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ABSTRACT

DEVELOPMENT OF A LAYOUT-LEVEL OBFUSCATION TOOL
TO COUNTER REVERSE ENGINEERING

May 2015

SHWETA MALIK

B.E, MAHARISHI DAYANAND UNIVERSITY

M.S.E.C.E,UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed By: Professor Wayne P Burleson

Reverse engineering of hardware IP block is a common practice for competitive

purposes in the semiconductor industry. What is done with the information gath-

ered is the deciding legal factor. [23] Once this information gets into the hands of

an attacker, it can be used to manufacture exact clones of the hardware device. In

an attempt to prevent the illegal copies of the IP block from flooding the market,

layout-level obfuscation based on switchable dopant is suggested for the hardware

design. This approach can be integrated into the design and manufacturing flow

using an obfuscation tool (ObfusTool) to obfuscate the functionality of the IP

core.

The ObfusTool is developed in a way to be flexible and adapt to different stan-

dard cell libraries and designs. It enables easy and accurate evaluation of the area,

power and delay v/s obfuscation trades-offs across different design approaches for

hardware obfuscation.

The ObfusTool is linked to an obfuscation standard cell library which is based on

a prototype design created with ”Obfuscells” and 4-input NAND gate. The Ob-

fuscell is a standard cell which is created with switchable functionality based on

the assigned dopant configurations. The Obfuscell is combined with other logic

gates to form a standard cell library, which can replace any number of existing
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gates in the IP block without altering it’s functionality. A total of 160 different

gates are realized using permutated combinations starting with 26 unique gate

functions. This design library provide a high level of obfuscation in terms of the

number of combinations an adversary has to go through increase to 22000 approx-

imately based on the design under consideration.

The connectivity of the design has been ignored by previous approaches, which

we have addressed in this thesis. The connectivity of a design leaks important

information related to inputs and outputs of a gate. We extend the basic idea of

dopant-based hardware obfuscation by introducing ”dummy wires”. The addi-

tion of dummy wires not only obfuscates the functionality of the design but also

it’s connectivity. This greatly reduces the information leakage and complexity of

the design increases. To an attacker the whole design appears as one big ’blob’.

This also curbs the attempts of brute force attacks. The introduced obfuscation

comes at a cost of area and power overhead on an average 5x, which varies across

different design libraries.
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CHAPTER 1

MOTIVATION

1.1 Introduction

The complexity of integrated circuit (IC) is promoting reuse-based design to speed

up the development of new products in a system-on-chip environment. A signifi-

cant amount of time is invested into creating these reusable intellectual property

(IP) cores [13] [2]. Violation of this reusable IP core poses a serious threat and

exorts a sizable revenue from the IP producer. According to SEMI report [23]

approximately $4 billion is lost due to IP infringement, which includes counter-

feiting through reverse engineering, theft of trade secrets and trade marks [15].

The given IP block can be reverse engineered based on the compute power and

Figure 1.1: Cases of counterfeiting [15]

resource of an attacker. Reverse engineering involves the analysis of the function-

ality, architecture and technology of a device and representing them in a manner

which allows reuse or duplication of the product [27] [25]. Post-manufacturing,

an adversary or competitor get access to the product and use techniques to de-

layer the IP core and photograph each layer using a scanning electron microscope
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(SEM) in order to reveal functionality of the circuit [11]. In some cases the goal

of this process is not be to copy the IP, but to use it for competitive analysis,

redocumentation of legacy systems and design improvements. Whereas an ad-

versary will analyse the design and attempt to replicate the functional details to

create an exact clone. This will be based on the assumption that the reverse en-

gineering (RE) process for the adversary will be a short, and less expensive than

a full prototype-development project [16]. Then the cloned products flood the

market and compete for a share [19] [18]. In addition to the IP block, hardware

implementation of security application such as PRESENT [6] and AES block ci-

pher are also at a risk of being reverse engineered to extract key bits.

To curb the attempts of reverse engineering, schemes have been suggested by Coc-

chi et al [12] to use contact changes to hide the functionality and create lookalike.

This approach ignores the fact, that connectivity of the design reveals impor-

tant information. In this thesis, we aim at creating a low-overhead, piracy-proof

obfuscation methodology using an obfuscation tool flow (ObfusTool) which not

only hides the functionality, but also obfuscates the connectivity by insertion of

”dummy wires”. This protects and benefits the IP vendors and chip designers

of the IP cores and security implementations. The approach is based on apply-

ing obfuscation to the design at the layout level involving dopant configuration

changes.

The intent of this obfuscation technique is to hide the actual functionality of the

hardware circuit by altering the mask and presenting lookalike gates. Dopant

type variation are introduced at the transistor level, can change the functionality

of the standard inverter/buffer gates to produce an always 1 or 0 gate. The ob-

fuscation cell(Obfuscell) are combined with logic cells from the Nangate standard

Cell Library to form a prototype. This prototype as discussed in chapter 3 and

4, is used to create an obfuscation library with 160 lookalike gates, realized from

26 unique gate functions. The entire library is attached to the obfuscation tool

2



flow, which is further utlilized to convert any vhdl/verilog behavioral code into

an obfuscated mask.

The reverse engineering of the post manufactured obfuscated designs is really

hard, due to the underlying assumption that dopant polarity detection is 16x

hard under SEM processes [4] [26]. The connectivity of the design is obfuscated

by the use of dummy wires, which are randomly selected from the intermediate

nets of the design. The entire design appears like a one ”blob” to the attacker,

which is non-decomposable and hard to reverse engineer.

Major Contributions

1. Design a Obfuscation standard cell (Obfuscell) which has different func-

tions based on the dopant type configuration. The Obfuscell will be further

integrated with the different logic gates such as NAND4, AND2 to create a li-

brary using multiple functionality prototype as a building block.

2. An Automatic Library Generation Tool will be designed for the gener-

ation of all possible logic cells based on the prototype OBNAND4. This library

would contain all the permutations for a given gate alongwith the dummy input

information. Just by feeding in the logic gate and other related information, we

would get an entire generated OBNAND4 library as discussed in chapter 5. This

tool can be flexibly changed for including other logic gates for designing new li-

braries.

3. Design a flexible and adaptable Obfuscation tool flow(ObfusTool) which

converts a .vhd description of logic into an obfuscated logic mask which is difficult

to reverse engineer using optical inspection methods. There will be an ability to

insert ”dummy wires” in the cases where of 2 or 3 input gates are constructed

using a 4-input gate. Random inputs can be selected for the gates using the

supporting features in the ObfusTool. The tool will be flexible to handle different
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requirements.

4. Different designs under consideration will be used to experiment across dif-

ferent obfuscation libraries and calculate the overall overhead involved. This will

help in deciding the best obfuscation library design based on the trade-off be-

tween low overhead and high level of obfuscation.

