all ballots are
counted using an identical procedure, but electronic ballots are reproduced onto ballot
stock as paper ballots first.

hhhhhhhhhhhhAgents
Process Context Accessible Standard

DRE Dial Digital ScanVoting Machine WYSIWYG Skim votes Scan correctly Skim votes
Select and confirm on touch screen Make selections on paper ballot

Voter Vote as intended Tamper with ma-
chine or paper
trail

Vote as intended Stuff bal-
lots/impostor

Read results after election, keep paper trail as
official record for audit

Scan ballots during election, do vote
tabulation after election.Election Official Read results as ex-

pected
Tamper with paper
trail or misreport re-
sults

Tabulate ballots and
votes as expected

Tamper with ballots
or misreport results

Table 5.2. Variation points for agent behavior variants in the Remote Voting process
family.

5.2 Generation of Process Families

We apply the PLAGE conceptual framework and specifically the Little-JIL Elaborator

toolset to model observed variation in the election domain.

We would like to evaluate whether the framework is suitable for generating the kinds

of families we have observed in our work in elections so we focus on a real-world example

of a well-defined large family with many variants—remote voting. The goal of applying

the framework to a realistic case study is to ensure that the described variability manage-

ment mechanisms are sufficient for accommodating the different dimensions of variation

naturally encountered in the case study domains. We can generate solution-level families

of variants that correspond to problem-level variation requirements within the case study

domains and evaluate the suitability (in terms of effectiveness, clarity, ease of use, and

other qualitative metrics) for generating new solution-level variants. This may also allow
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us to outline the general kinds of families that the framework seems suitable for, and other

kinds of families that are not well accommodated.

In addition to the qualitative attributes described above, there are also certain quanti-

tative metrics that we consider in this evaluation. For example, performance is a signifi-

cant concern, and following are some questions we would like to evaluate quantitatively.

When generating the families of processes outlined above, it would be interesting to keep

track of how many variants a typical family has as a metric of the family’s size. Note

that depending on the number of elaboration steps within the core process, the answer

to this question grows exponentially in the number of variants at each elaboration step.

For example, in this case study there is no nesting of variation and there are only a dozen

different abstractions, but this results in over a hundred overall combinations of variants.

Therefore, a more suitable metric may be how many unique steps are declared within

each process instance or family. The request language of the PLAGE framework has been

designed to be flexible and precise enough to support easy answers to these questions

through the application of different queries (for example, a query for abstraction elabora-

tions that does not specify any additional constraints in addition to the step name would

return all suitable elaborations and thus give an instant answer to the question how many

elaborations this elaboration step has). Note that the amount of memory a process fam-

ily needs includes the storage necessary for the common core, as well as all abstractions.

Since the common core is shared, this provides some memory savings, but at the same

time the management of abstractions may lead to significant overheads.

Since memory storage is rarely a bottleneck when it comes to storing Little-JIL process

definitions, perhaps more importantly than memory, we may consider timing to evaluate

the performance of the system. Specifically, we are interested in the overhead and perfor-

mance issues associated with generating instances and accessing individual elaborations

when new families are generated and how this size later affects the speediness of analysis.
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Note that in the case of intersecting families (i.e. families that use both process frag-

ment and agent behavior abstraction elaborations), there are clearly additional benefits

to be gained in addition to the potential for more effective and widely-applicable reuse.

Namely, the organization of variants into a formal family may provide better organiza-

tion and management, apart from the quantitative performance gains. For this case study,

we consider two functional variation subfamilies (one for ballot distribution and another

for ballot collection) intersecting with a service variation subfamily (for a voter marking

and returning a ballot). We then use another case study for performance comparisons.

We generated the following artifacts for fault tree analysis:

• The remote voting process family including all four variants for remote voting grafted

onto all elaboration steps. This process family is henceforth referred to as ALL.

• An instance of the remote voting process for vote by mail (VBM).

• An instance of the remote voting process for vote by fax.

• An instance of the remote voting process for vote by email .

• An instance of the remote voting process for vote by ballot-on-demand (BoD).

• A complete process family modeling an extended case study of the one presented

in [67], henceforth referred to as SPLC extended. Note that although there is less

variation in this case study, the process is also larger and has a significant amount of

branching, which allows us to really tax the analysis engines and ensure that they

have the capacity to scale.

We generated the following additional artifacts for finite-state verification:

• The remote voting process family with the vote-by-fax variant removed (i.e., includ-

ing only the variants for VBM, email, and BoD), referred to as ALL-Fax.
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• The remote voting process family with the vote-by-fax and vote-by-ballot-on-demand

variants removed (i.e., including only the variants for VBM and email), referred to

as ALL-Fax-BoD.

• The remote voting process family with the vote-by-fax, vote-by-ballot-on-demand,

and vote-by-email variants removed (i.e., including only the variant for VBM). This

was hypothesized to be equivalent to the VBM instance, with the exception that

it contains three additional choice steps inserted by PLAGE while the Little-JIL

Elaborator was creating the original family. We confirmed that the results were

consistent with the VBM instance as hypothesized, so this artifact is omitted from

the comparative analysis below for clarity.

All sets of results obtained are presented in the following section. We experienced no

delay in the generation phase for any of the families generated. Every single resolution

activity completed within a small fraction of a second and appeared instantaneous from

the point of view of the user. All of these test cases included a handful of abstractions to

resolve, each containing a handful of interface declarations and binding specifications to

be considered for transfer. Much larger numbers of abstractions to graft or other special

cases that may lead to noticeable delays are discussed under Limitations.

5.3 Analysis of Process Families

Analysis is the second major goal addressed in this dissertation, and can be handled

at either the problem or at the solution level. We focus on the solution level, which

contains concrete implementations of process families and their comprising variants that

could be studied, executed, analyzed, and so on. The variation management approach

embodied by the Little-JIL Elaborator should be amenable to family-level analysis, and

some corresponding analysis techniques that can reason about variation are outlined for

evaluation below.

66



The most fundamental question we are interested in answering is whether the frame-

work is suitable for performing the kinds of analyses we are interested in. Specifically,

there are several kinds of analyses that would be considered useful in the context of fami-

lies, such as making assurances or proving properties and theorems about entire families,

as opposed to single process variants. Several concrete scenarios to be evaluated from the

domain of elections are provided below.

In addition to asking whether the framework is capable of supporting the kinds of

analysis we are interested in, these analyses would only be truly useful if their performance

is reasonable and can provide results in a time frame comparable to the time it would take

to analyze individual family members one by one. Thus, ideally, if a process family is

fully elaborated to explicitly generate all legal, well-formed variants, and these variants are

individually analyzed for adherence to certain properties, then performance gains may be

made possible by optimizing the analysis so that when it is applied to a process family, it

would reuse results whenever possible and take advantage of the parts of the process that

variants share in common, or parts of the process that do not contain relevant events.

In addition to ensuring that the analysis results are correct (i.e. the results for the family

coincide with individual results obtained for variants), the analysis of entire families of

variants may be more efficient that individually analyzing every variant within that family

in order as outlined above. The way to achieve both efficiency and improved reasoning

in this evaluation would be to take full advantage of the way that some solution-level

variation encountered can be safely abstracted at the elaboration step level, and that the

“common core” should not be analyzed multiple times; only differences would have to

be considered carefully. Most analysis frameworks would do this automatically if the

family were modeled using an appropriate representation. Additionally, in the case when

a family of processes is being analyzed for a property whose events do not occur in a large

portion of the abstraction elaborations, significant optimizations can be accrued from

ignoring those elaborations as they cannot contribute to the property being violated. Of
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course, care must be taken not to avoid cases when an abstraction may not contain an

event of interest itself, but may change the control flow in a way that impacts the overall

results.

5.3.1 Fault tree analysis

We first present the results from running fault tree analysis on the six artifacts pre-

sented in the previous subsection–the five NIST remote voting artifacts including four

instances and the family generated from considering all of them at once, and the SPLC

extended use case. The hazard under consideration for the NIST case study is the step

results are posted on Yolo County Elections Office website receiving the wrong voteCount ar-

tifact (of type VoteCount.java, specified as a JavaBean using the eponymous artifact mode

in Visual-JIL) as input. The hazard under consideration for the extended SPLC case study

is the step report vote totals to Secretary of State receiving the wrong tallies artifact, spec-

ified as a JavaBean of type VoteCount.java (the two hazards were selected to be similar

in semantic meaning for the two case studies—in each case, the wrong totals have been

computed after vote count, and although the dataflow specifications differ, they share an

underlying set of artifacts and those artifacts propagate throughout the different election

processes in similar ways). Each set of experiments was performed on a 3GHz dual-core

Intel Core i7 processor with 16GB of physical RAM. All experiments were run under

an Eclipse virtual machine (VM) with 4,096MB–16,384MB memory allowance. For the

fault tree analyses performed, the Little-JIL Analysis Toolset translator was also given a

4,096MB–16,384MB memory allowance.

Table 5.3 presents the scalability results. Each row corresponds to a metric being ob-

served, respectively:

• Size (# unique steps): the size of the process or process family under consideration,

as determined by the number of unique step declarations used.
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Size (# unique steps) 79 41 29 41 24 98
TFG Build Time (s) 17.307 3.350 2.157 4.109 1.738 116.294

# FTA Events Original 705 331 169 303 97 914
# FTA Events No Duplicates 580 282 134 243 79 650

# FTA Events Optimized 154 76 32 68 14 225
# FTA Gates Original 645 302 155 276 90 650

# FTA Gates No Duplicates 524 255 122 219 73 575
# FTA Gates Optimized 98 49 20 44 8 150

# Minimal Cut Sets 70 61 12 26 8 85
# Minimal Cut Set Groups 44 34 9 18 5 45
# Single Points of Failure 10 3 4 7 2 0

Table 5.3. Fault tree analysis results for the NIST Remote Voting process family (ALL),
as compared to each process instance and an orthogonal evaluation, SPLC extended.

• TFG Build Time (s): the number of seconds it took the translator to build the Trace

Flow Graph (TFG) for this analysis problem.

• # FTA Events Original: the total number of events (simple or decomposable events)

in the generated fault tree.

• # FTA Events No Duplicates: the new number of events in the fault tree, after

duplicate events are removed.

• # FTA Events Optimized: the final number of events, after optimization, that get

displayed as a fault tree (which is a directed acyclic graph (DAG), and no longer a

tree) in which one event node may now correspond to more than one event of the

same kind in the trace as long as it does not introduce a cycle. Inferred step states

also get removed during optimization.

• # FTA Gates Original: the total number of gates (AND, OR, or NOT gates that

describe how events are related) in the generated fault tree.
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• # FTA Gates No Duplicates: the new number of gates in the fault tree, after dupli-

cate gates are removed.

• # FTA Gates Optimized: the final number of gates, after optimization, in which

one gate may now correspond to more than one gate from the previous list as long

as it does not introduce a cycle in the fault tree.

• # Minimal Cut Sets: the minimal sets of events that may lead to a hazard occurring.

• # Minimal Cut Set Groups: in previous work, Phan et al. proposed a presentation

of MCSs for easier exploration, where similar cut sets (for example differing by

whether an exception of interest is thrown or not thrown) get grouped and num-

bered as related. This is the total number of such groups of MCSs found.

• # Single Points of Failure: total number of MCSs of size one.

Figure 5.7 visualizes the relationship between the time it took the translator to build a

fault tree and the number of process steps in the process or process family for which that

tree is being built. Note that the time is plotted on a logarithmic scale, base 10.

Figure 5.8 plots the relationship between how large a process or process family is, in

terms of number of steps, and how large a resulting fault tree becomes. The number of

nodes in a fault tree corresponds to the sum of its gate and event elements (# FTA Events

Original + # FTA Gates Original from Table 5.3).

5.3.2 Finite-state verification

We present eight sets of results in this section, obtained from running finite-state ver-

ification on the same six artifacts considered in the previous subsection and the two ad-

ditional partial families obtained from iteratively removing first the vote-by-fax variants

and consequently also the vote-by-ballot-on-demand variants from the ALL process fam-

ily. Each set of experiments was performed on a 3GHz dual-core Intel Core i7 processor

with 16GB of physical RAM. All experiments were run under an Eclipse virtual machine
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Figure 5.7. The time (in seconds, on a l o g10 scale) it takes to build a fault tree along the
y axis versus the size (in number of steps) of the corresponding process or process family
along the x axis.

(VM) with 4,096MB–16,384MB memory allowance, and these finite-state verification re-

sults were also obtained by allocating 4,096MB–16,384MB of memory to the Little-JIL

Analysis Toolset translator.

The property we use loosely specifies that the ballot should correctly record the voter’s

intent. Voter “intent” is a very controversial term among election researchers; therefore

we define “intent” simply to mean that if the voter made a selection on the ballot and then

cast it, then the selection actually made by the voter is the voter’s “intent”. It is therefore

vital that no changes can be made to that ballot after it is case and before it is counted. We

determine that there are three events of interest to us, a vot e r ma r k s bal l ot event, an

i ns i d e r ma r k s bal l ot event, and a count bal l ot s event. We use PROPEL (PROP-

erty ELucidator [74]), a software tool that helps users formalize all the details associated

with a certain high-level requirement, to precisely define this property. PROPEL gives

users several different, editable views of the same underlying property so users may edit
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Figure 5.8. The total number of nodes (events + gates) in an unprocessed, unoptimized
fault tree along the y axis versus the size (in number of steps) of the process or process
family for which the fault tree was built along the x axis.

a structured English description, a finite state automaton (FSA), or answer a series of

questions organized hierarchically until the property has been completely and correctly

specified.

Figure 5.9. FSA for the property “After a vot e r ma r k s bal l ot event, no
i ns i d e r ma r k s bal l ot event can occur until count bal l ot s occurs.”

Because there are three events of interest in our property, we choose to define the

property as a single event, i ns i d e r ma r k s bal l ot , that should not be allowed to occur

within a predefined scope, in this case from the last occurrence of vot e r ma r k s bal l ot
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Figure 5.10. FSA for the property “After a vot e r ma r k s bal l ot event, no
i ns i d e r ma r k s bal l ot event can occur until count bal l ot s occurs.”

until count bal l ot s occurs. The FSA representing that i ns i d e r ma r k s bal l ot should

not be allowed to occur is shown in Figure 5.9, while Figure 5.10 indicates the scope during

which this property must hold. Finally, the property is explained in disciplined natural

language in Figure 5.11. The question trees used for the scope and behavior definition are

included in Appendix F for completeness.

Each of the two nodes in Figure 5.9 represents a state in the FSA. The double circles

on the start state (on the left, denoted by an open arrowhead) indicate an accepting state,

and the single circle on the state on the right indicates a non-accepting state. Arrows

are state transitions, and each is annotated with a corresponding “event” that triggers it.

When a transition is triggered, the current state is updated to the target state of that tran-

sition. There are many different events that may occur in an election, but each property

is typically only concerned with a small subset of them (the property alphabet). In this
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Figure 5.11. FSA for the property “After a vot e r ma r k s bal l ot event, no
i ns i d e r ma r k s bal l ot event can occur until count bal l ot s occurs.”

example the behavior specification of this property alphabet consists of insuring that if in-

sider marks ballot, indicating that a mark was made by an insider to the election process

(someone other than the voter, such as a rogue election official or a compromised voting

or counting machine), the FSA will transition to a non-accepting violation state. An FSA

used for verification must be deterministic and total, meaning that for each state every

event in the property alphabet must occur on exactly one transition leaving the state. If

an event occurs that causes the sequence of events to be unacceptable, then the current

state is updated to a non-accepting state, called the violation state from which all transi-

tions are self-loops, causing the FSA to remain in that state until the process terminates.

In Figure 5.9, the violation state is show on the right, and it has an unlabeled self-loop,

74



indicating that any event that occurs in the violation state will indeed result in the FSA

remaining in that state.

The scope definition in Figure 5.10 supplements the FSA by defining the scope within

which it should be considered. Note that the scope begins only after the last occurrence

of voter marks ballot, indicating that the voter might have the chance to fix a discrepancy

or marking error before the ballot is cast. Once the voter marks ballot, insider marks

ballot should never be allowed to occur until count ballots occurs, indicating the end of

the scope interval.

A sequence of events that would drive this property to the violation state would in-

dicate a malicious agent compromising the system. In order to be able to perform finite

state verification and check if a given process or process family satisfies this property, we

must determine the correspondence between the events comprising the property’s alpha-

bet and specific step states in specific variants within each of the election process families

under consideration. This correspondence is explicitly and manually defined through a

binding between process step states and property events.

Property Event Step Name
voter marks ballot vote on ballot

insider marks ballot duplicate ballot on ballot stock
count ballots vote tallies are read off of memory cards from scanners

Table 5.4. Bindings between steps (all steps are specified to be in state COMPLETED) in
the Little-JIL process family definition for the NIST remote voting case study and events
in the property alphabet for the property presented in Figure 5.11.

Table 5.4 lists the bindings between the property alphabet events and steps in the NIST

case study process family. The event voter marks ballot is bound to the vote on ballot

step. This means that when an invocation of this step completes successfully (depending

on which variant is chosen), the event voter marks ballot occurs. Note that all variants

references a single definition of this step, passing different kinds of ballots as appropriate

for a specific variant, so we can use this binding across the entire family and for each vari-
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ant, without having to specify correspondences to multiple step declarations. Similarly,

the event insider marks ballot is bound to the step duplicate ballot on ballot stock and

count ballots is bound to the vote tallies are read off of memory cards from scanners step,

which occurs later during the counting phase of the NIST remote voting election process.
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Size (# unique steps) 79 41 29 41 24 69 55 98
TFG Build Time (s) 0.845 0.371 0.469 0.622 0.480 0.709 0.582 3.937
Verification Time (s) 1.154 0.464 0.577 0.764 0.595 0.877 0.712 12.565

# TFG Nodes 84 6 16 37 12 59 38 613
# TFG Edges 1,255 5 19 268 13 530 155 67,451

# TFG MIP Edges 1,148 0 0 221 0 456 108 66,450
Violation Found? yes no yes yes yes yes yes yes

Table 5.5. Finite state verification analysis results for the NIST vote remotely process
family, the different process instances, and families with some variants removed.

Table 5.5 presents the performance results from running the FLAVERS [31] FSV en-

gine on each respective process or process family against the property presented in Figure

5.11 with pre-specified bindings as presented in Tables 5.4 and D.1 for the NIST remote

voting case study and the extended SPLC case study, respectively. For each case when

a property violation was found, the counterexample trace from FLAVERS is included

along with the rest of the analysis evaluation artifacts in Appendices F and D. Each row

in the table corresponds to a metric being observed, respectively:

• Size (# unique steps): the size of the process or process family under consideration,

as determined by the number of unique step declarations used. For process families,

this includes the automatically generated choice steps that elaboration steps resolve

to.
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• TFG Build Time (s): the number of seconds it took the translator to build the Trace

Flow Graph (TFG) for this analysis problem.

• Verification Time (s): the time it took FLAVERS to confirm that the artifact being

evaluated either satisfied the property or, in case it did not, to produce a counterex-

ample trace showing how a violation could occur. This time includes the time to

build the TFG from the previous column.

• # TFG Nodes: the number of nodes in the TFG.

• # TFG Edges: the number of edges in the TFG.

• # TFG MIP Edges: the number of May Immediately Precede (MIP) edges in the

TFG.

• Violation Found?: whether the property held (no violation found) or was violated

(yes).

Figure 5.12 visualizes the relationship between the time it took to run the verification

(Verification Time in Table 5.5), in seconds, and the number of process steps in the process

or process family being verified. Note that the time is plotted on a logarithmic scale, base

10.

Figure 5.13 plots the relationship between the verification time in seconds again, this

time plotted against the total number of MIP edges in the TFG for the artifact being

verified. Note that time is plotted on a logarithmic scale, base 10, and since l o g10(0) is

not defined, there are no values for processes or process families that had 0 MIP edges in

their TFGs (indicating no alternate interleavings of events). MIPs are also plotted on a

logarithmic scale, base 10.
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Figure 5.12. The time (in seconds, on a l o g10 scale) it took for the verification to run
along the y axis versus the size (in number of steps) of the corresponding process or process
family along the x axis.

Figure 5.13. The time (in seconds, on a l o g10 scale) it took for the verification to run
along the y axis versus the number of MIP edges (on a l o g10 scale) in the TFG of the
corresponding process or process family along the x axis.
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CHAPTER 6

DISCUSSION

6.1 Generation

Quantitatively, from a performance and scalability standpoint, all the generation ac-

tivities performed for the evaluation presented in the previous chapter happened instan-

taneously from the point of view of the user. There are conceivable cases that would lead

to observable latency, and they are discussed in the next chapter.

Qualitatively, there are two aspects of process family generation that crystallized as a

result of the evaluation. The former is generality versus specificity, and the latter is aided

variant selection. The issue of generality versus specificity has to do with how much

or how little of a process family is encoded within that family’s abstract common core

(ACC), and what stays in the abstractions that will get grafted as elaborations later? For

example, consider the mark and return ballot process subfamily presented in Figure 5.4.

As noted earlier, every single elaboration refers to the same step declaration for the vote

on ballot step, and the step’s interface is defined so that it would accept both electronic

and paper ballots, depending on the instance of the artifact with which it is invoked.

