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ABSTRACT 

PHYSICOCHEMICAL AND TOXICOLOGICAL ASSESSMENT OF ANTIMICROBIAL  

ε-POLYLYSINE-PECTIN COMPLEXES 

 

MAY 2015 

CYNTHIA LYLIAM LOPEZ PENA, B.S., CORNELL UNIVERSITY 

PhD., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor D. Julian McClements 

 

ε-Polylysine is an appealing FDA-approved, all natural antimicrobial 

biopolymer effective against a wide range of microorganisms. Its implementation is 

greatly limited by its strong cationic charge, which has been linked to instability in 

food systems, perceived astringency and bitterness, and the ability to inhibit lipid 

digestion. Previous studies have shown that controlled complexation of ε-polylysine 

with anionic pectin is able to prevent instability and astringency in simplified model 

food systems, while maintaining the antimicrobial character of polylysine. 

Isothermal titration calorimetry, micro-electrophoresis, microscopy, and turbidity 

analyses of the stability of electrostatic pectin-polylysine complexes in the presence 

of strongly anionic κ-carrageenan, and carrageenan-polylysine complexes in the 

presence of pectin at different mass ratios (pH 3.5) suggested that although 

polylysine-carrageenan interactions were much stronger, polylysine-pectin 

complexes maintained their stability in the presence of carrageenan. 
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In vitro digestion models showed that electrostatic interactions between bile 

salts and polylysine, which have been suggested as the mechanism for lipase 

inhibition by polylysine (2ppm), were affected by components in the sample’s 

matrix. The implementation of an anionic (quillaja saponin) versus a non-ionic 

surfactant (Tween 20) in corn oil emulsions (2.5%w/w) showed a marked decrease 

of lipase inhibition, suggesting that electrostatic complexes formed by polylysine 

with other components prior to its exposure to bile salts in the small intestine may 

prevent the lipase-inhibiting polylysine-bile salts complex from occurring.  

Corn oil emulsions (2%w/w) stabilized by Tween 20 subjected to oral, 

gastric, and intestinal digestion in the presence and absence of mucin and polylysine 

(200ppm) demonstrated that polylysine forms electrostatic complexes with bile 

salt-stabilized mixed micelles, potentially decreasing lipid absorption and altering 

its metabolism. Complexes formed between polylysine and mucin prior to addition 

of bile salts showed a decrease in insolubilized oil after digestion, suggesting that 

interactions between polylysine and bile salts were somewhat inhibited.  

The influence of polylysine and pectin on the in vitro digestibility of animal 

feed either as individual components or as an electrostatic complex was assessed as 

part of a subchronic toxicity study. While pectin appeared to increase the rate and 

extent of lipid digestion, there did not seem to be any inhibition generated by 

polylysine.   
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Foodborne illnesses are estimated to affect 48 million Americans each year, 

cause 128,000 hospitalizations and 3,000 deaths (Centers for Disease Control and 

(Prevention, 2014), and have an annual economic impact between $51.0 and $77.7 

billion (Scharff, 2012). The control of pathogenic and spoilage organisms, commonly 

referred to as food protection (Jay, 2005), has been one of the main interests of the 

Food Industry throughout its history. In order to achieve this goal, the Food 

Industry has conceived, implemented, and combined numerous techniques 

including thermal and non-thermal processing of food, smart packaging, 

fermentation with specific microorganisms, and decreasing water content, to name 

but a few (Jay, 2005). The aforementioned techniques are habitually combined with 

the addition of antimicrobial compounds (or preservatives) in order to further 

decrease the likelihood of spoilage and pathogenic microorganisms proliferating.  

The appeal of using preservatives is their low minimum inhibitory 

concentrations and high affectivity against microorganisms. Although the 

preservatives presently utilized by the Food Industry are effective and have 

undergone extensive examination to be deemed Generally Regarded As Safe (GRAS) 

by the Federal Drug Administration (FDA), consumers’ growing disdain for 

synthetic/non-natural food ingredients and demands for cleaner labels in recent 
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years have incited the search for effective, safe, all-natural alternatives (Gyawali & 

Ibrahim, 2014; Tajkarimi, Ibrahim, & Cliver, 2010). 

A promising alternative is ε-polylysine (ε-PL), an all-natural potent 

antimicrobial effective against various Gram (+) and (-) bacteria, yeasts, molds, and 

even some bacteriophages (S. S. Chang, Lu, Park, & Kang, 2010; Geornaras, Yoon, 

Belk, Smith, & Sofos, 2007; Shima, Matsuoka, Iwamoto, & Sakai, 1984; Yoshida & 

Nagasawa, 2003). Despite having a prolific antimicrobial range that surpasses that 

of more popular preservatives (Jay, 2005), ε-PL’s highly cationic nature has 

prevented its widespread implementation in food products. Regarding 

incorporation in food matrices, ε-PL has a high propensity to interact with anionic 

components and may potentially generate instability in food systems (Y. H. Chang, L. 

McLandsborough, & D. J. McClements, 2011). Additionally, it is bitter, astringent, and 

has been documented to interfere with lipid digestion (Kido, Hiramoto, Murao, 

Horio, Miyazaki, Kodama, et al., 2003; Tsujita, Takaichi, Takaku, Aoyama, & Hiraki, 

2006; Tsujita & Takaku, 2009).  

The formation of anionic electrostatic complexes between cationic ε-PL and 

anionic high methoxyl pectin have been shown to minimize any destabilization in 

model food systems caused by the highly cationic charge of ε-PL, while maintaining 

ε-PL’s antimicrobial properties (Y. Chang, L. McLandsborough, & D. J. McClements, 

2011a; Y. H. Chang, L. McLandsborough, & D. J. McClements, 2011).  

1.2   Objectives 

The overall goal of this project is to conduct an in-depth investigation 

regarding the feasibility of implementing antimicrobial ε-PL-pectin complexes, 
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focusing on both their stability in the presence of food components that may disrupt 

them, as well as any toxicological hazards that may arise from their regular 

consumption. Due to the resistance of both ε-PL and pectin to digestive enzymes, as 

well as ε-PL’s ability to inhibit lipid digestion, it is especially important to scrutinize 

any undesirable changes in the composition of the gut microbiota, as well as any 

impediment to the absorption of lipophilic nutrients at the estimated consumption 

levels.   

 

Specific Project Objectives: 

A. Stability of Antimicrobial ε-PL-Pectin Complexes: ε-PL-pectin 

complexes will be exposed to different concentrations of extremely anionic food 

ingredients in order to determine if there is a propensity for the more anionic 

polymers to sequester ε-PL from the complex. If so, this could jeopardize the 

antimicrobial functionality of ε-PL, as well as possibly causing instability and 

undesirable changes in sensory attributes.  

 B. Impact of ε-PL On Digestibility of Fat and Bioaccessibility of 

Lipophilic Nutrients: The inhibitory effect of extremely high concentrations of ε-PL 

on lipid digestibility has been documented; ε-PL-pectin complexes could pose a 

serious concern for the absorption of lipophilic nutrients and nutraceuticals 

typically found in the diet. Therefore, careful analysis testing whether the 

implementation of ε-PL-pectin complexes at the suggested usage levels may 

decrease the digestion and bioaccessibility of dietary lipophilic compounds is 

imperative.  
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 C. Toxicological Assessment of ε-PL-Based Antimicrobial Delivery 

System: One of the primordial characteristics that any food additive must have is a 

nonexistent toxicity. Because ε-PL and pectin are both unaffected by digestive 

enzymes, it is possible that this complex may disrupt the regular digestion and 

absorption of lipids and affect lipid metabolism in the colon. Furthermore, the 

arrival of this antimicrobial complex to the large intestine may pose a threat to the 

bacteria that inhabit the colon. Therefore, thorough toxicological analyses 

implementing both in vivo and in vitro models must be conducted, focusing on blood 

markers, abnormalities in organs or body weight, and any changes in the 

composition of the gut microbiome. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Antimicrobial Agents in Food Systems 

Processed foods made up approximate 70% of the average food consumed per 

capita in the United States in 2013 (Warner, 2013). Frequently, processed foods 

have to travel long distances from manufacturing plants to grocery stores where 

consumers can purchase them, continue their voyage from grocery stores to 

consumers’ households, and often times extend their mileage to schools and offices 

where they are finally enjoyed. Ensuring that food reaches the final stage of its 

journey in good condition and maintaining its innocuousness requires the design 

and implementation of a strategy focused primarily on preventing contamination 

and spoilage (Becerril, Manso, Nerin, & Gomez-Lus, 2013; Cheng, Friis, & Leth, 

2010). These strategies include (i) utilizing physical barriers to prevent 

contamination and physical damage; (ii) maintaining environmental conditions that 

will minimize microbial growth and undesirable chemical and physical changes; and 

(iii) incorporating additives to extend the shelf life of a product (Carocho, Barreiro, 

Morales, & Ferreira, 2014).  

Food additives have been defined by the U.S. Congress and the Codex 

Alimentarius as:  

“Any substance not normally consumed as a food by itself and not normally 

used as a typical ingredient of the food, whether or not it has nutritive value, 

the intentional addition of which to food for a technological (including 
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organoleptic) purpose in the manufacture, processing, preparation, treatment, 

packing, packaging, transport, or holding of such food results, may be 

reasonably expected to result (directly or indirectly) in it or its by-products 

becoming a component or otherwise affecting the characteristics of such foods 

(Codex (Alimentarius, 2014; Gaynor, 2006).”  

However, “the term does not include contaminants or substances added to 

food for maintaining or improving nutritional qualities (Codex (Alimentarius, 

2014).” Their use in food products is closely regulated, and will be discussed in 

Section 2.2  Regulation of Preservatives by the U.S. Food and Drug Administration. 

There are currently over 2,500 additives approved for use in food systems (Branen 

AL, 2001; Carocho, Barreiro, Morales, & Ferreira, 2014), out of which antimicrobial 

agents are one of the substances most frequently incorporated into formulations 

precisely to control or retard the natural spoilage of food and/or to reduce 

contamination by both spoilage and pathogenic microorganisms (Tajkarimi, 

Ibrahim, & Cliver, 2010). 

Many of the most widely employed preservatives are not naturally derived, 

and despite their safety certifications and approval for use from the FDA have 

become progressively unpopular. This growing mistrust stems from consumers’ 

concerns regarding the possible toxicology of synthetic or overly-processed 

ingredients, which have led them to seek more natural food ingredients and labels 

(Tajkarimi, Ibrahim, & Cliver, 2010; Topper, 2014). This has prompted food 

companies and researchers alike to search for all natural, label-friendly alternatives 

to replace preservatives that are currently ill received by consumers. 
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2.1.1  Natural Antimicrobials 

Although natural antimicrobial agents abound in nature and can be readily 

extracted from different sources (Figure 1), finding feasible label-friendly options 

to incorporate in food systems is rather challenging. There are a myriad of 

considerations to take into account when selecting preservatives, natural or not. 

These considerations, depicted in Figure 2, tend to focus on the antimicrobial 

affectivity of the compound of interest, any impact on sensory attributes that may 

arise upon its incorporation in a food product, its compatibility with food matrices 

 

Figure 1. Sources of natural antimicrobial agents1. 

                                                        

1 Adapted from Davidson, Critzer, and Taylor (2013) 
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and processing, and any possible toxicological hazards that it may impose to those 

who may consume it (Davidson, Critzer, & Taylor, 2013).  

  

 

Figure 2. Considerations for selecting an antimicrobial agent.2  

 

                                                        

2 Adapted from Davidson, Critzer, and Taylor (2013) 
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 Based on the aforementioned considerations, an ideal antimicrobial agent 

should have a high affectivity at low concentration, be effective against a wide range 

of spoilage and pathogenic microorganisms, not cause undesirable organoleptic 

changes, pose no toxicological danger to consumers, and have a low cost of 

production and implementation (Davidson, Critzer, & Taylor, 2013). These 

characteristics are presented in Figure 3.  

 

Figure 3. Ideal characteristics of antimicrobial agents3  

 

One of the main and unexpected difficulties that arise from using natural 

antimicrobials stems precisely from their natural origin. Due to the complexity of 

the systems from which natural preservatives are obtained, those that possess a 

sufficiently strong antimicrobial potency that allows them to be added (and labeled) 

                                                        

3 Adapted from Davidson, Critzer, and Taylor (2013) 
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as a whole food or extract are rare; most require undergoing a purification or 

refining process to be successfully implemented in foods. This processing, however, 

transforms the preservative’s label nomenclature into something much less 

appealing to consumers (Davidson, Critzer, & Taylor, 2013).  

Furthermore, many sources have reported that the incorporation of natural 

antimicrobial agents in complex food matrices commonly results in undesirable 

organoleptic changes – particularly flavors, odors, and the formation of aggregates 

that may impact the appearance and acceptability of the product. These complexes 

are often a product of the natural preservative interacting and even reacting with 

proteins, lipids, sugars, and cationic or anionic compounds, commonly resulting not 

only in the destabilization of the food matrix, but also a diminished antimicrobial 

activity (Chobpattana, Jeon, Smith, & Loughin, 2002; Davidson, Critzer, & Taylor, 

2013; Devlieghere, Vermeulen, & Debevere, 2004; Gaysinsky, Taylor, Davidson, 

Bruce, & Weiss, 2007; Tserennadmid, Tako, Galgoczy, Papp, Vagvolgyi, Gero, et al., 

2010; von Staszewski, Pilosof, & Jagus, 2011). The mechanism behind the formation 

of such complexes and many of their consequences in food products will be 

described in Section 2.1.2.1.1.1  Electrostatic Interactions. 

 Due to the frequency with which the aforementioned problems have been 

observed, researchers have devoted time and resources to identifying suitable 

natural antimicrobial agents and developing technologies that conserve – and in 

some cases enhance – their antimicrobial power while simultaneously preventing 

them from interacting with components of the food matrix.  
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2.1.2  ε-Polylysine: A Potent Antimicrobial 

One of the most promising groups of all-natural preservatives are 

antimicrobial peptides. These compounds are secreted by some insects, reptiles, 

mammals, and plants as part of their natural immune system to ward off infection 

(Blin, Purohit, Leprince, Jouenne, & Glinel, 2011; Brogden, 2005; Soares & Mello, 

2004; Zasloff, 2002) and by some microorganisms as part of their competitive 

advantage to obtain dominance over other microorganisms in complex ecologies 

(Davidson, Critzer, & Taylor, 2013). Their wide-spectrum antimicrobial efficacy, 

minimum inhibitory concentrations (MIC) of a few parts per million (ppm), and low 

propensity to generate resistance in microorganisms have led them to be proposed 

as an all-natural alternative superior to conventional preservatives in food systems 

(Blin, Purohit, Leprince, Jouenne, & Glinel, 2011; R. E. W. Hancock & H. G. Sahl, 2006; 

Zasloff, 2002). 

 

Figure 4. Representation of the structure of ε-PL at pH < pI4. 

 

                                                        

4 Modified from (Food and Drug Administration, 2011) 
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A member of the antimicrobial peptide family that has received much 

attention from academia as a promising antimicrobial agent in food systems (Y. 

Chang, L. McLandsborough, & D. J. McClements, 2011a; Y. Chang, McLandsborough, 

& McClements, 2012; Islam, Oishi, Machida, Ogura, Kin, Honjoh, et al., 2014; Liu, Pei, 

Han, Feng, & Li, 2015; Muriel-Galet, Lopez-Carballo, Gavara, & Hernandez-Munoz, 

2014) is ε-polylysine (ε-PL). This compound is a homopolymer of 25 to 35 L-lysine 

residues (Figure 4) naturally secreted by Streptomyces albulus ssp. Lysinopolymerus 

strain 346 (J. Hiraki, Ichikawa, Ninomiya, Seki, Uohama, Seki, et al., 2003; Kahar, 

Iwata, Hiraki, Park, & Okabe, 2001; Shima & Sakai, 1977). It has shown to surpass 

the antimicrobial spectrum of widely implemented preservatives (Figure 5) such as  

 

Figure 5. Diagram comparing the antimicrobial spectrum of commonly 
utilized preservatives with ε-PL5. 

                                                        

5 Adapted from (Jay, 2005). 
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propionates, sorbates, benzoates, and parabens (Jay, 2005), as it is highly effective 

against various Gram (+) and (-) bacteria, yeasts and molds, and even some 

bacteriophages (S. S. Chang, Lu, Park, & Kang, 2010; Geornaras, Yoon, Belk, Smith, & 

Sofos, 2007; Shima, Matsuoka, Iwamoto, & Sakai, 1984; Yoshida & Nagasawa, 2003). 

The list of microorganisms susceptible to ε-PL includes many of the pathogenic 

microorganisms responsible for major foodborne diseases outbreaks (Table 1), 

making it an even more interesting alternative. 

The concentration of primary amine groups (NH3+) along ε-PL’s backbone 

provide the polymer with a high isoelectric point (pI~9), making it positively 

charged at pH values commonly found in foods (Yoshida & Nagasawa, 2003), as 

shown in Figure 4. This positive charge is what makes ε-PL a potent antimicrobial; ε-

PL interacts electrostatically with the negatively charged surface of microorganisms, 

becoming adsorbed. Once adsorbed, ε-PL permeabilizes the membrane by forming 

pores or structural defects, eventually stripping the outer membrane and causing 

cell death through the abnormal distribution of the cytoplasm (Blin, Purohit, 

Leprince, Jouenne, & Glinel, 2011; Brogden, 2005; Shima, Matsuoka, Iwamoto, & 

Sakai, 1984; Zasloff, 2002). Studies on E. coli O157:H7 have shown that ε-PL may 

also affect gene expression and cause oxidative stress by reactive oxygen species 

(Ye, Xu, Wan, Peng, Wang, Xu, et al., 2013). 
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Table 1. Examples of pathogenic microorganisms susceptible to ε-polylysine, 
and their impact on the annual number of reported foodborne illness cases 
and deaths6. 

Pathogenic Microorganism 
Number of 

Cases 

Number of 

Deaths 

Bacillus cereus7 63,400 0 

Campylobacter spp.8 845,024 76 

Escherichia coli (Shiga toxin-

producing O157:H7 and non-

O157:H7, enterotoxigenic, and other 

diarrheic strains)7 

205,781 20 

Listeria monocytogenes7 1,591 255 

Mycobacterium spp.7 60 3 

Salmonella enterica Typhi7 1,821 0 

Staphylococcus aureus7 241,148 6 

 

 

 

2.1.2.1 Applications of ε-polylysine in the Food Industry 

ε-PL has undergone the rigorous process required by the FDA to assess its 

safety (Section 2.2  Regulation of Preservatives by the U.S. Food and Drug 

                                                        

6 Modified from (Scallan, Griffin, Angulo, Tauxe, & Hoekstra, 2011; Scallan, Hoekstra, Angulo, Tauxe, 
Widdowson, Roy, et al., 2011; Scharff, 2012) 
7 Shima, Matsuoka, Iwamoto, and Sakai (1984) 
8 Food and Drug Administration (2011) 
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Administration), including extensive toxicology studies (J. Hiraki, et al., 2003) and 

studies focusing on effects on reproductive, neurological, and immunological 

functions for two generations in rats (J. Hiraki, 1995; Neda, 1999). With additional 

documentation submitted by the Chisso Corporation and Purac Biochem b.v., the 

FDA has deemed ε-PL to be a Generally Regarded As Safe (GRAS) food ingredient 

(Food and Drug Administration, 2004, 2011), and has approved its use in a wide 

number of food systems at concentrations up to 0.025% by weight (Figure 6). 

Despite ε-PL being a potent all-natural antimicrobial with GRAS status and an 

industrial scale production (J Hiraki, 1999; Shih, Shen, & Van, 2006; Yoshida & 

Nagasawa, 2003), it is not widely used by the Food Industry in the United States. 

This is largely due to the high positive charge of the primary amine groups, which 

presents significant hurdles to the implementation of this natural preservative: ε-PL 

may (i) interact electrostatically with anionic components present in the food 

matrix, generating complexes that could increase turbidity, cause sedimentation, 

and (ii) reduce its antimicrobial efficacy; (iii) confer astringency by interacting 
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Figure 6. Intended uses of polylysine in food, as declared by the Food and Drug Administration (2011) 
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electrostatically with anionic mucin in human saliva; or (iv) be detected due to its 

bitter taste (Y. Chang, L. McLandsborough, & D. J. McClements, 2011a; Y. H. Chang, L. 

McLandsborough, & D. J. McClements, 2011) 

2.1.2.1.1 Complexation of ε-PL With Pectin 

As mentioned in the previous section, the high cationic charge of ε-PL makes 

it extremely capable of electrostatic interactions with numerous anionic 

biopolymers, often with undesirable results. In order to provide an effective 

solution to this problem, it is important to first have a more thorough understanding 

about electrostatic interactions. 

2.1.2.1.1.1  Electrostatic Interactions 

Electrostatic interactions refer to interactions that occur between molecules 

or complexes with a permanent electrical charge (Israelachvili, 1992; JN Murrell, 

1982; Norde, 2003; Reichardt, 1988; Rogers, 1989); these charges can emanate 

from ions or an uneven distribution of electrons in an otherwise neutral molecule, 

i.e., its polarity (D. McClements, 2005c). As a rule of thumb, molecular moieties will 

attract each other if they possess opposite electrical charges, and will repel each 

other if their electrical charges are the same. The strength of the electrostatic 

interaction between the molecular systems depends on the magnitude of their 

charges, the distance between their centers, and the orientation of any dipoles 

present. The interactions are most intense between systems with strong electrical 

charges, whose dipoles are oriented towards each other, and whose charges have 

little physical distance between them (D. McClements, 2005c). 
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 When adequate conditions such as the pH and salt concentration in a system 

are met, biopolymers can present electrical charges in their structure. These charges 

may lead to electrostatic interactions with oppositely charged biopolymer 

molecules, forming electrostatic complexes. These electrostatic interactions have 

been shown to cause significant changes in the functional properties of the 

biopolymers involved – particularly changes in solubility, which may have 

detrimental effects on the overall stability and sensory properties of food systems 

(ZE Sirorski, 2008) 

2.1.2.1.1.2 Complexation of ε-PL with Pectin 

The formation of ε-PL-pectin electrostatic complexes has been suggested as a 

promising solution to the aforementioned issues related to the implementation of ε-

PL in food systems (Y. Chang, L. McLandsborough, & D. J. McClements, 2011a; Y. 