Organization of Thesis

In the following chapter, we discuss the background work in the field of hardware

obfuscation. Following chapter 3 and 4 go into details of constructing the ob-

fuscation cell and library designs. The obfuscation library are designed by using

2 different approaches where the latter uses the designed Obfuscell. Chapter 5

talks about the automation design for creation of the obfuscation library based

on prototype OBNAND4 consisting of 160 different gate layouts. Further on, in

chapter 6 we discuss design of the obfuscation tool and how it incorporates the

obfuscation library at different stages. Ultimately, we implement the Obfuscation

tool on various security application including the PRESENT block cipher, AES

8 bit S-box and ITC’99 benchmark circuits.
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CHAPTER 2

HISTORY AND PRIOR WORK

2.1 Background

Hardware intellectual property (IP) cores have emerged as an integral part of

modern system-on-chip (SoC) designs. However, IP vendors are facing major

challenges to protect hardware IPs and to prevent revenue loss due to IP piracy [8].

To prevent the IP violations various techniques have been suggested on both rtl-

level and hardware implementation level.In following sections we shed light on

these techniques.

2.1.1 Watermarking

Watermarking has been used to provide an ID to each chip to prevent the coun-

terfeiting of the hardware device by malicious adversary. The presence of this

unique ID is mostly kept hidden and when required an IP owner can prove his

identity to the verifier. In case of an IP violation, and counterfeited good can

be easily identified based on the watermark or in certain cases be non-functional.

Watermarking can be applied to both hardware and software codes. In instance

of reverse engineering, the watermark itself can be reverse engineered and render

this countermeasure useless.

2.1.2 Obfuscation

Obfuscation is the process of intentional hiding of the functionality and struc-

ture of a device, to make it difficult, if not impossible to reverse engineer [12].
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Obfuscation is different from watermarking which might be used to conceal the

identity of owner within the content itself. Major security threats for hardware

IP include (a) hardware intellectual property infringement during SoC design; (b)

reverse engineering the manufactured ICs or the IC design database (in fabrica-

tion facilities) to produce counterfeit or clone ICs; and (c) malicious modifications

of an IP through the insertion of hardware Trojan to cause in-field functional fail-

ure. [8] [5]. Hardware obfuscation aims at minimizing these threats at IP or chip

level by making it difficult for an adversary to comprehend the actual function-

ality of a design. Hardware obfuscation is approached at 2 level software and

hardware level.

2.1.3 Software Obfuscation

Software obfuscation is introducted at the front-end design level, where changes

are made to the netlist to make it incomprehensible. In [9], the HDL (RTL)

source code is modified by adding some comments and changing internal net-name

followed by simple string substitution strategy. Semantic Design is a company

which provides Obfuscation solutions to various companies in 20 languages to

increase the security of intellectual property by scrambling the source code while

allowing applications to run normally [14]. They come up with a source code

obfuscator which accepts a source code from the owner and generates a functional

equivalent of the original which is harder to reverse engineer. The obfuscator reads

the comments, variable, indentation and converts it into nonsense name, making

the code hard to read and decipher the actual functionality. Certain netlist level

changes made chakraborty et al [9] [10] can be made by adding dummy code,

adding always 1 or 0 nodes to the RTL, which makes it more obscure without

changing the functionality. Although, there will be an involved trade-off between

obfuscation and overall overhead. All these schemes preserve the functionality of

6



the design.

2.1.4 Hardware Obfuscation

Post-manufacturing the design information is utilized to recover the functionality

of the hard IP core by reverse engineering. Cloned products flood the market

making it a multi-million dollar business. The fabricated hardware can be for a

security sensitive applications such as military and secured medical devices and

it become necessary to be protected. Also, the threats of cloned products, IP

theft, and copyright infringement necessitate semiconductor designers and man-

ufacturers to implement countermeasures into their products [24]

In the past, several countermeasures have been used to protect the IC. SypherMe-

Figure 2.1: SypherMedia lookalike gates [12]

dia International (SMI) is a company is offering Camouflaging library for physical

design which allows the manufacturer and designer to keep the key and strategic

aspects of their designs secret from there competitors and counterfeiters [12]. In

this approach, a designed library has cells which lookalike to standard gates, but

might exhibit multiple functionality. These gates obfuscate the design function-

ality and make the process of reverse engineering complex. This approach has

been widely used to provide secure design systems for pay TV.

A technique suggested by rajendran et al uses a mixture of real and dummy con-
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tacts, they camouflage a standard cell whose functionality is one of many. It’s

hard for an attacker to identify the functionality of camouflaged gates, leading

to incorrect netlist extraction [20] [21] [22]. Each standard cell has limited func-

tionality of 3-4 gates. Both the above mentioned approaches, have ignored the

connectivity of the design that might leak important information. In our ap-

proach, we not only obfuscate the functionality, but also hide this connectivity

between the gates by introducing dummy wires. The OBNAND generated library

based on an prototype can replicate the behavior of 26 unique gate and 160 per-

muted combinations which unique layouts. In the next chapter, we will discuss

the main idea of dopant obfuscation and design of library based on modified gate.
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CHAPTER 3

OBFUSCATION USING MODIFIED GATES

In [4] Becker et al, the dopant type changes are suggested to maliciously insert

a hardware Trojan into an existing circuit at mask level without changing the

functionality of the existing circuit. Similar approach is used in designing the ob-

fuscation logic OBAOI222 to protect the layout post-manufacturing. OBAOI222

prototype is designed by integrating the modified inverter and buffer gates with

the AOI222 gate from the Nangate open cell library. The modification to the in-

verter and buffer are made by changing the dopant type, which will be discussed

in further detail under section 3.2. The difficulty in detection of the dopant is

the main motivating factor to use dopant changes. According to Sugawara et al

detecting a dopant is 16x harder than detection of a metal mask under specialized

SEM process [26]. Especially, when the circuit is scaled to billions of transistors

on the chip, it will be next to impossible to find the dopant type under the active

region in each of the transistor. In the next section we discuss the obfuscation

prototype using AOI222 in detail.

3.1 Overview of Obfuscation Prototype OBAOI222

The fixed configuration is obtained as shown in figure 3.1 has a 6 input AOI222

with input A0 and A1 connected to an inverter, B0, B1 and C0 to a buffer and C1

to an inverter. There will be 4 inputs provided by the user which would connect to

6 input based the gate to be formed. This prototype is used to mimic the behavior

of different gates from the standard cell library such as AND, OR, XOR, NOR

and NAND gate to name a few. Based on the configuration we will have some

9



Figure 3.1: Obfuscation logic for the prototype cell using AOI222 gate

dummy inputs alongwith the real inputs. The description of these gates based

on the AOI222 prototype is written in verilog and added to the existing standard

cell library .v file. For example consider a 2input NAND gate which will have the

truth table as in figure 3.2. In this case, we have 2 real inputs A & and 2 dummy

Figure 3.2: Truth table for NAND gate using OBAOI222 prototype

inputs C & D. A and B connect to 2 inputs each, whereas C and D connect to

1 input which would be an always0 or always1 gate. So, the output of this gate

takes into account the 2 real inputs and give the output as a 2-input NAND gate.

Similar approach is used to design the other gates, which complete the library

with a total of 12 gate. AOI222 was selected as a design, since we could obtain

2-input XOR gates which is a common operation in s-boxes. 4-input to 6-input

transformation is used to confuse the attacker in attempts of brute force.

Next section will focus on the idea of dopant type changes described in further

detail.
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3.2 Basic Idea of dopant type variations

Switching the type of dopant under the active region can lead to changed func-

tionality of the transistor. In case of the PMOS, the doping at the drain is

changed from p-implant to n-implant which connects the output to VDD. In case

of NMOS the output would be shorted to GND.

