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ABSTRACT 

FABRIC AND SOFT MATERIALS COMPOSITES  
FOR BIO-INSPIRED ADHESIVES AND PROSTHETICS 

 
MAY 2015 

DANIEL RUDOLF KING, B.S., PENNSYLVANIA STATE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

DIRECTED BY: PROFESSOR ALFRED J. CROSBY 

 

Adhesives have long been designed around a trade-off between adhesive strength and 

releasability. Within this spectrum, specialized materials have been designed to maximize adhesive 

ability for a given application. To overcome this trade-off, a new adhesive paradigm is required. 

Biologically inspired adhesives have been of interest over the past two decades, because organisms 

are seen using their adhesive pads to achieve high adhesive forces, while maintaining releasability 

and reusability. Many biological organisms possess microscopic fibrillar features on their toe-pads, 

which enables climbing. While much effort has been spent attempting to mimic these features, 

ultimately high force capacities have not been achieved. Recently, a new framework has been 

introduced which states that a specific surface morphology is not necessary for creating high force 

capacity, easy release adhesives. This framework states that for shear adhesives to achieve high 

force capacity, the ratio of contact area to compliance in the loading direction, A/C, must be 

increased. In this thesis we focus on expanding this framework to quantitatively understand both 

compliance and area, for a wide range of adhesive materials and geometries, and across a wide 

range of substrates with varying roughness.  To increase the functionality of high strength, reusable 

adhesives, we have developed a new adhesive configuration which supports normal loading as well 

as shear loading. Finally, we expand to a new field, biological prosthetic materials, and develop 

fabric-based composites which are extremely tough, strong, and flexible, while containing water.   



x 

The foundation of the work presented in this thesis is based upon an analytical model 

developed to calculate the compliance of fabricated adhesives (Chapter 2). Combining this 

knowledge with the previously developed scaling theory allows a high degree of accuracy in 

calculating force capacity.  While this method works well for smooth surfaces such as glass, it 

assumes that the nominal pad area is equal to the true area of contact, which is not true on rough 

surfaces.  A model is developed to calculate the true area of contact based on surface roughness 

and adhesive materials properties (Chapter 3). The results of this model demonstrate that there is 

an optimum pad modulus for any given surface roughness to achieve maximum stress capacity. In 

some situations, high strength and easy release adhesives are required in normal loading situations.  

We develop a new adhesive configuration which enables shear adhesives to support normal loads 

(Chapter 4).  This method results in a six-fold increase in normal force capacity. This provides 

tolerance in adhesives applications, greatly improving the commercial utility of these adhesives. 

Finally, we use techniques learned from the fabrication of adhesives to develop composites from 

polyampholyte gels and glass fiber fabrics (Chapter 5). These materials exhibit enhanced properties 

over the controls, including extremely high toughness and strength, while maintaining flexibility 

and containing water.  A general mechanism is explained that results in these improved properties, 

opening up opportunities to develop enhanced composites from fabrics and soft materials in other 

fields. 

  



xi 

TABLE OF CONTENTS 

 Page 

ACKNOWLEDGEMENTS .................................................................................................v 
ABSTRACT ...................................................................................................................... ix 
LIST OF TABLES .............................................................................................................xv 
LIST OF FIGURES ......................................................................................................... xvi 
 
CHAPTER 
1.  INTRODUCTION .........................................................................................................1 

 
  Introduction to Adhesives .................................................................................... 1 
  Lessons from Nature ............................................................................................ 2 
  Adhesion Mechanisms ......................................................................................... 6 

 
1.3.1  Pressure Sensitive Adhesives ........................................................................ 6 
1.3.2  Fibrillar Gecko-Inspired Adhesives .............................................................. 9 
1.3.3  Looking Beyond Fibril-based Adhesives .................................................... 10 

 
  Scaling of Adhesives in Nature .......................................................................... 13 
  Fibril-less Gecko Inspired Adhesives ................................................................ 14 
  Dissertation Organization ................................................................................... 18 

 
2.  OPTIMIZING ADHESIVE DESIGN BY UNDERSTANDING COMPLIANCE .....21 

 
  Introduction ........................................................................................................ 21 
  Background ........................................................................................................ 21 
  Approach ............................................................................................................ 22 

 
2.3.1  Deriving a Total Compliance Model .......................................................... 23 

 
  Experimental ...................................................................................................... 28 

 
2.4.1  Materials ..................................................................................................... 28 
2.4.2  Fabrication .................................................................................................. 29 
2.4.3  Testing......................................................................................................... 30 

 
  Results ................................................................................................................ 31 

 
2.5.1  Verifying Equation 2.14.............................................................................. 31 
2.5.2  Importance of Shape ................................................................................... 35 

 
2.5.2.1  Shape Ratio .......................................................................................... 35 
2.5.2.2  Calculating Compliance of Non-rectangle Adhesives ......................... 40 

 



xii 

2.5.3  Importance of the Tendon ........................................................................... 41 
 
2.5.3.1  Tendon Length ..................................................................................... 42 
2.5.3.2  Tendon Width ...................................................................................... 44 

 
2.5.4  Elastomer and Fabric Modulus ................................................................... 45 

 
  Discussion .......................................................................................................... 47 
  Conclusion .......................................................................................................... 48 
  Acknowledgements ............................................................................................ 49 

 
3.  CREATING GECKO-LIKE ADHESIVES FOR “REAL WORLD” SURFACES ....50 

 
  Introduction ........................................................................................................ 50 
  Background ........................................................................................................ 50 
  Approach ............................................................................................................ 53 
  Experimental ...................................................................................................... 55 

 
3.4.1  Materials ..................................................................................................... 55 
3.4.2  Adhesive Fabrication .................................................................................. 56 
3.4.3  Substrate Preparation .................................................................................. 57 
3.4.4  Testing......................................................................................................... 57 
3.4.5  Animal Care ................................................................................................ 58 

 
  Results ................................................................................................................ 58 

 
3.5.1  Experimental Surfaces Analysis ................................................................. 59 
3.5.2  Theoretical Predictions ............................................................................... 60 
3.5.3  Synthetic Results ......................................................................................... 65 
3.5.4  Live Gecko Results ..................................................................................... 70 

 
  Discussion .......................................................................................................... 72 
  Conclusions ........................................................................................................ 73 

 
  Acknowledgements ............................................................................................ 74 

 
4.  USING SHEAR ADHESIVES TO SUPPORT NORMAL LOADS ..........................75 

 
  Introduction ........................................................................................................ 75 
  Background ........................................................................................................ 76 
  Approach ............................................................................................................ 78 
  Experimental ...................................................................................................... 80 

 
4.4.1  Materials ..................................................................................................... 80 
4.4.2  Fabrication .................................................................................................. 81 

 



xiii 

4.4.2.1  Double Pad Skin .................................................................................. 81 
4.4.2.2  Flexible Tendon ................................................................................... 82 
4.4.2.3  Component Assembly.......................................................................... 83 

 
4.4.3  Testing......................................................................................................... 83 

 
  Results ................................................................................................................ 84 

 
4.5.1  Bemis Adhesive Film Tear Strength ........................................................... 84 
4.5.2  Pad Gap Length........................................................................................... 86 
4.5.3  Flexible Tendon Width ............................................................................... 87 
4.5.4  Tendon Material .......................................................................................... 89 
4.5.5  Shear and Normal Force Capacity Comparison .......................................... 90 

 
  Discussion .......................................................................................................... 93 
  Conclusion .......................................................................................................... 95 
  Acknowledgements ............................................................................................ 95 

 
5.  EXTREMELY TOUGH COMPOSITES FROM BIOCOMPATIBLE 

HYDROGEL AND FABRIC ......................................................................................96 
 

  Introduction ........................................................................................................ 96 
  Background ........................................................................................................ 96 
  Approach ............................................................................................................ 97 
  Experimental ...................................................................................................... 98 

 
5.4.1  Polyampholyte Composite Preparation....................................................... 98 
5.4.2  Polyacrylamide Composite Preparation ...................................................... 99 
5.4.3  Testing......................................................................................................... 99 

 
5.4.3.1  Tearing Test ......................................................................................... 99 
5.4.3.2  Tensile Tests ...................................................................................... 100 
5.4.3.3  Three Point Bend Tests...................................................................... 100 

 
  Results .............................................................................................................. 100 

 
5.5.1  Tearing Tests ............................................................................................. 100 
5.5.2  Tensile Tests ............................................................................................. 103 
5.5.3  Bending Tests ............................................................................................ 105 

 
  Discussion ........................................................................................................ 105 
  Conclusions ...................................................................................................... 109 
  Acknowledgements .......................................................................................... 109 

 
6.  CONCLUSION AND FUTURE OUTLOOK ...........................................................110 

 



xiv 

  Overview of Results ......................................................................................... 110 
  Future Work ..................................................................................................... 112 
  Final Remarks .................................................................................................. 113 

 
BIBLIOGRAPHY ............................................................................................................115 
 
 



xv 

LIST OF TABLES 

Table Page 

3.1 - Experimental parameters for synthetic adhesives used in Figure 3.8. From fitting to 
Equation 3.7, Gc,S values of 24.9, 55.4 and 49.7 N/m were obtained. ...............................67



xvi 

LIST OF FIGURES 

Figure Page 

1.1 - Micrographs of smooth adhesive pads ........................................................................3 

1.2 - Tokay gecko adhesive system. ....................................................................................4 

1.3 - Synthetic gecko-inspired adhesives .............................................................................5 

1.4 - Stress versus strain plots for two different polymer adhesives.   ................................7 

1.5 - An example of fibril formation of an adhesive adhered between two plates of a 

parallel-plate rheometer. ...................................................................................8 

1.6 - Force capacity versus ඥܣ ⁄ܥ  for adhesive systems of different organisms, and 

components of their adhesive systems.   ........................................................13 

1.7 - Fibril-less gecko inspired adhesives. .........................................................................14 

1.8 - High strength, reusable adhesives. ............................................................................15 

1.9 - A 100 cm2 adhesive pad supporting 130 kg of load.   ...............................................16 

1.10 - Force capacity versus ඥܣ ⁄ܥ  for both biological and synthetic data. ......................17 

1.11 - A view of a gecko toe with an overlay of the underlying tendon structure.   ..........18 

2.1 - Schematic of an adhesive pad on a substrate .............................................................23 

2.2 - Plot of force capacity as a function of elastomer modulus and effective fabric 

modulus. .........................................................................................................27 

2.3 - Dynamic mechanical analysis (DMA) results for the two elastomers used in this 

chapter. ...........................................................................................................29 

2.4 - Schematic of the test setup.. ......................................................................................31 

2.5 - Representative force versus displacement curves for adhesives made with both the 

3.1 MPa and the 0.35 MPa elastomer. ............................................................32 



xvii 

2.6 - Sample to sample variability for 9 samples made with unidirectional carbon fiber 

and the 3.1 MPa modulus elastomer. .............................................................32 

2.7 - A plot of experimental ඥܣ ⁄ܥ  versus calculated	ඥܣ ⁄ܥ , for the two different 

adhesive pads. .................................................................................................33 

2.8 - A plot of force capacity versus ඥܣ ⁄ܥ . As ඥܣ ⁄ܥ  increases, force capacity 

increases for both adhesives. ..........................................................................34 

2.9 - A plot of force capacity versus shape ratio for 3.1 MPa elastomer adhesives. .........36 

2.10 - Plots of compliance versus shape ratio for adhesives with three different pad 

areas. ...............................................................................................................38 

2.11 - A plot of ඥܣ ⁄ܥ  and force capacity for adhesives of varying geometry. ................41 

2.12 - A plot of ඥܣ ⁄ܥ  and force capacity versus tendon length.. .....................................42 

2.13 - Compliance as a function of tendon length, for each of the system components. ...43 

2.14 - A plot of force capacity versus tendon width. .........................................................45 

2.15 - A plot of force capacity as a function of elastomer modulus. .................................46 

3.1 - An iPad tablet with a 3K plain weave carbon fiber/PU-B gecko-inspired adhesive 

adhering to “real world” surfaces next to geckos ...........................................52 

3.2 - Effective Gc for different materials.  3M VHB™ tape is included for comparison, 

as a traditional PSA. .......................................................................................56 

3.3 - White light interferometry profiles of the prepared substrates. .................................59 

3.4 - Photographs of a 0.3 MPa elastomer adhesive (left) and a 10.0 MPa elastomer 

adhesive (right). ..............................................................................................60 

3.5 - Plot of force capacity as a function of elastomer modulus and effective fabric 

modulus, taking into account surface roughness of glass,  = 0.01 m.. .......61 



xviii 

3.6 - Contour plots of force capacity as a function of elastomer modulus and effective 

fabric modulus. ...............................................................................................62 

3.7 - Adhesive stress capacity versus elastomer pad modulus for varying roughness 

surfaces ...........................................................................................................64 

3.8 - A representative force versus extension plot for PU-C .............................................66 

3.9 – Scaling adhesive strength on rough surfaces. ...........................................................68 

3.10 - Force capacity at 0 degree and 90 degree peel angles, for three different elastomer 

pad materials ...................................................................................................69 

3.11 - Photograph of a LCD computer monitor hanging on drywall with a gecko-

inspired adhesive. ...........................................................................................70 

3.12 - Adhesive stress versus substrates for the Tokay gecko specimens. ........................71 

4.1 - Positional change of a tree frog from a vertical surface (left) to a partially inverted 

surface (right). ................................................................................................77 

4.2 - Peel strength as a function of loading angle. .............................................................77 

4.3 - Schematic of a double pad (A) at rest, and (B) after a force is applied normal to 

the adhesive. ...................................................................................................79 

4.4 - Schematic of the double pad skin ..............................................................................81 

4.5 - Schematic of the flexible tendon. ..............................................................................82 

4.6 - Schematic of the assembly of the device, and the final sample. ...............................83 

4.7 - Schematic of the test setup for double pad adhesives. ..............................................84 

4.8 - Tear Strength versus displacement, for three samples of unidirectional carbon 

fiber bonded with Bemis adhesive film to cotton fabric, with a sample 

width of 2.5 cm ...............................................................................................85 



xix 

4.9 - Normal force capacity versus tendon width for double pad adhesives with 7.5 cm 

wide cotton fiber flexible tendon. ...................................................................87 

4.10 - Load versus extension curves for the three tendon widths. .....................................88 

4.11 - Representative load versus extension curves for double pad adhesives with 7.5 

cm wide tendons of cotton or Kevlar. ............................................................89 

4.12 - Shear load versus extension curves for double pad adhesives with 7.5 cm wide 

tendons fabricated from (A) cotton, and (B) Kevlar. .....................................90 

4.13 - Comparison of the force capacity in both normal and shear ...................................92 

5.1 - Schematic of the sample preparation for fabricating hydrogel composite samples ..98 

5.2 - Representative tear strength vs. displacement curves .............................................101 

5.3 - Representative load vs. strain for the three samples tested .....................................103 

5.4 - Load versus strain curves for the polyampholyte composite and the neat 

polyampholyte. .............................................................................................104 

5.5 - Comparison of tensile and bending moduli for the polyacrylamide and 

polyampholyte composite. ............................................................................105 

5.6 - A schematic of the failure mechanism of fabric undergoing tear, emphasizing the 

del zone. ........................................................................................................106 

 



 

1 

CHAPTER 1  

INTRODUCTION 

 Introduction to Adhesives 

Adhesives are materials which possess an ability to bind two or more materials 

together.1  Adhesives may be used for a wide variety of applications, from high strength, 

structural adhesives used in car frames,2 to low strength, reusable adhesives in sticky 

notes,3 to biocompatible adhesives used in wound closures for humans.4  Other binding 

techniques exist, such as mechanical fasteners like rivets (for structural applications) and 

sutures (for wound closures), but these techniques cause damage to the materials which are 

bound together.2  Even on freshly cleaned, smooth surfaces, strong bonds, such as covalent 

and ionic bonds, are often rendered inert by reactions with air.5  Therefore, adhesives bind 

surfaces together by using weak, ubiquitous Van der Waals force, to create bonds between 

material surfaces.3 This mechanism provides engineers with many methods for designing 

adhesives for applications. 

Different techniques have been designed to achieve strong bonds between 

materials.  Some of the simplest adhesives are epoxies, which consist of two liquid 

chemical components which react when mixed.  The epoxy components are combined and 

placed between the materials to be adhered.  The liquid epoxy wets the surfaces of the 

materials and flows to fill the joint.  After a period of time (controlled by the chemistry of 

the components), the components react and form a solid joint, binding the materials 

together.  These joints are very strong, but the chemical reaction is permanent.  Another 

type of adhesive, pressure-sensitive adhesives (PSAs), which are used in tape consist of 

viscoelastic solids.   These adhesive films are able to creep to conform to roughness to 
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create the bond.  PSAs have been the focus of extensive research for over half a century, 

and many products are designed by tuning the viscoelastic properties to control adhesion 

strength.3 By tuning the properties of the adhesive, a trade-off occurs between adhesion 

and releasability:  as adhesive strength increases, the ability for adhesives to release 

decreases.6  This trade-off is not just seen with PSAs, but throughout all commonly utilized 

adhesives.  This provides an opportunity for new research: can adhesives be developed 

which are capable of supporting strong loads necessary for structural adhesive applications, 

yet possess the release properties of sticky notes?   

 Lessons from Nature 

Humankind has long looked to nature for inspiration in developing new technology.  

In the 15th century, Leonardo da Vinci studied flight of birds, which inspired his designs of   

“flying machines.”7  In modern times, advances have come in a wide range of fields, with 

notable recent developments in super-hydrophobic materials resulting from studying the 

lotus leaf.8–10  In biology, adhesive systems are used by many organisms for locomotion to 

expand to new habitats and escape from predators, as well as for reproductive purposes.11–

13  Adhesive pads in nature have very high safety factors, capable of supporting loads much 

greater than the mass of the organism.5  Organisms are capable of climbing on many types 

of surfaces, regardless of roughness, and their adhesives can be used repeatedly without 

losing adhesive ability.14–16  Finally they possess a unique self-cleaning capacity, allowing 

them to work well on fouled surfaces.17–20 These characteristics make bio-inspired 

adhesives an interesting model for next generation adhesive systems.   

Contrary to the spectrum of pressure sensitive adhesives which are designed around 

the trade-off between strong adhesion and releasability, adhesives in biology are capable 
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of achieving high strength and easy release.  These systems come in two types: smooth and 

“hairy.”21  Examples of organisms with smooth adhesive pads include cockroaches,22,23 

stick insects (Figure 1.1A),21,24,25 tree frogs (figure 1.1B),26–31 and sea stars (figure 

1.1C).32,33 These systems all at least partially depend on secretions to help increase 

adhesion to surfaces.  However, the majority of research has focused on “hairy” dry 

adhesive systems, which are utilized by spiders,34,35 leaf beatles,36 and geckos (Figure 

1.2).12,37–40  Leaf beetles have three different adhesive pads which are each specialized for 

different surfaces.21,36,41,42  Spiders on the other hand only utilize their adhesive pads on 

smooth surfaces, and use claws to climb on rough surfaces.43,44  Geckos are the largest 

organisms capable of locomotion with adhesive pads.  On the surface of the gecko toe are 

lamellar skin flaps called scansors (Figure 1.2B), which are covered in large arrays of very 

small fibrillar features called setae (Figure 1.2C), which each split into nanometer scale 

features called spatulae (figure 1.2D).45,46  Despite being made of a high modulus material, 

keratin, these features are able to make intimate contact on surfaces.14,18,47 It is important 

to note that geckos, like PSAs, adhere primarily through Van der Waals forces, and not 

Figure 1.1 - Micrographs of smooth adhesive pads. Images are of (A) Stick insects
(Reproduced with permission from J. M. R. Bullock, P. Drechsler, W. Federle, Journal of 
Experimental Biology 2008, 211, 3333),21 (B) tree frogs (Reproduced with permission from 
B. N. J. Persson, Journal of Physics: Condensed Matter 2007, 19, 376110),27f and (C) Sea 
stars (Reproduced with permission from R. Santos, E. Hennebert, Functional Surfaces in 
Biology 2009).33    
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capillary forces.18,38,48 The adhesion of individual gecko setae has been examined in the 

past on surfaces of varying roughness, and broadly explored at the full body level.15,49 The 

most unique and attractive characteristic of these adhesive systems is their consistently 

repeatable, high adhesive strength to a wide variety of surfaces, while still maintaining the 

ability to quickly and easily release.  Despite consisting of different morphologies, the 

organisms described here each evolved in a manner that allows for locomotion across a 

range of surfaces.     