Chang, McLandsborough, & McClements, 2012; Y. H. Chang, L. McLandsborough, & D. 

J. McClements, 2011; Y. H. Chang, McLandsborough, & McClements, 2014). 

Pectin is a popular food ingredient used as a gelling, thickening, and 

stabilizing agent, primarily extracted from citrus peel and apple pomace (Thakur, 

Singh, & Handa, 1997). The polymeric structure of pectin is composed of a linear 

chain of (14)-linked α-D galactopyranosyluronic acid units, some periodic L-

rhamnose units, and, in some instances, covalently-bound branched arabinogalactan 

chains and/or shorter D-xylosyl and/or L-rhamnosyl chains (James N. BeMiller, 

2008; Thakur, Singh, & Handa, 1997).  Additional variations of the pectin building 

blocks, and perhaps the most important ones in terms of particle charge and 

functionality, are the different forms in which the carboxylic acids may be present: 
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the methyl ester form (-COOCH3), free acid form (-COOH) or salt form (-COO-Na+). 

Pectins with 50% or more of their carboxylic groups present in the methyl ester 

form, i.e. a 50% or higher degree of esterification (DE) or degree of methylation 

(DM), are referred to as high-methoxyl (HM) pectin. Conversely, those with less than 

a 50% DE are referred to as low-methoxyl (LM) pectin (James N. BeMiller, 2008). 

The differences between HM and LM pectin can be observed in Figure 7. Regardless 

of the DE, the carboxylic acid side groups give pectin a pKa of approximately 3.5, 

making the polymer negative at pH values around and above a pH of 3.5 (Asker, 

Weiss, & McClements, 2011).  

 

Figure 7. Representation of the structure of low and high methoxyl pectin at 
pH ≥ pKa9 

                                                        

9  Adapted from (Kabir, Wang, Lau, & Cardona, 2012; Tharanathan, 2003) 
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Electrostatic complexes between pectin and ε-PL can be formed easily by 

dispersing both polymers in a solution at a pH equal to or above the pKa of pectin  

and below the pI of ε-PL. Under these conditions, they possess opposite charges and 

are able to interact electrostatically with each other (Y. Chang, McLandsborough, & 

McClements, 2012). The interaction between the cationic primary amine groups of 

ε-PL and anionic polymers has been shown to form electrostatic complexes that 

promote the transition from ε-PL’s coil structure to a helical structure (Sedlmeyer, 

Brack, Rademacher, & Kulozik, 2004; Tholstrup Sejersen, Salomonsen, Ipsen, Clark, 

Rolin, & Balling Engelsen, 2007). An important consideration when forming 

electrostatic complexes between pectin and ε-PL is that the DE may have important 

implications, as it could result in radically different negative charge intensity 

between HM and LM pectins. The use of lower DE pectin (which have a lower 

number of the carboxyl groups’ charge neutralized by the esterification of methoxyl 

groups) results in a stronger, more densely packed complex that may cause 

considerable turbidity and even sedimentation (Y. Chang, McLandsborough, & 

McClements, 2012), as well as potentially quenching the antimicrobial efficacy of ε-

PL.  

This complexation strategy has been shown to be successful in decreasing 

the overall charge of ε-PL at mass ratios of 1:1 – 1:20 ε-PL : HM pectin (pH 3.5), 

conferring pectin’s anionic charge to ε-PL while still maintaining  ε-PL’s 

antimicrobial efficacy against the acid-resistant yeasts Zygosaccharomyces bailii and 

Saccharomyces cerevisia. Furthermore, this successful negatively charged 

antimicrobial complex possesses a low turbidity and is stable in a model green tea 
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beverage system (Y. Chang, L. McLandsborough, & D. J. McClements, 2011a; Y. 

Chang, McLandsborough, & McClements, 2012; Y. H. Chang, L. McLandsborough, & D. 

J. McClements, 2011). 

While these are promising results, additional testing assessing the stability of 

these complexes in more multifarious food models, their digestibility, toxicology, 

and overall impact on consumer health are required.  

 

2.2  Regulation of Preservatives by the U.S. Food and Drug Administration 

In the United States, the FDA plays a crucial role in monitoring the plethora of 

current and potential food additives. The Center for Food Safety and Applied 

Nutrition’s (CFSAN) Office of Food Additive Safety monitors circa 80% of the food 

supply, employing a science-based system to scrutinize the safety of food additives, 

while communicating and exchanging scientific information with the interested 

parties (Alger, Maffini, Kulkarni, Bongard, & Neltner, 2013). The system relies 

heavily on science, defining safety as  

“[Having] a reasonable certainty in the minds of competent scientists that [a] 

substance is not harmful under the intended conditions of use” (§170.3(i)). 

 

In order to allow the utilization of additives in food systems, the FDA requires 

that the interested party (the sponsor) submit a detailed report with scientific 

evidence that attests to the substance’s safety (Gaynor, 2006). These reports must 

answer the three mandated queries established by Congress in order to determine 

whether or not the substance of interest is safe:  
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“(i) An estimate of the amount of the substance itself and any other 

substances that may be ingested due to the incorporation of the substance of 

interest; (ii) the amassed effect of ingesting the aforementioned amount of the 

substance of interest and any other substance ingested due to the 

incorporation of the substance of interest; and (iii) the safety factors that, in 

the opinion of experts, are generally recognized as appropriate” (§170.3(i)).  

 

These reports include detailed information about the nomenclature, 

formulation, purity, stability, intended technical effects and uses, intake estimates, a 

detailed methodology to analyze and detect the additive in food systems, and a 

thorough report of the extensive toxicology analysis, along with a rationale from the 

sponsor summarizing why the substance of interest should be considered GRAS for 

its intended use (United States Food and Drug Administration (2009). The 

submitted information is carefully reviewed and evaluated by a group of qualified 

experts, who must reach a consensus regarding the safety of the substance of 

interest under the conditions of its intended use. After the consensus is reached and 

the final decision is made, the FDA gives one of three answers: (i) “FDA does not 

question the basis for the notifier’s GRAS determination;” (ii) “The notice does not 

provide a sufficient basis for GRAS determination;” or (iii) “The agency has, at the 

notifier’s request, ceased to evaluate the GRAS notice” (Gaynor, 2006). 

True to their openness with information, the FDA’s website publishes their 

regulation guidelines for the Food Industry in the FDA Redbook, an online database 

with all the additives and ingredients permitted to be incorporated into food 
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systems (“Everything Added to Food In the United States”), and a database with all 

the GRAS notices that the FDA has ever received (Branen AL, 2001; 

Food_and_Drug_Administration, 2007, 2013; Gaynor, 2006). 

2.2.1 Toxicology Analysis  

The toxicological analyses are the most crucial section of the GRAS 

notification process, as they will provide the solid scientific evidence for the 

approval or rejection of the food additive from the FDA. Due to their importance, the 

FDA has included a set of guidelines with examples of suggested studies that could 

be included in the documentation (Food and Drug Administration (2014). 

The proposed studies include genetic toxicity tests, short-term toxicity tests 

with rodents, subchronic toxicity studies with rodents, subchronic toxicity studies 

with non-rodents, one-year toxicity studies with non-rodents, chronic toxicity, 

carcinogenicity studies with rodents, reproduction studies, developmental toxicity 

studies, metabolism and pharmacokinetic studies, and human studies (Food and 

Drug Administration (2014). One of the main considerations when conducting 

toxicological studies is to first determine the estimated daily intake (EDI); that is, 

the average daily intake of the substance of interest over a lifetime based on the 

average consumer’s diet (Food and Drug Administration (2009). The EDI is then 

used as a base, changing the amount that the test subjects will be exposed to 

accordingly to their body weight, desired exposure level, length of the study, 

etcetera. After the experiment has been conducted, the highest dosage (mg/kg body 

weight) at which no negative effects were observed in the most susceptible test 

subject is identified. This value, the “No Observed Adverse Effect Level” or “NOAEL” 
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is multiplied by case-specific conversion factors to establish the maximum usage 

levels for the substance of interest, also known as “Acceptable Daily Intake” or ADI 

(Carocho, Barreiro, Morales, & Ferreira, 2014). 

2.3  Gastrointestinal Tract and Experimental Models 

2.3.1 Human Digestive Tract 

The gastrointestinal (GI) tract is composed a flexible muscular tube that 

encompasses the mouth, pharynx, esophagus, stomach, and small and large 

intestines (Figure 8), whose joint main function is to efficiently extract and absorb 

nutrients from ingested food. The epithelial cells of these organs secrete a protective 

mucus layer that contains mucin, a group of glycosylated proteins with a large 

molecular weight. The high level of glycosylation of these proteins provides them 

with an extremely high water-holding capacity (Kufe, 2009; Perez-Vilar & Hill, 

2004), which lubricates the epithelial surfaces to decrease friction with the passage 

of food, traps and immobilizes pathogens, and is permeable enough to allow 

nutrients to diffuse through it to be absorbed by the epithelial cells in certain 

sections of the GI tract (Mackie, 2012). Each of the sections or organs that make up 

the GI tract – particularly the mouth, stomach, and intestines – are equipped with 

specific muscular activity, enzymes, and other characteristics that make their 

internal conditions vastly dissimilar from one another, and consequently provide 

them with an essential role in the digestion and absorption of nutrients and 

excretion of waste (Basit, 2005). Additional glands and organs such as the salivary 
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glands, liver, pancreas, and gallbladder provide the enzymes and digestive juices 

that are crucial 

 

Figure 8. Diagram of the Digestive Tract10.  

 

to the digestion of foods (National Institute of Diabetes and Digestive and Kidney 

(Diseases, 2013). The muscles that line the GI tract contract continuously, moving 

food from organ to organ. This action – called peristalsis – occurs at varying rates 

                                                        

10 Adapted from National Institute of Diabetes and Digestive and Kidney Diseases (2013) 
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and intensities in different parts of the GI tract, providing additional turbulence and 

even a grinding motion in some organs (Whitney, 2005).  

 

2.3.1.1 Mouth 

The digestive process begins in the mouth, where food is introduced into the 

body and undergoes physical and chemical transformations into a moist, soft, paste-

like substance called the bolus. Within seconds, chewing breaks down large 

fragments of food into small particles – simultaneously relating sensory information 

such as aromas, flavors, and texture – in order to prevent physical damage to the 

digestive organs and increase the surface area of the ingested food. This larger 

surface area promotes interaction of food with digestive enzymes and juices, 

increasing their efficiency and favoring the absorption of nutrients in other 

digestive organs. The small amount of saliva injected into the mouth by the salivary 

glands – which contains water, salts, mucus, and enzymes such as amylase – 

moistens the food and degrades the majority of carbohydrates, making the ingested 

food more manageable in the stomach. The resulting ground and partially digested 

food is swallowed and passes through the esophagus into the stomach (Mackie, 

2012; Whitney, 2005). 

2.3.1.2 Stomach 

The bolus enters the stomach through the esophageal sphincter, which seals 

itself to prevent the undesirable re-entry of the bolus into the esophagus. The bolus 

is kept in the upper portion of the stomach and is gradually transferred to the lower 
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section, where it undergoes gastric digestion. The conditions in the lower stomach 

are vastly different from those in other parts of the digestive system: gastric glands 

release juices that contain the proteolytic enzyme pepsin and the hydrolytic enzyme 

gastric lipase, water, and hydrochloric acid; the pH drops to 1.5-3 depending on the 

ingested food and whether the subject has been fasting; and strong muscle 

contractions provide a grinding action. The low pH renders the salivary enzymes 

inactive, and it is the proteolytic activity of lipase that dominates in the stomach. As 

the acid and enzymes act on the bolus, it is slowly transformed into a semiliquid 

mass called chyme. As the chyme is produced, sensors in pyloric sphincter detect 

certain nutrients and regulate gastric emptying based on the stimuli they receive 

(Mackie, 2012; Whitney, 2005). 

2.3.1.3 Small Intestine 

Chyme is slowly released from the stomach through the pyloric sphincter 

into the upper portion of the small intestine (the duodenum), where it interacts with 

intestinal juices secreted by the gallbladder through the bile duct. These juices 

contain sodium bicarbonate, digestive enzymes, and the surfactants bile salts and 

phospholipids; as the juices come in contact with chyme, the pH rises to 

approximately 6.5, and the enzymes degrade any remaining lipids, carbohydrates, 

and peptides (Whitney, 2005).  

The intestinal walls are especially designed to absorb nutrients: the mucous 

layer that protects them contains digestive enzymes that act on any undigested 

nutrients and is permeable enough to allow their passage, while the epithelial cells 

that make up the wall have an extremely large surface area. As chyme travels 
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through the three sections of the small intestine (duodenum, jejunum, and ileum) 

and is in constant contact with the intestinal walls, the enzymatically broken down 

nutrients are absorbed by the body (Mackie, 2012). The remaining chyme, at this 

time primarily water and electrolytes, leaves the small intestine through the 

ileocecal valve and enters the large intestine (Whitney, 2005).  

2.3.1.4 Large Intestine 

Unlike the other organs of the digestive tract, the colon does not have strong 

or rapid peristaltic movements, high concentrations of acid or bile, or significant 

enzymatic activity, and maintains a near neutral pH (Evans, Pye, Bramley, Clark, 

Dyson, & Hardcastle, 1988; Gibson, McFarlan, Hay, & Macfarlane, 1989; Van den 

Mooter, Stas, Damian, Naesens, Balzarini, Kinget, et al., 1998; Yang, Chu, & Fix, 

2002). Rather, the role of the large intestine is to absorb any remaining water or 

electrolytes present in the remaining chyme as it travels through the large intestine, 

act as a reservoir of fecal material until the latter is excreted (Whitney, 2005), and 

act as a biofermentor. Biofermentation is achieved through the large number of 

microorganisms that reside in the different areas of this organ, which degrade 

compounds that were not digested and/or absorbed in the upper digestive tract 

(Edwards, 1997). These microorganisms, also known as the gut microflora, play a 

crucial role on the host’s health, and will be discussed in Section 2.4 Gut 

Microbiota.  
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2.3.2 Digestion, Absorption, and Transport of Lipids 

The average person consumes anywhere between 20 to 160 grams of fat 

every day, out of which approximately 97% are triglycerides (TAG), 1% are 

cholesterol, less than 1% are other lipophilic compounds, and 2% are 

phospholipids. All these compounds undergo digestion and absorption in the body, 

and do so with an efficiency of approximately 98% (Lairon, 2009).  

Ingested dietary fat begins the digestive process in the mouth, where it is 

subjected to a small degree of degradation by lingual lipase. Despite the presence of 

gastric lipase in the stomach, no significant degradation of TAG occurs in this organ. 

This is primarily due to the low pH, which prevents the fatty acids (FAs) from 

disassociating from the glycerol molecule, possibly deactivating the enzyme 

(Mackie, 2012). However, the violent grinding motion of the gastric muscles 

disperses any fat present into smaller droplets. This increased surface area makes 

the fat droplets more susceptible to the enzymatic activity of lipase in the small 

intestine (Lairon, 2009).  

As chyme enters the small intestine, the fat droplets contained in it trigger 

the secretion of the hormone cholecystokinin (CCK), which prompts the gallbladder 

to inject bile and pancreatic bicarbonate into the small intestine (Lairon, 2009; 

Mackie, 2012). The secretion of bicarbonate increases the pH to 6.5-7, permitting 

the ionization of the acid groups present in the fat (Lairon, 2009). Bile acids or salts, 

the primary component of bile, are natural surfactants produced in the liver. Their 

chemical formula consists of a hydrophobic molecule of cholesterol complexed with 

a hydrophilic amino acid. The primary structure formed in the liver is conjugated 
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with taurine and glycine (ROMAŃSKI, 2007), and numerous variations occur 

naturally (Meredith, Caprio, & Kajiura, 2012; Mukhopadhyay & Maitra, 2004). An 

example of a bile salt is presented in Figure 9. Bile salts and phospholipids present  

 

Figure 9. Chemical structure of taurochenodeoxycholic acid, an example of a 

bile salt.11 

 

in bile – or any other surfactant – stabilize the dispersed fat droplets by placing 

themselves on the water-lipid interface, with the hydrophobic sections of the 

molecules interacting with the fat droplets whereas the hydrophilic sections interact 

with the aqueous phase of chyme (Maldonado-Valderrama, Wilde, Macierzanka, & 

                                                        

11 Adapted from (Meredith, Caprio, & Kajiura, 2012) 
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Mackie, 2011). This facilitates the dispersion and solubilization of lipids including 

cholesterol in the aqueous phase within the intestine (ROMAŃSKI, 2007) 

In order to cleave fatty acids present in phospholipids, TAGs, or complex 

sterols, lipase becomes adsorbed onto the surface of the bile acid- or phospholipid-

stabilized fat droplets and hydrolyzes the FAs. For TAGs, this enzymatic activity 

typically results in two free fatty acids chains and one monoglyceride (MAG) 

molecule (Lairon, 2009). Glycerol and short- and medium-chain FAs can diffuse 

easily into the intestinal cells, where they rearranged into TAG, incorporated into 

transport vessels called chylomicrons, and released into the lymphatic system 

(Mackie, 2012). After serving their purpose in emulsifying fat, bile salts are either 

reabsorbed from the intestine and reused, or they can be trapped by fibers excreted 

with feces (Lairon, 2009). 

2.3.2.1 Emulsion-Based Delivery Systems 

Emulsions consist of the combination of two immiscible phases (typically an 

aqueous phase and an oil phase), where one is dispersed in another. Oil-in-water 

emulsions, such as milk, are composed of small oil droplets dispersed in an aqueous 

continuous phase. Water-in-oil emulsions, such as butter, are the inverse; small 

water droplets dispersed in a continuous oil phase (D. McClements, 2005a). These 

systems are generally stabilized though the incorporation of emulsifiers, which are 

surface-active molecules that can become adsorbed on the surface of the emulsion 

droplets. Once adsorbed, they are able to decrease the surface tension between the 

water-oil interphase and provide a physical barrier that prevents emulsion droplets 

from interacting and aggregating, thus increasing their stability (D. McClements, 
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2005a). The production of emulsions is commonly achieved through 

homogenization, which consists of subjecting the aqueous phase, oil phase, and 

emulsifier to a high degree of mechanical action. This causes small, spherical, and 

mostly homogeneous droplets of the discontinuous phase to be dispersed 

throughout the continuous phase. As the new droplets are formed, the emulsifier 

becomes adsorbed to their surface and exerts its aforementioned stabilizing and 

protective activity (D. McClements, 2005a). Emulsifiers are selected based on the 

type of oil used, desired particle sizes and/or charge of the emulsion system, 

compatibility with the matrix in which it will be implemented, and any other 

preferred additional functional characteristics (Acosta, 2009; Gutierrez, Gonzalez, 

Maestro, Sole, Pey, & Nolla, 2008; S. J. Lee, Choi, Li, Decker, & McClements, 2011; 

Qian & McClements, 2011).  

Emulsions are a versatile system, and have nearly endless applications in 

food systems. In recent years, their functionality has included controlling the release 

of certain ingredients in a food matrix, targeting the release of bioactive components 

to their absorption site in the digestive tract (Salvia-Trujillo, Qian, Martin-Belloso, & 

McClements, 2013b), protecting sensitive ingredients from degradation or 

undesirable interactions with specific components (Zhang, Decker, & McClements, 

2014), and modifying texture in food products (Paradiso, Giarnetti, Summo, 

Pasqualone, Minervini, & Caponio, 2015), to name but a few.  

When forming successful emulsion-based delivery systems for bioactive 

components – which are of particular interest to the research presented here, it is 

imperative to have a thorough understanding of the physicochemical and 
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physiological processes that food – and the intended delivery system – undergoes in 

the digestive tract, as well as the factors that hinder the rate and extent to which the 

compound of interest is absorbed from a food matrix and becomes available at the 

physiological site of action, i.e. its bioavailability (Lesmes & McClements, 2009). 

2.3.2.1.1 Emulsion Instability 

There are four main mechanisms by which an emulsion system may forego 

its original properties over time: creaming, sedimentation, flocculation, coalescence, 

and phase inversion (Figure 10). Changes in particle density triggers gravitational 

separation, which in turn causes either creaming or sedimentation. When the 

emulsion droplets’ density becomes lower than that of the continuous phase, the 

particles rise to the surface of the continuous phase and “creaming” is observed, 

whereas the opposite is true for sedimentation. Flocculation and coalescence both 

refer to the aggregation of emulsion droplets; however, flocculation is observed in a 

system when the aggregated droplets retain their individual characteristics, 

whereas coalescence encompasses the merger of two or more droplets to form a 

single, considerably larger, droplet (D. McClements, 2005a). Phase inversion, on the 

other hand, refers to the phenomenon observed when system-specific conditions 

cause an oil-in-water emulsion to become a water-in-oil system, and vice versa (D. 

McClements, 2005a).  

There are many techniques to prolong the stability of emulsion systems, 

including controlling droplet size, manipulating the viscosity of the continuous 

phase to decrease the rate of collision between droplets, and decreasing the physical 
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interaction between droplets through electrostatic or steric repulsion, to name but a 

few (D. McClements, 2005b). 

 

Figure 10. Representative diagram of the main mechanisms of emulsion 
instability12.  

 

2.3.2.2 Polylysine-Induced Hindrance of Fat Absorption 

ε-PL has been shown to inhibit lipid digestion in vivo and in vitro (Kido, et al., 

2003; Takahiro Tsujita, 2006; Tsujita, Takaichi, Takaku, Aoyama, & Hiraki, 2006; 

Tsujita & Takaku, 2009). Due to the negative charge of bile salts and the positive 

charge of ε-PL, it has been hypothesized that the observed phenomenon originates 

                                                        

12 Adapted from D. McClements (2005b) 
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from a strong electrostatic interaction between these two compounds. However, the 

inhibition mechanisms are not as clear.  