3.2.1 Dopant Obfuscation by modifying gates

Dopant modified cells are multiple transistor gate which can have varied func-

tion, under different doping scenarios. Various 2-transistor gates are considered

from the Nangate standard Cell Library to demonstrate the effect of dopant type

variation on their functionality. At layout level, all the configurations may look

different, but to the eyes of an attacker using optical reverse-engineering these

changes would be less visible. This approach will be successful in confusing the

attacker of the true functionality of the device under consideration. This confu-

sion can be referred back to the fact that it is difficult to detect the polarity of an

active region using optical reverse engineering. Whether an area is doped with p-

implant, n-implant or not doped at all, it will be hard for optical reverse engineer

to detect the changes. It is also difficult to detect the borders and type of well

used [4]. Still detecting a well type, might be easier based on the process tech-

nology. In the following section, the existing gates will be modified by changing

the n-implant and p-implant mask, which will be suffice for the obfuscation logic.

These modifications will be performed on existing inverter and buffer design from

the standard cell library.

3.2.2 Modification of the Inverter cell

In this section, we will demonstrate, how the obfuscation techniques can be ap-

plied to an inverter logic by manipulating the p-implant and n-implant mask. An
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inverter design consist of an PMOS and NMOS transistor and performs the inver-

sion logic as shown in the cross-section of the inverter figure 3.3.The modification

is made in the PMOS, which is doped with the n-implant over an n-well, that

shorts the output to VDD as shown in figure 3.4b. The unmodified layout of

Figure 3.3: Cross-section of a Modified Inverter

the inverter gate taken from the Nangate Open Cell Library in figure 3.4a. The

effective width of an PMOS or NMOS is determined by the width of the dopant

area. In the modified layout in figure 3.4b, the p-implant on the drain is changed

to n-implant at the contact. The source still consist of p-implant connected to

VDD. The drain is disconnected as the implant is same as the well type, and the

output is shorted to VDD independent of the inverter input.

The resulting behavior of the always 1 transistor configuration is as follows: When

the input A=0, the source is connected to VDD using p-implant but the drain

has n-implant which is same as the well type doping. So, the output becomes

independent to the input and is shorted to VDD. Now, when the input A=1, the

strong NMOS will try to pull down the output to a value close to GND. Since,

the PMOS and NMOS of equal strength are used for this design, the output will

fall to a less than VDD, due to the pull-down force of the NMOS transistor. But,

irrespective of the input value the output will remain close to VDD. Although,

there will a high input dependent power consumption if the input is 1 than 0.
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Similarly in the design in figure 3.4c the modifications are made to the NMOS

(a) Simple Inverter (b) Modified Inverter for
always 1

(c) Modified Inverter for
always 0

Figure 3.4: The two configurations are obtained for an inverter working as an
always 1 and always 0 logic

to get a resulting always 0 gate. The dopant area of the drain at the contact is

doped with p-implant. This cuts-off the drain and the output is shorted to GND.

When the input A=1, then the output of the NMOS should be 0. Since, the out-

put is shorted to GND it becomes independent to the input condition. In case,

when A=0 the PMOS tries to turn on and pull-up, which leads to the output to

be not completely grounded to GND.

To solve this problem in the always1 and always0 gate, the NMOS and PMOS are

respectively cut-off. This is done by introducing p-implant in the source of the

NMOS to cut-off the path from GND to VDD in case of always1 gate. When the

NMOS is cut-off, irrespective of the values at the input, the output is always 1.

For always0 logic circuit the n-implant is introduced at the source, disconnecting

the path from VDD. The output always remains grounded and highly input data

dependent power consumption is reduced. The output becomes independent of

the input 1 or 0. Using dopant type changes, 3 type of gate functions are obtained

from a single logic design.
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3.2.3 Modification to the Buffer Cell

A buffer is used to re-inforce a weak signal in a design, with the output is equal to

the input. In the buffer layout, similar approach of dopant modifications is used.

Consider an unmodified Buffer gate, as in 3.5a, which has staggered inverters

that are progressively sized due to loading effect. The two PMOS have an active

area, p-implant in an n-well. The dopant near the drain of the PMOS close to

the output is changed to n-implant as in figure 3.5b. The output as mentioned

(a) Buffer Design (b) Modified always 1 design

Figure 3.5: The two configurations are obtained for an obfuscation buffer gate
and always 1 gate using the layout pattern with switchable dopant type

in the section above is shorted to VDD. The NMOS is cut-off by applying a

dopant change near the GND connection to the source. This is done to prevent

high input data dependent power consumption, which arises due to the pull-down

affect of the NMOS transistor when the input A=1. Hence, the output will be

tied to VDD, independent of the input value for an always 1 gate. Similarly, the

alway0 gate is obtained by replacing the n-implant in NMOS with p-implant at

the drain. Three different logic styles are obtained under varied doping profiles.
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CHAPTER 4

OBFUSCATION STANDARD CELL DESIGN LIBRARY

4.1 Overview of prototype OBNAND4

The approach of obfuscation used in this thesis is to create a logic block with

multiple functionality based on dopant variation. The logic cell will work like a

programmable device which switches the functionality based on the dopant type

changes and the applied inputs. The layout of this OBNAND4 logic cell will

remain same at the metal and polysilicon mask level for different configurations.

The only thing that will change is the dopant type mask. The final experiment

design which is placed and routed using obfuscation library(OBNAND4 library).

The OBNAND4 design in figure 4.1 uses a 4-input NAND gate from the existing

Figure 4.1: Obfuscation logic using Obfuscell and 4-input NAND gate

45nm Nangate standard cell library and integrates it with the obfuscation stan-

dard cell (Obfuscell). The Obfuscell which has a common layout is inserted at

each of the input and output which can function as a inverter, buffer, always1

and always0 gate. These different functionality arise by altering the dopant in the
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same layout design. This leads to variation in the functionality of the prototype

OBNAND4 making it a versatile design. In the next section, we discuss in detail

the design of the Obfuscell with it’s different configurations.

4.2 Obfuscell standard cell design

In this section, a standard cell design is discussed, which together with other gates

will form a prototype OBNAND4 to improve the level of obfuscation and also

reduce the overall design area. The custom designed layout is shown, consisting

of an inverter design with a dopant variation. The layout is similar to that of an

inverter but an active region is introduced between the input and output. The

same layout is used with switchable dopant to form 4 different configurations.

Just by changing the dopant type the standard cell is made to function differently.

In the next section, each of the dopant configurations are discussed in further

detail starting with the inverter gate.

4.2.1 Obfuscell layout explanation

The mask of the obfuscation inverter is similar to a conventional inverter, but

the differences arise with changes made by adding a doped active region between

the input and output. The height of the cell is kept the same as Nangate Open

Cell Library. In fig 4.2b is an inverter from the Nangate open cell library and an

Obfuscell with equal PMOS and NMOS width almost to the ratio of 1.5:1. The

weak PMOS is due to the compromise made to keep the height of the standard cell

the same as the rest of the design library and confine to DRC. There is an active

region between the input and the output which is switched based on the dopant

type and the desired function configuration, a small doped region is introduced

between the active region with n-type doping that cuts-off the connection between

the input A and output Y.
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(a) Simple Inverter (b) Obfuscell Inverter

Figure 4.2: Comparison is shown between a simple inverter layout and an Obfus-
cation Inverter layout

Now, the device works as a normal inverter with a slower drive of p-devices,

since the ratio of P:N device is 1.5:1. The characteristic are shown in figure 4.3.