Figure 1.2 – Tokay gecko adhesive system. (A) An image of a Tokay gecko foot. (B)
Focusing on an individual toe, multiple lamellar flaps are visible, which are called scansors.
(C) Each scansor is covered with long and thin stalks called setae. (D) Each stalk is broken 
down into even smaller, triangular tipped features called spatulae. Used with Permission: 
Adv. Mater. 2012.74 
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Most researchers refer to “gecko inspired adhesives” as adhesives that attempt to 

mimic the features seen on gecko toe-pads.48  Many research groups have created intricate 

adhesives utilizing photolithography, ion beam irradiation, micromachining, and other 

difficult manufacturing methods to mimic the nanoscopic features of gecko setae and 

spatula (Figure 1.3).50–57 In some cases, very high adhesive stress values have been 

reported.  However, these adhesives have generally been tested on smooth surfaces, and 

few groups have attempted to adhere these materials to surfaces encountered in daily life.  

Figure 1.3 – Synthetic gecko-inspired adhesives. (A) Two-level hierarchical mushroom 
tipped pillars made with soft polyurethane elastomer. Reprinted with permission from M.P. 
Murphy, S. Kim, M. Sitti. ACS Appl. Mater. Interfaces, 2009, pp 849–855,50 Copyright 
2009 American Chemical Society. (B) PUA pillars angled with ion beam irradiation.
Reprinted with permission from Y. Rahmawan, T. Kim, S. J. Kim, K.-R. Lee, M.-W. 
Moon, K.-Y. Suh, Soft Matter 2012, 8, 1673.51 (C) Pillars made from polypropylene. 
Reprinted with permission from A. G. Gillies, R. S. Fearing, Langmuir 2011, 27, 11278.52

(D) Triangular tipped PUA pillars. Reprinted with permission from M. K. Kwak, H. E.
Jeong, W. G. Bae, H. S. Jung, K. Y. Suh, Small 2011, 2296.53 (E) Microfabricated wedge-
shaped adhesive arrays made from silicone elastomer.   Reprinted with permission from A.
Parness, D. Soto, N. Esparza, N. Gravish, M. Wilkinson, K. Autumn, M. Cutkosky, Journal 
of the Royal Society, Interface 2009, 6, 1223.106 
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Furthermore, these adhesives cannot be scaled to large sizes necessary for most commercial 

adhesive applications, and consequently high forces have not been achieved.  Even if large 

scale fabrication methods were developed, some adhesives experience decrease 

performance with increased area.58  A new approach is needed to overcome the 

shortcomings of fibril-based gecko-inspired adhesives.  We will analyze adhesives from a 

fracture mechanics viewpoint to determine a method to scale gecko-inspired adhesives.   

 Adhesion Mechanisms 

1.3.1 Pressure Sensitive Adhesives 

To bind surfaces together, an adhesive creates molecular contact between surfaces, 

resulting in an ability to support load without debonding.3,59  Traditional PSAs achieve this 

ability through the use of viscoelastic polymeric materials.  At long times or large 

pressures, the polymeric adhesives are able to flow, creating contact between the surfaces 

and the adhesive.60  Van der Waals forces are the main contributor of intermolecular forces, 

binding the surfaces together.  The materials that can achieve these properties have been 

empirically understood for a long time, with PSA tapes being introduced in the early 1900s.  

Quantitative understanding of the important properties of PSA’s would not be discovered 

until much later.   

In the 1960’s Dahlquist was one of the first to see that materials with a modulus 

below 105 Pa are able to exhibit strong “tack” and adhere well to surfaces.61–63 “Tackiness” 

is one of the most important features of PSA materials, but is difficult to quantify.64,65  

Empirically, tackiness can be experienced by touching a piece of tape.60  As one’s finger 

tries to separate from the tape, the work required to cause this separation is experienced as 

tack.  Zosel was one of the first researchers to attempt to quantify tack, by developing an 
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instrument capable of measuring the force, F, required to separate a steel probe of known 

area, A, being displaced at a known velocity, v, from a polymer sample, as a function of 

time, t.66  The work of adhesion is then calculated as: 

ݓ  ൌ	
ଵ

஺
 (1.1) ݐ݀	ݒܨ׬

From this work, Zosel determined that, depending on the molecular architecture of the 

polymer adhesive, two different debonding mechanisms can take place (Figure 1.4).  One, 

termed “brittle” failure occurrs when a high molecular weight rubber material is tested.  A 

high initial stress is measured, with adhesive debonding occurring from the rubber.  Due 

to the rapid debonding of the adhesive, the energy required to separate is very low.  

Conversely, a second debonding mechanism is observed with a lower molecular weight 

rubber, where again an initial peak in stress is observed, followed by a long shoulder region 

Figure 1.4 - Stress versus strain plots for two different polymer adhesives.  One exhibits
“brittle” failure, and the other undergoes fibril formation, generating large work of
adhesion.  Adapted with permission from A. Zosel, The Journal of Adhesion 1989, 30, 
135.66 
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of intermediate stress.  During this region, fibrillation of the adhesive occurs between the 

probe and the base.  An example of fibrillation is presented in Figure 1.5.  This fibrillation 

mechanism greatly increases the work of adhesion,67 and therefore is traditionally 

considered necessary to develop strong adhesives. 

In some situations where strong work of adhesion is required, PSAs work extremely 

well.  However, they also have many shortcomings.  For example, failure is generally 

cohesive and permanent.  Due to the large amount of creep PSAs undergo, after adhesion 

to a surface it cannot regain its original form.  Also, to achieve moduli below the Dahlquist 

Criterion, a large amount of additives such as plasticizers and tackifiers are needed.  

Furthermore, not all situations benefit from adhesives which require large amounts of 

energy to debond.  For example, it is easy to understand why PSAs do not exist on toe-

Figure 1.5 - An example of fibril formation of an adhesive adhered between two plates of
a parallel-plate rheometer. 
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pads in Nature.  If an organisms toes were covered with tacky materials, large amounts of 

energy would be required for locomotion.  However even in Zosel’s seminal paper he noted 

a second potential mechanism for adhesion: brittle adhesive failure with high failure forces, 

but low work of adhesion.66     

1.3.2 Fibrillar Gecko-Inspired Adhesives 

Geckos have inspired people with their ability to climb across surfaces for 

thousands of years.  Originally, some people believed adhesion could occur through 

vacuum,11 and even today some people argue over the importance of capillary forces.48   In 

the early 2000s, it was discovered that Van der Waals forces primarily contribute to enable 

gecko adhesion.38,39  An important mechanism for the high adhesive strength generated by 

the gecko foot is contact splitting.18,48,68  Adhesive strength can be approximated using the 

theory presented by Johnson, Kendall, and Roberts, which states the pull-off force for an 

elastic solid is: 

௖ܨ  ൌ 	
ଷ

ଶ
  (1.2) ߛܴߨ

where R is the radius of the adhesive contact and  is the adhesion energy per area. In the 

case of gecko adhesion, there is not one large area of contact.  The surface of a gecko toe-

pad is covered in millions of high aspect ratio features called spatulae.   If the surface is 

broken up into n discrete segments, the radius of each segment is ܴ √݊⁄ .  Substituting into 

Equation 1.2 yields: 

௖ܨ 
ᇱ ൌ 	√݊ ∙  ௖ (1.3)ܨ

In sum contact splitting principles state that for a given contact area that is broken up into 

n discrete segments, adhesive force will scale like n1/2.68  This mechanism provides a strong 

incentive for developing fibril-based gecko-inspired adhesives.   
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 Besides contact splitting, other mechanisms make fibril-based gecko-inspired 

adhesives attractive.  One benefit of these adhesives is that frequent initiation of cracks is 

required for a crack to propagate the full length of the adhesive.  This results in interfacial 

failure occurring at higher stresses.69,70 In the previous section the Dahlquist criterion stated 

that a modulus below 105 Pa is required for a material to exhibit tack.  Due to geometry, 

the effective modulus of many high aspect ratio fibrillar adhesives have an effective 

modulus below 105 Pa, despite consisting of higher modulus materials.5,47,48 Low modulus 

is achieved in rubbers by the introduction of additives, but is achievable for gecko-inspired 

adhesives purely through geometry. 

 Due to the many attractive theoretical abilities of fibril-based gecko-inspired 

adhesives, much effort has been exerted to synthetically develop them.  However, the 

results have been lacking.  In general, they have been difficult to fabricate, especially at 

large length scales.  Even if large arrays of fibrils are fabricated, their performance may be 

sub-optimal due to fiber fracture (due to their aspect ratio, they lack mechanical strength), 

or fiber condensation (bunching, or self-adhesion of the fibrils).48  This has resulted in 

many researchers describing extremely high loads at small contact areas,71 but losing this 

ability at larger sizes.58  To achieve the high stress and easy release abilities of gecko-

inspired adhesives, while being capable of scaling to large areas requires a new type of 

adhesive system.   

1.3.3 Looking Beyond Fibril-based Adhesives 

While many biological systems are capable of high strength and easy release, it is 

interesting to note that they all do not consist of the same morphology.  Therefore, 

hierarchical surface features are sufficient, but not necessary to achieve adhesive 
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locomotion.  Rather than focusing on surface features, it is possible to ascertain the 

important parameters of biological adhesives by analyzing the fracture mechanics of these 

adhesives.  The full derivation of this scaling equation is published in reference 72.  This 

scaling theory is based on the work of Maugis and Barquins,72 which is derived from 

Griffith crack theory.73 For an adhesive of a discrete area, A, undergoing displacement, , 

the total energy, UT, is the sum of the surface energy, US, the potential energy due to work, 

Uw, and the stored elastic energy of the deformed material UE.  The system is assumed to 

be in equilibrium, therefore: 

 
ఋ௎೅

ఋ஺
ൌ

ఋ௎ೞ

ఋ஺
൅

ఋ௎ೢ

ఋ஺
൅

ఋ௎ಶ

ఋ஺
ൌ 0 (1.4) 

In gecko adhesion, adhesive toe-pads quickly switch between engaged and a dis-engaged 

state.  This will be incorporated as unstable failure, where: 

 
ఋమ௎೅

ఋ஺మ
൏ 0 (1.5) 

The adhesive is assumed to fail in one step, and therefore the differential terms are no 

longer necessary.  Additionally, geckos are able to run across surfaces with little energetic 

penalty.  For systems that do not exhibit hysteresis (Ufinal – Uinitial = 0), energy is conserved.  

Any stored energy due to deformation of the adhesive is converted to surface energy at Fc.  

The initial energy of the systems is: 

 ௜ܷ௡௜௧௜௔௟ ൌ ܷா ൅ ܷ௪ ൅  (1.6) ܣଵଶߛ

And the final energy is: 

 ௙ܷ௜௡௔௟ ൌ ଵߛሺܣ ൅  ଶሻ (1.7)ߛ

Where the strain energy release rate G is defined: 

ܩ  ൌ ቀ
௎ಶ

஺
൅

௎ೢ

஺
ቁ (1.8) 
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And the surface energy is defined: 

 ௦ܷ ൌ ሺߛଵ ൅ ଶߛ െ ܣଵଶሻߛ ൌ  (1.9) ܣ௖ܩ

Solving for energy conservation, Equation 1.7 less Equation 1.6 yields: 

 ௙ܷ௜௡௔௟ െ ௜ܷ௡௜௧௜௔௟ ൌ ଵߛሺܣ ൅ ଶߛ െ ଵଶሻߛ െ ܷா െ ܷ௪ (1.10) 

For the controlled displacement case where Uw = 0, substituting Equation 1.9 leads to: 

ܣ௖ܩ  െ ܷா ൌ 0 (1.11) 

The elastic energy is determined: 

 ܷா ൌ ܨ׬ ݀∆	ൌ  (1.12) ∆ܨ

Where a linear elastic material behaves as: 

ܨ  ൌ 	
ଵ

஼
∆ (1.13) 

To yield: 

 ܷா ൌ ܨ	
ଶ(1.14) ܥ 

Substituting Equation 1.14 into Equation 1.11, and solving for the critical force, Fc, which 

occurs when G = Gc, gives the final scaling equation: 

௖ටܩඥ	~	௖ܨ 
஺

஼
 (1.15) 

From this scaling equation it is evident that the important parameter for controlling force 

capacity for gecko inspired adhesives is the ratio of ඥܣ ⁄ܥ  since Gc cannot be varied greatly 

while maintaining easy release.  To achieve high force capacities, large area of contact is 

required, while minimizing compliance.  Importantly, Equation 1.15 does not require 

specific surface geometry, such as contact splitting, or specific materials, such as those 

specified by the Dahlquist Criterion.  As a general model, Equation 1.15 provides guidance 

to create adhesives with the properties of biological adhesives for large loads.   
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 Scaling of Adhesives in Nature 

To test whether this equation describes biological organisms, a simple experiment 

is performed utilizing live Tokay geckos.74  The area of contact of the two front feet of a 

gecko specimen is measured, and the gecko is held by the torso and allowed to cling to a 

plate of glass which is attached to the load cell on the crosshead of an Instron tensile tester.  

The crosshead is displaced at constant velocity, and the maximum force and compliance of 

the gecko is calculated.  Additional force and compliance data for other biological 

organisms is aggregated from the literature.  These data agreed well with the derived 

scaling relation, Equation 1.15, and is presented in Figure 1.6.74  Importantly, this plot 

demonstrates that for larger organisms to utilize adhesives, toe pad area must increase, but 

Figure 1.6 - Force capacity versus ඥܣ ⁄ܥ  for adhesive systems of different organisms, and 
components of their adhesive systems.  The red line represents Equation 1.15.  Used with 
Permission: Adv. Mater. 2012.74 
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also must become stiffer.  This result has not been previously realized in the literature, and 

is important for understanding scaling of biological adhesives.   

 Fibril-less Gecko Inspired Adhesives 

From this scaling equation it is evident that the important parameter for controlling 

force capacity for gecko inspired adhesives is the ratio of ඥܣ ⁄ܥ  since Gc cannot be varied 

greatly while maintaining easy release.  To develop high force capacity adhesives, a large 

area of contact is required, without introducing compliance.  To achieve these contrasting 

properties, composite adhesive materials consisting of stiff fabrics (to minimize C) and soft 

elastomers (to maximize A) are combined.  Equation 1.15 does not depend on any specific 

features, and these adhesives have completely smooth surfaces.  An example of these new 

gecko inspired adhesives is shown in figure 1.7A.   This adhesive consists of carbon fiber 

fabric, and polyurethane elastomer.  The surface of the elastomer pad is smooth (Figure 

1.7B), and does not contain any features, like those seen on previously designed gecko-

inspired adhesives.  These new fibril-less, gecko-inspired adhesives are able to support 

A B 

Figure 1.7 – Fibril-less gecko inspired adhesives. (A) Image of a carbon fiber fabric coated
with polyurethane elastomer.  (B) An SEM cross-section of the adhesive pad.   Note that 
the elastomer fully covers the fibers, and that the surface is perfectly smooth, containing
no features. Used with Permission: Adv. Mater. 2012.74 
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very high loads, over 2500 N for a 100 cm2 contact area (Figure 1.8A).  Additionally gecko-

inspired adhesives should possess the ability to be reused many times, and Figure 1.8B 

demonstrates that over one hundred cycles, the average force did not significantly vary 

Figure 1.8 – High strength, reusable adhesives. (A) Load versus displacement curve for a 
fibril-less gecko-inspired adhesive consisting of unidirectional carbon fiber and
polyurethane elastomer.  The maximum force recorded represents the force capacity. (B)
The same adhesive tested for 100 cycles.  Even after one hundred tests the adhesive still 
performs at the mean force capacity, as determined by a one sample t-test with P = 0.05. 
Reproduced with Permission: Adv. Mater. 2012.74 
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from the mean force, as determined by a one sample t-test with P = 0.05.74 The remarkable 

adhesive strength of these adhesives is displayed in Figure 1.9, where a fibril-less gecko 

inspired adhesive is used to support 130 kg of weights on a glass surface.   

Figure 1.6 demonstrated that the derived scaling equation describes force capacity 

over many orders of magnitude for organisms with adhesive pads found in Nature.  

Interestingly, the synthetic adhesives fabricated also follow this scaling equation, and 

follows the same trend line.  Figure 1.10 is a plot of both biological data and synthetic data.  

The successfulness of Equation 1.15 over fourteen orders of magnitude demonstrates the 

general applicability of using ඥܣ ⁄ܥ  to scale force capacity.   

Figure 1.9 - A 100 cm2 adhesive pad supporting 130 kg of load.  Used with Permission: 
Adv. Mater. 2012.74 
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When designing gecko-inspired adhesives, many researchers focus on mimicking 

the features which are visible on the surface.  However, inspiration can occur at many 

levels.  For example, while airplanes are capable of flight which is inspired by Nature, they 

do not require feathers or flapping wings.  With fibril-less gecko-inspired adhesives, there 

are no surface features which mimic those of the gecko.  However, a deeper analogy exists, 

where this adhesive device follows the entire morphology of the gecko toe.  In the gecko 

adhesive system, tendons connect the skeleton of the gecko to the lamellar skin flaps called 

scansors, which break down into the smaller setae and spatulae features on the surface of 

the toe.45  Because there is a direct connection from the skeleton, to the skin, to the pad 

features, compliance is minimized in the system, which is shown to be crucially important 

to scale force capacity in Equation 1.15.  A schematic of this system is shown in Figure 

Figure 1.10 – Force capacity versus ඥܣ ⁄ܥ  for both biological and synthetic data. Used 
with Permission: Adv. Mater. 2012.74 
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1.11.  Hence, fibril-less gecko-inspired adhesives are still gecko-inspired because they 

consist of a compliant surface “pad,” which connects to the stiff fabric “tendon” through 

the composite elastomer/fabric “skin.”  In future chapters the different components of the 

adhesives will be described using these biomimetic terms of “pad,” “skin,” and “tendon.”  

Further research has been performed on these new gecko-inspired adhesives.  

Design criteria has been described for these adhesives under shear loading,75 and methods 

for creating these adhesives out of “green” materials have been reported.76  The scaling 

equation described in Equation 1.15 also describes scaling of normal adhesion.77  In light 

of the success of these adhesives, we have pushed forward to expand the understanding of 

adhesion in biology and how it can inspire the development of better adhesives.   

 Dissertation Organization 

We have introduced the scaling parameter,	ඥܣ ⁄ܥ , as a proven guideline for 

creating high strength, easy release adhesives.  In this thesis we will increase our 

Figure 1.11 - A view of a gecko toe with an overlay of the underlying tendon structure.
Tendons connect from the skeleton, through the skin, to the surface features of the gecko.
Used with Permission: Adv. Mater. 2012.74  
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understanding of the variables that make up this parameter to produce adhesives with 

higher force capacity, for a wide range of surfaces, in any loading orientation.  We 

additionally use lessons learned from the adhesive fabrication process to venture into a new 

field, creating extremely high toughness, biocompatible materials for prosthetic 

applications.   

Chapter 2 introduces a calculated compliance equation, which is used to 

calculate	ඥܣ ⁄ܥ , and therefore adhesive force capacity. The compliance equation is 

experimentally verified by accurately predicting the force capacity of adhesives made with 

two different materials, ranging from 50 N to over 2500 N.  The compliance equation is 

used to show that optimized shapes exist which increase force capacity.  Additionally, it 

proves that components of the adhesive far away from the interface still influence force 

capacity.  Through understanding the materials and geometric properties of the adhesive, 

it is possible to calculate force capacity, reducing the need for prototyping. 

Chapter 3 focuses on the A term of the ඥܣ ⁄ܥ  scaling parameter.  To understand 

force capacity, the true area of contact must be known.  Previous experiments focused on 

glass, where the true area approaches the measured adhesive area.  Many desirable adhesive 

substrates, such as metals or painted surfaces, possess surface roughness which influences 

adhesion.  A model is introduced that takes into account the adhesive materials as well as 

surface roughness to predict adhesive stress capacity, and is experimentally verified.  The 

results of this chapter demonstrate the wide applicability of the fibril-less gecko-inspired 

adhesives.   

