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ABSTRACT 

ENGINEERING NOVEL DETECTION AND TREATMENT STRATEGIES FOR 

BACTERIAL THERAPY OF CANCER 

 

MAY 2015 

 

JAN T. PANTELI 

B.S. CHEMICAL ENGINEERING, STATE UNIVERSITY OF NEWYORK AT BUFFALO 

Ph.D. CHEMICAL ENGINEERING, UNIVERSITY OF MASSACHUSETTS 

AMHERST 

Directed by: Professor Neil S. Forbes 

 

Finding and treating cancer is difficult due to limited sensitivity and specificity of current 

detection and treatment strategies. Many chemotherapeutic drugs are small molecules that are 

limited by diffusion, making it difficult to reach cancer sites requiring high doses that lead to 

systemic toxicity and off-target effects. Tomographic detection techniques, like PET, MRI and 

CT, are good at identifying macroscopic lesions in the body but are limited in their ability to 

detect microscopic lesions. Biomarker detection strategies are extremely sensitive and able to 

identify ng/ml concentrations of protein, but are poor at discriminating between healthy and 

disease state levels due to patient-to-patient variance, often leading to misdiagnosis. Gram 

negative bacteria, specifically Salmonella typhimurium and Escherichia coli, are potential 
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anticancer agents because of their preferential accumulation and growth within tumors. This 

tumor specificity allows these bacteria to reduce off-target effects and it enables production of 

recombinant proteins directly at the tumor site. This thesis presents, three strategies for improving 

cancer therapy and detection using engineered bacteria.  

The first part of this thesis discusses a tumor detection strategy that combines the 

specificity of tumor-targeting bacteria with the sensitivity of biomarker assays. Attenuated 

bacteria were engineered to release an exogenous reporter protein, ZsGreen, using a remotely 

inducible genetic switch. In vitro administration of these bacteria to a tumor-on-a-chip 

microfluidic device showed ZsGreen was able to diffuse through malignant tissue and release 

from a 0.12 mg spheroids at a rate of 23.9 µg/h. In vivo administration of tumor-detecting bacteria 

to subcutaneous murine tumor models identified tumors larger than 0.2 g through systemic 

measurement of released ZsGreen. Tumor-detecting bacteria could provide a sensitive, minimally 

invasive method to detect tumor recurrence, monitor treatment efficacy, and identify the onset of 

metastatic disease. 

The second part of this thesis discusses how bacteria can be engineered to sense sugar 

concentration the tumor microenvironment and how this might be useful to hone bacterial 

therapies to viable cancer tissue. A plasmid system was created that utilized a fusion protein 

between two transmembrane receptors, Trg, a chemotaxis receptor for Ribose and Glucose, and 

EnvZ, an osmolarity sensor, which enabled visualization of sugar gradients in vitro through 

expression of green fluorescent protein. Sugar sensing bacteria were administered to tumor 

spheroids in a microfluidic device that mimics tumor tissue adjacent to a blood vessel, and 

identified gradients in glucose as a function of distance from vasculature. Drop in sugar 

concentration with tissue depth was shown to correlate with the extent of apoptosis in the tumor 
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environment. These sugar-sensing bacteria could benefit treatment by producing more protein 

drug in areas of higher nutrient availability, increasing dose where tumors are likely to be more 

active.  In addition, these bacteria can serve as a platform for future work on enabling bacteria to 

sense other metabolites through modification of the receptors’ binding proteins to recognize other 

cancer specific compounds.  

The last part of this thesis, discusses a project to discover new proteins for anti-cancer 

bacterial therapy that can overcome the limitations of traditional therapeutic strategies. Extremely 

toxic proteins could be potential drug candidates as dosing would be restricted to tumors owing to 

the targeting capabilities of the bacteria. Several protein toxins were cloned into bacteria and 

tested for protein secretion and efficacy on monolayer. Two toxins were identified as possible 

therapeutics, Staphylococcus aureus α hemolysin (SAH) and Pseudomonas exotoxin A (PEA). 

SAH is a pore former and as such would be able to target all malignant cells not just the 

proliferating region because it is indiscriminant of cell metabolism or cell cycle. Efficacy of SAH 

producing bacteria were tested in tumor spheroids in a microfluidic device and in murine tumor 

models. These studies showed significant tumor cell death and regression. This strategy enables 

targeting very cytotoxic proteins directly to the tumor site where systemic administration would 

fail. 

 

  



x 

 

TABLE OF CONTENTS 

Page 

DEDICATION .............................................................................................................................. iv 
ACKNOWLEDGMENTS ............................................................................................................. v 
ABSTRACT ................................................................................................................................ vii 
LIST OF TABLES ...................................................................................................................... xiii 
LIST OF FIGURES .................................................................................................................... xiv 

 
CHAPTER 

 
I: INTRODUCTION AND BACKGROUND ................................................................................ 1 

1.1 Cancer growth, development, and transport ............................................ 1 
1.2 Cancer detection and treatment ............................................................... 3 
1.3 Limitations in cancer detection ................................................................ 4 
1.4 Tumor heterogeneity limits cancer treatment .......................................... 5 
1.5 Anti-cancer bacterial vectors ................................................................... 6 
1.6 Synopsis .................................................................................................. 8 

 
II: DETECTION OF MURINE TUMORS WITH GENETICALLY MODIFIED 

BACTERIA  PART A: IN A TUMOR MIMIC MICROFLUIDIC DEVICE ................. 10 
2.1  Introduction ........................................................................................................ 10 
2.2 Materials and Methods ....................................................................................... 13 

2.2.1  Plasmids and bacterial strains ................................................................ 13 
2.2.2 ZsGreen release ..................................................................................... 13 
2.2.3 ZsGreen detection in blood.................................................................... 14 
2.2.4 Viability of ZsGreen-releasing bacteria ................................................. 15 
2.2.5 Single-layer antibody dots ..................................................................... 16 
2.2.6 Plasmid stability of pDF02 .................................................................... 17 
2.2.7 ZsGreen release from bacteria colonized in tumor masses in vitro ........ 17 
2.2.8  Mathematical prediction of minimum detectable tumor volume ........... 20 

2.3 Results ................................................................................................................ 21 
2.3.1  Salmonella secreted ZsGreen in liquid culture ...................................... 21 
2.3.2  ZsGreen release from viable Salmonella ............................................... 22 
2.3.3  Detection of ZsGreen with single-layer antibody dots ........................... 24 
2.3.4  ZsGreen plasmid stability ...................................................................... 26 
2.3.5  Released ZsGreen was detected from small in vitro tumor cell 

masses ................................................................................................... 27 
2.4 Discussion .......................................................................................................... 29 
2.5 Conclusions ........................................................................................................ 35 

 
III: DETECTION OF MURINE TUMORS WITH GENETICALLY MODIFIED 

BACTERIA  PART B: IN MURINE TUMOR MODELS .............................................. 37 
3.1 Introduction ........................................................................................................ 37 
3.2 Materials and Methods ....................................................................................... 37 

3.2.1 ZsGreen purification and quantification ................................................ 37 
3.2.2 Pharmacokinetic study of the half-life of ZsGreen ................................ 38 



xi 

 

3.2.3 Tumor models ....................................................................................... 38 
3.2.4 Immunofluorescent staining and image acquisition ............................... 39 
3.2.5 Colony counting via plating .................................................................. 40 
3.2.6 Tumor transition boundary analysis ...................................................... 40 
3.2.7 Colony characteristics image analysis ................................................... 41 
3.2.8  Mathematical model of diffusion from a colony.................................... 41 

3.3 Results ................................................................................................................ 43 
3.3.1  ZsGreen half-life was determined in mice ............................................. 43 
3.3.2  Salmonella detect subcutaneous murine tumors by triggered 

release of ZsGreen ................................................................................. 43 
3.3.3 ZsGreen expression was higher in viable tissue than necrotic 

regions ................................................................................................... 45 
3.3.4  ZsGreen diffuses through solid tumor tissue ......................................... 48 
3.3.5  Re-evaluation of two-compartment mathematical model ...................... 49 

3.4 Discussion .......................................................................................................... 52 
3.5 Conclusions ........................................................................................................ 54 

 
IV:  GENETICALLY ENGINEERED BACTERIA TO SENSE SUGAR GRADIENTS 

IN TUMOR MICROENVIRONMENT .......................................................................... 56 
4.1 Introduction ........................................................................................................ 56 
4.2 Materials and Methods ....................................................................................... 59 

4.2.1 Plasmid construction and strains ........................................................... 59 
4.2.2 In vitro sensing in aqueous solutions ..................................................... 61 
4.2.3 Sensing study in 3D tumor-mimic microfluidic device ......................... 61 
4.2.4 Calculated glucose and bacterial counts in 3D-tumors .......................... 62 
4.2.5 Mathematical modeling of sugar-sensing bacterial treatment of 

solid tumors ........................................................................................... 62 
4.3 Results ................................................................................................................ 63 

4.3.1  Construction of Trz1 switch for ribose and glucose sensing .................. 63 
4.3.2  Bacteria sense ribose and glucose sugar gradients and express 

GFP ....................................................................................................... 66 
4.3.3 Sugar gradients were detected in small in vitro tumor cell masses ........ 66 
4.3.4 Mathematical prediction of tumor treatment with sugar sensing 

bacteria. ................................................................................................. 68 
4.4 Discussion .......................................................................................................... 73 
4.5 Conclusions ........................................................................................................ 75 

 
V:  IDENTIFICATION OF ANTI-CANCER PROTEIN TOXINS FOR BACTERIAL 

TREATMENT OF CANCER ......................................................................................... 77 
5.1 Introduction ........................................................................................................ 77 
5.2 Materials and Methods ....................................................................................... 78 

5.2.1 Plasmids and strains .............................................................................. 78 
5.2.2 Western blotting and protein release ..................................................... 79 
5.2.3 MTS cytotoxicity assay of 4T1 and LS174T monolayers ...................... 80 
5.2.4 Bacterial delivered SAH in tumor-on-a-chip devices ............................ 80 
5.2.5 Murine tumor models ............................................................................ 80 

5.3 Results ................................................................................................................ 81 
5.3.1 Literature review of toxins .................................................................... 81 



xii 

 

5.3.2 Toxins transformed into inducible expression vector ............................ 82 
5.3.3 Bacteria release expressed toxin SAH ................................................... 82 
5.3.4 Assay for recombinant toxin efficacy .................................................... 84 
5.3.5 SAH bearing bacteria cause tumor regression and cell death in in 

vitro tumors ........................................................................................... 86 
5.3.6 SAH E. coli cause tumor regression and necrosis in murine 

tumor models ......................................................................................... 87 
5.4 Discussion .......................................................................................................... 89 
5.5 Conclusions ........................................................................................................ 90 

 
CONCLUSIONS ......................................................................................................................... 92 

 
APPENDIX A. ADDITIONAL FIGURES .................................................................................. 95 

A1 Individual tumors show varying levels of ZsGreen expression .......................... 95 
A2 N-terminus fusions to ZsGreen maintained secretion in VNP20009 

Salmonella .......................................................................................................... 97 
A3 Single-layer antibody dots calibration of intensity to ng/ml ZsGreen................. 98 
A4 Sensitivity of ZsGreen detection ELISA ............................................................ 99 
A5 Plasmid constructs to create sugar sensing Trz1 construct ............................... 101 

 
APPENDIX B. MATLAB CODE FOR SOLVING SYSTEM OF PDES .................................. 102 

 
APPENDIX C. IMAGEJ/FIJI MACROS FOR IMAGE ANALYSIS ........................................ 107 

C1 Imagej/Fiji Macro for binary image alignment ................................................. 107 
C2 Imaej/Fiji Macro for colony size distribution and ZsGreen diffusion ............... 109 

 
BIBLIOGRAPHY ...................................................................................................................... 112 

 



xiii 

 

LIST OF TABLES 

Page 

Table 1. Plasmids and Strains ...................................................................................................... 60 

Table 2. List of selected toxins..................................................................................................... 82 

 

  



xiv 

 

LIST OF FIGURES 

Page 

Figure 1. Salmonella preferentially accumulate in tumors ............................................................. 7 

Figure 2. Concept of bacterial tumor detection ............................................................................ 11 

Figure 3. Schematic of a tumor-on-a-chip microfluidic device .................................................... 12 

Figure 4. ZsGreen was released by Salmonella and was detectable when suspended in 

blood .......................................................................................................................... 22 

Figure 5. ZsGreen was released from viable Salmonella. ............................................................ 24 

Figure 6. Single-layer antibody dots ............................................................................................ 26 

Figure 7. Plasmid stability of pDF02 ........................................................................................... 27 

Figure 8. ZsGreen production by tumor-colonized bacteria ......................................................... 28 

Figure 9. Mathematical predictions of detection efficacy............................................................. 31 

Figure 10. Half-life of ZsGreen in circulation in mice ................................................................. 44 

Figure 11. Tumor-targeting bacteria detect tumors by release of recombinant ZsGreen .............. 45 

Figure 12. ZsGreen expression was higher in viable tumor tissue ............................................... 47 

Figure 13. ZsGreen diffuses from colonies independent of colony size ....................................... 49 

Figure 14. Mathematical analysis of efficacy in mice .................................................................. 51 

Figure 15. EnvZ osmosensor and the Trg Chemoreceptor ........................................................... 58 

Figure 16. Fusion TrZ1 protein enables ribose and glucose sensing ............................................ 64 

Figure 17. Construction of pTrz1 sugar sensing switch ............................................................... 65 

Figure 18. Ribose and glucose sensitivity of pTrz1- ΔEnvZ -E. coli ............................................ 66 

Figure 19. pTrz1-Red-∆EnvZ E. coli identify sugar gradient in tumor-on-a-chip devices ........... 67 

Figure 20. Estimation of glucose concentration in device tissues ................................................ 68 



xv 

 

Figure 21. Sugar sensing bacteria could enable treatment of quiescent regions of a tumor .......... 72 

Figure 22. Plasmid pBAD-SAH ................................................................................................... 83 

Figure 23. Plasmid pBAD-SAHa ................................................................................................. 83 

Figure 24.Western blot of SAH lysates and supernatant fractions ............................................... 84 

Figure 25. Cytotoxicity Assay of SAH from S. typhimurium and E. coli show both are 

lethal .......................................................................................................................... 85 

Figure 26. SAH induced death in Tumor-on-a-Chip Devices from pBAD-SAHa 

VNP20009 ................................................................................................................. 86 

Figure 27. SAH bearing E. coli  cause regression and necrosis in 4T1 mammary 

carcinomas ................................................................................................................. 88 

Figure 28. Survival curves for SAH bearing E. coli X6212 ......................................................... 88 

Figure 29. Liver Damage in Mice Injected with E. coli χ6212 ..................................................... 89 



1 

 

CHAPTER I 

INTRODUCTION AND BACKGROUND 

1.1 Cancer growth, development, and transport 

Cancer is a malignant growth of cells that arises from disruption of normal cell division. 

This rapid and uncontrolled growth is typically caused by mutation in the cell cycle and other key 

metabolic pathways. As we develop from an embryo, our cells divide and differentiate into the 

tissues and organs that make up the human body. In normal development and growth there are 

precise mechanisms that allow individual cells to replicate and differentiate into organ-specific 

cells. These mechanisms are controlled by growth factors, stimulatory or inhibitory molecules, 

which are produced by the cells to control the balance of growth and development. When a cell 

receives signals that stimulate the growth process, cell division is initiated and two daughter cells 

are formed (Alberts et al., 2002a). Just as growth is controlled, so is cell death. Apoptosis, or 

programmed cell death, occurs as a result of stimuli such as heat, nutrient depravation, infection, 

and hypoxia causing apoptotic signals to be released intracellularly leading to activation of the 

apoptotic pathways and eventual cell death. The balance of growth, differentiation, and cell death 

are all rigorously controlled in the human body to provide necessary functions such as the 

generation of new blood cells, regrowth of damaged tissue after an injury, and synthesis of 

lymphocytes to fight off infection (Alberts et al., 2002b).  

Cancer arises when significant DNA damage occurs that disrupts this balance of normal 

cell division, differentiation, and death. Tumor growth differs from normal growth in that many 

malignant cells do not respond to the growth inhibitors and stimulators that control the cell cycle 

or apoptotic pathways, resulting in rapidly uncontrolled cell division. Cancer cells have been 
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shown to stimulate their own growth, resist inhibitory signals that would normally stop growth, 

evade apoptosis, replicate indefinitely, and promote the growth of new blood vessels (Hanahan 

and Weinberg, 2000; Hanahan and Weinberg, 2011). As malignant cells replicate uncontrollably, 

they begin to cause damage by increasing local pressure and exhausting local nutrient supply. 

This stimulates production of angiogenic factors that stimulate the development of new blood 

vessels, in a process called neoangiogenesis. Several oncogenes including ras, raf, myc, EFR, and 

HER-2 are known to directly trigger these proangiogenic properties in cancer cells (Rak et al., 

2000). These new vessels are chaotic and not well formed leading to regions of cells at large 

distances from vessels (Minchinton and Tannock, 2006). Chaotic vasculature arises from an 

imbalance in the rate at which neoplastic cells divide and the rate at which angiogenesis occurs 

(Folkman et al., 1989).  In addition, the tumor interstitium that forms is collagen rich and 

characterized by large interstitial distances which inhibit macromolecule diffusion and convection 

(Chary and Jain, 1989; Jain, 1999). As a result, nutrients supplied through these vessels are 

unable to reach the distant regions from vessels leading to hypoxia, hypoglycemia, and acid 

environments which facilitate metastasis formation (Gillies et al., 1999). Metastasis occurs when 

a primary tumor cell breaks off from the primary cell mass and relocates, through the lymphatic 

or circulatory system to another location in the body. For a tumor cell to disseminate it must 

undergo invasion of surrounding tissue, intravasation into the blood vessel, survive in circulation, 

extravasation from the blood stream and then proliferate at the secondary foreign tumor site 

(Egesten et al., 2011). It has been shown that renormalization of blood vessels in tumors has been 

shown to promote tissue oxygenation and decrease metastasis formation in mice (Agrawal et al., 

2014).  
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1.2 Cancer detection and treatment 

Current strategies to find and treat cancer have allowed physicians to fight this 

debilitating disease and reduce patient mortality. Cancer is diagnosed using several different 

methods, typically a lump is identified via palpation or imaging and then a biopsy is taken to 

identify whether the cell mass is malignant. Several imaging techniques exist today that enable 

identification of malignant cell masses down to a few millimeters in diameter (Ernst and 

Roukema, 2002; Rakheja et al., 2013; Schöder and Gönen, 2007). These imaging techniques 

identify cancer based on tumor size, morphology, and metabolism. Positron emission tomography 

(PET) utilizes uptake of a fluorinated glucose molecule (FDG), to identify highly metabolically 

active cells in the body. Many cancer cells upregulate glycolysis to fuel rapid cell division 

(Altenberg and Greulich, 2004; Gillies et al., 2008). When FDG is injected, cancer cells typically 

uptake more of the radioactive glucose than surrounding normal tissue identifying the region of 

malignant cells (Bos et al., 2002; Fogelman et al., 2005; Veronesi et al., 2007; Yasuda et al., 

1999). Magnetic resonance imaging (MRI) uses radio waves to identify diseased tissue from 

healthy tissue (Behjatnia et al., 2010; Belião et al., 2012; Brismar et al., 2012). MRI enables 

identification of cancer tissue with contrasting agent by highlighting areas of increased 

angiogenesis and high vascular permeability associated with these vessels (Barrett et al., 2006; 

Schima, 2005). Computed tomography (CT) uses x-rays to map the three dimensional structures 

of the body identifying tumors by edema, the swelling and distortion they cause to their 

neighboring tissues (Hasegawa et al., 2000; Vansteenkiste et al., 2012). Combined PET/CT 

enables improved imaging and identifies smaller malignant cell masses (Goldsmith, 2004; 

Griffeth, 2005; Lim et al., 2007; Schöder and Gönen, 2007).  
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Several diagnostic assays are also used to identify cancer from blood and urine samples. 

Circulating tumor cells (ctc) and cell free DNA (cfDNA) are identified from blood samples and 

sequenced to identify mutations in the DNA that may indicate oncogene mutations (Kulemann et 

al., 2015; Mok et al., 2015; Xu et al., 2015). Several cancers over express specific proteins, 

biomarkers, that are used to identify and diagnose their disease: prostate specific antigen (prostate 

cancer), AFP (liver cancer), BRCA1+2, (breast and ovarian cancer), CA-125 (ovarian cancer), 

HER-2 (breast cancer), EGFR (non-small-cell lung carcinoma)(Chatterjee and Zetter, 2005; Lutz 

et al., 2008; Mizejewski, 2002; Mok et al., 2015; Rak et al., 2000; Thompson et al., 2005; Zhang 

et al., 2012).  These biomarkers are detected in tissue biopsies, serum or the urine at the ng/ml to 

pg/ml and lower concentrations (Rusling et al., 2010) and depending on their baseline levels, 

indicate the presence of cancer (Chatterjee and Zetter, 2005; Franci et al., 2013; Ludwig and 

Weinstein, 2005; Xue et al., 2010).   

1.3 Limitations in cancer detection 

Finding small malignant lesions is necessary to treat the primary causes of cancer 

mortality. Secondary metastatic tumors, for example, are often not discovered until pathological 

symptoms have manifested and the lesions are large (Nguyen and Massagué, 2007). Imaging 

techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and 

computed tomography (CT) are good at identifying macroscopic tumors but are limited in their 

ability to detect microscopic lesions (Behjatnia et al., 2010; Griffeth, 2005). These techniques 

lack the spatial resolution needed to detect tumors and metastases less than 6-8 millimeters in 

diameter (Behjatnia et al., 2010; Belião et al., 2012; Brismar et al., 2012; Cook et al., 1998; 

Czernin and Phelps, 2002; Fukumura and Jain, 2008; Schöder and Gönen, 2007; Takalkar et al., 

2008). Endogenous biomarkers can be used in conjunction with imaging techniques to identify 
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cancer, but they are sub-type specific and highly variable (Chatterjee and Zetter, 2005; Thompson 

et al., 2005). Healthy biomarker concentration levels often vary from patient-to-patient making it 

difficult to establish a baseline for disease diagnosis (Brooks, 2012; Ludwig and Weinstein, 

2005). Detecting small cancer masses could improve patient survival by identifying recurrence 

earlier and enabling more effective treatment. Small tumors  have less chance of spreading 

making them easier to treat, whereas large tumors have an increased chance for metastatic disease 

making treatment more difficult (Koscielny et al., 1984). Identifying smaller malignant masses 

earlier will reduce patient mortality. 