Similarly, there are single definitions of commonly used fragments throughout the remote

voting process, such as mail ballot back, or fax ballot back, two steps also occurring in the

mark and return ballot variants. This modeling decision is an example of “pulling the

variation down,” intuitively, meaning there are now references to shared elements that

repeat between abstractions. There are some reasons why this approach is appropriate—

it is now harder to understand the ACC (meaning that the ACC for the remote voting

process family is actually very small and does not communicate much detail about the
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family), but it is also much easier to see each abstraction elaboration and visualize the

variation among them.

Given some technology limitations discussed in the next chapter, if we want to con-

sider a whole family, this approach may allow for the exclusion of some false positives.

From a usability perspective, ideally there may exist a separate repository of PLAGE

modules to be used as “default” abstractions to elaboration steps referencing a commonly

needed capability (such as vote on ballot).

Alternatively, we could instead choose to “push the variation up” meaning as much as

possible goes into the ACC, and we create possibly more but smaller variants. In the mark

and return ballot subfamily, looking at Figure 5.4, you might note that each abstraction

elaboration could be summarized as a voter optionally performing some authentication

or access step to obtain a ballot, invariably followed by vote on ballot, invariably followed

by some method of ballot transmission. Therefore, this subfamily could instead be mod-

eled as a part of the ACC, where the first (ballot access) and last (ballot transmission) steps

become variation points where smaller elaborations can now be attached as appropriate.

We might get certain qualitative advantages from making the common core bigger, as it

may be easier to explain and learn from a communications standpoint, or make it easier

to see the interactions between pieces for evolution and changes. Consequently, if we

use an analysis technique that makes use of summaries, this approach might lead to some

performance gains. We have not empirically evaluated which approach would provide

better results, and the results presented in the previous section are all based on the former

approach of “pulling variation down” and having fewer, larger elaborations to create vari-

ants with. This results in fewer variants, and, in turn, fewer possible interleavings for the

analyzers to consider. Given the observed impact of MIP edges on FSV performance, the

chosen modeling approach likely yielded faster performance.

The second issue that became apparent during evaluation was the importance of vari-

ant selection. Currently, the Little-JIL Elaborator grafts all matching abstractions as elab-
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orations, and, after careful consideration, transfers over the appropriate interface decla-

rations and bindings found in the union of the elaborating subprocesses’ roots. In future

work, it would be helpful if the PLAGE framework could suggest new variants that are,

in some user-defined respect, better. In addition to generating the observed variants in

elections as a “common core” process and a set of abstraction elaborations, it would also

be interesting to observe if newly generated variants from the given abstractions could

maybe suggest process improvements (through satisfying a given set of properties with

fewer resources, for example). An evaluation scenario from the election case study do-

main follows.

In elections, there are different voting machines that may be needed in different con-

texts. This is a good example of agent behavior elaboration and would present an apt op-

portunity to explore the flexibility of the framework when it comes to requesting agent

behavior specifications matching a certain set of desiderata. For example, the repository

may contain many voting machines, but we may only be interested in the ones that can

support a VVPAT. Additionally, this presents an excellent opportunity for exploring one

of the future research directions, namely interface variation; for example, one voting ma-

chine may output a provisional ballot while another may output a regular ballot, and

the framework would have to know how to handle the two different, but related, artifact

types correctly.

6.2 Analysis

6.2.1 FTA

The fault tree analysis scalability results, presented in Table 5.3 hint at some interesting

trends. In terms of performance, the analysis ran in near-realtime for all instances, and

ranged from a few seconds for the entire NIST remote voting process family to a couple

of minutes for the SPLC extended process family. The runtime invariably increased as the
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size of the process increased, as shown in Figure 5.7, and the trend appears exponential

for the limited data sample we have.

The size of the fault tree grew in proportion to the size of the process being analyzed, as

shown in Figure 5.8. The fault tree analyzer was able to generate a fault tree and calculate

its corresponding MCSs even for the largest artifact, the SPLC extended process family, in

under two minutes. The resulting fault tree has a total of 375 nodes, made up of 225 events

and 150 gates, and is an unwieldy structure. Navigating a fault tree of this size manually

to find a problem would be nearly impossible, especially given a hazard such as the one we

considered, where a key artifact is incorrect toward the end of the process. With several

variation points occurring earlier in the process, manually tracing a sequence or collection

of steps within the fault tree that includes an elaboration is not feasible. The automatically

calculated minimal cut sets become especially valuable for identifying problematic areas

of the process. However, this large process family is based on a vetted in-person voting

process, and the fault tree analysis did not identify any single points of failure, making

interpretation of the results cumbersome and difficult.

Although the fault tree for the NIST process family had fewer single points of fail-

ure than the sum of its four variant instances (this is because some combinations of steps

resulted in the same minimal cuts sets in general and single points of failure in particu-

lar), the results for the variant instances were easier to understand and interpret and may

facilitate with the mitigation of single points of failure better than a conglomerate. Specif-

ically, an electronic ballot or a paper ballot that was printed at home and mailed or faxed

in has to be duplicated onto ballot stock before being counted, and that was identified as a

single point of failure for every variant that employed this step (i.e. email and fax ballots

that were faxed or mailed in). This was also identified as a single point of failure (twice,

with different traces) for the process family, but the tree was both harder to navigate and

understand.
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6.2.2 FSV

Table 5.5 summarizes the scalability experiments results for the FSV analysis done

with FLAVERS. There are more artifacts being evaluated here because the original NIST

family did not satisfy the requirement under consideration, so we attempted to remove

offending variants and iteratively reverify the resulting, smaller family until the property

had been satisfied. Unfortunately, given that the binding indicate that the step duplicate

ballot on ballot stock corresponds to the event insider marks ballot, all variants except

VBM are bound to violate the property, and the additional experiments confirmed this.

This step was chosen for this family because it was already identified as a single point of

failure during the fault tree analysis, and also because it seems like a prime candidate for a

place in the process where a corrupt insider could in fact tamper with or modify a ballot.

We have previously pointed our that FTA and FSV can be used as complementary

approaches, and this is an application of that idea. To move the integration even further,

it may be useful to consider an approach for automating the bindings specification, or at

least providing semi-automated guidance to a process developer. When analyzing process

families in particular, but also process instances in general, deciding what step state to

bind to what property event can often be a complicated decision. In the case of process

families, it is plausible that bindings may be omitted because the process developer forgot

that a certain elaboration in another variant may have similar implications. Similar to the

property templates, we may consider the application of binding templates, that specify

for example that every step that could modify an artifact of type ballot and requires its

agent to have the capability to carry out election official duties ought to be bound to the

event insider marks ballot. Automating the binding process in such a way may results

in more false positives, but would also make process family analysis faster and easier to

execute.

Figure 5.12 visualizes the verification time charted against the size of the process. As

with fault tree generation, the larger the process was, the longer it took to run the ver-
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ification. However, because step interleavings are an integral part of identifying which

traces through a process are safe and which are not, the process size was not the deter-

mining factor for verification time. This can be clearly seen in the figure by comparing

the data points for the vote-by-mail and vote-by-email process instances. At 41 unique

step declarations, the two processes are of equivalent size, but verification for the email

process took 168% as long, on average, as the VBM process. The main different is that

the vote-by-email process has some 221 MIP edges in its TFG (these are due to the fact

that the voter may choose whether to return their ballot by mail or fax, which introduces

different interleavings), while VBM has none (as all steps are strictly sequential in that

variant instance).

This relationship is more apparent in Figure 5.13, which shows how the verification

time increases with respect to the number of MIP edges in the TFG for an artifact being

analyzed. Both axes are plotted on logarithmic scales because the number of MIP edges

in a TFG increases very rapidly with more possible interleavings (either due to a larger

process or to the sheer number of variants), and, in turn, a large number of MIPs in the

TFG leads to significantly longer verification times.

There are certain general properties about elections, such as “one voter one vote” that

are universally applicable to all election processes in the United States. Such properties

can be examined for entire families using techniques such as finite-state verification based

on the presence of certain events from the alphabet (such as “voter casts ballot”) within

every variant under consideration. Moreover, certain assurances about all variants within

a family should be quite straightforward to make; trivially, variants not containing the

event of interest are automatically safe to attach, whereas reasoning about variants that

do contain the event in question may necessitate the application of increasingly complex

compositional analysis techniques.

Note that there are also properties that are not globally applicable to the entire family.

In the domain of elections, there are certain voting situations, such as processing provi-
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sional voters, that require different handling from the general process. In provisional vot-

ing, in fact, the authentication requirements are quite different from the authentication

requirements for regular voters. Therefore, an organization into a process family would

be extremely helpful for the management of such properties because the process developer

could then use some sort of annotation to tag abstractions that ought to adhere to certain

properties, and other ones that may be excluded. This may greatly reduce the hassle of

dealing with false positives, or cases when a process appears to violate a requirement even

though the specific circumstances prevent the requirement from being applicable (such

as requiring a voter to produce certain identification if he or she is casting a provisional

ballot).

Furthermore, there are properties that may be applicable only to a certain part of

a process definition, or a certain agent responsible for executing steps within that pro-

cess. This example is easy to illustrate with voting machines within the context of the

election process. Related work by Conboy et al [23] shows how using overall process

requirements, one can derive requirements for a specific agent. These agent-specific prop-

erties can clearly be useful for doing piecewise analysis on all agent behavior elaborations

that may be bound to an elaboration step, thus saving time and space by constraining the

search to a much smaller process. On the other hand, the reverse procedure can be used

to consider all the agent behavior elaborations that are part of a family, and then try to

derive process- or family-wide requirements as compositions of the individual constraints.

As outlined in the previous subsection, properties may apply to only certain members

of a process family, and not the entire family. It would be interesting to try to quantify

how many of the properties that we have modeled for the election domain appear to be

applicable to entire families, and how many are context-dependent and need only be sat-

isfied by some variants and not others. Additionally, such a quantification may be very

useful for the generation of an ontology of global election properties, or properties that

85



are not only applicable to an entire family, but also to multiple related families, intersect-

ing families, and so on.

Whether a property applies to all variants within a process family, or only some

of them, the system must be able to clearly identify variants that violate the property.

Currently, the finite-state verification system, FLAVERS, attempts to construct a single

counter-example to indicate how a process definition may violate a property. This would

no longer suffice since it may only identify a single variant within the family that may

violate the property, based on what events occur in the variants that have been grafted.

Instead, it would be useful to be able to collect more extensive information about which

variants led to a violation occurring so that a new family can be created with only the

variants that were proven safe. Multiple counterexample traces would be useful both for

identifying offending variants, as well as for diagnostics of how those variants allow for

the property to be violated. Since generating counterexample traces is a difficult prob-

lem, it may be possible to use information about the family and its variants to guide the

generation of particularly interesting counterexamples. Providing multiple counterexam-

ples poses additional challenges from a user-experience perspective; for example, if a large

percentage of a family’s variants fails to meet the property, generating many counterexam-

ples may take a very long time, leading to unacceptable performance. Moreover, a large

number of failing variants may also indicate that the property is not framed correctly or

that it should not be applied to all the variants it is being applied to, in which case it may

be more appropriate to change the property specification or choose fewer variants for

analysis. These considerations indicate that generating additional counterexample traces

may be provided as an on-demand feature, to avoid the risk of inundating the user with

multiple counterexamples, which may be overwhelming and confusing.
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CHAPTER 7

LIMITATIONS

There are several threats to the validity of the approach presented in this dissertation,

as well as some limitations stemming from the infrastructure environment and experi-

mental platform within which the PLAGE framework resides and operates. We address

these from two complementary viewpoints, namely modeling and analysis.

7.1 Modeling constraints

There are several constraints that ought to be considered when evaluating the effec-

tiveness of the proposed modeling approach with respect to its fidelity to the real-world

systems and families of systems it attempts to model and analyze. The three main expres-

siveness limitations we focus on are 1) the closed world assumption, 2) accommodating

heterogenous elements, and 3) the configuration specifications.

7.1.1 Expressiveness limitations

A main assumption of the PLAGE framework and the Little-JIL Elaborator in partic-

ular is the existence of variants that can serve as elaborations for different families. This

hinges on the specification of interchangeable modules that can be composed into differ-

ent combinations, or can be used to elaborate different abstract cores. The specification

of such modules, as the specification of most human-intensive process, requires a signifi-

cant investment of time and effort both from the process developers as well as the domain

experts. The domain experts are frequently capable of identifying parts of the abstract

common core but need help enunciating it as a precise entity because they are usually not
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trained in modular thinking or abstract specifications. Once the abstract core is defined,

domain experts can usually describe existing variants for each elaboration point, but may

not be considering all possible variants, the precise consequences of selecting one variant

over another, or how the interaction between variants at multiple elaboration points may

affect the outcome of the process.

7.1.1.1 Closed-world assumption

Because we rely to a large extent on domain expert knowledge to create the differ-

ent variants that we use for family generation, we operate within a closed world of pre-

specified possibilities. The prototype implementation of this approach uses Little-JIL for

solution-level variation; although the language boasts impressive flexibility for coordi-

nating both human and automated agents together without discriminating between the

two, if a human agent is executing a certain step and their behavior is not constrained or

defined within an agent behavior variant, that information still remains external to the

process model. Furthermore, it is impossible to generate all possible elaborations for any

elaboration point or set of attributes, so we can only consider variants that are common,

plausible, and have been predefined by a process developer (hopefully based on some spec-

ification that the domain experts consider both important and interesting).

We suggest several possible research avenues that may alleviate this limitation, but

these important questions remain beyond the scope of this dissertation. Although not

currently used for this purpose, there are some existing approaches for code generation

and code mutation that appear immediately applicable to the closed-world problem and

may allow us to consider variants that were not initially specified by the developer or

identified by the domain expert. For example, there is work on reverse-engineering hier-

archical feature models of product lines both using genetic algorithms to arrive at a base-

line [30, 53] as well as combining those with inference techniques based on search [18],

and a set of provided examples [51]. These approaches are currently applied to a set of

88



products in order to identify the commonalities among them, but may be easily exten-

sible to derive new possible products by reversing the direction of the implication for

the search-based approaches to generate new variants or to genetically mutate existing

variants into related, but different, ones (similar to current product line mutation testing

techniques, e.g. [29, 50]. Although program synthesis remains an open challenge, some

approaches in software engineering already take advantage of corporate code bases and

the vast global repository of open source projects to automatically correct errors in ex-

isting code like GenProg [36], or soon attempt to devise entirely new functionality [39].

Such approaches can be used to generate new variants or mutate existing variants by in-

jecting faults to evaluate robustness and correctness, and different rules could be specified

to enable the creation of variants along different dimensions of variation.

7.1.1.2 Heterogenous elements

Our approach aims to accommodate variation in human-intensive systems where hu-

mans are considered to be active participants within the system, not external users of

the system. This means that, by definition, we have to model human behavior, which

can be different from the prespecified protocol in unpredictable ways. In our prototype

implementation, using the Little-JIL language, we handle some of the intrinsic variation

through abstraction because human agents can execute steps in any way they deem ap-

propriate as long as they provide the required outputs, or can throw exceptions if they

cannot complete an activity. With this approach, some variation in human behavior re-

mains external to the system. We could predefine some human behavior specifications as

process fragments in Little-JIL to gain more control over how activities are carried out.

We could also plug in agents through external applications by interfacing and providing

the necessary coordination and artifact information. This is similar to interfacing with

automated agents, so we discuss the two together. At the solution-level, service variation

in Little-JIL can be handled easily by considering different services that can be used at
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each variation point. External automated agents can be specified in a variety of languages

as long as an appropriate interface is provided, and in fact the STORM2 online dispute

resolution system presented in Chapter 3 uses several software agents written in the Java

programming language.

Since the approach aims to be technology-agnostic, the ability to accommodate ser-

vice variation for heterogeneous agents and services is an important contribution. From

a modeling perspective, the Little-JIL Elaborator can easily handle such requests with-

out any changes, and the request specification language is robust enough to handle the

precise description and retrieval of such externally specified behaviors. However, it is

also important to note that by removing the specification from the coordination model,

we lose control over several aspects of variants, including subtle coordination, or cross-

cutting communication with the rest of the agents involved in this human-intensive sys-

tem. These capabilities can of course be achieved within the external implementation of

software components, but that would diminish the return on investment of using Little-

JIL by not taking advantage of features that the language is especially adept at handling,

and the process family approach at large by making variation external to the variant spec-

ification. Moreover, as discussed in more detail in the next section of this chapter, making

this information external to the Little-JIL process family coordination specification has

important ramifications for the analyzability of such families.

7.1.1.3 Configuration specification constraints

In many of the process families to which we have applied this approach, we have no-

ticed that there are crosscutting constraints that affect what variants can be appropriately

selected at one variation point with respect to variants selected as another variation point

that occurs earlier or later in the process. E.g. if a voter casts a vote on a paper ballot,

then later in the process when that vote is counted, it ought to be counted following the

correct procedure for a paper ballot. When there are such crosscutting constraints affect-
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ing multiple variation points throughout the process model, appropriate variants must

be selected and the request specification should be flexible enough to support the expres-

sion of complex constraints. The theoretical framework presented in this dissertation

allows for appearance-level requests at different elaboration steps that can include vari-

ous desiderata. Many of the cross-cutting constraints we have encountered can be easily

and naturally accommodated within the existing framework through a tagging approach,

where abstractions that depend on similar abstractions elsewhere in the process can be

tagged as such (e.g., “paper-voting” for the above scenario) and exclusions can be specified

similarly. Note that because of the limitations of the experimental platform, this capabil-

ity is not fully implemented yet. Within the existing implementation, such constraints

can be easily specified post-generation as edge predicates. There are also some occasional

configuration constraints that seem more easily expressible as language constructs than

within the request specification, for example steps that are optional. Since edge predicates

are fully supported by the Little-JIL Interpreter, inferring these automatically or with lit-

tle human guidance from the original request specifications would be an exciting future

direction to pursue for supporting self-adapting systems.

Another issue arising directly from configuration constraints has to do with step nomen-

clature and the evolving nature of process families that combine several different variation

dimensions. To clearly illustrate the severity of this problem, consider an elaboration step

A and a variant elaborating that step that, within its nominal specification throws an ex-

ception that is handled by reinvoking that variant. As soon as resolution happens, the

elaboration step A will become an eponymous choice step, and the aforementioned vari-

ant will become its child and be renamed A, elb n for some value of n, depending on the

number of variants available and the order in which they are considered. The exception

within A, elb n that previously reinvoked that variant now points to the elaboration step,

A. This may no longer be the correct scope for the exception, and, moreover, allows for

the selection of any variant of A during the reinvocation, which is clearly not semantically
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equivalent to the original intent. This is a fundamental limitation of the approach and it

is unclear what the best way to handle it is. Variants must be renamed in order to main-

tain well-formedness and allow for the analyzability PLAGE strives to accommodate, bur

renaming a variant along one variation dimension (in the example above, a functional de-

tail variant) has clear ramifications to variants in other variation dimensions (robustness

variation variant in the case presented). Currently, such discrepancies are handler by the

process developer on a case-by-case basis. Automatically resolving such naming issues

may be aided by examining renaming patterns used for automated refactoring, but will

likely remain a limitation of the approach and require human involvement. Another mit-

igation strategy would be to identify certain precedence relations that may exist among

different variation dimensions, and automatically rename subjugated references to refer

to the “correct” variant. In the case of functional variants and robustness variants above,

the functional variants may be considered primary because they vary the nominal flow

of the process, and their corresponding robustness variants may therefore automatically

be renamed to refer to the original variant by traversing the AST upward until the first

variant name is encountered.

7.1.2 Scalability

There are at least two considerations for modeling scalability, namely technologi-

cal limitations and human-factor issues. Since the Little-JIL Elaborator and the PLAGE

framework within which it resides extend the existing Little-JIL and Visual-JIL toolsets,

we operate within the internal form representation of the language and we facilitate back-

ward compatibility by making elaboration steps be a special case of reference steps. As

explained in detail in Chapter 4, the main extension point for the system is the resolution

activity, which for elaboration steps retrieves and grafts all matching abstractions whereas

the original resolution activity throws an exception if more than one exists. This modi-

fied resolution activity is massively parallelized just like the original and spawns multiple
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threads while traversing the tree, resulting in non-deterministic sequences for any non-

constrained abstractions. These limitations are hence inherited from the original internal

form architecture but exacerbated by the much heavier processing load that comes with

having multiple matching abstractions to graft onto an elaboration step. The resolution

response time for a regular reference step tends to be instantaneous from the point of view

of the user, whereas an elaboration step may cause noticeable delay to resolve depending

on the number of matching abstractions. For all case studies performed thus far, there has

been no noticeable delay observed. The new resolution activity is still highly parallelized

and stops searching as soon as all matching abstractions are found, after which the graft-

ing process is instantaneous for all practical purposes. Within the conceptual PLAGE

architecture, if abstraction requests are handled and accessed through a database system as

proposed in the API specifications, those accesses could then significantly slow down the

resolution activity. That performance overhead would be incurred even if the Elaborator

were used just for remote access and not to generate families with multiple variants.