Chapter 4 moves away from focusing purely on shear adhesion, and introduced 

double pad adhesives, a new adhesive configuration designed to increasing normal force 
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capacity.  Important variables are introduced, including pad gap length, tendon width, and 

tendon materials.  The best double pad adhesives demonstrate a factor of six increase in 

normal force capacity, without compromising shear force capacity and reusability.   

Chapter 5 combines the fabrication techniques learned in developing fabric based 

adhesives with new polyampholyte hydrogels to create extremely tough composite 

materials.  The composites exhibit tear strengths that are two orders of magnitude greater 

than the neat polyampholyte hydrogels, and four orders of magnitude greater than 

traditional single network hydrogels.  The proposed mechanism provides a general 

technique for making composite materials with increased toughness. 

Chapter 6 concludes with lessons learned in this thesis.  Additional future work is 

presented, to further improve these materials.  While the advances in this thesis have 

greatly improved fibril-less gecko inspired adhesives and materials for biological 

prosthetics, there is still much more to learn in these fields.     
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CHAPTER 2  

OPTIMIZING ADHESIVE DESIGN BY UNDERSTANDING COMPLIANCE 

 Introduction 

Adhesives are used to bind surfaces together, yet they have long suffered from a 

trade-off between joint strength and joint reversibility. Interestingly this tradeoff is not seen 

in biologically inspired adhesives.78 Tree frogs,27,29,31 stick insects,24,25 and sea stars33 are 

able to use smooth adhesives for locomotion, while spiders,34,43,79 leaf beetles,36,80 and 

geckos37,38,40,81 utilize “hairy” features to climb across walls and ceilings.  Previous 

research from our group has connected these different adhesion mechanisms by a simple 

scaling theory, which states that adhesive force scales with ඥܣ ⁄ܥ , where A is the area of 

contact and C is the compliance of the adhesive.74–77 Taking advantage of this scaling 

parameter, we have created adhesives from simple elastomers and fabrics which are 

capable of extremely high adhesive forces, yet are releasable and reusable. Additionally, 

the materials and geometric properties of the elastomers have been shown to greatly 

influence force capacity.75 However, this work focused on the limit where the elastomers 

are more compliant than the fabric. In this chapter we include the compliance of all 

components, including the fabric, as well as the test setup. Through understanding the 

importance of total compliance, we develop an equation to calculate force capacity, and 

use this framework to fabricate improved fibril-less gecko-inspired adhesives.  

 Background 

The adhesion strength under shear deformation has long been investigated for 

polymeric,82 metallic,83,84 and composite systems.85 A lap shear joint involves two 

materials that are overlapped and connected together by an adhesive member.86–88 Two 
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main joint domains exist, structural adhesive lap joints and flexible adhesive lap joints.87 

Structural adhesive lap joints consist of a very thin adhesive between the two stiff 

adherends, with strong adhesion between the adhesive layer and the adherends. In this 

extensively studied regime, where the length of the joint is much longer than the thickness, 

the strength of the joint is controlled by the mechanical strength of the adherends.87–92 Both 

analytical93 and finite element modelling has been performed for lap shear joints.94–96 

While these models work well for rigid joints, they do not accurately describe the reversible 

adhesives seen in nature. 

In the reversible adhesive systems studied here, the adhesive layer is a soft 

elastomer.  Until recently there has been very little research on structures which fall into 

the flexible adhesives category, where deformation in the adhesive layer limits the 

mechanical properties of the joint. It has been shown that the geometry of the adhesive 

layer controls the adhesive strength of a flexible lap shear adhesive.75 Two important 

lessons for designing the adhesive layer have been determined for flexible joints, and will 

be incorporated into our model: decreasing thickness reduces the compliance of the 

adhesive, resulting in higher force capacity, and combining the different deformation 

mechanisms using superposition determines the compliance of a joint.  In high strength 

reversible adhesives however, this clear distinction between structural and flexible lap 

shear joints is lost. Deformation occurs in both adherends and adhesive, resulting in neither 

a fully structural or flexible adhesive joint. To predict the performance of a reversible 

adhesive, we must take into account the geometry and materials of both the adherend 

(fabric) and the adhesive layer (elastomer).   

 Approach 
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2.3.1 Deriving a Total Compliance Model 

To analyze this system, we assume that a discrete rectangular “block” of elastomer 

(pad) is connected parallel to a composite “block” of fabric and elastomer (skin), which is 

connected to an additional “block” of fabric attached at the bottom (tendon, 3D schematic 

and 2D projection in Figure 2.1A and Figure 2.1B). The names given to each component 

refer to the component of the gecko adhesive system which it mimics.  Each block has a 

discrete width, w, length, L, thickness, t, and Young’s modulus, E. Three different 

deformation modes will be assumed: extension, shear, and bending.75,93  

Extension will be modeled using Hooke’s Law: 

ߪ  ൌ 	
ி

஺
ൌ  (2.1) ߝܧ

Figure 2.1 – Schematic of an adhesive pad on a substrate. (A) Relevant geometric and
materials properties are noted. (B) 2D schematic projection of an adhesive pad, with the
important components labeled. (C) A representation of the compliance for each adhesive 
component, denoted as springs in the overall system.  
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Where  is stress,  is strain, F is force, and A is area. Compliance, is written as C = /F, 

where  is displacement. In extension,  = /L, and A = wt giving: 

௘௫௧௘௡௦௜௢௡ܥ  ൌ 	
௅

௪௧ா
 (2.2) 

In shear, strain is defined as  = /t, with A = wL, and	ܧ ൎ  = assuming Poisson’s ratio) ܩ3

0.5), where G is the shear modulus. Using Hooke’s Law for shear,  = F/A = G, giving: 

௦௛௘௔௥ܥ  ൌ 	
ଷ௧

௪௅ா
 (2.3) 

When t > L, bending significantly contributes to the total compliance.75 This compliance 

is:  

௕௘௡ௗ௜௡௚ܥ  ൌ 	
ସ௧య

௪௅యா
 (2.4) 

The adhesives are tested in a lap shear configuration. For the pad, the applied force is 

parallel to the attachment surface. When t < L, shear compliance dominates, and when t > 

L, bending compliance dominates.75 By combining Equation 2.3 and Equation 2.4, the pad 

compliance is obtained: 

௣௔ௗܥ  ൌ 	
ସ௧೐

య

௪೐௅೐
యா೐

൅	
ଷ௧೐

௪೐௅೐ா೐
 (2.5) 

For the adhesives fabricated here, the skin is a composite component consisting of 

elastomer and fabric. This component is fixed along its length to the pad. The force is 

applied to the wt cross-section of the skin, and this results in extensional deformation of 

the skin and the attached pad. The extensional compliance of the skin is: 

௦௞௜௡,௘௫௧ܥ  ൌ 	
௅೐

௪೐௧೑ா೎
 (2.6) 

Where Ec is the composite modulus of the fabric and elastomer, which depends on the 

volume fraction,  of the elastomer in the fabric. As a first approximation, a Voigt model 
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composite is used to model this component because the fabric and elastomer both deform 

with equal strain.97  More complicated models also exist for modeling composites.98  Using 

the Voigt model gives the composite modulus:  

 ௖ܧ ൌ ௘߮௘ܧ ൅	ܧ௙߮௙	 (2.7) 

 ߮௜ ൌ 	
௏೔

௏೅
 (2.8) 

Where Ef is the Young’s modulus of the fabric. Vi is volume of the elastomer, e, or fabric, 

f. VT is the total volume. Because the skin is directly connected to the pad, any extension 

that occurs in this component will result in extension of the pad, which must also be 

included:  

௣௔ௗ,௘௫௧ܥ  ൌ 	
௅೐

௪೐௧೐ா೐
 (2.9) 

Equation 2.6 and Equation 2.9 are added in parallel to determine the total compliance of 

the skin: 
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The last component of the adhesive is the tendon, which consists of fabric and is attached 

to the skin. This component exhibits extensional compliance, which is therefore expressed: 

௧௘௡ௗ௢௡ܥ   ൌ 	
௅೟

௪೟௧೑ா೑
 (2.11) 

Finally, we must include the compliance of the test setup, Csystem, which is measured 

experimentally. The pad, skin, tendon, and system are in series (where compliances are 

additive) and superposition principles are used to add their compliances together to 
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calculate a total combined compliance (Figure 2.1C). Therefore, the sum of Equation 2.5, 

Equation 2.10, and Equation 2.11 yields: 
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Each term in Equation 2.12 depends on both geometric and materials properties which are 

easily measured directly. We have previously shown that force capacity is calculated:74 

௖ܨ  ൌ ඥ2ܩ௖ට
஺

஼
 (2.13) 

where Gc is the critical strain energy release rate for shear adhesion, and will be used as a 

fitting parameter. To determine Fc, we substitute Equation 2.12 into Equation 2.13, to give:  
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Equation 2.14 demonstrates that both geometric and materials properties play a role 

in the compliance of each system component. Using this equation, it is possible to estimate 

which materials will result in high strength adhesives.  Figure 2.2 is a contour map of the 

elastomer modulus versus the effective fabric modulus, where the color denotes the 

calculated force capacity, assuming Gc = 170 N/m. In this plot, blue represents the lowest 

force capacities, and red represents the highest force capacities. The geometry of the 

adhesive pad is fixed, with a 10 cm x 10 cm pad with a thickness of 0.4 mm, and a 10 cm 

tendon length. To achieve high force capacities, visible in the upper right, both the fabric 

and the elastomer modulus must be increased. Combining a low modulus elastomer with 

any modulus fabric results in low force capacity, because the pad compliance is too high. 

Likewise, combining a low modulus fabric with any modulus elastomer also results in low 
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force capacity, because the skin and tendon compliance is high. Combining a high modulus 

elastomer and a high modulus fabric however, results in high force capacities as the 

compliance of all components are minimized. This is counter-intuitive to traditional 

adhesive design, which states that the modulus must be below the Dahlquist Criterion (105 

Pa) to create good contact with the surface and increase the work of adhesion.  Even with 

the stiffest fabrics, the maximum force capacity that can be achieved with elastomers below 

the Dahlquist Criterion is less than half of the maximum force capacity predicted when 

using high modulus elastomers.  Focusing only on materials with a modulus below the 

Figure 2.2 - Plot of force capacity as a function of elastomer modulus and effective fabric
modulus. Color represents the force capacity for the combination of elastomer and fabric
modulus with fixed geometry, Le = 10 cm, we = 10 cm, te = 0.4 mm, Lt = 10 cm, and Gc = 
170 N/m. 



 

28 

Dahlquist Criterion prevents the fabrication of adhesives which are capable of the highest 

force capacities.   

Based on this plot, materials are chosen for fabricating adhesives. Since the highest 

force capacities occur with the highest modulus fabrics, carbon fiber fabric will be used for 

the synthetic adhesives.  A vertical line is drawn on Figure 2.2, which represents the 

modulus of the unidirectional carbon fiber.  On this line, as elastomer modulus increases, 

force capacity increases by an order of magnitude. Two elastomers are chosen.  One 

elastomer, with a modulus of 3.1 MPa is chosen, as this is the modulus at which force 

capacity begins to saturate.  Additionally, a 0.35 MPa elastomer is chosen, as this material 

is close to, but slightly above the Dahlquist Criterion.  This method for choosing adhesive 

materials demonstrates the power of Equation 2.14, as it allows for force capacity 

prediction, without requiring time consuming and expensive prototyping.   

 Experimental 

2.4.1 Materials 

Materials for fabricating the elastomer pads are purchased from BJB Enterprises. 

The following elastomers were chosen: ST1060, F15, ST3040, ST1075, and ST1085. The 

two components are mixed together in a plastic cup (60 mL for two adhesives), and 

degassed in a desiccator until bubbles disappeared. The mixture is then reintroduced to air, 

with an approximate work time of 20 minutes before gelation occurred. Moduli are 

determined by dynamic mechanical analysis (DMA) at 0.40 Hz, the frequency that 

corresponds to the adhesives testing rate for the 0.40 mm thick elastomers (mastercurves 

for ST1060 and F15 are shown in Figure 2.3). The elastomer moduli are 3.1 MPa for 
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ST1060, 0.35 MPa for F15, 1.0 MPa for ST3040, 6.9 MPa for ST1075 and 22.1 MPa for 

ST1085.    

24K unidirectional carbon fiber tape was purchased from Soller Composites, with 

a nominal thickness of 0.3 mm, measured with calipers. Modulus was determined by 

uniaxial tension experiments. 25 mm x 100 mm (l x w) samples were gripped and displaced 

at 10 mm/min until a load of 1800N was reached. The effective modulus of the fabric was 

determined by the linear regression of the slope of the stress versus strain curve.  The 

effective modulus was 33 ± 2 GPa, averaged from five individual specimens.  

2.4.2 Fabrication 

Bemis 3231 adhesive film (50 m thick with paper release liner) is adhered to the 

top and bottom of the fabric with an iron set at approximately 200°C, denoting the top and 

Figure 2.3 - Dynamic mechanical analysis (DMA) results for the two elastomers used in
this chapter.  E’ (solid data) represents the storage modulus, and E” (hollow data)
represents the loss modulus.  The modulus at 0.4 Hz corresponds with the mechanical 
response of the elastomers used in the fabricated adhesives. 
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bottom of the adhesive pad region. This thin adhesives film prevents fraying of the fabric.  

The release liner is left on until after sample fabrication was complete. On polyethylene 

(PE) coated glass, the carbon fiber fabric is taped into place, with three pieces of 3M 

packing tape, over the Bemis adhesive film release liner. The uncured elastomer is poured 

onto the fabric, and smoothed with a glass slide. A thin PE film is placed on top of the thin 

layer of uncured polymer. A glass plate is then placed on top of the film, and 25 pounds of 

force is applied to create a smooth adhesive surface. Samples are cured at room temperature 

overnight (at least 12 hours), then placed in a 70°C oven for at least 12 hours. After curing 

is complete a rotary blade cutter is used to cut the samples to the desired size, and the 

release liner is removed. Two pieces of 3 mm thick polycarbonate (purchased from 

McMaster Carr) are adhered to the bottom of the fabric using a cyanoacrylate glue, leaving 

a 10 cm gap between the polycarbonate anchor and the adhesive pad.  Two 5/8” diameter 

holes are drilled through the polycarbonate anchor to attach to the custom built adhesive 

anchor. 

2.4.3 Testing 

An Instron 5500R tensile tester is utilized for testing. The adhesive is anchored to 

the base of the tensile tester with a custom built adhesive anchor, which allows for 

rotational freedom in the plane of the adhesive (Figure 2.4). The glass substrate is held in 

place by a custom built substrate holder, which is tightly attached to the crosshead, and 

displaced at a rate of 10 mm/min, until the sample detaches from the surface. The adhesive 

test setup has a measured compliance of 2.5 x 10-7 m/N. Each test is performed at least 5 
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times, and the first test is excluded to allow for conditioning of the test setup and adhesive 

pad.  

 Results 

2.5.1 Verifying Equation 2.14 

Equation 2.14 is used to select materials for creating high strength, reusable 

adhesives. Each sample was tested with Le = 10 and w = 10, then cut to a smaller size and 

Figure 2.4 – Schematic of the test setup.  The custom built substrate holder and adhesive
anchor were machined with 6061 Aluminum. 
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retested, maintaining Le = we = 1. The sizes tested are 100 cm2, 64 cm2, 49 cm2, 36 cm2, 25 

cm2, 16 cm2, 9 cm2 and 4 cm2, and at each size at least 5 tests are performed. A 

representative force versus displacement curve for each pad area is shown in Figure 2.5, 

for both 3.1 MPa and 0.35 MPa elastomer samples. As pad area is reduced, force capacity 

decreases, and the adhesive compliance increases. Additionally, sample to sample 

variability is minimal for the prepared adhesives, which is presented in Figure 2.6.  

Figure 2.6 - Sample to sample variability for 9 samples made with unidirectional carbon
fiber and the 3.1 MPa modulus elastomer. 

Figure 2.5 - Representative force versus displacement curves for adhesives made with both 
the 3.1 MPa and the 0.35 MPa elastomer. On the left, a representative best fit line for
compliance is drawn on the 100 cm2 adhesive test. 
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From the force versus displacement curves, a compliance is calculated from the 

inverse of the slope of the loading curve, which is fitted with a linear regression from a 

load of 2 N to the maximum load. Because the elastomers are soft and visibly wet the glass, 

the measure area is assumed to be the true area of contact.  The area is divided by the 

compliance to determine the experimental scaling parameter,	ඥܣ ⁄ܥ . In Figure 2.7, the 

measured experimental values of ඥܣ ⁄ܥ  versus the calculated ඥܣ ⁄ܥ  from Equation 2.14 

are compared. The dotted line in the plot represents a slope of 1, which represents a true 

agreement between experimental and calculated values. The solid black line is a linear 

regression of all experiments, and has a slope of 0.99, displaying almost perfect prediction 

of ඥܣ ⁄ܥ .  

Figure 2.7 - A plot of experimental ඥܣ ⁄ܥ  versus calculated ඥܣ ⁄ܥ , for the two different 
adhesive pads. A slope of 1 represents perfect agreement between the calculated and
experimental results, and the resulting linear regression has a slope of 0.99. 



 

34 

Being able to predict ඥܣ ⁄ܥ  is an important step towards calculating force capacity. 

To quantitatively calculate a force capacity, the critical strain energy release rate (under 

shear loading conditions), Gc, must be determined.  Equation 2.13 states that by plotting 

force capacity versus ඥܣ ⁄ܥ , Gc for the adhesive can be calculated from the slope.  This is 

performed in Figure 2.8. Interestingly, the two different formulations have dramatically 

different values of Gc: 170 N/m for the 3.1 MPa elastomer, and 29 N/m for the 0.35 MPa 

elastomer.  This can be attributed to the two pad materials consisting of different material 

chemistries. For both sample formulations, force capacity scales linearly, as described by 

Equation 2.13. The dashed lines in the plot represent a calculated value of Fc from Equation 

Figure 2.8 - A plot of force capacity versusඥܣ ⁄ܥ . As ඥܣ ⁄ܥ  increases, force capacity 
increases for both adhesives. The rate of increase in force is the Gc of the system. Using 
Equation 2.13 and fitting for Gc allows us to accurately predict the force capacity 
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2.14. After determining a Gc for each adhesive, Equation 2.13 can be used to accurately 

calculate force capacity for the fabricated adhesives.  

2.5.2 Importance of Shape 

2.5.2.1 Shape Ratio 

For commercially available adhesives, shape is generally determined by form rather 

than function.  To maximize adhesive force capacity, compliance must be minimized, and 

geometric variables are an important component of compliance.  For example, the 

compliance of the skin component of the adhesive decreases with increasing width and 

decreasing length.  Therefore, understanding the importance of adhesive shape is necessary 

to optimize force capacity for adhesives of a given size. 

Shape ratio, SR, of an adhesive is defined as the length (Le) of the pad divided by 

the width (we).  The impact of geometry for each adhesive component is described in 

Equation 2.12. Pad bending and pad shearing do not depend on shape ratio.  However, the 

skin in extension is directly proportional to the shape ratio with a slope of 1, and the tendon 

in extension is dependent with a slope of 0.5.  Based on this understanding, shape ratio 

must be decreased until a minimum compliance is achieved to maximize force capacity. 

Samples are created with varying shape ratios to verify the hypothesis that 

decreasing shape ratio will increase force capacity.  Each sample is first tested with SR = 1 

and Le*we =100 cm2 as a benchmark, to verify that the sample was fabricated successfully. 

Sample size is then reduced by cutting the adhesive into pads with varying shape ratios. 

Since 10 cm is the maximum available width and length, the available shape ratio range 

becomes larger as pad area decreases. Samples are tested at three pad areas, 49 cm2, 25 

cm2, and 9 cm2. For the 49 cm2 pad shape ratio varies from 0.49 to 2.04, for the 25 cm2 pad 
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shape ratio varies from 0.25 to 4, and for the 9 cm2 pad shape ratio varies from 0.09 to 11.1. 

