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ABSTRACT

DEVELOPMENT OF A LAYOUT-LEVEL OBFUSCATION TOOL
TO COUNTER REVERSE ENGINEERING

May 2015
SHWETA MALIK
B.E, MAHARISHI DAYANAND UNIVERSITY
M.S.E.C.E,UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed By: Professor Wayne P Burleson

Reverse engineering of hardware IP block is a common practice for competitive
purposes in the semiconductor industry. What is done with the information gath-
ered is the deciding legal factor. [23] Once this information gets into the hands of
an attacker, it can be used to manufacture exact clones of the hardware device. In
an attempt to prevent the illegal copies of the IP block from flooding the market,
layout-level obfuscation based on switchable dopant is suggested for the hardware
design. This approach can be integrated into the design and manufacturing flow
using an obfuscation tool (ObfusTool) to obfuscate the functionality of the IP
core.

The ObfusTool is developed in a way to be flexible and adapt to different stan-
dard cell libraries and designs. It enables easy and accurate evaluation of the area,
power and delay v/s obfuscation trades-offs across different design approaches for
hardware obfuscation.

The ObfusTool is linked to an obfuscation standard cell library which is based on
a prototype design created with ”Obfuscells” and 4-input NAND gate. The Ob-
fuscell is a standard cell which is created with switchable functionality based on
the assigned dopant configurations. The Obfuscell is combined with other logic

gates to form a standard cell library, which can replace any number of existing

vi



gates in the IP block without altering it’s functionality. A total of 160 different
gates are realized using permutated combinations starting with 26 unique gate
functions. This design library provide a high level of obfuscation in terms of the

number of combinations an adversary has to go through increase to 2290

approx-
imately based on the design under consideration.

The connectivity of the design has been ignored by previous approaches, which
we have addressed in this thesis. The connectivity of a design leaks important
information related to inputs and outputs of a gate. We extend the basic idea of
dopant-based hardware obfuscation by introducing "dummy wires”. The addi-
tion of dummy wires not only obfuscates the functionality of the design but also
it’s connectivity. This greatly reduces the information leakage and complexity of
the design increases. To an attacker the whole design appears as one big ’blob’.
This also curbs the attempts of brute force attacks. The introduced obfuscation

comes at a cost of area and power overhead on an average 5x, which varies across

different design libraries.
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CHAPTER 1

MOTIVATION

1.1 Introduction

The complexity of integrated circuit (IC) is promoting reuse-based design to speed
up the development of new products in a system-on-chip environment. A signifi-
cant amount of time is invested into creating these reusable intellectual property
(IP) cores [13] [2]. Violation of this reusable IP core poses a serious threat and
exorts a sizable revenue from the IP producer. According to SEMI report [23]
approximately $4 billion is lost due to IP infringement, which includes counter-
feiting through reverse engineering, theft of trade secrets and trade marks [15].

The given IP block can be reverse engineered based on the compute power and
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Figure 1.1: Cases of counterfeiting [15]

resource of an attacker. Reverse engineering involves the analysis of the function-
ality, architecture and technology of a device and representing them in a manner
which allows reuse or duplication of the product [27] [25]. Post-manufacturing,
an adversary or competitor get access to the product and use techniques to de-

layer the IP core and photograph each layer using a scanning electron microscope



(SEM) in order to reveal functionality of the circuit [11]. In some cases the goal
of this process is not be to copy the IP, but to use it for competitive analysis,
redocumentation of legacy systems and design improvements. Whereas an ad-
versary will analyse the design and attempt to replicate the functional details to
create an exact clone. This will be based on the assumption that the reverse en-
gineering (RE) process for the adversary will be a short, and less expensive than
a full prototype-development project [16]. Then the cloned products flood the
market and compete for a share [19] [18]. In addition to the IP block, hardware
implementation of security application such as PRESENT [6] and AES block ci-
pher are also at a risk of being reverse engineered to extract key bits.

To curb the attempts of reverse engineering, schemes have been suggested by Coc-
chi et al [12] to use contact changes to hide the functionality and create lookalike.
This approach ignores the fact, that connectivity of the design reveals impor-
tant information. In this thesis, we aim at creating a low-overhead, piracy-proof
obfuscation methodology using an obfuscation tool flow (ObfusTool) which not
only hides the functionality, but also obfuscates the connectivity by insertion of
"dummy wires”. This protects and benefits the IP vendors and chip designers
of the IP cores and security implementations. The approach is based on apply-
ing obfuscation to the design at the layout level involving dopant configuration
changes.

The intent of this obfuscation technique is to hide the actual functionality of the
hardware circuit by altering the mask and presenting lookalike gates. Dopant
type variation are introduced at the transistor level, can change the functionality
of the standard inverter/buffer gates to produce an always 1 or 0 gate. The ob-
fuscation cell(Obfuscell) are combined with logic cells from the Nangate standard
Cell Library to form a prototype. This prototype as discussed in chapter 3 and
4, is used to create an obfuscation library with 160 lookalike gates, realized from

26 unique gate functions. The entire library is attached to the obfuscation tool



flow, which is further utlilized to convert any vhdl/verilog behavioral code into
an obfuscated mask.

The reverse engineering of the post manufactured obfuscated designs is really
hard, due to the underlying assumption that dopant polarity detection is 16x
hard under SEM processes [4] [26]. The connectivity of the design is obfuscated
by the use of dummy wires, which are randomly selected from the intermediate
nets of the design. The entire design appears like a one "blob” to the attacker,

which is non-decomposable and hard to reverse engineer.

MAJOR CONTRIBUTIONS

1. Design a Obfuscation standard cell (Obfuscell) which has different func-
tions based on the dopant type configuration. The Obfuscell will be further
integrated with the different logic gates such as NAND4, AND2 to create a li-
brary using multiple functionality prototype as a building block.

2. An Automatic Library Generation Tool will be designed for the gener-
ation of all possible logic cells based on the prototype OBNANDA4. This library
would contain all the permutations for a given gate alongwith the dummy input
information. Just by feeding in the logic gate and other related information, we
would get an entire generated OBNAND4 library as discussed in chapter 5. This
tool can be flexibly changed for including other logic gates for designing new li-
braries.

3. Design a flexible and adaptable Obfuscation tool flow(ObfusTool) which
converts a .vhd description of logic into an obfuscated logic mask which is difficult
to reverse engineer using optical inspection methods. There will be an ability to
insert "dummy wires” in the cases where of 2 or 3 input gates are constructed
using a 4-input gate. Random inputs can be selected for the gates using the

supporting features in the ObfusTool. The tool will be flexible to handle different

3



requirements.

4. Different designs under consideration will be used to experiment across dif-
ferent obfuscation libraries and calculate the overall overhead involved. This will
help in deciding the best obfuscation library design based on the trade-off be-
tween low overhead and high level of obfuscation.

