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Introduction 
Dams, culverts, and other infrastructure can present barriers to in-stream movement for 

many types of aquatic organisms, reducing the ability of these organisms to access habitat that 

would provide food, mates, or refugia.  With many species at risk and with millions of dams and 

culverts blocking passage through streams nationwide, conservation planning requires systematic 

methods by which to prioritize individual barriers for removal, to ensure that the greatest 

ecological value is gained for the money spent on conservation projects. 

This study applies a systems analysis approach to this problem.  Systematic methods 

based in operations research are proposed for barrier removal prioritization and the impacts of 

the input factors on the method output are examined in order to gain insight into the behavior or 

barrier.  

The first section of this document details the core research project completed.  A new 

optimization formulation is proposed to maximize the amount of quality- and accessibility-

weighted habitat which may support aquatic organisms.  The formulation is applied in a case 

study on the Upper West Branch of the Westfield River in western Massachusetts.  The solutions 

obtained from the formulation are analyzed to determine the driving factors in the model and to 

gain deeper insights into barrier removal prioritization.  This document has been written in the 

format of a journal article to be submitted to the Journal of Environmental Management. 

Appendices A-D describe additional work completed as part of this master’s research 

project.  Appendix A describes preliminary results obtained by performing a sensitivity analysis 

on the dispersal distance, di.  Appendix B outlines avenues for future research in barrier removal 

prioritization.  Appendix C details the sources of the GIS data used in this project and the 

processing steps used to analyze that data.  Appendix D describes a proposed scoring and 
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ranking protocol that utilizes major elements of the optimization formulation described in the 

main body of this work.   

Appendix E contains presentations created and delivered by the author on the research 

project described above and closely related topics. 

Appendix F is a report written by undergraduate student Cassandra Fagan for an 

Independent Study while supervised by Dr. David Ahlfeld and myself. 
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Prioritizing Mitigation of Road-Stream Crossings for Resident Aquatic 
Organisms by Accounting for Habitat Quantity, Quality, and Accessibility 
 

To be submitted to the Journal of Environmental Management 

 

Abstract 

Road crossings and dams may act as barriers to movement for a wide range of aquatic 

organisms in lotic freshwater systems.  Limited funding constrains the number of barriers that 

may be mitigated by repair or removal, so systematic methods of prioritization are needed for 

selecting barriers for mitigation.  A new formulation is proposed that links the number of 

organisms in the watershed to the amount and quality of accessible habitat in order to quantify 

habitat connectivity of a watershed.  The method is applied to a case study performed on the 

Upper West Branch of the Westfield River in Massachusetts, with multispecies measures of 

habitat integrity and aquatic barrier passability allowing comparison of stream segments and 

barriers within the network and their contributions to overall habitat availability.  Optimization 

techniques are used to maximize the amount of high-quality habitat in the network accessible by 

stream-resident organisms.  Results of this study demonstrate that the optimal combination of 

barriers for mitigation may change dramatically as budgets change, and that foreknowledge of a 

project’s lifetime budget and accurate data regarding mitigation costs for individual barriers are 

crucial to cost-effective barrier removal planning.   

1. Introduction 

Globally, longitudinal disconnection of riverine systems by culverts, dams, and other in-

stream barriers is well-documented (Dynesius and Nilsson, 1994; Stanford et al., 1996; Gibson et 

al., 2005).  Over 50% of large river systems worldwide are impacted by in-stream barriers (e.g. 
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dams and culverts) (Nilsson et al., 2005).Fragmentation of fluvial ecosystems may affect a wide 

range of resident aquatic species, including potamodromous fish, by isolating populations and 

separating organisms from feeding, spawning, and nursery habitats (Nislow et al., 2011; Warren 

and Pardew, 1998, Wheeler et al., 2005).   

Barrier mitigation is the process of improving aquatic accessibility and passage, whether 

by retrofitting culverts with more passable culvert structures, converting culverts to bridges, or 

decommissioning and removing dams and roads.  By improving longitudinal connectivity in a 

stream network, these actions provide greater access to habitat and have the potential to restore 

fluvial processes that maintain habitat. In addition, benefits are often observed within a short 

time period following barrier mitigation (Catalano et al., 2007, Kanehl et al., 1997, Burroughs et 

al., 2010).  As a result, barrier mitigation is regarded as a cost-effective method watershed 

restoration (O’Hanley et al., 2013; Roni et al., 2002; 2008) and  has gained significant support 

from state agencies, conservation organizations, and other stakeholders in riverine health in 

recent years (Bednarek et al., 2001; Bernhardt et al., 2005; Roni et al., 2002). 

A single watershed may contain hundreds or even thousands of road-stream crossings, 

dams, and other barriers.   The high cost of barrier mitigation projects requires restoration 

managers to carefully evaluate and select projects to ensure that the most effective projects are 

implemented.  Growing attention has been given to systematic prioritization of projects.  Formal 

prioritization methods can help decision-makers make barrier mitigation decisions that provide 

the greatest ecological improvements for their investment, based on available data.   

While methods such as scoring and ranking (e.g. Taylor and Love, 2003; Kocovsky et al., 

2009) and GIS-based methods (McGarigal et al., 2012) have been developed for the 

prioritization of barrier removals, formal mathematical optimization techniques are 
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recommended over other methods for their ability to efficiently allocate resources to maximize 

potential gain (O’Hanley and Tomberlin, 2005; Kemp and O’Hanley, 2010).  In determining 

favorable barrier removal combinations, these methods are able to incorporate all relevant 

operational and resource constraints on the problem, as well as the spatial relationships between 

barriers in a network.  In addition, such methods require quantifiable objectives to be set.  