These areas are chosen to determine whether shape ratio is significant for both small and 

large pads, and to provide a wide range of achievable shape ratios.   

Equation 2.14 is used to calculate the force capacity for adhesives with varying 

shape ratios. This is plotted in Figure 2.9 for the experimentally tested areas. Calculated 

forces are compared to experimental results for adhesives with five shape ratios at each 

sample area. As shape ratio decreases, the force capacity generally increases across the 

entire range of shape ratios for all pad areas. The 49 cm2 adhesive pads exhibit a very strong 

dependence on shape ratio, with force capacity increasing 45% from highest to lowest 

Figure 2.9 - A plot of force capacity versus shape ratio for 3.1 MPa elastomer adhesives.
Dotted lines represent calculated force capacity for varying pad areas. Solid data points 
represent experimental results. 
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shape ratio. For the 25 cm2 adhesive pads, a weaker dependence on shape ratio is 

calculated. This dependence agrees with the experimental results until SR = 0.5.  For SR = 

0.5, the force capacity greatly drops to a level equal with the force of the highest shape 

ratio sample. In the case of the 9 cm2 adhesive pads, only a slight increase in force capacity 

is predicted with decreasing shape ratio. Again, a slight increase in force capacity is seen 

as shape ratio decreases, until shape ratio decreases below 0.5. As sample width increases 

and pad length decreases, load distribution across the width of the pad becomes 

increasingly more difficult. This poor load distribution results in stress concentrations 

within the pad, and crack growth begins in these locations. Once crack growth begins, due 

to short pad lengths and the elastic nature of the adhesives, the sample quickly fails through 

the whole sample.  A tradeoff is clearly evident between shape ratio and sample loading 

ability; low shape ratio minimizes compliance, which is necessary to increase force 

capacity, but must not be so low that sample loading is negatively influenced.   

Decreasing compliance increases force capacity, but if the adhesive component 

being tuned is already sufficiently stiff, the total system compliance will not change.  

Observing how the compliance of each component varies with shape ratio reveals which 

components most greatly influence force capacity. In Figure 2.10, the compliance of each 

component is plotted as a function of shape ratio, for each pad area. The black line 

represents Equation 2.12, the sum of the compliance for each component, and the data 

points represent the experimental compliance for each adhesive. The compliance of the pad 

does not change with shape ratio. However, the compliance of the skin is strongly 

dependent on the shape ratio, increasing with a slope of 1 as shape ratio increases. The 
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tendon is also dependent on width, but not length, and increases with a slope of 0.5 as shape 

Figure 2.10 - Plots of compliance versus shape ratio for adhesives with three different pad 
areas. The sum of each individual component results in the total compliance for the
adhesive. Open data points represent experimental results. 
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ratio increases. Finally, the compliance of the test system must also be included, because 

any source of compliance, regardless of distance from the adhesive interface, influences 

force capacity. The plots of compliance versus shape ratio for varying pad areas 

demonstrate which adhesives benefit from tuning shape ratio.   

Understanding the compliance of each component allows for optimization of shape 

ratio for a given pad area. For the 49 cm2 adhesive pads at high shape ratios, skin 

undergoing extension is the most compliant component of the system. As shape ratio 

decreases to SR = 2, the test system becomes the most compliant component. Therefore, at 

SR < 2, the adhesive pad approaches the minimum attainable compliance, which is seen as 

a plateau in the total compliance as shape ratio decreases. For the 25 cm2 adhesive pads at 

SR > 3 the skin is again most compliant, followed by a short region (1.5 < SR <3) where 

the tendon is most compliant. When SR < 1.5, the system and the pad are the most 

compliant components of the entire system. Interestingly, at SR = 0.6 the tendon 

compliance drops below the pad compliance, and the pad then becomes the most compliant 

part of the adhesive. Below this shape ratio force capacity decreases, because the sample 

peels locally from an isolated crack at the pad interface. This result is consistent with the 

pad being the most compliant component of the adhesive. Finally, for the 9 cm2 adhesive 

pads, when SR > 10 the skin is the most compliant component. When 1.5 < SR < 10, the 

tendon is the most compliant component of the system. Despite being made of carbon fiber, 

a material with modulus four orders of magnitude greater than the elastomer, the tendon is 

the limiting factor of adhesive force capacity. For SR < 1.5, the pad is the most compliant 

component of the system, and for SR < 0.6 only the pad and system greatly influence 

compliance. In this region a decrease in force capacity is observed due to poor loading 
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across the width of the sample, which is a result of high pad compliance.  Failure 

mechanisms which result in lower than expected force capacities can be prevented by 

controlling the most compliant component of the adhesive system.    

2.5.2.2 Calculating Compliance of Non-rectangle Adhesives 

In some situations, pads with rectangular geometry may not be ideal.  Equation 2.14 

is derived specifically to calculate the force capacity for reversible adhesive systems with 

rectangular geometry. By altering the compliance equation, Equation 2.12, to allow for 

shapes where the length changes with the width of the sample, e.g. triangle or pentagon 

shaped adhesive pads, compliance for any shape can be calculated. For these adhesives, 

compliance is calculated by integrating over a finite sample width, x, where Le is a function 

of x, to determine the compliance: 

௖௔௟௖௨௟௔௧௘ௗܥ  ൌ 	 ׬ ൬
ସ௧೐

య

௅೐ሺ௫ሻ
యா೐

൅ 	
ଷ௧೐

௅೐ሺ௫ሻா೐
൅ ሻݔ௘ሺܮ ൤

ଵ

௧೑ா೎ା	௧೐ா೐
൨ ൅

௅೟

௧೑ா೑
൰ ݀ ቀ

ଵ

௪೐
ቁ

௫

଴
 (2.15) 

Equation 2.15 is substituted into Equation 2.13 to calculate force capacity.  In Figure 2.11, 

for samples of varying shape with areas of approximately 49 cm2, the calculated ඥܣ ⁄ܥ  

ratios are plotted, along with the resulting force capacities. Geometric properties of the 

triangle and pentagon shaped adhesives are listed in the caption of Figure 2.11.  As 

previously mentioned, high shape ratio rectangles are not preferred, and ඥܣ ⁄ܥ  for the SR 

= 2 adhesive pad is low. However, for the pentagon and triangle a slight increase in ඥܣ ⁄ܥ  

is calculated, with the triangle slightly less than the SR = 0.5 rectangle. The force capacity 

results generally agree with the ඥܣ ⁄ܥ  ratio calculations. The force of the SR = 2 rectangle 

is the lowest. No statistical significance was determined between the square and the 

pentagon (P = 0.025). The triangle exhibited a higher force capacity, statistically equivalent 
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to that of the SR = 0.5 adhesive (P = 0.09). The triangle has an additional benefit: more 

adhesive area is located towards the middle of the pad, whereas a rectangular pad has 

equally distributed pad area. Failure often initiates at the edges of the adhesive, and 

therefore triangular adhesives avoid failure due to crack initiation from the edges of the 

sample.   

2.5.3 Importance of the Tendon 

Figure 2.11 - A plot of ඥܣ ⁄ܥ  and force capacity for adhesives of varying geometry.
Dimensions for the triangle are base = 10 cm and height = 10 cm, and for the pentagon is
edge height = 4.9 cm, center height = 8 cm, and width = 7.8 cm. ANOVA analysis with a 
post-hoc Tukey test for P < 0.02 is used to determine significance. SR 0.5 rectangle and 
triangle adhesives are found to provide the best performance for a pad area of 49 cm2. 
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2.5.3.1 Tendon Length 

In some circumstances the tendon is the most compliant component of the system, 

limiting force capacity. To test the impact of tendon length, an adhesive with area = 100 

cm2, SR = 1 and Lt = 40 cm is fabricated, and the tendon length is systematically decreased 

to determine the impact of tendon length on measured compliance and force capacity. 

Figure 2.12 presents both ඥܣ ⁄ܥ  and the force capacity as a function of tendon length. As 

Figure 2.12 - A plot of ඥܣ ⁄ܥ  and force capacity versus tendon length. As tendon length

increases, both ඥܣ ⁄ܥ  and force capacity are expected to decrease (dashed lines). 
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tendon length increases, ඥܣ ⁄ܥ  is calculated to decrease dramatically, with a 35% decrease 

expected from 5 cm to 40 cm tendon lengths. However, over this tendon length range, only 

a 20% decrease is observed. Even more surprisingly, this drop in ඥܣ ⁄ܥ  did not directly 

translate to a drop in force capacity; only an 8% decrease in force capacity is experienced.  

The individual compliance of each component is analyzed to determine which components 

contribute the most to the total compliance.  In Figure 2.13 the compliance of each 

component is plotted as a function of tendon length. As tendon length varies, the 

compliance of the pad, skin, and system are constant, while the tendon compliance 

increases with increasing tendon length. However, the tendon is only the most compliant 

component for Lt > 25 cm. Below 25 cm, the test setup is the most compliant component, 

limiting the force capacity increase with decreasing tendon length. Below 10 cm, the skin 

Figure 2.13 - Compliance as a function of tendon length, for each of the system
components. The black line is the sum of the components. Open data points represent
experimental data. 
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also becomes more compliant than the tendon. Despite a wide range of tendon length 

tested, only a small region exists where the tendon is the most compliant component of the 

system.  

The slight dependence of force capacity on tendon length may be caused by two 

simultaneous events.  One reason is that at short tendon lengths the contributions of system 

and skin compliance, not the tendon compliance, dominates the overall adhesive pad 

compliance. If compliance of the tendon is not a primary contributor to the total 

compliance, the influence of tendon length is negligible. An additional contribution is due 

to the failure mechanism of the adhesives. At long tendon lengths the peel angle will be 

very low, resulting in the adhesive pad undergoing predominantly pure shear deformation. 

However, as tendon lengths decrease, small deviations in loading displacements can result 

in larger loading angles. Only a few degrees of peel is required to deviate from a lap shear 

test to a peel test, and this could result in the deviation from expected force capacity at 

short tendon lengths.99 In general, it is important to minimize tendon length to reduce 

compliance, but provide a sufficiently long tendon to prevent introducing large peel angles.   

2.5.3.2 Tendon Width 

While tendon length minimally influences force capacity, tendon width strongly 

controls force capacity.  In all previous tests, tendon width is fixed with the pad width (we 

= wt). Equation 2.12 is formed from combining the compliance of the pad, skin, and tendon 

in series. If the geometry of the tendon is varied independently from the pad and skin, a 

minimal impact on force capacity is expected as long as compliance remains low compared 

to the pad and skin.  However, for this to be true, the load applied to the tendon must be 

able to distribute to the whole pad region of the adhesive. Figure 2.14 shows the results for 
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a 10 cm x 10 cm adhesive pad with a 10 cm tendon, where the width of the tendon is 

reduced systematically. The tendon remains nominally in the center of the adhesive. As 

tendon width decreases, the force capacity drops. Two trend lines are drawn: the blue line 

represents full load transfer from the tendon to the whole pad area (we = 10 cm), while the 

red trend line represents load transfer only to the pad area directly connected to the tendon 

(we = wt). The results demonstrate that the data follows the calculation where no load is 

able to be distributed across the width of the adhesive; only the portion of the pad directly 

loaded influences the force capacity of the adhesive system.  To maximize force capacity 

for an adhesive, it is important that the tendon is able to fully distribute load to the entire 

pad area.   

2.5.4 Elastomer and Fabric Modulus 

Figure 2.14 - A plot of force capacity versus tendon width. As tendon width increases,
approaching the total pad width, force capacity increases. Two calculated force lines are
plotted, where the load is able to be fully distributed across the width (blue), and where the
tendon is able to only load the pad immediately above the tendon (red). 
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Using Equation 2.14 to generate Figure 2.2 demonstrated that for a stiff fabric like carbon 

fiber force capacity is expected to increase as elastomer modulus increases.  As elastomer 

modulus increases, the pad and skin component compliances decrease.  At some point the 

compliance from these components become so low that the impact is negligible, and force 

capacity plateaus (denoted by the saturated red region in the upper right).  To test this 

hypothesis, adhesives are made with unidirectional carbon fiber and additional elastomers, 

spanning into the region where force is expected to plateau. The results are presented in 

Figure 2.15.  As modulus increases, force capacity increases until it reaches the 3.1 MPa 

elastomer. The force capacity of adhesives made with higher modulus elastomer is much 

lower, disagreeing with the expected trend from Figure 2.2. The reason for this decrease 

will be discussed in more detail in the Chapter 3.  

Figure 2.15 - A plot of force capacity as a function of elastomer modulus. Force capacity
initially increases as modulus increases, but above 3.1 MPa force capacity drops with
increasing elastomer modulus. 
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 Discussion 

The results from these experiments provide lessons for optimizing the design of 

adhesive pads. For an adhesive supporting load, every component influences the force 

capacity, even those far from the adhesive interface. To create the highest force capacity 

adhesive joints, compliance must be reduced, so that the adhesive is as stiff as the 

adherends. For a given system, there is a minimum attainable compliance, and if the 

adhesive compliance is decreased further, the adhesive joint will be stronger than the 

adhered materials. If an adhesive is strong, but it is adhering to a compliant material, the 

entire system cannot become strong.  The methods outlined in this chapter for reducing 

adhesive compliance provides multiple methods to tune adhesives to approach the 

minimum attainable compliance, which represents an optimally designed adhesive for a 

given application. For a system which has achieved the minimum attainable compliance 

for an application, any further decrease in compliance, for example by continuing to reduce 

shape ratio, will not result in a decreased total compliance, and may cause poor loading 

properties, resulting in a decreased force capacity. Regardless of shape, an adhesive is 

optimal if the measured compliance approaches minimum attainable compliance.   

Even if the minimum attainable compliance has been reached, force capacity can 

still be scaled.  Equation 2.1 states that minimizing compliance increases force capacity, 

but increasing area also increases force capacity.  After an optimized adhesive shape is 

designed, the area of the pad can be increased if additional force capacity is required.  The 

framework introduced in this chapter, when combined with previously published research 

on gecko-inspired adhesive scaling, provides powerful guidance for high strength, 

reversible adhesive design. 
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Shapes beyond the square pads previously developed can be fabricated to improve 

adhesive force capacity. Here, rectangles, triangles, and pentagons are demonstrated to 

provide improved adhesive qualities compared to square adhesive pads. While triangle and 

pentagon pads exhibit reduced compliance compared to a square pad, there are downsides 

to using die-cut samples.  These pads are difficult to manufacture, because a large area 

must first be coated, then punched to the desired shape, which results in material waste. If 

manufactured at large scales, it would be important to weigh the tradeoffs of a preferred 

design to a larger adhesive pad without production waste.  

Despite being located far from the adhesive interface, the geometry of the tendon 

plays an important role in adhesive force capacity. Kendall’s peel model states that as peel 

angle decreases, peel strength increases.99  A long tendon is useful because it reduces the 

loading angle, allowing the adhesive to maintain predominantly shear deformation, which 

results in the highest peeling forces. However, a shorter tendon decreases compliance, 

helping the system reach the minimum attainable compliance. Understanding this tradeoff 

is important to designing adhesives with appropriate tendon geometry.  Furthermore, 

tendon width is important.  A wider tendon is stiffer than a narrow tendon, decreasing 

compliance.  Even more importantly, the tendon distributes the load to the pad, and a 

narrow tendon is incapable of complete load sharing. To maximize force capacity, the 

tendon must span the full width of the pad. These results provide useful guidelines for 

tendon design in adhesives.  

 Conclusion 

The findings presented in this chapter enable the prediction of adhesive force 

capacity for different materials and different geometries to a high degree of accuracy.  This 
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allows for optimization of the system and helps avoid inefficient bottlenecks, where 

decreasing the compliance of a component results in no gain in adhesive force capacity. 

By decreasing shape ratio, adhesives achieve higher force capacity for the same pad area. 

Complex shapes are fabricated and force prediction is still possible, with these shapes 

capable of exceeding the force capacity of regular square adhesives. Finally, even though 

located far from the interface, tendon geometry can play an important role in adhesive force 

capacity. Understanding these finding allows for the fabrication of optimized adhesive 

devices, and provides a general framework for understanding the importance of individual 

materials and geometric properties in gecko-inspired adhesives.   
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CHAPTER 3  

CREATING GECKO-LIKE ADHESIVES FOR “REAL WORLD” SURFACES 

 Introduction 

In Chapter 2, force capacity is optimized by minimizing the compliance of the 

adhesives. Previous research on reusable adhesives is performed on glass substrates, where 

the true area of contact approaches the nominal contact area of the pad. On rough surfaces, 

making contact with elastic materials is much more difficult. Based on this problem, 

viscoelastic materials are traditionally used to complete contact with surfaces regardless of 

roughness.   Strong, reusable, non-damaging materials that adhere quickly and effortlessly 

to a wide range of surfaces are highly desirable; however, their development has proven 

significantly challenging. In this chapter gecko-inspired adhesives are presented that fulfill 

these criteria.  Performance across a range of “real world” surfaces, including glass, 

Teflon™, and painted drywall is quantified. Geckos are known to climb across a variety of 

surfaces, and synthetic adhesives are compared to live Tokay geckos. Our findings are 

significant because they show that a synthetic design can achieve high adhesive stress on 

rough surfaces while maintaining reusability. Further, these adhesives surpass the adhesive 

stress capacity of Tokay geckos across all tested substrates without the use of any surface 

features, indicating that high reversible adhesive performance can be obtained without 

directly mimicking fibrillar features found on geckos. These results should expand the 

application of adhesives in commercial and industrial arenas.  

 Background 

While traditional pressure sensitive adhesives (PSA) are capable of adhering to a 

variety of surfaces by creeping to accommodate multiple scales of roughness, they present 
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many drawbacks, including difficult removal (when designed to support high shear loads), 

minimal to no reusability, and surface fouling or damage.3,59,67 As a result of these 

drawbacks, there has been a concerted international effort to devise “dry”, high-capacity, 

reusable adhesives, such as those present on gecko toe-pads. Geckos can exert moderate to 

high adhesive forces over repeated cycles37–39,100 while maintaining an ability to easily 

release and prevent fouling.  This enables them to cling to and climb on substrates spanning 

a wide range of roughness and chemistries including wood, painted drywall, and concrete. 

(Figure 3.1A-C).11,20,45,81,101,102 Many research groups have attempted to replicate the 

performance of the gecko adhesive system by focusing on mimicking their setae, which 

are arrays of very small, fibrillar features that divide into nanometer-sized 

spatulae.54,71,103,104 The geometric arrangement of setae enable them to function as a soft 

material, thus allowing contact on micron scale surface roughness14,15 despite being made 

of keratin, a high modulus material.47,105 This approach has been valuable for 

understanding gecko-like adhesion and providing a framework for future studies. Although 

significant advances have been made in the fabrication of gecko-like microfibrils50,58,106,107, 

these adhesives are often difficult to manufacture, have limited reusability, and cannot 

produce high force capacities on “real world” surfaces that have large scale roughness.  

To generate high forces on millimeter and centimeter length scales, geckos possess 

a unique sub-surface morphology of stiff tendon tissue integrated directly into the skin, 

creating lamellar flaps referred to as scansors. These scansors enable a “draping” property 

for the skin, allowing the gecko to generate strong forces over macroscopic length 

scales.45,74,108 “Draping” is characterized by the ability to conform while maintaining in-

plane stiffness.74,109 Russell had initially reported this unique morphology45, and our group 
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recently revealed its importance in the generation of high adhesive forces across large 

length scales.74 Understanding the properties and roles of the sub-surface structures has 

enabled the creation of larger gecko-like adhesives.  

Recently our research group has demonstrated synthetic, reusable gecko-like 

adhesives that exhibit high shear adhesive force capacities (~300 kg for a 100 cm2 

adhesive) and release with very little force (<1 kg in peel).74 These adhesives are created 

by integrating a soft elastomer pad with a stiff fabric, such as carbon fiber, which possesses 

many of the important “draping” properties developed in the sub-surface morphology of 

geckos. This integrated adhesive material conforms to the surface, without relying upon 

fibrillar surface features, while still resisting deformation in the loading direction parallel 

to the surface. Although these adhesives are shown to perform impressively on glass, their 

performance has not been explored on rougher surfaces that are commonly encountered in 

“real world” applications. Here we develop a new, enabling extension of this “draping” 

adhesive principle and use it to demonstrate gecko-like adhesives comprised of elastomers 

and stiff fabrics that can adhere robustly across a wide range of “real world” surfaces.  