From a human-factors standpoint, families are valuable to generate only if they aid in

the understanding of the process. With multiple variation points at multiple elaboration

steps in the process, and multiple variants that can be grafted to each of these, a family can

easily and quickly become unwieldy and difficult to navigate. To help alleviate this prob-

lem, two different but complementary approaches can be adopted–the whole family can

be generated for analysis purposes, as done in Chapter 5, but an expert developer should

also be able to specify requests excluding some abstractions so that the resulting families

with fewer members can be used to support the navigation, or ideally, so that individual

highly-customized variants can be generated on the spot, providing another opportunity

for dynamic variation accommodation. This use case of PLAGE would make it similar

to a configuration management system for HISs, allowing process administrators to cre-

ate process instances on demand based on current needs. The fact that service variation

is explicitly defined within this framework would allow for fine-grained control over the
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process instances and facilitate configuration management of agents. Process models could

be generated for agents who have different access control or different levels of expertise to

follow. By extracting only those parts of the process family that are relevant for certain

performers, role-based process instances could prove to be valuable (for a discussion of

role-based vs narrative processes in previous work see [71]). This customized generation

capability is not currently automated, but the four processes from Chapter 5 specifying

the four different remote voting modalities demonstrate this approach.

7.2 Analysis limitations

One of the main research goals of our approach is analyzability. Although we have

successfully generated and analyzed several sizable process families in case studies from a

couple of domains, we have also identified some shortcomings in the approach when it

comes to generating large families that provide valuable analysis results. We have consid-

ered and applied two analysis techniques, namely finite-state verification (FSV) and fault

tree analysis (FTA). As with the modeling limitations, some problems stem from fun-

damental limitations of the scope of the approach, while others are the direct result of

legacy constraints inherited from the experimental platform within which the Little-JIL

Elaborator and PLAGE are being evaluated.

7.2.1 Representation limitations

As noted in Chapter 2, the intermediate step that gets grafted in the mame elabora-

tion scenario is a choice step, a preexisting Little-JIL step sequencing construct denoting

that only one of a choice step’s substeps will be completed in order for the choice step

to complete. Further, the semantics dictate that the choice of which substep to pick lies

with the agents responsible for the substeps, i.e. the agent that carries out the choice step

is not the one to make the choice but instead delegates this responsibility to the collec-

tion of agents responsible for all the substeps. This seemed to conveniently align with
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the family generation scenario, where there is not one agent (the choice step’s assigned

agent) who decides which elaboration to choose during a certain execution or in different

analysis scenarios. However, using a choice step introduces some additional complexi-

ties that a newly defined step sequencing paradigm would have avoided. Conceptually,

process developers may find it confusing that the same choice step is used for automati-

cally generated mame families as they themselves use to specify choice. However, there is

anecdotal evidence that inventing a new paradigm may have also introduced confusion be-

cause process developers who needed to encode lower-level variation into their processes

have deliberately used choice steps, presumably because it was the sequencing paradigm

that best represented such variation. Using a choice step also has ramifications for the

performance of the analysis toolsets with which the PLAGE framework was evaluated.

Choice step alternatives lead to the creation of may immediately precede (MIP) edges in

the trace flow graph (TFG), which significantly impact performance. A new sequencing

paradigm could be defined to prevent MIP edges from being introduced, and they could

also be avoided through specifying analyzer-specific cross-lateral constraints pre-encoding

what variants should not be considered together, or translating the process using a differ-

ent sequencing paradigm that does not introduce MIP edges, such as a try step with all

but its last substep defined to be optional. Although this depicts an ordered alternative

and is therefore not an accurate representation of an elaboration step, it would result in all

possibilities being considered for analysis purposed without introducing additional MIP

edges thanks to the artificially imposed order.

7.2.2 Translation constraints

For both analysis techniques that we have used, the Little-JIL specification of the pro-

cess family first gets translated into a suitable representation for analysis, in this case a

TFG. The technical challenges pertinent to this translation scheme are described else-

where [19,31]. Within the Little-JIL language and the Visual-JIL modeling framework, a
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process developer can specify edge predicates indicating conditions that must evaluate to

true in order for the connecting steps to be executed by the Little-JIL interpreter. We have

previously used these edge predicates to facilitate control flow in a fully executable process-

guided dispute resolution system, STORM2. With respect to the PLAGE infrastructure,

it is important to note that the aforementioned edge predicates are omitted during trans-

lation and the representation of the process family that gets analyzed will therefore not

contain these lateral or cross-cutting constraint specifications. Since a TFG is already an

over-approximation of system behavior, when combined with the omission of the addi-

tional constraints, it inevitably leads to false positives, as evident in the analysis results

presented in Chapter 5 and discussed in Chapter 6. Thus, the system may report that

a property is violated when a variant containing an undesirable event is selected, even

though the constraints on that variant’s edge should have removed it from consideration

if they had been evaluated correctly. In such cases, the developer can remove the variant

causing the spurious results and rerun the analysis to get more insights into the safety

of the process family. Additionally, the process developer can force the FLAVERS an-

alyzer not to consider certain combinations or elaborations by specifying cross-lateral

constraints as enumerated types in the dataflow.

False positives, however, are a fundamental limitation of the approach and would hap-

pen even if the translation accurately carried over constraints. For example, the selection

of service variation abstractions can be limited based on their attributes, but if these are

external to the coordination model (e.g., encoded within the abstraction specifications or

resource repository), the analysis toolset would still not consider them. Additionally, for

large families, it may be unwieldy to specify all the cross-cutting constraints in advance,

or there may be concerns about how variants interact that are discovered throughout the

course of process improvement and analysis and are thus unknown a priori. Another con-

cern is the possibility of false negatives where variants are not considered together because

of some constraint but they could in fact exist together and cause unsafe behaviors. Both
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of these limitations would be in part mitigated if some bindings could be automatically

inferred in the future based on the interface specifications of steps (e.g., if a step is de-

clared to have the ability to modify a certain artifact, then that step may be automatically

included in the possible bindings for the corresponding event).

7.2.3 Scalability

The combinatorial nature of variant selection taxes the analysis toolset as families re-

sult in much larger state spaces to explore. Based on the limited number of data points

observed in Chapter 5, however, we were able to obtain reasonable performance (verifica-

tion completion within a couple of minutes for the largest problems and a few seconds in

all other cases). Although the trace flow graph constructed for the entire process family

was significantly larger (in terms of number of nodes, edges, and MIP edges) than the sum

of its four variants, the verification time was also significantly smaller than that sum, indi-

cating that the common core did provide some performance advantage. Additionally, the

biggest culprit for FLAVERS seemed to be the sheer number of interleavings that elabora-

tion points can result in; these are encoded with MIP edges in the TFG, and significantly

increase the verification time. FLAVERS does not utilize summaries, and that may be

a future direction for optimization, along with other techniques to transfer constraints

from the process family specifications into the analyzable representation of that family

to restrict the number of combinations that must be considered. The Little-JIL Elabora-

tor was a main reason for upgrading the FTA platform after the internal espresso library,

which was used for the minimal cut set calculations, was overwhelmed by the size of the

fault trees produced. At the time, the fault trees generated for the Yolo Election process

with only twelve possible combinations of seven total variants exceeded the size of any

previous fault tree by a factor of 3+. Since then, yet bigger families have been generated,

with the case study highlighted in Chapter 5 containing three variation points, twelve

variants, and over 100 different combinations, and the newly upgraded FTA tool can gen-
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erate the appropriate fault trees and calculate MCSs with close to realtime performance.

The finite-state verification system may encounter similar limitations stemming from the

sheer size of the process families under consideration.

As with modeling, the human factor scalability constraints must be considered as well.

The extremely large fault trees generated for the Yolo election process (over 700 nodes

in the highly-optimized DAG version) were difficult to navigate and it would be nearly

impossible to identify problematic areas in the process without the very disciplined use of

the MCSs and a deep knowledge of the process. Given the rich potential of process family

analysis in unearthing previously unrecognized vulnerabilities, efforts on facilitating the

interpretation of the results and making sense of the vast amounts of analysis data, such

as related work by Phan et al, would become paramount.
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CHAPTER 8

RELATED WORK

There has been extensive work on creating and managing software product lines and

software families [22, 41, 58, 59, 62, 84].

8.1 Problem-level variation

Different approaches for variability management suggest handling variability at dif-

ferent stages in the software development lifecycle. For example, [10] propose explicit

modeling and management of architecture variability, since the architecture stage is very

ripe for addressing variation; this work also outlines different sources of variation, some

of which correspond to some of the kinds of variation that we have observed and outlined

here in this dissertation, such as functional variation, performance variation, agent/service

variation, and functional invariance, though the terminology differs. This work focuses

mostly on the problem level; our approach is similar, but contributes additional, and im-

portant, dimensions of variation, and strives to provide support for solution-level map-

pings to effect variability management and facilitate generation and analysis. Conventional

modeling approaches, such as the use of UML to identify patterns in architectures [34],

have also been applied to model variation in system architectures. There are clear benefits

to such approaches for modeling variation and variability throughout the development

life cycle in both domain engineering and application engineering, or the problem and

solution levels.

Feature-Oriented Domain Analysis, FODA [25, 42] advocates the development of a

domain model representing the family of systems, which can then be configured and in-
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stantiated to produce a specification for a single system implementation. Similarly to

other compositional approaches at the problem level, this encourages reuse and the iden-

tification of components that can be shared across variants.

Feature diagrams (e.g. [43, 65]) are widely used to model different feature configu-

rations through variation points and different semantics for composing and combining

features based on predefined constraints. Features closely correspond to the functional

variation presented. There are several approaches that focus on the problem-level spec-

ification of variation through features, such as using domain-specific feature graphs for

specifying variability within a model (e.g., [11, 12, 43]) or deriving the specification of a

product through several different stages of configuration (e.g., [26]). Similarly, decision

models (e.g. KobrA [9] and FAST [84]) can be used for instance generation and variant

modeling, where variation points are indicated as decisions and, based on the selection,

the model is extended with different sets of features. Feature graphs and decision models

are explicit enumerations of mandatory and optional features. Such approaches can lead

to very large feature graphs when all elaborations are included.

The approach presented in this dissertation could likely benefit by being augmented

with explicit enumeration approaches in some cases to enunciate how each product or

process variant within a family can be derived. Since the underlying goal of our work,

however, is to better understand the different kinds of variation that exist in systems, we

suggest the potential necessity to model these different kinds of variation both implicitly

and explicitly, especially since our preliminary work suggests that some approaches may

be more effective in defining and managing families characterized by different kinds of

variation. Features are very helpful for describing the functionality and behavior of a fam-

ily of systems, but may be insufficient for addressing variation driven by non-functional

requirements, or variation in quality attribute, such as robustness, performance, or agent

variation, which may necessitate the application of a different modeling approach as some

of these attributes may not fir neatly into features. Moreover, some of the kinds of varia-
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tion addressed here may be difficult to model using a single approach. In fact, they may

necessitate the application of several different problem-level and solution-level specifica-

tion approaches.

8.2 Solution-level variation

There are many different techniques aiming to aid the generation of software variants

at the solution level. These can be loosely categorized into positive variation techniques,

where families are generated by combining different features into a product, or negative

variation techniques where one big product is initially created and then features are re-

moved from it to achieve a specific configuration. Positive variation techniques include

generation approaches for creating software product lines based on either a programming

language or accompanying tool support, techniques and approaches for safely composing

product lines out of preexisting features, components, or both. Negative variation tech-

niques usually focus on creating one conglomerate product and then removing unneces-

sary features based on annotations or tags which can be added manually by developers or

sometimes inferred.

8.2.1 Positive variation (generation and compositional approaches)

For example, in the domain of software families, component-based and generation ap-

proaches have been used to specify initial configuration specifications of components and

then to apply generation techniques for parameterization [24, 33, 48]; there are also tech-

niques for product line implementation such as component reuse [82], feature-oriented

programming (FOP) and related modeling approaches [13,77], mixins [73] aspect-oriented

programming [5, 33, 47] and its applicability and suitability for implementing different

kinds of variation [4]. In [75], a taxonomy is presented of different techniques that can

be used for variability realization in different scenarios. Most of these approaches are
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compositional in nature, meaning that a shared common core is gradually extended with

more functionality to build a specific variant, facilitating generation.

8.2.2 Annotation approaches

There are also annotation and pruning techniques [45, 46], which take the opposite

approach of building a union of the desired products in which different components or

features are annotated differently, and then pruning away what is not considered to be

necessary as specified by the requirements of the product configuration. Such techniques

and tools are clearly useful for generating different members of a software family. These

approaches do not explicitly address the needs of process families and the management of

variation in processes, while the approach presented here advocates careful modeling and

reasoning based upon different process artifacts; some of these artifacts have clear parallels

to artifacts produced in the software development lifecycle, such as specific implementa-

tion artifacts, while others, such as specific assurances about required analytic properties

that are met by all family members, do not.

8.3 Hybrid approaches

Other approaches focus on supporting variability modeling and management through-

out different stages of the software development lifecycle through combining problem-

level modeling of variation with solution-level product derivation. For example, the CO-

VAMOF variability modeling framework [72] promotes the careful modeling of variation

points and the different dependencies that may exist among variants, addressing different

aspects of generation and analysis. The pure::variants tool [14] similarly provides support

for the generation of new variants by supporting a configuration specification includ-

ing different constraints at the domain engineering level (similar to problem-level vari-

ation not discussed here), and consequently derived configuration specifications for the

implementation of variants at the application engineering level (similar to solution-level
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variation). Hybrid approaches have successfully combined feature-oriented programming

(FOP) and model-driven development to demonstrate how software product lines can be

modeled (with a focus on features) at the problem level, and then at the solution level

products can be derived from these models using FOP [77].

Hybrid approaches based on the original FODA idea have also been developed. For

example, in [28], feature diagrams are used to specify the overall system family, and then

Model-Driven Software Development (MDSD) techniques are applied to come up with a

hybrid representation of feature based model templates which could then be used as input

to automatic software generation approaches.

The Koala framework [81, 82] has also been applied to support the reuse of compo-

nents for different products within a family, and between different software families, with

a focus on shared functionality. Apel et al [6] have shown how model superimposition

can be applied to different UML models: models are first decomposed into features, then

appropriate model are composed together using superimposition to produce models for

single variants within a product line.

8.4 Process lines

Several approaches have been proposed to address the need for variation specifically

within processes and process models. Armbrust et al [7] describe different scoping mecha-

nisms to support explicit decision making on what existing processes to compose into pro-

cess lines and thus provide future cost savings and faster product development. Washizaki

[83] proposes a similar approach of considering existing processes, but focuses on defin-

ing a high-level process line architecture in which a core process can be extended at var-

ious variation points to derive product-specific processes composed from the bottom up

(this technique uses the OMG’s Software Process Engineering Metamodel, SPEM, and

UML activity diagrams). Martinez-Ruiz et al [54] in their SPRINTT approach [55] also

provide a process variation specification approach for process models through variation
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points and variants in an extension for SPEM, vSPEM. Simple constraints, relationships,

and dependencies are supported. The Provop (PROcess Variants by OPtions) framework

by Hallerbach et al [38] supports the specification and management of process families

written in the Business Process Modeling Notation, BPMN [85]. Provop lets developers

apply simple operations to a base process, such as deleting, inserting or moving different

process fragments to create variants. Van der Aalst et al [79,80] also focus on configuring

individual process models for specific product development, but propose an approach to

evaluate the correctness of the derived processes. An approach for generating different

workflow instances for scientific experiments is presented in [24], where each scientific

experiment corresponds to a family member and is represented as a workflow pattern,

allowing the authors to define relationships between workflow events so that multiple

experiments can be defined by composing several activities in different ways; at the same

time, a provenance model is maintained so that a scientist can trace back where a spe-

cific “cartridge,” or variant, was chosen from, and what other variants were available.

Although this work suggests that relationships between activities within an experiment

can be defined and explored, it does not focus on understanding the relationships between

different experiments or suggest guidance to the process (experiment) line developer on

how different com- positions might be derived from existing ones.

In [61], the authors propose to use the PROMENADE process modeling notation to

flexibly model and derive processes through the definition of different precedence in rela-

tionships between components. PROMENADE provides flexible support for specifying

dataflow and is supported as a UML profile. Similarly, in [15], development processes

are generated through the prism of the Spiral model, as different variants of applying the

Spiral Model at different stages of the software development process. Traditional domain

modeling techniques have been applied to model variability in workflows as well, which

could then be used to derive a specific process instance. In [35], the authors present an-

other approach for generating concrete software development processes out of an overall
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configuration based on the Spiral Model and enhanced with ideas from the Capability

Maturity Model.

Some variation dimensions identified in this dissertation have received more atten-

tion than others. Although most of the work in software product lines focuses on what

we refer to as functional detail variation, there are approaches that address other dimen-

sions as well. Service variation is addressed in [8] where a family is first represented us-

ing a modal transition system and then verified with respect to requirements specified in

vaCTL. Asirelli et al. define service variation to be different web service providers (in this

case, websites for flight and hotel bookings), whereas service variation in our approach

encompasses those kinds of variation but also allows for variation in human behavior

modeled within the system boundary of an HIS.

In [78], the authors correctly observe that in order to be useful, workflows must pro-

vide enough flexibility to allow for variation, while being declarative and prescriptive

enough to provide usefulness as guides. This work is further extended in [79], where a

generative approach is presented based on formal definitions of the models as Petri nets.

A conglomerate model is used to represent the collection of processes that may be desir-

able, and individual process instances are then derived from it. Specifically, starting with

a reference model (similar to the concept of a common core elaborated with all possible

elaborations), certain transitions in the Petri net can be skipped or removed to generate

configured instances. Propositional logic constraints are imposed at every step of the

configuration process to ensure syntactic and semantic correctness of the derived model.

Semantic correctness here includes properties such as removing unreachable states and

guaranteeing that given a sound reference model, the derived one will also be sound, but

focus on proving that the derived instances will be generated correctly from the refer-

ence model, as opposed to proving additional properties about the instances or the entire

family.
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As a recent literature review [56] notes, most existing approaches have serious lim-

itations because they either only address one aspect of variation (most often what we

describe here as functional detail variation), or, when including data-flow and role-based

variation these are usually not varied orthogonally to the activity specification. Most of

these approaches focus on modeling notations and representations that do not have se-

mantics that are rigorous enough to support the kinds of analyses discussed in this disser-

tation. We provide a framework that can address several of these aspects orthogonally and

in a rigorous way, allowing for the composition and nesting of families based on different

variation relations.

8.5 Analysis

The approach presented in [40] addresses problem-level variation, with a focus mostly

on what is referred to as functional variation in this dissertation, through the use of UML

activity diagrams. The notation is augmented with formal Petri net semantics that al-

low for the careful and precise documentation of variability in activity diagrams. This

facilitates quality assurance in the domain engineering phase of SPLE, which closely cor-

responds to the problem-level variation needs discussed in this dissertation. A similar

approach to address analysis at the domain engineering level is presented in [49], where

the authors formalize domain artifacts as I/O-automata which are then model-checked

against properties specified in computational tree logic.

In [27], the authors extend the idea of feature-based model templates ( [28] as dis-

cussed above) and extend their semantics to support automated reasoning. Requirements

for the templates are specified using the Object-Constraint Language (OCL), and can be

automatically applied to ensure that templates derived from the overall feature configura-

tion specification are well-formed according to a set of predefined constraints. Thus, no

ill-specified product instance can be derived or built.
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In [78, 79], a similar approach is presented for presenting the correctness of process

models by construction through the use of formalism such as Petri Nets and event-driven

process chains. The derivation of individual business process models from the overall con-

figuration model is then constrained to guarantee well-formedness. While well-formedness

is a very important first step in ensuring the usefulness and correctness of a solution-level

system family, the kinds of reasoning we hope to support extend to additional kinds of

correctness specifications beyond syntax.

Different approaches address the problem of making assurances about an entire prod-

uct line or software family at the solution level differently. Some focus on placing re-

strictions on the creation of new variants, thus impeding generation, but providing well-

formedness assurances for all variants that are allowed to be generated (e.g., [44, 72, 76]).

Others focus on the traceability of features to subsets of components from the core assets

and can reason about those relationships using QSAT (a SAT solver modified to handle

quantified Boolean formulae) [57], or, for more sophisticated analysis capabilities the sys-

tem can first be modeled in product line CCS and then checked against multi-valued modal

Kripke structures to determine legal configurations that satisfy the requirements [37]. Al-

though this is congruent with the analysis aspect of variation emphasized in this disserta-

tion, it only addresses well-formedness constraints, and not other types of properties, such

as safety, performance or robustness properties, that a developer may want to analyze an

entire software family against.

Another line of work that is similar to the approach we intend to take is presented

in [52], where analysis is aided by imposing certain obligations at each variation point

(similar to elaboration step in our approach). This allows the authors to guarantee that

if the feature (elaboration) that is to be attached at a variation point satisfied the obliga-

tion, then the composition itself will also satisfy the obligation. Families can therefore be

ascertained to be safe by construction, and analysis results can be reused from one config-

uration to another provided the configuration is done incrementally so that obligations
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can be recomputed if necessary after a feature has been added to a variation point. The

request language of the Little-JIL Elaborator may provide enough flexibility that some

such constraints and obligations may be specifiable at each elaboration step, thus aiding

the analysis of a process family through its safe generation.