Determination of restoration goals and objectives lends transparency and encourages consistency 

in the decision-making process (Kemp and O’Hanley, 2010; Beechie et al., 2008).   

Most prioritization studies have focused on the migratory needs of diadromous fish. 

(Kemp and O’Hanley, 2010), but recently attention has been turning toward prioritization of 

barrier mitigation projects for the benefit of potadromous (a.k.a. “stream-resident” or 

“nonmigratory”) aquatic organisms, which also face significant challenges with the loss of 

connected habitat.  Cote et al. (2009) developed a metric termed the Dendritic Connectivity 

Index (DCI), which represents a stream network as a dendritic network and quantifies structural 

connectivity using length of available habitat and the passability of barriers on the network for 

both anadromous (DCId) and potadromous (DCIp) fish.  This metric serves only as a descriptive 

tool that quantifies connectivity based on barrier locations on a network.  To use this metric for 

prioritization, every permutation of barrier mitigation projects would have to be assessed to 

determine the optimal solution, a process which is only feasible for up to a few dozen projects.  

Optimization techniques, on the other hand, can handle large problems with hundreds or even 

thousands of barriers and provide a solution regarding barrier mitigation decisions.  O’Hanley 

(2011) was the first to propose an optimization model prioritizing barrier removals with a focus 

on potamodromous fish.  The model sought to maximize the size of the single largest 

uninterrupted stream subnetwork in the watershed using a mixed integer linear program.  This 
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model did not include measures of habitat quality in calculating habitat gains, nor did it account 

for variability in passability values, which allowed for a linear optimization formulation.   

Stream connectivity metrics have more recently been proposed that account for habitat 

quality and organism dispersal abilities.  Diebel et al. (2010) developed the C connectivity 

metric, which accounts for passability both upstream and downstream past a passage barrier; 

length or area of the stream segment in question; proportion of a desired habitat type within the 

segment; suitability of that habitat type for the target species; and an inverse distance metric 

comparing the length of the reach to the typical dispersal distance of the target resident fish 

species.  These values are combined into a weighted value which is then compared to a C value 

calculated for the network without barriers, determining the existing barriers’ relative influence 

on connectivity.   

O’Hanley et al. (2013) incorporated the C connectivity metric into their budget- 

constrained optimization model to maximize habitat connectivity within a stream network for 

potadromous fish.  This study allowed for partial passability values, which were multiplied to 

determine cumulative bidirectional passability.  This multiplication introduced nonlinearity into 

the problem, which the authors reformulated to create a linear formulation that could be solved 

using exact methods.  Despite the greater complexity of the model, the authors demonstrated 

optimization to be an efficient and more accurate method for prioritization compared to scoring 

and ranking.   

The parameters incorporated into these metrics are often defined differently across 

different regions and studies.  Most definitions of barrier passability focus on some measure of 

passage efficiency, in which passability is defined at the individual level as being relative to the 

total number of attempts to pass a barrier before success is achieved.  Alternatively, barrier 
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passability is defined at the population level as the number of successful passes of a structure as 

a portion of the number of fish attempting to pass (Kemp and O’Hanley, 2010).  These 

definitions are flawed in that they assume that a section of stream was completely passable to all 

organisms under consideration before the barrier was constructed.  In reality, any unimpacted 

section of stream will be passable only to a portion of organisms at any given time; therefore, the 

goal in removing a barrier should be to restore the stream to its natural state rather than to state 

that is perfectly passable for all individuals of all species.  In addition, most barrier passability 

scores calculated for existing culverts tend to be biased toward fish (Kemp and O’Hanley, 2010), 

and do not consider the ability of a barrier to pass other organisms, particularly those of lesser 

swimming abilities, or to transport materials and nutrients through a river network.   

Similarly, assessments of habitat quality or suitability are often excluded from 

prioritization studies or are biased toward salmonid species (Kemp and O’Hanley, 2010).  

However, habitat quality often varies throughout a watershed, so that some barriers may block 

access to a disproportionate amount of high quality habitat, while others may be located within 

or adjacent to highly degraded stream reaches.  Removing a barrier from the latter group may 

provide far less ecological benefit than removing a barrier that opens up even a small amount of 

high-quality or unimpacted habitat.  Measures of habitat quality are therefore essential to the 

prioritization process.   

However, most habitat quality and barrier passability scores used in past studies have 

been relevant only to a single species of concern or to a single taxonomic group (e.g., 

salmonids).  By focusing conservation efforts on a single species, management strategies may 

ignore the needs of other organisms or even contribute to their decline if an organism’s needs 

conflict with those of the species of interest.  Preferably, an alternative method may focus on 
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scoring habitat quality and passability with regards to their ability to support a diverse 

assemblage of flora and fauna, so that restoration focuses on preserving and connecting habitats 

where landscape processes that support multiple species are maintained, and on restoring those 

processes which are impaired.  Use of a multi-species habitat restoration strategy requires 

performance of detailed watershed analyses, but is more likely to lead to treatment of the causes 

of ecological degradation than of the symptoms (Beechie et al., 2008). 