Figure 3.1 - An iPad tablet with a 3K plain weave carbon fiber/PU-B gecko-inspired 
adhesive adhering to “real world” surfaces next to geckos. (A) wood paneling with Gekko
gecko, (B) painted drywall, with Phelsuma grandis, (C) concrete stone with Gehyra vorax. 
Used with Permission: Adv. Mater. 2014.119 
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 Approach 

Previous work74–77 found that a simple equation describes the adhesive force 

capacity, Fc, of reversible adhesives: 

௖ܨ  ൌ 	ඥ2ܩ௖	ඥܣ ⁄ܥ  (3.1) 

Three variables control this relation: Gc is the critical strain energy release rate for 

interfacial fracture in the prescribed mode of failure, A is the true contact area, and C is the 

compliance in the loading direction. Gc is an ineffective control parameter because it cannot 

be varied greatly for reversible adhesive interfaces. The ඥܣ ⁄ܥ  ratio is a generalized 

reversible scaling parameter, which is used to scale adhesive force over many orders of 

magnitude, not only for synthetic materials but also for many different biological 

structures, including those of geckos, beetles, flies, and spiders.74 In the previous chapter 

this equation was experimentally verified on smooth surfaces, where the true area of 

contact (A) is nearly equal to the full nominal area of the adhesive (An). On rough surfaces, 

however, we cannot expect this assumption to remain valid.110,111 To extend this 

relationship to rough surfaces, the change in contact area must be accounted for to 

accurately predict force capacity.  

According to Equation 3.1, strong adhesives require the adhesive material to be 1) 

soft enough to create intimate contact with the surface (large A), and 2) stiff enough to 

enable low shear compliance (low C). When contacting a rough surface, the area of contact, 

A, is a fraction, f, of the nominal area: 

ܣ  ൌ  ௡  (3.2)ܣ݂

This fraction is defined by a probabilistic function that accounts for the probability of 

surface forces being capable of exceeding the elastic restoring force required to bring the 
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adhesive into contact over a surface asperity with amplitude, .110,112 This probability 

function is approximated: 

 ݂ ≅ exp	൬
ିఉ

ீ೎,ಿ/ா೐
൰ (3.3) 

where Gc,N is the critical strain energy release rate, or adhesion energy, normal to the 

surface, and Ee is the Young’s modulus of the elastomer pad. ܩ௖,ே/ܧ௘ describes the length 

scale over which a material will adhere to a surface.113,114   

To calculate force capacity, the compliance of the adhesives must be known. In 

Chapter 2 adhesives were designed using carbon fiber because utilizing stiff fabrics 

minimizes the compliance of the adhesives.  In this chapter, carbon fiber fabrics will again 

be used.  Here the compliance contributions of the pad bending, the tendon, and the system, 

are not included, because these components are sufficiently stiff that they will negligibly 

influence the compliance. The compliance of the adhesive structure (Figure 2.2A and 

Figure 2.2B) in the direction of loading is calculated by accounting for the shear (Equation 

2.5, second term) and extension (Equation 2.10) deformation modes:75 

௖௔௟௖௨௟௔௧௘ௗܥ  ൌ ൤
ଷ௧೐

஺ா೐
൅

௅೐
మ

஺
൬

ଵ

௧೐ா೐ା௧೑ா೎
൰൨ ൌ 	

ଵ

௙஺೙
൤
ଷ௧೐

ா೐
൅ ௘ܮ

ଶ ൬
ଵ

௧೐ா೐ା௧೑ா೑
൰൨ (3.4) 

where Le is the length of the elastomer pad, Ec is the composite modulus of the fabric, and 

ti is the thickness with i equal to e or f, referring to the elastomer pad or fabric, respectively. 

Rearranging with Equation 3.2, we see that: 

௥௘௔௟ܥ  ൌ 	
ଵ

௙
 ௖௔௟௖௨௟௔௧௘ௗ (3.5)ܥ

Substituting Equation 3.2, and 3.5, into Equation 3.1 gives:  

௖ܨ  ൌ 	݂ඥ2ܩ௖	ඥܣ௡ ⁄௖௔௟௖௨௟௔௧௘ௗܥ  (3.6) 
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Interestingly, we see that the only difference from the original equation, Equation 3.1, is 

the addition of the fractional area of contact variable, f. Solving for the stress capacity, 

௖ߪ ൌ  :௡, and inserting Equation 3.3 and Equation 3.4 yieldsܣ/௖ܨ

 

௖ߪ  ൌ exp ൬
ିఉ

ீ೎,ಿ/ா೛
൰ቌ

ଶீ೎,ೄ

௅೛
మቆ

భ

೟೛ಶ೛శ೟೑ಶ೑
ቇା

య೟೛

ಶ೛

ቍ

ଵ/ଶ

 (3.7) 

Here we set Gc = Gc,S, which is defined as the critical strain energy release rate for pure 

shear, which is the loading mode of these experiments.  Equation 3.7 will be used to 

calculate adhesive stress capacity for fabricated adhesives across a range of surface 

roughness. 

 Experimental 

3.4.1 Materials 

Polyurethane elastomer pad materials are purchased from BJB Enterprises. The mix 

ratios of ‘A’ and ‘B’ components are used as follows: PU-A: ST1060 100:55, PU-B: 

ST3040 100:97.5, PU-C: F15 45:100. The components are mixed together in a plastic cup, 

and degassed in a desiccator until bubbles disappeared; the mixture is then reintroduced to 

air and used. 24K unidirectional carbon fiber tape is purchased from Soller Composites (Ef 

= 40 GPa), 3K plain weave carbon fiber fabric (Ef = 20 GPa) is purchased from Soller 

Composites and used for figure 3.1. Effective fabric modulus is determined by taking the 

linear portion of a force vs displacement curve for a 10 cm by 20 cm strip of fabric, tested 

at 10 mm/min with a 50 kN load cell on a Instron 5500R tensilometer. Elastomer modulus 

(Ee) values are determined by dynamic mechanical analysis (DMA) at room temperature 

with 0.1% strain at a frequency corresponding to the adhesives lap shear testing rate, which 
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for te values of 0.42 mm, 0.90 mm, and 0.41 mm results in frequencies of 0.40, 0.19, and 

0.41 Hz, for PU-A, PU-B, and PU-C, respectively. To quantify an effective Gc,N, a material 

property proportional to the surface energy, a glass half-sphere (R = 3.6 mm) is indented 

on the polyurethane elastomers following the methodology of Johnson, Kendall, and 

Roberts, at velocities of 109, 112, and 163 m/s for elastomers PU-A, PU-B, and PU-C, 

respectively, which approximately matches the average strain rate experienced within the 

tests.115,116 3M VHB™ tape is tested at 100 m/s as a point of comparison. These results 

are presented in Figure 3.2, and indicate that there is relatively little variability between 

materials with respect to Gc, especially compared to 3M VHB™ tape.  

3.4.2 Adhesive Fabrication 

Figure 3.2 - Effective Gc for different materials.  3M VHB™ tape is included for
comparison, as a traditional PSA.  Strain rates are chosen to correspond with rates used in
the shear adhesion tests.  Data is shown as the mean with error bars representing ± standard 
deviation.  Used with Permission: Adv. Mater. 2014.119 
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The fabrication method used here is the same as in Chapter 2.  In brief, on 

polyethylene coated glass, fabric is taped into place. A spacer is cut and taped onto the 

fabric. The uncured elastomer is poured into this spacer, and smoothed with a glass slide. 

A thin PE film is placed on top of the thin layer of prepolymer, and 25 pounds of force is 

applied to create a smooth surface. Samples are cured at room temperature overnight (at 

least 12 hours), then placed in a 70°C oven for 24 hours. After curing, a rotary blade cutter 

is used to cut the samples to the desired size. Two pieces of 3 mm thick polycarbonate 

(McMaster Carr) are adhered using a cyanoacrylate based adhesive to the bottom of the 

fabric. 

3.4.3 Substrate Preparation 

The substrates chosen for investigation are glass, acetate film, Teflon™, aluminum, 

painted drywall, and frosted glass. 20 cm by 25 cm by 0.63 cm thick glass (Amherst Glass) 

is utilized as the glass testing substrate. A 250 m thick piece of adhesive-backed PTFE 

(McMaster Carr) is placed onto another glass substrate to make the Teflon testing substrate. 

A piece of acetate film (McMaster Carr) is adhered to a plate of glass using Elmer’s spray 

glue to create the acetate testing substrate. A bar of 0.63 cm thick Aluminum (Alloy 6061, 

unpolished finish) (McMaster Carr) is  cut to 20 cm by 25 cm. Finally 0.63 cm thick drywall 

(Home Depot) is painted with high gloss white paint (Benjamin Moore). Glass and 

Aluminum surfaces are cleaned with acetone, and the remaining substrates are wiped with 

a Kimwipe tissue (Kimberly Clark) when adhesives are changed (every six tests). Surface 

profiles from white light interferometry (Zygo NewView 7300) are shown in Figure 3.3A. 

Image areas greater than 2 mm2 are captured by stitching multiple images together.  

3.4.4 Testing 
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Testing is performed using a similar procedure as in Chapter 2.  In brief, an Instron 

5500R tensilometer is utilized for testing, with a 50 kN load cell for 100 cm2, 36 cm2, and 

9 cm2 sample sizes, and a 1 kN load cell for 4 cm2 and 1 cm2 sample size. Substrates are 

held in place by a custom built substrate holder (Figure 2.4), which is tightly attached to 

the crosshead, and displaced at a rate of 10 mm/min, until the sample detached from the 

surface. The adhesive is gripped using a mechanical grip on the bottom, and applied to the 

substrate by hand. Each test is performed 5 times, and all sizes and substrates are testing 

using one adhesive (180 tests per adhesive). All tests for each adhesive are performed on 

the same day, and no noticeable change is measured from test to test, resulting in the small 

error bars in Figure 3.10. Similarly, 90 degree peel tests are performed with a 1 kN load 

cell with the same substrates oriented perpendicular to the adhesives at a rate of 100 

mm/min.  

3.4.5 Animal Care 

Geckos are maintained individually in 10-ga glass aquaria in the Irschick lab at the 

University of Massachusetts Amherst (under IACUC protocol 2009-0051). Each cage is 

heated with a 60-watt bulb on a timer switch that provides light from 9 AM to 5 PM. They 

are each fed 12 large vitamin-dusted crickets per week. Gecko experiments are performed 

by holding the animal’s torso while the two front feet are attached to a glass plate, which 

is displaced at 300 mm/min. The force is measured until it reaches a maximum. At this 

point the gecko begins to slip, denoted by a plateau or decrease in force, at which point the 

handler’s grip is reset and the test is repeated. For more information on this testing protocol, 

see reference 72. 

 Results 



 

59 

3.5.1 Experimental Surfaces Analysis 

As verification of the relationship outlined in Equation 3.7, six substrates 

comprising a range of surface roughness and chemistries are prepared: glass, poly(vinyl 

acetate), Teflon™, aluminum, painted drywall, and frosted glass. The roughness of these 

Figure 3.3 - White light interferometry profiles of the prepared substrates. (A) Visual 
representation. (B) A plot of measured RMS roughness versus the area of contact
measured. Painted drywall varied dramatically with area, while the remaining substrates 
did not depend on the area of contact. Used with Permission: Adv. Mater. 2014.119 
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surfaces is measured with white light interferometry, and the surface profiles are provided 

in Figure 3.3A.  for these surfaces is found by taking the average of RMS values at three 

magnifications corresponding to 1.31, 0.37, and 0.09 mm2 surface areas (Figure 3.3B).  

These substrates provide a wide range of roughness, from  = 0.01 m for glass, to  = 2.5 

m for frosted glass.  Performance on painted drywall is also of interest due to its 

combination of short length scale and long length scale roughness, as well as being a 

common surface for which adhesives are desired.   

3.5.2 Theoretical Predictions 

In Chapter 2, it is noted that as elastomer modulus increases, compliance decreases, 

and therefore adhesive strength should increase (Figure 2.2). However, in experiments 

performed on glass with adhesives above a certain modulus, force capacity decreased 

(Figure 2.15). Photographs of the surface of pads with moduli of 0.3 MPa and 10 MPa is 

Figure 3.4 - Photographs of a 0.3 MPa elastomer adhesive (left) and a 10.0 MPa elastomer 
adhesive (right). Dark color represents contact with the glass plate. The 0.3 MPa elastomer
makes much more complete area of contact than the 10.0 MPa elastomer. 
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shown in Figure 3.4. While the 0.3 MPa adhesive makes large areas of contact, only a small 

area of contact is made with the 10 MPa adhesive. When only a small area of contact is 

made, force capacity is low, regardless of elastomer modulus.  Using Equation 3.6, Figure 

2.2 can be replotted, taking into account the fractional area of contact resulting from surface 

roughness of the glass ( = 0.01 m). The resulting plot is shown in Figure 3.5. For carbon 

fiber, as elastomer modulus increases the force capacity increases until a maximum is 

reached, and then force capacity decreases. When the elastomer modulus becomes high, 

the area of contact, as predicted by Equation 3.2, decreases, and the adhesives are no longer  

Figure 3.5 - Plot of force capacity as a function of elastomer modulus and effective fabric
modulus, taking into account surface roughness of glass,  = 0.01 m. Color represents the 
magnitude of force capacity. 
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able to support large loads. The results of Figure 3.5 agree with the trend seen in Figure 

2.15.  The highest force capacities are achieved with the highest modulus elastomers, which 

Figure 3.6 - Contour plots of force capacity as a function of elastomer modulus and
effective fabric modulus. As roughness increases, the maximum achievable force capacity
decreases, and the elastomer modulus at which this value occurs decreases. 
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are still capable of completely wetting the substrate. 

Extending this idea, it is possible to predict how adhesives will perform on 

increasingly rough surfaces. In Figure 3.6, three contour maps are plotted, for  = 0.01 m, 

0.1 m, and 1.0 m. As roughness increases, two changes occur. First, the maximum 

achievable force capacity decreases. Second, the elastomer modulus where maximum force 

capacity occurs decreases. This provides a general guideline for developing adhesives for 

rough surfaces. 

For all surfaces roughness values within the range tested, maximum force capacity 

occurs with the stiffest fabrics.  For this reason, we use carbon fiber, as the fabric material 

for all samples.  Additionally, analysis focuses on adhesives with An = 4 cm2, to allow for 

comparison of the adhesives to the clinging ability of live Tokay geckos. Figure 3.7 

illustrates the dependence of adhesive stress capacity as a function of elastomer pad 

modulus, Ee, for several surface roughness values, , where Le, te, tf, Ef , Gc,N, and Gc,S are 

measured quantities for the adhesives described in this chapter and are listed in Figure 3.7.   

From the plot in Figure 3.7, several predictions are constructed. While keeping 

lengths, Le, and Lt, thicknesses, te, and tf, and fabric modulus, Ef of the adhesives constant, 

there is an optimal modulus that results in maximum adhesive stress capacity for any given 

surface roughness. As roughness increases, the optimal modulus decreases, and the 

maximum achievable adhesive stress decreases. From this basic relationship, a general 

spectrum for releasable adhesives is revealed; at one end of this spectrum exist extremely 

high strength, optimized adhesives suitable for smooth substrates, and at the other end are 

moderate strength adhesives which are capable of adhering to a wide range of surfaces. 

Perhaps most interestingly, this spectrum demonstrates that the optimal elastomer modulus 
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for gecko-like adhesives that adhere to surfaces with roughness values up to 2.5 m is 

greater than the Dahlquist Criterion3,62,67, which is widely used in the development of 

conventional pressure-sensitive adhesives. Whereas the Dahlquist Criterion was 

established to provide large deformations to effectively “blunt” a developing peel front, the 

gecko-like adhesives described here take advantage of extremely high stiffness carbon fiber 

Figure 3.7 - Adhesive stress capacity versus elastomer pad modulus for varying roughness
surfaces, with An = 4 cm2, Le = 2 cm, te = 0.42 mm, tf = 0.3 mm, Ef = 40 GPa, Gc,N = 1.51 
N/m, and Gc,S = 35 N/m. As roughness increases, the optimal elastomer pad modulus shifts
to a lower modulus and adhesive stress capacity decreases. The shaded region represents
modulus values most often associated with pressure sensitive adhesives. Used with 
Permission: Adv. Mater. 2014.119 



 

65 

fabric to distribute shear forces across a large area, and thus the elastomers are not required 

to achieve large deformations like traditional PSAs. 

3.5.3 Synthetic Results 

To fabricate the best adhesive for rough surfaces, Figure 3.7 is used to guide 

elastomer choice for stiff fabric tendons. Adhesives are prepared with uniaxially aligned 

24K tow carbon fiber fabric. Elastomers with moduli of 3.1 MPa, 0.35 MPa, and 1.0 MPa 

as determined by Dynamic Mechanical Analysis (DMA) are used and are referred to as 

PU-A, PU-B, and PU-C, respectively. Samples are prepared with An = 100 cm2 with Le = 

w = 10 cm, and are cut to smaller sizes for testing, while maintaining Le/w = 1.  Predicted 

performance for these adhesives is denoted in Figure 3.7 as vertical lines.   

A representative force, F, versus applied displacement, , plot is shown in Figure 

3.8A. Force increases with displacement, ultimately reaching a maximum value, Fc, 

followed by a rapid decrease, corresponding to the adhesive’s detachment from the surface. 

Fc is normalized by An and presented as adhesive stress capacity, c in Figure 3.8B, for 

samples of An = 4 cm2. Adhesive stress capacities for PU-A are very high on glass and 

decreases with increasing surface roughness, with no significant adhesion observed on 

frosted glass. PU-B, which has the lowest modulus, exhibits the lowest adhesive stress on 

glass, but is able to maintain this adhesive stress with only 30% deviation even on rough 

surfaces. The results for PU-C show a combination of characteristics; the intermediate 

modulus elastomer achieves high adhesive stresses on glass while still maintaining an 

ability to adhere to rough surfaces. The resulting adhesive stress capacities for the three 

adhesives agree well with the trends predicted by Equation 3.7; for the smoothest substrate 

(glass), the highest modulus elastomer pad material results in the highest adhesive 
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performance and as roughness increases the adhesive capacity of PU-A quickly decreases 

to zero. In contrast PU-B and PU-C maintain moderate adhesive strength on rougher 

Figure 3.8 - A representative force versus extension plot for PU-C. As extension increases, 
load increases linearly (d/dF = C) until a maximum force is reached (Fc), where the 
adhesive quickly detaches from the surface. (B) Adhesive stress capacity for different
substrates, for both synthetic adhesives and live geckos, with data representing the mean ±
standard deviation. Synthetic adhesives have contact areas of 4 cm2, similar to gecko toe 
pads. Gecko toe-pad area was measured for each specimen. (C) Shear adhesive stress
capacity versus surface roughness, for both synthetic and live geckos. Data is shown as the
mean with error bars representing standard deviation for c (y-axis) and  (x-axis). Dashed 
lines represent fits of Equation 3.7 with experimental parameters from Table 1 and Gc,S

values of 24.9, 55.4 and 49.7 N/m for PU-A, PU-B, and PU-C respectively. Used with 
Permission: Adv. Mater. 2014.119 
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surfaces, most notably on frosted glass. These results are summarized in Figure 3.8C, 

where the average adhesive stress is plotted against the surface roughness, . Values for 

Equation 3.7 can be found in Table 3.1, and Gc,S is used as a fitting parameter. The resulting 

fits agree well with the data verifying the ability of Equation 3.7 to capture the key elements 

of these gecko-inspired adhesives.      