Organization of Thesis

In the following chapter, we discuss the background work in the field of hardware
obfuscation. Following chapter 3 and 4 go into details of constructing the ob-
fuscation cell and library designs. The obfuscation library are designed by using
2 different approaches where the latter uses the designed Obfuscell. Chapter 5
talks about the automation design for creation of the obfuscation library based
on prototype OBNAND4 consisting of 160 different gate layouts. Further on, in
chapter 6 we discuss design of the obfuscation tool and how it incorporates the
obfuscation library at different stages. Ultimately, we implement the Obfuscation
tool on various security application including the PRESENT block cipher, AES
8 bit S-box and ITC’99 benchmark circuits.



CHAPTER 2

HISTORY AND PRIOR WORK

2.1 Background

Hardware intellectual property (IP) cores have emerged as an integral part of
modern system-on-chip (SoC) designs. However, IP vendors are facing major
challenges to protect hardware IPs and to prevent revenue loss due to IP piracy [8].
To prevent the IP violations various techniques have been suggested on both rtl-
level and hardware implementation level.In following sections we shed light on

these techniques.

2.1.1 Watermarking

Watermarking has been used to provide an ID to each chip to prevent the coun-
terfeiting of the hardware device by malicious adversary. The presence of this
unique ID is mostly kept hidden and when required an IP owner can prove his
identity to the verifier. In case of an IP violation, and counterfeited good can
be easily identified based on the watermark or in certain cases be non-functional.
Watermarking can be applied to both hardware and software codes. In instance
of reverse engineering, the watermark itself can be reverse engineered and render

this countermeasure useless.

2.1.2 Obfuscation

Obfuscation is the process of intentional hiding of the functionality and struc-

ture of a device, to make it difficult, if not impossible to reverse engineer [12].



Obfuscation is different from watermarking which might be used to conceal the
identity of owner within the content itself. Major security threats for hardware
IP include (a) hardware intellectual property infringement during SoC design; (b)
reverse engineering the manufactured ICs or the IC design database (in fabrica-
tion facilities) to produce counterfeit or clone ICs; and (c¢) malicious modifications
of an IP through the insertion of hardware Trojan to cause in-field functional fail-
ure. [8] [5]. Hardware obfuscation aims at minimizing these threats at IP or chip
level by making it difficult for an adversary to comprehend the actual function-
ality of a design. Hardware obfuscation is approached at 2 level software and

hardware level.

2.1.3 Software Obfuscation

Software obfuscation is introducted at the front-end design level, where changes
are made to the netlist to make it incomprehensible. In [9], the HDL (RTL)
source code is modified by adding some comments and changing internal net-name
followed by simple string substitution strategy. Semantic Design is a company
which provides Obfuscation solutions to various companies in 20 languages to
increase the security of intellectual property by scrambling the source code while
allowing applications to run normally [14]. They come up with a source code
obfuscator which accepts a source code from the owner and generates a functional
equivalent of the original which is harder to reverse engineer. The obfuscator reads
the comments, variable, indentation and converts it into nonsense name, making
the code hard to read and decipher the actual functionality. Certain netlist level
changes made chakraborty et al [9] [10] can be made by adding dummy code,
adding always 1 or 0 nodes to the RTL, which makes it more obscure without
changing the functionality. Although, there will be an involved trade-off between

obfuscation and overall overhead. All these schemes preserve the functionality of



the design.

2.1.4 Hardware Obfuscation

Post-manufacturing the design information is utilized to recover the functionality
of the hard IP core by reverse engineering. Cloned products flood the market
making it a multi-million dollar business. The fabricated hardware can be for a
security sensitive applications such as military and secured medical devices and
it become necessary to be protected. Also, the threats of cloned products, IP
theft, and copyright infringement necessitate semiconductor designers and man-
ufacturers to implement countermeasures into their products [24]

In the past, several countermeasures have been used to protect the IC. SypherMe-
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Figure 2.1: SypherMedia lookalike gates [12]

dia International (SMI) is a company is offering Camouflaging library for physical
design which allows the manufacturer and designer to keep the key and strategic
aspects of their designs secret from there competitors and counterfeiters [12]. In
this approach, a designed library has cells which lookalike to standard gates, but
might exhibit multiple functionality. These gates obfuscate the design function-
ality and make the process of reverse engineering complex. This approach has
been widely used to provide secure design systems for pay TV.

A technique suggested by rajendran et al uses a mixture of real and dummy con-



tacts, they camouflage a standard cell whose functionality is one of many. It’s
hard for an attacker to identify the functionality of camouflaged gates, leading
to incorrect netlist extraction [20] [21] [22]. Each standard cell has limited func-
tionality of 3-4 gates. Both the above mentioned approaches, have ignored the
connectivity of the design that might leak important information. In our ap-
proach, we not only obfuscate the functionality, but also hide this connectivity
between the gates by introducing dummy wires. The OBNAND generated library
based on an prototype can replicate the behavior of 26 unique gate and 160 per-
muted combinations which unique layouts. In the next chapter, we will discuss

the main idea of dopant obfuscation and design of library based on modified gate.



CHAPTER 3

OBFUSCATION USING MODIFIED GATES

In [4] Becker et al, the dopant type changes are suggested to maliciously insert
a hardware Trojan into an existing circuit at mask level without changing the
functionality of the existing circuit. Similar approach is used in designing the ob-
fuscation logic OBAOI222 to protect the layout post-manufacturing. OBAOI222
prototype is designed by integrating the modified inverter and buffer gates with
the AOI222 gate from the Nangate open cell library. The modification to the in-
verter and buffer are made by changing the dopant type, which will be discussed
in further detail under section 3.2. The difficulty in detection of the dopant is
the main motivating factor to use dopant changes. According to Sugawara et al
detecting a dopant is 16x harder than detection of a metal mask under specialized
SEM process [26]. Especially, when the circuit is scaled to billions of transistors
on the chip, it will be next to impossible to find the dopant type under the active
region in each of the transistor. In the next section we discuss the obfuscation

prototype using AOI222 in detail.

3.1 Overview of Obfuscation Prototype OBAOI222

The fixed configuration is obtained as shown in figure 3.1 has a 6 input AOI222
with input A0 and A1 connected to an inverter, BO, Bl and CO to a buffer and C1
to an inverter. There will be 4 inputs provided by the user which would connect to
6 input based the gate to be formed. This prototype is used to mimic the behavior
of different gates from the standard cell library such as AND, OR, XOR, NOR

and NAND gate to name a few. Based on the configuration we will have some
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Figure 3.1: Obfuscation logic for the prototype cell using AOI222 gate

dummy inputs alongwith the real inputs. The description of these gates based
on the AOI222 prototype is written in verilog and added to the existing standard
cell library .v file. For example consider a 2input NAND gate which will have the

truth table as in figure 3.2. In this case, we have 2 real inputs A & and 2 dummy

AO(BUF)B | AI(BUF)A [ BOONV)A | BIINV_0)C | COBUF_0)D | CI(INV)A | Y
0 0 1 0 0 1 1
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 1 0 0 0 0 0

Figure 3.2: Truth table for NAND gate using OBAOI222 prototype

inputs C & D. A and B connect to 2 inputs each, whereas C and D connect to
1 input which would be an always0 or alwaysl gate. So, the output of this gate
takes into account the 2 real inputs and give the output as a 2-input NAND gate.
Similar approach is used to design the other gates, which complete the library
with a total of 12 gate. AOI222 was selected as a design, since we could obtain
2-input XOR gates which is a common operation in s-boxes. 4-input to 6-input
transformation is used to confuse the attacker in attempts of brute force.