It has been proposed that ε-PL inhibits lipid digestion through interacting 

with the mixed micelles stabilized by bile salts. According to Kido, et al. (2003), ε-PL 

is attracted to the bile salts on the lipid-water interface and forms an electrostatic 

complex. The formation of this complex can either (i) generate a steric hindrance to 

the adsorption of lipase onto the droplet surface or (ii) destabilize and effectively 

destroy the emulsion droplet, efficaciously inhibiting the enzymatic activity of 

lipase. However, given that bile salts are a fundamental part of lipid digestion and 

absorption (Macierzanka, Rigby, Corfield, Wellner, Boettger, Mills, et al., 2011; 

Maldonado-Valderrama, Wilde, Macierzanka, & Mackie, 2011), it is possible that 

even electrostatic interaction on the aqueous phase between available bile salts and 

ε-PL may also generate some degree of inhibition.   

It is extremely important to understand the possible effect that the 

incorporation of ε-PL into food products formulations may have on the overall 

digestion of lipids, as a decrease in lipid digestion may also impact the success of 

delivery systems specifically designed to deliver lipophilic nutrients to consumers 

(Y. Li & McClements, 2011; Porter, Trevaskis, & Charman, 2007), and decrease the 

bioaccessibility and bioavailability of ingested lipophilic bioactive compounds.  

2.3.3 In Vitro Simulations of the Digestive Tract 

Due to the complexity and difficulty of acquiring and analyzing data directly 

from the human digestive tract – as well as high costs, ethical implications, and 

concern for the test subjects, researchers often turn to simplified models that 
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simulate the human digestive process. The typical recreations employed are in vitro 

simulations, cell cultures, and animal models, each presenting their own advantages 

and disadvantages (Mackie, 2012). 

In vitro digestion models are, as their name implies, designed specifically to 

mimic conditions of the GI tract. Although they’re not as biologically accurate as 

other models, their numerous advantages make them the most widely utilized 

model of the digestive tract: they are relatively inexpensive, ideal for rapid, more 

direct tests, perfectly suited for determining physicochemical mechanisms, specific 

interactions or reactions, and have a wide range of applications (Lesmes & 

McClements, 2009; Mackie, 2012). Some of the most popular applications include 

assessing organoleptic properties, fat perception (Mackie, 2012), and monitoring 

the disintegration and release of delivery systems at different locations within the 

GI tract (Lesmes & McClements, 2009).  

2.3.3.1 Lipid Digestion Models 

There are numerous methodologies implemented to assess the degree of 

lipid digestion in vitro, and although the instruments and specific assays may vary 

between research groups, the principle behind the simulation of the digestive 

process is the same: a sample is exposed to the physiological conditions (digestive 

juices, enzymes, and pH) that a food would encounter in each digestive organ, 

holding those simulated conditions for a period of time that would most closely 

simulate the degree of degradation that the sample would undergo in each organ 

(Mackie, 2012).  
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The in vitro digestion model presented in the experimental section of this 

document consists of subjecting the sample of interest to three digestion stages, 

simulating oral, gastric, and intestinal duodenal digestion conditions (Figure 11). 

Each phase has its own simulated digestive juices: artificial saliva (AS), simulated 

gastric juices (SGJ), and simulated intestinal juices (SIJ), their composition simplified 

from the digestive juices and secretions mentioned in Section 2.3.1 Human 

Digestive Tract (Yan Li & McClements, 2010; Mao & McClements, 2012; Salvia-

Trujillo, Qian, Martin-Belloso, & McClements, 2013b). It is important to consider that 

because this model does not simulate the chewing motion or the peristaltic 

movements in the GI  
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Figure 11. Representative diagram of the conditions and duration of the 
mouth, stomach, and small intestine stages during in vitro digestion13.  

 

tract, the duration of certain organ stages – particularly the mouth – have been 

modified in order to ensure that the interaction with the digestive juices render 

equivalent degradation results. The mouth and stomach phases consist of adding the 

corresponding juices and adjusting the system’s pH to the 6.8 and 2.5, respectively, 

and letting the digestion simulation take place at 37 °C without further modification 

under gentle agitation. It is the small intestine phase of this model that sets it apart.  

 

 

                                                        

13 Based on the method described by Yan Li and McClements (2010), Mao and McClements (2012), 
and Salvia-Trujillo, Qian, Martin-Belloso, and McClements (2013b) 
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Figure 12. Representative diagram of a sample undergoing intestinal-
duodenal in vitro digestion in a pH Stat.14  

 

The in vitro simulation of the small intestine presented in the experimental 

portion of the present work relies on the utilization of a pH Stat (857 Titrando, 

Metrohm USA, Riverview, FL). The principle behind this method is to quantify the 

amount of free fatty acids (FFAs) released from TAGs during the intestinal digestion 

through changes in pH. After the sample has undergone oral and gastric digestion, it 

is placed in a reaction chamber (Figure 12F) with the pertinent intestinal juices, 

bile salts, and lipase concentrations under stirred conditions (Figure 12C). The pH 

is adjusted to 7, and continuously monitored by the instrument (Figure 12E); as the 

bile salts and lipase act in conjunction to digest TAGs, the hydrolysis and subsequent 

release of free fatty acids (FFA) decreases the pH of the system.  As the pH 

decreases, a solution with a predetermined concentration of sodium hydroxide 

(Figure 12B) is automatically titrated into the reaction chamber (Figure 12D) to 

maintain the pH at 7 throughout the experiment.  The volume of the alkaline 

solution that was titrated throughout the digestion (Figure 12A) is then utilized to 

determine the amount of TAGs digested through the following equation (Y. Li & 

McClements, 2011): 

%𝐹𝐹𝐴 = 100 ×
𝑉𝑁𝑎𝑂𝐻 ×𝑚𝑁𝑎𝑂𝐻 ×𝑚𝑙𝑖𝑝𝑖𝑑

𝑤𝑙𝑖𝑝𝑖𝑑 × 2
 

 

                                                        

14 Based on the method described by Yan Li and McClements (2010), Mao and McClements (2012), 
and Salvia-Trujillo, Qian, Martin-Belloso, and McClements (2013b) 
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Where %FFA is the percentage of released FFAs; VNaOH is the volume of 

titrant in liters; mNaOH is the molarity of the sodium hydroxide solution used; Mlipid is 

the molecular weight of the oil used (grams per mol); and wlipid is the weight of the 

oil in the digestion system (grams). 

2.4 Gut Microbiota 

The term “gut microbiota” refers to the 10-100 trillion Gram (+) and Gram (-) 

bacteria, viruses, and fungi that permanently inhabit the mucous layers and luminal 

area of the large intestine, particularly the colon (Faith, Guruge, Charbonneau, 

Subramanian, Seedorf, Goodman, et al., 2013; Hooper & Gordon, 2001). They are 

also known as “commensal microbiota” (Reid, Howard, & Gan, 2001) and they exert 

a “co-metabolic” activity: they increase the energy extracted from foods (Tremaroli 

& Bäckhed, 2012; Turnbaugh, Ley, Mahowald, Magrini, Mardis, & Gordon, 2006) and 

have a strong effect on the bioavailability, functionality, and synthesis of nutrients 

that were not absorbed in the small intestine (Krajmalnik-Brown, Ilhan, Kang, & 

DiBaise, 2012), vitamins (Arumugam, Raes, Pelletier, Le Paslier, Yamada, Mende, et 

al., 2011; Kau, Ahern, Griffin, Goodman, & Gordon, 2011), and drugs (Sousa, 

Paterson, Moore, Carlsson, Abrahamsson, & Basit, 2008; Wallace & Redinbo, 2013). 

Their functionality also includes fecal bulking, increasing transit of colonic contents, 

increasing nitrogen utilization in the gut, and forming short chain fatty acids 

(Cummings & Macfarlane, 1991). Such is the health impact of the gut microbiota that 

research has linked it to numerous health issues, including both relatively 

innocuous and severe gastrointestinal infections, autoimmune disorders (Crohn’s 

disease), inflammatory maladies (irritable bowel syndrome), chronic disorders 
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(type II diabetes, rheumatoid arthritis, and food allergies), several types of cancer, 

and even obesity (Cani, Amar, Iglesias, Poggi, Knauf, Bastelica, et al., 2007; 

Kalliomaki, Salminen, Poussa, Arvilommi, & Isolauri, 2003; Y. K. Lee, Puong, 

Ouwehand, & Salminen, 2003; Natividad & Verdu, 2013; Rinkinen, Jalava, 

Westermarck, Salminen, & Ouwehand, 2003; Rowland, 2000; Salminen, von Wright, 

Morelli, Marteau, Brassart, de Vos, et al., 1998; Wellen & Hotamisligil, 2005; Yudkin, 

Juhan-Vague, Hawe, Humphries, di Minno, Margaglione, et al., 2004). 

2.4.1 Gut Health 

The composition of a healthy gut microbiota has been demonstrated to vary 

considerably from one individual to another – primarily due to dietary differences, 

yet it is relatively stable within an individual (Delgado, Suárez, Otero, & Mayo, 2004; 

Donaldson, 1968; S. L. Gorbach, Nahas, Lerner, & Weinstein, 1967; Jalanka-

Tuovinen, Salonen, Nikkilä, Immonen, Kekkonen, Lahti, et al., 2011; Mitreva, 2012). 

Despite the person-to-person changeability, studies have shown that bacteria from 

the genera Bacteroides, Bifidobacterium, Eubacterium, and Lactobacillus 

predominate over the more than 400 species of bacteria in a healthy gut microbiota 

(S. Gorbach, 1971). These commensal bacteria have been suggested to have key 

roles in the immune system (Hooper, Wong, Thelin, Hansson, Falk, & Gordon, 2001; 

Smith, McCoy, & Macpherson, 2007; Zhao & Shen, 2010), particularly as modulators 

of the intestinal barrier function (Hooper & Gordon, 2001; Smith, McCoy, & 

Macpherson, 2007), i.e., “the regulation of transport and host defense mechanisms 

at the mucosal interface with the outside world” (Baumgart & Dignass, 2002). The 

commensal bacteria exert their synergistic relationship with the colonic immune 
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system in three main ways: (i) saturation of colonization sites and competition for 

nutrients; (ii) decreasing luminal pH by the reduction of short chain fatty acids; (iii) 

communicating with the epithelial cells to promote the secretion of mucin, 

antibodies, and antimicrobial peptides; and, lastly, by (iv) triggering an immune and 

inflammatory response (Kailasapathy & Chin, 2000; Khosravi & Mazmanian, 2013; 

Reid, Howard, & Gan, 2001). When the healthy composition of the gut microbiota is 

compromised (usually through antibiotic treatments or drastic dietary changes), 

pathogenic microorganisms have fewer hurdles to overcome in order to cause an 

infection.  

Although it might be assumed that the biggest pathogenic threat comes from 

ingesting pathogens, this is not always the case. Chow and Mazmanian (Chow & 

Mazmanian, 2010) coined the term “pathobiont” to describe a typically small 

number of bacteria that exist with the commensal bacteria in a healthy individual, 

which can bloom and exhibit pathogenic behavior if given the opportunity or 

provided with favorable conditions. This pathogenic behavior is accompanied with 

the secretion of toxic compounds typical of pathogenic bacteria, which will usually 

trigger immune activation and inflammation. It is these toxins that have been linked 

to many of the disorders previously mentioned (Zhao & Shen, 2010). It is important 

to note that factors that will favor pathobionts will typically cause a disruption in 

the overall composition of the gut microbiota, as they are usually detrimental to 

beneficial and innocuous bacteria. Consequently, they will likely decrease the 

population of the latter whilst increasing the population of pathogenic strains. 

Something as simple as an imbalanced diet could trigger the growth of pathobionts. 
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Research has shown that ε-PL is resistant to the action of digestive enzymes 

in the human gastrointestinal tract (J. Hiraki, 1995), potentially maintaining its 

antimicrobial attributes and posing a threat to the composition of the gut 

microbiome. Additionally, the “anti-obesity” effect of ε-PL may generate a difference 

in the normal lipid profile that reaches the gut microbiota (Kido, et al., 2003) – 

particularly an greater amount of potentially toxic bile salts (ROMAŃSKI, 2007), 

possibly causing changes in microbial signaling and, in turn, differences in the gut 

microbiota’s composition.  
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CHAPTER 3 

OPTIMIZING DELIVERY SYSTEMS FOR CATIONIC BIOPOLYMERS: COMPETITIVE 

INTERACTIONS OF CATIONIC POLYLYSINE WITH ANIONIC κ-

CARRAGEENAN AND PECTIN 

3.1 Abstract 

Polylysine is a cationic biopolymer with a strong antimicrobial activity against 

a wide range of microorganisms, however, its functional performance is influenced 

by its interactions with anionic biopolymers. We examined the stability of 

polylysine–pectin complexes in the presence of carrageenan, and vice versa. 

Polylysine–pectin or polylysine–carrageenan complexes were formed at mass ratios 

of 1:0 to 1:32 (pH 3.5), and then micro-electrophoresis, turbidity, microscopy, and 

isothermal titration calorimetry (ITC) were used to characterize them. Solutions 

containing polylysine–pectin complexes were slightly turbid and relatively stable to 

aggregation at high mass ratios, whereas those containing polylysine– carrageenan 

complexes were turbid and unstable to aggregation and precipitation. Pectin did not 

strongly interact with polylysine–carrageenan complexes, whereas carrageenan 

displaced pectin from polylysine–pectin complexes, which was attributed to 

differences in electrostatic attraction between polylysine, carrageenan, and pectin. 

These results have important implications for the design of effective antimicrobial 

delivery systems for foods and beverages. 

3.2 Introduction 

Polylysine (PL) is a natural cationic polymer that has proved to have 
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antimicrobial activity against a wide range of Gram (+) and Gram (-�) bacteria, as 

well as some yeasts, molds, and bacteriophages (N. A. El-Sersy, A. E. Abdelwahab, S. 

S. Abouelkhiir, D.-M. Abou-Zeid, & S. A. Sabry, 2012; Moschonas, Geornaras, 

Stopforth, Wach, Woerner, Belk, et al., 2012; Shima, Matsuoka, Iwamoto, & Sakai, 

1984; H. Yu, Y. Huang, & Q. Huang, 2010; C. Zhou, P. Li, X. Qi, A. R. M. Sharif, Y. F. 

Poon, Y. Cao, et al., 2011). It is currently used in Japan as an antimicrobial agent in 

foods, such as fish surimi, boiled rice, noodle soup stocks, noodles, and vegetables. It 

has also been used in potato salads, steamed cakes, and custard creams. The FDA 

has designated polylysine as Generally Recognized As Safe (GRAS) for use in cooked 

or sushi rice (FDA, 2004; J Hiraki, 2000; Unalan, Ucar, Arcan, Korel, & Yemenicioglu, 

2011). 

Recent research has shown its efficacy in reducing Salmonella in chicken 

products (Moschonas, et al., 2012), Escherichia coli, Listeria innocua, Salmonella 

typhimurium and Staphylococcus aureus in edible films (Unalan, Ucar, Arcan, Korel, 

& Yemenicioglu, 2011), and S. typhimurium and Listeria monocytogenes in roast beef 

(Chang, Lu, Park, & Kang, 2010). Polylysine has a number of potential advantages for 

application in food products: it has a relatively low minimum inhibitory 

concentration (MIC) against common food pathogens, i.e., 5–100 lg/ml; it has high 

selectivity; it has low toxicity to mammalian cells: it is biodegradable and it has a 

low propensity to promote pathogen resistance (Blin, Purohit, Leprince, Jouenne, & 

Glinel, 2011; N. A. El-Sersy, A. E. Abdelwahab, S. S. Abouelkhiir, D.-M. Abou-Zeid, & S. 

A. Sabry, 2012; Geornaras & Sofos, 2005; R. E. W. Hancock & H.-G. Sahl, 2006; P. Li, 

Zhou, Rayatpisheh, Ye, Poon, Hammond, et al., 2012; Shima, Matsuoka, Iwamoto, & 
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Sakai, 1984; H. Yu, Y. Huang, & Q. Huang, 2010; Zasloff, 2002). 

Similarly to other cationic antimicrobial compounds, such as lauric arginate 

and chitosan, the widespread application of polylysine in foods is currently limited 

since: its potency as an antimicrobial agent may be reduced if it interacts with 

anionic components within the food matrix; undesirable precipitation or turbidity 

may occur if it binds to anionic components in food matrices and it may be 

perceived as bitter or astringent if it interacts with anionic biopolymers in the 

mouth, such as mucin (Asker, Weiss, & McClements, 2011; Y. Chang, L. 

McLandsborough, & D. J. McClements, 2011b). 

Previous work has shown that anionic pectin will interact electrostatically 

with cationic ε-polylysine, leading to the formation of soluble complexes (Y. Chang, 

L. McLandsborough, & D. J. McClements, 2011b). These complexes retain the 

antimicrobial properties of e-polylysine and are anionic (rather than cationic), 

potentially minimizing the interaction of ε-polylysine with other anionic compounds 

present in food systems and decreasing its perceived bitterness. Y. Chang, L. 

McLandsborough, and D. J. McClements (2011b) also demonstrated that these 

complexes could be added to green tea beverage systems without adversely 

affecting their appearance or physical stability. Although this is a promising result, 

the stability of this complex in the presence of highly anionic compounds that could 

potentially be found in more complex food systems, has not been assessed. It is 

possible that ε-polylysine, being a cationic polymer, may favor interactions with 

compounds that are more strongly anionic than pectin. These competitive 
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ingredient interactions could alter the antimicrobial efficacy and stability of 

polylysine–pectin complexes in foods. In this study, we therefore examined the 

influence of a strongly charged anionic food polymer (carrageenan) on the stability 

of ε-polylysine–pectin complexes. 

 Carrageenans are natural anionic compounds that are normally extracted 

from red seaweeds (Cui, 2005). These polymers are linear chains of D-

galactopyranosyl units joined with alternating (13)- a-D- and (1  4)-b-D-

glycosidic linkages, with most sugar units having one or two sulphate half-ester 

groups. These sulphate groups are responsible for the negative charge of the 

polymer, as they are always ionized at the pH values present in foods. κ-

Carrageenan is one of the most common forms of carrageenans used in foods, and it 

is characterized by having D-galactose-4-sulphate, 3,6-anhydro-D-galactose-2-

sulphate as a building block, and has a double-helix conformation (Cui, 2005). The 

popularity of this ingredient in the food industry is due to the ability of its linear 

helical portions to associate to form a three-dimensional gel in the presence of 

appropriate cations. In addition, it may interact with various food proteins through 

electrostatic interactions and increase their aggregation stability (Belitz, Grosch, & 

Schieberle, 2009; Damodaran, Parkin, & Fennema, 2008). 

The overall objective of this study is to test the stability of ε-polylysine–

pectin complexes when exposed to κ-carrageenan. We hypothesize that the more 

highly charged carrageenan molecule may be able to displace the pectin from the ε-

polylysine–pectin complexes, thereby altering their functional properties. 
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3.3 Materials 

ε-Polylysine (50:50 mixture with dextrin) was provided by Purac 

(Lincolnshire, IL) (Puraq Xtend FX50P; lot 112022). High-methoxyl (DE 69–77%) 

pectin (TIC Pretested Pectin 1400; lot 512401) and κ-carrageenan (Ticaloid 710 H 

Powder; lot 21311) were provided by TIC Gums (Belcamp, MD). 

3.4 Methods 

3.4.1 Solution Preparation 

All solutions were prepared in double-distilled water. Stock solutions of e-

polylysine (0.1% w/v), pectin (0.5% w/v), and κ-carrageenan (0.5% w/v) were 

prepared by dissolving the corresponding amounts of powdered reagents into 

double-distilled water. The solutions were left to stir overnight, and were then 

adjusted to the appropriate volume and to pH 3.5, the latter by addition of diluted 

solutions for either HCl or NaOH. A pH of 3.5 was used to simulate the acidic 

conditions found in food products where polylysine might be used (such as 

beverages and dressings). 

3.4.2 Micro-electrophoresis (ME) and turbidity measurements 

The electrical charge on the complexes was assessed through micro-

electrophoresis (Malvern Zetasizer ZS, Malvern Instruments, Worcestershire, United 

Kingdom), while the aggregation of complexes was studied using turbidity 

measurements (Ultrospec 3000, Biochrom Ltd., Cambridge, United Kingdom). Four 

sets of experiments were devised to assess the competitive interactions between the 

polylysine and different anionic polymers (pH 3.5). In the first experiment, a 1 ml 
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aliquot of 0.1% w/v e-polylysine solution was titrated into a series of glass tubes 

containing increasing amounts of 0.5% w/v pectin solution, to achieve mass ratios 

ranging between 1:1 and 1:32 ε-polylysine:pectin (PL-P). In the second experiment, 

the pectin solution was replaced with 0.5% w/v κ-carrageenan. In the third 

experiment, a 1 ml aliquot of 0.5% w/v pectin solution was titrated into a series of 

tubes containing 0.5% w/v of ε-polylysine-κ-carrageenan (1:24 PL-KC) complex. In 

the fourth experiment, a 0.5% w/v pectin solution was injected into a solution 

containing 0.5% w/v of ε-polylysine:pectin (1:24 PL-P). This polylysine:pectin ratio 

was selected since it has previously been shown to form stable electrostatic 

complexes that maintain their antimicrobial activity (Y. Chang, McLandsborough, & 

McClements, 2012). All samples were supplemented with double-distilled water to 

reach a final volume of 10 ml. The turbidity was measured at k = 600 nm using a 

UV–visible spectrophotometer immediately after mixing, and again after 24 h. 

3.4.3 Isothermal Titration Calorimetry Measurements 

Enthalpies of mixing (at 30 °C) were measured using an isothermal titration 

calorimeter (VP-ITC, General Electric, Fairfield, CT), modified from the methodology 

presented by Y. Chang, McLandsborough, and McClements (2012). Fifty-eight � 5 μl 

aliquots of e-polylysine solution (0.1% w/v, pH 3.5) were injected sequentially into 

a 1480 μl titration cell initially containing either 0.5% w/v pectin (pH 3.5) or 0.5% 

w/v κ-carrageenan (pH 3.5). The competitive interaction was assessed by titrating 

either a pectin solution (0.5%, pH 3.5) or a κ-carrageenan solution (0.5%, pH 3.5) 

into a PL-KC complex solution (1:24 mass ratio, pH 3.5) or a PL-P solution (1:24 

mass ratio, pH 3.5), respectively. Each injection lasted 12 s, and there was an 
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interval of 240 s between successive injections. The solution in the titration cell was 

stirred at a constant speed of 315 rpm throughout the experiments. The resulting 

heat flow-time curves were integrated using the instrument’s software to generate 

interaction enthalpy versus ε-polylysine concentration profiles. 