In [21], the authors extend label transition systems with features, and use the resulting

formalism to describe the behavior of a family of systems, determine the feature differ-

ences between variants, and apply model checking to determine if the family adheres to

prespecified temporal properties, or if there are variants that violate the properties. In

the case of a property violation, the system is able to use the featured transition system

to identify the variants that fail to satisfy the property. This work is extended in [20]

where further functional specifications of the system are written in the Text-based Vari-

ability Language (TVL) and fPromela (a featured extension of Promela) and then model-

checked against fLTL properties to determine what products satisfy the properties. This

approach is very similar to the conceptual framework presented in this dissertation, and

maps closely to both the problem-level functional variation (which most closely maps to

features), as well as the solution-level nominal flow change. The similarities are both in

the modeling aspect (i.e. with respect to generation through the possible use of the fea-

tured transition system), as well as the analysis aspect. However, we would like to be able

to reason about more than feature variation; therefore, considering features as the defin-

ing difference between variants may be necessary to address functional variation but may

not be sufficient for the other dimensions.
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CHAPTER 9

FUTURE WORK

There are many promising directions for future work. Here we discuss possible ex-

tensions to the conceptual framework and how they align with supporting both research

goals of improved generation and analysis of process and system families.

Conceptually, one obvious direction to pursue is to develop a more complete list of

types of problem space variations and to devise an approach to classifying them and for-

mally defining them. We are particularly interested in understanding the ways in which

these different problem space variation families overlap and intersect with each other and,

similarly, how their defining characteristics interact with one another and whether there

are transformation functions that can be specified for composing different families to-

gether or morphing a family based on one variation dimension into a different one. For-

mal definitions of the variation relations that define different software families would

encourage and perhaps facilitate such reasoning about how different families that share

variant members may interact, especially in the case of variation relations that are not

orthogonal (such as composing functional elaboration variation and robustness variation

families). Such interfamilial interactions may also inform architectural decisions since

some kinds of variation relations seem to accommodate the sharing of a common archi-

tecture, while others seem to result in variants that are structurally different and require

different architectures.

We are also interested in identifying a broad range of approaches to generating so-

lution space families from these problem-level variation requirements in the suggested

taxonomy. In order for this variation taxonomy to be truly useful, however, the under-
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lying relations that define family set membership need to be defined formally in a way

that would support automatic construction of new architectures and canonical transfor-

mations from one dimension of variation to another. Although we have provided initial

support for creating families of process variants only in the Little-JIL process definition

language, we believe the domains and case studies we have examined cover many com-

monly used process language features, and should therefore lead to useful insights about

supporting variation in different process definition languages and in other system repre-

sentations. This approach aspires to be technology-agnostic.

In terms of generation at the solution level, since Little-JIL is a fully-executable lan-

guage, the language interpreter could be modified to support executing process lines to po-

tentially support real-time deployments of self-adapting families. This approach would be

applicable to any process definition language that has the semantics to support dynamic

binding. Executable process lines would be especially helpful for process guidance sys-

tems, which could then self-optimize depending on the context or self-heal if exceptional

situations arise that require the switch to a different robustness variant within the fam-

ily. Additionally, for relationships that are amenable to a common core architecture, our

approach allows for the specifications of reusable process modules and components. For

example, elections, one of the domains discussed herein, are rich in real-world process

modules that are shared among jurisdictions. A library of standard procedures could sup-

port the generation of process variants through composing pre-specified (and pre-verified)

modules for voter registration, ballot counting, and so on. Thus far, we have considered

the election processes of Yolo and Marin counties in California, which are very different,

but employ similar procedures for certain subprocesses.

Analysis facilitation is another key goal of our research, aimed at identifying genera-

tion approaches that support specific kinds of reasoning about whole families of variants.

In Chapter 2, we described how induction constrained by trace equivalence can be used to

generate families whose members are all equivalent with respect to a pre-specified prop-
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erty. We also suggest that dynamic approaches such as simulation may be suitable for

supporting analytic reasoning about performance variation families. Process families can

be leveraged for different kinds of analyses besides. We have demonstrated sample appli-

cations of finite-state verification and fault tree analysis in this dissertation. Extending

previous work [66], we have successfully applied fault tree analysis (FTA) to very large

families of election processes. Being able to analyze and interpret the resulting fault trees

can aid in detecting fraudulent or colluding agents, as well as specific variants within which

the misperformances of steps can have disastrous consequences.

We would like to further study this issue of agent collusion. In previous work [67],

we have explored how election security may be compromised if a rogue election official is

employed. There are additional studies that can investigate this problem more carefully.

As outlined in the Chapter 4, minimal cut sets derived from fault trees can be used to

model a scenario where one corrupt official is allowed to execute as many steps as allowed

by the agent’s capabilities to explore whether the resulting variant is more vulnerable to

pre-identified attacks (i.e. whether the agent is able to find enough steps to misperform

so that an entire MCS is compromised, leading to the hazard to occur) or fails to satisfy

some security or privacy properties that a variant using only non-corrupt agents would

(by looking at variant constraints used in combination with the finite-state verification).

Additionally, the same approach can be applied to different scenarios involving two or

more collaborating rogue agents to see if there are general attributes of the resource allo-

cation that may lead to better or worse resilience against agent collusion, or to identify

ways to expose pairs of corrupt agents, who may appear to be performing correctly when

examined individually. Such wide-scale attacks that are not easily detected are of great

interest to election officials, and, moreover, there are specific parts of the process that

officials may consider vulnerable to such attacks. The ability to perform formal analy-

sis using multiple different variants to demonstrate different possible courses of attacks

would therefore presumably be very valuable to the domain experts.
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Using FSV and FTA as complementary approaches and finding a way to combine the

analysis results would be especially helpful. Finally, process families can be used to evalu-

ate different agent behaviors along multiple different aspects, such as performance metrics

or expertise assignments, by running simulations. Simulations with random agent assign-

ments can help to derive the impact of certain steps being executed by a rogue agent, or

the likelihood that two steps can be executed by the same agent or multiple colluding

agents for attack prevention.

112



APPENDIX A

SYSTEM DESIGN AND IMPLEMENTATION
DOCUMENTATION

In this appendix, we detail the architecture of the existed Little-JIL Elaborator sys-

tem and explain its implementation with respect to the existing infrastructure. We then

explain how the Little-JIL Elaborator fits within a larger conceptual framework that in-

cludes a parsing engine and sophisticated repository access. The parsing engine can pro-

cess elaboration request specifications written in the request specification language defined

in Chapter 4, including context constraints specifying which appearances of elaboration

steps should be instantiated with abstractions. The repository access is configured in such

a way that it could accommodate different databases depending on the abstraction needs

and these databases can be easily replaced even in a dynamic setting. In order to under-

stand the architecture of the Little-JIL Elaborator and the larger PLAGE system, we begin

first with an overview of the existing infrastructure of the Little-JIL internal form, whose

current intended architecture is illustrated in Figure A.1.

A.1 Architecture of current Little-JIL infrastructure

This figure represents the notion that very agent element has a corresponding agenda,

which contains zero or more agenda items. Agenda items, which in term correspond to

steps, are handled by the interpreter, which consults with a configuration object. The

configuration object (before the execution of a process can begin) establishes connections

to necessary services, such as a resource manager for example. Each agenda item repre-

sents a step instance (this is where the architecture is very difficult to represent because

113



Figure A.1. Intended architecture of the Little-JIL internal form.

most of this architecture sketch is inherently referring to a dynamic structure, and thus

for example agenda items refer to dynamic elements, but the steps that agenda items corre-

spond to cross over to the static representation of the process that is defined in a Little-JIL

coordination model). We now focus on the step element in the upper right, and elaborate

it further in Figure A.2.

Figure A.2. “Step” element elaboration.

For the purposes of the PLAGE architecture and design in general, the element of

most interest is the ASTNode, which is, as the name suggests, a node in the Little-JIL

abstract syntax tree (AST). Given that the syntax tree of a Little-JIL process is built from a

collection of steps, the node intuitively resolves to a step when the tree is statically checked

for well-formedness or converted into a form suitable for execution. Also important from
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the point of view of process fragment storage and management are the JulFile and the

Module. Each of these elements is described in more detail below.

A.1.1 A Little-JIL Process behind the Scenes

A Little-JIL process conceptually comprises a coordination diagram, an artifact specifi-

cation, and a resource specification (which includes agents and other actors and resources).

However, this is represented in Visual-JIL somewhat differently. A Little-JIL process is,

at a high-level, a .jul file.

A .jul file consists of a .ljx representation along with any additional specifications (e.g.

agent behaviors, artifacts, or exceptions if they are declared as Java classes) as well as addi-

tional required configuration files (for example for VSRM agent setup).

A .ljx file is an encoding of the coordination diagram, using an XML schema. The

geometry of components is used to determine sequencing (for sequential steps), and all the

other information about the coordination (for example, connectors, type of step, interface

declarations, etc.) is stored as properties in the metadata. This file contains one or more

Module.

A Module contains a collection of diagrams in the Visual-JIL editor. Diagrams, how-

ever, are semantically meaningless and therefore not represented separately in the class

hierarchy (explained in more detail below).

We can now begin to explain the Little-JIL Elaborator architecture and then outline

the overarching PLAGE architecture.

A.2 Overview of the Little-JIL Elaborator Architecture

As a reminder, at the high level, the Little-JIL Elaborator system architecture concep-

tually the Elaborator contains three main modules, as shown in Figure 4.1, namely:

1. A backend service which involves data storage, organization, and management in

some kind of repository,
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2. A middleware module that contains the business logic, in this case split up into two

main areas of concern, namely

(a) integration with the underlying Little-JIL internal form on the one hand, and

(b) communication, coordination, and integration with the repository via the

Process Fragment Manager/PFM submodule above or, optionally, ROMEO

if used as a plugin service.

3. A frontend service that integrates with the existing Visual-JIL framework in an ex-

tensible manner.

The Elaborator provides additional functionality to the existing Little-JIL internal form

that governs syntax and the Visual-JIL graphical editing environment, and these inter-

faces and extensions make its architecture more complicated in reality than the concep-

tual model-view-controller three-piece sketch of the internal representation, the graphical

projection, and the middleware, respectively, shown earlier. To illustrate the basic inter-

actions with the existing framework as well as planned extensions and revisions, Figure

A.3 details existing parts of the system that will only require cosmetic changes (in dotted

lines), as well as significant extensions (in solid lines).

From an implementation standpoint, there are several existing projects to interface

with that correspond loosely to the dotted-line components: the Little-JIL internal form

comprises several projects, but the two of most relevance here are the eponymous Little-

JIL Internal Form (the Little-JIL abstract syntax tree lives here), and especially the “re-

solved” package within; and the Little-JIL XML project, and again especially the “re-

solved” package for backend and logic integration. In terms of the Visual-JIL Editor, the

two projects that require changes and extensions are Little-JIL Visual-JIL plugin and pos-

sibly the Little-JIL Search Plugin for some extensions to specific GUI features. Specific

interfaces for the different features are outlined later in Section A.4
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Figure A.3. More realistic architecture of the Little-JIL Elaborator.

A.3 Process Lines Analysis, Generation, and Evaluation (PLAGE)

We now present the architecture for a system that encompasses more sophisticated

capabilities and neatly encapsulates the existing Little-JIL Elaborator. More than a set

of additional features to supplement the Elaborator’s functionality, PLAGE aspires to

provide a holistic framework for designing, generating, and analyzing process families,

and guiding their evaluation and continuous improvement through iterative changes.

Let us consider the changes necessary to accommodate the extension points and sup-

port the additional functionality of PLAGE. Figure A.4 presents the first step toward this

goal; it is visually quite similar to the detailed architecture of the Little-JIL Elaborator

architecture shown above in Figure A.3, however, it is important to note that the Inter-

nal Form itself will have to access the Process Fragment Repository and interact with it

(this interaction will be explained in more detail in the following diagram), and that the

Internal Form will now take in a configuration file that contains the elaboration step def-

initions and requests. With these changes in place, providing the additional functionality

needed in PLAGE becomes simpler. Another important implication of these changes is

the fact that we now begin to deal with dynamic processes and allow for the elaboration of
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Figure A.4. Extending the Little-JIL Elaborator architecture to accommodate PLAGE.

any step appearance. This inevitably means that some elaborations PLAGE can support

cannot be visualized because the existing Visual-JIL environment is strictly static-based.

Therefore, if the configuration file specifies that only the first of several invocations of

a certain elaboration step is to be elaborated with a certain cion, PLAGE could support

that elaboration within the extended internal form of the process definition, but that elab-

oration could not be reasonably visualized.

To make the changes easier to understand, If we were to explore them in more detail

and focus on the use case of applying formal analysis to process families—one of the major

research goals of this dissertation—the scenario would look as portrayed in Figure A.5. As

before, solid lines are new extensions, dashed lines are modifications to existing modules,

components, and interactions, and dotted lines here imply data-only communication.

For this diagram, transforming components are oval, and artifacts are rectangles. When

a user wants to generate or analyze a process family, this family is constructed dynam-
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Figure A.5. Process family analysis use case for the initial PLAGE architecture.

ically. A representation of the elaborated common core is constructed in the internal

form and can be visualized with the Little-JIL Elaborator on demand (within the static

constraints outlined above). To achieve the elaboration, the Internal Form consults the

Resolver, whose current job is to find matching subprocess and replace each and every ref-

erence with a fully expanded process fragment. This resolution activity has already been

extended to deal with finding multiple abstractions and grafting multiple cions for the

Little-JIL Elaborator. This resolution activity produces a fully resolved process contain-

ing multiple coins grafted onto choice steps as currently done by the Little-JIL Elaborator,

but for PLAGE, it also takes a configuration file that restricts what appearances of elabo-

ration steps are to be elaborated and what abstractions are to be considered as “suitable”

cions depending on the desiderata specified. This complete dynamic representation can

then be passed off to the Analysis Engine (could be either FLAVERS for FSV or the Fault

Tree Analyzer) (which already uses the fully resolved version of the process and thus re-

quires no changes) and can then produce the relevant analysis results.
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The major changes implied by this extended architecture are twofold:

1. this development plan requires a much more heavy interaction with the Eclipse

plugin development framework and heavier integration with the Interpreter, and

2. because the Elaborator now fully resides on the dynamic side of Little-JIL processes

and the way that processes are represented, producing a visual representation of

elaborated processes becomes an entirely new research question because it is no

longer an issue of just modifying the user interface and “gluing” diagrams together,

but also requires deconstructing the dynamic representation of the process into a set

of static coordination diagrams that can then be displayed. How to reasonably dis-

play these to users in an understandable and intuitive manner would be a promising

avenue for future work.

It is also important to understand that the Little-JIL Elaborator is no longer a stand-

alone software as it has been, but becomes a component in the overall PLAGE system,

where elaboration is a small but important piece. To illustrate, the architecture for the

entire PLAGE framework is shown in Figure A.6.

There are four separate areas of concern when it comes to the new set of functionality

PLAGE strives to provide. These are, in order of importance: resolution, abstraction

selection, repository access, and an intuitive user experience (UX). Each area is discussed

in more detail below before being deconstructed into features and components in the next

section.

A.3.1 Resolution

Resolution happens within the Little-JIL Internal Form engine in Figure A.6. As a

reminder, when a Little-JIL process is drawn on the screen, the diagram has no semantic

meaning. Therefore, a reference on a diagram is actually meaningless and gets “resolved”

behind the scenes to a subprocess, which essentially gets grafted onto every placeholder

where a reference used to be. A fully resolved process therefore has no references.
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Figure A.6. Finalized detailed architecture of PLAGE, including the parsing engine and
database access.

The resolution activity works by doing a tree traversal until it finds a matching subpro-

cess. If no matching subprocess is found in the current process definition (for Visual-JIL,

this means the current “module,” where each module consists of one or more “diagrams”—

refer back to A.1.1 for the detailed explanation), then Eclipse provides a way to specify

precedence for other modules, and then other projects, and that is the order in which a

traversal is to be performed. If a reference resolves to more than one subprocess within

a single module, a MultipleResolutionsException is thrown. The Little-JIL Elaborator

overrides this capability for reference steps that have been specified as elaboration steps.

As explained in Chapter 4, when an elaboration step resolves to more than one abstrac-

tion, all appropriate cions are grafted onto a newly created choice step. When only one

abstraction fits the elaboration specification, the resolution process remains the same as

for regular reference steps.
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A.3.2 Abstraction selection

Although there is a UX component elaboration selection, here we focus on the critical

responsibilities, which are specifying desiderata for elaboration steps. In Figure A.6, the

specification of the desiderata is represented in the elaboration configuration file as a series

of request specifications for all elaboration steps. This specification cannot be fulfilled

without being parsed first, so it is passed to the Elaboration Parser to be translated into

a repository access request. More details on the parsing activity are provided in the next

section. In addition to the pertinent features, there are graphic user interface suggestions

to facilitate the initial elaboration selection specification that would be nice to have but

are non-critical to the functionality of the system. They are therefore specified below as

incremental and pending on the initial critical features.

In order to indicate which reference steps of a process are to be considered elaboration

steps, we use a configuration file that would reside in the jul file specification of the core

process that is to be elaborated. Such configuration files are already in use for integration

with multiple parts of the system, and a simple example is the VSRM specification of

resources. Currently, elaboration steps are indicated by modifying the .ljx file describing

a Little-JIL process in xml by setting a Boolean flag that accompanies all reference step

appearances to true for those appearances that should allow for elaboration. Once the

configuration file approach is implemented, transferring over the selection to a process

that has not yet been annotated is trivial.

The desiderata for each step is then specified as part of this configuration file. An

example configuration file may look something like this:

name-1

elaboration-type (process or agent)

context*

attribute*

best
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name-2

. . .

Each element in this specification corresponds to the elements described in the re-

quest language in Chapter 4 (remember that name is a partial or complete path, not just a

step name). Note that in order to integrate with the existing Little-JIL and Visual-JIL in-

frastructures, such a configuration file would need be constructed even if the interaction

were entirely GUI-based in a scenario where the user navigates the diagram and selects

elaboration steps and specifies requests.

Requests specified using either approach would likely be encoded exactly like this,

specifying all the necessary components of the schema as described in Chapter 4. Once

this configuration is specified, it needs to be read and parsed. To provide for additional

flexibility (such as providing extension points to support different process definition nota-

tions in the future) and to allow for the parsing of complex requests (e.g. both the context

and attribute elements may contain multiple entries that may need to be parsed differently

depending on what properties of the fragment they are describing), a sufficiently expres-

sive language should be developed, and a sufficiently adept parsing mechanism should be

applied. We address these problems from a technical standpoint in detail in Section A.4.

A.3.3 Repository access

In Figure A.6, repository access is represented in two modules, the Derby Connec-

tor and Query Generator that takes the translated elaboration requests from the parser

and passes them off to the second module, the Process Fragment Repository. This is a

repository of abstractions, currently focused primarily on process fragments, but with

a general schema that can accommodate a variety of representations. These two mod-

ules reflect the two main concerns when it comes to the collection of process fragments

(be they subprocesses or agent behavior specifications): on the one hand backend storage
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and organization (in the repository), and on the other frontend accessibility through the

specified request language (in the query generator).

For backend storage, the following organization seems ideal:

• Every elaboration step would have one .ljx file associated with it. Thus, if we wanted

to elaborate the step “submit ballot,” all possible elaboration for it would reside in

submitBallot.ljx. Within that ljx file, every elaboration would have one module

associated with it. These can be named according to the unique identifier assigned

to each elaboration.

There are several advantages to this approach. First, it allows for the explicit brows-

ing of process fragments, which was indicated as a desirable feature during the proposal

defense. Second, it allows for an organization approach that should easily port to other

representations (each module could contain a pointer to a process definition in a pro-

cess definition language different from Little-JIL if an integration mechanism is specified).

Third, it allows for easy identification of only specific elaborations to be copied over when

a new process family gets generated.

The abstract common core (ACC) gets copied over to the new family along with all

the necessary cions. There are pros and cons to this technique. On the plus side, explicit

cloning allows for multiple families to be generated, analyzed, and manipulated at once.

This is important for easy reuse of predefined abstractions from the repository without

worrying about side effects from trying to rename abstractions when they are converted

into cions. Most important, cloning the abstractions allows for the selective grafting of

cions at specific step appearances within the progenitor (whereas an elaboration step with

the same name as another could request a different cion through appearance-level specifi-

cation in PLAGE).

The constraint specification is flexible enough that runtime late-binding-like grafting

of cions is a natural extension to consider for future work.
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The cons of coping over the ACC and necessary abstractions are the same as problems

related to code cloning. However, these are mitigated by two factors:

• only the necessary abstractions are used in cion construction, which in most cases

would constrain how much of the repository is copied.

• both the ACC and abstractions are very small typically and the advantages of the

ability to create and analyze multiple different families far outweighs the costs.

Notes on current resource management

Currently, the resource model for a Little-JIL process is modeled as separate and ex-

ternal to the .ljx representation that Eclipse knows about (i.e. the resource model lives

outside of Visual-JIL and is not viewable or browsable from the process coordination dia-

gram). Each resource has a type (e.g., Doctor), a set of attributes (e.g., name = Phil, shift

=morning), as well as a capacity (default is 1), which determines how many agenda items

may be assigned to each resource at any one point. Each resource has different capabili-

ties corresponding to the activities it can perform. Note, for the Little-JIL Elaborator, the

simplified abstraction selection relies on the elaboration step names as capabilities. For

PLAGE, this can be extended to match the more general ROMEO convention.