1.4 Tumor heterogeneity limits cancer treatment 

Once diagnosed, cancer treatment encounters its own limitations with systemic toxicity, 

barriers in transport, drug specificity and selectivity, and tumor drug resistance. Blood-born 

therapeutics must first make their way through chaotic tumor vasculature to the site of the 

malignant cells (Carmeliet and Jain, 2000; Jain, 1999). For small molecule therapeutics, the high 

interstitial fluid pressure, poor blood flow, and slow diffusive transport of tumor interstitium, 

creates a transport barrier for diffusion deep within tumors. For radiation therapy, hypoxia limits 

efficacy because it is dependent upon oxygen radical formation (Milosevic et al., 2012). 

Gradients in nutrients and oxygen also cause a change in cancer cell metabolism creating three 

observed cell growth regions: proliferative regions closest to vessels, quiescent regions farther 

from vasculature at the nutrient diffusion limit, and necrotic regions farthest from vessels where 

nutrients have been exhausted (Sutherland and Durand, 1984). Treating all cell regimes in tumors 

can be difficult because cell behavior changes dependent upon nutrient availability. Many 

chemotherapeutic drugs target cell cycle replication effectively treating the proliferating region of 

malignant cells but are unable to eradicate quiescent cells. In addition, drugs targeting cell 
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division cause systemic toxicity, seen with hair and nail loss. Cancers can also develop drug 

resistance by mutation; increasing drug efflux, activating DNA repair mechanisms, and evading 

drug-induced apoptosis (Gillet and Gottesman, 2010). For example, acquired drug resistance 

limits one of the most widely used cancer drugs on the market, Taxol. Taxol is an antimitotic 

agent that works by stabilizing microtubules and inhibiting tubulin polymer assembly (Horwitz, 

1994). Cancer drug resistance to Taxol has been attributed to over expression of multidrug 

transporters, altered metabolism of the drug, reduced sensitivity to cell death-inducing stimuli, 

and altered microtubule dynamics and binding to Taxol(Orr et al., 2003). Development of a 

targeted therapy that is able to reach all regions of the tumor and that utilizes a mechanism-of-

action that is indiscriminate of cancer cell metabolism and can avoid drug resistance pathways, 

would improve upon many of the current small molecule therapeutics used in the clinic today. 

1.5 Anti-cancer bacterial vectors 

Bacterial infections have been shown to localize and thrive in the tumor 

microenvironment. In the late 1800s, Dr. William Coley discovered that after operating multiple 

times to remove a tumor only to have it regrow; after the patient suffered an infection of 

Streptococcus pyogenes during the final surgery, the tumor regressed completely (Hoption Cann 

et al., 2003). Since then, several pathogenic strains of bacteria have been identified to localize in 

tumors after infection. Obligate anaerobes like Clostridium localize in the necrotic core of tumors 

where facultative anaerobes such as, Vibrio cholera, Listeria monocytogenes, Escherichia Coli, 

and Salmonella localize throughout (Bolhassani and Zahedifard, 2012; Cronin et al., 2012; Dang 

et al., 2001; Forbes, 2010; Nemunaitis et al., 2003; Pawelek et al., 2003; Swofford et al., 2014). 

In a study to identify bacterial infections in tumors, surgically removed lung cancer samples were 

screened for bacterial and fungal infection and several strains of bacteria were identified: 
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Staphylococcus epidermidis, Streptococcus mitis, Bacillus, Chlamydia, Cadida, Listeria, and 

Haemophilus influenza, Legionella pneumonia and Candida tropicalis (Apostolou et al., 2011).   

 

 

Figure 1. Salmonella preferentially accumulate in tumors  
A) Biodistribution in the organs of tumor-bearing mice, one week after systemic tail-vein injection of 2 million 
CFU/mouse (strain VNP20009). Significantly (*, P<0.05) more bacteria accumulated in tumors than the liver and 
spleen, the major clearance organs (adapted from, Forbes et al., 2003). B) Salmonella colonies (arrows, brown) in 4T1 
pulmonary micro-metastases in a BALB/c mouse; identified using an anti-Salmonella polyclonal antibody. Scale bars 
is 50 µm (Ganai et al., 2011). 
 

Salmonella and specifically are very favorable candidates for anti-cancer vectors due to 

their high tumor penetration and ease of genetic manipulation. Both Salmonella and E. coli 

selectively accumulate and replicate in tumors (Kasinskas and Forbes, 2006). The specific affinity 

of Salmonella to tumors over normal tissue has been demonstrated in many studies (Clairmont et 

al., 2000; Low et al., 1999; Pawelek et al., 1997; Platt et al., 2000; Zheng et al., 2000). After 

systemic administration with S. typhimurium, the bacterial density in tumors is typically 2,000 

times more than other organs (Figure 1A), and once colonized, bacteria are seen to spread 

throughout tumor tissue (Forbes et al., 2003). Salmonella  have also been shown to accumulate in 

hepatic and pulmonary metastases as small as five cell layers thick (Figure 1B; Ganai et al., 
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2011). Due to the ease of genetic manipulation, Salmonella can also express numerous reporter 

peptides. These bacteria can also release non-native proteins in the human body, increasing the 

reporter sensitivity because there would be no biomarker background. A non-pathogenic, 

attenuated Salmonella strain (VNP20009) has been created for clinical purposes. The strain has a 

partial deletion of the msbB gene which diminishes the TNF immune response to bacterial 

lipopolysaccharides and prevents septic shock. It also has a partial deletion of the purI gene. This 

deletion makes the bacteria dependent on external sources of purines and speeds clearance from 

non-cancerous tissues (Low et al., 1999). In mice, the virulence (LD50) of this therapeutic strain is 

10,000-fold less than wild-type Salmonella (C. Lee, 2000; Clairmont et al., 2000). In pre-clinical 

trials, attenuated Salmonella have been administered systemically into mice and dogs without 

toxic side effects (Luo et al., 2001; Thamm et al., 2005). In human trials with metastatic 

melanoma patients, the attenuated Salmonella strain was safely administered (Toso et al., 2002).  

1.6 Synopsis 

In this dissertation, I describe several strategies to genetically engineer Salmonella and E. 

coli for cancer detection, sensing, and treatment. Each strategy was tested in a microfluidic model 

that simulates the transport limitations within the tumor microenvironment of hypoxia, 

hypoglycemia and poor diffusion into the tumor site and two strategies were further evaluated in 

murine tumor models. Specifically I describe: 

i. Creation of diagnostic bacteria to identify solid tumor masses by release of a 

recombinant biomarker A) within a microfluidic device and B) in a murine tumor 

model. 
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ii. Creation of bacteria to sense ribose and glucose concentrations within the tumor 

environment to identify regions of tumor cell viability 

iii. Evaluation of novel recombinant protein toxins for bacterial therapy A) within a 

microfluidic device and B) in a murine tumor model. 

   



10 

 

CHAPTER II 

DETECTION OF MURINE TUMORS WITH GENETICALLY MODIFIED BACTERIA  

PART A: IN A TUMOR MIMIC MICROFLUIDIC DEVICE 

2.1  Introduction 

Previously, several strategies have been described using bacteria for tumor detection. 

Escherichia coli expressing ferritin enhance magnetic resonance imaging (MRI) by increasing 

iron uptake and improving signal to background ratio (Hill et al., 2011). Escherichia coli have 

also been used to enhance positron emission tomography (PET) through innate uptake of FDG 

(Brader et al., 2008). Combined with the native uptake of malignant tissue, these bacteria 

amplified FDG uptake producing a higher radiologic signal. Escherichia coli, Salmonella 

typhimurium, Vibrio cholera, and Listeria monocytogenes have also been used to visualize 

bacterial colonization of different tumor models via expression of bioluminescent proteins 

(Cronin et al., 2012; Min et al., 2008a; Min et al., 2008b; Yu et al., 2004). Bioluminescence 

performs well in small animals but translation to the clinic is difficult because light cannot 

penetrate through tissue. Bioluminescent signal decreases approximately 10-fold for every 1 cm 

of tissue depth (Contag et al., 1995). Using bacteria with PET and MRI would still be limited by 

the resolution of tomographic techniques.  

Combining the sensitivity of biomarker detection with the specificity of tumor-targeting 

bacteria has the potential to detect microscopic tumors smaller than the current resolution of 

tomography. Figure 2 describes a concept of how bacteria could be used to detect cancerous 

lesions. Bacteria would be injected systemically and preferentially accumulate in tumors (step 1). 

After growth in tumor tissue (step 2) and clearance from the rest of the body, expression of a 
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biomarker would be triggered by a small inducing molecule (step 3). A protein biomarker would 

be released by the bacteria (step 4) and diffuse through tumor interstitium into the blood stream 

(step 5) where it could be detected (step 6). The presence of biomarker molecules in the blood 

would indicate bacterial colonization of malignant tissue. For this conceptual strategy to be 

possible, bacteria must produce the biomarker at sufficient rates. This production is dependent on 

the rate of protein expression, the efficiency of secretion, the bacterial density, and the limit of 

detection.   

 

Figure 2. Concept of bacterial tumor detection  
This illustration shows how bacterial detection would function in vivo. The method combines biomarker detection with 
bacterial selectivity for tumors. After intravenous delivery, engineered Salmonella would preferentially accumulate in 
tumor tissue (1) and proliferate (2). Expression of a biomarker (stars, here ZsGreen) would be triggered by a small 
inducing molecule (3). The biomarker would be released from the bacteria (4) and diffuse into the blood stream (5). 
Biomarker molecules would be measured using specific antibodies (6) and the concentration would indicate the 
presence and size of tumor masses. These mechanisms were quantified by administering tumor-detecting bacteria to a 
microfluidic tumor-on-a-chip device that mimics tissue surrounding blood vessels in tumors (Panteli et al., 2015). 

 

To create tumor detecting bacteria, an attenuated strain of Salmonella was engineered to 

express and release the fluorescent protein ZsGreen under control of the L-arabinose inducible 

promoter. A single-layer antibody method was developed to measure low concentrations of 

ZsGreen. In liquid culture, half of produced ZsGreen was released by viable bacteria at a rate of 
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87.6 fg·bacterium-1·h-1.  A new technique, Single-layer antibody dot was created to detect 

ZsGreen by pull down to nitrocellulose membrane. Bacteria colonization and release of ZsGreen 

was tested in microfluidic device that mimics systemic delivery and the transport limitations 

found in the tumor microenvironment (Figure 3; Walsh et al., 2009).   Mathematical analysis was 

used to predict the efficacy of tumor detection using a two compartment pharmacokinetic model 

with first order elimination. Tumor-detecting bacteria could provide a sensitive, minimally 

invasive method to detect tumor recurrence, monitor treatment efficacy, and identify the onset of 

metastatic disease. 

 

 

Figure 3. Schematic of a tumor-on-a-chip microfluidic device 
The device mimics tumor tissue adjacent to a blood vessel. The device chip consists of six of these individual chambers 
in series off a single main flow channel. Each chamber for each tissue has an individual packing outlet used to insert 
tumor spheroids into the chamber. All tumors share the main flow channel to receive the same treatment for replicate 
tumor spheroids (Walsh et al., 2009). 
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2.2 Materials and Methods 

2.2.1  Plasmids and bacterial strains  

Bacteria were grown in LB broth at 37°C and 225 rpm. Two bacterial strains were used: 

attenuated Salmonella enterica serovar Typhimurium, strain VNP20009 (purI-, msb-, and xly-), 

and Escherichia coli, strain DH5α, (Invitrogen, Carlsbad, CA). ZsGreen expression was 

controlled by transformation with plasmid pDF02, which contains the ZsGreen gene under 

control of the L-arabinose inducible promoter, PBAD (Dai et al., 2013). This plasmid contains the 

puc19 origin of replication and ampicillin resistance. To produce purified ZsGreen, a 6x histidine 

tag was added to the n-terminus of ZsGreen in pDF02, creating plasmid pZsG-His, which was 

transformed into E. coli DH5α. All transformed cultures were supplemented with 100 µg/ml 

ampicillin. ZsGreen expression was induced with 0.2% w/v (2 mg/ml) L-arabinose.  

2.2.2 ZsGreen release  

ZsGreen release was determined by measuring the concentration in the extracellular and 

intracellular fractions of liquid cultures. Salmonella were inoculated into LB from single colonies, 

grown overnight at 37˚C, subcultured, and grown to an optical density (at 600 nm) of 0.4. 

ZsGreen expression was induced with 0.2% L-arabinose, and fluorescence was measured for 40 

hours. Bacterial density was measured turbidimetrically at 600 nm (BioTek Instruments, 

Winooski, VT) and converted with factor of 5×108 CFU·ml-1·OD600
-1. Extracellular samples were 

acquired by centrifuging 1 ml of culture and collecting 200 µl of supernatant. Intracellular 

fractions were acquired by resuspending cell pellets in 1 ml of fresh LB broth to equalize volumes 

with supernatant samples. Fluorescence of 200 μl samples was measured in a microtiter plate 
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reader with 460 nm excitation and 505 nm emission filters (Molecular Devices, Sunnyvale, CA). 

Background fluorescence of LB broth was subtracted from all measurements.  

Fluorescence measurements were converted to concentration units by determining the 

fluorescence of pure ZsGreen. Cultures of E. coli containing pZsG-His were induced with 0.2% 

w/v L-arabinose and grown overnight. Bacteria were lysed with lysozyme and vortexed on ice 

with glass beads for 20 minutes. ZsGreen was purified from the lysate by immobilized-metal-ion 

(nickel) affinity chromatography. The ZsGreen concentration in the eluent was determined by 

colorimetric Bradford assay. Fluorescence of the eluent was determined by spectrometry as 

above. Serial dilutions were used to determine a conversion factor between fluorescence units and 

concentration. The average rate of ZsGreen release was determined by linear fitting to the 

measurements from 0 to 40 hrs. 

2.2.3 ZsGreen detection in blood 

ZsGreen was diluted in bovine blood to determine the detectable limit of the fluorescence 

signal. Cultures of Salmonella with pDF02 were induced at 0.4 OD600 with 0.2% L-arabinose, and 

grown for 24 hours. Supernatant fractions from these cultures were sterile filtered through a 0.22 

µm filter and serially diluted in bovine blood or plasma (Hemostat Laboratories, Dixon, CA) in 

ten-fold increments. Plasma was isolated from whole blood by centrifugation for 10 min. 

Fluorescence was measured in a plate reader with 460 nm excitation and 505 nm emission filters. 

Intensities were normalized to the auto-fluorescence of blood and plasma, respectively.  
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2.2.4 Viability of ZsGreen-releasing bacteria  

Bacterial viability was measured to determine the relationship between ZsGreen release 

and cell integrity. Salmonella and E. coli were induced with 0.2% L-arabinose at an optical 

density OD600 of 0.4 and grown for 24 hours, as described above. Cultures were centrifuged. The 

fluorescence of the supernatant and cell pellet, at equalized volumes, was determined and 

normalized by the density.  

To determine the ratio of ZsGreen released by live and dead bacteria, ZsGreen-

expressing bacteria were grown for 24 hours in LB and induced with 0.2% L-arabinose. At 24 

hours, 1 ml of culture was centrifuged and resuspended in an equal volume of PBS. Suspension in 

PBS halted growth, because PBS contains only salts and no carbon source. Preventing growth 

enabled determination of release from one generation of bacteria. Resuspended bacteria were 

stained by adding an equal volume of a PBS solution containing 20 µM ethidium homodimer-1 

(ThermoFisher, Waltham, MA) and 25 µM 4',6-diamidino-2-phenylindole (DAPI). Ethidium 

homodimer-1 stains dead cells and DAPI stains cell nuclei and identifies all bacteria. Ten µl of 

the stained cell suspension was applied to glass slides and covered with a coverslip to prevent 

evaporation. For 11 hours, fluorescence from the bacteria on the slide was observed by 

microscopy (Olympus, Center Valley, PA) at 10X magnification. Three fluorescence filter sets 

(Chroma, Rockingham, VT) were used: DAPI (EX, 358 nm; EM, 461nm), ZsGreen (EX, 496 nm; 

EM, 506 nm), and ethidium homodimer-1 (EX, 528 nm; EM, 617 nm). Acquired images were 

overlaid to determine the location of individual bacteria from the DAPI stain. Red and green 

fluorescence intensities were determined for each bacterium. Background fluorescence was 

subtracted from these intensities. The viability threshold was determined by starving bacteria of 

all nutrients for 48 hours and staining with ethidium homodimer-1. ZsGreen fluorescence 
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intensity was normalized by the brightest bacterium in all images. The fraction released from 

viable and dead bacteria was determined by comparing the integral of green fluorescence 

(ZsGreen content) over the 11 hours of observation.  

2.2.5 Single-layer antibody dots 

An antibody-based method was developed to improve detection of ZsGreen. Small circles 

of nitrocellulose membrane were cut using a 1.5 mm diameter biopsy punch. Antibody dots were 

prepared by coating with a pan-polyclonal antibody against α-reef coral fluorescent proteins 

(RCFP; Clontech, Madison, WI) that was diluted 1:10 in PBS, and stirring overnight at 4˚C. To 

test sensitivity, supernatant was isolated from a 24-hour culture of ZsGreen-producing 

Salmonella. The supernatant was serially diluted in PBS at ratios of 1:1; 1:10; 1:100; 1:1,000; 

1:10,000; 1:105, 1:106, 1:107; 1:108 and 1:109. These solutions (200 µl) were added to antibody 

dots in 96 well plates, which were incubated and rocked overnight at 4°C. The fluorescence of the 

antibody dots was acquired by microscopy (Olympus) and the fluorescence of diluted solutions 

was measured using a spectroscopic plate reader (Molecular Devices). The fluorescence intensity 

of each dot was quantified by averaging the intensity over the entire area. Images were acquired 

at three exposure times, 100, 400, and 1000 ms, to accommodate the range of the CCD camera 

(Hamamatsu, Shizuoka, Japan). The background fluorescence of antibody dots treated with PBS 

was subtracted from all measured intensities. The detection limit was defined as the intensity at 

which fluorescence measurements did not change with decreasing concentration. All antibody-dot 

fluorescence measurements values were normalized by this value. Spectroscopy measurements 

were background subtracted and similarly normalized.  
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2.2.6 Plasmid stability of pDF02 

Two groups of liquid LB cultures were inoculated with Salmonella transformed with 

pDF02. Both groups were grown at 37°C and 225 rpm in media supplemented with received 2 

mg/ml L-arabinose and 100 µg/ml ampicillin for 12 hours. After this period, two groups of 

cultures were inoculated with 5,000 bacteria. The antibiotic-free group (No Amp, n=4) was 

resuspended in media with only L-arabinose, and the control group (Amp, n=4) received both L-

arabinose and ampicillin. Resuspension was repeated approximately every 12 hours. Fluorescence 

and bacterial density (at 600 nm) were measured periodically throughout. Background 

fluorescence was subtracted from all measurements. Expression ratios were determined by 

normalizing fluorescence intensities by culture density and the maximum measured intensity.  

2.2.7 ZsGreen release from bacteria colonized in tumor masses in vitro  

A microfluidic tumor-on-a-chip device was used to determine the release rate of ZsGreen 

release from bacteria colonized in solid tumor masses. Devices were fabricated using soft 

lithography techniques described previously.(Toley and Forbes, 2012; Walsh et al., 2009) The 

device pattern consisted of a flow channel bordering six chambers with filters at the rear end to 

trap injected spheroids (Figure 3,8A). Molds of the microfluidic pattern were formed on silicon 

wafers coated with SU-8 polymer by photolithography. A 1:10 mixture of Sylgard 184 

polydimethylsiloxane (PDMS; Dow Corning, Midland MI), was cast onto the molds, vacuum 

pumped to remove bubbles, and heated overnight at 55˚C. Holes were punched for the inlets and 

outlet channels using a 1.5 mm diameter biopsy punch. PDMS reliefs were cleaned with ethanol 

and treated with oxygen plasma to adhere to glass slides. Prior to inserting cells, devices were 

sterilized and degassed by flushing with 70% ethanol and PBS.  
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 LS174T human colon adenocarcinoma cells were grown in Dulbecco’s modified Eagles 

medium (DMEM) with 10 % fetal bovine serum (FBS), and incubated at 37 °C and 5% CO2. To 

form spheroids, cells were suspended in flasks coated with poly(2-hydroxyethyl methacrylate), 

and fed every two days for three weeks. Spheroids were inserted into device chambers through 

flow channels, and were incubated at 37°C in an enclosed environment on the microscope stage. 

The medium flow rate through the device was 3.0 µl/min and pH was maintained with 25 mM 

HEPES.  

ZsGreen-expressing Salmonella at were administered to the microfluidic devices for one 

hour at a density of 2x106 CFU/ml in DMEM with 10% FBS, 25 mM HEPES and 100 µg/ml 

ampicillin. Bacteria were administered to devices with empty chambers to serve as tumor-free 

negative controls. Chambers filled with normal cells would not have been suitable controls 

because they would have accumulated bacteria. Three-dimensional tissue grown from normal 

cells contains necrotic tissue, which would promote colonization, and has no immune system to 

clear bacteria. An empty chamber, where there is no environment for growth, was more 

representative of bacterial accumulation in normal tissue in vivo. After bacterial addition, devices 

were supplied with bacteria-free medium for eight hours to mimic systemic clearance. After this 

clearance period, medium containing 0.2% L-arabinose was administered to induce ZsGreen 

expression. Effluent from the devices was collected every four hours, immediately placed on ice, 

and sterile filtered to remove bacteria.  

Images of tumor cell masses were acquired throughout by fluorescence microscopy 

(Olympus). To capture an entire chamber, two images were stitched together using a macro in 

IPLab (BD Bioscience, Rockville, MD). Transmitted light and fluorescence images were captured 

at1 hour intervals and analyzed with ImageJ (NIH Research Services Branch). Fluorescence 
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intensities were calibrated by flowing a 279.5 µg/ml solution of ZsGreen in PBS through the 

device. For each chamber, the total tissue area and the area with a ZsGreen concentration greater 

than 100 µg/ml was determined from transmitted and fluorescence images, respectively. The 

ZsGreen concentration in the effluent medium was determined by incubating 200 µl with 

antibody dots in 96-well plates overnight as described above. The fluorescence intensity of each 

dot was measured at an exposure of 400 ms and the background fluorescence of dots treated with 

fresh medium was subtracted.  