Next section will focus on the idea of dopant type changes described in further

detail.
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3.2 Basic Idea of dopant type variations

Switching the type of dopant under the active region can lead to changed func-
tionality of the transistor. In case of the PMOS, the doping at the drain is
changed from p-implant to n-implant which connects the output to VDD. In case

of NMOS the output would be shorted to GND.

3.2.1 Dopant Obfuscation by modifying gates

Dopant modified cells are multiple transistor gate which can have varied func-
tion, under different doping scenarios. Various 2-transistor gates are considered
from the Nangate standard Cell Library to demonstrate the effect of dopant type
variation on their functionality. At layout level, all the configurations may look
different, but to the eyes of an attacker using optical reverse-engineering these
changes would be less visible. This approach will be successful in confusing the
attacker of the true functionality of the device under consideration. This confu-
sion can be referred back to the fact that it is difficult to detect the polarity of an
active region using optical reverse engineering. Whether an area is doped with p-
implant, n-implant or not doped at all, it will be hard for optical reverse engineer
to detect the changes. It is also difficult to detect the borders and type of well
used [4]. Still detecting a well type, might be easier based on the process tech-
nology. In the following section, the existing gates will be modified by changing
the n-implant and p-implant mask, which will be suffice for the obfuscation logic.
These modifications will be performed on existing inverter and buffer design from

the standard cell library.

3.2.2 Modification of the Inverter cell

In this section, we will demonstrate, how the obfuscation techniques can be ap-

plied to an inverter logic by manipulating the p-implant and n-implant mask. An

11



inverter design consist of an PMOS and NMOS transistor and performs the inver-
sion logic as shown in the cross-section of the inverter figure 3.3.The modification
is made in the PMOS, which is doped with the n-implant over an n-well, that

shorts the output to VDD as shown in figure 3.4b. The unmodified layout of

Figure 3.3: Cross-section of a Modified Inverter

the inverter gate taken from the Nangate Open Cell Library in figure 3.4a. The
effective width of an PMOS or NMOS is determined by the width of the dopant
area. In the modified layout in figure 3.4b, the p-implant on the drain is changed
to n-implant at the contact. The source still consist of p-implant connected to
VDD. The drain is disconnected as the implant is same as the well type, and the
output is shorted to VDD independent of the inverter input.

The resulting behavior of the always 1 transistor configuration is as follows: When
the input A=0, the source is connected to VDD using p-implant but the drain
has n-implant which is same as the well type doping. So, the output becomes
independent to the input and is shorted to VDD. Now, when the input A=1, the
strong NMOS will try to pull down the output to a value close to GND. Since,
the PMOS and NMOS of equal strength are used for this design, the output will
fall to a less than VDD, due to the pull-down force of the NMOS transistor. But,
irrespective of the input value the output will remain close to VDD. Although,

there will a high input dependent power consumption if the input is 1 than 0.
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Similarly in the design in figure 3.4c the modifications are made to the NMOS
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(a) Simple Inverter (b) Modified Inverter for (c) Modified Inverter for

always 1 always 0

Figure 3.4: The two configurations are obtained for an inverter working as an
always 1 and always 0 logic

to get a resulting always 0 gate. The dopant area of the drain at the contact is
doped with p-implant. This cuts-off the drain and the output is shorted to GND.
When the input A=1, then the output of the NMOS should be 0. Since, the out-
put is shorted to GND it becomes independent to the input condition. In case,
when A=0 the PMOS tries to turn on and pull-up, which leads to the output to
be not completely grounded to GND.

To solve this problem in the always1 and always0 gate, the NMOS and PMOS are
respectively cut-off. This is done by introducing p-implant in the source of the
NMOS to cut-off the path from GND to VDD in case of alwaysl gate. When the
NMOS is cut-off, irrespective of the values at the input, the output is always 1.
For always0 logic circuit the n-implant is introduced at the source, disconnecting
the path from VDD. The output always remains grounded and highly input data
dependent power consumption is reduced. The output becomes independent of
the input 1 or 0. Using dopant type changes, 3 type of gate functions are obtained

from a single logic design.
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3.2.3 Modification to the Buffer Cell

A buffer is used to re-inforce a weak signal in a design, with the output is equal to
the input. In the buffer layout, similar approach of dopant modifications is used.
Consider an unmodified Buffer gate, as in 3.5a, which has staggered inverters
that are progressively sized due to loading effect. The two PMOS have an active
area, p-implant in an n-well. The dopant near the drain of the PMOS close to

the output is changed to n-implant as in figure 3.5b. The output as mentioned

[N [N

m contact W contact
p—well p—well

1 n—well [ n—well

B metal B metal

n—implant n—implant
p—implant p—implant

Mactive i active

B poly B poly

(a) Buffer Design (b) Modified always 1 design

Figure 3.5: The two configurations are obtained for an obfuscation buffer gate
and always 1 gate using the layout pattern with switchable dopant type

in the section above is shorted to VDD. The NMOS is cut-off by applying a
dopant change near the GND connection to the source. This is done to prevent
high input data dependent power consumption, which arises due to the pull-down
affect of the NMOS transistor when the input A=1. Hence, the output will be
tied to VDD, independent of the input value for an always 1 gate. Similarly, the
alway(O gate is obtained by replacing the n-implant in NMOS with p-implant at

the drain. Three different logic styles are obtained under varied doping profiles.
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CHAPTER 4

OBFUSCATION STANDARD CELL DESIGN LIBRARY

4.1 Overview of prototype OBNAND4

The approach of obfuscation used in this thesis is to create a logic block with
multiple functionality based on dopant variation. The logic cell will work like a
programmable device which switches the functionality based on the dopant type
changes and the applied inputs. The layout of this OBNAND4 logic cell will
remain same at the metal and polysilicon mask level for different configurations.
The only thing that will change is the dopant type mask. The final experiment
design which is placed and routed using obfuscation library(OBNAND4 library).

The OBNAND/4 design in figure 4.1 uses a 4-input NAND gate from the existing

Al OBFUSCELL

A2 OBFUSCELL 4-INPUT NAND

. opruscel. | — | Y
A3 OBFUSCELL

A4 OBFUSCELL

Figure 4.1: Obfuscation logic using Obfuscell and 4-input NAND gate

45nm Nangate standard cell library and integrates it with the obfuscation stan-
dard cell (Obfuscell). The Obfuscell which has a common layout is inserted at
each of the input and output which can function as a inverter, buffer, alwaysl

and always( gate. These different functionality arise by altering the dopant in the
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same layout design. This leads to variation in the functionality of the prototype
OBNAND4 making it a versatile design. In the next section, we discuss in detail

the design of the Obfuscell with it’s different configurations.