Figure 4.3: VTC curve comparison for Obfuscell and Inverter

17



4.2.2 Always 0 and always 1 standard cell design

To the existing inverter design standard cell dopant changes similar to chapter

3 are introduced as shown in 4.4b where the drain of the NMOS is cut-off by

changing the doping from n-implant to p-type implant near the drain. The source

of the PMOS is cut-off from the dopant near the contact. When the input A=0,

then the output is 0, as the output Y is shorted to GND. When the input is

A=1 ,then also the output Y=0. Hence, irrespective of the input A, the output

will always be 0. Same approach is followed while creating an always 1 gate in

(a) Obfuscation always 1 gate (b) Obfuscation always 0 gate

Figure 4.4: The two configurations are obtained for an obfuscation always 1 and
0 gate using the switchable dopant Obfuscell layout

4.4a, where at the drain the dopant is changed to a n-type in order to connect

the output Y to VDD as shown in 4.4b. To prevent the noise from the NMOS ,

P-dopant is introduced at the source to cut-off the transistor. Hence, when the

input A=0 , the output is 1 and when the input A=1 the output Y=1 irrespective

of the input
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4.2.3 Explanation of buffer configuration of Obfuscell

Conventional buffer design as shown in 4.5a consist of 2 back to back inverters

where input A is equal to output Y, with differently sized inverters to improve

the drive strength of the input. Whereas the design in 4.5b consist of single

inverter layout with 1:1 ratio of P and N device. The active region between the

input A and output Y is turned on by using the p-type dopant, which conducts

the input to the output with A=Y for A=1 and A=0. The dopant changes are

introduced where VDD and GND connects to the source of PMOS and NMOS

respectively. The small region of contact in the PMOS on the source the dopant

type is changed to n-type to disconnect the device.

Similar changes are made to the NMOS device to change cut-off the transistor.

(a) Buffer design (b) Obfuscell Buffer Design

Figure 4.5: The two configurations are obtained for an Obfuscell buffer and Ob-
fuscell always 1 gate using switchable dopant

The resulting gate have both PMOS and Nmos devices cut-off and input conducts

to the output through the active region. This is the standard cell design for the

buffer design with minor variation in the boundary from the conventional buffer
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design. Resulting all layouts are same at mask level and only with variation in

dopant type they change to INV, BUF, always0 and alway1 gate.

4.3 Extracting LIB file from the Obfuscell layout using ELC

The custom made layout was designed using cadence virtuoso. Encounter Library

characterizer was used to generate the respective output files for the standard

cell design. While using ELC 3 input files are required. 1. Hspice netlist of the

schematic was extracted from the drawn schematic. 2. Model file 3. ELC setup

file as shown in figure 4.6

Model file: The model file for 45nm technology node is used and the spice netlist

is extracted based on the inverter schematic in cadence virtuoso is inserted into

the setup file.

ELC setup: The file consist of the process parameter such as threshold voltage,

temperature, rise and fall time, which are pre-defined for the library creation

for specific NMOS and PMOS device. It also contains additional information

pertaining to the loading capabilities of the inverter. These files are used for

library characterization of the standard cell and give an output format of a .lib

file, which is added to the existing library for the Nangate Open Cell Library.
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Figure 4.6: Encounter Library Characterization Flow

Once this .lib file is obtained the standard cell description can be included in

the library.

Abstract extraction: From the existing layout of the designed cell an abstract

is extracted to provide the metal layer information. This process is repeated for

all the configurations including BUF, always1 and always0.

Liberty File Creating: For the place and route a liberty file is created, con-

taining the information of the boundary and metal width for the entire standard

cell library. Using candence virtuoso, a stream out .lef file is exported out using

an input design library including the designed Obfuscation standard cell.
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CHAPTER 5

AUTOMATIC LIBRARY GENERATION TOOL

5.1 Basic building block for standard cell Library

The prototype OBNAND4 design 4.1 as discussed in chapter 4 is the basic

building block for the obfuscation standard cell library. The logic gates in the

library can perform the function of 2-input gate, 3-input gate and dummy wires

can be inserted on rest of the inputs.

An example is shown for a 2-input NAND gate in figure 5.1 with it’s truth table

Figure 5.1: Truth table for a 2-input NAND formed using OBNAND4

where all input A and B are the true inputs and the Obfuscell works as a buffer,

and the other two inputs are an always 1 Obfuscell. The output Obfuscell behaves

like a buffer and OBNAND4 is made to function like a 2-input NAND gate with 2

dummy inputs. The underlying layout of all the Obfuscells are the same and they

differ only in the dopant configuration used to program them. Similarly, other

gates are realised using the OBNAND4 prototype which are further discussed in

section 5.1.
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5.2 Creation of obfuscation library using OBNAND4

Using the standard cell library based on OBNAND4 gate combination the ob-

fuscation library database is created with 26 unique gate which include universal

gates and additionally include gates such as A+ B̄. In addition to the gate

name, the database consists of number of inputs, dummy inputs, real inputs and

inversions. Inversions are required in case of gates like A+ B̄.

5.2.1 Database for unique gates

Unique gate database is used in creating the permuted combinations for each

gates and extending the library to 160. The goal of the extension is to reduce

the design area and power by bringing down the obfuscation gate count of the

final design with minimal performance overhead. The extra inputs in two and

three input gates will be deployed in obfuscating the connectivity of the gates in

addition to the functionality.

The verilog gate description is required for these 160 obfuscation gates alongwith

the connectivity to the dummy gates. To complete out obfuscation library with

a large number of gate combinations, an automation environment is being setup

which is further elaborated in the next section.

5.3 Automating the obfuscation library generation

To extend the obfuscation library based on OBNAND4 configuration an automa-

tion will be written in perl to generate all the possible combinations from the

prototype design. As, shown in figure 5.2 the tool starts with the Obfuscell and

the logic under considerations. In this thesis, I have considered a 4-input NAND

gate to design the obfuscation library. Using a 4 input NAND gate gives us the

maximum number of gate combinations alongwith sufficient number of dummy

wires. The list of 26 unique gates is fed into the Automated Library generation
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Figure 5.2: Automated Library Generation Flow

tool. There are 2 parts to this tool which create an extended database followed

with the verilog description for each gate.

5.3.1 Creating database for complete library

With the information provided by the 26 unique gates is read into the tool.

For each gate the real input and dummy wire information is associated with

the final gate name. Example if the gate name in the unique gate list is OB-

NAND4 NAND2, then the final name will be interpreted in terms of 4 inputs

and will be OBNAND4 NAND2 real real dum dum.

Each of these 4 inputs will have permuted combinations. What we mean here

by permuted combinations is that all possible input combinations for the 4-input

gate will be created. In case of the two real and two dummy inputs for 2 input

NAND gate we get 6 different unique layout configuration as in fig 6.3. The

number of combinations change based on the type of unique gate considered and

is included in the database. Any 2 input NAND gate in the design under con-

sideration can be replaced by any of the combinations to obfuscate the inputs.