The ZsGreen production rate was determined from a mass balance around the 

device. 𝐹𝐶𝑍 = 𝐾𝑝𝐶𝐵𝑉𝑇           

 (1) 

Where, F is the flow rate in the channel, CZ is the concentration of ZsGreen, KP is the 

per-bacterium production rate, CB is the bacterial density, and the VT is the volume of the cell 

mass. The per-tissue ZsGreen production rate is given by KP·CB. Bacterial density in the device 

was estimated from previously measured profiles of bacterial growth (Toley and Forbes, 2012). A 

Gompertz expression (Zwietering et al., 1990) was used to model bacterial growth in devices 

based on previous measurements (Toley and Forbes, 2012).    

𝐶𝐵 = 𝐶𝐵,𝑚𝑚𝑚𝑒𝑒𝑒 �−𝑒𝑒𝑒 �
µ𝑚𝑒𝑚𝑝 (1)
𝐶𝐵,𝑚𝑚𝑚

(𝜆 − 𝑡) + 1��     (2) 

Two Gompertz parameters were calculated by least squares regression analysis: the 

maximum growth rate, µm (CFU·ml-1·h-1); and the lag time, 𝜆 (h). Maximum bacterial density, 

CB,max (CFU·ml-1) was determined by simultaneously solving equations (1) and (2) for CB,max and 

production rate, KP, using least squares regression to the experimental ZsGreen production data.  
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2.2.8  Mathematical prediction of minimum detectable tumor volume  

A two-compartment pharmacokinetic model was used to predict the detection limits in 

vivo. In this model, ZsGreen accumulation is equal to the amount produced in tumor tissue minus 

the amount cleared from the plasma.  

𝑉𝑝
𝑑𝐶𝑍
𝑑𝑑

= 𝐾𝑃𝐶𝐵𝑉𝑇 −  𝐾𝑒𝑉𝑝𝐶𝑍         (3) 

The concentration of ZsGreen, CZ (µg·ml-1), depends upon the bacterial production rate, 

KP (µg·CFU-1·h-1); the bacterial density, CB (CFU·ml-1); the tumor volume, VT (ml); the 

elimination rate, Ke (h-1); and the plasma volume, Vp (ml). This ordinary differential equation was 

solved using a 4th order Runge-Kutta approximation. The rate of ZsGreen production, KP, was 

determined from the microfluidic experiments and bacterial density, CB, was determined from 

previous measurements in the microfluidic device (Toley and Forbes, 2012). The minimum 

detectable tumor volume was determined by calculating the volume that would produce the 

minimum detectable ZsGreen concentration with the antibody dot technique. The effects of 

clearance and measurement time on detection were determined by calculating the tumor volume 

that would produce the minimum detectable ZsGreen concentration over a 72 hour period for four 

half-lives. Clearance rate is inversely proportional to half-life: Ke= ln (2)/t1/2. The effect of 

increasing bacterial density or ZsGreen production was determined by increasing the production 

term, KP·CB, in Eq. 3 and determining the minimum detectable volume as a function of time.  
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2.3 Results 

2.3.1  Salmonella secreted ZsGreen in liquid culture 

In liquid culture, Salmonella released ZsGreen, which was detectable when suspended in 

blood (Figure 4). A plasmid that expressed ZsGreen, pDF02, was transformed into Salmonella 

and grown in liquid culture. ZsGreen expression increased for 24 hours after induction with L-

arabinose (Figure 4A). Over the first 10 hours, a majority of the ZsGreen, 83%, was found in the 

intracellular fraction of the culture. Between 10 and 41 hours, ZsGreen levels increased in the 

extracellular fraction (P<0.05), while intracellular ZsGreen decreased (P<0.05). These changes in 

concentration indicate that ZsGreen was released from the bacteria. At 41 hours, over half of the 

protein was released, which was greater than the intracellular ZsGreen concentration (P<0.05). 

The release rate of ZsGreen was 87.6 fg·bacterium-1·h-1. 

To determine the threshold for fluorescence detection in blood, ZsGreen from liquid 

culture was diluted in whole blood and plasma (Figure 4B). Extracellular ZsGreen, at a 

concentration of 528 µg/ml, was diluted at ratios of 1:1, 1:10, 1:100 and 1:1000. In whole blood, 

ZsGreen fluorescence was detected down to a 1:10 fold dilution (52.8 µg/ml), 3.2 times brighter 

than the background fluorescence of the blood (P<0.05). Erythrocytes and leukocytes have 

unique optical properties which can interfere with fluorescence molecule detection in blood 

(Friebel et al., 1999). Removal of these red and white blood cells by centrifugation increased 

detection sensitivity of extracellular ZsGreen. Identical concentrations of recombinant ZsGreen in 

plasma enabled detection down to a ratio of 1:1000 (0.528 µg/ml). At this dilution (100-fold less), 

fluorescence from ZsGreen was 1.8 times brighter than the background fluorescence of the 

plasma (P<0.05, Figure 4B). 
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Figure 4. ZsGreen was released by Salmonella and was detectable when suspended in blood 
A) After induction (time 0), transformed Salmonella produced ZsGreen. At 10 h, the intracellular concentration was 
greater than the extracellular concentration (*, P<0.05; n=3). At 40 h, the extracellular concentration was greater (*, 
P<0.05). The total concentration is the sum of the intracellular and extracellular concentrations. B) ZsGreen was 
isolated from liquid culture supernatant and serially diluted in bovine blood and plasma. The fluorescence intensity was 
greater than background fluorescence at concentrations of 0.528 µg/ml in plasma and 52.8 µg/ml in whole blood (*, 
P<0.05). Intensity values were normalized by the autofluorescence of whole blood (Panteli et al., 2015). 

 

2.3.2  ZsGreen release from viable Salmonella  

Recombinant ZsGreen was released from living Salmonella, but was not released from E. 

coli (Figure 5). ZsGreen fluorescence intensity was measured in the intracellular and extracellular 

fractions of Salmonella and E. coli liquid cultures at 26 hours (Figure 5A). Bacteria density was 

described in colony forming units (CFU). Salmonella utilize type I, type III, type VI, sec and 

twin-arginine (Tat) secretion systems for protein export, whereas E. coli primarily utilize type I, 

type II, Sec and Tat mediated secretion systems (Kanehisa, 2000). Salmonella expressed 3 times 

more ZsGreen (2.6 mg/ml; P<0.05) and released 40 times more (1.4 mg/ml; P<0.05) than E. coli. 

Intracellular ZsGreen intensities in both species were approximately equal (Figure 5A). ZsGreen 

was primarily secreted from living Salmonella indicating that an active secretion mechanism was 



23 

 

responsible for its release (Figure 5). Transformed Salmonella were grown in LB and transferred 

to phosphate buffered saline (PBS) to prevent replication and observe a single bacterial 

generation (Figure 5B). The PBS-suspended bacteria were labeled with 4',6-diamidino-2-

phenylindole (DAPI) to identify all bacteria (blue) and ethidium homodimer-I to identify dead 

bacteria (red). Images of these bacteria were acquired for 11 hours to determine changes in 

ZsGreen content (green) and viability (Figure 5B). Overlay of fluorescent images enabled 

classification of individual bacterium as live or dead (Figure 5B,C). The ZsGreen content and cell 

viability of 255 individual bacteria were measured (Figure 5C). Cells were classified as live or 

dead based on a red intensity threshold determined from a dead cell control stained with ethidium 

homodimer-I (solid vertical line; Figure 5C). Suspension in nutrient-free PBS halted growth. For 

the 11 hours of observation, the number of bacteria did not increase and cell viability remained 

above 85% (Figure 5D). On average, live cells contained more intracellular ZsGreen compared to 

dead cells (P<0.05; Figure 5E). Over time, both live and dead Salmonella lost 

intracellular ZsGreen, indicating protein release. Living Salmonella released ZsGreen 1.475 times 

faster than dead bacteria (P<0.05, Figure 5E). Integration of ZsGreen release from viable and 

dead cells over time showed that 91% of released ZsGreen was from live cells (Figure 5F). Faster 

ZsGreen release from live cells than dead cells indicates that active secretion was the dominant 

mechanism of release and that ZsGreen was not released after cell lysis.  
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Figure 5. ZsGreen was released from viable Salmonella.  
A) In liquid culture, Salmonella expressed (total) and released (extracellular) more ZsGreen than E. coli (*, P<0.05). B) 
Salmonella were stained with DAPI (blue) and ethidium homodimer (EtHd-1, red) to identify viable (blue only) and 
dead (both red and blue) bacteria. In the merged image, most ZsGreen expressing bacteria (green) are viable (not red). 
C) Fluorescence from ZsGreen and EtHd-1 (cell death) of individual Salmonella in microscopy images (B). Bacteria 
were grouped into viable and dead (solid vertical line) based on control measurements. ZsGreen fluorescence was 
normalized by the greatest intensity measured in an individual bacterium and multiplied by 100. Cell death was 
normalized by the fluorescence of positive-control bacteria. D) Bacterial viability was greater than 85% for 11 hours of 
incubation in PBS.  E) Over time, ZsGreen fluorescence decreased in all bacteria. This rate of ZsGreen release was 
greater from viable compared to dead cells (P<0.05). F) More ZsGreen was released by viable cells (*, P<0.05) (Panteli 
et al., 2015).  

 

2.3.3  Detection of ZsGreen with single-layer antibody dots 

ZsGreen measurement with a single-layer antibody technique improved sensitivity over 

direct fluorescent spectroscopy almost 1000 fold (Figure 6). To measure ZsGreen fluorescence, 
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nitrocellulose membranes were cut into 1.5 mm diameter circles and coated with anti-ZsGreen 

antibody (Figure 6A). ZsGreen was applied to antibody dots in 96-well plates and measured by 

epifluorescent microscopy. The ability to measure extended fluorescent exposure of a surface 

with a CCD camera provided a greater range of detection compared to spectroscopy with a 

microtiter plate reader (Figures 6B,C). For each measurement method, the fluorescence signal 

intensity was normalized to a value of one at the lowest detectable ZsGreen concentration.  

The detection limit was defined as the concentration that produced a signal that was statistically 

greater than background fluorescence. The lowest detectable concentration of ZsGreen with 

single-layer antibody dots (4.5 ng/ml) was significantly lower than the limit with direct 

spectroscopy (4,500 ng/ml; P<0.05; Figure 6C). To improve dynamic range, exposure times were 

increased for lower concentrations (Figure 6B,C). Increasing exposure time of the CCD camera 

enabled detection of lower concentrations of ZsGreen (Figure 6B). The dot fluorescence intensity 

from a 100 ms exposure equaled 10 and 2.5 times the intensities produced by 1000 and 400 ms 

exposure times, respectively. Fluorescence intensity on dots had a linear relationship with 

ZsGreen concentrations between 4.5 and 10,000 ng/ml (Figure 6C). At concentrations greater 

than 10,000 ng/ml, little change in fluorescence intensity was observed indicating saturation of 

antibody binding sites on the surface of the dots (Figure 6C). Fluorescence intensity of 

spectroscopic measurements was less sensitive than measurement on antibody dots, with a linear 

range of detectable concentrations between 1,000 and 1x106 ng/ml (Figure 6C).  
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Figure 6. Single-layer antibody dots  
A) Antibody dots were formed by binding anti-ZsGreen antibodies to 1.5 mm diameter circles of nitrocellulose 
membrane. ZsGreen concentrations were measured by incubating solutions overnight and measuring dot fluorescence. 
B) The fluorescence of antibody dots decreased with decreasing ZsGreen concentration. Higher camera exposure times 
were used to detect lower concentrations of ZsGreen. C) Fluorescence increased for increasing concentrations of 
ZsGreen. Intensities were normalized by the lowest detectable value. Dot measurements greater than 4.5 ng/ml and 
spectroscopic measurements greater than 1,000 ng/ml were significantly greater than auto-fluorescent values (*, 
P<0.05) (Panteli et al., 2015). 

 

2.3.4  ZsGreen plasmid stability 

Plasmid stability is an important consideration for future in vivo experiments. 

Maintenance of plasmid pDF02 was determined by culturing transformed bacteria in the presence 

and absence of the antibiotic Ampicillin, the resistance gene incorporated into the plasmid. The 

control set (n=4) was maintained with 100 µg/ml ampicillin (Amp), and the other set (n=4) was 

not (No Amp). Cultures were diluted approximately every 12 hours back down to 5,000 cells to 

inoculate the next cycle. Fluorescence intensities were normalized by culture density and by the 

maximum intensity measured. Cultures without ampicillin maintained the same expression as 

cultures with ampicillin. There was no significant difference in expression levels over 58 hours 

(average P=0.54), and the average relative difference between the intensities of the two groups 
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was 2.6%. Although the plasmid contained resistance to ampicillin, antibiotic was not needed to 

maintain expression for up to 58 hours (Figure 7). 

 

 

Figure 7. Plasmid stability of pDF02  
Fluorescence ratio of Salmonella cultures transformed with pDF02, and cultured with and without antibiotic 
(ampicillin). The control set (n=4) was maintained with 100 µg/ml ampicillin (Amp), and the other set (n=4) was not 
(No Amp). Cultures were diluted approximately every 12 hours. Fluorescence intensities were normalized by culture 
density and by the maximum intensity measured. Cultures without ampicillin maintained the same expression as 
cultures with ampicillin. There was no significant difference in expression levels over 58 hours (average P=0.54), and 
the average relative difference between the intensities of the two groups was 2.6% (Panteli et al., 2015).  

2.3.5  Released ZsGreen was detected from small in vitro tumor cell masses 

Tumor detecting Salmonella produced ZsGreen in microscopic tumor masses and was 

released into the flow channel of a microfluidic device (Figure 8). The device mimics tumor 

tissue adjacent to a blood vessel (Figure 8A). Ten chambers containing tumor cell masses were 

analyzed across three replicate experiments (A: n=3, B: n=4, C: n=3). In each run, the chambers 

are connected in series. The total volume for each run (A, B, and C) was the sum of the volumes 

of each cell mass in the device chambers. The average volume was 0.12 ± 0.02 mm3 (n=3; Figure 
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8B). Empty tumor-on-a-chip devices were used as negative controls (n=3), because they mimic 

healthy organs where bacteria are cleared by the immune system. Chambers filled with normal 

cells accumulate bacteria and would not be appropriate controls. Tumor detecting Salmonella 

 

Figure 8. ZsGreen production by tumor-colonized bacteria 
 A) Tumor-on-a-chip device used to measure ZsGreen production. Tumor cell masses were contained within a 
1000×300×150 µm chamber that borders a flow channel from which ZsGreen was collected. B) A cell mass composed 
of LS174T colon carcinoma cells in a device chamber (top) that was colonized by ZsGreen-producing bacteria (bottom, 
green). Scale bar is 200 µm. C) The area of a cell mass with a local ZsGreen concentration greater than 100 µg/ml 
increased rapidly and was significantly greater than zero,12 hours after induction (*, P<0.05; n=10). D) Fluorescence 
images of antibody dots incubated with device effluent, collected every four hours after induction (time = 0). E) The 
average concentration of ZsGreen in the effluent streams (n=3) was greater than controls, 12 hours after induction (*, 
P<0.05). The average effluent concentration of 33.3 ± 6.3 µg/ml was equivalent to a production rate of 23.9 ± 2.5 µg/h 
(Panteli et al., 2015).  

 

were administered to the devices for one hour and flushed from flow channels with an 

additional eight hours of media flow. After the eight hours, ZsGreen expression was induced with 

the addition of L-arabinose (time zero, Figure 8C). Eight hours after induction, fluorescence in 

the tumor cell masses quickly increased (Figure 8C). By 20 hours, more than 90% of the cell 
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masses contained over 100 µg/ml ZsGreen (n=10; Figure 8B, C). Effluent samples were averaged 

over three runs to determine the release of ZsGreen. ZsGreen concentration was determined with 

antibody dots (Figure 8D). Little ZsGreen was seen in the controls. At 12 hours after induction, 

the concentration of ZsGreen in the effluent stream was greater than in controls (P<0.05, Figure 

8E). Measurements ceased at 24 hours, when bacteria flooded both systems. After 12 hours, 

ZsGreen was steadily released at an average rate of 23.9 ± 2.5 µg/h, which is equivalent to 200. ± 

21 µg/h per mm-3 of tissue (Figure 8E). Based on measurements of bacterial growth in tumor cell 

masses, (Toley and Forbes, 2012) (Figure 6), the per-bacterium ZsGreen production rate was 

1.48×10-5 µg·CFU-1·h-1.  

2.4 Discussion 

A bacterial cancer detection system has been created that could identify microscopic 

tumors by releasing a fluorescent reporter protein and was tested in a tumor-mimic microfluidic 

device. It has previously been shown that Salmonella target tumor tissue with high specificity and 

replicate within the tumor microenvironment (Ganai et al., 2009; Ganai et al., 2011; Kasinskas 

and Forbes, 2006; Swofford et al., 2014; Toley and Forbes, 2012). In this study, we engineered an 

attenuated strain of Salmonella, VNP20009, to express and release a fluorescent reporter protein 

after induction with an external inducer molecule (Figure 5). Protein release was found to be 

predominantly from living Salmonella (Figure 5), which is essential for continual production and 

release of the biomarker from tumors. A method was developed to detect the released protein that 

was able measure concentrations in the ng/ml range (Figure 6). The engineered bacteria colonized 

microscopic tumor cell masses in a microfluidic device (Figure 8). After induction, they produced 

and released the reporter protein, which diffused through tissue into the flow channel in vitro, 

where it was detected in the flow channel. In the cell masses, bacteria released ZsGreen at a rate 
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of 8.5 µg·ml-1·h-1 per 0.12 mm3 of tumor tissue. Detecting microscopic lesions could enable 

earlier treatment, which could reduce patient mortality rates. Release of ZsGreen indicates that 

bacteria could detect small tumors in humans (Figure 9). At ZsGreen production rate determine in 

the microfluidic device (Figure 8E,9D) a two compartment pharmacokinetic model (Figure 9A) 

predicts how blood concentration would depend on tumor size (Figure 6E).   

ZsGreen accumulation is equal to the amount produced in tumor tissue minus the amount 

cleared from the plasma. Based on this model, ZsGreen from a 0.043 mm3 tumor would be 

detectable after 24 hours, at a clearance half-life of 24 h (Figure 9E). At 24 h, the ZsGreen in the 

blood would be greater than the detectable limit with antibody dots of 4.5 ng/ml (Figure 6C). This 

volume is 2,600 to 6,200 times smaller than the current limits of tomographic imaging (6-8 mm in 

diameter) (Behjatnia et al., 2010; Belião et al., 2012; Schöder and Gönen, 2007). A larger tumor 

would have a higher rate of ZsGreen production and would be detectable earlier (Figure 9E). A 

larger tumor would support a greater number of bacteria, which would, in turn, produce more 

ZsGreen.  
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Figure 9. Mathematical predictions of detection efficacy  
A) Two compartment model of ZsGreen production and clearance. ZsGreen is produced at rate KP by bacteria at 
density CB in a tumor of volume VT. The concentration of ZsGreen CZ in the plasma, with volume VP, decreases by 
clearance rate Ke. B) Compartment model of ZsGreen production in a tumor-on-a-chip-device. ZsGreen is produced at 
rate KP, and enters the flow channel with flow rate F and concentration CZ. C) Bacteria density in tumor devices fit to 
a Gompertz function with growth rate of 1.65x109 CFU·ml-1·h-1 and lag time of 10.3 h.  D) ZsGreen release from the 
device experiment was fit to the compartment model in (B). Steady-state production of ZsGreen from 0.12 mg tumor 
mass of 23.9 ± 2.5 µg/h was found by solving C and D simultaneously (see equations (1) and (2)). E) Predictions of 
ZsGreen concentrations in human plasma using parameters derived from device measurements and the two 
compartment pharmacokinetic model in (A). A 0.043 mm3 tumor, with a nominal clearance half-life of 24 h, would 
produce the limiting ZsGreen concentration by 24 h. Larger tumors, 0.087 and 0.174 mm3, would produce more 
ZsGreen and be detectable by 14.2 and 17.2 h. The lag in ZsGreen production is caused by the predicted delay in 
bacterial growth (C, 𝜆=10.3 h).   F) The volume of the smallest detectable tumor decreases as the time of measurement 
is increased and the when the clearance half-life (t1/2) is longer. G) Increasing the production rate of ZsGreen (KP) or 
the bacterial density in tumors (CB) would reduce the volume of the minimum detectable tumor (Panteli et al., 2015). 
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Waiting longer to measure the concentration would allow more time for ZsGreen to 

accumulate in the bloodstream and enable detection of smaller tumors (Figure 9F). If ZsGreen 

was measured at 72 hours and the clearance half-life was 24 h, the minimum detectable volume 

would be 0.016 mm3. This benefit is dependent on the clearance rate. For fast rates, e.g. t1/2=1 h, 

waiting would not affect detectable tumor size (Figure 9F). At times greater than 24 h, the 

elimination rate and the production rate equalize and the minimum detectable volume limit 

becomes time independent (Figure 9F). For slow clearance rates, e.g. t1/2=72 h, the minimum 

detectable tumor volume at 72 h would be 0.010 mm3.   

The efficacy of detecting microscopic tumor lesions in the clinic will depend upon 1) the 

rate of biomarker production, 2) the number of bacteria colonizing neoplastic sites, 3) the tumor 

volume, and 4) the clearance rate of the biomarker reporter. Increasing the ZsGreen production 

rate or the maximum bacterial density would enable detection of smaller tumors (Figure 9G). 

Increasing either of these 10-fold would decrease the detectable tumor volume from 0.016 to 

0.0015 mm3 at a measurement time of 72 hours (Figure 9G). The rate of ZsGreen expression and 

release could be increased by increasing plasmid copy number or promoter strength. Eliminating 

rare codons in the ZsGreen DNA sequence would also increase production rates. To increase 

bacterial density, lipid A could be concurrently administering with the bacteria. Lipid A increases 

bacterial dispersion throughout tumor tissue by causing a temporary inflammatory response 

(Zhang et al., 2014).  

In animal models, detecting bacteria would have to stably express ZsGreen. For long 

studies in animals, stable expression could be maintained by continual administration of 

ampicillin (Bakker-Woudenberg et al., 1981; Corpet et al., 1989). Similarly, L-arabinose has been 

administered to animals to induce protein expression from injected bacteria (Brader et al., 2008; 
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Stritzker et al., 2007). For short studies, ZsGreen from cultures without ampicillin would 

maintain the same expression as cultures with ampicillin (Figure 7). In humans, antibiotics could 

not be used, and the ZsGreen construct would have to be maintained with a balanced lethal 

system or be incorporated into the Salmonella genome (Dai et al., 2013; St Jean et al., 2014).  