4.2 Obfuscell standard cell design

In this section, a standard cell design is discussed, which together with other gates
will form a prototype OBNAND4 to improve the level of obfuscation and also
reduce the overall design area. The custom designed layout is shown, consisting
of an inverter design with a dopant variation. The layout is similar to that of an
inverter but an active region is introduced between the input and output. The
same layout is used with switchable dopant to form 4 different configurations.
Just by changing the dopant type the standard cell is made to function differently.
In the next section, each of the dopant configurations are discussed in further

detail starting with the inverter gate.

4.2.1 Obfuscell layout explanation

The mask of the obfuscation inverter is similar to a conventional inverter, but
the differences arise with changes made by adding a doped active region between
the input and output. The height of the cell is kept the same as Nangate Open
Cell Library. In fig 4.2b is an inverter from the Nangate open cell library and an
Obfuscell with equal PMOS and NMOS width almost to the ratio of 1.5:1. The
weak PMOS is due to the compromise made to keep the height of the standard cell
the same as the rest of the design library and confine to DRC. There is an active
region between the input and the output which is switched based on the dopant
type and the desired function configuration, a small doped region is introduced
between the active region with n-type doping that cuts-off the connection between

the input A and output Y.
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Figure 4.2: Comparison is shown between a simple inverter layout and an Obfus-

cation Inverter layout

Now, the device works as a normal inverter with a slower drive of p-devices,

since the ratio of P:N device is 1.5:1. The characteristic are shown in figure 4.3.
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Figure 4.3: VTC curve comparison for Obfuscell and Inverter
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4.2.2 Always 0 and always 1 standard cell design

To the existing inverter design standard cell dopant changes similar to chapter
3 are introduced as shown in 4.4b where the drain of the NMOS is cut-off by
changing the doping from n-implant to p-type implant near the drain. The source
of the PMOS is cut-off from the dopant near the contact. When the input A=0,
then the output is 0, as the output Y is shorted to GND. When the input is
A=1 ,then also the output Y=0. Hence, irrespective of the input A, the output

will always be 0. Same approach is followed while creating an always 1 gate in

Loy [y [ [

W contact W contact
O p—well O p—well
O] n—well O n—well

B metal
n—implant

B metal

p—implant p—implant

it active active

B poly B poly
o NN

(a) Obfuscation always 1 gate (b) Obfuscation always 0 gate

Figure 4.4: The two configurations are obtained for an obfuscation always 1 and
0 gate using the switchable dopant Obfuscell layout

4.4a, where at the drain the dopant is changed to a n-type in order to connect
the output Y to VDD as shown in 4.4b. To prevent the noise from the NMOS |,
P-dopant is introduced at the source to cut-off the transistor. Hence, when the
input A=0, the output is 1 and when the input A=1 the output Y=1 irrespective

of the input
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4.2.3 Explanation of buffer configuration of Obfuscell

Conventional buffer design as shown in 4.5a consist of 2 back to back inverters
where input A is equal to output Y, with differently sized inverters to improve
the drive strength of the input. Whereas the design in 4.5b consist of single
inverter layout with 1:1 ratio of P and N device. The active region between the
input A and output Y is turned on by using the p-type dopant, which conducts
the input to the output with A=Y for A=1 and A=0. The dopant changes are
introduced where VDD and GND connects to the source of PMOS and NMOS
respectively. The small region of contact in the PMOS on the source the dopant
type is changed to n-type to disconnect the device.

Similar changes are made to the NMOS device to change cut-off the transistor.

[ [

RN

| contact [ ] contact
p—well p—well

1 n—well O n—well

Bl metal B metal

n—implant n—implant
p—implant o—implant

{iactive M active

m@ ooly B poly

(a) Buffer design (b) Obfuscell Buffer Design

Figure 4.5: The two configurations are obtained for an Obfuscell buffer and Ob-
fuscell always 1 gate using switchable dopant

The resulting gate have both PMOS and Nmos devices cut-off and input conducts
to the output through the active region. This is the standard cell design for the

buffer design with minor variation in the boundary from the conventional buffer
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design. Resulting all layouts are same at mask level and only with variation in

dopant type they change to INV, BUF, always0 and alwayl gate.

4.3 Extracting LIB file from the Obfuscell layout using ELC

The custom made layout was designed using cadence virtuoso. Encounter Library
characterizer was used to generate the respective output files for the standard
cell design. While using ELC 3 input files are required. 1. Hspice netlist of the
schematic was extracted from the drawn schematic. 2. Model file 3. ELC setup
file as shown in figure 4.6

Model file: The model file for 45nm technology node is used and the spice netlist
is extracted based on the inverter schematic in cadence virtuoso is inserted into
the setup file.

ELC setup: The file consist of the process parameter such as threshold voltage,
temperature, rise and fall time, which are pre-defined for the library creation
for specific NMOS and PMOS device. It also contains additional information
pertaining to the loading capabilities of the inverter. These files are used for
library characterization of the standard cell and give an output format of a .lib

file, which is added to the existing library for the Nangate Open Cell Library.
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Figure 4.6: Encounter Library Characterization Flow

Once this .lib file is obtained the standard cell description can be included in
the library.
Abstract extraction: From the existing layout of the designed cell an abstract
is extracted to provide the metal layer information. This process is repeated for

all the configurations including BUF, alwaysl and always0.

Liberty File Creating: For the place and route a liberty file is created, con-
taining the information of the boundary and metal width for the entire standard
cell library. Using candence virtuoso, a stream out .lef file is exported out using

an input design library including the designed Obfuscation standard cell.
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CHAPTER 5

AUTOMATIC LIBRARY GENERATION TOOL

5.1 Basic building block for standard cell Library

The prototype OBNAND4 design 4.1 as discussed in chapter 4 is the basic
building block for the obfuscation standard cell library. The logic gates in the
library can perform the function of 2-input gate, 3-input gate and dummy wires
can be inserted on rest of the inputs.

An example is shown for a 2-input NAND gate in figure 5.1 with it’s truth table

A (Obfuscell BUF) B(Obfuscell BUF) C(alwaysl) D(alwaysl) Y (Output)
0 0 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 0

Figure 5.1: Truth table for a 2-input NAND formed using OBNAND4

where all input A and B are the true inputs and the Obfuscell works as a buffer,
and the other two inputs are an always 1 Obfuscell. The output Obfuscell behaves
like a buffer and OBNAND4 is made to function like a 2-input NAND gate with 2
dummy inputs. The underlying layout of all the Obfuscells are the same and they
differ only in the dopant configuration used to program them. Similarly, other
gates are realised using the OBNAND4 prototype which are further discussed in

section 5.1.
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5.2 Creation of obfuscation library using OBNAND4

Using the standard cell library based on OBNAND4 gate combination the ob-
fuscation library database is created with 26 unique gate which include universal
gates and additionally include gates such as A+ B. In addition to the gate
name, the database consists of number of inputs, dummy inputs, real inputs and

inversions. Inversions are required in case of gates like A+ B.