This paper describes a new habitat connectivity metric that assesses habitat connectivity 

at the catchment scale for stream resident aquatic species, utilizing multi-species measures of 

habitat quality and barrier passability as weights on the total habitat value.  The new formulation 

seeks to maximize the value of the connected habitat, considering all species over the entire 

watershed and accounting for the spatial relationships of barriers in the network.  An 

optimization formulation is used to maximize the improvement of longitudinal habitat 

connectivity in a watershed through the removal of barriers throughout the watershed.  A case 

study is performed within the Westfield River Watershed in western Massachusetts using a 

genetic algorithm.  The behavior of the model is assessed based on the results of the case study 

to illustrate sensitive variables and general rules that may help guide future prioritization 

decisions. 

2. Methods 

2.1 Formulation of Prioritization Problem 

The goal of the proposed optimization formulation is to maximize the total quality- and 

accessibility-weighted habitat available to aquatic organisms in a stream network by selecting 

barriers for mitigation.  The habitat gain is maximized by selecting barriers for mitigation, 

subject to a limited budget.  The stream network in the watershed is described as a series of 
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stream segments, which may be branched or unbranched.  Each stream segment is bounded 

upstream by headwaters or by one or more barriers; a segment is bounded on the downstream 

end by a single barrier.  Hence, every portion of the stream network can be uniquely associated 

with a barrier and every barrier has an associated upstream segment.   

It is assumed that for every barrier there exists a bidirectional probability of passage 

ranging from 0 to 1 where 0 indicates there is no probability of passage for an organism and 1 

indicates that the barrier has the maximum probability of passage (i.e. no anthropogenic barrier 

exists and the stream has a natural or unimpacted level of passability).  For the stream segment 

upstream of the barrier there exists a length as well as a habitat quality score which is scaled 0 to 

1 with 1 representing the greatest habitat quality.   

The formulation is designed to improve conditions for resident aquatic species.  As a 

result, we consider the availability of habitat for species that originate in any segment of the 

watershed.  Our formulation estimates the ability of the organism to travel to adjoining stream 

segments, the value of the adjoining segments, and the desirability to the organism of moving to 

adjoining segments. 

First, an individual aquatic organism, i, (e.g. a single brook trout) is considered, initially 

in a segment s.  This organism may have the ability and motivation, limited by barriers and 

metabolic considerations, to travel to any one of the other segments, t, in the watershed.  A 

metric of the value of habitat in any segment t for the organism is proposed that includes 

measures of ability and motivation.  For the organism, the metric is estimated as:  

𝑉𝑖,𝑠 = ∑ 𝐿𝑡𝐻𝑡𝐷𝑖,𝑠,𝑡𝜑𝑖,𝑠,𝑡

𝑇

𝑡≠𝑠

 

Eqn 1 

The summation in Equation 1 is over all segments in the watershed (excluding segment s) where 

T is the number of segments in the watershed (and the number of barriers).  Each term in the 
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summation is the value of habitat in segment t to organism i, originating in segment s.  Lt is the 

length of segment t, Ht is the habitat quality (scaled 0 to 1) of segment t, Di,s,t is the dispersal 

function (scaled 0 to 1)  between segment s and t for organism i, and φi,s,t is the cumulative 

probability of passage (scaled 0 to 1)  between segment s and t for organism i.   

The cumulative probability of passage provides a measure of the availability of segment t 

to the organism (can the organism get there?); the dispersal function indicates whether or not the 

organism is capable of travel from segment s to segment t (would the organism want to go 

there?); the product of the segment length and habitat quality provide a measure of the value of 

the habitat in segment t (is it nice there?). 

Using similar methodology and notation to that used by O’Hanley et al. (2013) and 

discussed in Kemp and O’Hanley (2010) the cumulative probability of passage is represented by 

calculating the product of passability values between segments s and t. 

𝜑𝑖,𝑠,𝑡 = ∏ 𝑝𝑖,𝑗

𝑗𝜖𝐵𝑠,𝑡

 
Eqn 2 

where Bs,t is the set of all barriers between segments s and t and pi,j is the probability that 

organism i can pass barrier j as the organism moves in the upstream or downstream direction.  It 

is assumed that potadromous aquatic organisms are equally likely to move upstream or 

downstream (Warren and Pardew, 1998) and the impact of barriers on passability is the same in 

either direction.  Equation 2 can be interpreted as the probability that the organism can travel 

from segment s to segment t, crossing each barrier between s and t only once.   

The dispersal function is calculated using the same form as proposed by Diebel et al. 

2010 and used by O’Hanley et al. 2013: 

𝐷𝑖,𝑠,𝑡 =
1

1 + (
𝑑𝑠,𝑡

𝑑𝑖
)

2 
Eqn 3
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where di is the expected or average dispersal distance for the organism over relevant timescales 

and ds,t is the sum of segment lengths between segments s and t (inclusive). 

For an individual organism, Vi,s can be increased by increasing cumulative passability 

which is accomplished (via equation 2) by increasing the passage probability at individual 

barriers.  The removal of barriers is modeled in our formulation by increasing their associated 

passage probability to a value of 1, that is, the road crossing no longer produces any barrier to 

passage. 