Active release of ZsGreen by Salmonella will greatly enhance the sensitivity of tumor 

detection. Continuous production would cause ZsGreen to build up in the circulation system until 

the eliminate rate balances the production rate (Figure 9F; Eq. 1). Waiting longer to measure the 

blood concentration would enable detection of smaller lesions (Figure 6F, G). In culture, over 

90% of ZsGreen was actively secreted by living Salmonella (Figure 5). Release from dead 

bacteria would not be continuous and would limit efficacy. If bacteria produce ZsGreen in a 

single batch after injection, only a pulse of ZsGreen would appear in the blood and it would be 

more difficult to detect. 

The difference in release rates between Salmonella and E. coli (Figure 5A), indicates that 

Salmonella actively secrete ZsGreen. Some of the major differences between these two organisms 

are their secretion mechanisms. Gram negative bacteria have seven classes of secretion systems 

that are activated in different environments to transport proteins across the cell envelope (Filloux, 

2004; Francetic et al., 2000; Kerr, 2000; Natale et al., 2008; Thanassi and Hultgren, 2000).   

Salmonella and E. coli contain many of the same secretion genes, although not all are functional 

(Tseng et al., 2009). For example, Salmonella and K-12 E. coli both activate type III secretion 

systems when quorum sensing is activated (Choi et al., 2007; Sperandio et al., 1999). However, 

DH5α E. coli (a K-12 sub-strain), have a quorum sensing deficiency and are unable to synthesize 

autoinducer-2 (Surette and Bassler, 1998). As a result, DH5α E. coli cannot activate quorum-

sensing-related secretion machinery (Li et al., 2007; Sperandio et al., 1999; Surette et al., 1999). 
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This difference suggests that type III secretion, or another quorum-sensing-related mechanism, is 

used by Salmonella to secrete ZsGreen. This difference in active secretion also shows that 

Salmonella would be superior to DH5α E. coli for tumor detection.  

Efficient molecular transport through tumor tissue is necessary for effective intravenous 

detection (Figure 2). For the biomarker to be present in the blood or the device effluent, it must 

diffuse through tissue and not be sequestered by cancer cells. Similarly, if the gene inducer does 

not diffuse through tissue, gene expression would not be activated. Appearance of ZsGreen in the 

effluent of the microfluidic device (Figure 8E) shows that both ZsGreen and L-arabinose diffuse 

through tumor cell mass. It also shows that Salmonella can both produce and release the protein 

when colonized in a tumor mass. The increase of ZsGreen throughout the chambers (Figure 8B-

C) shows that L-arabinose was rapidly delivered. We have previously shown with another system 

that L-arabinose can activate gene expression throughout tumor tissue (Dai et al., 2013). In this 

system, over 90% of the cell mass in the device contained at least 100 µg/ml of ZsGreen after 24 

hours (Figure 8C).  

The inclusion of a triggered gene expression system is essential for bacterial detection. 

Systemic administration of the inducer molecule (L-arabinose) is necessary to activate protein 

production after bacteria have cleared from normal tissue. It is critical that tumor-detecting 

bacteria are not making the protein biomarker when they are injected into the body. After 

systemic injection of Salmonella, it takes approximately three days for them to clear from healthy 

organs (Clairmont et al., 2000). If a biomarker was constitutive produced, bacteria in healthy 

organs would express it during this period and obscure detection of malignant lesions. To prevent 

expression in normal tissue, the tightly regulated PBAD promoter would not express the biomarker 

until administration of L-arabinose.  
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Using these engineered bacteria after resection of a primary tumor could provide a fast 

and easy method to detect tumor recurrence or the onset of metastatic disease. Detecting tumors 

with bacteria would be minimally invasive. Measurement would require injection of bacteria 

followed by a single blood draw three days later. How the system is used will depend on whether 

it can be administered repeatedly. An immune response that produces anti-ZsGreen antibodies 

could induce adverse side effects and could be detrimental to the single-layer dot technique. In 

mice, it takes at least one week to develop antibodies, suggesting that a single administration 

would be possible (Dittmer et al., 1999). Patients could receive a screening dose at a set period of 

time after surgery to detect recurrence or metastatic spread.  

If repeated doses are possible, the utility of the technique would be greater. We envision 

that after surgery to remove a primary tumor, patients would receive an initial dose of tumor-

detecting bacteria to establish a baseline plasma level of ZsGreen. Patients would then receive 

periodic screenings with bacteria. Signal increases would indicate recurrence or formation of 

secondary cancers. This system could also be used to determine the aggressiveness of a malignant 

mass or monitor tumor growth in response to treatment. The mathematical model predicts that the 

magnitude of ZsGreen signal is indicative of the volume of a malignant cell mass (Figure 9E). If a 

tumor were to grow, the number of bacteria would increase proportionally. Similarly, if a tumor 

shrinks in response to therapy, the number of colonized bacteria would decrease. In this way, 

monitoring tumor growth with bacteria could determine if a therapy is effective.  

2.5 Conclusions 

Here I showed development of a bacterial diagnostic tool to detect microscopic tumor 

masses. Genetically modified tumor-targeting bacteria were engineered to release a reporter 
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protein for detection. An in vitro tumor model was used to test tumor targeting and production of 

the reporter molecule in 3D tumor cell masses. Production of ZsGreen from tumor-targeting 

Salmonella detected microscopic 0.12 mm3 tumor masses from a microfluidic device. At the 

estimated parameters, mathematical analysis of these results predicts detection of tumor masses 

as small as 0.043 mm3 in humans, more than 2,600 fold smaller than the current limits of 

tomography. These results suggest the possibility of a bacterial detection in humans. This method 

has the potential to non-invasively monitor treatment, detect tumor masses that are invisible to 

current techniques, and increase life expectancy. 
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CHAPTER III 

DETECTION OF MURINE TUMORS WITH GENETICALLY MODIFIED BACTERIA  

PART B: IN MURINE TUMOR MODELS 

3.1 Introduction 

Detecting microscopic tumor lesions in the clinic with tumor-targeting bacteria depends 

upon 1) the rate of biomarker production, 2) the number of bacteria colonizing neoplastic sites, 3) 

the tumor volume, and 4) the stability of the biomarker reporter. ZsGreen stability will determine 

the retention time in circulation. ZsGreen clearance rate was measured in mice by systemic 

injection and subsequent blood collection. A stable protein half-life will enable detection of 

smaller malignant cell masses. To determine the efficacy of in vivo tumor detection, a tumor 

model experiment was performed to identify subcutaneous tumors of various sizes.  

3.2 Materials and Methods 

3.2.1 ZsGreen purification and quantification 

Recombinant ZsGreen was purified from bacterial lysate of liquid cultures of pHis-

ZsGreen with nickel column chromatography. Solvent exchange was performed to concentrate 

and solubilize the purified protein into an excipient solution suitable for injection. Excipient 

solution consisted of: 200 mM glycine, 8 mM L-histidine, 40 mM sodium chloride, and 0.8% 

sucrose in sterile water for injection. This composition is necessary to maintain ZsGreen 

solubility in purified state and prevent protein precipitation. The excipient composition is an 

accepted known excipient formulation for an intravenous protein drug on the market (BeneFIX, 

coagulation factor IX, Pfizer). 
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Bradford assay was used to measure concentration of ZsGreen.  ZsGreen was diluted to a 

final concentration of 10 micrograms/ 100 microliter. ZsGreen solution was sterile filtered 

through a 0.2 micron filter prior to injection for the half-life study. Sterilized ZsGreen solution 

administered to murine models via tail vein injection of 100 microliters (1 µg/ml) with a 30 gauge 

needle.  

3.2.2 Pharmacokinetic study of the half-life of ZsGreen 

ZsGreen was purified by column chromatography and buffer exchanged into an excipient 

formula suitable for intravenous injection into animals. Ten µg of ZsGreen in 100 µl of excipient 

formula was injected into the tail vein of 20 mice, 8-10 week old female BALB/c (The Jackson 

Laboratory, Bar Harbor, Maine). In groups of five, blood samples were collected at 1, 3, 9 and 24 

hours and compared to a negative control group, injected only with equal volume saline (n=5). 

Blood samples were collected by cardiac puncture upon euthanasia with CO2. 

3.2.3 Tumor models 

Two groups of  8-10 week old female BALB/c mice (The Jackson Laboratory, Bar 

Harbor, Maine) (Large group, n=8 and Small group, n=10) were subcutaneously injected with 

50,000 cells of 4T1 mammary carcinoma cells at two separate inoculation times day 0, and day 

11. A third group of mice (n=9) cancer free mice served as a negative control. At day 27 all mice 

received intravenous injections with ZsGreen expressing Salmonella. The bacteria were allowed 

48 hours to grow in the tumors and clear from healthy organs, with subcutaneous injections of 

Ampicillin every 8 hours to maintain plasmid. After the 48 hour growth period, 100µl 0.2%  L-
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arabinose was injected subcutaneously with 10mg/100µl ampicillin every 8 hours for the next 24 

hours, to induce ZsGreen expression. At 72 hours after bacterial injection, all mice were then 

euthanized and tumor, liver, spleen and blood were harvested. 

3.2.4 Immunofluorescent staining and image acquisition 

Immunofluorescent staining was used to identify locations of bacteria and ZsGreen 

throughout tumors. Paraffin embedded sections were blocked after 20 min antigen retrieval at 

65C in citrate buffer, with Dako protein block (Dako). Sections were stained with two primary 

antibodies, 1:100 anti-rabbit α-RCFP polyclonal antibody (Clontech) and 1:10 FITC-conjugated-

anti-salmonella-antibody (Abcam, Cambridge, MA). Washes were performed in TBS-T and a 

secondary Alexa Fluor 546-donkey-antirabbit IgG (Life technologies) was applied at 1:100.  

An Olympus IX71 Inverted Epi-fluorescence Microscope (Olympus America, Center 

Valley, PA) equipped with 10X Plan-APO objective, a LudI Motorized Z-stage (LudI Electronic 

Products, Hawethorne, NY), and a monochromatic Hamamatsu cooled-CCD Digital Camera 

(Hamamatsu Photonics K. K., Hamamatsu City, Japan) was used to acquire images from 

immunofluorescent labeled slides. A script in IPLab (BD Biosciences, Rockville, MD) was used 

to automate image acquisition and assemble a tiled montage of individual images comprising of 

three fluorescent filters: D350/50x     UV: ~300-400nm, D546/10x     Blue:~ 415-500nm, 

D455/70x     Green:~537-557nm (Chroma Technologies Corporation, Bellows Falls, 

VT).  ImageJ/Fiji (Schindelin et al., 2012) was used to perform image analysis and 

threshold red and green images to enable quantification of Salmonella and ZsGreen.  
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3.2.5 Colony counting via plating 

A fraction of each harvested tumor, liver, and spleen were weighed, minced, suspended 

in equal volumes of phosphate buffered saline (PBS), and applied to LB agar plates with 

ampicillin. Four dilutions of each tissue in PBS were plated on antibiotic plates. For livers and 

spleens, dilutions of 1, 1:10, 1:100, and 1:100 were used and for tumors 1:103, 1:104, 1:105, and 

1:106 were plated. After overnight incubation at 37°C, plates were imaged using a black and 

white camera and colonies were counted using Fiji/ImageJ particle analyzer plugin.  

3.2.6 Tumor transition boundary analysis 

Whole tumors at 25% image quality were analyzed for the transition boundary 

analysis. The boundary between necrotic and viable tissue was determined by the size and 

density of nuclei from DAPI staining.  Necrotic and apoptotic tissue has small dispersed and 

fragmented nuclei, termed pyknosis. The boundary between viable, large well distributed nuclei, 

and pyknosis was drawn on tumors with necrotic tissue (n=5). A Euclidean distance map to this 

boundary into necrosis (positive x axis) and out to viable tissue (negative x-axis). The distance 

map was multiplied by the thresholded bacterial and ZsGreen to determine the abundance of 

pixels of each color as a function of distance from this boundary. Raw bacteria and ZsGreen 

were background subtracted by rolling ball 50 pixel, to eliminate autofluorescence from 

tissue. Individual Salmonella threshold was set to 550 and ZsGreen to 850 based on 

negative control autofluorescence.  
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3.2.7 Colony characteristics image analysis  

Six images from the tumors were randomly picked using a random number generator, 

excluding tissue edges, images with tissue folds, and over 75% black space, i.e. broken tissue 

within the main body of a tumor (n=5). Small tumors and large tumors, with no necrotic regions 

showed little to no detectable Salmonella or ZsGreen via immunofluorescent staining and were 

not analyzed. In Fiji/Imagej, individual images, at 100% image quality, were background 

subtracted using 25 pixel rolling ball method, thresholded and converted to binary. Red and green 

binary images were then aligned by maximizing the area of overlap through sequential rigid 

transformations. The maximum overlap was assumed to be the best alignment. Using Fiji/ImageJ 

particle analyzer the number of bacteria and the size were measured in binary red images. The 

ZsGreen binary images were multiplied by the aligned red images to identify regions of co-

localization. Only co-localized ZsGreen regions of interest were analyzed for diffusion distance. 

Sequential dilations around each colony identified the average ZsGreen distance from the colony 

and concentration. Scripts for binary image alignment and measuring ZsGreen diffusion distance 

from a colony by sequential dilations and unions can be found in Appendix C.  

3.2.8  Mathematical model of diffusion from a colony 

ZsGreen production from bacteria was modeled as a continuous point source production 

from the edge of a colony with a constant rate of production. ZsGreen expression from a colony 

can be described by 1-D diffusion from a spherical particle: 

𝜕𝐶
𝜕𝑑

= 𝐷
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝐶

𝜕𝑟
� , 𝜕𝐶

𝜕𝑑
= �̇�|𝑟=𝑟0 , 𝐶 = 0|𝑟→∞ , 𝐶 = 0|𝑑=0                 (4) 
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Where C is the extracellular concentration of ZsGreen, t is time, in hours, r, is the radial 

distance from the edge of the colony with radius r0, and �̇� (moles/time) is the production rate of 

ZsGreen.  

The steady state solution to equation (4) is: 

𝑡 → ∞,  𝐶(𝑟) = 𝑀
�̅�

�̇�
4𝜋𝐷𝑟0𝐶0 𝑟

       (5) 

With dimensionless concentration, C  = C/C0, radius,  r =r/r0, and time, t  = 𝐷𝑑
𝑟02

, 

where C0  is the minimum detectable ZsGreen concentration by indirect immunofluorescence, 

estimated from reported measured values for several different paraffin embedded proteins (Davis 

et al., 2003). The diffusion coefficient for ZsGreen was estimated from the molecular weight of 

the protein assuming a hydrodynamic radius of ZsGreen similar to that of a globular protein 

(Narang et al., 2005) at the molecular weight of the tetrameric form of ZsGreen (104.2 g/mol) and 

calculating the estimated effective diffusion coefficient and the respective tumor interstitium 

diffusion coefficient (Pluen et al., 2001). From least squares regression of concentration to the 

model in equation (5), the M value was determined for the average concentration of ZsGreen 

released from all colonies. The colony level production rate of ZsGreen, �̇�, was then calculated, 

based on the minimum concentration, C0, and diffusion coefficient, D. 

The relationship between tumor size and ZsGreen production rate based on  �̇� was 

compared to the actual production rate measured in tumors, Kp. Kp and  �̇� share the same units 

[ng/ CFU/ h]. The Kp was determined by solving equation (3) at t= 24 hours, given the measured 

ZsGreen concentrations and tumor weights, a constant bacterial density of  485 CFU/mg, a 

plasma volume in mice of 2 ml, and the measured half-life of ZsGreen, 2.7 h. The minimum 

tumor size detected in humans was then calculated based on the measured Kp. Increasing bacterial 
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density in equation (3) from 485 CFU/mg to 100,000 CFU/mg allowed calculation of minimum 

tumor size based on previously recorded bacterial densities in tumors. Tumor weight was 

converted to diameter assuming perfect spherical masses and a density of 1g/ml.  

3.3 Results 

3.3.1  ZsGreen half-life was determined in mice 

To determine if biomarker elimination would be a limitation for detection, the half-life of 

ZsGreen was measured in mice (Figure 10). Blood samples were applied to single layer antibody 

dots and quantified. Over 24 hours ZsGreen concentration decreased with time. Half-life was 

determined by fitting the measured data points to the equation for exponential decay: C =C0·e-kt
, 

where k = ln(2)/t1/2, t is time, C is concentration, and C0 is the starting concentration. The half-life 

in circulation for ZsGreen was found to be 2.7 ± 0.44 hours (Figure 10). ZsGreen in the blood 

was detectable to 1ng/ml with confidence compared to saline injected controls (*, P<0.05). 

3.3.2  Salmonella detect subcutaneous murine tumors by triggered release of ZsGreen 

The capability of bacterial tumor detection was evaluated in murine tumor models to 

determine if subcutaneous tumor could be detected and if tumor size affected the concentration of 

ZsGreen found in blood samples. Three groups of mice were used to test this hypothesis: a large  
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Figure 10. Half-life of ZsGreen in circulation in mice 
The half-life for ZsGreen in circulation was found to be 2.7 ± 0.44 hours, measured by plasma application to single-
layer antibody dots.  

 

tumor group (A, n=8), small tumor group (B, n=10) and a no tumor control group (C, 

n=9). At time zero all three groups of mice were injected with ZsGreen producing bacteria. After 

48 hours the mice received 3 subcutaneous doses (every 8 hours) of L-arabinose, on the opposite 

flank of the tumor, to induce ZsGreen expression. At 72 hours mice were sacrificed and blood, 

tumor, liver, and spleens were harvested for analysis. 

The mice from the large tumor group showed significantly higher plasma ZsGreen 

concentration compared to the control mice, with an average tumor weight of 0.557 ± 0.104 g and 

a plasma ZsGreen concentration of 1.1 ± 0.34 ng/ml (Figure 11A, P<0.05). The small tumor 

group was not significantly different than the control or the large tumor group. Plasma ZsGreen 

concentration increased with tumor weight with slope of 0.81 ± 0.32 ng·ml-1·g-1 (Figure 11B; 

slope>0; P<0.05). 
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Figure 11. Tumor-targeting bacteria detect tumors by release of recombinant ZsGreen 
A) The large tumor group showed significantly higher amount of plasma ZsGreen than the control (slope>0; P<0.05). 
B) Plasma ZsGreen concentration increased with tumor size with a statistically significant, positive slope (P<0.05). C) 
Colony counting showed tumors with the highest bacterial density after 72 hours with large tumors having an average 
bacterial density of 500 CFU/mg. Livers and spleens showed little to know bacterial density with averages around 1 
CFU/mg.  

 

The y-intercept, in Figure 11B, indicates ZsGreen production from healthy organs of 

approximately 0.44 ± 0.16 ng/ml, 24 hours after inducing with L-arabinose. Colony plating 

showed that the large tumor group contained the highest number of bacteria with an average 

bacterial density of 485 CFU/mg. Healthy tissues contained little bacteria with an average density 

of 1.6 CFU/mg (Figure 11C). 

3.3.3 ZsGreen expression was higher in viable tissue than necrotic regions 

ZsGreen expression was higher in viable tissue but the majority of bacteria and ZsGreen 

were observed in necrotic regions of the tumor. Necrosis (N) was identified by DAPI staining. 

Necrotic regions were identified by pyknosis,  regions with small and sparse nuclei caused by the 

irreversible compacting of the chromatin in the nucleus associated with necrotic and apoptotic 

tissue (Elmore, 2007; Kroemer et al., 2009). Viable tissue (V) was identified by large, evenly 
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distributed, and dense nuclei. Boundaries between viable and necrotic tissue were drawn for 

tumors with necrotic regions (n=5; yellow line; Figure 12A). Immunofluorescent staining 

identified bacteria, red, and ZsGreen, green. The small tumor group and tumors without necrosis 

in the large tumor group had little to no bacteria or ZsGreen (n=13, Figure 12 B, top). Over 80% 

of bacteria and ZsGreen were found in necrotic regions of large tumors (Figure 12B, bottom, C). 