 PU-A PU-B PU-C

Elastomer Pad Thickness, te (mm) 0.42 0.90 0.41

Elastomer Pad Width, w (cm) 2 2 2

Elastomer Pad Length, Le (cm) 2 2 2

Pad Modulus, Ee (MPa) 3.1 0.3 1

Tendon Length, Lt (cm) 10 10 10

Fabric Thickness, tf (mm) 0.3 0.3 0.3

Effective Fabric Modulus, Ef (GPa) 40 40 40

Gc,N (N/m) 2.57±1.06 0.638±0.11 1.33±0.40

Our results for surfaces of varying roughness demonstrate the benefit of utilizing 

draping adhesives. Roughness is complex, as it can vary over many length scales, and RMS 

roughness is only one parameter that can be used to describe how surface topography 

affects adhesion.111,112 As shown in Figure 3.3B, the measured RMS roughness for drywall 

is the highest of all substrates when measurement areas are greater than 1 mm2, but 

decreases as measurement area decreases. By contrast, frosted glass roughness is uniform 

over many length scales, and is the roughest substrate for measurement areas less than 1 

mm2. Interestingly, adhesive strength is substantially higher on painted drywall. We 

interpret this result as arising from millimeter or larger scale roughness being 

Table 3.1 - Experimental parameters for synthetic adhesives used in Figure 3.8. From 
fitting to Equation 3.7, Gc,S values of 24.9, 55.4 and 49.7 N/m were obtained. 
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accommodated by draping of the adhesive fabric, whereas accommodation of micron or 

smaller scale roughness is dependent on the elastomer properties.  

Furthermore, our adhesive results conform to the general scaling relationship 

described by Bartlett et al. (Figure 3.9).74–77 The variability of these data is attributed to the 

fact that the area used to plot the data is the nominal area, An, of the adhesive, not the true 

contact area of the adhesive, which is decreased due to roughness. In Figure 3.9A, two 

lines are shown which represent the upper bound of an adhesive making full contact (f = 

1) and lower bound of an adhesive making only 30% contact (f = 0.3). Even on surfaces 

where true contact area is reduced, the force capacity still scales with	ඥܣ௡ ⁄ܥ . As a simple 

Figure 3.9 – Scaling adhesive strength on rough surfaces. (A) Force capacity, Fc, versus 

ඥܣ௡ ⁄ܥ  for all synthetic adhesives tested, ranging from areas of 1 cm2 to 100 cm2. Data 
point color represents adhesive substrate, while shape represents adhesive material. Even

as surface roughness increases, force capacity continues to scale as ܨ௖	~	݂ඥܩ௖ඥܣ௡ ⁄ܥ .
Fitting lines represent upper and lower bounds of adhesive contact, with the upper line (f = 
1) fitting approximately 100% contact, and the lower line (f = 0.3) fitting approximately 
30% contact. The letters B and C refer to the adhesives utilized in part (B) and (C). (B) 1 
cm2 adhesive holding a 340 g mass, and (C) 100 cm2 adhesive holding a 34 kg mass on 
painted drywall. The chain behind the adhesive and drywall is used for lifting the weights.
Used with Permission: Adv. Mater. 2014.119 
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example of scaling, Figure 3.9B and Figure 3.9C demonstrate that increasing the size of a 

PU-C adhesive from 1 cm2 to 100 cm2 allows for an increasing in hanging load from 340 

g to 34 kg. These findings firmly establish ඥܣ௡ ⁄ܥ  as the key scaling parameter for 

reversible, gecko-like adhesives on both smooth and rough substrates, thus allowing 

performance to be maintained over a large range of adhesive sizes.  

While high force capacity is an important characteristic for an adhesive, easy 

release is also essential for many applications. To quantify the release force of the 

fabricated adhesives, 90 degree peel experiments are performed. The force required to 

remove these adhesives is two orders of magnitude lower than the shear adhesive force 

capacity (Figure 3.10), and is less than 1 kg. One reason for this low peel force, or easy 

release, is that the storage modulus is substantially greater than the loss modulus, resulting 

Figure 3.10 - Force capacity at 0 degree and 90 degree peel angles, for three different
elastomer pad materials. Significantly lower peeling force at 90 degrees allows for easy 
release of the adhesives. Data is shown as the mean with error bars representing ± standard 
deviation. Used with Permission: Adv. Mater. 2014.119 
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in low tanሺߜሻ values of 0.083, 0.043, and 0.12 at rates corresponding with the lap shear 

testing strain rates for PU-A, PU-B, and PU-C, respectively.  This small tanሺߜሻ implies 

that minimal energy loss occurs during peel, an attribute that contrasts starkly to 

conventionally strong pressure sensitive adhesives.3 This predominance of elasticity allows 

for easy release at high angles,87 but even more importantly, the ability to maintain the 

same force capacity over multiple cycles of attachment and release on numerous surfaces. 

We have demonstrated a proof-of-concept for adhesive reusability by attaching an LCD 

computer monitor on various indoor and outdoor surfaces (example in Figure 3.11), 

without cleaning the adhesive or preparing any of the surfaces. This demonstrates one 

potential application for high strength, reversible adhesives which are not currently 

available in the commercial or industrial marketplace.  

3.5.4 Live Gecko Results 

Figure 3.11 - Photograph of a LCD computer monitor hanging on drywall with a gecko-
inspired adhesive.  Adhesive consists of glass fiber fabric and PU-C.   
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Adhesive experiments are also performed on five adult live Tokay geckos (Gekko 

gecko) across the same range of surfaces to provide a point of comparison for the fabricated 

synthetic adhesives.  While geckos are well known for their climbing ability, most studies 

have focused on their adhesive abilities on smooth surfaces, such as glass. Despite 

variability in roughness of the substrates, gecko force capacities were relatively constant 

across substrates for each individual (Figure 3.12). Variation in body size is accounted for 

amongst geckos by dividing force capacity, Fc, by toe-pad area. The average adhesive 

stress capacity for Tokay gecko specimens is 3.1 N cm-2 across all six surfaces (Figure 

Figure 3.12 - Adhesive stress versus substrates for the Tokay gecko specimens. Each bar
represents a single specimen. Data is shown as the mean with error bars representing ± 

standard deviation. Used with Permission: Adv. Mater. 2014.119 
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3.8B). Tokay geckos do not adhere strongly to the Teflon surface, which is likely a 

consequence of the surface chemistry of this substrate, and not roughness.  

The consistent adhesive stress capacity across substrates for Tokay geckos can be 

attributed to both the sophisticated neuromuscular system of gecko feet and 

toes12,45,101,117,118, and also the basic structure of their toe-pads. Geckos carefully position 

themselves prior to surface contact, which might aid in achieving optimal contact. Because 

each toe-pad is covered in microscopic fibrillar features, they have very high compliance 

normal to the substrate and easily establish intimate contact with the surface, even on 

higher roughness surfaces.5,47 Calculations performed by Autumn et al. have shown that 

Tokay gecko setae have an effective modulus of 86 kPa.47 Figure 3.7 demonstrates that for 

this modulus across all roughness values there is little variability in adhesive stress. It is 

important to note that this plot is contingent on the fabric compliance being much less than 

the elastomer pad compliance, while still maintaining the ability to drape. In geckos, the 

sub-surface tendon system acts in a similar manner as the fabric in our adhesives. 

Accordingly, it can be expected that low effective modulus of the setae allows gecko toe-

pads to establish conformal contact on micron and sub-micron length scales, analogous to 

the elastomer pad in our materials, while the unique coupling of the gecko’s sub-surface 

tendon system minimizes compliance and simultaneously provides draping on larger length 

scales. This empowering combination is one feature that allows the gecko to cling and 

climb proficiently across many length scales of roughness, although there remains a 

significant amount of research that needs to be performed to fully understand how geckos 

climb.  

 Discussion 
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The adhesive stress capacity of our adhesives is capable of surpassing geckos for 

all of the surfaces examined (Figure 3.8B). We note that gecko-like adhesion is not merely 

about strength; it also includes reusability, easy peel, and the ability to resist fouling. Our 

adhesives achieve some of these (easy peel, reusability), and can be easily cleaned if dirt 

accumulates over its lifetime. While utilizing highly compliant fibrils is an effective 

specialization for geckos, our approach of varying elastomer softness enables us to alter 

surface compliance without the additional complicating step of synthesizing fibrils, which 

requires difficult manufacturing techniques and complicates scaling to large sizes. This 

allows us to compensate for micron and smaller scale roughness. Additionally, carbon fiber 

fabrics are able to affectively mimic the “draping” ability, while maintaining the high 

stiffness seen in gecko toe-pads, enabling adhesion over millimeter and larger scale 

roughness. By combining these features, like the gecko, we obtain nearly equal adhesive 

stress capacities across surfaces with one of our elastomers (PU-B). Tuning our materials 

system further, we surpass this capability with PU-C, maintaining the ability to adhere to 

all surfaces but with high adhesive stress capacity on smooth surfaces. Therefore, by 

changing the materials systems utilized in the adhesive and following draping adhesive 

principles, we can optimize the adhesive characteristics for a variety of surfaces. This 

capability is an important characteristic for gecko-like adhesives, which has not been 

previously achieved with synthetic fibrillar adhesive systems.54,58 

 Conclusions 

Our adhesives show that the ability to adhere to a wide range of surfaces can be 

achieved without fabrication of fibrillar structures and suggests that this ability is due to 

low effective modulus in combination with low compliance in the direction of loading. The 



 

74 

mathematical constructs described within this manuscript should guide the construction of 

future high strength reversible adhesives. The ability for ultra-stiff carbon fiber fabrics to 

drape over macroscopic length scales, and elastomers to deform at microscopic length 

scales enables strong adhesion on “real world” surfaces. Our results are consistent with 

previously described scaling equations, reinforcing the ability for this method to achieve 

extremely high force capacities. We believe that the “dry” and high-capacity gecko-like 

adhesives demonstrated here can be utilized for a wide range of commercial and industrial 

applications, such as wall-hanging in homes or adhesion to fragile surfaces for 

manufacturing. 
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CHAPTER 4  

USING SHEAR ADHESIVES TO SUPPORT NORMAL LOADS 

 Introduction 

Bottom-loaded fibril-less adhesives are an efficient design for creating high 

strength, reusable adhesives for a variety of surfaces.74–76,119  However, these adhesives are 

only designed for shear adhesion.  In many applications, a zero degree loading angle is not 

possible to achieve; for example, in wall hanging applications, the adhesive hangs along 

the surface of the wall, not directly beneath it, resulting in a peel angle.  The adhesives 

presented in Chapter 2 and Chapter 3 are designed to easily peel when forces are applied 

at high angles, limiting their usefulness in wall hanging application.  Therefore, a new 

design is required to create adhesives that resist peeling from non-shear forces.   

Again, Nature is used as a guide for new adhesive designs.  Biological organisms 

are capable of climbing across ceilings, yet their adhesive toe-pads achieve the highest 

adhesive forces under shear loading conditions.  Some organisms use their muscular 

systems to generate shear forces.  Geckos specifically are seen to widely spread their limbs 

and toes, allowing them to generate shear force to maintain adhesion on walls or inverted 

surfaces.  The adhesives introduced in this chapter are designed to mimic this ability to 

minimize loading angle when normal loads are applied.   

This chapter presents new adhesive devices which show a more than six-fold 

increase in normal adhesive force capacity, compared to bottom loaded adhesives.  Two 

elastomer pads are coated at opposite ends of a single piece of fabric, referred to as a 

“double pad” and force is applied from the center of the fabric.  The design developed here 

is similar to the radially distributed toes in the gecko.   This new adhesive device enables 
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high strength, reversible adhesives for use in a wide range of situations where pure shear 

loading conditions cannot be achieved.   

 Background 

Previous research on fibril-less gecko-inspired adhesives shows that connecting the 

tendon to the center of the skin, rather than to the bottom, prevents a rapid decrease in force 

capacity with increasing applied load angles.74 However, this method has some 

complications, which limits its applicability.  One problem with this design is fabrication 

is difficult, and each sample must be prepared individually.  An additional problem is that 

the joint connecting the tendon to the skin can act as a limiting component; if the fabric is 

very stiff it becomes difficult for adhesion to occur under the joint, and if it is too compliant 

the adhesive can tear at the joint.  These difficulties led to the development of new 

adhesives which possess an ability to support loads at high loading angles, with a simpler 

fabrication process.   

Biology again provides inspiration for adhesive design.  Geckos and other 

organisms crawl across ceilings or other horizontal surfaces, where the effective loading 

angle on the toe-pads is much greater than zero degrees.11,37,81 Researchers have proposed 

that their ability to adhere on horizontal surfaces is due to the high aspect ratio features 

which cover their toes, called setae.  High adhesive strength is achieved due to a 

phenomenon known as contact splitting.48,68,120  Contact splitting principles state that for a 

given contact area that is broken up into n discrete segments, adhesive force will scale like 

n1/2.68  However, this method necessitates the use of small, hierarchical features which are 

difficult to manufacture at large scales.   
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There is also evidence that organisms climb across ceilings by extend their limbs, 

to emphasize shear forces (Figure 4.1).22,31,35  This method allows organisms to use 

adhesive pads which work best under shear conditions, to support normal loads. Results 

from Kendall demonstrate that the peel strength of adhesives greatly decreases with 

increasing peel angle (Figure 4.2).99  To create reversible adhesives that work under normal 

Figure 4.2 - Peel strength as a function of loading angle.99  Used with permission: K. 
Kendall, Thin-film peeling- the elastic term. J. Phys. D: Appl. Phys. 1975, 8, 1449. 

Figure 4.1 – Positional change of a tree frog from a vertical surface (left) to a partially
inverted surface (right). 31  Used with permission: Endlein, T.; Ji, A.; Samuel, D.; Yao, N.; 
Wang, Z.; Barnes, W. J. P.; Federle, W.; Kappl, M.; Dai, Z. Journal of the Royal Society, 
Interface 2013. 
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loading conditions, a design is required that minimizes the effective loading angle on the 

pads.  These adhesives are not enabled by contact splitting, or by altering the adhesive 

materials.   The adhesives fabricated here support normal loads by generating shear forces 

and minimizing the loading angle of the adhesives.   

 Approach 

A diagram of a double pad adhesive system, with a 90 degree applied load is shown 

in Figure 4.3.  A 90 degree load is applied as it represents the highest possible loading 

angle on both pads.  A simple model of the effective loading angle, , is used to predict the 

important variables to increase normal force capacity, Fc,normal. , the angle generated by 

the applied force is given as: 

 cos ߠ ൌ 	
஺ᇱ஻തതതതത

஺ᇱ஻ᇱതതതതതത
ൌ 	

஺஻തതതതି	஺஺ᇱതതതതത

஺஻തതതതା	ఋ೑ೌ್ೝ೔೎
 (4.1) 

Where ܤ′ܣതതതതത is the initial pad gap length, Lg (ܤܣതതതത) minus some length due to deformation of 

the pad (ܣܣ′തതതതത).  Likewise, ܤ′ܣ′തതതതതത is Lg plus some additional displacement due to the applied 

force stretching the fabric.  The displacement length ܣܣ′തതതതത is the x-axis component of the 

applied force multiplied by the pad compliance, and the displacement, fabric, is the 

hypotenuse force multiplied by the fabric compliance:   

 cos ߠ ൌ 	
௅೒ି	ிೣ ஼೛ೌ೏

௅೒ା	ி೓஼೑ೌ್ೝ೔೎
ൌ 	

௅೒ି	
ಷ಴೛ೌ೏

మ౪౗౤ഇ

௅೒ା	
ಷ಴೑ೌ್ೝ೔೎

మ౩౟౤ഇ

	 (4.2) 

Using trigonometry it is possible to solve for these component values of the applied force.  

This equation is simplified further, yielding: 

 1 െ cos ߠ ൌ 	
ிሺ஼೛ೌ೏ା	஼೑ೌ್ೝ೔೎ሻ

ଶ௅೒ ୲ୟ୬ఏ
 (4.3) 

 tan ߠ െ	sin ߠ ൌ 	
ிሺ஼೛ೌ೏ା	஼೑ೌ್ೝ೔೎ሻ

ଶ௅೒
 (4.4) 
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 is approximated by Taylor expansion: 

ఏయ

ଶ
൅

ఏఱ

଼
൅

ଵଷఏళ

ଶସ଴
൅ ⋯ ൌ	

ிሺ஼೛ೌ೏ା	஼೑ೌ್ೝ೔೎ሻ

ଶ௅೒
 (4.5) 

And for the low angle limit, where  < 45o, the expansion can be limited to just the first 

term: 

ߠ  ൎ 	 ൤
ி

௅೒
ሺܥ௣௔ௗ ൅	ܥ௙௔௕௥௜௖ሻ൨

ଵ/ଷ

 (4.6) 

Substituting (Cpad + Cfabric) ൎ Ccalculated (Equation 2.12) to give: 

ߠ  ൎ 	 ൤
ி஼೎ೌ೗೎ೠ೗ೌ೟೐೏

௅೒
൨
ଵ/ଷ

 (4.7) 

This equation allows for predictions of loading angle to be made based on different 

properties of the double pad system.  As would be expected, increasing the applied load 

will increase the effective loading angle, which ultimately causes the sample to release 

Figure 4.3 - Schematic of a double pad (A) at rest, and (B) after a force is applied normal 
to the adhesive. 
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from the substrate.  Based on Equation 4.7, there are a few methods which will be used to 

increased normal force capacity: 

1. Decreasing the compliance of the system.  This increases the force required to 

deform the adhesive to increase the peeling angle.   

2. Increasing the pad gap length.  Longer Lg results in a smaller loading angle for the 

same amount of deformation.   

3. Insuring a zero degree loading angle when the sample is adhered to the surface.  

The assumption within this chapter is that loading angle is the main parameter 

controlling normal force capacity, and it is therefore important that no initial peel 

angle is imposed during application of the sample.     

 Experimental 

4.4.1 Materials 

Elastomer are purchased from BJB Enterprises and used for the pads. ST1060 is 

prepared by mixing ‘A’ and ‘B’ components with a ratio of 100:55. Modulus of the 

elastomer is determined by dynamic mechanical analysis (DMA) at a frequency 

corresponding to the adhesives testing rate, 0.40 Hz for the 0.40 mm thick samples. The 

ST1060 elastomer has a storage modulus of 3.1 MPa (mastercurve is presented in Figure 

2.3).  The components are mixed together in a plastic cup, and degassed in a desiccator 

until bubbles disappeared; the mixture is then reintroduced to air, with an approximate 

work time of 20 minutes before gelation occurs.  

15 cm wide 24K unidirectional carbon fiber tape is purchased from Soller 

Composites. Cotton fabric is purchased from Joann Fabrics.  7.5 cm wide Kevlar fabric 

tape is purchased from US Composites. To bond the fabrics together, Bemis 3231 adhesive 
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film (60 m thickness) on release paper is used, and applied with an iron, set to 

approximately 200ºC.   

4.4.2 Fabrication 

Fabrication of double pad devices takes place in two steps.  First the double pad 

skin is prepared.  Separately, the flexible tendon connection is prepared.  After the double 

pad skin is cured, the two portions are combined to create the final adhesive device.   

4.4.2.1 Double Pad Skin  

24K unidirectional carbon fiber tape is used for the double pad skin.  5 cm x 15 cm 

regions are prepared for the elastomer pad at either end of the fabric.  A 2.5 cm, 5 cm, or 

10 cm region of fabric in the center of the fabric that separates the pads is coated with 

Bemis adhesive film, and the length of this region is referred to as the pad gap, Lg.  The 

release liner of the adhesive film is left on until after sample fabrication was complete. On 

polyethylene (PE) coated glass, the double pad skin fabric is placed and securely taped 

with three pieces of 3M packing tape, over the adhesive film release liner. The uncured 

elastomer is poured onto the fabric, and smoothed with a glass slide. A thin PE film is 

Figure 4.4 - Schematic of the double pad skin. The distance between the pads is an 
experimental variable, and is referred to as the pad gap length, Lg.  



 

82 

placed on top of the thin layer of uncured polymer. A glass plate is then placed on top of 

the film, and 25 pounds of force is applied to create a smooth adhesive surface. Samples 

are cured at room temperature overnight (at least 12 hours), then placed in a 70°C oven for 

at least 12 hours. After curing a rotary blade cutter is used to cut the samples to the desired 

size.  The release liner is retained. A schematic of the double pad skin is shown in Figure 

4.4.  