The objective is to improve connectivity for all organisms.  Passage value for all 

organisms is measured by summing over Ns, the number of organisms in the segment as  

𝑉𝑠 = ∑ 𝑉𝑖,𝑠 = ∑ ∑ 𝐿𝑡𝐻𝑡𝐷𝑖,𝑠,𝑡𝜑𝑖,𝑠,𝑡

𝑇

𝑡≠𝑠

𝑁𝑠

𝑖=1

𝑁𝑠

𝑖=1

 

Eqn 4

where Vs is the total passage value for all organisms originating in segment s 

This formulation maximizes the average quality and accessibility weighted habitat for all 

organisms in all segments.  The average habitat value can be measured by summing total 

segment value over all segments: 

𝑉 =
1

𝑁
∑ 𝑉𝑠

𝑇

𝑠=1

 

Eqn 5

where N is the total number of organisms over all segments.    

The optimization formulation consists of a set of decision variables, an objective function 

and one or more constraints.  In the present case, the decision is on the status of each barrier: 

remove it or make no change to the barrier.  In a manner similar to O’Hanley (2011), this 

decision can be represented with a binary decision variable.  For the barrier downstream of 

segment s (barrier j) define 
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𝑥𝑗 = {
1 if barrier removed
0 if barrier retained

 
Eqn 6

Alternative mitigation decisions (e.g. partial removal or improvement) were not considered 

because of a lack of data regarding potential alternate mitigation actions to full removal.  The 

barrier removal decision is incorporated into the habitat value metric through equation 2 where 

the passability of a given barrier is defined as: 

𝑝𝑖,𝑗 = {
𝑝𝑖,𝑗

0 if 𝑥𝑗 = 0

1  if 𝑥𝑗 = 1 
 

Eqn 7

Where 𝑝𝑖,𝑗
0  is the initial barrier passability (before any barrier mitigation occurs).  In 

effect, the formulation assumes that if the barrier is removed, passability for all organisms 

returns to those present under natural conditions.  An extension of the formulation, which is not 

pursued here, follows the approach of O’Hanley et al. (2013) in which the passability at a given 

barrier can be incrementally improved based on the degree (and associated cost) of barrier 

mitigation. 

The objective function for our formulation is to maximize the value of the average 

habitat: 

max 𝑉(𝒙) 

 

Eqn 8

recognizing that the average habitat connectivity value depends on the choice of barriers to 

remove.  Taken alone, the optimal strategy to maximize habitat for all organisms would be to 

remove all barriers.  In practice, budget limitations typically limit replacement to only a fraction 

of barriers.  A constraint on the budget available for replacement of barriers is added to the 

formulation and takes the form:  
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∑ 𝑐𝑗𝑥𝑗 ≤ 𝑏

𝑇

𝑗=1

 

Eqn 9

where cj is the cost of replacing barrier j and b is the total budget available for barrier mitigation. 

Taken together, equations 8 and 9 form an optimization problem that can be solved to 

obtain the set of barriers that should be removed to maximize the average habitat value within a 

specified budget.  Solving this problem requires a cost for the replacement of each barrier, the 

length of each stream segment and a measure of habitat quality for each segment.  As written, the 

formulation also requires the number of individual organisms in each segment and information 

about passability and dispersal with respect to that organism.   

For many settings it will be impractical to consider all organisms.  For these cases, 

individuals may be grouped by species, by a larger taxonomic group or group of species with 

similar dispersal tendencies, or may be represented by an “average” target species whose 

dispersal abilities fall in the middle of a range of expected dispersal tendencies. 

Here we use a simplifying approach that starts with the assumption that all organisms 

have the same passability and dispersal function characteristics so that equation 4 simplifies to:  

𝑉𝑠 = ∑ ∑ 𝐿𝑡𝐻𝑡𝐷𝑠,𝑡𝜑𝑠,𝑡

𝑇

𝑡≠𝑠

𝑁𝑠

𝑖=1

= 𝑁𝑠 ∑ 𝐿𝑡𝐻𝑡𝐷𝑠,𝑡𝜑𝑠,𝑡

𝑇

𝑡≠𝑠

 

Eqn 10

The number of organisms in segment s is estimated using the product of length and habitat 

quality, that is, 𝑁𝑠 = 𝐾𝐿𝑠𝐻𝑠 where K is the number of organisms per unit of quality-weighted 

habitat length.  Assuming K takes the same value for all segments and substituting, 

max
𝐾

𝑁
∑ 𝐿𝑠𝐻𝑠 ∑ 𝐿𝑡𝐻𝑡𝐷𝑠,𝑡𝜑𝑠,𝑡

𝑇

𝑡≠𝑠

𝑇

𝑠=1

 

Eqn 11
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Because both K and N are constant, an equivalent objective function which will produce the 

same solution can be written as: 

max ∑ 𝐿𝑠𝐻𝑠 ∑ 𝐿𝑡𝐻𝑡𝐷𝑠,𝑡𝜑𝑠,𝑡

𝑇

𝑡≠𝑠

𝑇

𝑠=1

 

Eqn 12

 

By eliminating the constants in Equation 11, equation 12 includes no explicit reference to the 

number of organisms in the watershed. 

Combining equation 12 with equation 9 (with equations 2, 3, 6, and 7 implied) forms a 

complete formulation for maximizing habitat.  