The final generated .csv file consists of the new gates,real and dummy inputs,

inversions and position of each of the inputs.
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5.3.2 Verilog description generation for library

The .csv file is read into an automation for generating the verilog description

for each of the gates matching the inputs with the instances using a hashing

function. One of the module gate descriptions is shown in figure 5.3, generated

as the output from the automatic library generation tool.

The two real inputs A and C are connected to the Obfuscell buffer and the

Figure 5.3: Verilog Code for 2-input NAND gate

instances are matched accordingly using a hash table. The dummy inputs are

connected to B and D using a Obfuscell always 1 gate. This gate gives an output

1 irrespective of the input. A buffer is connected at the output for the specified

gate function. Similar description is automatically written for all the other 160

gates and used by the place and route step in the obfuscation tool flow.

5.3.3 Flexible feature of library generation tool

The tool has the capability to be extended to other logic gates from the Nangate

Open Cell Library, with minor changes, making it a more generalized. At the

moment, I have only experimented with two standard cell library, but the research

can be extended to different library and used alternatively to achieve highest

25



obfuscation with an area efficient approach.

5.3.4 Testing different gates

5.3.5 Overhead analysis of Obfuscell based standard cell library

The some of the basic gates formed using 4.1 are compared in terms of their

area overhead in 5.4. There is atleast a 400% increase in the area of the obfusca-

tion prototype while creating an 2-input AND and OR gate. The maximum area

Figure 5.4: Area overhead for different cell compared to NAND4 obfuscation gate
configuration

overhead is seen in case of inverter which is 700% increase over a conventional

inverter design. This increase in area is due to the fact that Obfuscell uses 6 gates

compared to 1 gate used to design the conventional design cell.
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Figure 5.5: Power overhead for different cell compared to NAND4 obfuscation
gate configuration

Comparing the universal gates for their power consumption based on figure

5.5, it is mostly uniform in case of obfuscation gate,since they have the same

layout pattern. In case of universal gates the AND and OR gates higher leakage

and dynamic power due to the required inversion. Roughly the power overhead

is about 9x in case of dynamic and 10x for leakage power. Leakage is high due

to the use of dummy inputs which are used to confuse the attacker.
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CHAPTER 6

OBFUSCATION TOOL FLOW

6.1 Obfuscation tool needs

Implementations of obfuscation in hardware requires a working tool flow to con-

vert the existing design with obfuscating logic. The obfuscation is achieved by

using the prototype standard cell replicating the function of different gates based

on the selected inputs and configuration of dopant type used. These changes

can be introduced in the entire circuit or a part of the IP block depending on

the degree of obfuscation required and the amount of money one is willing to

spend. The tool will be able to manipulate these variations depending on the

response from the designer. The various stages of the tool are discussed in the

next section starting with the RTL-level netlist and ending with the generation

of an obfuscated hardware circuit.

6.2 Steps in obfuscation tool flow

The design under consideration as in 5.2.1 will go through the ASIC tool flow

along with additional in between step for introducing obfuscation. In figure 6.1,

the various steps are mentioned, which will be discussed step wise.

6.2.1 Designs under consideration

This work will focus on two major areas of applications. One would focus on

the importance of obfuscation in cryptographic designs to prevent safety critical

application from being reverse engineered. The other application area will be
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Figure 6.1: Obfuscation Tool Flow

protection of IP blocks from counterfeiting.

Security application

Security sensitive applications deploy some form of encryption with the on-chip

storage of a master key to protect the information from an adversary. The hard-

ware circuit storing the key is susceptible to reverse engineering attacks post

manufacturing. Obfuscation can be applied to a part of this circuit that stores

the key making the attempt to reverse engineer difficult. In this thesis, we have

used various cryptographic circuits for the purpose of experiment. Mostly lookup
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table based implementations of substitution-box or sboxes is considered which

operates on the plaintext and key to get the resulting encrypted ciphertext. Tak-

ing an example of an 8-bit lookup table based sbox, the netlist is converted into

a gate level description using Nangate standard cell library. From the attacker’s

perpective they are looking at set of gates while delayering the chip and learning

about the functionality of the design. The design under consideration is further

discussed in detail in the section below.

Sboxes

Sboxes or substitution boxes are basic component of symmetric key algorithms

which performs substitution. They are used to obscure the relationship between

the key and the cipher text. They take a number of input bits m, and transform

them into some number n based on the substitution table, where n is not nec-

essarily equal to m. An 8 bit m*n lookup table based sbox implementation has

been considered with 2m words of n bits each. In the Figure 6.2, 16 bit s-box has

been shown, which take a 16 bit input with 216 possibilities and give an output of

16 bit. An 8-bit s-box consisting of two 4-bit s-boxes is considered for experiment

purposes.

Figure 6.2: A 16-bit s-box design
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VLSI based applications for IP protection

Post-manufacturing an IP block can get into the hands of untrusted third party,

who can use optical reverse engineering to learn the functionality of the circuit

and replicate it. Hence, it is becoming important on the part of the design units

to introduce some protection to prevent illegal clones of the IP block from being

created. Obfuscating this logic using dopant changes can confuse the attacker

and make the attempt of reverse engineering difficult. To demonstrate and test

the obfuscation flow we would consider different ITC’99 benchmark circuits. The

entire logic will be passed to the tool which would select the obfuscation gates

from the library to synthesize it and then further add ”dummy wires” to the

corresponding obfuscation cells. The tool will changes the appearance of the

logic at layout levelmask and additionally obfuscate the connectivity, but the

functionality will remain same.

6.2.2 Logic synthesis and simulation

The first step in the flow is the logic synthesis of the behavioral netlist, which

would output a structural netlist with the design described in terms of logic

gates. In process of synthesis, different constraints are to be specified to the

design compiler. A perl based script is used to pass the command and constrains

to the compiler for logic synthesis. The input file is a .v or .vhd file of the design

under consideration and a obfuscation library with unique set of gates at 45nm

technology node is used to map the design to a gate level description. Each of

the unique obfuscation gate information will be included in the Nangate Open

Cell having the same information for area parameter. This will let the tool make

an unbaised decision on gate selection for the given design. Since, all the unique

gates are based on the OBNAND4 prototype, so all of them will have the same

area, irrespective of the functionality. The mapping of gates is constrained by
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other factors such as the availability of logic gates in the technology library, the

drive strength, delay and power. These constrains help in calculating the overall

efficiency of the IP block.

6.2.3 Random selection of Inputs and dummy wires

After the IP block is verified, we perform the replacement of the gates in the in

the logic with the obfuscation gates. Each of the obfuscation gate will perform

the function of multiple gates based on the switching configuration of the dopant

type. The obfuscation gate prototype will be replaced for all gates in the design,

but will add an overhead in terms area and power. In the following 2 chapter we

will be following 2 different approaches to form the basic building block for the

obfuscation logic.

Using both these approaches we will add dummy wires, in case there are extra

inputs for the gate to be created. In addition to this, different inputs can be

selected to form the same gate with different layouts (permuted combinations) as

shown in figure 6.3. At this step, the tool will randomly select the obfuscation

gate that will replace the original gate with the permutated combinations from a

160 gate library.

Figure 6.3: Permuted combination for 2-input NAND

For example, in case of an NAND gate depending on which dummy input is

selected from the prototype gate, 6 different arrangements will be achieved 6.3.