Intratumoral ZsGreen correlated well with the weight of necrotic tissue (Figure 12D). Multiplying 

the bacteria and ZsGreen pixels by the Euclidian distance map of the transition boundary enabled 

measurement of pixel area as a function of distance from the boundary. The majority of bacteria 

and ZsGreen were found within 500 µm of the transition boundary, the interface between viable 

and necrotic tissue (Figure 12E,F). As distance away from this transition boundary increased the 

magnitude of detected bacteria and ZsGreen dropped, with higher levels of both found in 

necrosis, compared to viable regions (Figure 12E,F). The absolute pixel area difference between 

ZsGreen and bacteria as a function of distance was positive in viable regions and negative in 

necrotic regions of the tumor, indicating less ZsGreen produced per bacteria in necrotic regions 

(Figure 12G). The relative ratio of ZsGreen to bacteria, as a function of distance, shows a higher 

level of ZsGreen production per bacteria in viable regions, at -500 µm on the x-axis, with an 

exponential drop with distance across the transition boundary into necrosis (Figure 12H). The 

relative production rate of ZsGreen per bacteria was higher in viable regions of the tumors 

compared to necrotic regions (Figure 12I). 
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Figure 12. ZsGreen expression was higher in viable tumor tissue  
A) Tumors were immune-stained with DAPI, anti-Salmonella antibody, red, and anti-ZsGreen antibody, green. The 
transition boundary (yellow line) between viable (V) and necrotic (N) tumor tissue was identified by size and density of 
nuclei from the DAPI stain. B) Necrotic regions of the tumor (bottom) contained most of the bacteria and observed 
ZsGreen release, whereas viable regions (top) did not. C) The majority of both Salmonella and ZsGreen were found in 
necrotic regions in the tumors (n=5, tumors with necrosis). D) The intratumoral concentration of ZsGreen scaled 
linearly with the weight of necrotic tissue. Five tumors from the large tumor group were identified with high levels of 
necrosis. E,F) The transition boundary between viable and necrotic tissue had the highest density of bacteria and 
concentration of ZsGreen, which decreased with distance away from this boundary (reported as average pixel area; *, 
P<0.05). G) The difference between ZsGreen and bacterial staining area was positive in the viable region of tumors and 
negative in the necrotic region away from the transition boundary. H,I) The normalized ratio of ZsGreen produce per 
bacteria showed higher production of ZsGreen in viable tissue compared to necrotic regions(*, P<0.05). Negative 
distance on the x-axis indicates viable tissue and positive x-values indicate necrotic tissue (panels E,F,G, and H). 
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3.3.4  ZsGreen diffuses through solid tumor tissue 

Bacterial colonies were measured for ZsGreen expression, size, and extent of local 

ZsGreen release. Approximately 10,000 colonies across five tumors were analyzed for ZsGreen 

release. From the overlay of DAPI, Salmonella antibody, and ZsGreen antibody, the size and 

location colonies and ZsGreen were measured (Figure 13A). Colony size was measured by 

computing the pixel area and converting to radius in microns, assuming the area was of a perfect 

circle (red dotted circle about the yellow bacteria colony; Figure 13B). To determine the ZsGreen 

concentration as a function of distance, area of ZsGreen was divided by the theoretical maximum 

area of the shell at distance ri from the colony radius. The theoretical area was calculated as the 

difference in the area of a circle with outer radius, ri+rcolony, and the inner radius, ri-1+rcolony (Figure 

13B). Colony size distribution showed the majority of colonies were small with an average 

colony radius of 0.66 µm (Figure 13C). On average, 57% of the bacterial colonies produced 

ZsGreen across all tumors (See Appendix A1).  Secretion was independent of colony size with an 

average distance of 6.6 ±1.0 µm from the colony edge (Figure 13D). Relative ZsGreen 

concentration decreased with radial distance from the colony (Figure 13E). ZsGreen 

concentration can be modeled as a point source production rate with a constant rate of ZsGreen 

release of m (Red line, Figure 13 E). This is dependent upon the diffusion coefficient for ZsGreen 

in tissue and the production rate from the colony. It was assume that at 24 hours after ZsGreen 

expression that the system has reached a pseudo-steady-state. The colony level production rate of 

ZsGreen, �̇�, was found to be 1.14 x 10-5 ng/CFU/ml with a minimum detectable concentration of, 

C0= 0.1 µmole/L for indirect immunofluorescence (Davis et al., 2003), and a diffusion coefficient 

within tumor interstitium of, D= 1.95 x 10-06cm2/s (Pluen et al., 2001). 
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Figure 13. ZsGreen diffuses from colonies independent of colony size  
A) Salmonella, red, and ZsGreen, green, were identified in tumor tissue by immunofluorescent staining. Colonies 
expressing ZsGreen were identified extracellular ZsGreen were identified. B) A schematic of how colony radius, ro, 
was radius of a circle with equal volume as colony pixels measured. Concentration was calculated as the ratio of area of 
ZsGreen pixels in a given shell over the theoretical area of the shell π [(ri+ro)2-(ri-1+ro)

2]. C) The average colony radius 
was 0.66 µm, across all tumors. D) ZsGreen diffusion distance was independent of colony size with an average 
ZsGreen diffusion distance of 6.6 ±1.0 µm. E) ZsGreen concentration dropped as radial distance from a colony 
increased. ZsGreen production and diffusion was modeled as a continuous point source production from the edge of the 
colony, red line.  

3.3.5  Re-evaluation of two-compartment mathematical model 

Incorporation of the measured half-life, bacterial density, and measured ZsGreen 

detection limit, into a two compartment mathematical model (equation (3)) enabled prediction of 

tumor detection in mice and in humans. Mouse blood volume was assumed to be 2 ml (Vp), half-

life was found to be 2.7 hours (t1/2) (Figure 10), bacterial density was measured as 485 CFU/mg 

(Cb,max) (Figure 11C), and the detection limit for ZsGreen was 1 ng/ml (See Appendix A3).  
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At the ZsGreen production rate from colony level analysis, �̇�=1.14 x 10-5 ng/ CFU/ h, the 

ZsGreen concentration vs. tumor size relationship is greater than the observed ZsGreen 

production rate from tumor study measurements (Figure 14 A). The actual production rate was 

determined by solving equation (3) for Kp with the measured ZsGreen concentration and tumor 

sizes from Figure 11B. The actual Kp was found to be 1.52 x10-6 ng/ CFU/ h, ten-fold smaller 

than the observed colony level production rate. This indicates there is a discontinuity between the 

amount of ZsGreen produced in the tumor and the amount reaching the blood stream.  

 At the measured bacterial density, CB= 485 CFU/mg and Kp, the minimum 

detectable tumor size was found to be greater than 1 kg for tumor detection in humans (Figure 

14B). Increasing the bacterial density to 100,000 CFU/mg, densities previously seen in murine 

tumor models with the same Salmonella (Forbes et al., 2003), enables detection of tumor mass 

less than 10g (Figure 14B,C). At this tumor weight the diameter of a single lesion with the same 

mass is estimated to be 25 mm across (Figure 14D). To enable detection of microscopic tumors in 

humans, at the tomographic detection limit, previously stated as 6-8 mm in diameter, the bacterial 

production rate of ZsGreen, Kp, would need to be improved 100-fold (Figure 14D).   
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Figure 14. Mathematical analysis of efficacy in mice   
A) Model predictions for tumor detection in mice taking into account the bacterial density 485 CFU/ml, the half-life, 
2.7 hours, the plasma volume, 2ml, and the minimum detectable concentration of blood on single layer antibody dots 
~1ng/ml and the colony level production rate �̇� = 1.14 x 10-5 ng/CFU/ml (black line) compared to the actual Kp= 1.52 
x 10-6 ng/ CFU/ h (red line). B,C) Model predictions for detection in humans based on bacterial density in this tumor 
study compared to previously reported bacterial densities. Detection of tumors >1kg with current production rate and 
bacterial density of 485 CFU/ml, red line. Increased bacterial density to 100,000 CFU/mg would improve detection 
200-fold to less than 10 g.  D) Increasing production rate, Kp, 100-fold would then put bacterial detection of tumors in 
the range of the current limits of tomographic detection techniques (6-8mm in diameter).  
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3.4 Discussion 

Bacteria administered to tumor models were able to detect tumors by release of ZsGreen 

from within the tumor site (Figure 11). ZsGreen concentration in plasma samples increased with 

tumor size (Figure 11B) confirming predictions from the mathematical model (Figure 9E). 

Statistical difference was seen between the large tumor group and the control, indicating that 

bacteria were able to produce enough ZsGreen from the tumors to detect large tumor masses. The 

average concentration of ZsGreen detected in control mice was not statistically greater than 

background blood measurements (Figure 10), but the average is not zero, indicating bacteria 

colonizing healthy organs contribute to the observed ZsGreen production.  

Mathematical analysis determined the efficacy for tumor detection given the half-life, 

bacterial density, and ZsGreen concentration relationship to tumor size (Figure 14). At the 

bacterial production rate in mice (Figure 11B, 14A) 0.695 g tumors were detected above the 

detection limit of 1 ng/ml. In humans, this is much larger, approximately 1kg (Figure 14B). 

Bacterial tumor detection is dependent the bacterial density, which in this study is far less than 

other reported bacterial tumor studies, and the production rate which is 10,000-fold less than seen 

in previous microfluidic studies (Panteli et al., 2015). Other literature reports bacterial densities in 

tumors of 100,000 CFU/mg of tissue (Forbes et al., 2003). The observed low bacterial density is 

likely due to high dosing of ampicillin in this study, exceeding the toxic level for bacteria and 

plasmid retention. This would explain the limited colonization in small and large tumors with 

viable tissue and explains why bacteria and ZsGreen were mainly observed in necrotic regions.  

This also indicates that ampicillin has difficult time diffusing through tissue because 

necrotic regions still had bacteria present (Figure 12). Ampicillin might not be needed for short 

studies as the plasmid stability suggests the bacteria are stable at low densities (Figure 7; Panteli 
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et al., 2015). Another alternative would be to incorporate the ZsGreen expression into the genome 

to create a stable strain. Insertion of multiple copies of ZsGreen operons into the genome would 

likely be equivalent to plasmid expression and eliminate the need for antibiotic burden. 

Alternatively a balanced-lethal system could also be employed like ASD dependence in and ASD 

deficient strain (Galán et al., 1990). This may encounter its own problems in that the number of 

ASD copies required for plasmid retention may be much lower than the number of ZsGreen 

copies needed to have adequate secretion.  

Pharmacokinetic measurement of ZsGreen shows a half-life of 2.7 hours in circulation. 

This is small compared to albumin which has a half-life of 19 days (Hassan et al., 1997). Model 

predictions indicate that increasing protein half-life would facilitate detection of smaller tumors 

(Figure 9). Several strategies could be employed to increase stability. Incorporation of a albumin 

binding site into the termini of ZsGreen could provide longer circulation time (Dennis et al., 

2002). The albumin binding site of a phage, DICLPRWGCLW, has been identified and fused to a 

recombinant protein with a normal half-life in rabbits of 0.8h and increased half-life to 32 h, a 40-

fold increase in protein retention. A 40-fold increase in ZsGreen half-life would yield a half-life 

of about 4.5 days. Another option is to fuse ZsGreen directly to albumin, which could improve 

protein half-life 10-fold (Huang et al., 2008). New ZsGreen fusions to full length albumin or 

small peptides would have to be re-evaluated for secretion from the bacteria. Small peptide 

fusions to ZsGreen are likely to be more successful and have already been shown to maintain 

secretion in VNP20009 Salmonella (See Appendix A2). 

L-arabinose injection was sufficient to activate gene expression within the tumor but 

expression varied with distance into necrosis. In LS174T tumors, ZsGreen was observed in the 

plasma (Figure 11) and by immunofluorescent labeling (Figure 12) indicating L-arabinose 
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induction enable production of ZsGreen and significant amounts of ZsGreen transported out of 

tumors into circulation. The amount of ZsGreen produced within the tumor sites varied with 

distance from the transition boundary (Figure 12E,F). The relative ratio of the ZsGreen to bacteria 

shows a decreasing level of ZsGreen expression starting just beyond the transition boundary (-

500µm) deep into tumor necrosis (+ x direction). This indicates that L-arabinose has difficulty 

diffusing deep into tumor sites.  The amount of extracellular ZsGreen also decreased with 

distance (Figure 12 G), indicating that ZsGreen must build up in colonies before it is released into 

the surroundings. 

3.5 Conclusions 

The efficacy of a tumor detecting bacterial strategy was evaluated in murine tumor 

models. Genetically modified tumor-targeting bacteria were engineered to release a reporter 

protein for detection. The circulation half-life of the reporter protein, ZsGreen, was found to be 

2.7 hours. Production of ZsGreen from tumor-targeting Salmonella detected tumors larger than 

0.2g in mice. In murine tumor models, ZsGreen release into the blood was seen to have a 

statistically positive correlation with tumor size. At the newly determined parameters, 

mathematical analysis of these results predicts detection of tumor masses as small 0.695 g in 

mice, comparable to the observed experimental results. These results show proof of concept for 

tumor detection in humans but production rate and bacterial density limit the efficacy of this 

technique. A 100-fold increase in ZsGreen production in a stably expressing strain could improve 

detection of smaller tumors and improve overall performance down to the current limits of 

tomographic techniques. 
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CHAPTER IV  

GENETICALLY ENGINEERED BACTERIA TO SENSE SUGAR GRADIENTS IN 

TUMOR MICROENVIRONMENT 

4.1 Introduction 

Cancer tissue is difficult to treat owing to its heterogeneous microenvironment. To reach 

all viable cells in the tumor, anticancer drugs must be delivered efficiently through the tumor 

vasculature, cross the vessel wall, and diffuse the tumor tissue (Trédan et al., 2007). Small 

molecules are able to reach highly proliferating cells closest to vasculature but transport 

limitations in the tumor microenvironment and metabolic differences in tumor growth regions 

hinder effective drug exposure throughout the tumor (Jain, 1994; Jain, 2001; Trédan et al., 2007). 

Enabling effective targeting of all viable cancer tissue could improve treatment efficacy.  

Targeting cancer’s food source may be a way to identify viable regions in the tumor. 

Glucose and glutamine are the primary carbon sources in proliferating cells (Wellen et al., 2010). 

Many cancers thrive on glucose uptake with over 70% of all human cancers overexpressing 

glycolysis-related genes (Hirschhaeuser et al., 2011) and glucose transporters (Bos et al., 2002; 

Burt et al., 2001). Mean glucose concentration of normal and tumor tissues are 1,220 ± 150 (mean 

± SE) and 123 ± 43 nmol/g, respectively, in colon and 1,290 ± 168 and 424 ± 131 nmol/g, 

respectively, in stomach (Hirayama et al., 2009). Equipping bacteria to recognize areas of high 

and low glucose concentration could enable more effective treatment of viable regions of tumors 

and overcome the limitations that conventional small molecules. 

Bacteria have membrane receptors, called chemotaxis receptors, which allow them to 

sense sugar in their environment. Chemotaxis is the ability of bacteria to sense their environment 
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and actively swim towards a chemo-attractants or away from repellants. There are five basic 

chemoreceptors in E. coli and S. typhimurium: Tsr (serine), Trg (ribose, glucose, galactose), Tar, 

(aspartate), Aer (redox), and Tap (dipeptide) (DeFranco et al., 1979). Chemotaxis has been shown 

to affect localization and colonization within the tumor microenvironment (Kasinskas and Forbes, 

2007). In particular, the Trg chemotaxis receptor enables bacteria to detect glucose and ribose via 

their respective periplasmic binding proteins, ribose binding protein (RBP) or the 

glucose/galactose binding protein (GBP)(Scholle et al., 1987).  Utilizing the glucose sensing of 

the Trg receptor could enable bacterial recognition of nutrient gradients within the tumor 

microenvironment and enable recombinant protein production throughout viable tumor tissue.  

A fusion protein that couples the ribose/glucose sensing of Trg to genetic output has 

previously been created (Baumgartner et al., 1994). Baumgartner et al. show the sensitivity of 

their fusion protein, Trz1, which combines the periplasmic domain of chemotactic transducer, 

Trg, to the cytoplasmic domain of osmoporin sensor, EnvZ, to induce lacZ expression (β-

galactosidase activity). Normally, the EnvZ osmoporin transduces solute concentrations across 

the cell membrane and regulates formation of pores through activation or inactivation of 

promoter, POmpC   (Waukau and Forst, 1992). The sensing pathways for native EnvZ and Trg are 

shown in Figure 15. Changes in solute concentration cause conformational change in the histidine 

kinase tail of EnvZ. This causes phosphorylation of OmpR, a cytoplasmic phosphotransferase, 

which then activates transcription of ompC. When ribose or glucose ligand binds their respective 

binding protein, the protein complex interacts with the Trg periplasmic receptor domain inducing 

a conformational change in the cytoplasmic tail. This allows phosphotransfer to chemotaxis 

protein CheW activating chemotaxis (Figure 15). 
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To create a bacterial-based sensor of the tumor microenvironment for use in microscopic 

analysis, E. coli were equipped with fusion protein Trz1 regulating expression of green 

fluorescent protein, GFP. We hypothesized that sugar gradients in the tumor environment could 

be used to identify regions with high cell viability in tissue. To test this hypothesis E. coli were 

administered to a tumor-mimic microfluidic device designed to mimic nutrient and oxygen 

gradients of the cancer microenvironment. Sugar response in the microfluidic device was 

compared to apoptosis activity from previously published work (Kasinskas and Forbes, 2007).  

Mathematical analysis was used to determine the efficacy of a sugar sensing bacterial treatment 

compared to small molecule treatment. Developing a sugar-sensing bacterial-based treatment of 

cancer has potential to improve specificity to cancer and prevent off-target effects. 

 

Figure 15. EnvZ osmosensor and the Trg Chemoreceptor 
Osmolarity is detected by solute ions flowing freely through the outer membrane (OM) interacting with the periplasmic 
(PP) domain of the EnvZ osmosensor causes conformational change in the cytoplasmic domain across the inner 
membrane (IM). This conformational change enables phosphotransferase to cytoplasmic Osmoporin regulator OmpR. 
Phosphorylated OmpR then activates gene transcription of the osmoporin promoter POmpC controlling formation of 
membrane pores. The Trg chemoreceptor responds to ribose, glucose, and galactose concentrations to cause flagella 
rotation. Sugar molecules freely diffuse across the outer membrane and interact with their respective binding protein, 
RBP for ribose and GBP for glucose and galactose. In the ligand bound form the binding protein complex then interacts 
with the periplasmic domain of Trg and causes conformational change leading to phosphorylation of a chemotaxis 
regulator CheW.  
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4.2 Materials and Methods 

4.2.1 Plasmid construction and strains 

Plasmid OmpC-GFP was generated by polymerase chain reaction (PCR) insertion of 

POmpC from pMY150 into plasmid pFVP25 containing green fluorescent protein, GFP mut3 

(pOmpC-GFP). Plasmid pMY150 was a gift from the Inouye lab(Mizuno et al., 1983). Trz1 was 

cloned from pRB020 plasmid and PCR inserted into pOmpC-GFP under control of Plac promoter 

downstream of the first operon with a t1 terminator separating the two operons (pTrz1a). HB3519 

is a background strain containing plasmid pRB020 producing the Trz1 protein. HB3521 is a 

derivative of E. coli MH225 with plasmid pAI12, containing the RBP which has been knockout 

of the genome, and a genomic deletion of ∆EnvZ::Kmr. Envz is the osmoporin sensor that 

activates transcription of the POmpC promoter. Knock down of EnvZ salt sensing capabilities is 

required to prevent activation of the OmpC promoter from salt concentrations. Both of these 

strains, HB3519 and HB3521, were generous gifts from the Hazelbauer and Park 

labs(Baumgartner et al., 1994; Park and Hazelbauer, 1986). To generate pTrz1 the Plac promoter 

of pTrz1a was replaced with the PBAD promoter. Plasmid pTrz1-red was created by adding a third 

operon downstream of the first two consisting of DsRed-Express2 fluorescent reporter under 

control of the Plac promoter. See Table 1 for complete list of plasmids and strains. 

Sensitivity studies were performed by transforming the desired plasmid (pOmpC-GFP, 

pTrz1a, pTrz1, or pTrz1-red) into strain HB3521 containing the RBP plasmid (PAI12), except in 

the case of evaluating Trz1 receptor abundance. Isopropyl beta-D-thiogalactoside (IPTG) 

inducibility was used to evaluate Trz1 abundance to transduce signal via salt (NaCl) sensing. 

Plasmid pTrz1a was transformed into a in Top-ten F` strain of E. coli (Life Technologies) 
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containing the lacIq repressor and functional EnvZ to evaluate signal transduction while varying 

receptor (Trz1) expression. All bacteria were grown in LB broth or M9 minimal media, to control 

for glucose concentrations, at 37˚C and 225rpm, supplemented with 100 ng/µl Ampicillin and/or 

Chloramphenicol, as required.  

Table 1. Plasmids and Strains 

 



61 

 

4.2.2 In vitro sensing in aqueous solutions 

Plasmid pOmpC-GFP was grown with 0.17 M Nacl and 0.27 M nacl in DH5a to test 

functionality of the promoter, POmpC. Knockout EnvZ strain HB3521 was used as a negative 

control as was a vector free DH5α E. coli. All GFP expression levels were measured in a 

microtiter plate reader (SpectraMax M5, Molecular Devices, Sunnyvale, CA), with excitation 495 

nm and emission 511 nm.  

To test Trz1 abundance on signal transduction growth medium was supplemented with 

0,8,80 and 800 µM concentrations of IPTG, an inhibitor of the lac repressor, and GFP expression 

was measured from pTrz1a-Top-Ten in LB broth. This led to changing promoter strength from 

Plac to PBAD and creation of  pTrz1. pTrz1 was transformed into HB3521 E. coli  and grown up in 

LB broth supplemented with 0, 10,100, and 1000 µM concentrations of ribose in 3 ml overnight 

cultures to determine if the PBAD promoter effectively produced Trz1 protein at levels that 

allowed signal transduction. 

Sensitivity of both ribose and glucose sensing in pTrz1-HB3521was measured in M9 

minimal media supplemented with glucose and ribose concentrations ranging from 0 to 10,000 

µM of each ligand and quantified by GFP fluorescence after overnight culture at 37˚C at 225rpm.  

4.2.3 Sensing study in 3D tumor-mimic microfluidic device 

To test for bacterial ability to sense sugar gradients in 3D tumor tissue, pTrz1-red-

HB3521 were administered to the flow channel to mimic an IV injection into the body. Tumor 

spheroids were administered to the device in phosphate buffered saline (PBS) solution to prevent 

glucose accumulation in the back of tumors and create the gradient in nutrients from the flow 

channel. Bacteria were administered at a density of 2x106 CFU/ml in PBS solution to prevent 
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premature activation of the sensing machinery from growth media. After bacterial administration, 

DMEM (without phenol red, to avoid autofluorescence for DsRed) +10% FBS, 25mM HEPES 

with 100µg/ml ampicillin and 100µg/ml Chloramphenicol, for plasmid retention was added as 

growth media at 3ul/min.  Fluorescent microscopy was used to acquire position of bacteria, red 

fluorescence, and the extent of sugar concentration, green fluorescence. Absolute values of RFP 

intensity to bacterial density were determined in the device by flowing known densities of 

cultures of Trz1-red E.coli, constitutively expressing DsRed, through the device chambers and 

acquiring image intensities at identical camera settings to the tumor cell mass experiments, there 

was no autofluorescence from LS174T tissues prior to addition of bacteria, indicating the RFP 

intensity to be solely from bacterial colonization.  

4.2.4 Calculated glucose and bacterial counts in 3D-tumors 

GFP and RFP intensities were normalized to their respective maximum intensity in tissue 

to generate relative intensity vs. distance plots. At each time, t, the ratio of normalized GFP to 

RFP was determined. The relative ratio of GFP to RFP was assumed to be directly proportional to 

the ratio of GFP produced per bacteria at a given time and shown to be time independent. The 

concentration of glucose in DMEM is 5500 µM. It was assumed that the ratio of GFP to RFP 

scaled linearly with glucose concentration to generate the profile seen in Figure 15 B.  

4.2.5 Mathematical modeling of sugar-sensing bacterial treatment of solid tumors 

For free drug, the mathematical model was comprised of equations (6) and (7). The 

concentration (A) at the front edge (x = 0) was modeled as exponential decay, Cx=0 =e-kt, 

mimicking a bolus dose of therapeutic molecule and clearance systemically. A symmetry 
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boundary condition was used at the rear end (x = 600 µm). The two equations were solved using 

the pdepe function in MATLAB (The Mathworks Inc., Natick, MA). See Appendix B. For 

bacteria, the mathematical model was comprised of equations (7)-(9). This is similar to free drug, 

but includes a generation term as a function of distance in the tumor, which was determined from 

the rate GFP expression observed in devices and fit to a hyperbolic tangent function, equation (9). 