3.4.4 Microscopy 

Selected samples were observed at 200X or 400X magnification using an 

optical microscope (Nikon D-Eclipse C1 80i, Nikon, Melville, NY). The polymer mass 

ratios selected were 1:8, 1:16, 1:12, and 1:16 for the (PL-P), (PL-KC), (PL-P)-KC, and 

(PL-KC)-P systems, respectively. The selections of the mass ratios to be observed 

under the microscope were chosen based on the visualization of the samples with 

the naked eye. Those containing visibly discernible particles were selected for 

microscopy. 

3.5 Results and Discussion 

3.5.1 Aggregation stability: turbidity and microscopy measurements 

3.5.1.1 General 

Initially we examined the stability of the electrostatic complexes to 

aggregation using turbidity measurements. An increase in turbidity is indicative of 

the formation of particles sufficiently large enough to scatter light strongly. 

Measurements were made after 0 and 24 h and found to be similar (data not 

shown), suggesting that complex formation occurred rapidly and that complex 

structure did not change during storage. For the sake of clarity, we only show the 
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data after 0 h storage (Figure 13). The change in turbidity with polymer mass ratio 

(R) depended strongly on the nature of the biopolymers initially in the reaction cell 

and in the injector. Square brackets are used to designate the biopolymers that were 

initially present in the reaction cell. 

 

Figure 13. (a) Influence of polymer:polylysine ratio on the turbidity (at k = 
600 nm) for mixed binary biopolymer solutions. (b) Influence of 
polymer:polylysine ratio on the turbidity (at λ = 600 nm) of mixed ternary 
biopolymer solutions: PL = polylysine; P = pectin; KC = κ-carrageenan (pH 
3.5)15.  

 

3.5.1.2 Binary systems 

When pectin was injected into a polylysine solution ([PL]-P), the turbidity 

remained relatively low (R = 0–1), increased steeply (R = 1–6), had a maximum 

value at R (6–8), decreased steeply (R = 8–20), and then reached a relatively 

                                                        

15  C. L. Lopez-Pena and McClements (2014) 
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constant low value at higher polymer ratios (Figure 13a). The observed increase in 

turbidity can be attributed to the formation of electrostatic polylysine– pectin 

complexes that were large enough to scatter light. A white sediment was observed 

at the bottom of these samples after 24 h storage (data not shown), which could be 

re-suspended into a cloudy suspension by mild agitation. Thus, some of the 

electrostatic complexes formed were large enough to undergo gravitational 

separation. Indeed, optical microscopy images of samples at high polymer ratios 

indicated the presence of large aggregates (Figure 13a). The turbidity maximum 

observed at intermediate pectin concentrations may have been due to charge 

neutralization of the complexes (see next section), since this would have reduced 

the electrostatic repulsion between them leading to more extensive aggregation. 

The fact that the turbidity decreased at higher mass ratios suggests that the 

complexes may have partially dissociated, presumably because of the increase in 

electrostatic repulsion between them (see next section). 

When κ-carrageenan was injected into a polylysine solution ([PL]-KC), the 

turbidity remained relatively low (R = 0–1), increased gradually (R = 1–20), and 

then reached a relatively constant high value at higher polymer ratios (Figure 13a). 

Visually, the solutions containing PL-KC mixtures appeared to consist of a few hair-

like structures floating in a clear aqueous solution. These hair-like structures 

sedimented to the bottom of the samples after 24 h storage, and could not be readily 

re-dispersed by simply shaking. The presence of these hair-like structures was 

confirmed by optical microscopy (Figure 14b). These structures may have formed 

by assembly of linear carrageenan and polylysine molecules into fibers. Our results 
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show that the polylysine–carrageenan complexes had different aggregation 

 

Figure 14. Optical microscopy images of representative structures observed in 
biopolymer mixtures.  

 

characteristics than the polylysine–pectin ones. We attribute this effect to 

differences in the electrical charge and structure of the two anionic biopolymers. 

Carrageenan has a fairly rigid linear anionic backbone with a high charge density, 

whereas pectin has a more flexible anionic back-bone with neutral side chains 

attached with a lower overall charge density (Cui, 2005). Consequently, linear 

polylysine molecules would be expected to form stronger electrostatic complexes 
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with carrageenan molecules than with pectin molecules. Based on the differences in 

molecular structure we also hypothesize that the [PL]-KC complexes have a rod-like 

structure (which would account for the formation of the hair-like structures), 

whereas the [PL]-P complexes have a more disordered structure (Figure 15). 

 

Figure 15. Highly schematic diagram of possible structures formed in 
polylysine– carrageenan and polylysine–pectin electrostatic complexes. PL is 
the short green linear molecule, KC is the long blue linear molecule, and P is 
the blue branched molecule16.  

 

3.5.1.3 Ternary systems 

Qualitatively, the samples that initially contained electrostatic complexes in 

the reaction cell ([PL-P]-KC and [PL-KC]-P), rather than single biopolymers, behaved 

fairly similarly (Figure 13b). There was initially a sharp decrease in turbidity after 

the first injection of the anionic biopolymer (KC or P), and then the turbidity 

                                                        

16 (C. L. Lopez-Pena & McClements, 2014) 



 

 

5
5

 

55 

remained relatively constant at higher polymer mass ratios. However, the final 

turbidity of the [PL-KC]-P mixtures (around 0.23 cm
-1

) was appreciably higher than 

that of the [PL-P]-KC mixtures (around 0.06 cm-1). This suggested that the amount 

and/or size of the electrostatic complexes formed in the [PL-KC]-P system was 

higher than those formed in the (PL-P)-KC system at high R. The structure of the 

aggregates formed within the ternary biopolymer mixtures was observed by optical 

microscopy. The [PL-KC]-P system (Figure 14c) contained some hair-like structures 

similar to those observed in the [PL]-KC system (Figure 14b), which suggests that 

addition of pectin molecules could not dissociate the strong complexes which form 

between polylysine and carrageenan. Some hair-like structures were also observed 

in the [PL-P]-KC system (Figure 14d), but these were much thinner and difficult to 

see with the naked eye compared to those observed in the [PL]-KC system. This 

result suggests that carrageenan may have displaced some of the pectin molecules 

from the [PL-P] complexes, leading to the formation of hair-like structures (since 

these were not observed in the [PL]-P systems). 

3.5.2 Micro-electrophoresis measurements 

3.5.2.1 General 

In this series of experiments, micro-electrophoresis was used to determine 

the electrical charge (ζ-potential) of the electrostatic complexes. The electrical 

characteristics of the complexes depended strongly on the nature of the 

biopolymers in the reaction cell and injector (Figure 16). 
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Figure 16. (a) Influence of polymer:polylysine ratio on the ζ-potential of 
binary complexes formed when a polylysine solution is titrated into an 
anionic biopolymer solution. (b) Influence of polymer:polylysine ratio on the 
ζ-potential of ternary complexes formed when a polylysine solution is titrated 
into a binary biopolymer complex solution: PL = polylysine; P = pectin; KC = κ-
carrageenan (pH 3.5)17.  

 

3.5.2.2 Binary systems 

In the absence of anionic biopolymers, the electrical charge on the polylysine 

in the reaction cell was around +20 mv (Figure 16a), which can be attributed to 

ionization of the amino groups on the polypeptide chains (-NH+
3). Qualitatively 

similar behavior was observed when either pectin or carrageenan was titrated into 

the polylysine solution: there was a slight increase in positive charge from R = 0 to 

1, then a sharp decrease in positive charge/increase in negative charge from R = 1 to 

8, and then a more gradual increase in negative charge at higher polymer ratios. 
                                                        

17 C. L. Lopez-Pena and McClements (2014) 
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These results indicate that both types of anionic biopolymer bind to the cationic 

polylysine molecules and formed electrostatic complexes. Nevertheless, the final 

negative charge on the complexes at high R values was much greater for the [PL]-KC 

system (ζ = -62 mv) than for the [PL]-P system (ζ= -19 mv), which may be attributed 

to the higher charge density of carrageenan compared to pectin. 

A comparison of the turbidity and ζ-potential measurements also indicated 

some interesting differences in the behavior of the [PL]-P and [PL]-KC systems. The 

maximum in turbidity observed for the [PL]-P system (Figure 13a) occurred at a 

polymer ratio (R ≈ 7), which is fairly similar to the polymer ratio where charge 

neutralization occurred (Figure 14a). The decrease in turbidity observed at higher 

polymer ratios for this system may therefore be due to an increase in the 

electrostatic repulsion between [PL-P] complexes. On the other hand, there was no 

maximum observed in the turbidity of the [PL]-KC systems, despite the fact that 

charge neutralization occurred around R ≈ 4. One explanation for this difference is 

that the interaction between polylysine and pectin molecules was relatively weak, 

therefore PL could easily move from one pectin molecule to another. Thus, as more 

pectin molecules were added to the system, some of the PL molecules dissociated 

from the original complexes and bound to new pectin molecules. On the other hand, 

the interaction between polylysine and carrageenan was relatively strong, and so PL 

could not easily move from one carrageenan molecule to another. In this case, once 

the initial polylysine–carrageenan complexes have formed they could no longer 

dissociate. 
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The origin of the initial increase in the positive charge on the complexes at 

low R values is currently unknown. A number of possible explanations may account 

for this phenomenon: changes in biopolymer conformation; alterations in the spatial 

arrangement of charge groups or release of counter-ions after binding. Further 

experiments using additional analytical tools are clearly needed to elucidate the 

origin of this interesting effect. 

3.5.2.3 Ternary systems 

We also measured the change in electrical characteristics in ternary systems 

when one type of anionic biopolymer (KC or P) was titrated into a reaction cell 

containing an electrostatic complex made up from the other type of biopolymer 

([PL-P] or [PL-KC]). Initially, the [PL-KC] complexes had a higher negative charge 

than had the [PL-P] complexes, which can be attributed to the larger charge density 

of KC. When increasing amounts of pectin were added to the reaction cell initially 

containing [PL-KC] complexes, the ζ-potential became slightly less negative, which 

may have been due to some replacement of the KC molecules in the [PL-KC] 

complexes with pectin, or due to the contribution of free pectin molecules to the 

micro-electrophoresis signal. Conversely, when increasing amounts of carrageenan 

were added to the reaction cell initially containing [PL-P] complexes, the ζ-potential 

became considerably more negative, which may have been due to some replacement 

of pectin molecules in the [PL-P] complexes with carrageenan, or due to the 

contribution of free carrageenan molecules to the micro-electrophoresis signal. In 

the [PL-P]-KC system, the final ζ-potential was fairly similar to that of the [PL-KC] 

system at high polymer ratios, which suggested that carrageenan might have 
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replaced much of the pectin in these complexes. 

3.5.3 Isothermal Titration Calorimetry 

Finally, isothermal titration calorimetry experiments were carried out to 

provide additional information on the molecular interactions associated with 

complex formation. 

3.5.3.1 Binary systems 

Major differences were observed in the interaction enthalpy versus polymer 

ratio profiles when the two different anionic biopolymers (P or KC) were titrated 

into the reaction chamber containing cationic polylysine (Figure 17a). There was a 

relatively small mainly endothermic (positive DH) interaction enthalpy when pectin 

was titrated into the polylysine solution, with the interaction occurring from about 

R = 0 to 7. The polymer ratio where the interaction appeared to be complete (R = 7), 

corresponded to the point where the turbidity reached a maximum value (Figure 

13a), and the f-potential reached a relatively constant value (Figure 16a). This 

suggests that all of the cationic groups on the polylysine molecules had interacted 

with anionic groups on the pectin molecules at this polymer ratio. The [PL]-KC 

system exhibited quite different behavior. There was a large exothermic (negative 

DH) interaction enthalpy when carrageenan was titrated into the polylysine 

solution, with the interaction occurring from about R = 0 to 4 (Figure 17a). In this 

case, the polymer ratio where the interaction appeared to be complete (R = 4), 

corresponded to the point where the turbidity (Figure 13a) and ζ-potential (Figure 

16a) reached relatively constant values. As discussed earlier, the fact that the  
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Figure 17. (a) Change in interaction enthalpy (DH) when polylysine was 
titrated into a reaction vessel containing anionic biopolymer solution, either 
pectin (P) or j- carrageenan (KP), at pH 3.5 and 30 °C. (b) Change in interaction 
enthalpy (DH) when polylysine was titrated into a reaction vessel containing 
electrostatic complexes in solution, either PL-P or PL-K), at pH 3.5 and 30 °C18.  

 

electrostatic complexes dissociated at high polymer ratios for pectin but not for 

carrageenan can be attributed to the weaker electrostatic attraction between PL and 

pectin compared to PL and carrageenan. 

 

3.5.2.3 Ternary systems 

We also measured the interaction enthalpies in ternary systems when one 

type of anionic biopolymer (KC or P) was titrated into a reaction cell containing an 

electrostatic complex made up from the other type of biopolymer ([PL-P] or [PL-

                                                        

18 C. L. Lopez-Pena and McClements (2014) 
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KC]). Interestingly, when pectin was titrated into a reaction cell containing [PL-KC] 

we observed no change in the interaction enthalpy across the entire polymer ratio 

studied (Figure 17b), which suggests that pectin was unable to displace 

carrageenan from the [PL-KC] complexes. On the other hand, when carrageenan was 

titrated into a reaction cell containing [PL-P] we observed a large exothermic 

interaction enthalpy from R = 0 to 4 (Figure 17b), fairly similar to the one observed 

in the absence of pectin (Figure 17a). This result strongly suggests that the 

carrageenan was able to displace the pectin molecules from the PL-P complexes 

leading to the formation of PL-KC complexes. This would explain the occurrence of 

hair-like structures in the [PL-P] systems after carrageenan was added (Figure 14). 

In future studies, it may be useful to determine the composition of the 

complexes formed in mixed polymer systems. For example, insoluble complexes 

could be separated from the surrounding solution by centrifugation or filtration, and 

then the concentration of polymers remaining in the soluble fraction could be 

determined using suitable analytical tools. 

3.5.4 Proposed Interaction Mechanism 

Overall, our results suggest that the complexes formed through electrostatic 

attraction between ε-polylysine and κ-carrageenan were considerably stronger than 

those formed between ε-polylysine and pectin. In particular, measurement of the 

interaction enthalpies using ITC showed that carrageenan could displace pectin 

from [PL-P] complexes, but pectin could not displace carrageenan from [PL-KC] 

complexes. Nevertheless, there were still some differences in the nature of the 



 

 

6
2

 

62 

aggregates formed in binary and ternary systems. In binary systems, [PL]-KC 

complexes tended to form hair-like structures that rapidly sediment to the bottom 

of the samples. However in ternary systems ([PL-P]-KC), which would be expected 

to contain [PL]-KC complexes at high polymer ratios, much fewer hair-like 

structures were formed (Figure 14d) and the overall turbidity was much lower 

(Figure 16b). This suggests that the pectin molecules did have some impact on the 

structure of the electrostatic complexes formed in the ternary systems. 

3.6 Conclusions 

Our results have important implications for the utilization of cationic 

biopolymers (such as polylysine) as functional ingredients in foods and beverages. 

Previous studies have shown that problems associated with the utilization of 

cationic polymers in food products (such as precipitation and astringency) can be 

overcome by forming electrostatic complexes with pectin (Y. H. Chang, L. 

McLandsborough, & D. J. McClements, 2011). However, if these complexes are 

introduced into food or beverage matrices that contain other anionic biopolymers 

that can compete with the pectin, the functionality of the cationic polymers might be 

altered in an undesirable way. It is therefore essential for food manufacturers to 

carefully formulate their products taking into account the various kinds of 

molecular interactions that can occur in complex multicomponent food systems. 
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CHAPTER 4 

EFFECT OF CATIONIC BIOPOLYMER (ε-POLYLYSINE) ON DIGESTION OF 

EMULSIFIED LIPIDS 

4.1 Abstract 

ε-Polylysine (ε-PL) is a cationic biopolymer that may be used as a food 

ingredient because of its strong antimicrobial activity and potential to inhibit 

pancreatic lipase. We examined the effect of polylysine on the digestion of corn oil-

in-water emulsions stabilized by either a natural anionic surfactant (quillaja 

saponin) or a synthetic non-ionic surfactant (Tween 20).  Emulsions were prepared 

using high pressure homogenization (microfluidization) and then subjected to in 

vitro digestion in the absence or presence of polylysine at the maximum level 

allowed in foods by the FDA. Samples were characterized before and after in vitro 

digestion using electrophoresis, confocal microscopy, and static light scattering.  The 

presence of polylysine decreased the hydrolytic activity of pancreatic lipase by 

around 53% and 28% in the Tween 20- and saponin-stabilized emulsions, 

respectively.  The lipase-inhibiting properties of polylysine were attributed to its 

electrostatic interaction with bile salts, which may have inhibited bile salt and/or 

lipase adsorption to lipid droplet surfaces, as well as interfere with fatty acid 

solubilization in mixed micelles. These results have important implications for the 

incorporation of polylysine into food systems, particularly those containing 

lipophilic nutrients.  

Keywords: polylysine; lipids; digestion; emulsions; nanoemulsions; lipase inhibition



 

 

6
5

 

65 

4.2 Introduction 

ε-Polylysine (ε-PL) is an appealing antimicrobial agent for utilization within 

the food industry due to its natural origin and its strong antimicrobial activity 

against a wide range of Gram (+) and Gram (-) bacteria, yeasts, molds, and 

bacteriophages (N. A. El-Sersy, A. E. Abdelwahab, S. S. Abouelkhiir, D. M. Abou-Zeid, 

& S. A. Sabry, 2012; Moschonas, et al., 2012; Shima, Matsuoka, Iwamoto, & Sakai, 

1984; H. L. Yu, Y. P. Huang, & Q. R. Huang, 2010; C. C. Zhou, P. Li, X. B. Qi, A. R. M. 

Sharif, Y. F. Poon, Y. Cao, et al., 2011). The Food and Drug Administration (FDA) has 

deemed it as a Generally Regarded As Safe (GRAS) food ingredient, and has 

approved its use in a variety of food systems including alcoholic and non-alcoholic 

beverages, pastries, meats, soup, dairy products, fruit and vegetables products, and 

pasta (Food and Drug Administration, 2011).  

Despite its approval by the FDA, the high cationic charge density of ε-PL – 

which is responsible for its antimicrobial properties (Blin, Purohit, Leprince, 

Jouenne, & Glinel, 2011; Brogden, 2005; Shima, Matsuoka, Iwamoto, & Sakai, 1984) 

– has limited its widespread use as an ingredient in food systems. This is due to the 

cationic biopolymer’s potential to interact with anionic components in food 

matrices, which can decrease its antimicrobial efficacy and cause undesirable 

turbidity and precipitation in products.  In addition, cationic polylysine may interact 

with negatively charged biopolymers in the saliva and mucus coating the mouth and 

sensory receptors on the tongue, which may lead to bitterness or astringency 

(Asker, Weiss, & McClements, 2011; Y. H. Chang, L. McLandsborough, & D. J. 

McClements, 2011; C. L. Lopez-Pena & McClements, 2014).  A successful strategy 
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was developed to overcome the adverse effects associated with these undesirable 

electrostatic interactions, which was based on forming weak electrostatic complexes 

between polylysine and anionic polysaccharides (Y. Chang, L. McLandsborough, & D. 

J. McClements, 2011a; Y. Chang, McLandsborough, & McClements, 2012; Y. H. Chang, 

L. McLandsborough, & D. J. McClements, 2011; Y. H. Chang, McLandsborough, & 

McClements, 2014; C. L. Lopez-Pena & McClements, 2014).  These electrostatic 

complexes maintained the antimicrobial activity of polylysine, without causing 

extensive precipitation or sediment formation.  However, another potential 

challenge that might limit the widespread application of ε-PL as a food ingredient is 

associated with its ability to participate in electrostatic interactions with bile salts in 

the small intestine that may inhibit the enzymatic activity of lipase (Kido, et al., 

2003; Tsujita, Sumiyoshi, Takaku, Momsen, Lowe, & Brockman, 2003; Tsujita, 

Takaichi, Takaku, Aoyama, & Hiraki, 2006). These interactions could lead to the 

malabsorption of both dietary fat and lipophilic nutrients from food.    

After ingestion, foods pass through the different regions of the 

gastrointestinal tract (GIT) where they are exposed to stresses, flow profiles, 

enzyme activities, salts, surface active substances, and pH changes, which aid in the 

digestion and absorption of nutrients (Basit, 2005). The three main intestinal 

components that facilitate lipid digestion and absorption are pancreatic lipase, bile 

salts, and phospholipids (Duan, 2000). Lipases in the mouth, stomach, and small 

intestine convert ingested triacylglycerols into free fatty acids and monoglycerides, 

with most of the digestion and absorption occurring in the small intestine (Lairon, 

2009; Mackie, 2012; D. J. McClements & Li, 2010; D. J. D. McClements, Eric A.; Park,Y., 
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2007; Singh, Ye, & Horne, 2009). Bile salts and phospholipids also play a number of 

key roles: (i) they help emulsify lipids by adsorbing to lipid droplet surfaces and 

forming a protective layer; (ii) they displace some of the original emulsifiers from 

the lipid droplet surfaces thereby altering interfacial composition in a manner that 

favors lipase adsorption; and (iii) they participate in the formation of mixed micelles 

that can solubilize free fatty acids and transport them to the epithelium cells 

(Hismiogullari, Bozdayi, & Rahman, 2007).  After adsorption to lipid droplet 

surfaces, lipase breaks down triacylglycerols into fatty acids and 2-

monoacylglycerols. The resulting compounds are incorporated into the mixed 

micelles, transported across the mucus layer covering the intestinal wall, absorbed 

by intestinal microvilli, and then eventually enter the bloodstream (Kido, et al., 

2003). 