We can either replace the part of the design or the entire logic based on the

tool setup. Once the replacement is complete the resulting design needs to be

verified using model sim. The design is checked to make sure that the random
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replacement has not caused any changes to its functionality.

Dummy wires: can be selected from a set of intermediate nets in the design

under consideration. These will result in hiding the connectivity of the design

and hence increasing the complexity of exhaustive brute force.

6.2.4 Place and Route

The final step in this flow is to place and route (P&R) the design to achieve

the GDSII file, which is the final design file format which is sent out to the

fabrication unit and contain the mask information. [7] Once, the synthesized

netlist is received, the P&R tool is used to define the floorplan and place the

design from gate level at transistor level in a block arrangement. The Obfuscell

has been incorporated into the custom cell library and cane be used to places and

route the design. Constraints can be specified based on the power, area, delay

and clocking requirements.
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CHAPTER 7

TOOL IMPLEMENTATION AND RESULTS

7.1 Integrating the Obfuscation cells in different Application

The design under consideration is synthesized using design compiler and the a

gate level netlist is obtained by using this. After this the design is simulated

in Modelsim to verify the functionality of the logic. Once the functionality is

verified, the gate connectivity and random inputs are inserted as explained 6.2.3

OBNAND4 gate based obfuscation logic.

All the changed gates lookalike at the layout level, irrespective of being a AND,

OR , NAND and NOR gates with different input configurations. This makes the

detection of dopant type in each transistor infeasible. So, when the attacker de-

layers the chip and photographs each layer to decipher the functionality, it will be

infeasible to do so. Also, another level of complexity is added by using differing

input configurations. Similarly, the design can be placed and routed using the

OBNAND4 approach which currently provided with 160 gates. Now the security

applications will be discussed in further detail in the next sections.

7.1.1 Obfuscating PRESENT block cipher implementation

Implementation of PRESENT block cipher:

An low-cost cryptography solution PRESENT has been proposed by Bogdanov et

al [6] to design an ultra-light weight block cipher. AES is an accepted cipher with

excellent performance in hardware for widespread use, but PRESENT provides a

hardware optimized solution targetting moderate security applications [6]. The
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main focus of this design is to be come up with a more area and power efficient

design for specific lightweight application such as RFID tags.

A simple top-level algorithm of the PRESENT is shown in fig. 7.1

Figure 7.1: A top-level algorithm of PRESENT [6]

The PRESENT basically has a SP (substitution and permutation) network

[17] consisting of 31 rounds as shown in fig 7.2 The block length is 64 bits with

two key length of 80 and 128 bits are supported. For the purpose of testing the

obfuscation tool we will consider the 80 bit key length. Each of the 31 rounds

consists of an xor operation to introduce a roundkey Ki for 1 ≤ i ≤ 32, a linear

bitwise permutation and a non-linear substitution layer. [6]

Figure 7.2: The S/P network for PRESENT [6]

In the thesis, for the purpose of experiment and to prove the point of hiding

the connectivity in addition to hiding the functionality we implement the the
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S-layer and P-layer.

S-box Layer: The non-linear layer uses a single 4-bit S-box S which is applied 16

times in parallel in each round for all the 64 bit. Each s-box used in PRESENT

is 4-bit to 4-bit S-box S. The lookup table for each of the S-box as in fig 7.3 has

hexadecimal notation.

Figure 7.3: Lookup table for the 4bit to 4bit S-box for PRESENT [6]

P-layer: The P-layer is a non-linear bit permutation used in PRESENT bit

i of STATE is moved to bit Position P(i). The hexadecimal notation is shown for

each of the 0 to 63 bits in the table below 7.4 assigning a position.

Figure 7.4: Bit permutation for the each of the 64 bits [6]

Using obfuscation tool on PRESENT:

The considered implementation as described fig 7.2 is S-layer connected to P-layer

through a set of non-linear permutations. The obfuscation tool is used on the

hardware implementation of the PRESENT. Starting with the 16 set of S-boxes

in parallel connected to the P-layer. The lookup table based .vhdl description

is synthesized using the unique set of 26 obfuscation gates. At this stage the

functionality of all the gates is hidden, since they all look alike at gate level, but

function differently. After this stage, the gates are replaced by the permutated

input combinations and dummy wires are introduced.
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Input Selection

Example if the chosen gate at synthesize is OBNAND4 NAND2, which is a two

input gate, hence we have 2 inputs where we can tie dummy wires. Also, any two

inputs can be selected as the real input from a combination of A, B, C, D which

would be selected from 4C2. The selection of inputs is done randomly from the

library database of 160 gates.

Dummy input selection

The remaining 2 dummy inputs have to be connected, but they will not affect the

functionality of the logic. In the tool these dummy inputs are randomly selected

and assigned from a pool of intermediate ”nets”. The randomization will not be

truly random. Now, the connectivity between the gates is also obfuscated. The

connectivity between the S-layer and P-layer will be hidden and it will appear like

non-decomposable ’blob’ as in figure 7.5 after place and route. It would just show

the OBNAND4 cells connected to each other in a way the 1st cell could connect

to the last or the next cell. This would be in a completely random fashion and

would not affect the functionality of the design. In case of past approach used

by SypherMedia, the S-boxes will be obfuscated but the connectivity between

the S-boxes will be visible, which is obfuscated with the use of randomly selected

dummy wires.

37



Figure 7.5: The blob

Each simulation through wiring step will result in a unique netlist. Hence, we

can get multiple instances of PRESENT 7.6 with the functionality and connec-

tivity equally complex in both the cases. It can be extended to N different netlist.

The attacker is going to be confused with each of the implementation and hence

prevent exhaustive brute force attack.
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Figure 7.6: Multiple netlist generation for PRESENT

Overhead and performance across different libraries for PRESENT

S/P layer

Different library design are analysed in this thesis starting with using AOI222,

NAND4 and then AND2 in 7.2 .The experiment is based on an OBAOI222 library

design has the highest overall overhead in terms of area and power. It has a low

level of obfuscation with only 12 gate combinations that can be obtained from the

fixed configuration used in Chapter 4 shown in 3.1. Obfuscell based approach

XXXXXXXXXXXXParameter
Library

AOI222 NAND4 AND2

No. of combinations 12 160 12
No. of gates 671 626 511
Brute force complexity 22402 22241 23741

Area 6.23 4.25 3.2
Power 8.61 5.65 2.59
Delay 3.23 2.51 2.12

Table 7.1: Overhead for different Obfuscation Libraries for PRESENT

seems like a winner in case obfuscation and the overhead. With the complete
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library of 160 gates using the 4-input NAND the overhead is seen to reduce

compared to incomplete library. This includes gates such as A+B̄=Y which are

not present in the Nangate Open Cell Library. Such combination logic can be

used in synthesizing the 8-bit s-box design and improve the design overhead. All

libraries are compared against a non-obfuscated design place and routed using

anycell in the Nangate Open Cell Library. The level of obfuscation achieved in

terms of number of combination an adversary will have to go through to reverse

engineer the device goes up exponentially.