5.2.1 Database for unique gates

Unique gate database is used in creating the permuted combinations for each
gates and extending the library to 160. The goal of the extension is to reduce
the design area and power by bringing down the obfuscation gate count of the
final design with minimal performance overhead. The extra inputs in two and
three input gates will be deployed in obfuscating the connectivity of the gates in
addition to the functionality.

The verilog gate description is required for these 160 obfuscation gates alongwith
the connectivity to the dummy gates. To complete out obfuscation library with
a large number of gate combinations, an automation environment is being setup

which is further elaborated in the next section.

5.3 Automating the obfuscation library generation

To extend the obfuscation library based on OBNAND4 configuration an automa-
tion will be written in perl to generate all the possible combinations from the
prototype design. As, shown in figure 5.2 the tool starts with the Obfuscell and
the logic under considerations. In this thesis, I have considered a 4-input NAND
gate to design the obfuscation library. Using a 4 input NAND gate gives us the
maximum number of gate combinations alongwith sufficient number of dummy

wires. The list of 26 unique gates is fed into the Automated Library generation
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Figure 5.2: Automated Library Generation Flow

tool. There are 2 parts to this tool which create an extended database followed

with the verilog description for each gate.

5.3.1 Creating database for complete library

With the information provided by the 26 unique gates is read into the tool.
For each gate the real input and dummy wire information is associated with
the final gate name. Example if the gate name in the unique gate list is OB-
NAND4_NAND?2, then the final name will be interpreted in terms of 4 inputs
and will be OBNAND4_NAND2_real real_ dum_dum.

Each of these 4 inputs will have permuted combinations. What we mean here
by permuted combinations is that all possible input combinations for the 4-input
gate will be created. In case of the two real and two dummy inputs for 2 input
NAND gate we get 6 different unique layout configuration as in fig 6.3. The
number of combinations change based on the type of unique gate considered and
is included in the database. Any 2 input NAND gate in the design under con-
sideration can be replaced by any of the combinations to obfuscate the inputs.
The final generated .csv file consists of the new gates,real and dummy inputs,

inversions and position of each of the inputs.
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5.3.2 Verilog description generation for library

The .csv file is read into an automation for generating the verilog description
for each of the gates matching the inputs with the instances using a hashing
function. One of the module gate descriptions is shown in figure 5.3, generated
as the output from the automatic library generation tool.

The two real inputs A and C are connected to the Obfuscell buffer and the

module OBNAND4 NANDZ reall realC dumD dumB (A,B,C,D,ZN);
input 4,B,C,D;
output ZN;

wire nl,nZ,n3,nd,n5;

wire &,B,C,D;

Cbfuscell BUF Ul (.A(&), .ZN(nl));

Chfuscell BUF U3 (.A(C), .ZN(nZ));

Obfuscell:alwaysl Uz (.A(D), .ZN(n3));

Chfuscell alwaysl U4  (.A(B}, .ZN(n4));

NAND4 X1 U5 (.A21(nl), .AZ(n2),.83(n3), .24 (nd),.ZN(n5));
Cbfuscell BUF Ue (.Z(n3), .ZN(ZN));

endmodule

Figure 5.3: Verilog Code for 2-input NAND gate

instances are matched accordingly using a hash table. The dummy inputs are
connected to B and D using a Obfuscell always 1 gate. This gate gives an output
1 irrespective of the input. A buffer is connected at the output for the specified
gate function. Similar description is automatically written for all the other 160

gates and used by the place and route step in the obfuscation tool flow.

5.3.3 Flexible feature of library generation tool

The tool has the capability to be extended to other logic gates from the Nangate
Open Cell Library, with minor changes, making it a more generalized. At the
moment, I have only experimented with two standard cell library, but the research

can be extended to different library and used alternatively to achieve highest
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obfuscation with an area efficient approach.

5.3.4 Testing different gates
5.3.5 Overhead analysis of Obfuscell based standard cell library

The some of the basic gates formed using 4.1 are compared in terms of their
area overhead in 5.4. There is atleast a 400% increase in the area of the obfusca-

tion prototype while creating an 2-input AND and OR gate. The maximum area

Comparison of area of standard gates v/s Obfusgate
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Figure 5.4: Area overhead for different cell compared to NAND4 obfuscation gate
configuration

overhead is seen in case of inverter which is 700% increase over a conventional
inverter design. This increase in area is due to the fact that Obfuscell uses 6 gates

compared to 1 gate used to design the conventional design cell.
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Comparison of Total consumed power between standard gates &
Obfusgates

| m Lleakage Power  m Dynamic Power

1000.00

100.00
10-00 ' i ' '
100

AND_gate  ObfusAMND MAND ObfusNAND NOR obfus_NOR Obfus_OR

Power Dissipation in Nanowatt

Figure 5.5: Power overhead for different cell compared to NAND4 obfuscation
gate configuration

Comparing the universal gates for their power consumption based on figure
5.5, it is mostly uniform in case of obfuscation gate,since they have the same
layout pattern. In case of universal gates the AND and OR gates higher leakage
and dynamic power due to the required inversion. Roughly the power overhead
is about 9x in case of dynamic and 10x for leakage power. Leakage is high due

to the use of dummy inputs which are used to confuse the attacker.
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CHAPTER 6

OBFUSCATION TOOL FLOW

6.1 Obfuscation tool needs

Implementations of obfuscation in hardware requires a working tool flow to con-
vert the existing design with obfuscating logic. The obfuscation is achieved by
using the prototype standard cell replicating the function of different gates based
on the selected inputs and configuration of dopant type used. These changes
can be introduced in the entire circuit or a part of the IP block depending on
the degree of obfuscation required and the amount of money one is willing to
spend. The tool will be able to manipulate these variations depending on the
response from the designer. The various stages of the tool are discussed in the
next section starting with the RTL-level netlist and ending with the generation

of an obfuscated hardware circuit.

6.2 Steps in obfuscation tool flow

The design under consideration as in 5.2.1 will go through the ASIC tool flow
along with additional in between step for introducing obfuscation. In figure 6.1,

the various steps are mentioned, which will be discussed step wise.

6.2.1 Designs under consideration

This work will focus on two major areas of applications. One would focus on
the importance of obfuscation in cryptographic designs to prevent safety critical

application from being reverse engineered. The other application area will be
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Figure 6.1: Obfuscation Tool Flow

protection of IP blocks from counterfeiting.