As previously mentioned, research has shown that polylysine possesses the 

ability to inhibit lipid digestion. This phenomenon is proposed to be due to the 

electrostatic interaction between cationic ε-PL and anionic bile salts and 

phospholipids through three main mechanisms:  (i) ε-PL binding to these digestive 

components, thereby preventing them from adsorbing to lipid droplet surfaces; (ii) 

ε-PL forming a cationic coat around anionic lipid droplets, thus preventing lipase 

from coming into close proximity to the lipids; (iii) ε-PL binding to bile salts and 

phospholipids, consequently retarding the formation of mixed micelles capable of 

solubilizing and transporting digested lipids (Kido, et al., 2003).  

Because a decrease in lipid digestion may adversely affect the absorption of 

essential lipophilic nutrients and nutraceuticals (Y. Li & McClements, 2011; Porter, 
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Trevaskis, & Charman, 2007), it is important to understand the possible impact of 

the incorporation of ε-PL into food products on lipid digestion. Previous studies that 

have shown the lipase-inhibiting properties of ε-PL have typically been carried out 

using ε-PL concentrations that far exceed the maximum levels approved by the FDA 

for food use. Additionally, these studies have used homogenization methods and 

emulsifiers that are not widely used in the food industry (Kido, et al., 2003; Tsujita, 

Sumiyoshi, Takaku, Momsen, Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, 

Aoyama, & Hiraki, 2006). The objective of the current study was therefore to test 

whether ε-PL at the highest permitted concentration allowed by the FDA (Food and 

Drug Administration, 2011) has an impact on lipid digestion in emulsion-based 

delivery systems stabilized by food-grade ionic or non-ionic surfactants.  

4.3 Materials And Methods 

4.3.1 Emulsion Preparation And Optimization 

Emulsions were prepared by combining an oil phase (4% w/w) with an 

aqueous phase (96% w/w). The oil phase consisted of a commercial food-grade corn 

oil (Mazola, ACH Food Companies, London, England). The aqueous phase was 

composed of 5 mM phosphate buffer (pH 7) and either non-ionic surfactant (0.03-

1.5% w/w Tween 20) or anionic surfactant (0.05-0.95% quillaja saponin). Tween 20 

was acquired from Acros Organics (Hampton, New Hampshire, lot 091M1417V), 

while the quillaja saponin was donated in the form of Q-Naturale by Ingredion 

(Westchester, IL, lot QEU-151112-01, 14% purity). ε-Polylysine was purchased from 

Wilshire Technologies (Princeton, NJ). The 5 mM phosphate buffer was prepared by 
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dissolving 1.1676 g of sodium phosphate monobasic (Sigma Aldrich, St. Louis, 

Missouri, lot BCBB2118) and 3.0932 g of sodium phosphate monobasic (Sigma 

Aldrich, St. Louis Missouri, lot 129K0053) to a final volume of 4 l. The pH was 

adjusted to a final value of 7.0 by adding either hydrochloric acid or sodium 

hydroxide at varying concentrations.  

A coarse emulsion was first prepared by mixing the oil and the aqueous phases 

with a high-sheer blender (Bamix® Basic, Mettlen, Switzerland) at 7,000 rpm for 2 

minutes. The resulting course emulsion was then passed five times through a 

microfluidizer (M-110P, Microfluidics, Westwood, MA) at 9,000 psi to produce a fine 

emulsion.  

4.3.2 In Vitro Digestion 

In vitro digestions simulating only the small intestine stage were carried out 

by modifying the protocol established by Y. Li, Hu, and McClements (2011).  

Solutions for this experiment were prepared as follows.  Bile salts (Sigma Aldrich, St. 

Louis, Missouri, lot 031M0106V) were prepared by dissolving 0.1875 g in 3.5 ml of 

phosphate buffer pH 7.0 and stirring overnight.  A salt stock solution was produced 

by diluting 16.44 g of sodium chloride (Fisher Scientific, Hampton, New Hampshire, 

lot 111354) and 2.57 g of calcium chloride (Sigma Aldrich, St. Louis, Missouri, lot 

39H0085) in double-distilled water to a final volume of 75 ml.  

Lipase was prepared by dissolving 0.06 g of the powdered enzyme (Sigma 

Aldrich, St. Louis, Missouri, lot SLBC9250V) in 2.5 ml of 5 mM phosphate buffer, 

followed by stirring for 30 minutes. The enzyme was used immediately after its 

preparation.   
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For the systems without polylysine, 18.75 ml of the prepared emulsions were 

diluted with 11.25 ml of 5 mM phosphate buffer. For systems containing polylysine, 

18.75 ml of sample were diluted with 11.25 ml of a solution containing 0.16% 

(w/w) polylysine (Willshire Technologies, Princeton, New Jersey, lot 20130228) in 

5 mM phosphate buffer, pH 7. When the emulsion was combined with the polylysine 

solutions, the final oil concentration for each system was 2.5% (w/w) corn oil, and 2 

ppm polylysine. 

The diluted emulsion sample was combined with the bile salts, stock salt 

solution, and lipase to simulate the digestion process in the small intestine. The 

digestion simulation took place using an automated pH Stat titration method (857 

Titrando, Metrohm USA, Riverview, Florida).  The principle behind this intestinal 

digestion simulation is quantifying the lipase-mediated release of free fatty acids 

(FFA) from the triacylglycerols that make up the oil system. The desired sample – in 

this case a corn oil emulsion – is dispersed in a solution containing specific amounts 

of digestive components including bile salts, lipase, sodium chloride, and calcium 

chloride. As the lipase exerts its enzymatic activity over the oil present in the 

sample, FFAs are released. This production of FFAs causes a decrease in pH, which is 

monitored by the automated titration unit; as the pH changes, the instrument 

automatically titrates sodium hydroxide solution to maintain it at pH 7.0. The 

amount of sodium hydroxide that was utilized throughout the digestion simulation 

is recorded versus time, and the percentage of FFA released can be calculated 

utilizing the equation below (Y. Li, Hu, & McClements, 2011): 
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%𝐹𝐹𝐴 = 100 ×
𝑉𝑁𝑎𝑂𝐻 ×𝑚𝑁𝑎𝑂𝐻 ×𝑚𝑙𝑖𝑝𝑖𝑑

𝑤𝑙𝑖𝑝𝑖𝑑 × 2
 

Where %FFA is the percentage of released FFAs; VNaOH is the volume of titrant in 

liters; mNaOH is the molarity of the sodium hydroxide solution used; Mlipid is the 

molecular weight of the oil used; and wlipid is the weight of the oil in the digestion 

system in grams. 

 It should be noted that a highly simplified in vitro digestion method was 

utilized in this study that only focused on the events occurring within the small 

intestine region.  This method was used as an initial screening tool to establish 

whether polylysine would interfere with the processes occurring the small intestine 

where the majority of lipid digestion and absorption normally occurs.  In future 

studies, more sophisticated in vitro digestion models that include mouth, stomach 

and small intestine stages should be used, as well as in vivo studies using animals 

(Minekus, Alminger, Alvito, Ballance, Bohn, Bourlieu, et al., 2014).      

4.3.3 Particle Characterization 

The resulting emulsions and digestion products were characterized by 

measuring particle size (Malvern Mastersizer 2000, Malvern Instrumentst, 

Worcestershier, United Kingdom), zeta potential (Malvern Zetasizer ZS, Malvern 

Instruments, Worcestershire, United Kingdom), and confocal microscopy (Nikon D-

Eclipse C1 80i, Nikon, Melville, NY) immediately after the emulsions were produced 

and after the conclusion of the digestion process.  The experimental protocols used 

for each of these methods have been described in detail elsewhere (Salvia-Trujillo, 

Qian, Martin-Belloso, & McClements, 2013a).   
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4.3.4 Data Analysis 

All experiments were performed in triplicate. The results were then reported as 

averages and standard deviations of these measurements.  

4.4 Results And Discussion 

4.4.1 Initial Emulsion Properties 

Initially, we aimed to produce oil-in-water emulsions that had relatively low 

concentrations of free surfactant in the aqueous phase, so as to prevent any 

interactions between ε-polylysine and excess surfactant that might interfere with 

data interpretation.  Emulsions were therefore prepared using fixed 

homogenization conditions (oil content, homogenization pressure, and number of 

passes), but increasing concentrations of surfactants in the aqueous phase.  At low 

surfactant concentrations, there is insufficient surfactant to coat all of the small 

droplets formed within the homogenizer, and so the droplet size is mainly 

determined by the total amount of surfactant present.   In this “surfactant-limited” 

regime, the mean particle diameter decreases with increasing surfactant 

concentration, and there is a relatively low concentration of free surfactant in the 

aqueous phase.  At higher surfactant concentrations, the mean particle diameter 

remains relatively constant as the surfactant level is increased because the particle 

size is limited by the homogenization device, rather than the amount of surfactant 

present.  In this “homogenizer-limited” regime, the amount of free surfactant in the 

aqueous phase increases as the total amount of surfactant in the system increases.  
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Consequently, it is important to be within the surfactant-limited regime so as to 

reduce the amount of free surfactant present.  

 

 

Figure 18. Influence of surfactant concentration on particle size of T20-
stabilized nanoemulsion droplets19. 

                                                        

19 Lopez-Pena and McClements, (2015) 



 

 

7
4

 

74 

 

Figure 19.  Influence of surfactant concentration on the mean surface 
weighted diameter particle size of QN-stabilized nanoemulsion droplets 20. 

 

The influence of surfactant concentration on the mean particle diameter for 

emulsions prepared using either Tween 20 (T20) or quillaja saponin (QN) were 

therefore measured (Figure 18 and Figure 19).  In general, the dependence of the 

particle size on surfactant concentration was similar for both surfactants: initially 

                                                        

20 Lopez-Pena and McClements, (2015) 
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there was a decrease in mean droplet diameter with increasing surfactant, followed 

by a leveling off. The optimal surfactant concentration was taken to be the value at 

which there was little further decrease in droplet size with increasing surfactant 

concentration, and the emulsion remained stable for at least 24 hours after 

production. For T20 this value was 0.33%, whereas it was 0.35% surfactant for QN.  

Consequently, these surfactant concentrations were used in the subsequent 

experiments.  

4.4.2 Particle Size Analysis And Confocal Microscopy 

 

Figure 20. Particle size (nm) of the original and digested emulsion systems 
with and without ε-PL for both T20 and QN systems21. 

                                                        

21 Lopez-Pena and McClements, (2015) 
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Initially, we measured the influence of emulsifier type and ε-PL addition on 

changes in the particle size and microstructure of the emulsions after digestion.  In 

the absence of ε-PL, the mean diameter of the particles in the T20-emulsions 

increased appreciably after being subjected to in vitro digestion, changing from 

around 276 to 484 nm (Figure 20). Conversely, there was a decrease in mean 

particle diameter after digestion for the QN-emulsions, changing from around 191 to 

123 nm (Figure 20). In general, a change in particle size distribution of emulsions 

after digestion can be attributed to a number of phenomena, including droplet 

hydrolysis, coalescence, flocculation, formation of mixed micelles (micelles and 

vesicles), and formation of insoluble precipitates (such as calcium soaps). The 

difference in particle size measured after digestion for the two surfactants suggests 

that there were some differences in the structural properties of the undigested 

emulsion droplets or lipid digestion products produced. These results were 

supported by the microstructure images obtained through confocal microscopy, 

which showed that both emulsions contained relatively small evenly dispersed lipid 

droplets before digestion, but that the T20 system contained some relatively large 

particles after digestion (Figure 21).  

The addition of polylysine to the T20-emulsions prior to digestion did not alter 

the particle size of the droplets, which can be attributed to the fact that cationic ε-PL 

did not interact strongly with the non-ionic surfactant coated lipid droplets.  

Presumably, there was no strong electrostatic attraction between the polylysine and 

the droplet surfaces, but there was a strong steric repulsion between the polylysine 

and the neutral polymeric head groups of this surfactant.  On the other hand, there 
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was a large increase in the mean particle diameter in the T20-emulsions containing 

ε-PL after digestion (Figure 20), which suggested that the cationic biopolymer 

promoted extensive aggregation of the anionic undigested lipid droplets and/or 

mixed micelles.  

 

Figure 21. Images obtained via confocal microscopy of the T20- and QN-
stabilized nanoemulsion systems before and after digestion, with and without 
the addition of ε-PL22. 

 

Prior to digestion, the addition of polylysine to the QN emulsions caused a 

large increase in their mean particle diameter, which can be attributed to bridging 

flocculation of the anionic droplets by the cationic biopolymer. After digestion, the 

QN emulsions containing polylysine also had very large particle sizes, indicating that 

they were highly flocculated.  This effect can be attributed to the formation of 

electrostatic complexes between cationic ε-PL molecules and anionic species in the 

                                                        

22 Lopez-Pena and McClements, (2015) 
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digesta, such as bile salts, phospholipids, free fatty acids, and undigested fat 

droplets.   

Confocal microscopy images of the emulsions containing polylysine supported 

the light scattering results (Figure 21).  Prior to digestion, the addition of polylysine 

to the T20-emulsions had little influence on their microstructure, but its addition to 

the QN-emulsions promoted extensive droplet aggregation.  After digestion, the 

emulsions contained spherical lipid particles, which may have been undigested fat 

droplets or vesicles formed by bile salts, phospholipids and fatty acids.   

4.4.3 Micro-Electrophoresis Measurements 

In this section, we characterized changes in the surface charge of the two 

emulsions with and without ε-PL, as well as before and after digestion. As 

mentioned previously, these two surfactants were partly selected for this study 

because of their different surface characteristics, which would have been expected 

impact their interactions with ε-PL (Figure 22).  Prior to digestion, the T20-

emulsion containing no polylysine had a relatively low negative charge (-5.8 mV), 

whereas the QN-emulsion has a relatively high negative charge (-63.2 mV).  After 

digestion, the negative charge on the particles present in the T20-emulsions 

increased (-74.5 mV) appreciably, which can be attributed to the presence of the 

anionic bile salts, phospholipids, and free fatty acids.  The particles in the QN-

emulsions was also highly negative after digestion (-42.1 mV), but it was less 

negative that the emulsions prior to digestion. These results suggest that there were  
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Figure 22. ζ-Potential (mV) of the original and digested nanoemulsions with 
and without ε-PL for both T20 and QN systems23. 

 

different kinds of structures in the digesta for the quillaja saponins than for the 

Tween 20.   

Prior to digestion, the addition of polylysine to the T20-emulsions caused little 

change in the electrical characteristics of the droplets (-6.2 mV) compared to the 

samples with no polylysine (- 5.8 mV).   This suggests that polylysine did not 

                                                        

23 Lopez-Pena and McClements, (2015) 
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interact strongly with the surfaces of the lipid droplets coated by the non-ionic 

surfactant.  Conversely, the incorporation of polylysine into the QN-emulsions prior 

to digestion caused an appreciable change in their surface charge characteristics, 

-potential going from -63.2 to -4.2 mV upon addition of polylysine. This 

suggests that the cationic polylysine molecules adsorbed to the surfaces of the 

anionic QN-coated lipid droplets through electrostatic attraction, thereby partially 

neutralizing their charge.   

4.4.4 In Vitro Digestion 

The main objective of this study was to assess the potential inhibitory action of 

polylysine on lipid digestion in the small intestine, and to determine the influence of 

initial surfactant type on this effect.  A simulated small intestine (pH stat) method 

was therefore used to focus on the events occurring within this region of the GIT 

where the majority of lipid digestion normally occurs.  In reality, an emulsion passes 

through the mouth and stomach before reaching the small intestine, which may 

cause alterations in the size and surface characteristics of the lipid droplets.  

Nevertheless, previous studies have shown that ε-PL is resistant to degradation by 

digestive enzymes in the upper gastrointestinal tract (Tsujita, Takaichi, Takaku, 

Aoyama, & Hiraki, 2006), and that lipid droplets coated by some small molecule 

surfactants do not undergo appreciable changes in their properties in the mouth 

and stomach regions (D. J. McClements, Decker, & Park, 2009; D. J. McClements & Li, 

2010; D. J. D. McClements, Eric A.; Park,Y., 2007; Singh, Ye, & Horne, 2009).  Hence, 

the results obtained in this study should provide some valuable insights into the 

potential role of polylysine on lipid digestion in the small intestine. 
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In general, the free fatty acid release profiles of the different systems exhibited 

a similar behavior: initially there was a rapid increase in FFAs released followed by 

a more gradual increase at longer times (Figure 23).  However, the precise shape of 

the FFA release profiles depended on emulsifier type and ε-PL addition.  In the  

 

Figure 23. Influence of surfactant charge and addition of ε-PL on the 
percentage of free fatty acids (FFA%) released from nanoemulsions 
formulated with anionic (QN) and neutral (T20) surfactants. The final lipid 
content in the digestion medium was 2.5%24. 

                                                        

24 Lopez-Pena and McClements, (2015) 
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absence of polylysine, the fraction of the lipid phase digested after 2 hours 

incubation was about 43% and 52% for the T20 and QN systems, respectively 

(Figure 23).  The relatively low amount of FFAs released from the emulsions can be 

attributed to the relatively high level of lipids present in the initial samples, i.e., 

there were too many triacyglycerol molecules for the lipase to completely digest 

and/or for the mixed micelles to completely solubilize (Y. Li, Hu, & McClements, 

2011).  These experiments may therefore be more representative of conditions 

where a high fat load is ingested as part of a meal.  The addition of ε-PL had a major 

impact on lipid digestion for both surfactant types leading to a decrease in the rate 

and extent of FFA production. For example, at the end of the 2 hour incubation 

period, the amount of FFAs released was around 21% and 34% for T20 and QN 

systems, respectively. These values correspond to a decrease of 53% and 35% in 

FFA production compared to the samples with no polylysine.  The suppression of 

lipid digestion by ε-PL observed in this study is in agreement with that reported in 

earlier studies using different types of emulsions, where an inhibitory effect of up to 

50% was also reported (Kido, et al., 2003; Tsujita, Sumiyoshi, Takaku, Momsen, 

Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, Aoyama, & Hiraki, 2006; Tsujita 

& Takaku, 2009).  

There are a number of potential physicochemical mechanisms that may 

account for the observed suppression of lipid digestion in the presence of 

polylysine.  Cationic polylysine may adsorb to the surface of anionic lipid droplets 

and form a protective coating that inhibits the ability of the lipase to interact with 



 

 

8
3

 

83 

the lipids.  Cationic polylysine may interact with anionic bile salts and phospholipids 

through electrostatic interactions thereby changing their functional properties.  Bile 

salts and phospholipids play a number of important roles in the lipid digestion 

process: they aid in lipid emulsification within the GIT; they alter lipid droplet 

surfaces in a manner that promotes lipase adsorption and function; and, they aid in 

the solubilization and transport of lipid digestion products by forming mixed 

micelles (Kido, et al., 2003).  In this study, the lipid droplets were homogenized 

prior to entering the small intestine, and therefore the role of bile salts and 

phospholipids on emulsification is less important. However, the ability of ε-PL to 

induce droplet flocculation may alter the rate and extent of lipid digestion. Previous 

studies have shown that highly flocculated lipid droplets are digested more slowly 

than non-flocculated ones because of a reduction in the surface area of lipid phase 

directly exposed to the lipase molecules (Day, Golding, Xu, Keogh, Clifton, & 

Wooster, 2014).  The adsorption of bile salts to oil droplet surfaces (and 

displacement of the original surfactants) is often critical to lipid digestion, as the 

formation of a bile-salt coated interface promotes lipase adsorption and activation 

(Aloulou, Rodriguez, Fernandez, van Oosterhout, Puccinelli, & Carriere, 2006; 

Borgström & Brockman, 1984; Tsujita, Takaichi, Takaku, Sawai, Yoshida, & Hiraki, 

2007). Moreover, the activity of lipase is determined by the amount that adsorbs to 

the lipid droplet surfaces, rather than the total amount present in the system 

(Moreau, Moulin, Gargouri, Noel, & Verger, 1991; Ransac, Gargouri, Marguet, Buono, 

Beglinger, Hildebrand, et al., 1997; Tsujita, Takaichi, Takaku, Sawai, Yoshida, & 

Hiraki, 2007). When no ε-PL is present, bile salts are free to interact with the oil 
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droplets, establishing suitable conditions on the droplet surfaces for the subsequent 

adsorption and activation of lipase. However, when cationic polylysine is present, it 

interacts with the anionic bile salts and prevents them from coating the oil droplet 

surfaces, thereby altering the adsorption and activity of lipase (Tsujita, Sumiyoshi, 

Takaku, Momsen, Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, Sawai, 

Yoshida, & Hiraki, 2007).  

When anionic surfactants (such as saponin) are present in an emulsion, the 

polylysine may interact with them as well as the bile salts. Consequently, there may 

be more free bile salts to interact with the lipid droplet surfaces and form mixed 

micelles, thereby promoting digestion.  The changes in ζ-potential observed for both 

systems upon the introduction of ε-PL further explains the difference in the degree 

of lipase inhibition exhibited. Tsujita, Sumiyoshi, Takaku, Momsen, Lowe, and 

Brockman (2003) have shown that for ε-PL to exhibit lipase-inhibiting behavior in 

an emulsion system with a fixed amount of bile salts, the positive charges 

contributed by ε-PL must surpass the negative charges in the system. The inclusion 

of a negative surfactant and subsequent increase in negative charge means that the 

system no longer complies with this premise, limiting the inhibitory effect of ε-PL.  