Currently, each capability has a skill level associated with it, as well as an effort value

for each job (effort here takes precedence over capacity, meaning that an agent that can

perform three easy tasks all at once may only be able to perform one difficult task at

a time). Capability currently corresponds to a “queryname” field that can be specified

for each resource interface specification in Visual-JIL. What this means is that within a

step interface in Visual-JIL, we can specify a query request for an agent and say that we

need an agent that has the capability to give a shot, which would typically be a nurse,

but can be substituted for a doctor in different circumstances (depending on skill level

and availability). In VSRM, this corresponds directly to the resource type, and agents
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there can similarly have more than one “type” (e.g. negotiation participant and party

representative), but only one is their primary type.

All of this is quite similar to the simplified resource model used by the Elaborator,

however, there are major differences that limit any reuse of the current implementation.

The current ROMEO resource model is completely external to the .ljx representation

of the process and is represented externally in a hard-coded xml schema file. There is a

database specification that interacts with that schema file to execute the queries from the

.ljx file, however, there is no way to add instances to the xml schema through the database

specification, or to make changes to the model from the database view. That precludes any

use cases that involve a user specifying a new behavior or changing an existing behavior

from working. Additionally, and more important, the current resource model does not

specify any agent behaviors. There are some hard-coded constraints on how long an agent

might take for a certain capability within the xml schema, for example, but there is no

connection between any specific behaviors, or any apparent way to easily extend this

specification to allow the schema to interact with other .ljx files (in fact, that seems difficult

to do given that the schema is external to what we would refer to as the “common core”

process specification as well).

A.3.4 User Experience

To easily identify elaboration steps, we suggest using a checkbox in a special “Prop-

erties” dialog of each reference step to indicate whether it is a usual reference (and there-

fore expected to resolve to exactly one specification), or whether it is an elaboration step

(and therefore can reasonably be expected to resolve to more than one elaboration, and if

such was the case, all appropriate abstraction cions would be grafted onto a choice step,

which would in term be grafted onto the elaboration step). This would effectively set the

Boolean flag that accompanies reference steps in the internal form. However, the current

Visual-JIL infrastructure does not treat reference steps as other steps and consequently
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provides no properties dialog, so one must be implemented. For elaboration steps, the

request language specified in Chapter 4 allows the process developer to indicate the de-

sired properties of the process fragments being requested. Although writing an external

specification is functionally sufficient to support PLAGE, the eventual development of

a GUI-based editor (perhaps within the new Properties frame), would be desirable. For

the purposes of providing an incremental development plan, such UX features should be

secondary to a working prototype. The development plan in the next section indicates a

reasonable alternative through the manual specification of the configuration file (an iden-

tical configuration file would be created behind the scenes in the case of a GUI editor, so

the parsing activity remains unchanged). The suggestion is not to omit the prospect of

developing a GUI editor in the future, but to make the file human-readable and modifi-

able in the meanwhile. This allows for iterative development where an initial working

prototype may only rely on the configuration file being manually edited in a text editor,

and later being generated through interaction with the coordination diagram.

A.4 Detailed Design and Implementation Plan

This section presents the detailed implementation plan for the Little-JIL Elaborator

and the PLAGE framework and it contains the proposed interface design for each module.

We begin with some high-level notes about integrating with the existing infrastructure

whenever applicable, and present and an outline of features. These are, whenever possi-

ble, laid out in incremental fashion so in most cases a feature A that precedes a feature B

indicates that B depends on A in some way (the semantics of these connections, e.g. uses,

extends, aggregates, and so on, are further clarified when necessary). Moreover, features

are ordered by criticality, so that the first few are necessary for a functional prototype,

while latter ones are more concerned with improving the user interface (UI) or user ex-

perience (UX) rather than the functionality of the system. Points of interface with the

existing framework are indicated in italics in the writing below.
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A.4.1 Middleware: Little-JIL Internal Form integration

Feature: resolving an elaboration step to one or more elaborations. Recall that there is

a resolution activity that happens every time a Little-JIL diagram uses a reference step, and

this resolution activity needs exactly one declaration of the reference step and throws a

MultipleResolutionsException if there is more than one within declaration a single mod-

ule. For the purposes of the Elaborator, if a reference step is designated as an elaboration

step, then the resolution activity is overridden to allow for this case specifically. The Re-

solver is designed to resolve based on a String input, so there were no changes made to

the interface for the Little-JIL Elaborator. The modified resolution activity still returns

a single item to conform to interface well-formedness constraints. For requests where a

single fragment is requested (using the best flag as described) or matches the specification,

this is trivial. For requests allowing multiple fragments, a newly constructed choice step

is returned, onto which all matching cions are grafted as outlined in Chapter 4.

Interfaces with: Little-JIL Internal Form: laser.lj.ast.resolved; Little-JIL XML: laser.lj.

xml.resolved, requires extension of laser.lj.xml.resolved.Resolver

A.4.2 Database access

Using the one ljx file per elaboration step, one module per elaboration scheme out-

lined above allows for straightforward indexing using a frontend relational database. As

discussed, the process fragment repository would provide an access mechanism to any

and all elaborations as needed, but this backend storage schema provides additional con-

venience for the process developers. When adding new elaborations to the repository,

there is already a clear place for the new fragment to go (check if there exists a process

definition for that step according to the predefined naming scheme and if so, add a new

module to it; else create a new appropriately named process definition to match the step

being elaborated first, then create a new within). When retrieving fragments, the access

pointers to all fragments would be appropriately stored in the database that would return
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a set of subprocesses that match the request. A relational database seems like a reasonable

way to store the attributes of the different elaborations and pointers to them. Since the

file names can be constructed according to the schema outlined earlier, the prototype can

be tested incrementally without initially using a database server as an intermediary and

using direct access to process fragments. Given process fragments may have multiple at-

tributes, a new schema was developed to ensure that all attributes are stored separately and

that when necessary, a LEFT JOIN operation on the two tables allows for fast retrieval

and useful indexing.

Interfaces with: Little-JIL XML laser/lj/xml/PersistentStoreInterfaceImpl

A.4.3 Elaboration Selection

After looking into several different parsing technologies including ANTLR, Xerces,

and Java DOM, we selected ANTLR. ANTLR (ANother Tool for Language Recognition)

was used to build a customized parser based on a well-defined grammar for the configu-

ration file. ANTLR also supports the specification of arbitrarily complex grammars and

provides a suite of tools both for grammar and for parser development and testing. An-

other option was to specify the file using a predefined XML schema in line with current

Little-JIL implementation (note that most of the information about a process is stored as

metadata and not as structured XML and therefore the XML representation of a Little-

JIL process is not human-readable). Defining an XML schema would have indicated using

an XML-specific parsing tool such as Xerces. Xerces provides flexible parsing and wrap-

pers for a lot of the parsing functionality found in Java. Since Java already provides some

built-in support for XML parsing, using a DOM (Document Object Model) XML may

have been sufficient. The problem with choosing either of these technologies was that

they would not be easily extensible with respect to future representations, so if the pro-

cess or any of the elaboration specifications were to be encoded in another language, the

system would break. Perhaps more important, looking forward, using a simpler technol-
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ogy would confine PLAGE to being a Little-JIL-only family generator. ANTLR, on the

other hand, provides for an extensible solution and would allow for the system to be more

easily tailored to other process definition languages if desired.

Interfaces with: JulietteRuntime, requires changes to laser/juliette/runtime/Runtime

Configurator

Requires extensions to the configuration object; requires development of simple gram-

mar and parser that the RuntimeConfigurator will connect to as services.

A.4.4 Frontend and UX concerns

Once the configuration file works, the graphic editor would have to do four main

things:

1. Implement a properties window for references, which is currently not supported In-

terfaces with: Visual-JIL plugin, requires changes to src/laser/little-jil/eclipse/property-

sources

2. Provide a checkbox in the properties window to mark a reference step as an elab-

oration step Interfaces with: Visual-JIL plugin, requires changes to src/laser/little-

jil/eclipse/property-sources

3. Provide a wizard to specify the request for each elaboration step. Interfaces with:

Visual-JIL plugin, requires changes to src/laser/little-jil/eclipse/dialogs

4. Navigate to a step declaration by clicking on a reference (already supported in the

latest version of Visual-JIL) Interfaces with: Little-JIL Search plugin, requires changes

to src/laser/little-jil/eclipse/search

5. Generate a diagram which includes the specified elaborations by grafting a choice

tree onto an elaboration step (optional—already supported in the Little-JIL Elabo-

rator)
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Interfaces with: Little-JIL Search plugin, requires changes to src/laser/little-jil/eclipse/

search, Visual-JIL plugin, requires changes to src/laser/little-jil/eclipse/views, src/laser/

little-jil/eclipse/views/resolved

Notes on the software development plan and hierarchical decomposition by feature

At a high level, the prioritization for the development plan of PLAGE would look

like this:

1. Resolution

2. Elaboration selection

3. Repository access

4. UI/UX

Where each later activity is lower precedence than all of the earlier activities, and de-

pends on some or all earlier features to function correctly. More detailed notes on each

activity are included in the previous section, the following plan focuses largely on the or-

der or incremental development. Most of the interface specifications have already been

completed. Major modules of PLAGE are also in place as indicated below but need the

middleware to be integrated into the system.

1. Resolution

(a) Extend laser.lj.xml.resolved.Resolver to override the resolution activity for

reference steps that has been annotated to be elaboration steps so that they re-

solve to more than one option. Changes in the Little-JIL Internal Form: laser.lj.ast.

resolved and significant changes to Little-JIL XML: laser.lj.xml.resolved.

i. Case I: Allow only one elaboration and ensure that existing test cases pass

(this is no different from regular reference steps). Implementation com-

plete.
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ii. Case II: Allow more than one elaboration and create additional test cases

to ensure that multiple elaborations are getting grafted correctly. Imple-

mentation complete.

A. Create a generation activity that generates the choice tree that is to be

grafted. Implementation complete.

B. Copy/union the interface declarations for the children steps Imple-

mentation complete.

C. For integration testing, developer can hardcode in test elaborations

so that the configuration file is not necessary yet and pass those into

the Resolver

2. Elaboration selection

(a) Develop a grammar matching the specification language for the selection of

appropriate elaborations. Implementation complete.

(b) Develop test cases to ensure selections are being made correctly. Implementa-

tion complete.

(c) Develop parser for the grammar. Ensure parser parses requests correctly, re-

sulting in correct selections (these selections can be made from memory with-

out a database to begin with). Implementation complete.

i. Create a setup as outlined above of .ljx files and corresponding modules

to contain the elaborations we are testing with.

(d) Integrate elaboration selection with resolution.

i. Create a configuration file containing elaboration steps.

ii. The file should specify steps and request specifications to be parsed.

iii. Integrate file into .jul file (Juliette Runtime laser.juliette.runtime.Runtime

Configurator.java) → this is needed only for runtime and exporting the

process specification and is not necessary for a functional PLAGE system
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(e) Eclipse plugin development

• Modifying the resolver Implementation complete.

• Adding a preference pane/wizard for specifying configuration file

• Building configuration file editor

• Grafting cions to the common core and debugging configuration setup

Implementation complete.

• Building static visualizer of the resolved structure of fragments, having

fragments refer back to original diagram specifications Implementation

complete.

3. Repository access

(a) Setup a database schema. Implementation complete.

(b) Ensure the database can be accessed by the Process Fragment Manager.

(c) Integrate the database access with the existing .ljx files and corresponding mod-

ules from the previous activity.

(d) Integrate database access with elaboration selection.

(e) Integrate database access and elaboration selection with the resolution activity.

4. UI/UX

(a) Build a properties window for reference steps, which are currently treated as

different from other step kinds in the Visual-JIL editor and do not have user-

modifiable properties (changes to src/laser/little-jil/eclipse/property-sources,

src/laser/little-jil/eclipse/dialogs).

(b) Provide a checkbox in the properties window to mark a reference step as an

elaboration step (changes to src/laser/little-jil/eclipse/property-sources).
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(c) Integrate with the elaboration selection activity to allow for the parser to ac-

cess this information from the GUI and augment the configuration file with

it when parsing a request.

(d) Provide a wizard to specify the request for each elaboration step (changes to

src/laser/little-jil/eclipse/dialogs).

(e) Integrate with the elaboration selection activity to allow for the parser to ac-

cess the request specification from the GUI and build the elaboration selection

configuration file from scratch.

(f) Navigate to a step declaration by clicking on a reference (supported by latest

Visual-JIL).

(g) Generate a diagram which includes the specified elaborations by grafting a

choice tree onto an elaboration step—in the Little-JIL Elaborator this func-

tionality is already supported with a simple drag-and-drop Implementation

complete.
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APPENDIX B

DEFINITIONS OF TECHNICAL TERMS

• An abstract common core (ACC) is an incomplete process definition where one or

more reference steps are denoted to be elaboration steps.

• An elaboration step is a special kind of reference step that can resolve to more than

one declaration. It stitch can specify any number of artifacts as long as they cannot

conflict with the declaration to which the reference resolves.

• Resolution is the process of replacing reference steps with explicit declarations. Reg-

ular reference steps resolve to a single declaration. Elaboration steps involve an elab-

oration activity specified as follows:

– A process family is populated through a generation activity. The generation

activity takes in an abstract common core as a progenitor, a family request

specification, and a repository of abstractions that will be used to satisfy the

request.

– A cion is an abstraction specification that is “grafted” onto an elaboration step

in the abstract common core in the generation activity. Once all appropri-

ate (i.e. matching the request specification) cions have been grafted, a process

family has been generated or instantiated. Note that different families can be

generated from the same progenitor abstract common core by varying the re-

quest specification, the repository used, or both.

A cion takes one of two forms: it is either a single abstraction from the repos-

itory (in the case when “best” was requested or that abstraction was only one
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matching the specification), or it is a choice step newly generated to have all

matching abstractions as its children. In both cases, the cion’s interfaces are

bound to match the elaboration step’s inputs and outputs unlike an abstrac-

tion from the repository.

Note the exceptional case when there may be no abstractions that match the

requested specification and therefore no abstractions to generate a cion: in that

case, one should generate a “dummy” cion essentially consisting of a single leaf

step with the appropriate inputs and outputs and a matching name (one could

think of a reference step being replaced by a simple leaf step, which essentially

tells the process that the details of how this step is to be executed are left up to

the assigned agent).

• The abstraction repository contains two types of abstractions: process fragment elab-

orations and agent behavior elaborations. Each abstraction has a formal interface

that is not bound to artifact instances (i.e. to specific values of inputs and outputs)

until the abstraction becomes (part of) a cion.

136



APPENDIX C

THE SPLC CASE STUDY EXTENDED PROCESS FAMILY

The extended process family based on the SPLC case study used as a reference point

in the scalability experiments presented in Chapter 5 is presented in its entirety here as an

HTML narration. This is the complete family including all elaborations used for the eval-

uation, and is presented as HTML in order to show its artifact and resource specifications.

The table of contents including an indented outline of the entire process follows.
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Table Of Contents
conduct election

pre-polling activities
register one voter

verify eligible
verify voter is a resident of the correct precint

request utility bill or other proof of residence
present proof of residence
verify proof of residence

confirm voter's age is at least 18

complete the registration

prepare for and conduct election at precinct
pre-polling checks

check voting machines
assure totals are initialized to zero

check if voting rolls are present
check if supplies are present
check if ballots are present

authenticate and vote
perform pre-vote authentication

state name
confirm voter's residence and name against voting roll
verify voter has not voted
sign voting roll

check off voter as voted
issue correct ballot type

issue regular ballot
issue provisional ballot

record voter preference
record voter preference, elb 0

fill out paper ballot
submit ballot

submit ballot, elb 0
tamper with ballot
record ballot

submit ballot, elb 1
record ballot
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submit ballot, elb 2
fake ballot
record one ballot

record voter ballot
record election official ballot

handle spoiled paper ballot
let voter have another paper ballot

issue correct ballot type
fill out paper ballot

let voter have third paper ballot
let voter have another paper ballot

record voter preference, elb 1
fill out electronic ballot

make selections
confirm selections

submit e-ballot
submit e-ballot, elb 0

commit to repository
issue unique id
print receipt

submit e-ballot, elb 1
commit to repository
print receipt

submit e-ballot, elb 2
commit to repository

submit e-ballot, elb 3
fake e-ballot
record one e-ballot

record voter e-ballot
record DRE e-ballot

print receipt

handle faulty voting machine exception
let voter have another electronic ballot

issue correct ballot type
fill out electronic ballot

let voter vote at another machine
record voter preference
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handle spoiled electronic ballot
let voter have another electronic ballot
let voter have third ballot

let voter have another electronic ballot

handle wrong candidate selected
record voter preference, elb 1

handle voter already checked off exception
let voter vote with provisional ballot

issue provisional ballot
record voter preference

handle voter not on voting roll exception
let voter vote with provisional ballot

add unused ballots to repository
count all ballots in teams of three and reconcile with ballot cover sheet

handle faulty voting machine

count votes
count votes from all precincts

perform ballot and vote count
perform reconciliations

reconcile voting roll and cover sheet
reconcile total ballots and counted ballots

scan votes
confirm tallies match
add vote count to vote total

handle discrepancy
rescan

scan votes
override software

manually count votes
read out voter preference
confirm voter preference is read correctly
tally votes

increment and announce appropriate tally
increment and announce appropriate tally

perform random audit
select precincts for 1% mandatory manual audit
manually count votes
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confirm audit tallies are consistent

report vote totals to Secretary of State

recount votes
recount selected ballots

count paper ballots in teams of three
manually count votes

check sum consistency
confirm sum matches total

handle recount discrepancy

report vote totals to Secretary of State
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Additionally, all the steps within the extended SPLC case study process family are

defined along with their corresponding artifact and resource specifications, and any ex-

ceptional control flow in detail below.
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Legend       Index of step names

Conduct Election

  Before starting "conduct election", the resource agent must be acquired.

   To "conduct election", pre-polling activities (This step must be done at least once.) (The cardinality of this
step is controlled by the following parameter: agent.) , then prepare for and conduct election at precinct (This step
must be done at least once.) (The cardinality of this step is controlled by the following parameter: agent.) , and
finally count votes.

Pre-Polling Activities

  The votingRoll is required to "pre-polling activities" and may be modified during this step.

  Before starting "pre-polling activities", the resource agent must be acquired.

   To "pre-polling activities", register one voter (This step must be done at least once.) (The cardinality of this
step is controlled by the following parameter: agent.) .

Register One Voter

  The votingRoll is required to "register one voter" and may be modified during this step.

  Before starting "register one voter", the resource agent must be acquired.

   To "register one voter", verify eligible and then complete the registration.

Verify Eligible

  Before starting "verify eligible", the resource agent must be acquired.

  The resource voter is used in this step.

   To "verify eligible", the following need to be done in any order (including simultaneously), verify voter is a
resident of the correct precint and confirm voter's age is at least 18.

E  If Voter Ineligible Exception, then complete the step "register one voter".

143



Verify Voter Is A Resident Of The Correct Precint

  The resources voter and agent are used in this step.

   To "verify voter is a resident of the correct precint", request utility bill or other proof of residence.

E  If Voter Ineligible Exception, then rethrow the exception Voter Ineligible Exception.

Request Utility Bill Or Other Proof Of Residence

  The resources voter and agent are used in this step.

   To "request utility bill or other proof of residence", present proof of residence and then verify proof of
residence.

E  If Voter Ineligible Exception, then rethrow the exception Voter Ineligible Exception.

Present Proof Of Residence

  Successful completion of the step "present proof of residence" should yield the proofOfResidence.

  The resource agent is used in this step.

Verify Proof Of Residence

  The proofOfResidence is required to "verify proof of residence".

  The resource agent is used in this step.

E  If Voter Ineligible Exception, then rethrow the exception Voter Ineligible Exception.

Confirm Voter's Age Is At Least 18

  The resource agent is used in this step.
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E  If Voter Ineligible Exception, then rethrow the exception Voter Ineligible Exception.

Complete The Registration

  The votingRoll is required to "complete the registration" and may be modified during this step.

  Before starting "complete the registration", the resource agent must be acquired.

Prepare For And Conduct Election At Precinct

  The coverSheet, votingRoll, and repository are required to "prepare for and conduct election at precinct" and
may be modified during this step.

  Before starting "prepare for and conduct election at precinct", the resource agent must be acquired.

   To "prepare for and conduct election at precinct", the following need to be done in the listed order

pre-polling checks
authenticate and vote

This step must be done at least once.
The cardinality of this step is controlled by the following parameter: agent.

add unused ballots to repository
count all ballots in teams of three and reconcile with ballot cover sheet

Pre-Polling Checks

  The votingRoll and repository are required to "pre-polling checks".

  Successful completion of the step "pre-polling checks" should yield the coverSheet.

  Before starting "pre-polling checks", the resource agent must be acquired.

   To "pre-polling checks", the following need to be done in any order (including simultaneously),

check voting machines
This step must be done at least once.
The cardinality of this step is controlled by the following parameter: agent.

check if voting rolls are present
check if supplies are present
check if ballots are present
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E  If Faulty Voting Machine Exception, then handle faulty voting machine and then complete "prepare for and
conduct election at precinct".

Check Voting Machines

  The voteRepository is required to "check voting machines".

  Before starting "check voting machines", the resource agent must be acquired.

   To "check voting machines", assure totals are initialized to zero.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.

Assure Totals Are Initialized To Zero

  The voteRepository is required to "assure totals are initialized to zero".