The initial condition for cell viability in both models was estimated from caspase-3 activity 

measured in tumor-on-a-chip microfluidic devices (Kasinskas and Forbes, 2007). Caspase-3 

activity is an indicator of apoptosis and cell death. These data are fit to a hyperbolic tangent 

function and input as the initial conditions in the pdepe solver. 

4.3 Results 

4.3.1  Construction of Trz1 switch for ribose and glucose sensing 

To create a sugar sensing bacteria using the fusion protein, Trz1, green fluorescent 

protein (GFP) was cloned under control of the osmoporin promoter, POmpC (Figure 16). Native 

EnvZ-POmpC signal transduction was tested by the addition of salt and measuring the expression of 

GFP (Figure 17). Increasing salt concentration increased GFP intensity per bacteria in liquid 

culture. To eliminate interference of salt activation of the POmpC, a ΔEnvZ strain of bacteria was 

employed for subsequent sugar sensing experiments. Knockout of the osmosensor, EnvZ, 

eliminated salt sensitivity of plasmid pOmpC-GFP and no GFP expression was observed; this 

was equivalent to a vector free control (Figure 17A).  
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Figure 16. Fusion TrZ1 protein enables ribose and glucose sensing   
A fusion of receptor proteins Trg and EnvZ enables signal transduction of sugars into genetic output. Ribose or glucose 
ligands freely diffuse across the outer membrane (OM) of the bacteria and binds their respective periplasmic (PP) 
binding protein (RBP or GBP). The bound complex then interacts with the periplasmic domain of Trg causing 
conformational change in the cytoplasmic domain of osmoporin EnvZ. This conformational change leads to 
autophosphorylation of osmoporin regulator, OmpR. The phosphorylated state of OmpR then activates the osmoporin 
promoter, POmpC activating gene expression (GFP in this study) (Baumgartner et al., 1994).  
 

To enable sensing of ribose and glucose, the Trz1 fusion protein was cloned into the 

OmpC-GFP plasmid on a separate operon under control of the PTac promoter, forming plasmid 

pTrz1a (Figure A5). PTac is a derivative of the lac promoter. The lac operon functions with a 

repressor lacIq, which inhibits expression of genes under control of the Plac promoter. The 

repressor binds DNA inhibiting expression when lactose is not available. In the presence of 

lactose, bacteria metabolize the sugar to allolactose, which inhibits the lac repressor’s DNA 

binding ability and activates transcription by the promoter Plac. K-12 E.coli, containing the lac 

repressor, were transformed with pTrz1a and grown with increasing concentrations of IPTG 

(Figure 17B). Addition of IPTG should increase the expression of the Trz1 fusion protein. GFP 

intensity of the cultures decreased with increasing IPTG concentration. Only under the highly 

repressed state, with no added IPTG, did the system produce GFP (Figure 17B). This meant that 

low abundance of Trz1 receptor protein was more favorable to induce GFP expression. As a 
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result of this study, the promoter regulating Trz1 gene expression was changed to allow low level 

constitutive production under the repressed state of the PBAD promoter, creating plasmid pTrz1 

(Figure 17D). Addition of ribose to LB cultures of pTrz1 in E. coli increase GFP intensity (Figure 

17C).

 

Figure 17. Construction of pTrz1 sugar sensing switch  
A) Salt normally activates the OmpC promoter. GFP expression increases with increasing salt concentration, in the 
presence of functional EnvZ osmoporin. Knockout of EnvZ eliminates salt sensitivity. B) Increasing the number of 
Trz1 receptors inhibited signal transduction leading to lower GFP expression. C) Sugar sensing achieved with D) pTrz1 
plasmid construct in ∆EnvZ E. coli HB3521. 
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4.3.2  Bacteria sense ribose and glucose sugar gradients and express GFP 

Increasing ribose or glucose concentration in liquid cultures increased GFP intensity of 

pTrz1-ΔEnvZ -E. coli (Figure 18). GFP expression increased with ribose concentrations from 1 

µM to 1 mM and with glucose concentrations from 10 µM to 10 mM concentrations. Plasmid 

pTrz1- ΔEnvZ -E. coli shows a higher sensitivity to ribose than glucose, with GFP expression at 

10-fold less ligand concentration (Figure 18A; P<0.05). Ribose and glucose together had an 

additive effect on GFP expression (Figure 18B). 

 

Figure 18. Ribose and glucose sensitivity of pTrz1- ΔEnvZ -E. coli  
A) Trz1 switch is more sensitive to ribose and glucose. B) Both sugars act cooperatively and induce signal transduction 
of Trz1 simultaneously in liquid culture. 

 

4.3.3 Sugar gradients were detected in small in vitro tumor cell masses 

Tumor-on-a-chip microfluidic devices have previously shown gradients in pH, cell 

viability and apoptosis, but gradients in sugar have yet to be observed (Walsh et al., 2009). E. coli 
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bearing pTrz1-red-ΔEnvZ were administered to a tumor-on-a-chip microfluidic device to test the 

ability to sense sugar gradients within tissue (Figure 19). Bacteria were administered for 1hour in 

glucose-free media and flushed to mimic an intravenous injection and clearance in vivo. Over the 

following 44 hours, time-lapse fluorescent microscopy recorded the location and number of 

bacteria via constitutive expression of the RFP and the amount of sugar sensed by the bacteria 

with GFP expression (Figure 19A).  

GFP and RFP fluorescence of the tumor-on-a-chip tissues increased over time (Figure 

19B,C). GFP intensity was higher closer to the flow channel and dropped with distance from the 

flow channel. At distances greater than 400 µm, GFP intensity was small (Figure 19B). RFP 

intensity was observed throughout tissue more than 600µm deep. RFP Intensity was converted to 

bacterial density, based on control measurements of bacterial densities in the device, and showed 

bacterial growth throughout the tissues (Figure 19C). Bacteria were shown to colonize throughout 

the tumor cell masses independent of distance from the flow channel. 

 

Figure 19. pTrz1-Red-∆EnvZ E. coli identify sugar gradient in tumor-on-a-chip devices   
A) LS174T tumor tissue administered with pTrz1-Red ∆EnvZ HB3521 shows initial colonization, red fluorescence, 
and sugar sensing, green fluorescence over time in microfluidic devices. B) Bacterial growth increases over time with a 
peak at 300-400 µm away from flow channel. C) GFP expression increases over time with an exponential decay and 
with tissue depth to minimal fluorescence past 400 µm. 
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The ratio of GFP to RFP intensity enabled calculation of the GFP expression per bacteria 

(Figure 20). Over time, GFP per bacteria ratios drop with depth in tissue but remain constant in 

time (Figure 20A). The time average GFP per bacteria ratio was used to estimate the sugar 

concentration within the tissue of the device (Figure 20B). The growth medium glucose 

concentration was 5500 µM. Assuming the GFP intensity scales linearly with glucose 

concentration near the edge of tissue, the glucose concentration drops to less than 10 µM glucose 

at distances farther than 400 µm away from the flow channel (Figure 20B).  

 

Figure 20. Estimation of glucose concentration in device tissues 
A) GFP to RFP (GFP/bacteria) indicates that the sugar gradient is at steady state in microfluidic device at 20 hours. B) 
Estimation of glucose concentration based on GFP/Bacterial average value. At the flow channel glucose concentration 
will be equal to the DMEM media concentration, 5500 µM. Increasing depth in tissue shows less GFP expression and 
thus a drop in sugar concentration.  

4.3.4 Mathematical prediction of tumor treatment with sugar sensing bacteria. 

Most chemotherapeutics lack the ability to target different regions of the tumor tissue and 

typically target cells with up-regulated cell division, effectively treating only cells closest to 

vasculature. Utilizing a bacterial therapy, engineered to recognize the health of the target tissue, 
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enables spatial dose control by producing more therapeutic proteins in the regions are most 

aggressive (Figure 21).  This means that proliferating tissue, tissue that has the highest nutrient 

availability, will get the strongest dose while quiescent tissue will get a nominal dose based on 

local nutrient availability. 

Tumor tissue has gradients in sugar and cell viability and with distance from vasculature 

(Figure 5B and 6A, respectively).  In previous studies, caspase-3 activity, a measure of cell 

apoptosis,  was determined as a function of depth in tumor spheroids (Kasinskas et al., 2014). 

This correlates to cell viability decrease as a function of distance from vasculature (Figure 

21A,B). A large gradient in tissue viability exists in tumor spheroids with over 95% cell death at 

400 µm from edge of the tissue (Figure 21A). This drop in cell viability coincides with the 

bacterial measurement of sugar concentration in tumor spheroids in the microfluidic device 

(Figure 21B).  

Conventional chemotherapeutic drugs are limited by systemic clearance and diffusion 

into the tumor site. Drug concentration (C), pharmacokinetic stability (t1/2), transport properties, 

diffusivity (D), and toxicity (µmax and Km), determine how well the drug will penetrate tissue and 

kill the target cells.  

Drug concentration can be described as a diffusion model, 1-D in x, with boundary 

conditions that satisfy systemic clearance: Cx=0 =e-kt, where half-life in circulation is t1/2= ln(2)/k: 

𝜕𝐶
𝜕𝑑

= 𝐷 𝜕2𝐶
𝜕𝑚2

           (6) 

And tumor tissue cell viability, l, (the live cell fraction), can be modeled as a saturation 

kinetic model with a maximum death rate, µmax, and saturation constant, Km. 
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𝜕𝜕
𝜕𝑑

= �−µ𝑚𝑚𝑚𝐶
𝐾𝑚+𝐶

� 𝑙         (7) 

Initial cell viability for the model system was set to the measured profile based on 

caspase-3 activity (Figure 21A; adapted from (Kasinskas and Forbes, 2007)).  

A systemically administered drug diffuses into tissue but rapidly clears from the tumor 

site as it is eliminated in circulation (Figure 6C). Initial drug concentration is high closest to 

vasculature but, due to diffusion limitations and rapid clearance, drug concentration decreases 

with distance in tissue and in time.  

Drug production by sugar sensing bacteria can be modeled by diffusion and production 

(Figure 21B,D).  

𝜕𝐶
𝜕𝑑

= 𝐷 𝜕2𝐶
𝜕𝑚2

+ 𝑓(𝑒)        (8)  

Where f(x), is the rate of production of GFP as a function of tissue depth, modeled as a 

sigmoidal tangential function, fit to the GFP expression from tumor spheroid microfluidic studies 

(Figure 21B). 

𝑓(𝑒) = 𝛼
2
�1 − tanh �𝑚−𝑝

2𝑤
��       (9) 

Where α = 1.3533,  p= 0.6712 and w= 0.1567 (Figure 21B).  

Drug expression by sugar sensing bacteria increases with time and decreases with 

distance in tissue (Figure 21D). Drug production is highest near the edge of the tissue where 

nutrient availability is the highest and decreases to nominal levels 400 µm in depth.  

For a systemically administered drug, tumor cell viability decreases in regions with the 

highest drug concentration but transport limitations hinder drug penetration and not all tissue sees 
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an effective dose to eliminate the tumor (Figure 21E). Tumor tissue closest to vasculature is 

exposed to the largest drug concentration and is effectively treated, but as depth in tissue 

increases, less cells are killed due to poor drug penetration, resulting in an area of surviving tumor 

cells of approximately 25% of starting cell population.   

The same bacterial administered drug is produced continuously from the microbes in a 

sugar dependent dose profile and is able to eliminate the hard to treat region of the tumor due to 

effective drug delivery (Figure 21F).  Closest to vasculature sugar concentration is highest 

leading to increased drug production. As sugar concentration drops with distance from  
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Figure 21. Sugar sensing bacteria could enable treatment of quiescent regions of a tumor  
A) Tumor tissue viability as a function of tissue depth as measured by caspase-3 activity. B) GFP production rate as a 
function in tissue depth in tumor spheroids on a tumor-on-a-chip microfluidic device. C) Free drug molecule 
administered to tumor will diffuse into tissue and washout quickly. D) The same drug produced by sugar-sensing, 
tumor-targeting bacteria, persists and increases in magnitude with time. E) Free drug washes in and out of tumor tissue 
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but is unable to eliminate all viable cells. F) Bacterial delivered drug persists in tumor site and eliminates all viable 
tissue within the same time frame.  

 

vasculature, so does the rate at which drug is produced, however; the drug is produced at 

low levels allowing accumulation and continued drug exposure to these hard to treat regions of 

the tumor. This enables almost complete eradication (7% remaining) of viable tumor tissue over 

time.  

4.4 Discussion 

Glucose and ribose sensing triggered GFP expression. Utilizing the bacteria’s native 

chemotaxis machinery and rewiring the signal transduction of two proteins enabled signal 

transduction, which normally triggers protein-protein interactions, activation of a promoter 

controlling expression of GFP. This enabled the bacteria to sense environmental ribose and 

glucose concentrations when grown in liquid culture and express GFP relative to that 

concentration. This switch enabled visualization of sugar gradients within the tumor-on-a-chip 

microfluidic device that have previously only been hypothesized. These bacteria have the 

potential to aid in diagnosis by determining the rate of glycolysis which has been shown to be 

correlated with more aggressive tumors. Glycolysis rates might be reflected in the shallowness or 

sharpness of the glucose concentration and could be reflected by the bacterial expression of GFP 

using this switch. 

GFP expression was higher closer to the flow channel than in the back of the tissue, 

indicating that a gradient in sugars exists in tumor-on-a-chip devices (Figure 19, 20). In the 

microfluidic device, flow of media is passed by the tissues at a constant rate (3µl/min) supplying 

tissue with the needed oxygen and nutrients. The increased intensity of GFP produced in the front 
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of the tissue indicates that the glucose in that media is reaching the bacteria 400 µm deep but not 

beyond this depth. Little to no detectable GFP expression is seen beyond 400 µm, indicating that 

glucose levels are below the detectable limit of 10 µM (Figure 21B, 19A). The glucose is limited 

by diffusion and consumption by bacteria and tumor tissue in the chambers. The drop in GFP 

may be increased as a result of nutrient deprivation by bacterial colonization (Low et al., 1999; 

Weibel et al., 2008). The level of glycolysis in the tumor tissue should also determine how drastic 

the drop in GFP with tissue depth. The bacteria are able to measure extracellular glucose levels 

and if the glycolysis rate of cells is high, the available glucose for detection would be less. More 

aggressive tumors should cause a more drastic drop in GFP levels than slower growing ones.  

A peak in RFP intensity at the 300-400 µm away from vasculature indicates an optimal 

growth region at this depth in tissue (Figure 19B). RFP intensity directly reflects the number of 

bacteria within the tissue in that area. RFP expression enabled tracking of the bacteria within 

tumor-on-a-chip microfluidic device. The peak in bacterial density indicates that regardless of the 

glucose concentration (Figure 20B) the bacteria are still attracted to the transition between viable 

and necrotic tissue (Figure 21A); likely due to attraction to a metabolite from necrotic tissue.  

Identifying other key characteristics of the necrotic tissue which attract bacteria could 

make a safer switch for genetic expression. The bacteria used in this study are a K-12 strain of 

E.coli, MH225. This strain was able to colonize throughout tissue where other K-12 E. coli 

strains have shown difficulty (Toley and Forbes, 2012). This strain could potentially provide a 

more effective treatment for use in vivo studies than other E. coli strains owing to better 

penetration ability.  

Increasing the number of Trz1 receptors decreased GFP expression (Fig 17B). Bacterial 

cells maintain optimal numbers of chemoreceptors for signaling. The native Trg chemoreceptor is 
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present in low quantities in bacteria compared to other chemoreceptors (Barnakov et al., 1998). 

Sensitivity could not be increased by increasing the expression of Trz1. Amplifying the number 

of receptors, in an effort to improve signal transduction, was seen to hamper GFP expression.  By 

reducing expression of Trz1, sugar sensing capability was restored and higher GFP expression 

was observed (Figure 17C). Controlling the number of receptors could improve the dynamic 

range of sugar sensing and allow for more sensitive sugar measurements.  

Drug delivery systemically was shown to clear rapidly and have limited ability to kill the 

tumor (Figure 21C,F) but sugar sensing bacterial delivered therapy overcomes transport barriers  

and enabled production based on detection of nutrient rich regions in the tumor site (Figure 

21D,E). Continued production by bacterial production increased the dose exposure to the cells 

regions that are harder to treat improving the killing efficiency of an identical drug compound 

than when delivered systemically.  Sugar sensing bacteria would enable killing in tumors with 

glucose concentrations greater than 10 µM. Sugar sensitivity between 1µM and 10 mM is well 

within the dynamic range for Trz1. Normal blood glucose levels range from 5.5 mM to 8 mM 

concentration. Preventing normal blood glucose from activating gene expression prior to reaching 

the tumor site would improve this system for specific gene activation in tumor environments. 

This could be achieved by specific recognition of tumor site receptors. 

4.5 Conclusions 

In this study bacteria are engineered to sense ribose and glucose concentration and trigger 

GFP expression. These bacteria were used to visualize gradients in glucose in a tumor-on-a-chip 

microfluidic device that have previously only been speculated to exist. The gradient in estimated 

glucose concentration in the device coincides spatially with previously detected caspase-3 



76 

 

activity, an indicator of apoptosis. A mathematical model was used to predict cancer cell 

treatment with sugar sensing bacteria compared to bolus small molecule drug administration. The 

results of this model shows sugar sensing bacteria are able to activate recombinant therapeutic 

expression in distal regions of tumors where small molecules have difficulty reaching. These 

bacteria have potential to treat cancer with dosing schemes that scale with activity of the cells 

they are targeting with higher doses of recombinant drug expression at the sites of higher nutrient 

availability.  
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CHAPTER V  

IDENTIFICATION OF ANTI-CANCER PROTEIN TOXINS FOR BACTERIAL 

TREATMENT OF CANCER 

5.1 Introduction 

Current cancer therapies are limited by transport barriers, drug resistance, and their 

ability to target the quiescent cancer cells. Tumor targeting bacteria producing toxic protein 

should be able to specifically eliminate tumor cells and lead to tumor regression by direct 

delivery of therapeutic deep within tissue.  

For over 150 years bacteria have been seen to eradicate tumors after severe infection. The 

attenuated Salmonella, VNP2009, has been shown to reduce tumor growth and prolong survival 

of tumor bearing mice (Clairmont et al., 2000; Low et al., 1999; Luo et al., 2001). In addition to 

varying bacterial strains several different strategies and therapeutic payloads have been employed 

to treat cancer. Delivery of anti-cancer proteins like TRAIL (Ganai et al., 2009) to induce 

apoptosis have shown some efficacy, but this scheme is limited by host cell mutations in the 

apoptosis pathway drug resistance. Other bacterial therapies have expressed enzymes that activate 

pro-drugs at the site of tumors (Cheng et al., 2008; Green et al., 2013; Lehouritis et al., 2013). 

More recent work has used bacteria as gene delivery vectors reprogramming cancer cells to 

commit suicide (Baban et al., 2010; Chen et al., 2012; Lemmon et al., 1997). These strategies 

have worked well in some cases but the rate of infection is low as is the rate of gene transduction 

(Wybranietz et al., 2001). Discovering new protein therapeutics may enable bacteria to combat 

this disease more effectively via targeted delivery.  
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In this work, a screen for toxic proteins was conducted (Swofford et al., 2014). The goal 

was to identify new and plausible anti-cancer proteins for bacterial therapy that are released from 

bacteria, able to diffuse through tissue and effectively kill cancer cells. If a toxin protein is not 

release from bacteria, it has little chance to reach the cancer cell. Over 130 toxins were 

considered from literature. Toxins were classified by their mechanism of action and ease of 

genetic expression. In this study seven families of toxins were examined: pore-forming, ADP-

ribosylating, glycosylating and deamidating toxins, oxidoreductases, cytolethal distending toxins, 

neurotoxins, and superantigenic toxins.  

Five favorable candidates were identified with different mechanisms of action and 

screened for their therapeutic potential. Once identified, toxins were transformed into a cloning 

vector and tested for their ability to release from bacteria under control of an inducible promoter. 

The intracellular and extracellular protein fractions were then tested for their ability to kill tumor 

cells in monolayer. This was a collaborative study with Dr. Charles Swofford and Dr. Adam St. 

Jean. I was involved in the protein screening and selection process, cloning of protein toxins, 

testing protein release and efficacy in against cancer cells, and an animal study to determine if 

lower dosage of E.coli bearing the toxin, SAH, Staphylococcus aureus α-hemolysin, reduced 

systemic toxicity in mice. In this study SAH delivered by E. coli was shown to cause tumor 

regression and necrosis in murine tumors.  

5.2 Materials and Methods 

5.2.1 Plasmids and strains 

Genomic DNA was isolated for the various strains of gram negative and positive bacteria 

using Wizard Genomic DNA purification kit (PROMEGA, Madison, WI, USA). Toxins were 



79 

 

amplified from their genomes and cloned into pBAD-myc/his/A (LifeTechnologies). This 

plasmid served as a delivery vector and contains an inducible genetic switch under control of the 

PBAD promoter and also has the low to moderate copy number (57±4 copies) origin of replication 

pBR322, to obtain stability (Lupski et al., 1986; Sutcliffe, 1979). To obtain stability in animal 

models, pBAD-myc/his/A was incorporated with ASD. Plasmid pBAD-SAHa was constructed by 

cloning SAH into the pBAD-ZsGreen, which contains the pUC origin of replication (500-700 

copies), in place of the fluorescent reporter.  

These plasmids also contained the gene encoding for aspartate-semialdehyde 

dehydrogenase (asd) that allows for plasmid retention in the nonpathogenic msbB-, purI-, xyl-, 

asd- Salmonella strain, VNP200010. All murine models used VNP200010, an ASD deficient 

derivative of, VNP20009. 

5.2.2 Western blotting and protein release 

Protein release was quantified by Western blotting. Bacteria were grown at 37˚C at 225 

rpm supplemented with 100 ng/µl Ampicillin in LB broth and induced with 0.2% w/v L-

arabinose in mid-log phase (OD600≈0.5), an inhibitor of the PBAD repressor AraC. Cell fractions 

were isolated from culture by initial centrifugation at >12,000 rpm, sterile filtration of supernatant 

fraction through a 0.22 µm filter and mechanical lysis of the cell pellet using glass beads. 