 

2.2 Case Study 

The Westfield River is the longest tributary to the Connecticut River.  The watershed, 

located in the Berkshire Mountains of western Massachusetts in the United States, contains 125.5 

km of federally designated National Wild and Scenic River, which is located mainly in the West 

Branch of the Westfield River.  Land use within the watershed is roughly 7 percent agricultural, 

12 percent developed, and 82 percent undeveloped, with approximately 27 percent of the 

watershed permanently protected as open space.  The overall population density of the watershed 

is less than 0.5 persons/acre.  The Westfield itself is one of the most intact river systems in 

southern New England.  The lack of development in the watershed and the watershed’s natural 

beauty and recreational opportunities contribute to its importance to both wildlife and the local 

economy.  The area features one of the largest roadless wilderness areas in the Commonwealth 

of Massachusetts as well as the longest uncontrolled segment of river in the Commonwealth.   It 

is considered an outstanding coldwater fishery and whitewater boating destination, and harbors 
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many rare and endangered species.  Thus, it is considered a high priority for conservation in 

Massachusetts (Wild and Scenic Westfield River Committee, n.d.)   

This case study focuses on the Upper West Branch (UWB) of the Westfield River, a 140 

km
2
 subwatershed in the headwaters of the Westfield River with a total stream length of 

approximately 130 km.  Available data indicates that the stream network is fragmented by 136 

barriers including 10 dams and 126 road-stream crossings (e.g. culverts, bridges) as shown in 

Figure 1.  

Data for this case study were obtained from the Conservation Assessment and 

Prioritization System (CAPS).  CAPS is an ecosystem-based approach for measuring ecological 

integrity and connectivity, and its purpose is to support decisions regarding conservation of 

habitat and biodiversity.  Here, ecological integrity is defined as the ability of an area to support 

biodiversity and the ecosystem processes necessary to sustain biodiversity over the long term, 

and is measured using a metric termed the Index of Ecological Integrity (IEI), which combines 

various ecological and anthropogenic metrics to predict ecological integrity at the landscape 

scale.  This multimetric indicator of ecological health can range from 0 to 1 and represents a 

multispecies measure of habitat quality rather than a measure of quality relevant to one species 

(McGarigal et al., 2008). 

As part of the integrity assessment described above, a statewide inventory of barriers, 

including dams and road-stream crossings, has been compiled, and aquatic passability scores 

have been determined for road-stream crossings throughout Massachusetts.  More than 1000 

barriers in the state have been surveyed by volunteers to directly assess physical characteristics 

that are presumed to influence the ability of aquatic organisms to pass these barriers.  Thousands 

of additional barriers have been assigned an aquatic passability score using a statistical model 
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based on the field assessment data (McGarigal et al., 2012).  Within the dataset, 54 of the 126 

road-stream crossings (43%) were surveyed to determine aquatic passability while the remaining 

72 crossings were modeled.  These passability values represent the similarity of the condition of 

the stream crossing to its ideal or unimpacted state.  It is assumed that an unimpacted stream 

condition will provide maximum natural aquatic passability for all aquatic organisms attempting 

passage, while any deviation from the stream’s natural state (e.g. a perched culvert outlet or a 

flow regime quicker or more turbulent than the natural state) will limit passage.  Passability 

scores are scaled from 0 to 1, with 1 representing full or natural bidirectional “passability” 

(McGarigal et al., 2012).   As with the IEI, the passability value is taken as a measure based on a 

range of physical characteristics representing the overall condition of the stream, and therefore 

can be considered a multispecies metric (Jackson, personal communication).  The passability 

value derived from CAPS was used as pi,j in the formulation. 

CAPS data were provided in the form ArcGRIDS and ArcGIS shapefiles.  Locations and 

aquatic passability (pi,j) scores were provided for each barrier.  Among the 136 barriers in the 

watershed, the average aquatic passability value for all dams and stream crossings was 0.760, 

while the average passability for the 126 road-stream crossings alone was 0.819.  The length of 

habitat between barriers, Lt, was obtained by splitting the stream network into discreet segments 

with endpoints at barrier locations, providing contiguous reaches of stream bounded by two or 

more barriers.  Lt was calculated as the contiguous length of the stream centerline.  The average 

value of Lt, was 0.976 km.   

IEI data were obtained from CAPS in the form of a GIS raster layer scaled to the 

Westfield River watershed and were used as the measure of habitat quality, Ht, in our 

formulation.  This layer was sampled every 10 meters along the streamlines within the 
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watershed.  The sampled values, grouped by the barrier-bound stream segment on which they 

occurred and averaged across each of these segments, provided a value for Ht score for each 

contiguous segment.   

Figure 2 illustrates the distribution of values for pij and Ht within the UWB.  Barrier 

passability values tend to be highest along the mainstem and lower for barriers located on 

tributaries, likely because road-stream crossings tend to be built as bridges on larger streams and 

as culverts on smaller streams such as exist in the headwaters of the UWB.  Alternatively, habitat 

integrity values are higher for tributary segments than along the mainstem, as more urbanization 

and habitat degradation has occurred along the mainstem than along the steeper tributaries of the 

UWB. 

Accurate cost estimates and cost distributions for individual barrier mitigation projects in 

this region were not available, and had to be generated for this case study.  Costs were scaled to 

the budget so that a budget, b, of $1 million would allow the mitigation of approximately 10 

barriers.  Thus, a cost, c, was assigned to each culvert mitigation project from a normal 

distribution with an average of $100,000 and a standard deviation of $25,000.   While these costs 

may not fully represent the range of possible barrier mitigation costs, they fall within the low end 

of the expected range of culvert mitigation costs for the state (MASSDER, unpublished data).  In 

addition, they allow the comparison of budget scenarios where solutions vary by predictable 

numbers of barriers, so that the impacts of specific barriers and their characteristics on the 

solution can be more easily assessed. 