SECURITY APPLICATION

Security sensitive applications deploy some form of encryption with the on-chip
storage of a master key to protect the information from an adversary. The hard-
ware circuit storing the key is susceptible to reverse engineering attacks post
manufacturing. Obfuscation can be applied to a part of this circuit that stores
the key making the attempt to reverse engineer difficult. In this thesis, we have

used various cryptographic circuits for the purpose of experiment. Mostly lookup
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table based implementations of substitution-box or sboxes is considered which
operates on the plaintext and key to get the resulting encrypted ciphertext. Tak-
ing an example of an 8-bit lookup table based sbox, the netlist is converted into
a gate level description using Nangate standard cell library. From the attacker’s
perpective they are looking at set of gates while delayering the chip and learning
about the functionality of the design. The design under consideration is further
discussed in detail in the section below.

Sboxes

Sboxes or substitution boxes are basic component of symmetric key algorithms
which performs substitution. They are used to obscure the relationship between
the key and the cipher text. They take a number of input bits m, and transform
them into some number n based on the substitution table, where n is not nec-
essarily equal to m. An 8 bit m*n lookup table based sbox implementation has
been considered with 2m words of n bits each. In the Figure 6.2, 16 bit s-box has
been shown, which take a 16 bit input with 2¢ possibilities and give an output of
16 bit. An 8-bit s-box consisting of two 4-bit s-boxes is considered for experiment

purposes.

NSNS

B-box S-hox H-box S-haox ‘

§-box S-box 1 S-bax ﬁ S-box —J

CEEL TP T T D

Figure 6.2: A 16-bit s-box design
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VLSI BASED APPLICATIONS FOR IP PROTECTION

Post-manufacturing an IP block can get into the hands of untrusted third party,
who can use optical reverse engineering to learn the functionality of the circuit
and replicate it. Hence, it is becoming important on the part of the design units
to introduce some protection to prevent illegal clones of the IP block from being
created. Obfuscating this logic using dopant changes can confuse the attacker
and make the attempt of reverse engineering difficult. To demonstrate and test
the obfuscation flow we would consider different ITC’99 benchmark circuits. The
entire logic will be passed to the tool which would select the obfuscation gates
from the library to synthesize it and then further add ”dummy wires” to the
corresponding obfuscation cells. The tool will changes the appearance of the
logic at layout levelmask and additionally obfuscate the connectivity, but the

functionality will remain same.

6.2.2 Logic synthesis and simulation

The first step in the flow is the logic synthesis of the behavioral netlist, which
would output a structural netlist with the design described in terms of logic
gates. In process of synthesis, different constraints are to be specified to the
design compiler. A perl based script is used to pass the command and constrains
to the compiler for logic synthesis. The input file is a .v or .vhd file of the design
under consideration and a obfuscation library with unique set of gates at 45nm
technology node is used to map the design to a gate level description. Each of
the unique obfuscation gate information will be included in the Nangate Open
Cell having the same information for area parameter. This will let the tool make
an unbaised decision on gate selection for the given design. Since, all the unique
gates are based on the OBNAND4 prototype, so all of them will have the same

area, irrespective of the functionality. The mapping of gates is constrained by
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other factors such as the availability of logic gates in the technology library, the
drive strength, delay and power. These constrains help in calculating the overall

efficiency of the IP block.

6.2.3 Random selection of Inputs and dummy wires

After the IP block is verified, we perform the replacement of the gates in the in
the logic with the obfuscation gates. Each of the obfuscation gate will perform
the function of multiple gates based on the switching configuration of the dopant
type. The obfuscation gate prototype will be replaced for all gates in the design,
but will add an overhead in terms area and power. In the following 2 chapter we
will be following 2 different approaches to form the basic building block for the
obfuscation logic.

Using both these approaches we will add dummy wires, in case there are extra
inputs for the gate to be created. In addition to this, different inputs can be
selected to form the same gate with different layouts (permuted combinations) as
shown in figure 6.3. At this step, the tool will randomly select the obfuscation
gate that will replace the original gate with the permutated combinations from a

160 gate library.

OBMAND4_MAMDZ_reslA_realE_dumC_dumD
- OBMAND4_NANDZ_reslA_reslC_dumD_dumB
—H - OBMAND4_NANDZ_reslB_reslC_dumD_dumA
b= | OBNAND4_NANDZ_reslC_reald_dumB_dumD

—] OBNAND4_NANDZ_reslD_realA_dumB_dumG
B OBMAND4_NANDI_resiD_realB_dumG_dumA

Figure 6.3: Permuted combination for 2-input NAND

For example, in case of an NAND gate depending on which dummy input is
selected from the prototype gate, 6 different arrangements will be achieved 6.3.
We can either replace the part of the design or the entire logic based on the
tool setup. Once the replacement is complete the resulting design needs to be

verified using model sim. The design is checked to make sure that the random
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replacement has not caused any changes to its functionality.
Dummy wires: can be selected from a set of intermediate nets in the design
under consideration. These will result in hiding the connectivity of the design

and hence increasing the complexity of exhaustive brute force.

6.2.4 Place and Route

The final step in this flow is to place and route (P&R) the design to achieve
the GDSII file, which is the final design file format which is sent out to the
fabrication unit and contain the mask information. [7] Once, the synthesized
netlist is received, the P&R tool is used to define the floorplan and place the
design from gate level at transistor level in a block arrangement. The Obfuscell
has been incorporated into the custom cell library and cane be used to places and
route the design. Constraints can be specified based on the power, area, delay

and clocking requirements.
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CHAPTER 7

TOOL IMPLEMENTATION AND RESULTS

7.1 Integrating the Obfuscation cells in different Application

The design under consideration is synthesized using design compiler and the a
gate level netlist is obtained by using this. After this the design is simulated
in Modelsim to verify the functionality of the logic. Once the functionality is
verified, the gate connectivity and random inputs are inserted as explained 6.2.3
OBNAND/4 gate based obfuscation logic.

All the changed gates lookalike at the layout level, irrespective of being a AND,
OR , NAND and NOR gates with different input configurations. This makes the
detection of dopant type in each transistor infeasible. So, when the attacker de-
layers the chip and photographs each layer to decipher the functionality, it will be
infeasible to do so. Also, another level of complexity is added by using differing
input configurations. Similarly, the design can be placed and routed using the
OBNAND4 approach which currently provided with 160 gates. Now the security

applications will be discussed in further detail in the next sections.

7.1.1 Obfuscating PRESENT block cipher implementation

Implementation of PRESENT block cipher:

An low-cost cryptography solution PRESENT has been proposed by Bogdanov et
al [6] to design an ultra-light weight block cipher. AES is an accepted cipher with
excellent performance in hardware for widespread use, but PRESENT provides a

hardware optimized solution targetting moderate security applications [6]. The
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main focus of this design is to be come up with a more area and power efficient
design for specific lightweight application such as RFID tags.
A simple top-level algorithm of the PRESENT is shown in fig. 7.1

plaintext |
addRoundKey

generateRoundKeys() TBoxLayer
for i =1 to 31 do SLayer update

addRoundKey (STATE, K ) 1 Y

sBoxLayer(STATE)

pLayer(STATE) } ¢
end for Boxlayer update
addRoundKey (STATE, K32) phayer

addRound Key |

Figure 7.1: A top-level algorithm of PRESENT [6]

The PRESENT basically has a SP (substitution and permutation) network
[17] consisting of 31 rounds as shown in fig 7.2 The block length is 64 bits with
two key length of 80 and 128 bits are supported. For the purpose of testing the
obfuscation tool we will consider the 80 bit key length. Each of the 31 rounds
consists of an xor operation to introduce a roundkey Ki for 1 < < 32 a linear

bitwise permutation and a non-linear substitution layer. [6]

Figure 7.2: The S/P network for PRESENT [6]

In the thesis, for the purpose of experiment and to prove the point of hiding

the connectivity in addition to hiding the functionality we implement the the
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S-layer and P-layer.