  Before starting "assure totals are initialized to zero", the resource agent must be acquired.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.

Check If Voting Rolls Are Present

  The votingRoll is required to "check if voting rolls are present".

  Before starting "check if voting rolls are present", the resource agent must be acquired.

Check If Supplies Are Present

  Before starting "check if supplies are present", the resource agent must be acquired.

Check If Ballots Are Present

  The voteRepository is required to "check if ballots are present".
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  Successful completion of the step "check if ballots are present" should yield the coverSheet.

  Before starting "check if ballots are present", the resource agent must be acquired.

Authenticate And Vote

  The votingRoll and repository are required to "authenticate and vote" and may be modified during this step.

  Before starting "authenticate and vote", the resource agent must be acquired.

   To "authenticate and vote", the following need to be done in the listed order

perform pre-vote authentication
check off voter as voted
issue correct ballot type
record voter preference

Perform Pre-Vote Authentication

  The votingRoll and voterName are required to "perform pre-vote authentication" and may be modified during
this step.

  Before starting "perform pre-vote authentication", the resource agent must be acquired.

  The resource voter is used in this step.

   To "perform pre-vote authentication", the following need to be done in the listed order

state name
confirm voter's residence and name against voting roll
verify voter has not voted
sign voting roll

E  If Voter Not Registered Exception, then handle voter not on voting roll exception and then complete
"authenticate and vote".

E  If Voter Already Checked Off Exception, then handle voter already checked off exception and then complete
"authenticate and vote".

State Name
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  Successful completion of the step "state name" should yield the voterName.

  The resource agent is used in this step.

Confirm Voter's Residence And Name Against Voting Roll

  The votingRoll and voterName are required to "confirm voter's residence and name against voting roll".

  The resource agent is used in this step.

E  If Voter Not Registered Exception, then rethrow the exception Voter Not Registered Exception.

Verify Voter Has Not Voted

  The votingRoll and voterName are required to "verify voter has not voted".

  The resource agent is used in this step.

E  If Voter Already Checked Off Exception, then rethrow the exception Voter Already Checked Off Exception.

Sign Voting Roll

  The votingRoll is required to "sign voting roll" and may be modified during this step.

  The resource agent is used in this step.

Check Off Voter As Voted

  The voterName is required to "check off voter as voted".

  The votingRoll is required to "check off voter as voted" and may be modified during this step.

  Before starting "check off voter as voted", the resource agent must be acquired.
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Issue Correct Ballot Type

  Successful completion of the step "issue correct ballot type" should yield the ballot.

  Before starting "issue correct ballot type", the resource agent must be acquired.

   To "issue correct ballot type", the following should be tried, in the listed order until one succeeds, issue
regular ballot or issue provisional ballot.

Issue Regular Ballot

  Successful completion of the step "issue regular ballot" should yield the regularBallot.

  The resource agent is used in this step.

E  If Voter Ineligible For Regular Ballot Exception, then continue with the next step.

Issue Provisional Ballot

  Successful completion of the step "issue provisional ballot" should yield the provisionalBallot.

  The resource agent is used in this step.

Record Voter Preference

  The voterPreference is required to "record voter preference".

  The repository is required to "record voter preference" and may be modified during this step.

  The resource agent is used in this step.

   To "record voter preference", one of the following should be chosen to perform: record voter preference, elb 0
or record voter preference, elb 1.

Record Voter Preference, Elb 0
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  The voterPreference is required to "record voter preference, elb 0".

  The repository is required to "record voter preference, elb 0" and may be modified during this step.

  The resource agent is used in this step.

   To "record voter preference, elb 0", fill out paper ballot and then submit ballot.

Fill Out Paper Ballot

  The voterPreference is required to "fill out paper ballot" and may be modified during this step.

  The resource agent is used in this step.

E  If Voter Spoiled Ballot Exception, then handle spoiled paper ballot and then continue with the next step.

Submit Ballot

  The voterPreference is required to "submit ballot".

  The repository is required to "submit ballot" and may be modified during this step.

  Before starting "submit ballot", the resource agent must be acquired.

   To "submit ballot", one of the following should be chosen to perform: submit ballot, elb 0, submit ballot, elb 1,
or submit ballot, elb 2.

Submit Ballot, Elb 0

  The voterPreference is required to "submit ballot, elb 0".

  The repository is required to "submit ballot, elb 0" and may be modified during this step.

  Before starting "submit ballot, elb 0", the resource agent must be acquired.
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   To "submit ballot, elb 0", tamper with ballot and then record ballot.

Tamper With Ballot

  The voterPreference is required to "tamper with ballot" and may be modified during this step.

Record Ballot

  The voterPreference is required to "record ballot".

  The repository is required to "record ballot" and may be modified during this step.

Submit Ballot, Elb 1

  The voterPreference is required to "submit ballot, elb 1".

  The repository is required to "submit ballot, elb 1" and may be modified during this step.

  Before starting "submit ballot, elb 1", the resource agent must be acquired.

   To "submit ballot, elb 1", record ballot.

Submit Ballot, Elb 2

  The voterPreference is required to "submit ballot, elb 2".

  The repository is required to "submit ballot, elb 2" and may be modified during this step.

  Before starting "submit ballot, elb 2", the resource agent must be acquired.

   To "submit ballot, elb 2", fake ballot and then record one ballot.

Fake Ballot

  Successful completion of the step "fake ballot" should yield the fakedVoterPreference.
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Record One Ballot

  The fakedVoterPreference and voterPreference are required to "record one ballot".

  The repository is required to "record one ballot" and may be modified during this step.

   To "record one ballot", one of the following should be chosen to perform: record voter ballot or record election
official ballot.

Record Voter Ballot

  The voterPreference is required to "record voter ballot".

  The repository is required to "record voter ballot" and may be modified during this step.

Record Election Official Ballot

  The fakedVoterPreference is required to "record election official ballot".

  The repository is required to "record election official ballot" and may be modified during this step.

Handle Spoiled Paper Ballot

  The voterPreference is required to "handle spoiled paper ballot" and may be modified during this step.

   To "handle spoiled paper ballot", the following should be tried, in the listed order until one succeeds, let voter
have another paper ballot or let voter have third paper ballot.

Let Voter Have Another Paper Ballot

  Successful completion of the step "let voter have another paper ballot" should yield the newBallot.

  Before starting "let voter have another paper ballot", the resources voter and agent must be acquired.

   To "let voter have another paper ballot", issue correct ballot type and then fill out paper ballot.
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E  If Voter Spoiled Ballot Exception, then continue with the next step.

Let Voter Have Third Paper Ballot

  The voterPreference is required to "let voter have third paper ballot" and may be modified during this step.

   To "let voter have third paper ballot", let voter have another paper ballot.

Record Voter Preference, Elb 1

  The voterPreference is required to "record voter preference, elb 1".

  The repository is required to "record voter preference, elb 1" and may be modified during this step.

  The resource agent is used in this step.

   To "record voter preference, elb 1", fill out electronic ballot and then submit e-ballot.

Fill Out Electronic Ballot

  The voterPreference is required to "fill out electronic ballot" and may be modified during this step.

  The resource agent is used in this step.

   To "fill out electronic ballot", make selections and then confirm selections.

E  If Voter Spoiled Ballot Exception, then handle spoiled electronic ballot and then continue with the next step.

E  If Wrong Candidate Selected, then handle wrong candidate selected and then complete "record voter
preference, elb 1".

Make Selections

  Successful completion of the step "make selections" should yield the voterPreference.

Confirm Selections
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  The voterPreference is required to "confirm selections" and may be modified during this step.

E  If Voter Spoiled Ballot Exception, then rethrow the exception Voter Spoiled Ballot Exception.

E  If Wrong Candidate Selected, then rethrow the exception Wrong Candidate Selected.

Submit E-Ballot

  The voterPreference is required to "submit e-ballot".

  The repository is required to "submit e-ballot" and may be modified during this step.

   To "submit e-ballot", one of the following should be chosen to perform:

submit e-ballot, elb 0
submit e-ballot, elb 1
submit e-ballot, elb 2
submit e-ballot, elb 3

E  If Faulty Voting Machine Exception, then handle faulty voting machine exception and then complete "record
voter preference, elb 1".

Submit E-Ballot, Elb 0

  The voterPreference is required to "submit e-ballot, elb 0".

  The repository is required to "submit e-ballot, elb 0" and may be modified during this step.

  Before starting "submit e-ballot, elb 0", the resource agent must be acquired.

   To "submit e-ballot, elb 0", commit to repository, then issue unique id, and finally print receipt.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.

Commit To Repository

  The voterPreference is required to "commit to repository".
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  The repository is required to "commit to repository" and may be modified during this step.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.

Issue Unique Id

  The voterPreference is required to "issue unique id".

Print Receipt

  The voterPreference is required to "print receipt".

Submit E-Ballot, Elb 1

  The voterPreference is required to "submit e-ballot, elb 1".

  The repository is required to "submit e-ballot, elb 1" and may be modified during this step.

   To "submit e-ballot, elb 1", commit to repository and then print receipt.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.

Submit E-Ballot, Elb 2

  The voterPreference is required to "submit e-ballot, elb 2".

  The repository is required to "submit e-ballot, elb 2" and may be modified during this step.

  Before starting "submit e-ballot, elb 2", the resource agent must be acquired.

   To "submit e-ballot, elb 2", commit to repository.

E  If Faulty Voting Machine Exception, then rethrow the exception Faulty Voting Machine Exception.
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Submit E-Ballot, Elb 3

  The voterPreference is required to "submit e-ballot, elb 3".

  The repository is required to "submit e-ballot, elb 3" and may be modified during this step.

   To "submit e-ballot, elb 3", fake e-ballot, then record one e-ballot, and finally print receipt.

Fake E-Ballot

  Successful completion of the step "fake e-ballot" should yield the fakedVoterPreference.

Record One E-Ballot

  The fakedVoterPreference and voterPreference are required to "record one e-ballot".

  The repository is required to "record one e-ballot" and may be modified during this step.

   To "record one e-ballot", one of the following should be chosen to perform: record voter e-ballot or record
DRE e-ballot.

Record Voter E-Ballot

  The voterPreference is required to "record voter e-ballot".

  The repository is required to "record voter e-ballot" and may be modified during this step.

Record DRE E-Ballot

  The fakedVoterPreference is required to "record DRE e-ballot".

  The repository is required to "record DRE e-ballot" and may be modified during this step.

Handle Faulty Voting Machine Exception
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   To "handle faulty voting machine exception", let voter have another electronic ballot and then let voter vote at
another machine.

Let Voter Have Another Electronic Ballot

  Successful completion of the step "let voter have another electronic ballot" should yield the newBallot.

  Before starting "let voter have another electronic ballot", the resources voter and agent must be acquired.

   To "let voter have another electronic ballot", issue correct ballot type and then fill out electronic ballot.

E  If Voter Spoiled Ballot Exception, then rethrow the exception Voter Spoiled Ballot Exception.

Let Voter Vote At Another Machine

  The voterPreference is required to "let voter vote at another machine".

   To "let voter vote at another machine", record voter preference.

Handle Spoiled Electronic Ballot

  The voterPreference is required to "handle spoiled electronic ballot" and may be modified during this step.

   To "handle spoiled electronic ballot", the following should be tried, in the listed order until one succeeds, let
voter have another electronic ballot or let voter have third ballot.

Let Voter Have Third Ballot

  The voterPreference is required to "let voter have third ballot" and may be modified during this step.

   To "let voter have third ballot", let voter have another electronic ballot.

Handle Wrong Candidate Selected

  The voterPreference is required to "handle wrong candidate selected".
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  The repository is required to "handle wrong candidate selected" and may be modified during this step.

  The resource voter is used in this step.

   To "handle wrong candidate selected", record voter preference, elb 1.

Handle Voter Already Checked Off Exception

  The repository and ballot are required to "handle voter already checked off exception" and may be modified
during this step.

  Before starting "handle voter already checked off exception", the resource agent must be acquired.

  The resource voter is used in this step.

   To "handle voter already checked off exception", let voter vote with provisional ballot.

Let Voter Vote With Provisional Ballot

  The repository and ballot are required to "let voter vote with provisional ballot" and may be modified during
this step.

  The resources voter and agent are used in this step.

   To "let voter vote with provisional ballot", issue provisional ballot and then record voter preference.

Handle Voter Not On Voting Roll Exception

  The repository and ballot are required to "handle voter not on voting roll exception" and may be modified
during this step.

  Before starting "handle voter not on voting roll exception", the resource agent must be acquired.

  The resource voter is used in this step.

   To "handle voter not on voting roll exception", let voter vote with provisional ballot.

158



Add Unused Ballots To Repository

  The coverSheet and repository are required to "add unused ballots to repository" and may be modified during
this step.

Count All Ballots In Teams Of Three And Reconcile With Ballot
Cover Sheet

  The voteRepository is required to "count all ballots in teams of three and reconcile with ballot cover sheet".

  The coverSheet is required to "count all ballots in teams of three and reconcile with ballot cover sheet" and
may be modified during this step.

Handle Faulty Voting Machine

  Before starting "handle faulty voting machine", the resource agent must be acquired.

Count Votes

  The coverSheet, repository, and roster are required to "count votes".

  The totalTallies is required to "count votes" and may be modified during this step.

  Before starting "count votes", the resource agent must be acquired.

   To "count votes", count votes from all precincts.

E  If Vote Count Inconsistent Exception, then recount votes and then complete "conduct election".

Count Votes From All Precincts

  The coverSheet, repository, and roster are required to "count votes from all precincts".

  The totalTallies is required to "count votes from all precincts" and may be modified during this step.
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  The resource agent is used in this step.

   To "count votes from all precincts", perform ballot and vote count (This step must be done at least once.)
(The cardinality of this step is controlled by the following parameter: agent.) , then perform random audit, and
finally report vote totals to Secretary of State.

E  If Vote Count Inconsistent Exception, then rethrow the exception Vote Count Inconsistent Exception.

Perform Ballot And Vote Count

  The coverSheet, repository, and roster are required to "perform ballot and vote count".

  Successful completion of the step "perform ballot and vote count" should yield the tallies and totalTallies.

  Before starting "perform ballot and vote count", the resource agent must be acquired.

   To "perform ballot and vote count", the following need to be done in the listed order

perform reconciliations
scan votes
confirm tallies match
add vote count to vote total

Perform Reconciliations

  The coverSheet, repository, and roster are required to "perform reconciliations ".

   To "perform reconciliations ", reconcile voting roll and cover sheet and then reconcile total ballots and
counted ballots.

Reconcile Voting Roll And Cover Sheet

  The coverSheet and roster are required to "reconcile voting roll and cover sheet".

  Before starting "reconcile voting roll and cover sheet", the resource agent must be acquired.

Reconcile Total Ballots And Counted Ballots
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  The coverSheet and repository are required to "reconcile total ballots and counted ballots".

  Before starting "reconcile total ballots and counted ballots", the resource agent must be acquired.

Scan Votes

  The repository is required to "scan votes".

  Successful completion of the step "scan votes" should yield the tallies.

  Before starting "scan votes", the resource agent must be acquired.

Confirm Tallies Match

  The coverSheet is required to "confirm tallies match".

  The tallies is required to "confirm tallies match" and may be modified during this step.

  Before starting "confirm tallies match", the resource agent must be acquired.

E  If Vote Count Inconsistent Exception, then handle discrepancy and then continue with the next step.

Add Vote Count To Vote Total

  The tallies is required to "add vote count to vote total".

  The totalTallies is required to "add vote count to vote total" and may be modified during this step.

  Before starting "add vote count to vote total", the resource agent must be acquired.

Handle Discrepancy

  The repository is required to "handle discrepancy".

  The tallies is required to "handle discrepancy" and may be modified during this step.
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  Before starting "handle discrepancy", the resource agent must be acquired.

   To "handle discrepancy", one of the following should be chosen to perform: rescan or manually count votes.

Rescan

  The repository is required to "rescan".

  Successful completion of the step "rescan" should yield the tallies.

   To "rescan", scan votes and then override software.

Override Software

  Before starting "override software", the resource agent must be acquired.

Manually Count Votes

  The voteRepository is required to "manually count votes".

  The tallies is required to "manually count votes" and may be modified during this step.

   To "manually count votes", read out voter preference, then confirm voter preference is read correctly, and
finally tally votes.

Read Out Voter Preference

  The voterPreference is required to "read out voter preference".

Confirm Voter Preference Is Read Correctly

  The voterPreference is required to "confirm voter preference is read correctly".

Tally Votes
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  The tallies is required to "tally votes" and may be modified during this step.

   To "tally votes", the following need to be done in any order (including simultaneously), increment and
announce appropriate tally and increment and announce appropriate tally.

E  If Vote Count Inconsistent Exception, then restart the step "manually count votes".

Increment And Announce Appropriate Tally

  The tallies is required to "increment and announce appropriate tally" and may be modified during this step.

  The resource agent:team is used in this step.

E  If Vote Count Inconsistent Exception, then rethrow the exception Vote Count Inconsistent Exception.

Perform Random Audit

  The repository is required to "perform random audit".

  The tallies and auditTallies are required to "perform random audit" and may be modified during this step.

   To "perform random audit", select precincts for 1% mandatory manual audit, then manually count votes (The
cardinality of this step is controlled by the following parameter: voteRepository.) , and finally confirm audit tallies
are consistent.

E  If Vote Count Inconsistent Exception, then rethrow the exception Vote Count Inconsistent Exception.

Select Precincts For 1% Mandatory Manual Audit

  The tallies is required to "select precincts for 1% mandatory manual audit" and may be modified during this
step.

Confirm Audit Tallies Are Consistent

  The tallies and auditTallies are required to "confirm audit tallies are consistent".

E  If Vote Count Inconsistent Exception, then rethrow the exception Vote Count Inconsistent Exception.
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Report Vote Totals To Secretary Of State

  The tallies is required to "report vote totals to Secretary of State".

  Before starting "report vote totals to Secretary of State", the resource agent must be acquired.

Recount Votes

  The repository and originalTallies are required to "recount votes".

  Before starting "recount votes", the resource agent must be acquired.

   To "recount votes", recount selected ballots and then report vote totals to Secretary of State.

Recount Selected Ballots

  The repository and originalTallies are required to "recount selected ballots".

  The recountedVoteTotals is required to "recount selected ballots" and may be modified during this step.

  Before starting "recount selected ballots", the resource agent must be acquired.

   To "recount selected ballots", count paper ballots in teams of three and then check sum consistency.

Count Paper Ballots In Teams Of Three

  The repository is required to "count paper ballots in teams of three".

  Successful completion of the step "count paper ballots in teams of three" should yield the
recountedVoteTotals.

   To "count paper ballots in teams of three", manually count votes.

E  If Recount Discrepancy Exception, then handle recount discrepancy and then continue with the next step.
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Check Sum Consistency

  The originalTallies and recountedVoteTotals are required to "check sum consistency".

  The resource agent is used in this step.

   To "check sum consistency", confirm sum matches total.

E  If Recount Discrepancy Exception, then handle recount discrepancy and then continue with the next step.

Confirm Sum Matches Total

  The originalTallies and recountedVoteTotals are required to "confirm sum matches total".

  The resource agent is used in this step.

E  If Recount Discrepancy Exception, then rethrow the exception Recount Discrepancy Exception.

Handle Recount Discrepancy

  The resource agent is used in this step.
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APPENDIX D

EVALUATION ARTIFACTS FOR THE SPLC CASE STUDY
EXTENDED PROCESS FAMILY

For each set of experiments performed and presented in Chapter 5, we present the

resulting artifacts here for completeness.

D.1 Fault Tree Analysis for the Extended SPLC Case Study

Fault tree analysis (FTA) was performed on the extended SPLC process family includ-

ing all abstractions presented in Appendix C above. The hazard under consideration is the

step results are posted on Yolo County Elections Office website receiving the wrong voteCount

artifact (of typeVoteCount.java, specified as a JavaBean using the eponymous artifact mode

in Visual-JIL) as input. This experiment was performed on a 3GHz dual-core Intel Core

i7 processor with 16GB of physical RAM. It was run under an Eclipse virtual machine

(VM) with 4,096MB–16,384MB memory allowance, and the Little-JIL Analysis Toolset

translator was also given a 4,096MB–16,384MB memory allowance.