2.4 Implementation 

To simulate a situation in which only road-stream crossings were considered for removal, 

dams were excluded from consideration for removal by assigning a value of c higher than the  
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Figure 1: Map of the Upper West Branch (UWB) of the Westfield River.  The watershed contains 126 road-stream 

crossings, indicated by black circles and 10 dams, indicated by white squares.  The heavy black line indicates the section 

of the mainstem of the West Branch of the Westfield River that runs through the UWB. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Map of IEI and passability values in the UWB.  High-integrity stream reaches are indicated by heavier line 

weights and tend to be located in the tributaries, or headwaters, of the watershed, while reaches along the mainstem tend 

to be of lower integrity.  Barriers with higher aquatic passability values, indicated as white circles, tend to be located 

along the mainstem while barriers of lower passability tend to be located at the extremities of the network, on tributaries. 

Barrier Passability 

Ecological Integrity 
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highest budget level, b, assessed.  However, the effect of the dams on connectivity was still 

considered.  In this way, dams acted much like natural barriers such as waterfalls, which may 

block access to sections of riverine habitat and are unlikely to be removed or altered by  

anthropogenic forces.  The impact of natural barriers such as waterfalls or rapids was not 

considered in this assessment. 

A sensitivity analysis was conducted to determine how solutions changed as the budget 

increased.  Budget values increased at $100,000 intervals from a budget of $100,000 up to $1 

million, then at $500,000 intervals to $9.5 million.  For this analysis, dispersal distance, di, was 

set to 3 km, a value which approximates the dispersal abilities of a small fish.  Individual project 

costs remained constant across all budget levels assessed in the analysis. 

To assess the dependency of the results on the generated costs, a randomized cost 

analysis was performed in which the formulation was solved for two budgets only, using the 

available barrier data and 100 additional sets of randomized barrier costs generated from the 

normal distribution described above.  Generated costs were inspected to ensure that across the 

trials each barrier was assigned costs covering the possible range of values in the distribution.   

Budgets were set to $1 million and $2 million to simulate scenarios in which approximately 10 

and approximately 20 barriers would be mitigated in the watershed, as a single round of funding 

or prioritization effort generally allows the removal of a number of barriers in this range.  

Following the 100 trials, the set of barriers selected for removal at each budget was assessed for 

every set of barrier cost data and the frequency of selection of barrier across the 100 trials was 

determined to assess the impact of cost on the barrier selection choices.   

The formulation was solved using a micro-Genetic Algorithm (Nicklow et al., 2010) with 

the code provided by D.L. Carroll (GA Fortran Driver, Version 1.7a, 2001, 
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http://www.cuaerospace.com/Technology/GeneticAlgorithm.aspx).  The model was run for each 

budget three times, with different limits on the number (100,000; 500,000; and 1 million) of 

allowed evaluations.  The solution that produced the highest objective function value was 

selected for the final analysis, irrespective of the number of evaluations allowed in reaching the 

solution. 

3. Results  

In this analysis a question is proposed:  does mitigation cost, existing passability, habitat 

quality, or the spatial organization of barriers within the network dominate the solution?  The 

results of the analysis described above are examined in relation to this question.  The discussion 

below examines the impact of each factor on the solution. 

3.1 Model Behavior 

The sensitivity analysis produced objective function values as well as barrier removal 

portfolios for each budget level.  While the value of the objective function increased with the 

total budget (and with the number of barriers removed), Figure 3a shows a pattern of decreasing 

marginal improvement in the quality-weighted accessible habitat as the budget increased, 

indicating that the combinations of barriers that add the most value to the objective function are 

being selected first; barriers that contribute less value are added as more money becomes 

available.  However, the trend is nearly linear for portions of the curve, which indicates that there 

is some homogeneity within the watershed, i.e. many barriers or combinations of barriers in the 

network contribute similar quantitative gains in value, as determined by the model, when 

removed. 

The number of barriers removed increased linearly with the increase in budget, with 

approximately 11 additional barriers removed for every $1 million increase in budget, as 

http://www.cuaerospace.com/Technology/GeneticAlgorithm.aspx
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illustrated in Figure 3b.   It is important to note that the solutions were not perfectly nested; i.e. 

the barriers selected at lower budget levels were not always included in the barrier solutions at 

higher budget levels.   Upon examination of the problem, it is clear that there is no mathematical 

requirement in the formulation for the solutions to be nested, a phenomenon that has also been 

demonstrated in prioritization studies using linear programming methods where global optimal 

solutions are guaranteed (O’Hanley, 2011).  This is of concern because it indicates that cases 

might occur where slight changes in budget could potentially result in significant changes in the 

barriers selected for mitigation and in the objective function value.  Inspection of the results of 

this case study revealed that though solutions were not perfectly nested, they were remarkably 

similar across budget levels.  High levels of similarity may allow decision makers confidence in 

their restoration decisions, even if the reality of the situation requires that a barrier in the solution 

set be replaced with another; within limits, it can be assumed that near-optimal gains will still be 

achieved.  However, restoration solutions will not always  be so straightforward, and the level of 

flexibility available in the solutions will have to be assessed on a case-by-case basis.  In 

watersheds where solutions change dramatically with the budget, knowledge of the total budget 

that will be available for a project over its lifetime is crucial if one hopes to achieve the greatest 

possible restoration gains. 