4.5 Conclusions 

There is interest in utilizing polylysine as a functional ingredient in foods and 

beverages because it is a natural antimicrobial agent.  However, our results and 

those of other groups working with phospholipid-stabilized emulsions, suggest that 

this cationic biopolymer may interfere with the normal lipid digestion process due 

to its ability to interact with anionic components in the gastrointestinal tract, such 
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as lipid droplets, bile salts, and phospholipids.  These interactions depend on 

surfactant type, and may have an impact on the absorption of lipophilic bioactive 

agents, such as oil-soluble vitamins or nutraceuticals.  In future studies, we intend to 

use a more comprehensive in vitro digestion model and animal feeding studies to 

assess the potential influence of polylysine on the bioaccessibility of lipophilic 

nutrients.  
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CHAPTER 5 

EFFECT OF MUCIN ON INHIBITION OF LIPASE ACTIVITY BY Ε-POLYLYSINE 

5.1 Abstract 

 The cationic biopolymer, ε-polylysine (ε-PL), is a natural generally regarded 

as safe (GRAS) wide spectrum antimicrobial agent suitable for utilization in the food 

industry. This biopolymer has also been shown to possess the ability to inhibit lipid 

digestion both in vivo and in vitro. However, many of the previous studies in this 

area have utilized polylysine concentrations that are substantially higher than those 

stipulated by the FDA, or have not accounted for the interactions of polylysine with 

other components in the mouth or stomach. We therefore examined the effect of 

polylysine on the digestion of corn oil-in-water emulsions stabilized by Tween 20 in 

the presence and absence of mucin.  Emulsions were passed through a simulated 

gastrointestinal tract that included oral, gastric, intestinal duodenal phases.  

Samples were characterized before and after each stage using electrophoresis, 

optical microscopy, and static light scattering.  Our results showed that there was no 

statistically significant difference between emulsions with and without ε-polylysine 

and with and without mucin. However, our results suggest that ε-polylysine does 

form strong electrostatic complexes with mixed micelles, potentially decreasing the 

absorption of lipids in the small intestine. Samples containing mucin had a lower 

amount of insoluble sediment formed after digestion and a higher free fatty acid 

content, suggesting that it may somewhat prevent the interaction between cationic 

polylysine and anionic bile salts. These results have important implications for the 
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incorporation of polylysine into food systems, particularly those containing 

lipophilic nutrients. 

 

Keywords: polylysine; lipids; digestion; emulsions; nanoemulsions; lipase inhibition; 

antiobesity 
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5.2 Introduction 

  ε-Polylysine is an FDA-approved (Food and Drug Administration, 2004, 

2011) natural antimicrobial agent that is effective against a wide range of 

microorganisms including Gram (+) and Gram (-) bacteria, bacteriophages, yeasts, 

and fungi (N. A. El-Sersy, A. E. Abdelwahab, S. S. Abouelkhiir, D. M. Abou-Zeid, & S. A. 

Sabry, 2012; Moschonas, et al., 2012; Shima, Matsuoka, Iwamoto, & Sakai, 1984; H. L. 

Yu, Y. P. Huang, & Q. R. Huang, 2010; C. C. Zhou, et al., 2011). The high antimicrobial 

activity of this cationic biopolymer is mainly attributed to its ability to interact 

electrostatically with anionic microbial cell membranes and disrupt their integrity 

(Blin, Purohit, Leprince, Jouenne, & Glinel, 2011; Brogden, 2005; Shima, Matsuoka, 

Iwamoto, & Sakai, 1984; Zasloff, 2002).  

The cationic nature of this antimicrobial agent has also been linked with 

inhibition of lipid digestion both in vitro and in vivo (Kido, et al., 2003; Cynthia 

Lyliam Lopez-Pena & David Julian McClements, 2015; Tsujita, Sumiyoshi, Takaku, 

Momsen, Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, Aoyama, & Hiraki, 

2006). The inhibitory mechanism has been proposed to be due to the electrostatic 

interaction between cationic ε-polylysine and anionic bile salts within the small 

intestine (Kido, et al., 2003). Bile salts, phospholipids, and lipase act in conjunction 

within the small intestine to hydrolyze triacylglycerols and other lipids (Duan, 

2000).  Bile salts adsorb to the surface of the fat droplets entering the small 

intestine from the stomach, which facilitates the adsorption of lipase and triggers its 

enzymatic activity. As lipase exerts its enzymatic activity, triacylglycerols are 

cleaved to fatty acids and 2-monoacylglycerols. Bile salts and phospholipids – both 
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amphiphilic molecules – act as surfactants for the fat droplets entering from the 

stomach, as well as solubilizing the lipid digestion products in mixed micelles. These 

mixed micelles are absorbed by the microvilli lining the intestinal walls, and 

eventually enter the bloodstream (Kido, et al., 2003). The electrostatic interaction 

between ε-polylysine and bile salts can result in a number of effects that may alter 

lipid digestion: (i) formation of a coating around the surfaces of bile- or 

phospholipid-emulsified fat droplets entering the small intestine, thereby inhibiting 

lipase adsorption; (ii) flocculation of the fat droplets thereby reducing the available 

surface area for lipase adsorption; or, (iii) decreasing the formation of free fatty acid 

micelles after digestion, limiting the activity of lipase (Kido, et al., 2003).  In 

addition, the binding of polylysine to mixed micelles may lead to insoluble 

complexes that reduce the bioaccessibility of any encapsulated lipophilic agents.   

Although there have been numerous studies documenting the strong 

inhibitory effect of ε-polylysine, the methodologies followed for the in vivo and in 

vitro systems have focused on the interactions between ε-polylysine and bile salts 

under intestinal conditions (Kido, et al., 2003; Cynthia Lyliam Lopez-Pena & David 

Julian McClements, 2015; Takahiro Tsujita, 2006; Tsujita, Sumiyoshi, Takaku, 

Momsen, Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, Aoyama, & Hiraki, 

2006), but have not taken into account interactions that ε-polylysine might have had 

with other anionic components in the mouth (such as mucin), and in many instances 

have utilized polylysine concentrations that exceed the concentration currently 

permitted by the FDA (Food and Drug Administration, 2011) by several orders of 

magnitude. We hypothesized that cationic ε-polylysine interacts with anionic mucin 
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in the mouth, thereby altering its subsequent gastrointestinal fate. Mucin is a family 

of heavily glycosylated negatively charged proteins with a high proportion of the 

sulfide-containing amino acid cysteine, naturally secreted by epithelial cells to form 

a protective mucus layer. Its high glycosylation provides it with a high water-

holding capacity and immunity to proteases, making them an extremely effective 

protective barrier in the digestive tract (Kufe, 2009; Perez-Vilar & Hill, 2004). Due to 

the negative charge of this biopolymer, it is possible that it may interact 

electrostatically and form an electrostatic complex with ε-polylysine prior to the 

latter’s exposure to other anionic gastrointestinal constituents (such as bile salts).  

ε-Polylysine has been shown to interact quite strongly with negatively-

charged compounds, and the electrostatic complexes formed with one anionic 

biopolymer may remain intact even after addition of another anionic biopolymer (C. 

L. Lopez-Pena & McClements, 2014). Given the strong negative charge of mucin, it is 

possible that electrostatic complexes formed between ε-polylysine and mucin in the 

mouth or stomach would prevent it from interacting electrostatically with bile salts 

and other anionic components in the small intestine, thereby reducing its lipase-

inhibiting activity. 

The objective of this work is therefore to assess whether the formation of 

electrostatic complexes formed between ε-polylysine and mucin in the oral stage of 

digestion have an effect on the lipase-inhibiting activity of ε-polylysine.  This 

objective was achieved by passing corn oil-in-water emulsions through a simulated 

gastrointestinal tract in the absence and presence of both ε-polylysine and mucin.  
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5.3 Materials And Methods 

5.3.1 Emulsion Preparation 

Emulsions were prepared by combining an oil phase (4% w/w) composed of a 

commercial food-grade corn oil (Mazola, ACH Food Companies plf, London, 

England) with an aqueous phase (96%) containing 5 mM phosphate buffer (pH 7) 

and 0.33% Tween 20 purchased from Acros Organics (Hampton, New Hampshire). 

The phosphate buffer was produced by combining sodium phosphate monobasic 

(Sigma Aldrich, St. Louis, Missouri) and sodium phosphate dibasic (Thermo Fisher 

Scientific, Waltham, MA) and adjusting the final pH through addition of hydrochloric 

acid or sodium hydroxide at the appropriate concentrations. The oil and aqueous 

phases were first converted into a coarse emulsion utilizing a high-shear blender 

(bamix® Basic, bamix of Switzerland, Mettlen, Switzerland) at 7,000 rpm for 2 

minutes. The coarse emulsion was then homogenized by passing it five times 

through a microfluidizer (M-110P, Microfluidics, Westwood, MA) operating at a 

pressure of 10,000 psi.  

5.3.2 In Vitro Digestion 

To analyze the effect of mucin on the lipase-inhibiting activity of ε-polylysine, a 

simulated gastrointestinal tract was used that mimicked the mouth, stomach, and 

small intestine stages. A 4 %w/w ε-polylysine (Wilshire Technologies, Princeton, 

NJ) in 5 mM phosphate buffer solution was prepared. In vitro digestions were 

carried out based on the protocol established by Y. Li, Hu, and McClements (2011), 

with some modifications.  
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Simulated Oral Fluids: A stock solution of artificial saliva was prepared by 

mixing sodium chloride (Fisher Scientific, Hampton, New Hampshire, lot 138498), 

ammonium nitrate (Sigma Aldrich, St. Louis, Missouri), potassium phosphate 

monobasic (Fisher Scientific, Hampton, New Hampshire), potassium chloride 

(Fisher Scientific, Hampton, New Hampshire), potassium citrate (Sigma Aldrich, St. 

Louis Missouri), uric acid sodium salt (Sigma Aldrich, St. Louis, Missouri), urea 

(Fluka, St. Louis, Missouri), and lactic acid sodium salt (Sigma Aldrich, St. Louis, 

Missouri) in double distilled water, as described by Y. Li, Hu, and McClements 

(2011). For each sample, 0.6 g mucin Type II (Sigma Aldrich, St. Louis, Missouri) was 

dispersed in 20 ml of the artificial saliva stock solution and allowed to stir overnight.  

Simulated Gastric Fluids: A stock solution of simulated gastric fluids was 

prepared by dissolving 2 g sodium chloride (Fisher Scientific, Hampton, New 

Hampshire) and 7 ml hydrochloric acid (Sigma Aldrich, St. Louis, Missouri) in a final 

volume of 1 liter of double distilled water. 30 minutes prior to use, 0.064 g of pepsin 

(Sigma Aldrich, St. Louis, Missouri) were dissolved in 20 ml of the gastric solution. 

Simulated Small Intestinal Fluids:  For the small intestine phase, 5.5 g calcium 

chloride (Fisher Scientific, Hampton, New Hampshire) and 32.85g sodium chloride 

(Sigma Aldrich, St. Louis, Missouri) were dissolved in 1 liter of double distilled water 

to form a stock solution of simulated small intestinal fluids. For each sample, 0.1875 

g bile salts (Sigma Aldrich, St. Louis, Missouri) were dispersed in 4 ml phosphate 

buffer (5 mM, pH 7.0) and allowed to stir overnight. 30 minutes prior to use, 0.06 g 

lipase (Sigma Aldrich, St. Louis, Missouri) were dispersed in 2.5 ml phosphate buffer 
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(5 mM, pH 7), as previously described by Cynthia Lyliam Lopez-Pena and David 

Julian McClements (2015) and by Y. Li, Hu, and McClements (2011). 

Passage through simulated GIT: Prior to digestion, concentration adjustments 

were made to the emulsions: 10 ml 4% w/w corn oil emulsion was diluted with 

either 10 ml of phosphate buffer (5 mM, pH 7.0) or combined with 10 ml of 0.4 

%w/w ε-polylysine to obtain a final ε-polylysine concentration of 200 ppm, which is 

one hundred times higher than the dosage approved by the FDA for use in food 

systems. Increasing the concentration one hundred times is a common practice 

when assessing the toxicology of a compound in vivo and in vitro. The samples then 

underwent the in vitro digestion process, as described below.  

For the mouth phase, 20 ml diluted emulsion was combined with either 20 ml 

mucin solution or 20 ml artificial saliva stock solution. The pH was adjusted to 6.8 

utilizing sodium hydroxide and/or hydrochloric acid at varying concentrations, and 

was then placed in a shaking incubator (Excella E24 Incubator Shaker Series, New 

Brunswick Scientific, Enfield, CT) at 37 °C and 100 rpm for 10 minutes. At the end of 

the mouth phase, 20 ml of the resulting digesta was titrated into 20 ml simulated 

gastric fluids with freshly prepared pepsin. The pH was adjusted to 2.5, and 

reintroduced into the shaking incubator for 2 hours. Upon completion of the gastric 

stage of the digestion, 30 ml was taken from the stomach digesta and transferred to 

a different vessel and connected to a pH stat (857 Titrando, Metrohm USA, 

Riverview, FL). Here, it was combined with the simulated intestinal juices and bile 

salts, the pH adjusted to 7.0, and freshly prepared lipase was added. Lipid digestion 

was quantified through the aforementioned pH Stat, which monitors changes in pH 
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and titrates a sodium hydroxide solution at a specific concentration to maintain the 

pH at 7.0.  

The principle of this method is based on lipase cleaving free fatty acids (FFA) 

from triacylglycerol molecules, effectively decreasing the pH of the system due to 

the release of protons (H+). The volume of sodium hydroxide (0.1 N) required to 

maintain the system at a constant pH (7.0) was recorded throughout the 

experiment. The amount of FFA released by the action of lipase from the oil are 

calculated utilizing the equation reported by Y. Li, Hu, and McClements (2011): 

%𝐹𝐹𝐴 = 100 ×
𝑉𝑁𝑎𝑂𝐻 ×𝑚𝑁𝑎𝑂𝐻 ×𝑚𝑙𝑖𝑝𝑖𝑑

𝑤𝑙𝑖𝑝𝑖𝑑 × 2
 

Where %FFA is the percentage of released FFAs; VNaOH is the volume of titrant in 

liters; mNaOH is the molarity of the sodium hydroxide solution used; Mlipid is the 

molecular weight of the oil used (grams per mol); and wlipid is the weight of the oil in 

the digestion system (grams).  

5.3.3 Particle Characterization 

The emulsion with and without ε-polylysine and the digestion products with 

and without mucin were characterized by measuring their particle size (Malvern 

Mastersizer 2000, Malvern Instrumentst, Wo -

potential (Malvern Zetasizer ZS, Malvern Instruments, Worcestershire, United 

Kingdom), as well as observing all systems under optical and confocal microscopy 

(Nikon D-Eclipse C1 80i, Nikon, Melville, NY) immediately after the emulsions were 

produced and after the conclusion of the digestion process. 
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5.3.4 Data Analysis 

Each experiment was performed at least two or three times and the mean and 

standard deviations were calculated.  Statistical significance between means were 

determined through analysis of variance (ANOVA) following Tukey pairwise 

comparisons with a confidence interval of 95% with Minitab® 17.1.0 (Minitab Inc., 

State College, Pennsylvania). 

5.4 Results And Discussion 

5.4.1 Particle Size Analysis And Microscopy 

The addition of ε-polylysine to the initial oil-in-water emulsion had no 

discernable effect on the particle size, with both samples having a mean diameter of 

about 0.26 μm (Figure 24) and no visible changes in appearance were observed 

(Figure 25a and e). The most likely reason for this observation is that the cationic 

biopolymer did not promote bridging flocculation of the fat droplets because they 

were coated by a non-ionic surfactant.  In addition, the polylysine concentration 

used was not sufficient to generate a strong osmotic attraction that would have 

promoted depletion flocculation. 
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Figure 24. Volume-weighted mean particle diameter (μm) of the 
nanoemulsion with and without ε-polylysine prior to digestion and after each 
stage of digestion, with and without mucin25. 

                                                        

25 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements, (2015) 
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Figure 25. Images obtained via confocal microscopy of the emulsion with and 
without ε-polylysine prior to digestion and after each stage of digestion.  
These samples contained mucin added in the mouth phase26. 

 

Figure 26. Images obtained via confocal microscopy of the emulsions with and 
without ε-polylysine added prior to digestion and after each stage of digestion.  
These emulsions contained no mucin27. 

                                                        

26 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements, (2015) 
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5.4.1.1 Oral Phase 

The first difference in the behavior of the emulsions became apparent in the 

oral phase when mucin was added to only one set of samples. In the absence of 

mucin, there was little change in particle size (Figure 24) or appearance (Figure 

26b and f) of the samples after exposure to the simulated oral fluids.  Indeed there 

was no change in the mean particle diameter of the emulsions containing no ε-

polylysine (0.26 μm), and only a slight increase in the mean particle diameter of the 

emulsions containing ε-polylysine (0.31 μm).  On the other hand, there was a 

pronounced increase in the mean particle diameter for the emulsions containing 

mucin: ≈ 8 and 11 μm in the absence and presence of ε-polylysine, respectively 

(Figure 24). This change in particle size was clearly evident when the emulsions 

were observed by confocal microscopy: extensive flocculation was observed in both 

systems, with larger clusters occurring in the sample containing ε-polylysine 

(Figure 25b and f). Presumably, the mucin molecules promoted flocculation of the 

oil droplets in the emulsion containing no ε-polylysine through either a depletion or 

a bridging mechanism.  The increased aggregation in the system containing cationic 

ε-polylysine was probably due to its ability to form electrostatic complexes with 

anionic mucin that trapped some of the fat droplets.  

                                                                                                                                                                     

27 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements, (2015) 
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5.4.1.2 Gastric Phase 

After exposure to simulated gastric fluids there was an appreciable change in 

the particle size and microstructure of the emulsions, which depended on the 

presence of both ε-polylysine and mucin.   

Without mucin: The emulsions without mucin (which were stable under oral 

conditions) exhibited an appreciable increase in particle size after exposure to the 

gastric phase (Figure 24).  The mean particle diameter of the samples containing ε-

polylysine increased to around 0.94 μm, while the samples without ε-polylysine 

increased to around 7.0 μm. The particle size measurements therefore suggested 

that appreciable droplet aggregation had occurred in these emulsions after 

exposure to gastric conditions, with the extent of aggregation depending on the 

presence of the cationic biopolymer.  Confocal microscopy of these samples 

supported the light scattering measurements (Figure 26c and g): the emulsion 

containing ε-polylysine exhibited some limited aggregation (slight increase in 

particle size), while the emulsion without ε-polylysine exhibited much more 

extensive aggregation.  The presence of the cationic polypeptide therefore appeared 

to inhibit droplet aggregation under gastric conditions.  The physicochemical origin 

of this effect is currently unknown.  The ε-polylysine may have adsorbed to the lipid 

droplet surfaces and formed a protective coating, or it may have interacted with the 

pepsin thereby limiting its ability to interact with the oil droplets. Although a 

physical interaction between ε-polylysine and pepsin is likely, it is unlikely that 

pepsin would exert any enzymatic activity, as it has been reported that the peptide 
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bonds in ε-polylysine make are resistant to hydrolysis by gastric enzymes (Tsujita, 

Takaichi, Takaku, Aoyama, & Hiraki, 2006).  

With mucin: The samples containing mucin exhibited a decrease in particle 

size when they moved from the oral phase (where they were highly aggregated) to 

the gastric phase, although the mean particle diameters were still larger than those 

in the original emulsions (Figure 24). For example, the mean particle diameter of 

the emulsions without ε-polylysine decreased to around 2.6 μm after exposure to 

the simulated gastric fluids, while that of the emulsion containing ε-polylysine 

decreased to around 4.4 μm. Confocal microscopy also showed that the large 

aggregates formed in the mouth phase due to the interaction of the oil droplets with 

mucin were dissociated somewhat after exposure to the gastric phase (Figure 25c 

and Figure 26g).  A number of possible physicochemical factors may contribute to 

the dissociation of these aggregates.  First, the samples were diluted and stirred 

during the simulated gastric phase, which may have promoted some dissociation. 

Second, there was a change in pH and ionic strength when the oil droplets moved 

from the mouth to the stomach, which may have altered any electrostatic 

interactions in the emulsions.   Third, there may have been some proteolysis of the 

mucin molecules by pepsin in the stomach, however, this effect is likely to be small 

since the high glycosylation of mucin confers some resistance to protease activity 

(Perez-Vilar & Hill, 2004). 
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5.4.1.3 Small Intestine Phase 

After exposure to the simulated intestinal phase, all the samples exhibited an 

appreciable increase in mean particle size, with those containing ε-polylysine 

exhibiting the largest increase (Figure 24).  

Without Mucin: In the absence of mucin, the emulsions without ε-polylysine 

increased to around 16 μm after exposure to simulated intestinal conditions, 

whereas the ones with ε-polylysine increased to around 32 μm. The impact of the 

cationic biopolymer on the microstructure of the emulsions was confirmed by 

confocal microscopy: larger aggregates were present in the samples containing ε-

polylysine (Figure 26h) than in those without ε-polylysine (Figure 26g).  Optical 

microscopy images also showed that large aggregates were formed in the presence 

of ε-polylysine (Figure 27). These results suggest that the ε-polylysine promoted 

the formation of large aggregates within the digesta formed due to lipid digestion.  A 

number of different types of particles may have been present in this digesta, 

including undigested oil droplets, micelles, vesicles, calcium salts of fatty acids, and 

insoluble biopolymer complexes.  Presumably, the cationic polypeptide was able to 

electrostatically interact with anionic molecular species in the digesta, such as bile 

salts, phospholipids, free fatty acids, and proteins, thereby promoting their 

aggregation.     

With Mucin: The presence of mucin in the emulsions had an appreciable 

impact on the microstructure of the digested emulsions.  The light scattering 

measurements indicated that the mean particle diameter of the digesta was around 

9 μm without ε-polylysine and around 32 μm with it.  These results were supported 
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by the confocal microscopy measurements, which also showed that much larger 

aggregates were observed when ε-polylysine was present (Figure 25h) than when 

it was absent (Figure 25d).  Optical microscopy images also confirmed that large 

aggregates were formed in the presence of ε-polylysine (Figure 27). Thus, the 

presence of the cationic polypeptide appeared to promote aggregation in both the 

presence and absence of mucin. 

 

Figure 27. Optical microscopy of the intestinal phase of the in vitro digestion 
samples containing ε-polylysine, with and without the addition of mucin in the 
mouth phase28. 

 

Comparison of the digested samples in the absence and presence of mucin 

(Figure 24, Figure 25, and Figure 26), suggest that mucin was able to partially 

suppress the formation of large aggregates in the small intestine phase.  The precise 

physicochemical origin of this effect is unknown, but it may be due to the 

interactions of the mucin with various components involved in the lipid digestion 

                                                        

28 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements,(2015) 
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process, including lipase, bile salts, phospholipids, free fatty acids, calcium ions, and 

polylysine.  Further studies are required to elucidate the potential role of mucin 

within the small intestine.    