Western Blotting was performed on the cell fractions, lysate (L) and supernatant (S), with anti-

toxin antibodies(Swofford et al., 2014). Primary antibody was applied overnight after SDS page 

electrophoresis. Blocking was done in 5 % milk in PBS-Tween. Secondary antibody conjugated 

with horseradish peroxidase (HRP).  
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5.2.3 MTS cytotoxicity assay of 4T1 and LS174T monolayers 

Monolayer cultures of 4T1 mammary carcinomas and LS174T colon carcinoma cells 

were seeded at 7,500 cells/well and grown for 24 hours. Growth media was aspirated and 

replaced with supernatant fractions of toxin producing bacteria in a 1:10 dilution with growth 

medium. After 4 hours cell viability was measured using a 1 hour treatment with MTS. An MTS 

(3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

assay (Promega, Madison, WI), is a viability assay that measures the ability of the mitochondrial 

enzymes to reduce the substrate and is measurable by colorimetric change of the solution at 

490nm. Relative viability was determined by normalization to PBS controls. Transmitted 

microscopy captured cellular lysis after treatment. 

5.2.4 Bacterial delivered SAH in tumor-on-a-chip devices 

To test SAH toxicity in 3D tumor tissue pBAD-SAHa-VNP9 were administered to 

tumor-on-a-chip microfluidic device tumors stained with cytotoxic stain to measure extent of cell 

death. 2.77x107CFU/ml of pBAD-SAHa-VNP9 was administered to tumors for 1hour and then 

flushed with DMEM+10%FBS, 25mM HEPES and ethidium homodimer (1:500 v/v). Bacteria 

were allowed to grow for 12 hours before inducing SAH with media supplemented with 0.2% L-

arabinose. Fluorescent and transmitted microscopy show tumor size and intensity of the ethidium 

homodimer stain in test SAH bearing salmonella and control, untreated tumors.  

5.2.5 Murine tumor models 

SAH producing E.coli was administered to 4T1 murine mammary carcinoma tumors in 

BALB/c mice to test efficacy of the bacterial produced toxin. Plasmid pBAD-SAH and pBAD-
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ZsGreen control were transformed into E. coli strain χ 6212 (EC-SAH), a ∆asd derivative of 

DH5α. At 8 weeks, female BALB/c mice received a subcutaneous injection of 50,000 4T1 cells 

in saline on their right flank. Tumor volumes were measured using calipers and calculated by 

(length*width*height) π/6. When tumors reached a volume of 400mm3 the mice received 2x106 of 

either EC-SAH or EC-ZsG (control) via tail vein injection. After 2 days mice received another 

tail vein injection of 40mg arabinose in 100µl saline. Mice were sacrificed when morbid or when 

tumor volumes exceeded 1000mm3. Tumor and healthy organs were harvested and fixed. 

Hematoxylin and eosin (H&E) staining showed the extent of necrosis in harvested tissues. 

Tumors were sectioned and stained via anti-salmonella and anti-SAH antibodies. 

Immunofluorescence revealed the location of bacteria and toxin. 

5.3 Results 

5.3.1 Literature review of toxins 

Over 130 Toxic proteins were classified based on their mechanism of action, the 

organism they originated from, the number of paper counts, whether or not they were considered 

for cancer therapy, the number of subunits they contained, the number of rare codons they 

contained, the length of aa/ rare codons, and their overall length. Of these, 5 were identified as 

potential candidates (Swofford et al., 2014).  
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Table 2. List of selected toxins 

 

5.3.2 Toxins transformed into inducible expression vector 

The five candidate toxins: Pseudomonas exotoxin (PEA), Staphylococcus aureus α-

hemolysin (SAH), Pseudomonas phospholipase C, B. pertussis dermonecrotic toxin (DNT), and 

Pseudomonas azurin toxin (Table I). Genomic DNA was isolated from the respective hosts of the 

toxin genes, amplified by PCR, and cloned into the delivery vector the under control of the PBAD 

promoter and the low to moderate copy number (57±4) origin of replication pBR322 (Figure 22) 

(Lupski et al., 1986; Sutcliffe, 1979).  

5.3.3 Bacteria release expressed toxin SAH 

To test whether bacteria released each toxin, a K-12 derivative E. coli cloning strain, 

DH5α, and an attenuated S. Typhimurium  VNP20009, were transformed with the toxin producing 

plasmids, pBAD-PEA, pBAD-SAH, pBAD-PLC, pBAD-DNT, pBAD-Azurin (Figure 22) and 

intracellular lysates and extracellular supernatant fractions were measured for toxin content. 

These results showed that PEA and SAH were found in both the lysates and 

supernatants(Swofford et al., 2014). 
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Figure 22. Plasmid pBAD-SAH 
Toxin SAH was cloned into the pBAD-myc/hisA vector to test inducible expression under control of the L-arabinose 
inducible system. This system contains the pBR322 origin of replication known to achieve ~57 copies per cell.  
 
 

 

Figure 23. Plasmid pBAD-SAHa  
Toxin SAH was cloned into the pBAD-ZsGreen vector to produce toxin under expression of the pUC origin of 
replication known to produce 500-700 copies per cell.  

 

Initial studies with SAH on the pBAD-SAH plasmid showed secretion from E.coli but 

not from Salmonella. A second plasmid vector with higher copy number, pUC19 origin of 

replication (500-700)(Lin-Chao et al., 1992) was used in an effort to increase the amount of SAH 
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produced, plasmid pBAD-SAHa (Figure 23). Attenuated S. typhimurium VNP20009 were 

transformed with pBAD-SAHa (pBAD-SAHa-VNP9) and grown in the same culture conditions 

as the initial study. Western blot analysis shows lysate and supernatant fractions of induced 

culture, with 0.2%L-arabinose compared to uninduced culture, and a positive control, pBAD-

SAH-E.coli (pBAD-SAH-DH5α) (Figure 24).SAH appears at the ~34kDa band in agreement with 

the positive control in both the lysate and supernatant fractions of the induced culture. Uninduced 

culture fractions showed faint presence of the protein in the lysate and none in the supernatant. 

 

Figure 24.Western blot of SAH lysates and supernatant fractions  
pBAD-SAH -DH5α  and pBAD-SAHa VNP20009 bacteria were grown in overnight liquid culture. Induced (+) and 
uninduced (-) cell lysate (L) and supernatant (S) fractions were isolated from S. typhimurium and compared to the 
supernatant fraction from the E. coli (+Ctrl). Lysate and supernatant fractions of the S. typhimurium show SAH 
production in induced culture in both and very little in the lysate of the uninduced culture. Bands agree with the 
positive control. 

5.3.4 Assay for recombinant toxin efficacy 

To test efficacy of recombinant protein toxins against cancer cells, MTS Assays were run 

on multiple cancer cell types for toxin lysates and supernatants. This study revealed SAH and 

PEA as potential anti-cancer toxins as they were the only two proteins to reduce cell survival in 

monolayer(Swofford et al., 2014). 
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For the pBAD-SAHa-VNP9, MTS assays showed equivalent cell death to the published 

data, the E. coli positive control pBAD-SAH-DH5α (Figure 25A,B). Supernatant fractions of 

pBAD-SAHa-VNP9, pBAD-SAH-DH5a, and negative control, vector in bacteria, were applied to 

two cell lines, MCF7 mammary carcinoma and LS174T, human colon carcinoma. After 4 hours 

incubation, both supernatant fractions with SAH reduced cell survival to 20% and 60% on MCF7 

and LS174T cells, respectively (P<0.05) (Figure 25 A,B). Transmitted microscopy confirmed 

death with SAH in both cell lines (Figure 25C,D).  

 

Figure 25. Cytotoxicity Assay of SAH from S. typhimurium and E. coli show both are lethal  
A,B) MTS assays of negative control lane 1) PBS, negative control vectors for 2) E. coli and 3) S. typh. 4) Induced 
SAH from E. coli  and 5) induced SAH from S. typh. of culture supernatants on both MCF7 and LS174T monolayers. 
C,D) Transmitted light images of SAH killing from supernatants of S. typhimurium VNP20009. 
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5.3.5 SAH bearing bacteria cause tumor regression and cell death in in vitro tumors 

A tumor-on-a-chip microfluidic device was used to test efficacy in 3D tissue, prior to 

animal studies. This device enabled us to study if gene induction of bacteria in 3D tumor tissue 

could activate SAH expression and cause tumor regression. pBAD-SAHa-VNP9 were 

administered to the tumor-on-a-chip microfluidic device for 1hr , followed by a 12 dose of media 

alone to allow bacterial clearance to mimic clearance from healthy tissue in the body. After the 12 

hour growth period SAH expression was induced with the addition of L-arabinose. Growth media 

in the device was supplemented with ethidium homodimer I which to monitor relative viability of 

the tissue. Fluorescence microscopy showed an increase in cell death overtime with tumor 

regression within 4 hours of induction compared to the untreated control (Figure 26A). SAH 

treated tumor volume decreased to 80% of the starting volume with twice as much cell death than 

the untreated tumors (Figure 26B,C).  

 

Figure 26. SAH induced death in Tumor-on-a-Chip Devices from pBAD-SAHa VNP20009  
A) Time lapse transmitted and fluorescent imaging of LS174T tumors administered with pBAD-SAHa-VNP9 show 
tumor size regression and increase in uptake of dead stain. B) Quantified tumor size regression show an average size 
reduction of almost 20% 220 minutes after induction with L-arabinose. C) Increased ethidium homodimer I uptake 
shows increase in normalize cell death between treated and untreated control. 
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5.3.6 SAH E. coli cause tumor regression and necrosis in murine tumor models 

SAH producing E. coli were administered to tumor bearing mice. SAH was found to 

cause significant tumor reduction and necrosis in tumors compared to control (Figure 27). Three 

days after bacterial injection, tumors treated with SAH bearing E.coli showed significant drop in 

tumor volume from their starting volume and the compared to the ZsGreen expressing E. coli 

control (Figure27 A, P<0.05).   Within 3 days the average drop of tumor size was approximately 

66% of the initial tumor volume. H&E staining of tumors show very little viable tissue remaining 

in SAH treated tumors compared to the control. 

Survival curves showed that the strain of E.coli, χ6212, was toxic to mice as both EC-

SAH and the control bacteria EC-ZsG caused severe sepsis. There was no significant difference 

in mouse survival between the SAH and control groups (Figure 28A). A second experiment with 

10-fold fewer bacteria injected showed prolonged survival time compared to the higher dose 

experiment (P<0.05), but no significant difference between SAH and control tumors (Figure 

28B). Liver damage in both SAH and control group indicate that the strain of E. coli, χ6212, is 

toxic. H&E of livers from both groups of mice showed significant amounts of necrosis with no 

statistical difference between SAH and control (Figure 29)(St Jean et al., 2014). 
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Figure 27. SAH bearing E. coli  cause regression and necrosis in 4T1 mammary carcinomas  
A) Tumor volume for pBAD-SAH-X6212 show tumor size reduction after L-arabinose tail vein injection after 2 days 
of bacterial infection. B,C) Tumor necrosis for control bacteria and SAH bearing bacteria show significantly more 
necrotic tumor tissue in SAH treated mice (St Jean et al., 2014). 
 

 

 

Figure 28. Survival curves for SAH bearing E. coli X6212  
A) No significant difference was observed between the survival of mice treated with 100,000 CFU/g of EC-SAH or 
EC-ZsG (both χ6212). L-arabinose was injected into all mice at 48 hours (arrow). B) Reducing the dose tenfold to 
10,000 CFU/g, increased survival (P<0.05). No statistical difference was seen between EC-SAH and EC-ZsG at this 
dose (St Jean et al., 2014).  
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Figure 29. Liver Damage in Mice Injected with E. coli χ6212  
A,B) H&E stained liver sections from mice injected with (A) EC-ZsG (control) or (B) EC-SAH (both χ6212). Areas of 
necrosis appear in pink where healthy tissue is a dark purple. C) Areas of necrosis for mice injected with EC-ZsG 
(control) or EC-SAH (SAH). There is no significant difference between the two groups, n=3 (St Jean et al., 2014). 

5.4 Discussion 

Bacterial supernatants of pBAD-SAH-DH5α and pBAD-SAHa-VNP9 administered to 

tumor cells in monolayer showed significant and equivalent cell death (Figure 25). This shows 

that SAH is exported from both Salmonella and E. coli in functional form (Figure 24). It also 

showed that extraceullar administration is sufficient for cell death. This suggests that these two 

gram negative bacteria share a secretion mechanism for export of SAH. The first 26 residues on 

the N-terminus of SAH contains a signal sequence that is cleaved upon secretion (Dinges et al., 

2000). After cleavage, monomer subunits integrate into the eukaryotic host cell membrane and 

form a heptomeric ring that causes lysis due to an inability to regulate osmolarity (Thompson et 

al., 2011). Because SAH gets cleaved, both of these bacteria must also contain a protein to cleave 

the immature form of the protein. Identifying the particular secretion mechanism could enable 

engineering of a more efficient release of the protein as significant amounts of SAH still remains 

in the cell lysate (Figure 24).  

MTS cytotoxicity assays showed 20 % cell survival in MCF7 mammary carcinoma cells 

and 65 % survival in LS174T colon carcinoma cells, with equivalent cell numbers (Figure 25). 
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This implies that some cancer cells are more susceptible to the treatment than others, which could 

be due to membrane structure. MCF7 cells are much larger and more dendritic-like in monolayer 

culture whereas LS174T cells are much smaller and form stronger cell-cell adhesions. 

Determining the sensitivity of different cell types to SAH could identify tumors better suited to 

treatment using this toxin.  

SAH bacteria were found to kill 3D tumor cells in a microfluidic device and in murine 

tumor models (Figures 26,27). The rapid drop in tumor volume and uptake of ethidium 

homodimer I in the device indicates cell death and effective delivery of SAH toxin. These results 

were confirmed in murine models, where tumor growth was suppressed in concurrence with 

necrosis; however survival curves showed rapid rates of mouse death even in the GFP expressing 

control (Figure 28). Cross-sections of H&E stained liver tissue show large amounts of necrosis in 

both the EC-SAH and control EC-ZsG (Figure 29). This indicates that the bacterial vector χ6212 

was toxic to the mice and likely caused the related cell death. Using another safer bacterial vector, 

like VNP20009, might enable better results in mouse survival.  

5.5 Conclusions 

Several bacterial toxins were screened for their ability to kill cancer cells and be 

recombinantly expressed and secreted from E. coli and Salmonella. SAH, Staphylococcus aureus 

α-hemolysin, was found to be a promising candidate. Secretion from both Salmonella and E. coli 

make it a robust therapeutic agent, with extremely lethal killing time of 6 minutes on monolayer. 

In a tumor-mimic-microfluidic device, SAH -Salmonella showed tumor regression within hours. 

In murine tumor models, SAH –E.coli caused significant amounts of tumor regression, but 

suffered from toxicity of the strain.  
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CONCLUSIONS 

This thesis describes several strategies to genetically engineer bacteria for diagnostic and 

therapeutic approaches for cancer. Current therapy and diagnostic tools suffer from poor 

specificity to cancer causing systemic toxicity in the case of treatment or misdiagnosis in the case 

of detection. Gram negative bacteria have been shown to overcome the transport limitations 

hindering effective treatments and detection methods and colonize tumors with 2,000-10,000-fold 

higher specificity than healthy tissues. In this dissertation, I have describe several strategies to 

utilize the tumor targeting nature of the bacteria and engineer microbes to perform multiple tasks 

once they reach the tumor site, from triggered release of a biomarker protein for detecting the 

presence of cancer, to engineering the bacteria to recognize sugar gradients autonomously for 

visualization of viable regions of tumors, to delivery and production of toxic proteins directly at 

the tumor site. These strategies were all tested in vitro environments and in vivo models that have 

similar gradients and transport limitations that therapies and diagnostic tools have to overcome in 

the patients. Mathematical analysis was used to evaluate the efficacy of these strategies in the 

clinic. The engineered bacterial detection and treatment strategies tested here in vitro and in vivo 

have direct applications to the clinic and could have a broad impact on the current methods for 

cancer treatment and detection. 

Cancer detection is a broad field of study with many imaging techniques and biochemical 

assays used in conventional screening in the clinic. These methods are currently limited in their 

specificity to cancer and eliminate false positives. In this dissertation, I present a novel method 

that combines the sensitivity of biomarker assays with the specificity of tumor-targeting bacteria. 

Bacteria were engineered to release a recombinant fluorescent reporter protein, ZsGreen, to serve 

as an exogenous biomarker that would not be confused with any native proteins in the body. To 
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the best of my knowledge this strategy for tumor detection has not been attempted before. The 

bacteria were tested in vitro and in vivo murine tumor models for recombinant expression and 

release of the biomarker protein from cancer tissue. The results show successful identification of 

microscopic tumor masses in microfluidic devices that mimic tumor tissue adjacent to blood 

vessels as well as detection of tumors less than 1 g in weight in murine tumor models. These 

results demonstrate the feasibility for bacterial tumor detection in the clinic with the elimination 

of background signal by production of an exogenous biomarker from the cancer site. 

Engineering autonomous bacterial sensing could improve specificity to cancer and enable 

measurement of the tumor microenvironment. In this dissertation I present a novel bacterium that 

is able to sense sugar gradients in its surroundings. Applied to cancer, these microbes have the 

ability to enable visualization of the glucose gradient that exists in a tumor mimic microfluidic 

device. The gradient in sugar is shown to correlate with the level of apoptosis activity of the 

tumor cells. Bacteria to sense the tumor microenvironment have the potential to improve 

therapeutic and diagnostics of cancer. Combined with the specificity of the bacteria to the tumor 

site, identifying gradients within the tumor microenvironment may enable more specific targeting 

for treatment. This bacterium can serve as a platform system for sensing other metabolites in 

tumors, as the binding pocket for the ligand site has previously been modified for sensing of other 

ligands than glucose or ribose. L-lactate is a promising target for metastatic disease and future 

work could enable bacterial detection of metastatic sites through lactate sensing.  

Cancer therapy has several limitations from transport phenomena to cancer acquired drug 

resistance through mutation. In this dissertation I present a strategy that overcomes the transport 

limitations that hinder small molecule therapeutics and acquired drug resistance by specific 

bacterial delivery of a cytotoxic protein staphylococcus aureus alpha-hemolysin, SAH. Functional 
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recombinant protein expression and release was evaluated in vitro in monolayer and in 3D tumor 

microfluidic devices. SAH producing bacteria were then tested in murine tumor models for 

specificity and tumor treatment. These results show SAH is extremely toxic to several cancer cell 

lines and is functionally expressed and released in liquid culture and from within tumor tissue. In 

murine tumors, delivery of SAH was shown to cause significant tumor reduction and necrosis 

within tumors, however; the strain of bacteria used in this study proved toxic to the mice. 

Reduction in bacterial dose showed minimal improvement in survival. Future studies aim to use 

less toxic bacteria for the anti-cancer vector. These results demonstrate the effectiveness of 

targeted delivery of an extremely cytotoxic molecule for treatment of tumors.  
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APPENDIX A  

ADDITIONAL FIGURES 

A1 Individual tumors show varying levels of ZsGreen expression 

Detection of tumors in mice shows varying bacterial ZsGreen expression. Individual 

Tumors show different levels of bacterial activation, indicating transport limitations are different 

in different tumors. Some were activated well, with almost 75% of the bacteria in the tumor of 

mouse #2 activating ZsGreen, but others, like mouse #10, only had 25% of the bacteria producing 

ZsGreen. This indicates that L-arabinose diffusion into the tumors may affect success of this 

detection method, although the majority of these bacteria were found in necrotic regions, which 

may not contribute to the overall ZsGreen release as suggested by Figure 12. 

 

Figure A1. Individual tumors show varying levels of ZsGreen expression. On average, 57% of the bacterial colonies 
produced ZsGreen (n=5). 
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A2 N-terminus fusions to ZsGreen maintained secretion in VNP20009 Salmonella 

 

 

Figure A2. ZsGreen fusions to the n-terminus of MVSSSSIS maintained secretion of the protein from Salmonella 
VNP20009. DH5alpha control shows E. coli do not secrete ZsGreen, even with fusion of MVSSSSIS, not shown. 
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A3 Single-layer antibody dots calibration of intensity to ng/ml ZsGreen 

 

Figure A3 Single-layer antibody dots in Bovine plasma. Fluorescence intensity from single-layer-antibody dots was 
converted to concentration of ZsGreen in plasma with sensitivity in the ng/ml range. Purified ZsGreen concentration 
was first determined by Bradford assay. Intensity at 400ms exposure (I) is related to the concentration (C, ng/ml), I, by 
the following equation: (line, log plot) I= A ln(C)+B. This logarithmic relationship on the left plot is due to the 
saturation of binding sites on the dot surface. The linear range between 0 and 10 ng/ml was used to convert small the 
fluorescence intensities, which was in the range of the observed the plasma from the half-life and tumor studies.  
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A4 Sensitivity of ZsGreen detection ELISA 

Large error in tumor blood measurements using single-layer antibody dots, suggests poor 

sensitivity of the technique at the ng/ml level. A sandwich ELISA was developed, which had 

excellent capabilities in saline but did not work well in plasma and 1:10 plasma: PBS samples 

(Figure A4). Improving ZsGreen detection sensitivity would decrease the minimum detectable 

tumor size (Figure 14). Decreasing the detection limit of ZsGreen would enable identification of 

smaller tumor masses. Single layer-antibody dots show ng/ml sensitivity of ZsGreen in blood and 

PBS (Figure A3, 6) compared to ELISA which was only sensitive to ZsGreen in PBS (Figure 

A4). Measurement of small concentrations of proteins in blood is difficult and requires extensive 

assay optimization. The single-layer-antibody dots appear to be more robust than a sandwich 

ELISA but they still show a significant amount of error (Figure A3). 
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Figure A4 ELISA of ZsGreen. The procedure is as follows: 1) 100 µl Anti-ZsGreen antibody, Anti-ZsGreen 
monoclonal antibody (Clontech) was adhered to microtiter plate in PBS at 1:500 overnight at room temp. 2) Wash 3x 
200 µl with TBS-T (TBS-Tween 0.05%). 3) Block with 10 mg/ml BSA in TBS at room temp for 1 hour. 4) Wash 3x.  
5) 100 µl of ZsGreen samples in PBS, bovine plasma, or 1:10 bovine plasma in PBS were applied to wells for 2 hours. 
6) Wash 3x.  7) 100µl Rabbit-Anti-RCFP polyclonal antibody (Clontech) was incubated at 1:500 in TBS-T +1mg/ml 
BSA for 1 hour at room temp. 8) Wash 3x. 9) Apply 100 µl of 1:1000 anti-rabbit-HRP in TBS-T +1mg/ml BSA was 
applied for 1 hour. 10) Wash 3x.11). 11) Use trimethylbenzidine (TMB, Sigma) substrate kit and measure at 
absorbance 450nm.  
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A5 Plasmid constructs to create sugar sensing Trz1 construct 

 

 

Figure A5 Plasmid constructs to make SGCR1.  
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APPENDIX B.  