7.1.2 Obfuscating AES 8 bit S-box

The hardware implementation of AES 8 bit S-box is considered for the purpose

of experiment. The Sboxes substitute a 8-bit input for an 8-bit output and are

based on the arithmetic operation of finite field GF(2 8) [28].It operates on 128

bit block with a key size of 128, 192 and 256. The building block of the AES

algorithm are non-linear Sboxes and Mix column operation. They are based on

finite field arithmetic and have inverse functions used for decryption. The vhdl

implementation is used to which is passed through the tool to get various results

XXXXXXXXXXXXParameter
Library

AOI222 NAND4 AND2

No. of combinations 12 160 12
No. of gates 882 865 650
Brute force complexity 23127 23096 24758

Area 10.14 7.09 6.03
Power 8.82 6.45 4.59
Delay 4.12 3.12 2.5

Table 7.2: Overhead and performance for different Obfuscation Libraries for AES
8-bit S-box

based on die-size (area) and power. The Sboxes transform 8-bit input to 8-bit

output making this design much bigger than the PRESENT block cipher. AES

is a widely used and accepted block cipher for high security applications. The
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overhead for AES S-box is higher than PRESENT. With the increase in the area

of the hardware implementation of S-box the area utilized by place and route

increases due to the connectivity of the dummy wires. The power consumption

also goes up but doesn’t change as much as the area. The delay in this case

doesn’t change considerably, since we use standard cell 4-input NAND and the

Obfuscell creates shorts in certain cases reducing the performance overhead by

creating low resistance paths. An average delay of 2.5x has been noticed with a

range of 1.5x to 4x.

7.2 VLSI applications

The main goal of the obfuscation tool is to have least area overhead with higher

level of obfuscation which is seen to be achieved by using the OBNAND4 approach

in case of the cryptographic hardware implementation of S-boxes. There is a

need for proper estimation of area across different designs to get an average

approximation. Based on the results across different benchmark circuits we see

BenchmarksOBNAND4 area um2̂Area(Anycell)um2̂Area Overhead

b01 324.74 77.532 4.18
b02 177.66 48.272 3.6
b03 1103.81 324.912 3.39
b04 5639.94 1035.496 5.44
b05 5319.13 895.67 5.93
b06 316.42 101.47 3.11
b07 3961.80 653.68 6.06
b08 1035.34 273.27 3.7
b09 1261.05 318.44 3.96
b11 7056.84 890.76 7.7

Table 7.3: Overhead for different ITC’99 benchmark circuits

an increase in area with the increase in the size of the design. This is due to

the fact that the routing for dummy is done for bigger design adds to the area

overhead. In some case, we also notice a non-linear trend which is due to the
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complexity of the design which might be using a higher number of nets. On an

average across

Figure 7.7: Area overhead for different ITC’99 benchmark circuits

different benchmarks the area overhead is in the range of 3.2x to 7.5x with

an average of 5.87x. Hence, we gain an obfuscation with each gate had 160

possibilities with random nets selected as dummy inputs each time, which further

adds to the complexity.
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CHAPTER 8

CONCLUSION

In order to curb the problem of IP violation and protect cryptographic hardware

implementations from reverse engineering a dopant based obfuscation system is

developed. An Obfuscell(standard cell) based on switchable dopant configura-

tion has been designed in an area efficient manner with a area almost equal to

that of a single inverter (0.798um2). The switchable dopant configuration enables

the Obfuscell to function as inverter, buffer, always1 and always0 gate without

making changes to the metal or polysilicon. What makes the use of switchable

dopant interesting is it’s ability to be detected is 16X [26] harder than metal or

polysilicon.

Using the Obfuscell alongwith the 4-input logic cell NAND4 a prototype is de-

signed, which can function as 26 unique gates and can be further extended to

160 permutated gates. The underlying layout for all these 160 gates remains the

same and only thing that changes is the dopant. This confuses the attacker, as all

the cells look alike but function differently. Previously proposed schemes, have

only dealt with a library of 4-12 cells, but in this work we have been able to

generate 160 different gates based on the protoype OBNAND4. The description

of these gates is written in verilog using a automatic library generation tool. It’s

a flexible tool that can be used to generate libraries based on different logic cells.

The OBNAND4 library is the best solution with the right balance of real and

dummy inputs for the purpose of obfuscation.

A major focus of this thesis has been to successfully developing a layout-level

obfuscation tool which converts a rtl-level netlist into highly secure and complex
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obfuscated layout(mask) which is extremely hard to reverse engineer. For exam-

ple, in a design of 500-700 gates as in case of PRESENT S/P layer the complexity

goes up, but the functionality of the design remains same. In addition, to varying

the dopant in the OBNAND4 prototype based library, the use of dummy wires

makes it next to impossible to reverse engineer using brute force methods. Each

implementation of the design under consideration will look different and basically

resemble one big ’blob’. The main goal of the ObfusTool was to conduct this tran-

formation in an area and power efficient manner and try to reduce the die-size

and cost of obfuscation. The area overhead involved has been considerably seen

reduced across different library designs from 300-400% based on the number of

gates used and the complexity of the logic. The power overhead is roughly 3x to

8x. All the designs were tested across 3 different libraries, making OBNAND4

the winner in obfuscation v/s area and power consumption trade-off. The delay

across different design doesn’t seem to greatly varies and is roughly 1.5x to 4x

for different security applications. This was a later addition to the results, hence

it is an approximate analysis based on the time at hand. Hence, at this cost of

delay an higher level of obfuscation can be provided.

The different ITC’99 benchmarks of varied sizes were checked using the OB-

NAND4 library, showed a variation in the area overhead. Reasons for these

variations are linked to the use of dummy wires which are randomly selected

from all the intermediate nets in the design. On an average the overhead was 5x

with a variation of 3x to 7.9x. The bigger designs showed a higher overhead due

to the random connection of dummy inputs. Hence, requiring a large place and

route area.
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8.1 Future Research Directions

The ObfusTool has been designed and can be used for for future research in the

field of hardware obfuscation. The tool can flexibly incorporate different design

for Obfuscell and libraries. Since, this tool has been designed it’s gives a start

point to build upon and scope for improvement. The next section talks about

the different areas that can be taken up for future research.

8.1.1 Smart wiring for design under consideration

The current wiring approach of the obfuscation tool selects the dummy wires

randomly from a pool of intermediate nets. This costs a huge area overhead and

scale with the size of the design. The obfuscation for a certain design goes up at

the cost of area, power and to an extend delay. In order to make this approach

more area efficient, the dummy wiring could be placed using a smart algorithm

which take the proximity of the different nets into consideration. Constraints can

be given to the tool to consider a certain distance from an OBNAND4 cell to

route the dummy wires. This with greatly reduce the area, as net A would be

restricted to net H and not connect at the way to net Z. Also, this transformation

needs to be done in a way, so as to not compromise on the security of the overall

design.

8.1.2 New design for Obfuscell

Currently, the designed Obfuscell has 4 different configurations that can be achieved

by switching the dopant mask. Sugawara et al where able to reverse engineer a

single dopant in the design of an inserted stealthy trojan [4] [26]. According to

Sugawara et al the process of reverse engineer the dopant mask is 16x harder

compare to the detection of polysilicon and metal. Since, in our approach the

obfuscation cell is replicated in the entire design which would make the dopant
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detection harder, if not impossible. The connectivity additionally add obfusca-

tion and related overhead. Since, the dopant mask have been reversed, a newer

design approach could be used for creating the Obfuscell.