The fault tree is included below, followed by the corresponding Minimal Cut Sets

(MCSs).
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MCS 1) {

Step “add vote count to vote total” produces wrong “totalTallies”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 2-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “check if ballots are present” produces wrong “coverSheet”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 2-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “check if ballots are present” produces wrong “coverSheet”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 3-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “add unused ballots to repository” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}
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MCS 3-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “add unused ballots to repository” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 4-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record voter ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 4-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record voter ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 5-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”
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}

MCS 5-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 6-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 6-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 7-1) {
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Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 7-2) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterSpoiledBallotException” is thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 7-3) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”
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}

MCS 7-4) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterSpoiledBallotException” is thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 8-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 8-2) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoterSpoiledBallotException” is thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}
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MCS 8-3) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 8-4) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoterSpoiledBallotException” is thrown by step “fill out paper ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 9-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}
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MCS 9-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 10-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 10-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 11-1) {
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Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 11-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “fill out paper ballot”

Step “fill out paper ballot” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 12-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record election official ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 12-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record election official ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”
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}

MCS 13-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “fake ballot” produces wrong “fakedVoterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 13-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “fake ballot” produces wrong “fakedVoterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 14-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 14-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random
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audit”

}

MCS 15-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 15-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 16-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “tamper with ballot” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 16-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “tamper with ballot” produces wrong “voterPreference”
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Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 17-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “commit to repository” produces wrong “repository”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 17-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “commit to repository” produces wrong “repository”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 18-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Step “commit to repository” produces wrong “repository”
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Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 18-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Step “commit to repository” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 19-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “fake e-ballot” produces wrong “fakedVoterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 19-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “fake e-ballot” produces wrong “fakedVoterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}
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MCS 20-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record DRE e-ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 20-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record DRE e-ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 21-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Exception “WrongCandidateSelected” is not thrown by step “handle spoiled electronic

ballot”

Exception “WrongCandidateSelected” is not thrown by step “handle spoiled electronic

ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 21-2) {
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Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Exception “WrongCandidateSelected” is not thrown by step “handle spoiled electronic

ballot”

Exception “WrongCandidateSelected” is not thrown by step “handle spoiled electronic

ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 22-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record voter preference, elb 1” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 22-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record voter preference, elb 1” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 23-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”
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Step “make selections” produces wrong “voterPreference”

Exception “WrongCandidateSelected” is thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 23-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “make selections” produces wrong “voterPreference”

Exception “WrongCandidateSelected” is thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 24-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 24-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”
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Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 25-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Step “confirm selections” produces wrong “voterPreference”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 25-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Step “confirm selections” produces wrong “voterPreference”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 26-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”
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Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 26-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 27-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “confirm selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 27-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “confirm selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”
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Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 28-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 28-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 29-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”
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Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 29-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “issue regular ballot” produces wrong “regularBallot”

Exception “VoterIneligibleForRegularBallotException” is not thrown by step “issue reg-

ular ballot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 30-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 30-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “VoterSpoiledBallotException” is thrown by step “confirm selections”

Step “issue provisional ballot” produces wrong “provisionalBallot”

Exception “VoteCountInconsistentException” is not thrown by step “perform random
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audit”

}

MCS 31-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 31-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Step “make selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 32-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Step “confirm selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random
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audit”

}

MCS 32-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Exception “WrongCandidateSelected” is not thrown by step “confirm selections”

Step “confirm selections” produces wrong “voterPreference”

Exception “VoterSpoiledBallotException” is not thrown by step “confirm selections”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 33-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “record voter e-ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 33-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “record voter e-ballot” produces wrong “repository”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 34-1) {
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Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “commit to repository” produces wrong “repository”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 34-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “commit to repository” produces wrong “repository”

Exception “FaultyVotingMachineException” is not thrown by step “commit to reposi-

tory”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 35-1) {

Exception “VoteCountInconsistentException” is thrown by step “confirm tallies match”

Step “scan votes” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 35-2) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “scan votes” produces wrong “tallies”
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Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 36) {

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 37) {

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 38) {

Step “scan votes” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 39) {
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Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “confirm tallies match” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 40) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “add unused ballots to repository” produces wrong “coverSheet”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 41) {

Exception “VoteCountInconsistentException” is not thrown by step “confirm tallies match”

Step “count all ballots in teams of three and reconcile with ballot cover sheet” produces

wrong “coverSheet”

Exception “VoteCountInconsistentException” is not thrown by step “perform random

audit”

}

MCS 42) {

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Exception “RecountDiscrepancyException” is thrown by step “confirm new totals match”

}
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MCS 43) {

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “RecountDiscrepancyException” is thrown by step “confirm new totals match”

}

MCS 44-1) {

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Exception “RecountDiscrepancyException” is thrown by step “confirm new totals match”

Exception “RecountDiscrepancyException” is not thrown by step “check sum consis-

tency”

}

MCS 44-2) {

Exception “RecountDiscrepancyException” is not thrown by step “confirm new totals

match”

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Exception “RecountDiscrepancyException” is not thrown by step “check sum consis-

tency”

}
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MCS 45-1) {

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “RecountDiscrepancyException” is thrown by step “confirm new totals match”

Exception “RecountDiscrepancyException” is not thrown by step “check sum consis-

tency”

}

MCS 45-2) {

Exception “RecountDiscrepancyException” is not thrown by step “confirm new totals

match”

Exception “VoteCountInconsistentException” is not thrown by step “increment and an-

nounce appropriate tally”

Step “increment and announce appropriate tally” produces wrong “tallies”

Exception “RecountDiscrepancyException” is not thrown by step “check sum consis-

tency”

}

D.2 Finite-State Verification Results for the Extended SPLC Case

Study

The extended SPLC case study was found to violate the property presented in 5.11,

given the bindings in Table D.1.
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Property Event Step Name
voter marks ballot fill out paper ballot
voter marks ballot fill out electronic ballot

insider marks ballot fake ballot
insider marks ballot tamper with ballot
insider marks ballot fake e-ballot

count ballots scan votes

Table D.1. Bindings between steps (all steps are specified to be in state COMPLETED) in
the Little-JIL process family definition for the extended SPLC case study and events in
the property alphabet for the property presented in Figure 5.11.

Figure D.1. The extended SPLC case study process family violated the property under
consideration. The counterexample trace from FLAVERS is included above.
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APPENDIX E

THE VOTE REMOTELY PROCESS FAMILY

The vote remotely process family used for the scalability experiments presented in

Chapter 5 is presented in its entirety here as an HTML narration. This is the complete

family including all elaborations discussed, and is presented as HTML in order to present

its artifact and resource specifications in addition to the coordination diagrams presented

earlier. The table of contents including an indented outline of the entire process follows.
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Table Of Contents
vote remotely

prepare ballots and send them to voters
acquire list of voters
distribute ballots

distribute ballots, elb 0
prepare individual ballot

determine precinct for voter
choose ballot with correct precinct code

fax ballots to voters

distribute ballots, elb 1
prepare DemocracyLive ballots

look up races for voter
generate ballot

email ballot access to voters

distribute ballots, elb 2
prepare individual ballot
email ballots to voters

distribute ballots, elb 3
prepare individual VBM ballot

determine precinct for voter
mark envelope with AVID number
choose ballot with correct precinct code
place ballot in addressed envelope
add envolope to mail batch

hand over ballots to post office
deliver ballots to voters

mark and return ballot
mark and return ballot, elb 0

vote on ballot
mail ballot back

sign envelope
insert ballot
seal and mail envelope

mark and return ballot, elb 1
authenticate on DemocracyLive
vote on ballot

196



submit ballot

mark and return ballot, elb 2
print then vote

print ballot at home
vote on ballot

return ballot
mail ballot back
fax ballot back

sign release of confidentiality
fax ballot

mark and return ballot, elb 3
vote on ballot
fax ballot back

collect ballots
collect ballots, elb 0

process internet ballot that was faxed in
get voter info from cover sheet and retrieve ballot
fax back acknowledgment
validate ballot
duplicate ballot on ballot stock
process ballot

read precinct barcode on ballot
place ballot in batch

scan ballots
run ballots through scanner
keep track of how many ballots from precinct X are in batch Y

rescan ballots' precinct codes

collect ballots, elb 1
process envelope

add envelope to batch
receive and validate envelope

check envelope
compare signature on envelope with signature on file
place red line through signature
add envelope to repository in oder of precinct number

handle missing signature exception
contact putative voter
sign envelope
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handle signature mismatch exception
compare signatures
contact putative voter

open envelope and retrieve ballot

process ballot

scan ballots

collect ballots, elb 2
process email ballot that was mailed in

add envelope to batch
open envelope and retrieve ballot
validate ballot
duplicate ballot on ballot stock
process ballot

scan ballots

collect ballots, elb 3
process internet ballot

retrieve BoD ballot
login to DemocracyLive
print ballot

validate ballot
duplicate ballot on ballot stock

scan internet ballots
run ballots through scanner

count ballots
vote tallies are read off of memory cards from scanners
results are posted on Yolo County Elections Office website
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Additionally, all the steps within the process family are defined along with their cor-

responding artifact and resource specifications, and any exceptional control flow in detail

below.
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Legend       Index of step names

Vote Remotely

   To "vote remotely", the following need to be done in the listed order

prepare ballots and send them to voters
mark and return ballot

This step must be done at least once.
The cardinality of this step is controlled by the following parameter: .

collect ballots
count ballots

Prepare Ballots And Send Them To Voters

  The votingRoll and ballotCollection are required to "prepare ballots and send them to voters" and may be
modified during this step.

   To "prepare ballots and send them to voters", acquire list of voters and then distribute ballots.

Acquire List Of Voters

  Successful completion of the step "acquire list of voters" should yield the votingRoll.

  Before starting "acquire list of voters", the resource agent must be acquired.

Distribute Ballots

  The votingRoll is required to "distribute ballots".

  The ballotCollection is required to "distribute ballots" and may be modified during this step.

   To "distribute ballots", one of the following should be chosen to perform:

distribute ballots, elb 0
distribute ballots, elb 1
distribute ballots, elb 2
distribute ballots, elb 3
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Distribute Ballots, Elb 0

  The votingRoll is required to "distribute ballots, elb 0".

  The ballotCollection is required to "distribute ballots, elb 0" and may be modified during this step.

   To "distribute ballots, elb 0", prepare individual ballot (This step must be done at least once.) (The cardinality
of this step is controlled by the following parameter: voter.) and then fax ballots to voters.

Prepare Individual Ballot

  The voterRegistrationList is required to "prepare individual ballot".

  The ballotCollection is required to "prepare individual ballot" and may be modified during this step.

  Before starting "prepare individual ballot", the resource voter must be acquired.

   To "prepare individual ballot", determine precinct for voter and then choose ballot with correct precinct code.

Determine Precinct For Voter

  The voterRegistrationList is required to "determine precinct for voter".

  The resources observer:team, agent:team, and voter are used in this step.

Choose Ballot With Correct Precinct Code

  Successful completion of the step "choose ballot with correct precinct code" should yield the ballot.

  The ballotCollection is required to "choose ballot with correct precinct code" and may be modified during this
step.

  The resources observer:team, agent:team, and voter are used in this step.

Fax Ballots To Voters
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  The votingRoll and ballotCollection are required to "fax ballots to voters".

  The resources observer:team and agent:team are used in this step.

Distribute Ballots, Elb 1

  The votingRoll is required to "distribute ballots, elb 1".

  The ballotCollection is required to "distribute ballots, elb 1" and may be modified during this step.

   To "distribute ballots, elb 1", prepare DemocracyLive ballots (This step must be done at least once.) (The
cardinality of this step is controlled by the following parameter: voter.) and then email ballot access to voters .

Prepare DemocracyLive Ballots

  The votingRoll is required to "prepare DemocracyLive ballots".

  The ballotCollection is required to "prepare DemocracyLive ballots" and may be modified during this step.

  Before starting "prepare DemocracyLive ballots", the resource voter must be acquired.

   To "prepare DemocracyLive ballots", look up races for voter and then generate ballot.

Look Up Races For Voter

  The votingRoll is required to "look up races for voter" and may be modified during this step.

  The resources observer:team and agent:team are used in this step.

Generate Ballot

  Successful completion of the step "generate ballot" should yield the ballot.

  The ballotCollection is required to "generate ballot" and may be modified during this step.
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  The resources observer:team and agent:team are used in this step.

Email Ballot Access To Voters

  The votingRoll and ballotCollection are required to "email ballot access to voters ".

Distribute Ballots, Elb 2

  The votingRoll is required to "distribute ballots, elb 2".

  The ballotCollection is required to "distribute ballots, elb 2" and may be modified during this step.

   To "distribute ballots, elb 2", prepare individual ballot (This step must be done at least once.) (The cardinality
of this step is controlled by the following parameter: voter.) and then email ballots to voters.

Email Ballots To Voters

  The votingRoll and ballotCollection are required to "email ballots to voters".

Distribute Ballots, Elb 3

  The votingRoll is required to "distribute ballots, elb 3".

  The ballotCollection is required to "distribute ballots, elb 3" and may be modified during this step.

   To "distribute ballots, elb 3", prepare individual VBM ballot (This step must be done at least once.) (The
cardinality of this step is controlled by the following parameter: voter.) , then hand over ballots to post office, and
finally deliver ballots to voters.

Prepare Individual VBM Ballot

  The voterRegistrationList is required to "prepare individual VBM ballot".

  The ballotCollection is required to "prepare individual VBM ballot" and may be modified during this step.

  Before starting "prepare individual VBM ballot", the resource voter must be acquired.

203



   To "prepare individual VBM ballot", the following need to be done in the listed order

determine precinct for voter
mark envelope with AVID number
choose ballot with correct precinct code
place ballot in addressed envelope
add envolope to mail batch

Mark Envelope With AVID Number

  Successful completion of the step "mark envelope with AVID number" should yield the envelope.

  The resources observer:team, agent:team, and voter are used in this step.

Place Ballot In Addressed Envelope

  The ballot is required to "place ballot in addressed envelope".

  The envelope is required to "place ballot in addressed envelope" and may be modified during this step.

  The resources observer:team and agent:team are used in this step.

Add Envolope To Mail Batch

  The envelope is required to "add envolope to mail batch".

  The ballotCollection is required to "add envolope to mail batch" and may be modified during this step.

  The resources observer:team and agent:team are used in this step.

Hand Over Ballots To Post Office

  The voterRegistrationList is required to "hand over ballots to post office".

  The ballotCollection is required to "hand over ballots to post office" and may be modified during this step.
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Deliver Ballots To Voters

  The ballotCollection is required to "deliver ballots to voters" and may be modified during this step.

Mark And Return Ballot

  The ballot is required to "mark and return ballot" and may be modified during this step.

   To "mark and return ballot", one of the following should be chosen to perform:

mark and return ballot, elb 0
mark and return ballot, elb 1
mark and return ballot, elb 2
mark and return ballot, elb 3

Mark And Return Ballot, Elb 0

  The ballot is required to "mark and return ballot, elb 0" and may be modified during this step.

  Before starting "mark and return ballot, elb 0", the resource agent must be acquired.

   To "mark and return ballot, elb 0", vote on ballot and then mail ballot back.

Vote On Ballot

  The ballot is required to "vote on ballot" and may be modified during this step.

  The resource agent is used in this step.

Mail Ballot Back

  The ballot is required to "mail ballot back" and may be modified during this step.

  The resource agent is used in this step.

   To "mail ballot back", sign envelope, then insert ballot, and finally seal and mail envelope.
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Sign Envelope

  The envelope is required to "sign envelope" and may be modified during this step.

  The resource agent is used in this step.

Insert Ballot

  The ballot and envelope are required to "insert ballot" and may be modified during this step.

Seal And Mail Envelope

  The envelope is required to "seal and mail envelope".

Mark And Return Ballot, Elb 1

  The ballot is required to "mark and return ballot, elb 1" and may be modified during this step.

  Before starting "mark and return ballot, elb 1", the resource agent must be acquired.

   To "mark and return ballot, elb 1", authenticate on DemocracyLive, then vote on ballot, and finally submit
ballot.

Authenticate On DemocracyLive

  Successful completion of the step "authenticate on DemocracyLive" should yield the ballot.

  The resource voter is used in this step.

Submit Ballot

  The ballot is required to "submit ballot".

Mark And Return Ballot, Elb 2
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  The ballot is required to "mark and return ballot, elb 2" and may be modified during this step.

  Before starting "mark and return ballot, elb 2", the resource agent must be acquired.

   To "mark and return ballot, elb 2", print then vote and then return ballot.

Print Then Vote

  The ballot is required to "print then vote" and may be modified during this step.

  The resource agent is used in this step.

   To "print then vote", print ballot at home and then vote on ballot.

Print Ballot At Home

  The eBallot is required to "print ballot at home".

  Successful completion of the step "print ballot at home" should yield the paperBallot.

  Before starting "print ballot at home", the resource printer must be acquired.

  The resource agent is used in this step.

Return Ballot

  The ballot is required to "return ballot" and may be modified during this step.

  The resource agent is used in this step.

   To "return ballot", one of the following should be chosen to perform: mail ballot back or fax ballot back.

Fax Ballot Back

  The ballot is required to "fax ballot back" and may be modified during this step.

207



   To "fax ballot back", sign release of confidentiality and then fax ballot.

Sign Release Of Confidentiality

  Successful completion of the step "sign release of confidentiality" should yield the release.

Fax Ballot

  The release is required to "fax ballot".

  The ballot is required to "fax ballot" and may be modified during this step.

Mark And Return Ballot, Elb 3

  The ballot is required to "mark and return ballot, elb 3" and may be modified during this step.

  Before starting "mark and return ballot, elb 3", the resource agent must be acquired.

   To "mark and return ballot, elb 3", vote on ballot and then fax ballot back.

Collect Ballots

  The votingRoll is required to "collect ballots".

  Successful completion of the step "collect ballots" should yield the ballotCount.

  The ballotCollection is required to "collect ballots" and may be modified during this step.

   To "collect ballots", one of the following should be chosen to perform:

collect ballots, elb 0
collect ballots, elb 1
collect ballots, elb 2
collect ballots, elb 3

Collect Ballots, Elb 0
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  The votingRoll is required to "collect ballots, elb 0".

  Successful completion of the step "collect ballots, elb 0" should yield the ballotCount.

  The ballotCollection is required to "collect ballots, elb 0" and may be modified during this step.

   To "collect ballots, elb 0", process internet ballot that was faxed in (This step must be done at least once.)
(The cardinality of this step is controlled by the following parameter: voter.) and then scan ballots.

Process Internet Ballot That Was Faxed In

  The votingRoll is required to "process internet ballot that was faxed in".

  The ballotCollection is required to "process internet ballot that was faxed in" and may be modified during this
step.

  Before starting "process internet ballot that was faxed in", the resource voter must be acquired.

   To "process internet ballot that was faxed in", the following need to be done in the listed order

get voter info from cover sheet and retrieve ballot
fax back acknowledgment
validate ballot
duplicate ballot on ballot stock
process ballot

Get Voter Info From Cover Sheet And Retrieve Ballot

  Successful completion of the step "get voter info from cover sheet and retrieve ballot" should yield the ballot
and release.

  The ballotCollection is required to "get voter info from cover sheet and retrieve ballot" and may be modified
during this step.

E  If Missing Ballot Exception, then complete the step "process internet ballot that was faxed in".

Fax Back Acknowledgment
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  The votingRoll and release are required to "fax back acknowledgment".

Validate Ballot

  The votingRoll and ballot are required to "validate ballot".

E  If Provisional Ballot Exception, then complete the step "process internet ballot that was faxed in".

Duplicate Ballot On Ballot Stock

  The eBallot is required to "duplicate ballot on ballot stock".

  Successful completion of the step "duplicate ballot on ballot stock" should yield the paperBallot.

  Before starting "duplicate ballot on ballot stock", the resource scanner must be acquired.

Process Ballot

  The ballotCollection and ballot are required to "process ballot" and may be modified during this step.

  The resources observer:team and agent:team are used in this step.

   To "process ballot", read precinct barcode on ballot and then place ballot in batch.

Read Precinct Barcode On Ballot

  The ballot is required to "read precinct barcode on ballot" and may be modified during this step.

Place Ballot In Batch

  The ballot is required to "place ballot in batch".

  The ballotCollection is required to "place ballot in batch" and may be modified during this step.

Scan Ballots
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  The ballotCollection is required to "scan ballots".

  Successful completion of the step "scan ballots" should yield the ballotCount.

   To "scan ballots", run ballots through scanner and then keep track of how many ballots from precinct X are in
batch Y.

Run Ballots Through Scanner

  The ballotCollection is required to "run ballots through scanner".

  Successful completion of the step "run ballots through scanner" should yield the ballotCount.

Keep Track Of How Many Ballots From Precinct X Are In Batch Y

  The ballotCollection is required to "keep track of how many ballots from precinct X are in batch Y".

  The ballotCount is required to "keep track of how many ballots from precinct X are in batch Y" and may be
modified during this step.

  Before starting "keep track of how many ballots from precinct X are in batch Y", the resource agent must be
acquired.

E  If Ballots Placed In Wrong Precinct Batch Exception, then rescan ballots' precinct codes and then continue
with the next step.

Rescan Ballots' Precinct Codes

  The ballotCollection is required to "rescan ballots' precinct codes" and may be modified during this step.

Collect Ballots, Elb 1

  The votingRoll is required to "collect ballots, elb 1".

  Successful completion of the step "collect ballots, elb 1" should yield the ballotCount.
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  The ballotCollection is required to "collect ballots, elb 1" and may be modified during this step.

   To "collect ballots, elb 1", process envelope (This step must be done at least once.) (The cardinality of this
step is controlled by the following parameter: voter.) and then scan ballots.

Process Envelope

  The voterRegistrationList is required to "process envelope".

  The ballotCollection is required to "process envelope" and may be modified during this step.

  Before starting "process envelope", the resource voter must be acquired.

   To "process envelope", add envelope to batch, then receive and validate envelope, and finally process ballot.

Add Envelope To Batch

  Successful completion of the step "add envelope to batch" should yield the envelope.

  The ballotCollection is required to "add envelope to batch" and may be modified during this step.

Receive And Validate Envelope

  The voterRegistrationList is required to "receive and validate envelope".

  Successful completion of the step "receive and validate envelope" should yield the ballot.

  The ballotCollection and envelope are required to "receive and validate envelope" and may be modified during
this step.