MATLAB CODE FOR SOLVING SYSTEM OF PDES 

Matlab code to solve drug diffusion vs. sugar sensing bacteria drug delivery 
Main function: 
function Diffusion3viability 
% this is the main function. within this function the meshes are defined, 
%PDEPE is called and the results are plotted. 
clear; close all;  
  
%% prameters: 
P(1)=.05; %diffusion coefficient D m^2/s 
  
P(2)=1; %c0 uM drug 
  
P(3)=20; %death rate mu (1/h) 
  
  
P(4)=.2;%km saturation concentration uM 
  
P(5)=.2; %t-half drug (1/h) 
  
  
P(6)=0.1; %glucose diffusion coefficient 
P(7)=2; %uptake rate (first order due to saturation concentration >> than c 
%P(8)= 
%everything is dimensionless in this solution 
L=1; %length of the domain (m) 
maxt=1; %max. simulation time (h) 
t=linspace(0,maxt,100); %tspan 
x=linspace(0,L,100);%xmesh 
  
  
%% 
%Call of PDEPE. It needs the following arguments 
%m: see above 
%DiffusionPDEfun: function containing the PDEs 
%DiffusionICfun: Function containing the ICs for t=0 at all x 
%DiffusionBCfun: Function containing the BCs for x=0 and x=L 
%x: xmesh and t: tspan 
%PDEPE returns the solution as multidemensional array of size 
%xmesh x tspan x (# of variables) 
m=0;% 0 for rectangular coordinates, 1 for cylindrical, 2 for spherical 
sol= pdepe(m,@DiffusionPDEfun3,@DiffusionICfun3,@DiffusionBCfun3,x,t,[],P); 
%%plotting 
%3-D surface plot 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
u3 = sol(:,:,3); 
u4 = sol(:,:,4); 
figure(1) 
  
surf(x,t,u1); 
 xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
 ylabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
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 zlabel('Species u','fontsize',20,'fontweight','b','fontname','arial') 
  
 figure(2) 
surf(x,t,u2); 
 xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
 ylabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
 zlabel('viabilty','fontsize',20,'fontweight','b','fontname','arial') 
  
  
% figure(1) 
% surf(x,t,u(1),'edgecolor','none'); 
% xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
% ylabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
% zlabel('Species u','fontsize',20,'fontweight','b','fontname','arial') 
% axis ([0 L 0 maxt 0 P(2)]) 
% set(gcf(), 'Renderer', 'painters') 
% set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
%  
%2-D line plot 
figure(3) 
hold all 
for n=[1 10 25 50 100] 
    plot(x,sol(n,:,1), 'LineWidth',2) 
end 
xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('concentration','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
Hold off 
  
figure(4) 
hold all 
for n=[1 10 25 50 100] 
    plot(x,sol(n,:,2), 'LineWidth',2) 
     
end 
  
xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('viability','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
% ylim([0.8 1]) 
Hold off 
  
figure(5) 
hold all 
for n=[1 10 25 50 100] 
    plot(t,sol(:,n,2), 'LineWidth',2) 
     
end 
xlabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('viability','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
  
figure(6) 
  
hold all 
for n=[1 10 25 50 100] 
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    plot(t,sol(:,n,1), 'LineWidth',2) 
     
end 
  
  
xlabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('concentration','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
% ylim([0.8 1]) 
Hold off 
  
figure (7) 
C=1.0364; 
z=0.2257; 
w=0.1936; 
%x=linspace(0,L,100); 
v=(C/2)*(1-tanh((x-z)/(2*w))); 
plot(x,v) 
xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('Viability','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
  
figure(8) 
surf(x,t,u3); 
 xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
 ylabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
 zlabel('[GFP]','fontsize',20,'fontweight','b','fontname','arial') 
  
 figure(9) 
surf(x,t,u4); 
 xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
 ylabel('Time t','fontsize',20,'fontweight','b','fontname','arial') 
 zlabel('Viability (GFP)','fontsize',20,'fontweight','b','fontname','arial') 
  
%for the drug concentration produced by bacteria: 
%we get the following: 
% dl/dt =(-mumax*CD/(km-Co))*l 
%and 
%CD=k(x)*t 
%wher k(x) was found from excel fitting to the rate of GFP produced as a 
%function of x 
C2=1.3533; 
z2=0.6712; 
w2=0.1567; 
Cnot=1; 
%CDgfp= Cnot*(C2/2)*(1-tanh((x-z2)/(2*w2)))*t; 
kgfp=Cnot*(C2/2)*(1-tanh((x-z2)/(2*w2))); 
%solving the equation: 
%dl/dt=(-mumax*(Cnot*(C2/2)*(1-tanh((x-z2)/(2*w2)))*t)/(km-Co))*l 
%gives: 
%ln(l)- constant of int(viability initial(given as a 
%sigmoidal))=((-mumax*kgfp) /(Km-Co))*(1/2)*t^2 
  
figure(10) 
hold all 
for n=[1 10 25 50 100] 
    plot(x,sol(n,:,3), 'LineWidth',2) 
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end 
xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('GFP','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
Hold off 
  
figure(11) 
hold all 
for n=[1 10 25 50 100] 
    plot(x,sol(n,:,4), 'LineWidth',2) 
end 
xlabel('Distance x','fontsize',20,'fontweight','b','fontname','arial') 
ylabel('viability','fontsize',20,'fontweight','b','fontname','arial') 
axis([0 L 0 P(2)]) 
set(gca, 'FontSize', 18, 'fontweight', 'b', 'fontname', 'arial') 
Hold off 
mean(sol(1,:,4)) 
mean(sol(1,:,2)) 
mean(sol(100,:,4)) 
mean(sol(100,:,2)) 
end 
 
PDEs defined: 
function [c,f,s]=DiffusionPDEfun3(x,t,u,dudx,P) 
%Function defining the PDE 
  
%Extract parameters from main function 
D=P(1); 
mumax=P(3); 
km=P(4); 
Dg=P(6); 
kuptake=P(7); 
%pde  c dxdt= f dudx+ s 
% in this case for simple diffusion 
%our equation is: 
%dxdt= d(D.*dudx)dx +0 
%c=1; 
%f=D.*dudx; 
%s=0; 
  
C2=1.3533; 
P2=0.6712; 
W2=0.1567; 
kgfp=(C2/2)*(1-tanh((x-P2)/(2*W2))); 
cnot=1; 
  
c=[1;1;1;1]; 
f=[D;0;D;0].*dudx; 
s=[0;-(mumax*u(1))*u(2)/(km+u(1));cnot*kgfp;-(mumax*u(3))*u(4)/(km+u(3))]; 
 
Boundary Conditions: 
function [pl,ql,pr,qr]= DiffusionBCfun3(xl,ul,xr,ur,t,P) 
%Boundary conditions for x=0 and x=L; 
  
%extract parameters 
c0=P(2); %defined at 1 on main function Diffusion3viability.m 
mumax=P(3); 
km=P(4); 
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%BCs: No flux boundary at the right boundary and constant concentration %on the left boundary  
%define time points and data points for bc 
T0=10000; 
thalf=P(5); %dimensionless halflife 
k=0.693/thalf; 
%c = exp(-k*t) 
  
%parameters for fit to tanh function for viabiltiy data from kasinskas 2014 
C=1.0364; 
z=0.2257; 
w=0.1936; 
%x=linspace(0,1,100); 
%v=(C/2)*(1-tanh((x-p)/(2*w))); initial condition needed to solve constant 
%of integration 
vnew=(C/2)*(1-tanh((-z)/(2*w))); %evaluated at x=0, t=0 
  
bnew=(mumax/k)*(log((km+1)))-log(vnew);% constant of integration at b.c. and i.c. 
  
C2=1.3533; 
P2=0.6712; 
W2=0.1567; 
kgfpl=(C2/2)*(1-tanh((xl-P2)/(2*W2))); 
kgfpr=(C2/2)*(1-tanh((xr-P2)/(2*W2))); 
cnot=1; 
  
 pl=[ul(1)-exp(-k*t);(ul(2)-(exp((mumax/k)*(log((km+exp(-k*t))))-(bnew))));ul(3)-kgfpl*t;ul(4)-exp((-(kgfpl*t-
km*log(km+kgfpl*t))/kgfpl*mumax)+log(vnew)-(km*log(km)/kgfpl*mumax))]; 
    %(exp((mumax/k)*(log((km+exp(-k*t))))-(bnew))))]; 
%solution for boundary condition of cell viability, is found by calculating 
%the constant of integration for dl0dt=(-mu*C/km+C) *l by separating 
%integrating and solving at x=0 and the initial condition l(0,0)=1 
%(assuming all cells near the vessel are alive at (x=0,t=0)). 
ql=[0;0;0;0]; 
pr=[0;0;0;0]; 
qr=[1;1;1;1]; 
%ur(3)-cnot*kgfpr*t 
 
Initial Conditions: 
function u0= DiffusionICfun3(x,P,L) 
%initial conditions for t=0; can be a function of x 
%u0=[0;1]; %assuming all cells are living at all x values at t=0 
  
%tumor tissue will have necrotic tissue prior to administration of %drug, to account for this we will incorporate a 
gradient in tissue %viability according to measured values of ethidium homodimer uptake %from Bhushan Toley’s 
studies: 
  
%v=(C/2)*(1-tanh((x-p)/(2*w))) 
%from least squares regression in excel: Figure6_data %analysis_viability_jan adjusted for fit(1).xlsx 
  
C=1.0364; 
z=0.2257; 
w=0.1936; 
%x=linspace(0,1,100); 
v=(C/2)*(1-tanh((x-z)/(2*w))); 
u0=[0;v;0;v]; 
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APPENDIX C.  

IMAGEJ/FIJI MACROS FOR IMAGE ANALYSIS 

C1 Imagej/Fiji Macro for binary image alignment 

macro "align 2 color images in a stack and do colony size analysis with secretion" 
 
//Set measurements in fiji only to 'integrated density' option and 'display label' mark, this will enable appropriate output 
in the log file and save time in the calculations.  
{ 
//define image names 
//print("\\Clear"); 
run("Clear Results"); 
//selectWindow("Log"); 
print("\\Clear"); 
inputFolder = "C:\\Users\\jans laptop\\Documents\\research\\Experiments2\\IHC-IF zsgreen tumor 
study\\11_4_2014_tumor staining big group 1_10 aStyph\\Tumor07\\"; 
//getDirectory("align 2 color using bUnwarpJ - Choose the input folder!"); //don't use bunwarpJ it skews pixels which 
is wrong to do for data 
//open input directory 
outputFolder= "C:\\Users\\jans laptop\\Documents\\research\\Experiments2\\IHC-IF zsgreen tumor 
study\\11_4_2014_tumor staining big group 1_10 aStyph\\Tumor07\\Aligned_folder_6\\"; 
//getDirectory("choose the output folder!"); 
 v=newArray(70,71,72,73,74,75,76,77,78,79);//tumor07 distance analysis 
 
 //v=newArray(41,75,90,118,122,149);//tumor02 
//v=newArray(19,27,40,45,50,61);// tumor05 
//v=newArray(53,68,97,112,117,122,141);//tumor03 
//v=newArray(29,38,51,82,118,139);//tumor04 
//v=newArray(36,82,95,118,136,149);//tumor06 
//v=newArray(34,45,52,76,106,112);//tumor07 
//v=newArray(19,20,25,26,32,37,38);//tumor09 
//v=newArray(18,19,21,28,33,35,36,43);//tumor10 
for (i=0; i <v.length; i++) {//select the images you want to align  (adjust for each folder of images 1 more than the 
number of the last image 
  num_img=IJ.pad(v[i],3);//IJ.pad pads number value with zeros in the front 3 digits and returns the 
string 
run("Clear Results"); 
open(inputFolder+"Salm_"+num_img+".ipl");  
run("Subtract Background...", "rolling=25"); 
//tumor02,05,03,04,10 used salm at 550 
//tumor06: set to 250 
//tumor07: 238 
//tumor09:275 
//tumor10: 238 
setThreshold(238, 66000); //threshold bacteria after background subtract to  
run("Convert to Mask"); 
saveAs("Tiff", outputFolder+"Salm_bin_"+num_img); 
//makes binary of salmonella stained pics 
 
open(inputFolder+"ZsGreen_"+num_img+".ipl"); 
run("Subtract Background...", "rolling=25"); 
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setThreshold(645, 66000); 
//tumor02,05,03,04,10 used salm at 700 
//tumor06, set to 250 
//tumor07: 645 
//tumor09:700 
//tumor 
run("Convert to Mask"); 
saveAs("Tiff", outputFolder+"ZsGreen_bin_"+num_img); 
//background subtracts with 50pix and then binary 
print("image #",num_img); 
//starting image agreement 
 imageCalculator("Multiply create", "ZsGreen_bin_"+num_img+".tif","Salm_bin_"+num_img+".tif"); 
run("Measure"); 
selectWindow("Result of ZsGreen_bin_"+num_img+".tif"); 
close(); 
selectWindow("ZsGreen_bin_"+num_img+".tif"); 
close(); 
 
//calcuate initial match agreement 
var a=getResult("RawIntDen",0);//results table starts with row index of zero 
m=0;//x start 
n=0;//y start 
//try to do 2 single arrays for x and y shift: 
k=1;//counter for results table 
//translates into 49 different positions 
for(o=-4; o<5; o++){ 
for(j=-4; j<5; j++){ 
 open(outputFolder+"ZsGreen_bin_"+num_img+".tif"); 
 selectWindow("ZsGreen_bin_"+num_img+".tif"); 
 run("Translate...", "x=o y=j interpolation=None"); 
 //translates orignal image 
 imageCalculator("Multiply create", "ZsGreen_bin_"+num_img+".tif","Salm_bin_"+num_img+".tif"); 
run("Measure"); 
selectWindow("Result of ZsGreen_bin_"+num_img+".tif"); 
close(); 
selectWindow("ZsGreen_bin_"+num_img+".tif"); 
close(); 
max_agree=getResult("RawIntDen",k);//gets max rawIntDensity from results table 
print(k,max_agree,a); 
if (max_agree>a) { 
a=max_agree; 
m=o; 
n=j; 
}//if statement to determine max agreement between  
k=k+1; 
 
} 
}//end translation loop 
 
print(num_img,m,n); //the translational posistion for the optimized colocalization 
open(outputFolder+"ZsGreen_bin_"+num_img+".tif"); 
run("Translate...", "x=m y=n interpolation=None"); 
saveAs("Tiff", outputFolder+"ZsGreen_bin_align_"+num_img);//saves the aligned binary image 
  
 //translates orignal image 
//print("Image"+num_img); 
selectWindow("Salm_bin_"+num_img+".tif"); 
close(); 
selectWindow("ZsGreen_bin_align_"+num_img+".tif"); 
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close(); 
print(num_img,m,n); 
} 

C2 Imaej/Fiji Macro for measuring colony size distribution and ZsGreen diffusion 

macro "align 2 color images in a stack and do colony size analysis with secretion" 
 
//Set measurements in fiji only to 'integrated density' option and 'display label' mark, this will enable appropriate output 
in the log file and save time in the calculations.  
//Note. Input and output must exist in specified locations, Imagej will not create them if they don’t exist. 
{ 
//define image names 
//print("\\Clear"); 
run("Clear Results"); 
 
//selectWindow("Log"); 
print("\\Clear"); 
//inputFolder = "C:\\Users\\jans laptop\\Documents\\research\\Experiments2\\IHC-IF zsgreen tumor 
study\\11_4_2014_tumor staining big group 1_10 aStyph\\Tumor02\\"; 
//getDirectory("align 2 color using bUnwarpJ - Choose the input folder!"); //don't use bunwarpJ it skews pixels which 
is wrong to do for data 
//open input directory 
outputFolder= "C:\\Users\\jans laptop\\Documents\\research\\Experiments2\\IHC-IF zsgreen tumor 
study\\11_4_2014_tumor staining big group 1_10 aStyph\\Tumor07\\Aligned_folder_6\\"; 
//getDirectory("choose the output folder!"); 
v=newArray(78,79);//70,71,72,73,74,75,76,77,,79 
//v=newArray(41,75,90,118,122,149);//tumor02 
//v=newArray(19,27,40,45,50,61)// tumor05 
//v=newArray(53,68,97,112,117,122,141);//tumor03 
//v=newArray(29,38,51,82,118,139);//tumor04 
//v=newArray(36,82,95,118,136,149);//tumor06 
//v=newArray(34,45,52,76,106,112);//tumor07 
//v=newArray(19,20,25,26,32,37,38);//tumor09 
//v=newArray(18,19,21,28,33,35,36,43);//tumor10 
//for (ij=0; ij <v.length; ij++) 
for (ij=0; ij <v.length; ij++) {//select the images you want to align  (adjust for each folder of images 1 more than the 
number of the last image 
 num_img=IJ.pad(v[ij],3); 
 //num_img=IJ.pad(v,3);//IJ.pad pads number value with zeros in the front 3 digits and returns the string 
//for (i=81; i <82; i++) {//select the images you want to align  (adjust for each folder of images 1 more than the number 
of the last image 
// num_img=IJ.pad(i,3);//IJ.pad pads number value with zeros in the front 3 digits and returns the string 
//------------------------------------------------------------------------------------------------------------------ 
 
//loop partical analyzer for different sizes of salmonella colonies to determine if there is a relationship between colony 
size and secretion 
 
//isolates colonies of a certain size (defined as pixel area via the imagej particle analysis plugin) 
inc=1; //increment by 'inc' pixel^2 bins 
p=newArray(0, 2, 4, 6, 8, 10, 15, 20, 30, 50, 10000);//size array 
 for (i=1; i<p.length; i++) { 
//for (z=1; z<50;z++){// size loop every inc pixels in area to test (set bounds for size 
 //start at 2 because the particle analyzer doesn't register anything between 0-1 r^2=1.6 for 1 pixel 
open(outputFolder+"Salm_bin_"+num_img+".tif"); 
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//open(outputFolder+"ZsGreen_bin_align_"+num_img+".tif"); 
selectWindow("Salm_bin_"+num_img+".tif"); 
 run("Analyze Particles...", "size="+(p[i-1])+"-"+(p[i]-0.0001)+" include summarize add in_situ"); 
 // increment pixel area by 5 (i.e. first is from 0-5) 
 //not sure how accurate the pixel size is? how many decimal places is appropriate to  
 //include lower bound and exclude upper to avoid repeated points? 
  
 print("particle_size="+p[i-1]+"-"+p[i]+".",((p[i-1])),p[i]); 
   selectWindow("Summary"); 
   lines = split(getInfo(), "\n"); 
   headings = split(lines[0], "\t"); 
   values = split(lines[lengthOf(lines)-1], "\t"); 
   for (ni=0; ni<headings.length; ni++){ 
  print(headings[ni]+": ",values[ni]);  
  } 
       selectWindow("Summary"); 
       run("Close"); 
 count=roiManager("count"); 
array=newArray(count); 
for(s=0; s<count;s++) { 
        array[s] = s; 
         
} 
selectWindow("Salm_bin_"+num_img+".tif"); 
run("Select All"); 
setBackgroundColor(1, 1, 1);//clears image completely 
run("Clear", "slice");// with line above clears image completely 
//roiManager("Select", array);  
selectWindow("ROI Manager"); 
run("Select All");//selects all ROIs from particle analysis in size z1^2-z2^2 
roiManager("Fill");//fills in selected rois in white(255 value) 
setThreshold(82, 255); 
setOption("BlackBackground", true); 
run("Convert to Mask"); 
saveAs("Tiff", outputFolder+"Salm_bin_colonysize_"+i+"");//saves colony picture of size 
 
roiManager("Deselect"); 
roiManager("Reset");//close ROI manager to clear for next size 
 
//}// move to end once this is working ok 
 
 
//----------------------------------------------union/dialate series 
//start unionizing 
open(outputFolder+"ZsGreen_bin_align_"+num_img+".tif"); 
selectWindow("Salm_bin_colonysize_"+i+".tif");//grabs image of size z particles 
 
imageCalculator("Multiply create", "ZsGreen_bin_align_"+num_img+".tif","Salm_bin_colonysize_"+i+".tif"); 
//multiplies the aligned salmonella and zsgreen images 
saveAs("Tiff", outputFolder+"ZsGreen_bin_align_U0");// save initial colocalized pixels salm and zsg 
//close(); 
run("Measure"); 
//jj=getResult("RawIntDen",k); 
print(num_img,0,getResult("RawIntDen",0)); 
 
run("Clear Results"); 
for (b=1; b<50;b++){ 
//now perform the dialtion and union to generate the histogram of the zsgreen as a function of distance from salmonella 
//b is the number of dialations/unions 
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selectWindow("ZsGreen_bin_align_U"+b-1+".tif"); 
//run("Dilate");//dialate the colocaliziation 
 
//this runs the edm dilate function which better represents increasing radius 
run("Options...", "iterations=1 count=1 black edm=8-bit do=Nothing"); 
run("Invert"); 
run("Distance Map"); 
setThreshold(0, 1); 
setOption("BlackBackground", true); 
run("Convert to Mask"); 
 
saveAs("Tiff", outputFolder+"ZsGreen_bin_align_D"+b);//save dialation 
selectWindow("ZsGreen_bin_align_U"+b-1+".tif"); 
close(); 
imageCalculator("Multiply create", "ZsGreen_bin_align_D"+b+".tif","ZsGreen_bin_align_"+num_img+".tif"); 
//multiplies the dialited image back on top of the aligned zsgreen 
saveAs("Tiff", outputFolder+"ZsGreen_bin_align_U"+b);// save initial colocalized pixels salm and zsg 
run("Measure"); 
print(num_img,b,getResult("RawIntDen",0)); 
run("Clear Results"); 
selectWindow("ZsGreen_bin_align_D"+b+".tif"); 
close(); 
//open(outputFolder+"ZsGreen_bin_align_U"+b-1+".tif"); 
 
//selectWindow("ZsGreen_bin_align_U"+b+".tif"); 
 
}//end dialation loop 
selectWindow("ZsGreen_bin_align_U"+b-1+".tif"); 
close(); 
selectWindow("ZsGreen_bin_align_"+num_img+".tif"); 
close(); 
//selectWindow("Salm_bin_"+num_img+".tif"); 
close(); 
run("Clear Results"); 
selectWindow("ROI Manager"); 
run("Close"); 
}//end size loop 
// 
}//end image loop 
selectWindow("Log"); 
saveAs("Results",outputFolder+"Results2.csv"); 
}//end macro 
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