S-box Layer: The non-linear layer uses a single 4-bit S-box S which is applied 16
times in parallel in each round for all the 64 bit. Each s-box used in PRESENT
is 4-bit to 4-bit S-box S. The lookup table for each of the S-box as in fig 7.3 has

hexadecimal notation.

r [[o]1]2
S[z]||c|5|6|B|9|0|A|[D|3|E|F|8|4|7]|1]|2

W
s
w
(o) ]
=]
Qo
o
=
[ws]
2
o
=

Figure 7.3: Lookup table for the 4bit to 4bit S-box for PRESENT [6]

P-layer: The P-layer is a non-linear bit permutation used in PRESENT bit
i of STATE is moved to bit Position P(i). The hexadecimal notation is shown for

each of the 0 to 63 bits in the table below 7.4 assigning a position.

i 0111234

()] 0 [16]32]48] 1

i 16117 (181920
P(i)|l 4 |120]36|52| 5

i

(

i

(

wller =1l — —||=1 ~

617 |8[9|10]11]12|1314]|1
331491 2 [18]34]50] 3 |19]35]51
3
5

—

22123124 (25)126 )27 28(29 |30
37536 (2213854 7 |23[39]¢F
3813940 (414243444546 |4
411571102642 58|11 (271435
5415556 (5715815960 |61 (62|63
45161114130 [46 [62]15 (3147 |63

32(33|34(35]36
i)l 8 |24|40|56] 9
48149 (505152
i)[[12]28]44|60] 13

[SVR ] | I SV | I O ]

=

Figure 7.4: Bit permutation for the each of the 64 bits [6]

Using obfuscation tool on PRESENT:
The considered implementation as described fig 7.2 is S-layer connected to P-layer
through a set of non-linear permutations. The obfuscation tool is used on the
hardware implementation of the PRESENT. Starting with the 16 set of S-boxes
in parallel connected to the P-layer. The lookup table based .vhdl description
is synthesized using the unique set of 26 obfuscation gates. At this stage the
functionality of all the gates is hidden, since they all look alike at gate level, but
function differently. After this stage, the gates are replaced by the permutated

input combinations and dummy wires are introduced.
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Input Selection

Example if the chosen gate at synthesize is OBNAND4_NAND?2, which is a two
input gate, hence we have 2 inputs where we can tie dummy wires. Also, any two
inputs can be selected as the real input from a combination of A, B, C, D which
would be selected from C,. The selection of inputs is done randomly from the
library database of 160 gates.

Dummy input selection

The remaining 2 dummy inputs have to be connected, but they will not affect the
functionality of the logic. In the tool these dummy inputs are randomly selected
and assigned from a pool of intermediate "nets”. The randomization will not be
truly random. Now, the connectivity between the gates is also obfuscated. The
connectivity between the S-layer and P-layer will be hidden and it will appear like
non-decomposable ’blob’ as in figure 7.5 after place and route. It would just show
the OBNAND4 cells connected to each other in a way the 1st cell could connect
to the last or the next cell. This would be in a completely random fashion and
would not affect the functionality of the design. In case of past approach used
by SypherMedia, the S-boxes will be obfuscated but the connectivity between
the S-boxes will be visible, which is obfuscated with the use of randomly selected

dummy wires.
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Figure 7.5: The blob

Each simulation through wiring step will result in a unique netlist. Hence, we
can get multiple instances of PRESENT 7.6 with the functionality and connec-
tivity equally complex in both the cases. It can be extended to N different netlist.
The attacker is going to be confused with each of the implementation and hence

prevent exhaustive brute force attack.
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Figure 7.6: Multiple netlist generation for PRESENT

Overhead and performance across different libraries for PRESENT
S/P layer
Different library design are analysed in this thesis starting with using AOI222,
NAND4 and then AND2 in 7.2 .The experiment is based on an OBAOI222 library
design has the highest overall overhead in terms of area and power. It has a low
level of obfuscation with only 12 gate combinations that can be obtained from the

fixed configuration used in Chapter 4 shown in 3.1. Obfuscell based approach

Library AOI222 | NAND4 | AND2

Parameter

No. of combinations 12 160 12
No. of gates 671 626 511
Brute force complexity 22402 22241 23741
Area 6.23 4.25 3.2
Power 8.61 5.65 2.59
Delay 3.23 2.51 2.12

Table 7.1: Overhead for different Obfuscation Libraries for PRESENT

seems like a winner in case obfuscation and the overhead. With the complete
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library of 160 gates using the 4-input NAND the overhead is seen to reduce
compared to incomplete library. This includes gates such as A+B=Y which are
not present in the Nangate Open Cell Library. Such combination logic can be
used in synthesizing the 8-bit s-box design and improve the design overhead. All
libraries are compared against a non-obfuscated design place and routed using
anycell in the Nangate Open Cell Library. The level of obfuscation achieved in
terms of number of combination an adversary will have to go through to reverse

engineer the device goes up exponentially.

7.1.2 Obfuscating AES 8 bit S-box

The hardware implementation of AES 8 bit S-box is considered for the purpose
of experiment. The Sboxes substitute a 8-bit input for an 8-bit output and are
based on the arithmetic operation of finite field GF(2-8) [28].It operates on 128
bit block with a key size of 128, 192 and 256. The building block of the AES
algorithm are non-linear Sboxes and Mix column operation. They are based on
finite field arithmetic and have inverse functions used for decryption. The vhdl

implementation is used to which is passed through the tool to get various results

Library AOI222 | NAND4 | AND2
Parameter
No. of combinations 12 160 12
No. of gates 882 865 650
Brute force complexity 23127 23096 24758
Area 10.14 7.09 6.03
Power 8.82 6.45 4.59
Delay 4.12 3.12 2.5

Table 7.2: Overhead and performance for different Obfuscation Libraries for AES
8-bit S-box

based on die-size (area) and power. The Sboxes transform 8-bit input to 8-bit
output making this design much bigger than the PRESENT block cipher. AES

is a widely used and accepted block cipher for high security applications. The
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overhead for AES S-box is higher than PRESENT. With the increase in the area
of the hardware implementation of S-box the area utilized by place and route
increases due to the connectivity of the dummy wires. The power consumption
also goes up but doesn’t change as much as the area. The delay in this case
doesn’t change considerably, since we use standard cell 4-input NAND and the
Obfuscell creates shorts in certain cases reducing the performance overhead by
creating low resistance paths. An average delay of 2.5x has been noticed with a

range of 1.5x to 4x.