4.4.2.2 Flexible Tendon 

Flexible tendons are made consisting of either cotton fabric or Kevlar fabric.  The 

fabricated component consists of two parts, the tendon for applying load, and the flange 

which connects to the double pad skin.  For the cotton fabric, 5 cm, 7.5 cm, or 10 cm wide 

strips (wt) of fabric are prepared.  Kevlar tape is fixed with wt = 7.5 cm.  Bemis adhesive 

film is applied to both strips.  A line was drawn on the fabric to demarcate the flange region 

Figure 4.5 - Schematic of the flexible tendon.  Experimental variables of the flexible tendon
component are the flange length, Lf, the tendon width, wt, and the tendon modulus, Ef.   

Flange 

Tendon 
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(Lf) from the tendon region.  The release liner is removed from the tendon portion of the 

fabric, with the flange region retaining the release liner.  The two pieces of fabric are then 

adhered together with an iron.  The resulting structure is shown in Figure 4.5. 

4.4.2.3 Component Assembly 

After both the double pad skin and flexible tendon components are fabricated, they 

are then assembled (Figure 4.6).  On the back of the double pad skin, nominally in the 

center of the component, a strip of Bemis adhesive film is applied, with the same 

dimensions as the flange of the flexible tendon.  The release liner from the flange region 

of the flexible tendon is then removed, and adhered to the double pad skin using an iron to 

complete the adhesive device.  After the device is complete, the release liner between the 

elastomer pads on the double pad skin is removed.     

4.4.3 Testing 

An Instron 5564 tensile tester is utilized for testing. The adhesive is anchored to the 

base of the tensile tester with a custom builder adhesive anchor, which allows for rotational 

Figure 4.6 – Schematic of the assembly of the device, and the final sample.   
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freedom in the plane of the adhesive (Figure 4.7). The glass substrate is held in place by a 

custom built substrate holder, which is tightly attached to the crosshead and displaced at a 

rate of 10 mm/min, until a maximum force is reached, and the sample detached from the 

surface. The substrate holder is mounted either normal or parallel to the crosshead 

displacement direction.  The adhesive test setup has a measured compliance of 2.75 x 10-7 

m/N. Each test is performed at least 5 times, and the first test is excluded to allow for 

conditioning of the test setup and adhesive pad.  

 Results 

4.5.1 Bemis Adhesive Film Tear Strength 

Figure 4.7 - Schematic of the test setup for double pad adhesives. 
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The double pad adhesives designed in this chapter are assembled using a Bemis 

adhesive film.  This adhesive allows for rapid conversion of the double pad adhesive skin 

and flexible tendon into an adhesive device.  However the maximum tear strength of the 

adhesive film will also limit the maximum normal forces supported by the adhesive.  If the 

adhesive strength is greater than the tear strength of the adhesive film, the sample will fail 

permanently at the adhesive film joint, rather than releasing from the test surface.  Figure 

4.8 is a plot of tear strength versus displacement for a 180 degree peel test of a 2.5 cm wide 

carbon fiber fabric and cotton fabric bonded together with Bemis adhesive film.  The 

average tear strength measured is 12.3 N/cm.  Because the flexible tendon is adhered on 

two sides, the average tear strength of the flexible tendon used for the adhesive devices is 

24.6 N/cm.  This represents the maximum normal adhesive strength the adhesive can 

undergo before failure of the sample.  The tensile tester will be programmed to end the test 

Figure 4.8 - Tear Strength versus displacement, for three samples of unidirectional carbon
fiber bonded with Bemis adhesive film to cotton fabric, with a sample width of 2.5 cm.   
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if this force is reached to protect the sample being tested.  Despite this limitation, the Bemis 

adhesive film is a useful material for quickly fabricating adhesive devices.   

4.5.2 Pad Gap Length 

Increasing the pad gap length, Lg, is expected to influence normal adhesion strength 

by decreasing the loading angle of the pads for the same applied load.  Since the adhesives 

created here achieve the highest adhesive strength at zero degree loading angles, it is 

expected that larger Lg should result in higher normal force capacity.  The samples 

fabricated for this test have a 7.5 cm wide cotton fabric tendon, which can support 185N 

of load before sample failure.  Pad gap lengths of 2.5 cm, 5 cm, and 10 cm are tested.  The 

results for this test are shown in Figure 4.9A.  The maximum force is observed with Lg = 5 

cm. As expected, the 5 cm pad gap adhesive has higher normal force capacity than the 2.5 

cm pad gap adhesive.  However the 10 cm pad gap adhesive performed statistically 

equivalent to the 5 cm pad gap adhesive (P = 0.12).  There are two potential explanations 

to why Lg = 10 cm does not follow the expected trend.  First, as the pad gap length increases, 

the amount of carbon fiber fabric being loaded in extension increases, which results in an 

increased compliance of the adhesive pad.  Also, as the distance between pads increases, it 

becomes more difficult experimentally to apply the adhesive with no initial angle between 

the tendon and pads.  If the double pad adhesive is not adhered perfectly perpendicular to 

the flexible tendon (if slack is present in the skin), there will be an initial loading angle 

before any load is applied.  An optimization of these trade-offs is observed at Lg = 5 cm, 

where compliance is minimized and the pad can easily be applied with no initial peel angle.   
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It is also possible to vary the length of the flange, Lf, which connects the tendon to 

the double pad adhesive.  The results for adhesives with Lg = 5 cm are shown in Figure 

4.9B.  A higher normal force capacity is found for the sample with the full flange length, 

where the flange extends to the edge of the double pad skin.  This is understood through 

Equation 4.7, as additional fabric decreases the compliance of the double pad adhesive, 

decreasing the loading angle.  The remaining tests are performed with optimized adhesives 

with Lg = 5 cm and full length tendon flanges.   

4.5.3 Flexible Tendon Width 

In Chapter 2, as tendon width is reduced, adhesive force capacity decreases (Figure 

2.14).  This variable is again tested to determine if the same results occur when the loading 

geometry is changed to normal loading.  Samples are created with wt = 5 cm, 7.5 cm, and 

10 cm, which have maximum sample loads of 123 N, 185 N, and 246 N, respectively.  The 

Figure 4.9 - Normal force capacity versus tendon width for double pad adhesives with 7.5
cm wide cotton fiber flexible tendon. (A) Peak is seen at 5 cm. (B) Comparison of the 5 
cm pad gap double pad adhesive with flexible tendon flanges of length 2.5 cm and 7.5 cm
(full flange).  Error bars represent standard deviation. ANOVA testing is used with a post-
hoc Tukey test to determine significance, with P < 0.01. 
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results are shown in Figure 4.10.  Similar to Figure 2.14, as tendon width increases, the 

normal force capacity increases.  The load versus displacement curve for the three tendon 

widths tested is presented in Figure 4.10A.  As the fabric width increases, the compliance 

Figure 4.10 – Load versus extension curves for the three tendon widths. (A) A 1 mm 
horizontal shift is applied to the curves to easily compare loading curves.  (B) Normal force
capacity as a function of tendon width.  Error bars represent standard deviation, and are
smaller than the data points.  ANOVA testing is used with a post-hoc Tukey test to 
determine significance, with P < 0.01.   



 

89 

of the system decreases.  As compliance decreases, the prediction states that force capacity 

will increase, and a comparison of force capacities is shown in Figure 4.10B.  These results 

are somewhat surprising, because when the tendon width is the same as the pad width 

peeling often occurs from the edges, and this peeling sometimes initiates failure of the 

adhesive.  In this situation, the decreased compliance and the ability to load the entire pad 

outweighs any potential early peeling that occurs at the pad edges.   

4.5.4 Tendon Material 

Increasing the tendon width decreases the compliance as well as increasing the area 

of the pad that is loaded.  The tendon stiffness can also be varied without changing the 

tendon width, by changing the tendon materials.  Two separate flexible tendons are 

prepared with wt = 7.5 cm, from cotton fabric and Kevlar fabric.  Kevlar is chosen because 

it has both high modulus and toughness, yet is woven into a plain weave fabric, which 

Figure 4.11 –Representative load versus extension curves for double pad adhesives with
7.5 cm wide tendons of cotton or Kevlar. (A) Compliance is greatly decreased for the 
Kevlar tendon.  (B) Normal force capacity results for the two tendon materials tested.  Error 
bars represent standard deviation. ANOVA testing is used with a post-hoc Tukey test to 
determine significance, with P < 0.01. 
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allows it to maintain flexibility.  In Figure 4.11A the load versus displacement curve is 

shown for double pad adhesives with the different tendon materials.  The Kevlar-based 

tendon has a lower compliance and therefore a higher normal force capacity.  The force 

capacity results for the two tendon materials is seen in Figure 4.11B.  Decreasing the 

compliance of the tendon results in a decreased compliance of the entire adhesive, 

increasing normal force capacity.  Even though the tendon is far from the adhesive 

interface, the materials chosen play an important role in the normal force capacity. 

4.5.5 Shear and Normal Force Capacity Comparison 

In the previous sections, the focus is solely on normal force capacity of the double 

pad adhesives, which is important because some situations require adhesives to be loaded 

perpendicular to the attachment surface.  Another important loading geometry is in shear 

but with tolerance to potential normal force impulses (such as an accidental bump).  

Figure 4.12 – Shear load versus extension curves for double pad adhesives with 7.5 cm
wide tendons fabricated from (A) cotton, and (B) Kevlar. 
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Therefore, shear tests with the double pad adhesives are necessary to compare their 

performance in both normal and shear loading to the previously developed bottom-loaded 

adhesive pads. 

In a shear loading configuration, the material of the tendon plays an important role.  

Figure 4.12A and Figure 4.12B show the loading curves of double pad adhesives with 

cotton and Kevlar tendons, respectively.  The scale of the X-axis is fixed.  The compliance 

of the double pad adhesive with cotton fabric tendon is much greater than that of the 

adhesive with Kevlar fabric tendon.  Based on the predictions from Chapter 2, Kevlar-

based tendon double pad adhesives are expected to achieve higher force capacity through 

decreasing the total compliance.  The samples are tested multiple times, and for the cotton 

tendon adhesive, each test in shear results in decreased shear force capacity.  After the tests, 

the cotton samples exhibited noticeable tearing in the tendon.  After the fourth run of the 

adhesive, the tendon completely tore, destroying the sample.  Comparatively, run to run 

deviation is very little in the Kevlar tendon adhesive.  The improved mechanical properties 

of Kevlar make it a preferable material for a double pad adhesive with attached flexible 

tendon.   

 The performance of the double pad adhesives is also compared to a bottom-loaded 

adhesive. A 5 cm x 10 cm (L x w) unidirectional carbon fiber adhesive is fabricated as a 

control sample, and a 7.5 cm wide cotton fabric tendon is adhered to the back of the 

adhesive using the Bemis adhesive film.  This adhesive is then tested in normal and shear 

loading configurations.  The results are shown in Figure 4.13, with comparisons to the 

cotton and Kevlar tendon double pad adhesives.  For all adhesives the shear force capacity 

is much higher than the normal force capacity.  Normal force capacity increases 
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dramatically by switching to a double pad adhesive design.  When fabricated with the same 

tendon, cotton, a greater than fourfold increase in normal force capacity is seen with a 

double pad adhesive compared to a bottom loaded adhesive.  Comparing the cotton tendon 

bottom loaded pad to the Kevlar tendon double pad, normal force increases by a factor of 

six.  A normal loading efficiency, Fc,normal / Fc,shear, for each adhesive is calculated, and for 

the Kevlar tendon double pad adhesive, 13% of the maximum shear force capacity is 

achievable under normal loading conditions, a large increase over the 2% efficiency 

measured with the cotton fabric bottom loaded adhesive.  This demonstrates that double 

pad adhesives are much more tolerant to normal force perturbations than the previously 

utilized bottom loaded adhesives.   

Figure 4.13 – Comparison of the force capacity in both normal and shear. Results shown
for the cotton tendon bottom-loaded adhesive, the cotton tendon double pad adhesive, and
the Kevlar tendon double pad adhesive.  The value listed above the bars represents the
mean force capacity for the given test.  The values listed above the chart represents the 
normal loading efficiency, the maximum normal force capacity relative to the shear force
capacity.  Asterisk represents the sample is damaged after one test, and this force value
represents only the first test.  Error bars represent standard deviation. 
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 Discussion 

New adhesives devices are fabricated with the goal of reducing the loading angle 

on the adhesive pads, to increase normal force capacity.  Our hypothesis states that loading 

angle must be reduced to increase force capacity, and this can be achieved by increasing 

the separation length between the adhesives pads, by ensuring that no slack exists in the 

skin when adhered to the surface, and by decreasing the compliance of the system.  We 

saw that as pad gap length increased from 2.5 cm to 5 cm normal force capacity increases.  

However, when pad gap length was increased to 10 cm, no change in force capacity is 

observed.  We believe this is due to difficulties in applying adhesives with large pad gap 

lengths to the substrate.  When organisms such as geckos and tree frogs adhere to surfaces, 

they separate their limbs, but also pull their body close to the surface.  With large pad gap 

length adhesives, we are able to increase pad separation, but are not able to effectively 

ensure that the pad remains close to the surface.  Finally, we also see that by decreasing 

tendon compliance, we increase normal force capacity.  Importantly, this also increases the 

toughness of the adhesive preventing failure of the device, which occurs with the weak 

cotton fabric adhesives.   These results prove that Equation 4.7 provides guidance for 

creating double pad adhesives to support normal loads.   

There are many qualitative fabrication techniques that are important to make high 

performance double pad adhesives.  In the previous chapters, unidirectional carbon fiber is 

used as the tendon material because it has the highest modulus of any fabric-based material 

tested.  For the double pad adhesives tested here, it is not possible to use this fabric for the 

attached tendon, because it is not flexible enough to form the 90 degree angle necessary to 

create the flanges which connect to the skin.  A benefit of using woven fabric is the bending 



 

94 

stiffness is much lower than the tensile stiffness.121  Cotton fabric works very well as a 

tendon material because the yarns that make up the fabric weave are very thin, which allows 

the fabric to drape easily.  When fabricating the flexible tendon component, this allows the 

creation of a tight crease at the junction point between the tendon and the flanges that 

connect to the double pad skin.  The Kevlar fabric is much stiffer than cotton fabric, but a 

crease is still able to be formed.  With carbon fiber, attempting to make the crease causes 

the fabric to tear with only a small load applied.  In contrast, the fabric used in the double 

pad must be very stiff.  If a compliant fabric like cotton is used in the double pad skin, 

when force is applied, the fabric in the gap region of the double pad stretches, and a high 

peel angle is applied to the pads, which results in low normal force capacity.  As a general 

rule, a very stiff fabric must be used for the double pad skin, and a less stiff fabric must be 

chosen for the flexible tendon to create high normal force capacity adhesives. 

For converting the individual components into an adhesive device, Bemis adhesive 

film is used.  Due to the finite tear strength of this adhesive, we experienced a limited upper 

bound of normal adhesive strength.  This adhesive works well for quickly and simply 

fabricating adhesives, but it is not the only choice available for making double pad 

adhesives.  For example, the tendon can be physically stitched to the double pad, or 

mechanical fasteners also can be used, such as rivets.  When designing adhesives it is 

important to take into account the mechanical properties of the entire system, not only the 

components which contact the surface. 

Additionally, the required shear load must be taken into account when choosing 

tendon materials.  In the case of the cotton fabric tendon, the adhesive is so strong in shear 

that it results in destruction of the tendon at maximum load.  For low strength applications 
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cotton based tendons may be acceptable, but if high loads are desired, a tendon made from 

a tough engineering plastic such as Kevlar is required to achieve maximum adhesive force 

capacity.   

 Conclusion 

In this chapter, we have quantified the adhesive performance of double pad 

adhesives in both normal and shear loading configurations.  We observe that an 

optimization of pad gap length occurs at 5 cm, which represents a trade-off between low 

loading angle at the adhesive under load, and an ability to adhere the adhesive to the 

substrate with minimal slack in the gap region.  We saw that increasing tendon width results 

in higher force capacities due to the ability to load the largest percentage of the pad, and 

that peel at the edges does not dominate the failure mechanism.  The materials chosen for 

the tendon are very important, because a stiff and tough material allows us to maximize 

our adhesive strength, and it also prevents fracture of the fabric under high loads.  Using 

these results, we are able to create double pad adhesives with normal adhesive efficiencies 

of 13% of their shear force capacity.  These adhesives represent an effective way to 

fabricate adhesives with high shear force capacities, while providing tolerance from 

applied normal forces.   
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CHAPTER 5  

EXTREMELY TOUGH COMPOSITES FROM BIOCOMPATIBLE 

HYDROGELS AND FABRIC 

 Introduction 

In most situations the human body is capable of healing when it incurs damage.122 

However, sometimes the damage is too large for healing to happen independently, or the 

damage occurs to body parts with poor healing capabilities, such as ligaments.123 To help 

the body heal, prosthetic materials that mimic the mechanical properties of biological tissue 

are desired. In the previous chapters, we utilized fabrics for making adhesives capable of 

draping while maintaining their stiffness.  The matrix material of the fabricated composites 

consisted of elastomers.  In this chapter, we show that by strategically combining soft, 

tough hydrogels with stiff, tough fabrics, water-containing materials with high strength are 

achieved. Surprisingly, we find that this combination improves the effective tearing energy 

up to 250,000 J/m2, much greater than either individual component. Furthermore, these 

new materials are capable of supporting nearly three times the load of the neat fabric.  Even 

with these improved mechanical properties, the composite materials remain as flexible as 

silicone rubber. These properties make these new composite materials useful for load-

bearing biological prosthetic applications, such as synthetic cartilage or ligaments. 

 Background 

For over a hundred years, scientists have attempted to develop materials which 

possess the mechanical properties to heal damaged, soft biological components, yet many 

of the required characteristics are contradicting; for example, they must be soft and 

slippery, yet capable of supporting large loads, while containing water.124 A range of rigid 
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materials, including metals,125 stiff fabrics,126–129 and synthetic polymers,130–133 have been 

previously employed for ligament and tendon prosthetics. These materials have not 

ultimately found widespread use due to poor biocompatibility and fatigue 

resistance.128,134,135 In contrast hydrogel materials possess high water content, offering 

similar characteristics to the biological materials.123,136–140 However hydrogels are often 

brittle and lack high ultimate tensile strength required for load bearing applications.124 To 

overcome these limitations, double network hydrogels have been developed that retain the 

benefits of traditional hydrogels (i.e. high water content and low friction), while 

simultaneously providing improved toughness and tensile strength.141–146 It was recently 

discovered that by introducing a secondary polymer system with reversible crosslinks, a 

gel’s toughness is further increased.147 One approach to take advantage of this mechanism 

is with polyampholyte gels consisting of both covalent and ionic crosslinks. This leads to 

soft and wet materials with high toughness, with the added benefit of single-step 

production.148,149 While these new materials provide improved mechanical properties over 

previous hydrogel designs, they are still too soft to support the large loads needed in 

biological applications, providing an opportunity for the development of new hydrogel 

composites.  

 Approach 

The newly designed polyampholyte and fabric composites are compared to two 

control groups: a traditional polyacrylamide single network hydrogel and fabric composite, 

as well as a neat fabric without a gel matrix. A variety of tests are performed to characterize 

the mechanical properties of the polyampholyte hydrogels. First, trouser tear tests are 

performed to determine the tearing strength and fracture energy of the materials.144,148,150,151 
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Tensile tests are also performed to measure the load at break for the samples, as well as the 

strain energy density. Finally, three point bend tests are performed to understand the 

anisotropic mechanical properties, by comparing bending and tensile modulus values.121 

 Experimental 

5.4.1 Polyampholyte Composite Preparation 

Polyampholyte composites were prepared at the Laboratory of Soft and Wet Matter 

at Hokkaido University in Sapporo, Japan, under the guidance of Taolin Sun and Jian Ping 

Gong.  Samples are prepared by placing 300 m spacers on the fabric (satin weave 8.9 oz., 

purchased from US Composites), which is inserted between two glass plates (total sample 

thickness, ~1 mm, figure 5.1A). A 2M solution of dimethylaminoethylacrylate quaternized 

ammonium and sulfonated polystyrene (1:1 true stoichiometric charge ratio149) is chosen 

as the polyampholyte, and prepared with 0.1 mol% ketoglutaric acid as initiator, 0.1 mol% 

Figure 5.1 - A schematic of the sample preparation for fabricating hydrogel composite
samples. (A) Step by step process. (B) A polyampholyte composite sample loaded in the
tensile tester about to undergo the tearing test. (C) A polyampholyte sample being loaded
during a tearing test. 
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methylene bisacrylamide as crosslinker, and an excess of sodium chloride to shield the 

charged monomers. The solution is prepared and heated until completely dissolved.  The 

solution is then placed into a glove box with the sample mold.  The solution is injected into 

the mold and cured under UV light for 12 hours. After polymerization the gel composites 

are placed into deionized water for at least four days to allow the gel to reach equilibrium.  