3.2 Impact of Barrier Cost 

Individual barrier costs generated for the sensitivity analysis ranged from $50,250 to 

$149,230, with an average barrier mitigation cost of $97,106. 

Barriers selected for removal generally were less expensive than the average across all 

budgets tested in the sensitivity analysis, but especially for budgets less than $2 million.  

Average costs for selected barriers ranged from $64,381at a budget level of $200,000 to 
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Figure 3:  For budgets of $100,000 to $9.5 million, (a) the number of barriers removed; (b) the net gain in quality-weighted habitat; (c) the average cost of mitigation per 

barrier selected, with the average for all barriers in the dataset marked by the horizontal line; (d) the average pre-mitigation passability of barriers selected for 

mitigation, with the average for all barriers in the dataset marked by the horizontal line.  For a higher-resolution sensitivity analaysis of budgets of $100,000 to $2 

million, (e) the number of barriers removed; (f) the net gain in quality-weighted habitat; (g) the average cost of mitigation per barrier selected; (h) the average pre-

mitigation passability of barriers selected for mitigation.

a) c) b) d) 

e) f) g) h) 
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$100,000 for a budget of $8.5 million.  Figure 3c shows that average costs generally increased 

with the increase in budget, so that at budgets over $1.5 million, costs for selected barriers were 

within 10% of the average; at budgets over $3.5 million, average costs for selected barriers were 

within 5% of the average.   

The results of adjusting the budget at a finer resolution are illustrated in Figures 3e-h.  

When the budget increases from $0.4 million to $0.5 million, Figure 3g indicates that the number 

of barriers remains the same; at the same time both the objective function and the average cost 

per barrier rise.   This occurs again as the budget increases from $0.8 million to $0.9 million, 

from $1.1 million to $1.2 million, and from $1.4 million to $1.5 million.  This illustrates a 

threshold effect whereby the formulation switches one barrier out of the solution set and instead 

selects a different, more expensive barrier for removal in order to provide more habitat value.  

This is the mechanism which leads to the lack of nestedness mentioned above.  

Although individual removal cost has no direct impact on the value of the objective 

function, it is clear from the formulation’s consistent selection of low-cost barriers that 

individual mitigation costs are an important factor in the formulation.  However, results from the 

randomized cost analysis indicate that the randomly generated costs were not the main driver of 

the results.  Figure 4 illustrates the frequency of selection for each barrier out of 100 runs for 

budgets of $1 million and $2 million, respectively.  Decay in frequency of selection is apparent 

for both budget levels:  a few barriers are selected for nearly 100% of the project cost scenarios 

regardless of their cost, while some barriers are never selected in any scenario.  These results 

indicate that though cost does play a somewhat significant role in barrier selection, it is not the 

only deciding factor.  If price were the only driver, we would expect to see no decay in Figure 4, 

since barriers would be selected with approximately equal frequencies.   The extreme differences 
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in the frequency of removal for some barriers indicate that some additional factor(s) is driving 

these decisions in combination with project price.  In fact, some barriers are selected with such 

frequency it is clear that they have an inordinate impact on stream connectivity through some 

other factor. 

 

Figure 4: Frequency of removal out of 100 trials for barriers with randomly varied costs.  Solutions were generated for 

100 sets of randomly generated barrier removal costs, and the frequency with which each barrier was selected among the 

trials was tallied to determine the impact of cost on the solutions. 

 

3.3 Impact of Initial Barrier Passability 

Among barriers selected for removal, average passability generally increased as the 

budget increased; i.e. the formulation initially prioritized less passable barriers for removal, but 

selected more passable barriers for mitigation when more money was available.  However, this 

increase is not consistent and the slope of the overall trend shown in Figure 3d decreases as 
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budget decreases; at higher budgets the average passability for barriers selected for removal is 

similar to the average barrier passability value for the entire set of barriers. 

In the randomized cost analysis, the average passability for barriers selected in over 75% 

of the trials for budget of $1 million was 0.694 (median =0.694), compared to an average of 

0.880 (median = 0.983) for barriers that were never removed.  Similarly, for a budget of $2 

million, the average passability of barriers selected in 75% of trials or more had an average 

passability of 0.720 (median = 0.732) while the passability barriers were never selected for 

removal averaged 0.908 (median =0.98).    The lack of barriers with extreme prepassability 

values in the solution sets indicates that barrier passability is a factor in determining the 

frequency of barrier selection in the randomized cost analysis, but not the primary driver in the 

decision. 

3.4 Impact of Habitat Quality 

There is no apparentrelationship between barrier selection and habitat quality values, 

which are associated with stream segments, so habitat values cannot be used independently to 

predict/determine barrier selection.  Instead, the formulation selects barriers that create the most 

connected path between different high quality segments, maximizing LsHs  and LtHt.   Figure 5 

illustrates the location of barriers selected for removal at four different budgets in the sensitivity 

analysis.  A comparison with Figure 2 reveals that barriers are frequently removed in stream 

segments directly connecting two separate segments with extremely high quality.   Connecting 

these habitat patches maximizes the accessible habitat for aquatic species by providing corridors 

for migration between them, reducing their isolation and the isolation of any species dependent 

on such high-quality patches.
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(a)          (b)           

 

(c)          (d)   
 

Figure 5: Barrier mitigation solutions for the Upper West Branch of the Westfield River.  a) Budget =$1 million; b) budget = $2 million; c) budget = $4 million; (d) 

budget = $8 million.  Black circles indicate barriers selected for mitigation.  Unmitigated barriers are indicated by white circles. 
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3.5 Impact of Spatial Organization of the Watershed and Barriers  

The spatial distribution of barrier solutions for four budget levels is shown in Figure 5.  