7.2 VLSI applications

The main goal of the obfuscation tool is to have least area overhead with higher
level of obfuscation which is seen to be achieved by using the OBNAND4 approach
in case of the cryptographic hardware implementation of S-boxes. There is a
need for proper estimation of area across different designs to get an average

approximation. Based on the results across different benchmark circuits we see

BenchmarksOﬁNANDél area u%méa(Anycell)um‘%rea Overhead

b01 324.74 77.532 4.18
b02 177.66 48.272 3.6
b03 1103.81 324.912 3.39
b04 5639.94 1035.496 5.44
b05 5319.13 895.67 5.93
b06 316.42 101.47 3.11
b07 3961.80 653.68 6.06
b08 1035.34 273.27 3.7
b09 1261.05 318.44 3.96
b1l 7056.84 890.76 7.7

Table 7.3: Overhead for different ITC’99 benchmark circuits

an increase in area with the increase in the size of the design. This is due to
the fact that the routing for dummy is done for bigger design adds to the area

overhead. In some case, we also notice a non-linear trend which is due to the
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complexity of the design which might be using a higher number of nets. On an

average across

Area Overhead Using OBNAND4

5
4
3
2
1
0
b1 bo2 b3 D04 bos D& b07 bogs bog bll

ITC' 99 Benchmark Circuits

Overhead in terms of X

Figure 7.7: Area overhead for different ITC’99 benchmark circuits

different benchmarks the area overhead is in the range of 3.2x to 7.5x with
an average of 5.87x. Hence, we gain an obfuscation with each gate had 160
possibilities with random nets selected as dummy inputs each time, which further

adds to the complexity.
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CHAPTER 8

CONCLUSION

In order to curb the problem of IP violation and protect cryptographic hardware
implementations from reverse engineering a dopant based obfuscation system is
developed. An Obfuscell(standard cell) based on switchable dopant configura-
tion has been designed in an area efficient manner with a area almost equal to
that of a single inverter (0.798um?). The switchable dopant configuration enables
the Obfuscell to function as inverter, buffer, alwaysl and always0 gate without
making changes to the metal or polysilicon. What makes the use of switchable
dopant interesting is it’s ability to be detected is 16X [26] harder than metal or
polysilicon.

Using the Obfuscell alongwith the 4-input logic cell NAND4 a prototype is de-
signed, which can function as 26 unique gates and can be further extended to
160 permutated gates. The underlying layout for all these 160 gates remains the
same and only thing that changes is the dopant. This confuses the attacker, as all
the cells look alike but function differently. Previously proposed schemes, have
only dealt with a library of 4-12 cells, but in this work we have been able to
generate 160 different gates based on the protoype OBNAND4. The description
of these gates is written in verilog using a automatic library generation tool. It’s
a flexible tool that can be used to generate libraries based on different logic cells.
The OBNAND4 library is the best solution with the right balance of real and
dummy inputs for the purpose of obfuscation.

A major focus of this thesis has been to successfully developing a layout-level

obfuscation tool which converts a rtl-level netlist into highly secure and complex
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obfuscated layout(mask) which is extremely hard to reverse engineer. For exam-
ple, in a design of 500-700 gates as in case of PRESENT S/P layer the complexity
goes up, but the functionality of the design remains same. In addition, to varying
the dopant in the OBNAND4 prototype based library, the use of dummy wires
makes it next to impossible to reverse engineer using brute force methods. Each
implementation of the design under consideration will look different and basically
resemble one big 'blob’. The main goal of the ObfusTool was to conduct this tran-
formation in an area and power efficient manner and try to reduce the die-size
and cost of obfuscation. The area overhead involved has been considerably seen
reduced across different library designs from 300-400% based on the number of
gates used and the complexity of the logic. The power overhead is roughly 3x to
8x. All the designs were tested across 3 different libraries, making OBNAND4
the winner in obfuscation v/s area and power consumption trade-off. The delay
across different design doesn’t seem to greatly varies and is roughly 1.5x to 4x
for different security applications. This was a later addition to the results, hence
it is an approximate analysis based on the time at hand. Hence, at this cost of
delay an higher level of obfuscation can be provided.

The different ITC’99 benchmarks of varied sizes were checked using the OB-
NAND4 library, showed a variation in the area overhead. Reasons for these
variations are linked to the use of dummy wires which are randomly selected
from all the intermediate nets in the design. On an average the overhead was 5x
with a variation of 3x to 7.9x. The bigger designs showed a higher overhead due
to the random connection of dummy inputs. Hence, requiring a large place and

route area.
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8.1 Future Research Directions

The ObfusTool has been designed and can be used for for future research in the
field of hardware obfuscation. The tool can flexibly incorporate different design
for Obfuscell and libraries. Since, this tool has been designed it’s gives a start
point to build upon and scope for improvement. The next section talks about

the different areas that can be taken up for future research.

8.1.1 Smart wiring for design under consideration

The current wiring approach of the obfuscation tool selects the dummy wires
randomly from a pool of intermediate nets. This costs a huge area overhead and
scale with the size of the design. The obfuscation for a certain design goes up at
the cost of area, power and to an extend delay. In order to make this approach
more area efficient, the dummy wiring could be placed using a smart algorithm
which take the proximity of the different nets into consideration. Constraints can
be given to the tool to consider a certain distance from an OBNAND4 cell to
route the dummy wires. This with greatly reduce the area, as net A would be
restricted to net H and not connect at the way to net Z. Also, this transformation
needs to be done in a way, so as to not compromise on the security of the overall

design.

8.1.2 New design for Obfuscell

Currently, the designed Obfuscell has 4 different configurations that can be achieved
by switching the dopant mask. Sugawara et al where able to reverse engineer a
single dopant in the design of an inserted stealthy trojan [4] [26]. According to
Sugawara et al the process of reverse engineer the dopant mask is 16x harder
compare to the detection of polysilicon and metal. Since, in our approach the

obfuscation cell is replicated in the entire design which would make the dopant
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detection harder, if not impossible. The connectivity additionally add obfusca-
tion and related overhead. Since, the dopant mask have been reversed, a newer
design approach could be used for creating the Obfuscell.

In the Obfuscell contacts can be used to connect of disconnect the VDD and
ground which would make the design more area efficient. To make it more secure
a design is under progress which will use to back-to-back inverters to decide and

always 1 or always 0 gate.

8.1.3 Attacker’s Perspective: Side channel reverse engineering

Now, since this new scheme has been designed, we could use it evaluate the
attacker’s perpective. The future research is going to focus on using side channel
information to reverse engineering the design under consideration. This would
give us an estimate of the security and vulnerabilities of the designed approach. A

better evaluation can be provided for the attack model for the obfuscated design.
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