   To "receive and validate envelope", check envelope and then open envelope and retrieve ballot.

Check Envelope

  The voterRegistrationList is required to "check envelope".
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  The ballotCollection and envelope are required to "check envelope" and may be modified during this step.

   To "check envelope", compare signature on envelope with signature on file, then place red line through
signature, and finally add envelope to repository in oder of precinct number.

Compare Signature On Envelope With Signature On File

  The voterRegistrationList is required to "compare signature on envelope with signature on file".

  The envelope is required to "compare signature on envelope with signature on file" and may be modified
during this step.

E  If Missing Signature Exception, then handle missing signature exception and then continue with the next step.

E  If Signature Mismatch Exception, then handle signature mismatch exception and then continue with the next
step.

Place Red Line Through Signature

  The envelope is required to "place red line through signature" and may be modified during this step.

Add Envelope To Repository In Oder Of Precinct Number

  The envelope is required to "add envelope to repository in oder of precinct number".

  The ballotCollection is required to "add envelope to repository in oder of precinct number" and may be
modified during this step.

Handle Missing Signature Exception

  The envelope is required to "handle missing signature exception" and may be modified during this step.

  Before starting "handle missing signature exception", the resources voter and agent must be acquired.

   To "handle missing signature exception", contact putative voter and then sign envelope.

Contact Putative Voter

213



  The resources voter and agent are used in this step.

E  If Voter Cannot Be Reached Exception, then complete the step "handle missing signature exception".

Handle Signature Mismatch Exception

  The voterRegistrationList is required to "handle signature mismatch exception".

  The envelope is required to "handle signature mismatch exception" and may be modified during this step.

  Before starting "handle signature mismatch exception", the resources voter and agent must be acquired.

   To "handle signature mismatch exception", the following should be tried, in the listed order until one
succeeds, compare signatures or contact putative voter.

Compare Signatures

  The voterRegistrationList is required to "compare signatures".

  The envelope is required to "compare signatures" and may be modified during this step.

  The resource agent is used in this step.

E  If Signature Mismatch Exception, then continue with the next step.

Open Envelope And Retrieve Ballot

  Successful completion of the step "open envelope and retrieve ballot" should yield the ballot.

  The ballotCollection and envelope are required to "open envelope and retrieve ballot" and may be modified
during this step.

E  If Missing Ballot Exception, then complete the step "receive and validate envelope".

Collect Ballots, Elb 2
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  The votingRoll is required to "collect ballots, elb 2".

  Successful completion of the step "collect ballots, elb 2" should yield the ballotCount.

  The ballotCollection is required to "collect ballots, elb 2" and may be modified during this step.

   To "collect ballots, elb 2", process email ballot that was mailed in (This step must be done at least once.)
(The cardinality of this step is controlled by the following parameter: voter.) and then scan ballots.

Process Email Ballot That Was Mailed In

  The votingRoll is required to "process email ballot that was mailed in".

  The ballotCollection is required to "process email ballot that was mailed in" and may be modified during this
step.

  Before starting "process email ballot that was mailed in", the resource voter must be acquired.

   To "process email ballot that was mailed in", the following need to be done in the listed order

add envelope to batch
open envelope and retrieve ballot
validate ballot
duplicate ballot on ballot stock
process ballot

Collect Ballots, Elb 3

  The votingRoll is required to "collect ballots, elb 3".

  Successful completion of the step "collect ballots, elb 3" should yield the ballotCount.

  The ballotCollection is required to "collect ballots, elb 3" and may be modified during this step.

   To "collect ballots, elb 3", process internet ballot (This step must be done at least once.) (The cardinality of
this step is controlled by the following parameter: voter.) and then scan internet ballots.

Process Internet Ballot
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  The votingRoll is required to "process internet ballot".

  The ballotCollection is required to "process internet ballot" and may be modified during this step.

  Before starting "process internet ballot", the resource voter must be acquired.

   To "process internet ballot", retrieve BoD ballot, then validate ballot, and finally duplicate ballot on ballot
stock.

Retrieve BoD Ballot

  Successful completion of the step "retrieve BoD ballot" should yield the ballot.

  The ballotCollection is required to "retrieve BoD ballot" and may be modified during this step.

   To "retrieve BoD ballot", login to DemocracyLive and then print ballot.

Login To DemocracyLive

  Successful completion of the step "login to DemocracyLive" should yield the ballot.

Print Ballot

  The ballotCollection and ballot are required to "print ballot" and may be modified during this step.

Scan Internet Ballots

  The ballotCollection is required to "scan internet ballots".

  Successful completion of the step "scan internet ballots" should yield the ballotCount.

   To "scan internet ballots", run ballots through scanner.

Count Ballots
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  The ballotCount and ballotCollection are required to "count ballots".

   To "count ballots", vote tallies are read off of memory cards from scanners and then results are posted on
Yolo County Elections Office website .

Vote Tallies Are Read Off Of Memory Cards From Scanners

  The ballotCollection and ballotCount are required to "vote tallies are read off of memory cards from scanners".

  Successful completion of the step "vote tallies are read off of memory cards from scanners" should yield the
voteCount.

  The resources observer:team and agent:team are used in this step.

Results Are Posted On Yolo County Elections Office Website

  The voteCount is required to "results are posted on Yolo County Elections Office website ".

  The resources observer:team and agent:team are used in this step.

217



Lastly, coordination diagrams for intermediate steps not presented in Chapter 5 are

included below.

(a) Subprocess definition for the prepare individual bal-
lot reference from Figure 5.3

(b) Subprocess definition for the prepare individual VBM ballot reference from Figure 5.3

Figure E.1. Complete specifications of the subprocesses for ballot preparation from Fig-
ure 5.3 in Chapter 5.

(a) Subprocess definition for the mail ballot back refer-
ences from Figure 5.4

(b) Subprocess definition for the fax ballot back
references from Figure 5.4

Figure E.2. Complete specifications of the subprocesses for ballot transmission from
Figure 5.4 in Chapter 5.
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(a) Subprocess definition for the process internet ballot that was faxed in reference from Figure 5.5

(b) Subprocess definition for the process envelope reference from Figure 5.5

(c) Subprocess definition for the process email ballot that was mailed in reference from
Figure 5.5

(d) Subprocess definition for the process internet ballot reference
from Figure 5.5

Figure E.3. Complete specifications of the subprocesses for ballot processing from Figure
5.5 in Chapter 5.
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APPENDIX F

EVALUATION ARTIFACTS FOR THE VOTE REMOTELY
PROCESS FAMILY

For each set of experiments performed and presented in Chapter 5, we present the

resulting artifacts here for completeness.

F.1 Fault Tree Analysis for the NIST Case Study

Fault tree analysis (FTA) was performed on the NIST process family including all

abstractions presented above, and then on each process instance describing a single voting

modality. Therefore, five sets of results were obtained: one for the vote remotely process

family, including all modalities; and one each for vote-by-mail, or VBM, vote-by-fax, vote-

by-email, and vote-by-ballot-on-demand. The hazard under consideration is the step results

are posted on Yolo County Elections Office website receiving the wrong voteCount artifact (of

type VoteCount.java, specified as a JavaBean using the eponymous artifact mode in Visual-

JIL) as input. Each set of experiments was performed on a 3GHz dual-core Intel Core

i7 processor with 16GB of physical RAM. All experiments were run under an Eclipse

virtual machine (VM) with 4,096MB–16,384MB memory allowance. For analysis results,

the Little-JIL Analysis Toolset translator was also given a 4,096MB–16,384MB memory

allowance.

F.1.1 Fault tree analysis results for the vote remotely process family

The fault tree for the vote remotely process family is included below, followed by the

corresponding Minimal Cut Sets (MCSs).
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MCS 1-1) {

Step “login to DemocracyLive” produces wrong “ballot”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 1-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “login to DemocracyLive” produces wrong “ballot”

}

MCS 2-1) {

Step “print ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 2-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “print ballot” produces wrong “ballotCollection”

}

MCS 3-1) {

Step “deliver ballots to voters” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 3-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”
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Step “deliver ballots to voters” produces wrong “ballotCollection”

}

MCS 4-1) {

Step “acquire list of voters” produces wrong “votingRoll”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 4-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “acquire list of voters” produces wrong “votingRoll”

}

MCS 5-1) {

Step “mark envelope with AVID number” produces wrong “envelope”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 5-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “mark envelope with AVID number” produces wrong “envelope”

}

MCS 6-1) {

Step “add envelope to mail batch” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}
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MCS 6-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “add envelope to mail batch” produces wrong “ballotCollection”

}

MCS 7-1) {

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 7-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 8-1) {

Step “hand over ballots to post office” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 8-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “hand over ballots to post office” produces wrong “ballotCollection”

}

MCS 9-1) {
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Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 9-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 10-1) {

Step “generate ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 10-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “generate ballot” produces wrong “ballotCollection”

}

MCS 11-1) {

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 11-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”
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}

MCS 12) {

Step “run ballots through scanner” produces wrong “ballotCount”

}

MCS 13) {

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

}

MCS 14) {

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “run ballots through scanner” produces wrong “ballotCount”

}

MCS 15) {

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

}

MCS 16) {
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Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “run ballots through scanner” produces wrong “ballotCount”

}

MCS 17) {

Step “run ballots through scanner” produces wrong “ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 18) {

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 19-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “compare signatures” produces wrong “envelope”

Exception “SignatureMismatchException” is not thrown by step “compare signatures”

}

MCS 19-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-
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lot”

Step “compare signatures” produces wrong “envelope”

Exception “SignatureMismatchException” is not thrown by step “compare signatures”

}

MCS 20-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “sign envelope” produces wrong “envelope”

}

MCS 20-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “sign envelope” produces wrong “envelope”

}

MCS 21-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}
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MCS 21-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 22-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “compare signature on envelope with signature on file” produces wrong “envelope”

}

MCS 22-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”
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Step “compare signature on envelope with signature on file” produces wrong “envelope”

}

MCS 23-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “place red line through signature” produces wrong “envelope”

}

MCS 23-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “place red line through signature” produces wrong “envelope”

}

MCS 24-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 24-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-
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lope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 25-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Step “add envelope to batch” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

}

MCS 25-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Step “add envelope to batch” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

}

MCS 26-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”
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Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 26-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 27-1) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to repository in oder of precinct number” produces wrong “ballot-

Collection”

}

MCS 27-2) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “add envelope to repository in oder of precinct number” produces wrong “ballot-

Collection”

}
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MCS 28) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

}

MCS 29) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 30) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballot”

}

MCS 31) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 32-1) {

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}
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MCS 32-2) {

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 33) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 34) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 35) {

Step “duplicate ballot on ballot stock” produces wrong “paperBallot”

}

MCS 36) {

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballot”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}
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MCS 37-1) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 37-2) {

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 38-1) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Step “add envelope to batch” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 38-2) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to batch” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”
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}

MCS 38-3) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “add envelope to batch” produces wrong “ballotCollection”

}

MCS 39-1) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Step “add envelope to batch” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 39-2) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to batch” produces wrong “envelope”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 39-3) {

Step “add envelope to batch” produces wrong “envelope”

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

}
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MCS 40) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 41) {

Step “duplicate ballot on ballot stock” produces wrong “paperBallot”

}

MCS 42) {

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 43) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 44) {

Step “vote tallies are read off of memory cards from scanners” produces wrong “vote-

Count”

}
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F.1.2 Fault tree analysis results for the vote-by-mail process

The fault tree for the vote-by-mail process is included below, followed by the corre-

sponding MCSs.
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MCS 1) {

Step “run ballots through scanner” produces wrong “ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 2) {

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 3) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 4) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 5-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “sign envelope” produces wrong “envelope”

}
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MCS 5-2) {

Step “sign envelope” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 6-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “acquire list of voters” produces wrong “votingRoll”

}

MCS 6-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “acquire list of voters” produces wrong “votingRoll”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 7-1) {
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Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “compare signature on envelope with signature on file” produces wrong “envelope”

}

MCS 7-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “compare signature on envelope with signature on file” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 8-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

242



}

MCS 8-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 9-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “deliver ballots to voters” produces wrong “ballotCollection”

}

MCS 9-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”
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Step “deliver ballots to voters” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 10-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “hand over ballots to post office” produces wrong “ballotCollection”

}

MCS 10-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “hand over ballots to post office” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 11-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-
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lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to mail batch” produces wrong “ballotCollection”

}

MCS 11-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to mail batch” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 12-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}
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MCS 12-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 13-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “mark envelope with AVID number” produces wrong “envelope”

}

MCS 13-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “mark envelope with AVID number” produces wrong “envelope”
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Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 14-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “SignatureMismatchException” is not thrown by step “compare signatures”

Step “compare signatures” produces wrong “envelope”

}

MCS 14-2) {

Exception “SignatureMismatchException” is not thrown by step “compare signatures”

Step “compare signatures” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 15-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “place red line through signature” produces wrong “envelope”

}

MCS 15-2) {

Step “place red line through signature” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve
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ballot”

}

MCS 16-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “add envelope to repository in oder of precinct number” produces wrong “ballot-

Collection”

}

MCS 16-2) {

Step “add envelope to repository in oder of precinct number” produces wrong “ballot-

Collection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 17-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “ballotCollection”

}
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MCS 17-2) {

Exception “MissingSignatureException” is not thrown by step “compare signature on en-

velope with signature on file”

Exception “SignatureMismatchException” is not thrown by step “compare signature on

envelope with signature on file”

Step “add envelope to batch” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 18-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 18-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “add envelope to batch” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 19-1) {
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Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “deliver ballots to voters” produces wrong “ballotCollection”

}

MCS 19-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “deliver ballots to voters” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 20-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “hand over ballots to post office” produces wrong “ballotCollection”

}

MCS 20-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “hand over ballots to post office” produces wrong “ballotCollection”
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Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 21-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “acquire list of voters” produces wrong “votingRoll”

}

MCS 21-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “acquire list of voters” produces wrong “votingRoll”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 22-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “add envelope to mail batch” produces wrong “ballotCollection”

}
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MCS 22-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “add envelope to mail batch” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 23-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 23-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 24-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-
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lot”

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “mark envelope with AVID number” produces wrong “envelope”

}

MCS 24-2) {

Exception “MissingSignatureException” is thrown by step “compare signature on enve-

lope with signature on file”

Step “mark envelope with AVID number” produces wrong “envelope”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 25-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “add envelope to batch” produces wrong “envelope”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 25-2) {

Step “add envelope to batch” produces wrong “envelope”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

253



ballot”

}

MCS 26-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “deliver ballots to voters” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 26-2) {

Step “deliver ballots to voters” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 27-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “hand over ballots to post office” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}
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MCS 27-2) {

Step “hand over ballots to post office” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 28-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “acquire list of voters” produces wrong “votingRoll”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 28-2) {

Step “acquire list of voters” produces wrong “votingRoll”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 29-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”
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Step “add envelope to mail batch” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 29-2) {

Step “add envelope to mail batch” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 30-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 30-2) {

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”
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}

MCS 31-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “mark envelope with AVID number” produces wrong “envelope”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

}

MCS 31-2) {

Step “mark envelope with AVID number” produces wrong “envelope”

Exception “SignatureMismatchException” is thrown by step “compare signature on en-

velope with signature on file”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 32) {

Step “open envelope and retrieve ballot” produces wrong “ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

}

MCS 33) {

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve
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ballot”

}

MCS 34) {

Step “vote tallies are read off of memory cards from scanners” produces wrong “vote-

Count”

}
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F.1.3 Fault tree analysis results for the vote-by-fax process

The fault tree for the vote-by-fax is included below, followed by the corresponding

MCSs.
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MCS 1-1) {

Exception “MissingBallotException” is thrown by step “get voter info from cover sheet

and retrieve ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 1-2) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 1-3) {

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 2-1) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

}
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MCS 2-2) {

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 3) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 4) {

Step “duplicate ballot on ballot stock” produces wrong “paperBallot”

}

MCS 5) {

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballot”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 6) {

Step “place ballot in batch” produces wrong “ballotCollection”

}
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MCS 7) {

Step “vote tallies are read off of memory cards from scanners” produces wrong “vote-

Count”

}

MCS 8) {

Step “run ballots through scanner” produces wrong “ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 9) {

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}
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F.1.4 Fault tree analysis results for the vote-by-email process

The fault tree for the vote-by-email is included below, followed by the corresponding

MCSs.
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MCS 1) {

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “run ballots through scanner” produces wrong “ballotCount”

}

MCS 2) {

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

}

MCS 3) {

Step “run ballots through scanner” produces wrong “ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 4) {

Step “keep track of how many ballots from precinct X are in batch Y” produces wrong

“ballotCount”

Exception “BallotsPlacedInWrongPrecinctBatchException” is not thrown by step “keep

track of how many ballots from precinct X are in batch Y”

}

MCS 5) {
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Step “vote tallies are read off of memory cards from scanners” produces wrong “vote-

Count”

}

MCS 6-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 6-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 6-3) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “choose ballot with correct precinct code” produces wrong “ballotCollection”

}

MCS 7-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”
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Step “add envelope to batch” produces wrong “ballotCollection”

}

MCS 7-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to batch” produces wrong “ballotCollection”

}

MCS 7-3) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to batch” produces wrong “ballotCollection”

}

MCS 8-1) {

Exception “MissingBallotException” is thrown by step “open envelope and retrieve bal-

lot”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 8-2) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”
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Step “add envelope to batch” produces wrong “envelope”

}

MCS 8-3) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “add envelope to batch” produces wrong “envelope”

}

MCS 9) {

Step “duplicate ballot on ballot stock” produces wrong “paperBallot”

}

MCS 10) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballot”

}

MCS 11) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 12-1) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”
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Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

}

MCS 12-2) {

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “open envelope and retrieve

ballot”

Step “open envelope and retrieve ballot” produces wrong “ballotCollection”

}

MCS 13) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 14-1) {

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 14-2) {

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”
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Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballotCollec-

tion”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 15) {

Step “place ballot in batch” produces wrong “ballotCollection”

}

MCS 16) {

Step “read precinct barcode on ballot” produces wrong “ballot”

}

MCS 17) {

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

Exception “MissingBallotException” is not thrown by step “get voter info from cover

sheet and retrieve ballot”

Step “get voter info from cover sheet and retrieve ballot” produces wrong “ballot”

}

MCS 18) {

Step “duplicate ballot on ballot stock” produces wrong “paperBallot”

}
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F.1.5 Fault tree analysis results for the vote-by-ballot-on-demand process

The fault tree for the vote-by-ballot-on-demand is included below, followed by the cor-

responding MCSs.
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MCS 1-1) {

Step “generate ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 1-2) {

Step “generate ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 2-1) {

Step “print ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 2-2) {

Step “print ballot” produces wrong “ballotCollection”

Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 3-1) {

Step “login to DemocracyLive” produces wrong “ballot”

Exception “ProvisionalBallotException” is thrown by step “validate ballot”

}

MCS 3-2) {

Step “login to DemocracyLive” produces wrong “ballot”
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Exception “ProvisionalBallotException” is not thrown by step “validate ballot”

}

MCS 4) {

Step “vote tallies are read off of memory cards from scanners” produces wrong “vote-

Count”

}

MCS 5) {

Step “run ballots through scanner” produces wrong “ballotCount”

}

F.2 Finite-State Verification Results for NIST Case Study

All the artifacts from the NIST case study were verified against a single property, en-

coding that after a voter votes, an insider (e.g., corrupt poll worker) should not be able

to mark that ballot until it has been counted. This is the property used for the extended

SPLC case study as well and it is based on the property originally presented in [67]. The

full property specification is presented in Chapter 5, and we present the question trees

used to aid in the scope and behavior definitions in Figures F.1 and F.2, respectively, for

completeness.

Seven sets of results were obtained, including the vote remotely process family consist-

ing of all four variants, each of the four variants as a process instance, and two additional

families resulting from removing all fax-based variants from the ALL family, and remov-

ing all fax-based and all BoD-based variants from the ALL family, as explained in Chapter

5. Each artifact is presented below.
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Figure F.1. Scope question tree for the property “After a vot e r ma r k s bal l ot event,
no i ns i d e r ma r k s bal l ot event can occur until count bal l ot s occurs.”

The vote-by-mail process satisfied the property.
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Figure F.2. Behavior question tree for the property “After a vot e r ma r k s bal l ot event,
no i ns i d e r ma r k s bal l ot event can occur until count bal l ot s occurs.”

Figure F.3. The vote remotely process family including all four variants violated the prop-
erty under consideration. The counterexample trace from FLAVERS is included above.
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Figure F.4. The vote-by-fax process violated the property under consideration. The coun-
terexample trace from FLAVERS is included above.

Figure F.5. The vote-by-email process violated the property under consideration. The
counterexample trace from FLAVERS is included above.

Figure F.6. The vote-by-ballot-on-demand process violated the property under considera-
tion. The counterexample trace from FLAVERS is included above.
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Figure F.7. The ALL-Fax process family including the three variants apart from vote-by-
fax (vote-by-mail, vote-by-email, and vote-by-ballot-on-demand) violated the property under
consideration. The counterexample trace from FLAVERS is included above.

Figure F.8. The ALL-Fax-BoD process family including the two variants apart from vote-
by-fax and vote-by-ballot-on-demand (i.e., vote-by-mail and vote-by-email) violated the prop-
erty under consideration. The counterexample trace from FLAVERS is included above.
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