In the Obfuscell contacts can be used to connect of disconnect the VDD and

ground which would make the design more area efficient. To make it more secure

a design is under progress which will use to back-to-back inverters to decide and

always 1 or always 0 gate.

8.1.3 Attacker’s Perspective: Side channel reverse engineering

Now, since this new scheme has been designed, we could use it evaluate the

attacker’s perpective. The future research is going to focus on using side channel

information to reverse engineering the design under consideration. This would

give us an estimate of the security and vulnerabilities of the designed approach. A

better evaluation can be provided for the attack model for the obfuscated design.

46



BIBLIOGRAPHY

[1] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and
aes, secure against some attacks. In Cryptographic Hardware and Embedded
Systems—CHES 2001, pages 309–318. Springer, 2001.

[2] C. Bao, D. Forte, and A. Srivastava. On application of one-class svm to re-
verse engineering-based hardware trojan detection. In Quality Electronic De-
sign (ISQED), 2014 15th International Symposium on, pages 47–54. IEEE,
2014.

[3] Luis Basto. First results of itc’99 benchmark circuits. IEEE Design & Test
of Computers, 17(3):54–59, 2000.

[4] G. T Becker, F. Regazzoni, C. Paar, and W. P Burleson. Stealthy dopant-
level hardware trojans. In Cryptographic Hardware and Embedded Systems-
CHES 2013, pages 197–214. Springer, 2013.

[5] Swarup Bhunia, Miron Abramovici, Dakshi Agrawal, Paul Bradley,
Michael S Hsiao, Jim Plusquellic, and Mohammad Tehranipoor. Protec-
tion against hardware trojan attacks: Towards a comprehensive solution.
IEEE Design & Test, 30(3):6–17, 2013.

[6] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkel-
soe. PRESENT: An ultra-lightweight block cipher. Springer, 2007.

[7] SOC Cadence. Encounter user’s manual.

[8] Rajat S. Chakraborty and S. Bhunia. Hardware protection and authentica-
tion through netlist level obfuscation. In Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design, pages 674–677. IEEE
Press, 2008.

[9] Rajat S. Chakraborty and S. Bhunia. Harpoon: an obfuscation-based soc
design methodology for hardware protection. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 28(10):1493–1502,
2009.

[10] Rajat S. Chakraborty and S. Bhunia. Rtl hardware ip protection using key-
based control and data flow obfuscation. In VLSI Design, 2010. VLSID’10.
23rd International Conference on, pages 405–410. IEEE, 2010.

[11] Lap-Wai Chow, William M Clark Jr, and James P Baukus. Integrated circuit
with reverse engineering protection, May 24 2005. US Patent 6,897,535.

47



[12] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J Wang. Circuit camouflage
integration for hardware ip protection. In Proceedings of the The 51st Annual
Design Automation Conference on Design Automation Conference, pages 1–
5. ACM, 2014.

[13] A. Cui, Chip H. Chang, and Sofiène Tahar. Ip watermarking using incre-
mental technology mapping at logic synthesis level. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 27(9):1565–1570,
2008.

[14] Semantic Designs. Thicket family of source code obfuscators.

[15] Ujjwal Guin, Ke Huang, D DiMase, JM Carulli, M Tehranipoor, and
Y Makris. Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain. Proceedings of the IEEE, 102(8):1207–1228,
2014.

[16] A. Iqbal. Understanding ic security threats. 2013.

[17] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 1996.

[18] Carla Meninsky. Locked out: The new hazards of reverse engineering. J.
Marshall J. Computer & Info. L., 21:591, 2002.

[19] G. Perera. Purposefully manufactured vulnerabilities in US government tech-
nology microchips: risks and homeland security implications. PhD thesis,
Monterey, California. Naval Postgraduate School, 2012.

[20] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of integrated circuit camouflaging. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security,
pages 709–720. ACM, 2013.

[21] Jeyavijayan Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Vlsi testing
based security metric for ic camouflaging. In Test Conference (ITC), 2013
IEEE International, pages 1–4. IEEE, 2013.

[22] Jeyavijayan Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Regaining
trust in vlsi design: Design-for-trust techniques. Proceedings of the IEEE,
102(8):1266–1282, 2014.

[23] SEMI. Intellectual property (ip) challenges and concerns of the semicon-
ductor equipment and materials industry. SEMI R© WHITE PAPER—S
PONSORED AND FUNDED BY SEMI.

[24] Mitsuru Shiozaki, Ryohei Hori, and Takeshi Fujino. Diffusion programmable
device: The device to prevent reverse engineering. IACR Cryptology ePrint
Archive, 2014:109, 2014.

48



[25] P. Subramanyan, N. Tsiskaridze, W. Li, Adria Gascón, W. Tan, A. Tiwari,
N. Shankar, S. Seshia, and S. Malik. Reverse engineering digital circuits
using structural and functional analyses. 2013.

[26] T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, and T. Fu-
jino. Reversing stealthy dopant-level circuits. In Cryptographic Hardware
and Embedded Systems–CHES 2014, pages 112–126. Springer, 2014.

[27] R. Torrance and D. James. The state-of-the-art in ic reverse engineering. In
Cryptographic Hardware and Embedded Systems-CHES 2009, pages 363–381.
Springer, 2009.

[28] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An asic
implementation of the aes sboxes. In Topics in Cryptology—CT-RSA 2002,
pages 67–78. Springer, 2002.

49


	Development of a Layout-Level Hardware Obfuscation Tool to Counter Reverse Engineering
	Recommended Citation

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	MOTIVATION
	Introduction

	HISTORY AND PRIOR WORK
	Background
	Watermarking
	Obfuscation
	Software Obfuscation
	Hardware Obfuscation


	OBFUSCATION USING MODIFIED GATES
	Overview of Obfuscation Prototype OBAOI222
	Basic Idea of dopant type variations
	Dopant Obfuscation by modifying gates
	Modification of the Inverter cell
	Modification to the Buffer Cell


	OBFUSCATION STANDARD CELL DESIGN LIBRARY
	Overview of prototype OBNAND4
	Obfuscell standard cell design
	Obfuscell layout explanation
	 Always 0 and always 1 standard cell design
	Explanation of buffer configuration of Obfuscell

	Extracting LIB file from the Obfuscell layout using ELC

	AUTOMATIC LIBRARY GENERATION TOOL
	Basic building block for standard cell Library
	Creation of obfuscation library using OBNAND4
	Database for unique gates

	Automating the obfuscation library generation
	Creating database for complete library
	Verilog description generation for library
	Flexible feature of library generation tool
	Testing different gates
	Overhead analysis of Obfuscell based standard cell library


	OBFUSCATION TOOL FLOW
	Obfuscation tool needs
	Steps in obfuscation tool flow
	Designs under consideration
	Logic synthesis and simulation
	Random selection of Inputs and dummy wires
	Place and Route


	TOOL IMPLEMENTATION AND RESULTS
	Integrating the Obfuscation cells in different Application
	Obfuscating PRESENT block cipher implementation
	Obfuscating AES 8 bit S-box

	VLSI applications

	CONCLUSION
	Future Research Directions
	Smart wiring for design under consideration
	New design for Obfuscell
	Attacker's Perspective: Side channel reverse engineering


	BIBLIOGRAPHY