5.4.2 Polyacrylamide Composite Preparation 

Polyacrylamide composite samples were prepared at the University of 

Massachusetts Amherst.  Samples are prepared by placing 300 m spacers on the fabric 

(Satin Weave 8.9 oz., purchased from US Composites), which is inserted between two 

glass plates (total sample thickness, ~1 mm, figure 5.1A). A 2M solution of acrylamide is 

prepared in deionized water with 0.1 mol% VA-086 initiator (Wako Pure Chemical 

Industries, Ltd.) and 1 mol% methylene bisacrylamide as crosslinker.  The solution is 

degassed and injected into the sample mold, then placed into a glove bag filled with 

nitrogen gas.  The sample is cured under UV light (hand lamp) for 20 minutes on each side.  

After polymerization the gel composite is placed into deionized water for at least four days 

to allow the gel to reach equilibrium.   

5.4.3 Testing 

5.4.3.1 Tearing Test 

Instron tensile testers are used to test samples.  Polyampholyte tear tests were 

performed at the Laboratory of Soft and Wet Matter at Hokkaido University, and 

polyacrylamide composite tear tests were performed at the University of Massachusetts 

Amherst.  Samples are prepared approximately 50 mm in length, with widths of 10 mm, 

20 mm, and 40 mm.  A crack is placed nominally in the center of the sample with a rotary 
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cutter.  One leg is attached to the base, and the other leg is attached to the crosshead, which 

is displaced at 50 mm/min.   

5.4.3.2 Tensile Tests 

Tensile tests were performed at the University of Massachusetts Amherst.  10 mm 

wide samples are prepared, and the length of the sample is recorded as the distance between 

grips.  Due to the aligned fibers in the composite samples, rectangular samples are used 

rather than dog bone shaped samples.  Mechanical grips are used, and the crosshead is 

displaced at 10 mm/min.   

5.4.3.3 Three Point Bend Tests 

Three point bend tests were performed at the University of Massachusetts Amherst, 

with a custom built testing apparatus.  Sample width is recorded (approximately 7.5 mm), 

and length between bottom points is 20 mm.  Testing rate is 50 m/s.   

 Results 

5.5.1 Tearing Tests 

Trouser tearing tests are used to measure the toughness of the samples (Figure 5.1B 

and Figure 5.1C). In Figure 5.2A tear strength vs displacement for 20 mm wide samples is 

shown. A 500% increase in maximum tear strength is exhibited by the polyampholyte 

composite compared to the neat fabric. Interestingly, the tear strength of the 

polyacrylamide composite is much less than the neat fabric. The tearing mechanism can be 

understood by observation of the sample during testing.  For the neat fabric, the fibers in 

the transverse direction to the applied load quickly escape from the weave as the 

displacement increases, and the sample fails. In the polyacrylamide composite, the gel 

fractures first, and then the fibers escape from the weave, similar to the neat fabric sample. 
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However, the polyampholyte sample appears to fail by a different mechanism. Here, the 

sample begins to stretch in both the legs and the bulk, and no tearing is observed up to 2 

cm of displacement. After tearing begins, the sample continues to stretch as the transverse 

Figure 5.2 - Representative tear strength vs. displacement curves. (A) Results are for neat 
fabric, polyacrylamide hydrogel composite, and polyampholyte hydrogel composite
samples. The polyampholyte exhibits much higher tear strength than the two control
groups. (B) Effective Gc vs. thickness for the three test groups. As thickness increases tear 
strength increases for all samples, due to the fiber pull-out failure mechanism. Measured 
Gc values are greater than neat fabric for the polyampholyte composite, and less than neat
fabric for the polyacrylamide composite. Error bars represent standard deviation, with N > 
4
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fibers slowly escape from the weave.  The maximum tear strength values for the 20 mm 

wide polyampholyte samples  are very high(~65 N/mm); much higher than common 

elastomers (~0.5 N/mm for a self-healing PDMS material151), and approaching high 

toughness Kevlar/polyurethane blends (~100 N/mm),152 while still containing 50% 

water.149  

Figure 5.2B shows the energy required to tear, or an effective Gc, for composites of 

varying width. These values are calculated by integrating under the load, F, versus 

displacement, , curve to determine the energy, and dividing by the projected area of new 

surface created, t * Lbulk: 

  (5.1) 

As sample width increases, fracture energy increases. Gc is a material property and 

generally does not depend on sample size (i.e. width), however due to the composite nature 

of the material and the failure mechanism, width plays an important role in the fracture 

toughness of the material system. In these samples, the glass fibers are stiff, and fracture 

of the fibers is rarely observed during tearing. This is different from previously created 

fiber reinforced hydrogels, where the fabric fractures first.153 The main failure mechanism 

is due to fiber pull out, and subsequent unraveling of the fabric weave within the composite. 

As sample width increases, fiber pull-out difficulty increases, resulting in increased overall 

fracture energy.  

The Gc values exhibited by the polyampholyte composite are extremely high. For 

a 40 mm wide sample, a Gc of 250,000 J/m2 is measured. In comparison, Gc of the neat 

fabric is 75,000 J/m2, and Gc of the polyampholyte gel is about 3,000 J/m2.148 From general 

composite theory, we would expect an averaging of mechanical properties, but in this case 
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the composite greatly exceeds the fracture energy of either neat component. For 

comparison, the maximum experimental toughness values for an articular cartilage is 1200 

J/m2,154 showing that the materials created here greatly exceed the toughness of native 

biological tissues.  

5.5.2 Tensile Tests 

Figure 5.3 - Representative load vs. strain for the three samples tested. (A) Dimensions are
t = 0.31 mm w = 10.0 mm and L = 20.5 mm for the neat fabric, t = 0.94 mm, w = 9.2 mm, 
and L = 14.3 mm for the polyampholyte composite, and t = 1.16 mm, w = 10.0 mm, and L
= 21.7 mm for the polyacrylamide composite. Samples are prepared as rectangular strips, 
and L is the initial distance between the clamps. (B) Load normalized by fabric width, for 
the three samples tested. The polyampholyte composite supports nearly three times the load 
per sample with when compared to the neat fabric or the polyacrylamide composite. (C) 
Strain energy density for the three samples tested. Results agree with the tear strength 
results. For (B) and (C), ANOVA testing is used with a post-hoc Tukey test to determine 
significance, with P < 0.01. Error bars represent standard deviation, with N > 5.  
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The tensile properties of the polyampholyte composites are improved over the neat 

fabric and polyacrylamide composites. Representative load versus strain curves for the 

three sample materials is shown in Figure 5.3A. Loads can be directly compared despite 

differences in sample thickness, because the maximum load occurs at 0.08 strain, and the 

load supported by the gel at this strain is extremely low (about 0.075 N, Figure 5.4).149 The 

load supported by the polyampholyte composite prior to failure is nearly three times greater 

than that of the neat fabric (Figure 5.3B). No change is observed between the 

polyacrylamide composite and the neat fabric. In agreement with the tearing results, the 

strain energy density of the polyampholyte composite is greater than the neat fabric or 

polyacrylamide composite (Figure 5.3C), again demonstrating the increased toughness of 

the prepared polyampholyte composites. 

Figure 5.4 – Load versus strain curves for the polyampholyte composite and the neat
polyampholyte.  The inset plot demonstrates that at the strain where maximum load occurs 
in the composite, the polyampholyte gel is supporting minimal load. 
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5.5.3 Bending Tests 

Flexibility is an important characteristic for biological prosthetic materials, and 

bending tests are performed to quantify the flexibility of the fabricated materials.  Bending 

test results are presented in Figure 5.5, with the polyampholyte composite having a bending 

modulus of 4.7 MPa. The bending modulus is about two orders of magnitude less than the 

tensile modulus. The composite structures developed here are capable of supporting high 

loads and are extremely tear resistant, yet are still able to bend easily like a common 

elastomer, such as Sylgard 184 PDMS.121 

 Discussion 

After polymerization and dialysis of the polyampholyte composite, the sample de-

swells. This non-intuitive phenomenon only occurs when the true stoichiometric charge 

ratio is 1:1, and is the result of salt being flushed from the gel, allowing previously shielded 

ionic monomers to interact and form a denser polymer network.148,149 The opposite occurs 

Figure 5.5 - Comparison of tensile and bending moduli for the polyacrylamide and
polyampholyte composite. 
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in the polyacrylamide composite. When placed into deionized water, additional water is 

taken in by the system, resulting in a swollen sample. The de-swelling and swelling process 

influences the tearing strength by changing the density of the weave in the fabric. We 

propose a mechanism for hydrogel composite toughening based on previously described 

toughening mechanisms of fabric.155,156 In a neat fabric tearing test, as the legs displace, 

the transverse fibers at the crack tip change orientation to align with the loading direction. 

As these transverse fibers undergo loading, they form a region called the del zone (shown 

Figure 5.6 –A schematic of the failure mechanism of fabric undergoing tear, emphasizing 
the del zone. (A) Three fibers are shown, with fiber 1 supporting maximum tension, fiber
2 in the center of the del zone and fiber 3 just entering the del zone. Del zone not drawn to 
scale for clarity. (B) A schematic representation of the impact of de-swelling and swelling 
on the fabric. (C) SEM micrographs of fibers covered in the polyampholyte gel, with
polyampholyte fibrils between fibers, and (D) cohesive failure of the polyampholyte
through a fibrillation process. (E) SEM micrograph of the interface between the 
polyacrylamide and the glass fibers. Poor adhesion is observed.  
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in Figure 5.6A). In the del zone, the first fiber is undergoing maximum tension. Each 

subsequent fiber in the del zone is also undergoing tension, but to a lesser degree, and the 

bulk is relatively unperturbed. The stretching of the transverse fibers in the del zone pulls 

in the edges of the fabric as the fibers attempt to pull out of the legs, with friction between 

the leg fibers and transverse fibers resisting slippage. This leads to twisting of the sample, 

which is observed during tearing. When the load of the first fiber in the del zone exceeds 

the maximum tensile strength, the fiber breaks, and the del zone propagates into the bulk 

of the sample, leaving the second fiber in the del zone as the new first fiber experiencing 

maximum tension. This process repeats until the entire sample fails.  

In the polyampholyte composite, a dramatic increase in toughness is seen due to 

three events. First, de-swelling results in a tighter fabric weave, increasing the friction on 

the transverse fibers (Figure 5.6B). This effectively anchors the fibers, making the pull-out 

failure mechanism more difficult, resulting in higher energy to fracture. Second, in tensile 

test experiments the polyampholyte composites support higher load per sample width, and 

therefore the fibers undergoing tension in the del zone can support greater loads before 

failure. This also increases fracture energy, because a larger del zone can be formed. 

Finally, fibrillation of the gel between fibers can be seen in Figure 5.6C and Figure 5.6D.  

De-swelling results in tight bonding between the polyampholyte gel and the fabric, and this 

dissipative process may increase the fracture toughness of the composite. 

In the polyacrylamide composite control sample, the opposite occurs. The swollen 

gel has a looser fabric weave, decreasing the friction in the legs and allowing the transverse 

fibers to easily escape from the weave, and therefore decreasing the fracture energy Figure 

5.6).  Due to the decrease in friction, the transverse fibers have no anchor and cannot utilize 
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their high stiffness to prevent sample fracture.  Furthermore because the polyacrylamide is 

a brittle gel, it quickly fractures as load is applied to the fabric, resulting in sample failure.  

Based on these findings, we propose a general model for creating high toughness 

composite materials. The system must be composed of two parts, a load bearing primary 

component, in this case fabric, and a dissipative secondary matrix. The matrix should be 

able to completely encompass the fabric. A stimulus then must cause a decrease in volume 

in the matrix, causing a tight weave and increased pressure on the fabric. The pressure 

applied by the secondary network in this mechanism anchors the transverse fibers in the 

legs, resisting fiber pull-out and tear. Utilizing a high stiffness fabric allows for high 

loading without primary network fracture. Additionally, the ability to dissipate energy by 

the secondary network increases the strength of the del zone which increases toughness. In 

the system presented here, volume change is implemented by de-swelling of a gel, however 

this system could be envisioned to work as well by removing volatile solvents from an 

elastomer polymerized in solution. Furthermore, other fabrics besides glass fabric could be 

used, and the strength of the fibers in the fabric will influence the tear strength and stiffness 

of the resulting composite.   

Interestingly, the mechanism described is similar to the mechanism proposed for 

creating high toughness double network hydrogels: the primary network fails, resulting in 

large dissipation of energy, while the secondary network applies stress, resisting primary 

network fracture and increasing toughness.141,146 In the case presented here, the primary 

network is now macroscopic, the fabric weave, rather than a microscopic polymer network. 

Despite the difference in size scale, the same principles are employed to create extremely 

tough materials.   
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 Conclusions 

The results shown here demonstrate a simple method to take biocompatible, soft 

and wet gels, and make them extremely tough, with Gc values as high as 250,000 J/m2, 

while capable of supporting high loads. These results will be important in the field of soft 

biological prosthetics, and more generally for applications such as tear-resistant gloves, 

bullet-proof vests, or puncture-resistant tires. Importantly, the model presented in this 

chapter is expected to also work for elastomer-based composites, which opens up a simple, 

one-step method to make high tear strength materials. 
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CHAPTER 6  

CONCLUSION AND FUTURE OUTLOOK 

 Overview of Results 

Biologically inspired adhesives are desirable because they exhibit high adhesive 

strength, easy releasability, high reusability, and strong anti-fouling properties.  Previous 

attempts to mimic the surface of the gecko toe-pad have resulted in adhesives which 

achieve high stress, but cannot be scaled to large sizes, and require difficult manufacturing 

processes.  A new technique has recently been developed which mimics the entire foot of 

the gecko, and is capable of scaling gecko-inspired adhesives to large areas without 

requiring fibril structures, greatly simplifying fabrication.74 For high strength reversible 

adhesives, force capacity scales as:74–77,119 
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 (7.1) 

The work of this thesis utilizes fibril-less gecko-inspired adhesives, and focuses on 

quantitatively understanding the variables which control force capacity, specifically 

compliance, C, and area, A.  Here we have developed methods to calculate and increase 

adhesive force capacity for a variety of surfaces and loading configurations, greatly 

expanding the usefulness of these adhesives.  Furthermore, the techniques learned from 

fabricating these adhesives have proven useful in other areas, resulting in an important 

advance in the field of ultra-tough hydrogels.   

In Chapter 2 we develop an analytical model that is capable of predicting the 

compliance of fibril-less gecko-inspired adhesives.  Combined with the knowledge of 

Equation 7.1, this model introduces the ability to calculate force capacity by quantifying 

the role of materials properties and geometry.  A general framework is uncovered for 
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increasing adhesive force capacity, by utilizing high modulus materials, decreasing shape 

ratio, optimizing tendon length, and increasing tendon width.  This understanding allows 

us to intelligently design adhesives for a given application. 

In Chapter 3, we develop gecko-like adhesives for a variety of “real world” 

surfaces.  Previous work focuses on adhering to smooth surfaces, like glass.  Under these 

situations, the true area of contact of the adhesive approaches that of the measured area of 

the pad.  However, when adhering to many other surfaces, such as aluminum or painted 

drywall, roughness is present and greatly affects the true area of contact.  Area, A, also 

plays an important role in calculating force capacity in Equation 7.1  A model is developed 

to understand the influence of roughness on adhesive stress capacity, and we see that an 

optimum elastomer modulus exists for any given surface roughness.  Using this knowledge, 

we create adhesives which adhere strongly to both smooth and rough surfaces, and greatly 

outperform the adhesive ability of living geckos. The adhesives fabricated in this chapter 

open up a range of new potential applications, especially including home use.   

In Chapter 4, a new adhesive configuration is developed which supports increased 

loads in high peel angle (normal loading) situations.  Utilizing this new method, a six-fold 

increase in normal force capacity is demonstrated.  These adhesives improve the 

applicability of high strength reusable adhesives, because tolerance to off-angle loads is 

important to prevent adhesive failure.   

Finally, in Chapter 5, we create ultra-tough hydrogel composite materials by 

incorporating newly developed polyampholyte hydrogels into glass fabric.  These 

composites exhibit extremely high toughness, with Gc values two orders of magnitude 

greater than the neat polyampholyte hydrogels, and four orders of magnitude greater than 
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traditional hydrogels such as polyacrylamide.  The mechanism which causes this increase 

in tear strength is explained, and provides a process for creating high toughness composites, 

regardless of matrix material.  These materials possess properties necessary for synthetic 

ligament prosthetics.   

 Future Work 

While important steps have been made, as with all scientific research, many 

interesting, new opportunities were opened through the work performed in this thesis.  In 

this section we introduce some ideas based on observations seen throughout this research. 

All of the work on gecko-inspired adhesives has been performed on rigid surfaces.  

This is important, because the rigid substrate resists the torque that occurs with single lap-

shear adhesives.85,93–95 In many instances, e.g. closures, both materials being adhered are 

flexible, which allows for rotation to occur.  Adhesive devices have been made based on 

hooks and loops, which is also a bio-inspired device.7 Using fibril-based adhesives, 

interlockers have been developed which achieve high strength.157 Through the work of this 

thesis we have reinforced that fibrils are not necessary to achieve high strength, reversible 

adhesives.  Future experiments can focus on developing materials which are capable of 

achieving high loads with smooth overlapping adhesive contacts. 

Another area of interest is adhesion to biological tissues.4,57 Current materials used 

for bandages and wound closure usually involve thermosetting adhesives such as cyano-

acrylates or sticky pressure-sensitive adhesives, which cause pain upon removal.  Adhesion 

to skin is difficult, because biological surfaces are often covered in oils or other particles, 

and biological tissues are also compliant, which limits adhesive strength.57  By 
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understanding the surface properties of skin, materials can be formulated to provide 

sufficient adhesion for bandages or dermal medications. 

A new method for creating extremely tough hydrogel composites is also introduced 

in this thesis.  Here we took advantage of inherent deswelling which occurs in 

polyampholyte hydrogels to dramatically improve tear strength of fabrics.  In traditional 

single network hydrogels, forced deswelling can occur by introducing a poor solvent for 

the polymer network.  By creating hydrogels which swell in relatively non-polar solvents, 

such as tetrahydrofuran, then solvent exchanging to water, strong de-swelling should result.  

Using this technique, it may be possible to create high toughness composite materials from 

a single network hydrogel matrix. 

The mechanism for creating high toughness composites can also be explored using 

completely dry materials.  Double network hydrogels, consisting of two interpenetrating 

microscopic networks results in high toughness.  The composites developed in this thesis 

consists of one macroscopic fabric network, embedded with a microscopic polymer 

network.  By creating hierarchical fabrics from a high strength fabric, (such as glass fiber 

fabric or carbon fiber fabric) stitched with a secondary yarn with high toughness (such as 

nylon or Kevlar) it may be possible to create macro-scale double networks with extremely 

high toughness.  This new material would mimic the mechanisms seen on microscopic 

length scales in double network hydrogels, but on much larger length scales.  This 

technique could represent a method to create extremely high toughness materials, with 

already available commodity materials.   

 Final Remarks 
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In this thesis, two areas of active research are covered: gecko-inspired adhesives, 

and synthetic biocompatible materials.  Though these fields are not directly related, we are 

able to make strong scientific advances by incorporating fabrics, a material which has been 

used by humans for millennia. An important point learned from this work is that even well-

known materials, used in a different way or in a different field, can result in exciting 

breakthroughs.  In conclusion, this thesis demonstrates important scientific achievements 

by developing a framework for optimizing high strength, reusable adhesives, as well as 

introducing a first step towards creating extremely tough biocompatible prosthetic 

materials with fabric and soft materials composites. 
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