5.4.2 Micro-Electrophoresis Measurements 

In this section, we characterized changes in the electrical characteristics of the 

emulsions with and without ε-polylysine as they passed through the various stages 

of the simulated gastrointestinal tract (Figure 28). The initial control emulsion had 

a slightly negative charge (≈ -9.1 mV), which can be attributed to anionic impurities 

in the surfactant or oil phase, since the droplets were stabilized by a non-ionic 

surfactant.  The addition of ε-polylysine to the control emulsion caused the charge to 

change from around -9.1 mV to around +1.3 mV. This change in electrical 

characteristics could have been caused by two phenomenon: (i) adsorption of 

cationic ε-polylysine molecules to the surfaces of the anionic oil droplets: (ii) 

contribution of the cationic ε-polylysine molecules to the light scattering signal 

detected by the particle electrophoresis instrument.  The particle size 

measurements indicated that the emulsions were stable to aggregation after 

addition of ε-polylysine (Figure 24), which suggests that if any biopolymer 

adsorption did occur, then it did not promote bridging flocculation. 
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Figure 28. ζ-Potential (mV) of the original nanoemulsions with and without ε-
polylysine prior to digestion and after each stage of digestion, with and 
without mucin29. 

 

5.4.2.1 Oral Phase 

The presence of mucin and ε-polylysine influenced the electrical 

characteristics of the oil droplets after exposure to the simulated oral fluids (Figure 

28). The control emulsions (no mucin or ε-polylysine) had fairly similar charges to 

the original emulsions because the pH was similar (around neutral).   In the absence 

of mucin, the emulsions containing ε-polylysine had a slightly lower negative charge 

                                                        

29 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements, (2015) 
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than those without ε-polylysine.  However, the net charge was no longer positive (as 

in the initial emulsions containing ε-polylysine), which suggests that the higher ionic 

strength of the simulated oral fluids may have promoted desorption of the cationic 

biopolymer from the droplet surfaces.  The incorporation of mucin led to a 

considerable decrease in the particle charge as compared to the samples with no 

mucin.  For example, in the absence of ε- -potentials were -24.0 and -

9.7 mV with and without mucin, respectively, while in the presence of ε-polylysine 

they were -12.4 and -7.9 mV, respectively.  The negatively charged mucin molecules 

may have contributed to the overall charge characteristics of the systems due to 

their ability to adsorb to droplet surfaces or form colloidal particles in the 

surrounding aqueous phase. 

5.4.2.2 Gastric Phase  

After exposure to the simulated gastric fluids, there was an appreciable change 

in the electrical characteristics of all the samples (Figure 28).  In the absence of 

-potential became +0.96 and +0.30 mV for the systems with and without 

ε-polylysine respectively, whereas in the presence of mucin the equivalent values 

were +5.3 and -2.6 mV.  The change in the particle charge of the samples when they 

moved from the mouth to the stomach phase is likely due to the low pH conditions 

causing protonation of certain ionizable groups (e.g., -COOH or -NH3+).  The systems 

containing ε-polylysine had a higher surface charge (more positive or less negative) 

than their counterparts containing no ε-polylysine, illustrating the strong effect that 

this cationic biopolymer contributes.  
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5.4.2.3 Small Intestine Phase 

The electrical charge on all of the samples became strongly negative after 

exposure to the small intestine conditions, but the magnitude of the negative charge 

depended on system composition (Figure 28).  In the absence of mucin, the ζ-

potential was -16.1 and -30. 7 mV with and without ε-polylysine, respectively, while 

in the presence of mucin it was -18.8 and -34.6 mV, respectively.  The overall 

negative charge on the particles in the different samples after exposure to small 

intestine conditions can be attributed to a number of factors.  First, the neutral pH 

conditions will promote deprotonation of many kinds of charged groups (e.g., -COO- 

and  -NH2).  Second, the addition of anionic bile salts and phospholipids will 

contribute to the overall negative charge. Third, the formation of anionic free fatty 

acids due to the digestion of the triacylglycerols will also contribute to the negative 

charge.  The difference in the charges between samples can be attributed to the 

influence of the cationic ε-polylysine and anionic mucin on the electrical 

characteristics of the particles present.  Samples containing ε-polylysine had a lower 

negative charge than the ones without ε-polylysine, which can be attributed to the 

positive charge associated with this biopolymer.  Interestingly, the samples 

containing mucin had fairly similar charges to the ones containing no mucin, which 

suggests that the mucin did not make a major contribution to the overall charge 

characteristics.   

5.4.3 In Vitro Digestion 

The main objective of this section was to assess the impact of mucin and ε-

polylysine on lipid digestion using an in vitro digestion method (pH stat).  
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Surprisingly, the free fatty acid (FFA) release profiles during lipid digestion very 

fairly similar for all of the systems studied (Figure 29 and Figure 30). The presence 

of mucin and ε-polylysine in the emulsions therefore did not appear to have a major  

 

Figure 29. Influence of the presence of mucin and addition of ε-PL on the 
percentage of free fatty acids (FFA%) released from nanoemulsions 
formulated with corn oil and Tween 20. The final lipid content in the digestion 
medium was 0.5%30. 

 

                                                        

30 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements,(2015) 
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influence on their lipid digestion, even though they did influence their 

microstructure and electrical properties during passage through the simulated GIT. 

These results are different from those previously reported in the literature, where it 

was shown that polylysine may inhibit lipid digestion or absorption (Kido, et al., 

2003; Cynthia Lyliam Lopez-Pena & David Julian McClements, 2015; Tsujita, 

Sumiyoshi, Takaku, Momsen, Lowe, & Brockman, 2003; Tsujita, Takaichi, Takaku, 

Aoyama, & Hiraki, 2006).  There may be a number of reasons for this difference.  

First, considerably higher ε-polylysine concentrations were utilized in many of the 

previous studies that have reported that this cationic biopolymer can inhibit 

digestion.  Second, different types of lipid-based delivery samples were tested (e.g., 

oil and emulsifier types), which may have impacted the ability of the ε-polylysine to 

interact with the lipid droplets.  Third, different analytical methods were used in 

different studies to monitor the effects of polylysine on lipid digestion.  Fourth, ε-

polylysine may demonstrate an anti-obesity effect due to its ability to inhibit fatty 

acid absorption, rather than lipid digestion.  

Despite the fact that we did not observe a significant difference (p < 0.05) in 

lipid digestion amongst the samples, we did notice some interesting differences in 

their physical appearance after digestion (Figure 30). The oil phase of these 

emulsions initially contained a highly lipophilic red dye (Nile Red), which therefore 

enables one to determine the location of the lipids after digestion.  Visual 

observation of the samples after digestion indicated that there were appreciable 

differences in their color, turbidity, and sedimentation. The samples without ε- 

polylysine (Figure 30B and C) had an aqueous phase that was a brighter shade of  
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 Figure 30. Appearance of emulsion samples with and without ε-polylysine 
prior to digestion (A and F, respectively) and samples after undergoing full 
digestion with mucin and no ε-polylysine (B), no mucin and no ε-polylysine 
(C), mucin and ε-polylysine (D), and no mucin with ε-polylysine (E)31.  

 

pink (corresponding to a higher lipid content), were more turbid, and formed a 

white sediment at the bottom of the tubes. Conversely, the samples with ε-

polylysine (Figure 30D and E) had a more translucent aqueous phase, had a thin 

ring of oil on their surface, and formed a bright pink sediment. The difference 

between the samples with and without mucin was mainly associated with the 

amount of precipitate formed.  Samples containing mucin (Figure 30B and D) had a 

smaller amount of sediment than those without mucin (Figure 30C and E). These 

results suggest that the inclusion of ε-polylysine might not prevent lipid digestion by 

lipase, but that it may inhibit lipid absorption in the small intestine by interacting 

electrostatically with bile salts and forming insoluble aggregates that sediment. The 

                                                        

31 (Lopez-Pena, Zheng, Sela, Xiao, Decker, and McClements,(2015)  
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thin layer of oil on the surface of samples containing ε-polylysine suggests that it 

may have promoted droplet coalescence, while the bright pink sediment in these 

samples suggests that the anionic mixed micelles may have formed electrostatic 

complexes with the cationic ε-polylysine, making them unavailable for absorption.  

5.5 Conclusions 

Overall, our results suggest that both mucin and ε-polylysine alter the 

microstructure and electrical characteristics of emulsified lipids under simulated 

gastrointestinal conditions.  However, they do not appear to have a major influence 

on the rate and extent of lipid digestion by lipase.   Visual observation of the 

distribution of an oil-soluble dye in the samples after digestion suggests that the 

bioavailability of any encapsulated lipophilic agents may be altered by the presence 

of polylysine.  Nevertheless, further work is required to determine if this effect is 

important for food-grade bioactive components, such as oil-soluble vitamins and 

nutraceuticals.   
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CHAPTER 6 

POTENTIAL IMPACT OF BIOPOLYMERS (ε–POLYLYSINE AND/OR PECTIN) ON 

GASTROINTESTINAL FATE OF FOODS: IN VITRO STUDY 

6.1 Abstract 

Food-grade biopolymers, such as proteins and polysaccharides, may impact 

the gastrointestinal fate of foods through various mechanisms.  In this study, we 

examined the influence of ε-polylysine (an antimicrobial) and pectin (a thickening 

agent) on the behavior of animal feed (full-fat and fat-free) in a simulated 

gastrointestinal tract that included mouth, stomach, and small intestine phases.  

Powdered biopolymers were incorporated into the animal feed in either individual 

or complexed form.  The presence of the biopolymers altered the microstructure 

and charge characteristics of the gastrointestinal contents.  In particular, the 

presence of pectin appeared to increase the rate and extent of lipid digestion, which 

may have been due to its ability to inhibit extensive protein aggregation.  Our results 

do not support the hypothesis that polylysine inhibits lipid digestion, as has been 

reported previously.  Overall, the results of this study may be useful for interpreting 

animal feeding studies of the influence of biopolymers on the gastrointestinal fate of 

foods. 

 

Keywords: Gastrointestinal; Polylysine; Pectin; In vitro study; Digestion 
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6.2 Introduction 

Foodborne diseases are a major cause of illness and death in the USA, and 

lead to substantial economic losses (Scharff, 2012). Consequently, the development 

of effective antimicrobial treatments to control pathogenic and spoilage organisms 

is a major concern of the food industry (Jay, 2005).  These antimicrobials undergo 

extensive examination by the Food and Drug Administration and must be approved 

as Generally Regarded As Safe (GRAS) before they can be utilized by the food 

industry (FDA, 2009). The requirements for this status rely on a science-based 

system (Alger, Maffini, Kulkarni, Bongard, & Neltner, 2013), which defines safety as 

“[having] a reasonable certainty in the minds of competent scientists that [a] 

substance is not harmful under the intended conditions of use” (FDA, 2015).  The 

most critical documentation presented to the FDA to assess the safety of food 

additives are toxicology studies, such as short-term toxicity tests, genetic toxicity 

tests, subchronic toxicity studies, chronic toxicity, carcinogenicity studies, 

reproduction studies, developmental toxicity studies, and metabolism and 

pharmacokinetic studies often conducted on rodents (FDA, 2014).  

Many consumers are concerned about the utilization of synthetic 

preservatives in food products, which has stimulated research into the development 

of effective, safe, all-natural antimicrobials (Gyawali & Ibrahim, 2014; Tajkarimi, 

Ibrahim, & Cliver, 2010). ε-Polylysine (ε-PL) is a GRAS natural antimicrobial that is 

effective against various Gram (+) and Gram (-) bacteria, yeasts, molds, and even 

some bacteriophages (S. S. Chang, Lu, Park, & Kang, 2010; FDA, 2011; Geornaras, 

Yoon, Belk, Smith, & Sofos, 2007; Shima, Matsuoka, Iwamoto, & Sakai, 1984; Yoshida 
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& Nagasawa, 2003), surpassing the antimicrobial range of more popular 

preservatives (FDA, 2011; Jay, 2005). However, this biopolymer’s highly cationic 

nature limits its widespread implementation in food products, as it has a high 

propensity to interact with anionic components and promote precipitation and 

sedimentation in food systems (Y. H. Chang, L. McLandsborough, & D. J. McClements, 

2011).  Additionally, polylysine has been reported to have a bitter and astringent 

mouthfeel, which limits its application in many foods (Kido, et al., 2003).  

Previous work has shown that electrostatic interactions between cationic ε-

PL and anionic pectin generates a negatively-charged complex that maintains the 

antimicrobial properties of ε-PL whilst minimizing any undesirable interactions 

with other anionic components that might be present in food matrices (Y. Chang, L. 

McLandsborough, & D. J. McClements, 2011a; Y. H. Chang, L. McLandsborough, & D. J. 

McClements, 2011; C. L. Lopez-Pena & McClements, 2014).  These antimicrobial 

complexes have been shown to perform successfully in model food systems (Y. 

Chang, McLandsborough, & McClements, 2012), and are therefore promising all-

natural alternatives to synthetic antimicrobials currently used.  Nevertheless, it is 

important that toxicological studies are conducted to assess the safety of these 

complexes prior to their incorporation in food systems.  For example, it is possible 

that these antimicrobial complexes may alter the normal digestion of 

macronutrients, or that they may reach the colon and alter the microbial microflora.   

The objective of this study was therefore to determine the potential influence 

of ε-PL-pectin complexes on the gastrointestinal fate of foods, and on the 

composition of the colonic microflora.  This aim will be achieved through the 
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implementation of a combination of in vitro and in in vivo studies, focusing on 

macronutrient digestion, metabolic markers in blood, abnormalities in body and 

organ weight, and impact on the gut microbiome.  In the current portion of the 

study, our objective was to obtain an understanding of the potential influence of the 

ε-PL-pectin complexes on the gastrointestinal fate of foods using an in vitro 

digestion model.  This work was carried out because previous studies have shown 

that polylysine may interfere with lipid digestion (Kido, et al., 2003).   Previous 

studies have usually used simple model systems to pass through simulated 

gastrointestinal tracts.  In this study, we utilized the same powdered samples that 

were used in the animal feeding studies so that the results of this in vitro study 

could be directly compared with the results of in vivo feeding studies. 

6.3 Materials And Methods 

Maltodextrin DE 18 (Maltrin® M180) was provided by Grain Processing 

Corporation (Muscatine, IA); ε-polylysine was obtained from Wilshire Technologies, 

Inc.; high-methoxyl pectin was donated by TIC Gums (White Marsh, MD); high-fat 

mixed lipid diet (Dyet #180605) and its fat-free equivalent were acquired from 

Dyets, Inc. (Bethlehem, PA).  

6.3.1 Powder Production And Characterization 

In this section, the methods used to convert biopolymer solutions into 

powders that could be incorporated into animal feed are described. 
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6.3.1.1 Liquid Feed Preparation 

Four different solutions were prepared to be subjected to spray drying: 20% 

w/w maltodextrin; 0.1% w/w maltodextrin - 1% w/w pectin (MR 1:10); 0.1% w/w 

maltodextrin – 1% w/w pectin – 0.05% w/w ε-polylysine (MR 10:20:1); and 20% 

w/w maltodextrin – 2% w/w ε-polylysine (MR 10:1). The maltodextrin and ε-

polylysine solutions were prepared by dispersing the corresponding amounts of 

reagents in double distilled water.  Solutions of HCl and NaOH at varying 

concentrations were used to adjust the pH to a final value of 3.5. Pectin stock 

solutions (2% w/w) were prepared by dispersing powdered high methoxyl pectin 

into hot double-distilled water, and then stirring at 550 rpm under heated 

conditions (37 °C) for at least 3 hours. The solution was then allowed to stir 

overnight at room temperature to ensure full dispersion, adjusted to pH 3.5, and 

brought to the adequate volume the next day. Corresponding volumes of the 

maltodextrin or maltodextrin-ε-polylysine solutions were combined with the pectin 

stock solution, and thoroughly stirred to ensure homogeneity.  

6.3.1.2  Spray Drying Conditions 

The liquid feeds were subjected to spray drying using two different spray 

dryers. Maltodextrin (MD), maltodextrin-ε-polylysine (MD+PL), and some of the 

maltodextrin-pectin (MD+P) and maltodextrin-pectin-ε-polylysine (MD+P+PL) were 

processed in a Büchi Mini Spray Dryer B-290 (Büchi Laboratorium-Tecnik, Flawil, 

Switzerland) under the following experimental conditions: inlet temperature 120 

°C, outlet temperature 67-72 °C, Q-flow 40, pump flow 30% (spray flow feed rate 9 

ml/min), aspirator 100%.  Due to the large quantities of feed that needed to be 
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processed, large volumes of the solutions containing pectin were processed using a 

Niro Atomizer Versatile Utility Spray Dryer (NGEA Process Engineering A/S, Søborg, 

Denmark). The inlet temperature was 120 °C, and the flow rate 5.55 l/hr. Samples 

were stored in a desiccator after production.  

6.3.1.3 Powders Characterization 

Prior to use, the moisture content of the powders was determined following 

the standard gravimetric method described by the International Dairy Federation 

(1993) and the (FAO, 1997). The procedure consisted of weighing 1 to 3 g of the 

sample into previously dried aluminum capsules, and storing the sample in an oven 

at 102 ± 2 °C for 2 hours. The samples were stored in a desiccator for 30 min to 

allow them to cool, and were then weighed. The samples were then returned to the 

oven for 1 hour for further drying, and weighed after spending 30 min in the 

desiccator.  This process was repeated until the difference between measurements 

was 0.5 mg or less. The moisture content (% w/w) was obtained through the 

following formula: 

%𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 =
100 × (𝑀1 −𝑀2)

𝑀1 −𝑀
 

where: 

 M is the mass of the empty capsule (g); M1 is the initial mass of the capsule 

with the sample (g); M2 is the final mass of the capsule with sample after drying (g).  

6.3.2 In Vitro Digestions 

In vitro digestions including oral, gastric, and intestinal simulations were 

adapted from the method described by Y. Li, Hu, and McClements (2011) and C.L. 
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Lopez-Pena and D.J. McClements (2015), with some modifications. Stock solutions 

for all phases three were prepared with the specifications described by C.L. Lopez-

Pena and D.J. McClements (2015): (i) artificial saliva containing sodium chloride 

(Fisher Scientific, Hampton, New Hampshire), ammonium nitrate (Sigma Aldrich, St. 

Louis, Missouri), potassium phosphate monobasic (Fisher Scientific, Hampton, New 

Hampshire), potassium chloride (Fisher Scientific, Hampton, New Hampshire), 

potassium citrate (Sigma Aldrich, St. Louis Missouri), uric acid sodium salt (Sigma 

Aldrich, St. Louis, Missouri), Urea (Fluka, St. Louis, Missouri), and lactic acid sodium 

salt (Sigma Aldrich, St. Louis, Missouri) dissolved in double distilled water; (ii) 

simulated gastric fluids composed of sodium chloride (Fisher Scientific, Hampton, 

New Hampshire) and hydrochloric acid (Sigma Aldrich, St. Louis, Missouri) 

dissolved in distilled water; and (iii) simulated intestinal juices comprised of  

calcium chloride (Fisher Scientific, Hampton, New Hampshire) and sodium chloride 

(Sigma Aldrich, St. Louis, Missouri) dissolved in double distilled water. The mouth 

phase required that a mucin solution be prepared by dispersing 0.6 g mucin Type II 

(Sigma Aldrich, St. Louis, Missouri) in 20 ml artificial saliva stock solution, stirred 

overnight. For the gastric phase, 0.064 g pepsin (Sigma Aldrich, St. Louis, Missouri) 

were dissolved in 20 ml simulated gastric fluids, stirred for 30 minutes and used 

immediately after production. For the intestinal phase, 0.1875 g bile salts (Sigma 

Aldrich, St. Louis, Missouri) was stirred overnight in 4 ml 5mM phosphate buffer 

[sodium phosphate monobasic (Sigma Aldrich, St. Louis, Missouri) and sodium 

phosphate dibasic (Thermo Fisher Scientific, Waltham, MA)] pH 7; and 0.06 g lipase 
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(Sigma Aldrich, St. Louis, Missouri) was dispersed in 5 mM phosphate buffer pH 7, 

stirring for 30 minutes and using immediately after production. 

Prior to conducting in vitro digestions, adequate amounts of spray-dried 

powders (0.052 g MD, 0.061 g MD+PL, 0.170 g MD+P, or 0.176 g MD+P+PL) were 

combined with 4.04 g full fat animal feed or 3.24 g fat-free animal feed and 20 ml 5 

mM phosphate buffer (pH 7), and stirred in a water bath at 37 °C for at least 1 hour. 

The powders containing pectin (MD+P and MD+P+PL) were allowed to stir on a hot 

plate with the surface heated to 37 °C overnight prior to mixing with the animal 

feed. Table 2 presents the composition of the animal feed utilized, as reported by 

Dyets, Inc.  

As described by C.L. Lopez-Pena and D.J. McClements (2015), the mouth phase 

of the in vitro digestion was initiated by mixing 20 ml of the prepared powder/feed 

solution sample with 20 ml mucin solution, adjusting the pH was adjusted to 6.8 

utilizing solutions of hydrochloric acid and/or sodium hydroxide at different 

concentrations. The resulting solution was placed in a shaking incubator (Excella 

E24 Incubator Shaker Series, New Brunswick Scientific, Enfield, CT) at 37 °C, 100 

rpm for 10 minutes to simulate oral digestion. Upon completion of the first stage, 20 

ml of the oral digesta was combined with 20 ml fresh pepsin solution and the pH 

was adjusted to 2.5. The solution was reintroduced in the shaking incubator for 2 

hours. 

The small intestine phase focuses on quantifying the digestion of any 

triacylglycerols present in the sample by the action of lipase. In order to achieve  
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Table 2. Composition of animal feed Dyet #180605 provided by Dyets, Inc. 
(Bethlehem, PA) 

Component %w/w Kcal/kg 

Casein 23.5 841.3 

Cornstarch 35.7 1285.2 

Dextrose 9.02 328.33 

DL-Methionine 0.35 14 

Cellulose 5.9 0 

Lipids32 20 1800 

Beef tallow 3.2  

Lard 2  

Anhydrous Milkfat 2.4  

Soybean Oil 6  

Peanut Oil 1  

Corn Oil 5.4  

Mineral Mix #200000 4.11 19.32 

Vitamin Mix $300050 1.18 46.26 

Choline Bitartrate 0.24 0 

   

TOTAL 100 4334.40 

 

                                                        

32 (Reddy, 2006) 
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this, an automated pH Stat titration method (857 Titrando, Metrohm USA, 

Riverview, Florida)was utilized: as the sample is exposed to bile salts, simulated 

intestinal juices, and lipase, free fatty acids (FFA) are released from triacylglycerols 

contained in the lipidic portion of the sample. Whilst FFAs are released and generate 

a decrease in pH, the instrument identifies any drops in pH and automatically 

titrates sodium hydroxide at a specific concentration into the vessel containing the 

sample, maintaining the pH at 7. The instrument records the amount of sodium 

hydroxide titrated throughout the duration of the digestion, and the percentage of 

FFA released can be calculated utilizing the equation below (Y. Li, Hu, & 

McClements, 2011): 

%𝐹𝐹𝐴 = 100 ×
𝑉𝑁𝑎𝑂𝐻 ×𝑚𝑁𝑎𝑂𝐻 ×𝑚𝑙𝑖𝑝𝑖𝑑

𝑤𝑙𝑖𝑝𝑖𝑑 × 2
 

Where %FFA is the percentage of released FFAs; VNaOH is the volume of titrant in 

liters; mNaOH is the molarity of the sodium hydroxide solution used; Mlipid is the 

molecular weight of the oil used; and wlipid is the weight of the oil in the digestion 

system in grams. Due to the complexity of the lipid phase, we estimated the %FFA 

released based on the molecular weight of corn oil.  

6.3.2.1 Particle Characterization 

All samples before and after each stage of digestion were characterized by 

measuring particle size (Malvern Mastersizer 2000, Malvern Instruments, 

-potential (Malvern Zetasizer ZS, Malvern 

Instruments, Worcestershire, United Kingdom), as well as by conducting optical and 

confocal microscopy (Nikon D-Eclipse C1 80i, Nikon, Melville, NY). Samples were 



 

 

1
2

1
 

121 

maintained at approximately 37 °C between measurements to avoid any changes in 

structure due to the potential solidification of the fat phase, and measurements 

were conducted at approximately 37 °C. The refractive index of the liquid fat was 

determined to be 1.471 utilizing a refractometer (Abbe 3L, Bausch & Lomb, 

Rochester, NY -

potential.  

6.3.3 Data Analysis 

All experiments were performed at least in triplicate. Statistical significance 

between means were determined through analysis of variance (ANOVA) following 

Tukey pairwise comparisons with a confidence interval of 95% with Minitab® 

17.1.0 (Minitab Inc., State College, Pennsylvania). 

6.4 Results And Discussion 

The main purpose of this study was to understand the potential gastrointestinal 

fate of antimicrobial biopolymer complexes.  We therefore tested the behavior of 

four samples: Control (maltodextrin only); Electrostatic complex (polylysine, pectin, 

and maltodextrin); Polylysine (polylysine and maltodextrin); Pectin (pectin and 

maltodextrin).  Experiments were carried out using a regular animal feed (full fat), 

and the same system without fat, so as to determine the role of the biopolymer 

complexes on lipid digestion. 

6.4.1 Sample Preparation And Characterization 

The amount of each biopolymer powder to be added to the animal feed was 

calculated based on the estimated annual average consumption of soft drinks in the 
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United States per capita (Mintel, 2014), considering that carbonated beverages 

would contain 0.025 %w/w ε-polylysine (FDA, 2011), and therefore 0.5 %w/w high 

methoxyl pectin (Y. Chang, L. McLandsborough, & D. J. McClements, 2011a; Y. Chang, 

McLandsborough, & McClements, 2012; Y. H. Chang, L. McLandsborough, & D. J. 

McClements, 2011; C. L. Lopez-Pena & McClements, 2014). Soft drinks were selected 

because this is one of the applications where polylysine may find utilization as an 

antimicrobial agent.  The daily dosage (g/kg body weight) of the powdered samples 

fed to the mice was based on the average body weight of Americans (U.S. 

Department of Health and Human (Services, 2008), which was in turn used to 

calculate the exposure levels for the mice used in a subchronic toxicology analysis 

for 13 weeks. The amounts utilized for this experiment correspond to the amount of 

each treatment powder added during the last week of the in vivo portion of the 

toxicology analysis.  

Due to possible differences in water content generated by variations during 

processing as well as due to the diverse water-retention capabilities of the 

components of the powders, it was necessary to analyze the powders’ moisture 

content prior to use. The amounts to be incorporated were then determined on a 

dry weight basis of the powders.  The samples containing pectin had a slightly 

higher moisture content (4.0%) than those without pectin (3.6%) (Table 3).   This 

information was taken into account when calculating the amount of biopolymers 

added to each diet. 
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Table 3. Moisture content of the produced powders for week 13. 

Powder Composition Moisture Content (w/w%) 

MD 3.61 ± 1.12% 

MD+PL 3.60 ± 0.28% 

MD+P 4.12 ±0.16% 

MD+P+PL 3.97 ±0.16% 

 

6.4.2 Particle Size Analysis, Micro-Electrophoresis, And Confocal Microscopy 

The particle size and surface charge of samples containing different types of 

biopolymers (MD, MD+PL, MD+P, and MD+P+PL) were analyzed before and after 

each stage of the in vitro digestion.  Experiments were carried out using animal feed 

that contained fat (“full-fat”) and no-fat (“fat-free) to determine the influence of the 

biopolymers on lipid digestion and gastrointestinal fate.   

6.4.2.1 Initial Conditions 

Initially, both the full-fat (d43 = 35 to 50 μm) and fat-free (d43 = 88 to 152 μm) 

animal feed contained relatively large particles for all samples (Figure 31 and 

Figure 32). The optical and confocal fluorescence microscopy images also indicated 

that these samples contained large particles of various sizes and shapes (Figure 33 

and Figure 34).  Based on the known compositions of the animal feeds, these 

particles were probably cellulose fibers, starch granules, protein aggregates, and fat 

globules. It is possible that cationic polylysine promoted aggregation of anionic 

components within the system (C. L. Lopez-Pena & McClements, 2014), while 
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anionic pectin promoted aggregation of cationic components (Matalanis & 

McClements, 2012).  Nevertheless, it is difficult to unambiguously determine the 

role of different components in the system from the light scattering measurements 

or microscopy images.  The lower mean particle size in the full-fat systems suggest 

that the fat may have been able to inhibit some particle aggregation. The full-fat 

systems all had relatively high anionic surface charges (-21 to -28 mV) prior to  

 

Figure 31. Influence of addition of pectin (P) and/or ε-polylysine (PL) on 
particle size of fat-free animal feed containing casein, maltodextrin, 
cornstarch, dextrose, DL-methionine, cellulose, vitamins, minerals, choline 
bitartrate, beef tallow, lard, anhydrous milk fat, soybean oil, peanut oil, and 
corn oil during in vitro digestion33. 

                                                        

33 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 32. Influence of addition of pectin (P) and/or ε-polylysine (PL) on 
particle size of fat-free animal feed containing casein, maltodextrin, 
cornstarch, dextrose, DL-methionine, cellulose, vitamins, minerals, and 
choline bitartrate during in vitro digestion33. 

 

digestion (Figure 36).  The fat-free systems (Figure 37) were also negatively 

charged, but the magnitude of the charge was smaller than the full-fat systems (-16 

to -19 mV).  This may have been because protein-coated fat droplets in the full-fat 

systems made a large contribution to the overall light scattering signal used to 

measure the ζ-potential.  The addition of polylysine alone (which should be 

positively charged) did not have a major impact on the overall charge 

characteristics of the samples, which may have been because of the relatively high 

concentration of anionic species in the animal feed (e.g., protein). 
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Figure 33. Optical microscopy demonstrating the influence of addition of 
pectin (P) and/or ε-polylysine (PL) on particle structure of full-fat animal feed 
containing casein, maltodextrin, cornstarch, dextrose, DL-methionine, 
cellulose, vitamins, minerals, choline bitartrate, beef tallow, lard, anhydrous 
milk fat, soybean oil, peanut oil, and corn oil during in vitro digestion34. 

 

 

 

                                                        

34 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 34. Confocal microscopy demonstrating the influence of addition of 
pectin (P) and/or ε-polylysine (PL) on particle structure of full fat animal feed 
containing casein, maltodextrin, cornstarch, dextrose, DL-methionine, 
cellulose, vitamins, minerals, choline bitartrate, beef tallow, lard, anhydrous 
milk fat, soybean oil, peanut oil, and corn oil during in vitro digestion35. 

 

                                                        

35 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 35. Optical microscopy demonstrating the influence of addition of 
pectin (P) and/or ε-polylysine (PL) on particle structure of fat-free animal 
feed containing casein, maltodextrin, cornstarch, dextrose, DL-methionine, 
cellulose, vitamins, minerals, and choline bitartrate during in vitro digestion36. 

 

 

                                                        

36 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 36. Influence of addition of pectin (P) and/or ε-polylysine (PL) on 
particle charge of fat-free animal feed containing casein, maltodextrin, 
cornstarch, dextrose, DL-methionine, cellulose, vitamins, minerals, choline 
bitartrate, beef tallow, lard, anhydrous milk fat, soybean oil, peanut oil, and 
corn oil during in vitro digestion37. 

                                                        

37 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 37. Influence of addition of pectin (P) and/or ε-polylysine (PL) on 
particle charge of fat-free animal feed containing casein, maltodextrin, 
cornstarch, dextrose, DL-methionine, cellulose, vitamins, minerals, and 
choline bitartrate during in vitro digestion37. 

 

6.4.2.2 Oral Digestion 

There were appreciable changes in the mean particle sizes and 

microstructures of all of the samples after exposure to the oral phase of the in vitro 

gastrointestinal model (Figures 1 to 4).  These effects can be attributed to dilution of 

the initial samples with simulated saliva fluids. The mean particle size of the full fat 

samples did not change appreciably after dilution, which suggested that the large 

particles present in the initial sample remained intact (Figure 31).  On the other 

hand, there was an appreciable decrease in the mean particle size of the fat-free 
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samples, which suggested that simulated oral conditions promoted some 

breakdown of aggregates in these samples (Figure 32).  For example, the change in 

pH or ionic strength, the presence of mucin, or the application of shear forces may 

have led to some aggregate disruption.  

Optical and confocal microscopy of the full fat systems (Figure 33 and 

Figure 34) showed that there was an increase in the space between particles, which 

can be at least partially attributed to simple dilution effects.  In addition, there was 

evidence of extensive particle flocculation and phase separation in some of the 

systems.  These effects may have been due to bridging or depletion flocculation by 

the biopolymers, but again it is difficult to unambiguously identify the origin of 

these effects from microscopy images.  Again, this highlights one of the challenges of 

studying complex food matrices using simulated GIT methods. 

The electrical charge on the full-fat systems remained highly negative after 

exposure of the samples to oral conditions, which can be attributed to the fact that 

the pH was still around neutral and so the proteins will be negatively charged.  In 

addition, the mucin molecules in the simulated saliva are also negatively charged.  

The electrical charge on the fat-free systems was again less negative that that on the 

full-fat systems, which suggests that the fat droplets played a role in determining the 

overall electrical characteristics of the systems.   

6.4.2.3 Gastric Conditions 

The mean particle diameter remained relatively constant when both the full-

fat and fat-free samples moved from the oral to the gastric phase (Figure 31and 

Figure 32), which suggested that at least a population of the particles remained 



 

 

1
3

2
 

132 

intact.  The gastric phase contained pepsin, and therefore one would have expected 

some degradation of the proteins in the animal feed.  This result suggests that 

indigestible particles (probably cellulose fibers) mainly contributed to the light 

scattering signal used to determine the particle size.  The observed decrease in 

particle concentration may also be attributed to the simple fact that the samples 

were diluted (1:1) when they moved from the mouth to stomach phases.        

In all the samples, the ζ-potential was close to zero after exposure to gastric 

conditions, which can be attributed to the change in the electrical characteristics of 

the proteins and peptides at the low pH of the gastric environment.  The electrical 

charge on proteins (such as the caseinate in the animal feed) moves from negative at 

high pH to positive at low pH with a point of zero charge near the isoelectric point 

(pI ≈ 5).  Presumably, the electrical charge did not become strongly positive in our 

samples due to the presence of the anionic mucin molecules that would form 

electrostatic complexes with any cationic proteins, thereby reducing the net charge 

of the complexes.    

6.4.2.4 Intestinal Conditions 

After exposure to the intestinal phase of the GIT model, there was an 

appreciable increase in the mean particle size measured by light scattering (Figure 

31 and Figure 32) and evidence of large aggregates in the microscopy images 

(Figure 33, Figure 34, and Figure 35) in all of the samples.  This result suggests 

that some components in the simulated intestinal fluids promoted particle growth.  

In the full-fat samples, one would expect the lipase to interact with the lipid phase 

and promote the formation of lipid digestion products, such as free fatty acids and 
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monoacylglycerols.  These lipid digestion products form micelles and vesicles 

(collectively known as “mixed micelles”) in the intestinal fluids, which may account 

for the large lipid-rich objects observed in some of the confocal fluorescent 

microscopy images (Figure 34). In addition, the bile salts in the simulated intestinal 

fluids may have interacted with some of the components in the animal feed and 

caused particle aggregation.  The confocal microscopy images also suggested that 

there were some differences in the distribution of the lipids in the samples after 

exposure to simulated intestinal conditions (Figure 34). There appeared to be 

relatively large domains that contained all of the lipids in the samples containing no 

pectin (MD and MD+PL), but the lipids appeared to be more evenly distributed 

throughout the samples containing pectin (MD+P and MD+P+PL).   This result 

suggests that the pectin may have altered the ability of the lipase to interact with the 

lipids in the animal feed.  

It is interesting to note that the vast majority of starch granules in all the full-

fat and fat-free systems were digested (Figure 33 and Figure 35), which is likely 

due to the presence of amylase activity in the enzyme extracts used. 

The particle charge for all systems became markedly more negative after 

exposure to intestinal conditions, which can be attributed to the presence of various 

anionic species after digestion, such as bile salts, free fatty acids, and peptides. The 

negative charge was higher in the full-fat samples than in the fat-free samples, 

which may have been due to the generation of free fatty acids due to lipid digestion.   
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6.3.3 In Vitro Digestion 

Previous studies suggest that incorporation of dietary fibers (such as 

cellulose and pectin) into animal feed may cause incomplete digestion of 

macronutrients in the stomach, thereby causing an increase in the amount of non-

digested protein or fat in the small intestine (Bergner, Simon, Partridge, & Bergner, 

1985; Howard & Mahoney, 1989; Shah, Atallah, Mahoney, & Pellett, 1982; 

Southgat.Da & Durnin, 1970).  We therefore used pH-stat measurements on full-fat 

and fat-free animal feeds to determine the influence of digestive enzymes on their 

hydrolysis (Figure 28).  Measurements were run on the MD, MD+P, MD+PL, and 

MD+P+PL samples to establish the influence of biopolymer type and complexation 

on digestion.   

For all fat-free samples, there was an appreciable increase in the amount of 

alkali that had to be titrated into the reaction vessel to maintain a constant neutral 

pH, which can be attributed to the breakdown of peptide bonds by the proteases in 

the simulated GIT fluids.  The amount of alkali required to neutralize the samples 

was higher for all the full-fat samples, which is due to the conversion of the 

triacylglycerol molecules into free fatty acids by lipase. 

The potential influence of the biopolymers on lipid digestion was compared by 

calculating the amount of free fatty acids released after the pH-stat profile for the 

fat-free animal feed was subtracted from the full-fat one (Figure 39). Interestingly, 

the rate and extent of lipid digestion appeared to be higher in the samples 

containing pectin (MD+P and MD+P+PL) than the ones containing no pectin (MD 
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Figure 38. Influence of the presence (full fat) or absence of fat (fat-free) on the 
amount (ml) of 0.1N NaOH solution titrated into the (A) maltodextrin (MD), 
(B) maltodextrin and ε-polylysine (MD+PL), (C) maltodextrin and pectin 
(MD+P), and (D) maltodextrin, pectin, and ε-polylysine samples during 
simulated intestinal digestion38.

                                                        

38 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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Figure 39. Influence of addition of pectin (P) and/or ε-polylysine (PL) on the percentage if free fatty acids (%FFA) 
released from animal feed containing casein, maltodextrin, cornstarch, dextrose, DL-methionine, cellulose, vitamins, 
minerals, choline bitartrate, beef tallow, lard, anhydrous milk fat, soybean oil, peanut oil, and corn oil during 
simulated intestinal digestion. The final lipid content in the digestion medium was 0.5%39. 

                                                        

39 (Lopez-Pena, Song, Xiao, and McClements, (2015) 
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and MD+PL).  These results suggest that the presence of pectin may have facilitated 

lipid digestion.  One potential mechanism is that the pectin inhibited extensive 

aggregation of the protein in the stomach and small intestine, thereby allowing the 

lipase to access the surfaces of the lipid phase more easily, as has been reported in 

previous studies (Espinal-Ruiz, Parada-Alfonso, Restrepo-Sanchez, Narvaez-Cuenca, 

& McClements, 2014).  Indeed, the confocal fluorescence microscopy images suggest 

that the pectin may have led to a more even distribution of lipids in the samples 

after exposure to the stomach and intestinal phases (Figure 34).       

6.4 Conclusion 

The in vitro portion of this study described here suggests that the presence of ε-

polylysine did not have a significant effect on the rate or extent of lipid digestion 

when compared to a control.  On the other hand, the presence of pectin, delivered 

either alone or as a complex with polylysine, appeared to promote lipid digestion.  

The origin of this effect was attributed to the ability of pectin to prevent extensive 

protein aggregation in the stomach and small intestine, thereby allowing the lipase 

to more easily access the lipid phase.    In order to more fully assess the potential 

gastrointestinal fate of these biopolymers, in vivo models focusing on the absorption 

and metabolism of fat have been conducted (reported elsewhere).  
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CHAPTER 7 

CONCLUSION 

The overall goal of this work was to first assess the stability of antimicrobial 

electrostatic polylysine-pectin complexes (Y. H. Chang, L. McLandsborough, & D. J. 

McClements, 2011) in the presence of more anionic biopolymers, to then identify 

any potential toxicology stemming from its habitual consumption via in vitro and in 

vivo analyses. Special attention was given to the lipase-inhibiting properties of 

polylysine.  

Results showed that although the interactions between polylysine and 

carrageenan were stronger than those between pectin and polylysine, it was the 

order in which the anionic biopolymers interacted with polylysine that would 

determine which complexes were formed, more so than the strength of their 

electrostatic interaction. That is, pectin-polylysine complexes formed prior to 

exposure to carrageenan were relatively stable, with seemingly only a small amount 

of polylysine being displaced to interact with carrageenan. These results suggest 

that the antimicrobial polylysine-pectin complexes may be successfully 

incorporated into food systems with strongly anionic food components. It is 

important to note, however, that interactions may occur with other components 

present in a food matrix. Thus, its is essential for food manufacturers to carefully 

formulate their products taking into account the various kinds of molecular 

interactions that can occur in complex multicomponent food systems when 

considering the implementation of this antimicrobial complex.  
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 In order to fully understand and assess any possible toxicology stemming 

from the incorporation of polylysine-pectin complexes in food, it was essential to 

first study the behavior of polylysine in the digestive tract, focusing on its ability to 

interact electrostatically with bile salts and inhibit lipase. From this work, a few 

observations were reached: 

a. When only focusing on simulations in the small intestine in vitro, the 

surfactant type utilized to stabilize corn oil emulsion systems had a strong 

impact on polylysine’s “anti-obesity” properties in conditions with excess oil 

(2.5%w/w), when 2ppm polylysine was utilized. Negatively charged 

surfactants (quillaja saponins) seemed to compete with bile salts to interact 

with polylysine, thus limiting the inhibition on lipase’s enzymatic activity as 

compared to a non-ionic Tween 20-stabilized corn oil emulsions when there.  

b.  When no excess oil (0.5%w/w) was present in the intestinal tract, there did 

not seem to be an inhibitory effect of polylysine (200 ppm) on lipase activity. 

However, interaction of polylysine with mixed micelles containing bile salts 

and free fatty acids promoted their sedimentation, and seemed to decrease 

the amount of solubilized free fatty acids in the aqueous phase. This 

phenomenon may have important implications on the absorption and 

metabolism of lipids, particularly on the bioaccessibility of lipophilic 

nutrients and nutraceuticals. 

c. Both polylysine and the anionic glycoproteins contained in mucin seemed to 

alter the microstructure and electrical characteristics of emulsified lipids in 

vitro.  
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Based on the observations mentioned above, further investigation is 

required to determine whether incorporating polylysine in food system systems 

may indeed decrease the bioaccessibility of lipophilic compounds. Additional work 

is currently underway to assess the impact of polylysine on the bioaccessibility of 

fat-soluble vitamins.  

 Subchronic toxicological studies performed on mice were designed to test 

any toxicological effect of the habitual consumption of pectin-polylysine complexes 

in dosages 100 times higher than their recommended use. Animal feed containing 

cellulose, different types of fat, vitamins, minerals, starch, and casein were 

supplemented with body weight-based amounts of spray dried pectin-polylysine, 

pectin, polylysine, or only maltodextrin powders. The in vitro portion of the study 

suggested that pectin had a significant effect on lipid digestion as compared to the 

control, but not polylysine. However, it is possible that polylysine may still exert an 

impact on the solubilization of mixed micelles containing free fatty acids regardless 

of not inhibiting lipid digestion, as mentioned in previous sections. Additional 

information from the in vivo study regarding body weight, organ size and weight, 

blood markers, fecal analysis, and changes in the gut microbiome are required to 

fully assess any toxicological and metabolic effects stemming from the habitual 

consumption of pectin-polylysine complexes. These studies are currently underway. 
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