Barriers selected for removal at lower budget levels are located primarily along the mainstem of 

the UWB.  At higher budgets, barriers are selected from the tributaries with increasing 

frequency, while mainstem barriers still comprise a large portion of barriers selected for 

mitigation.  Barriers selected frequently in the randomized cost analysis are also located on the 

mainstem of the UWB.  Beyond their central position in the network, which leads to a greater 

impact on overall connectivity as measured here, the most frequently selected barriers occur in 

reaches along direct paths between the stream segments with the highest habitat quality, as 

discussed above.  Barriers along these reaches are even more likely to be selected if other 

barriers on the same path are already highly passable; thus, colinearity with other highly passable 

barriers is accounted for in selecting barriers for removal.  

3.6 Use of Genetic Algorithms  

  Genetic algorithms are widely used for water resources applications (Nicklow et al., 

2010; Reed et al., 2013) because of their ability to handle nonlinearities.  In addition, genetic 

algorithms allow for simplicity and convenience in writing a sophisticated optimization 

formulation.   One challenge with genetic algorithms is computational time.  In the work 

presented here, solving a single problem with the genetic algorithm using 500,000 evaluations 

could take up to an hour.  Alternate solution methods (O’Hanley, 2009) can be more efficient for 

formulations similar to the one presented here.  Problems of similar size to that presented here 

have been solved in fewer than 5 minutes by O’Hanley et al. (2013) and O’Hanley (2011).  A 

larger-scale problem with more barriers or additional decision variables would require even 

greater solution times.   Nevertheless, in cases such as this, where projects are resource-intensive 
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and have considerable ecological, political, and social implications, but are not time-sensitive, 

computational efficiency is not the highest priority.   

4. Conclusion 

 In this paper a nonlinear optimization formulation is proposed to determine which 

barriers within a watershed should be selected for removal across a range of budgets.  The model 

includes a new metric for habitat quality-weighted connectivity and incorporates measures of 

habitat integrity and barrier passability which generalize the model to take a multispecies 

approach rather than focusing on a single species.   The formulation is demonstrated in a case 

study on the Upper West Branch of the Westfield River in Massachusetts. 

It was demonstrated that certain barriers may have an inordinate impact on stream 

connectivity such that removing these first few barriers can effect large ecological gains within 

relatively tight budgets, but that the right barriers must be picked to have this effect.  For systems 

in which non-migratory organisms are of concern these barriers tend to be located along central 

portions of the mainstem, particularly in those reaches that connect one high-quality reach to 

another.  In this, the formulation is in accordance with current ecological theory that it is most 

beneficial to overall ecological health and native species to preserve high quality habitat patches 

and the connections between them. 

 The results of this analysis confirm the findings of O’Hanley (2011) and O’Hanley et al. 

(2013), who also found that barriers selected for removal tend to be less expensive than the 

average barrier in the watershed, and that having accurate knowledge of project costs is crucial to 

the prioritization process if the most efficient solutions are to be selected and implemented.  

Planning using known project costs allow restoration managers to make more reliable and cost-

effective restoration decisions while staying within the limits of a prescribed budget, which can 
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bolster support for restoration actions.  Accurate knowledge of project costs can also allow 

decision-makers to determine and request budget levels that will allow the implementation of the 

most efficient combination barrier removal projects based on thresholds in the objective 

function.  These results indicate the importance of knowing accurately the costs of barrier 

mitigation for all barriers considered for mitigation in a watershed.   

 However, restoration budgets for multi-year or multi-stage restoration projects are 

sometimes unknown, while the lack of nested solutions also indicates the importance of knowing 

accurately the long-term budget for basin-wide barrier mitigation efforts.  Since a small increase 

in budget could potentially lead to a completely different solution (set of barriers) and a marked 

increase in ecological benefits, decision makers should consider performing a sensitivity analysis 

across budgets for every watershed barrier removal project.  Doing so is a relatively quick 

process given current modeling capabilities, and while restoration decisions are not particularly 

time-sensitive, they often have large-scale, long-ranging implications that increasingly demand 

thorough planning and accountability.   

Although ecological connectivity is the goal of this particular model, in reality many 

other factors influence the decision to mitigate any given barrier.   In the Northeast, the risk of 

the failure of a dam or stream crossing and the severity of the consequences of that failure are of 

great concern, particularly in the face of climate change and the larger, more frequent floods that 

are expected to occur.  Maintenance schedules, transportation delays, provision of emergency 

services, public support, and other factors must also be considered before a final decision is 

made regarding which barriers to mitigate.  This formulation provides insight on only one, albeit 

significant, area of concern and thus should be utilized as a screening tool and its products a 

starting point in the decision-making process, rather than an ultimatum. 
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Appendix A: Sensitivity Analysis across Expected Dispersal Distance 
 

 A sensitivity analysis was performed on the expected or average dispersal distance for the 

organism over relevant timescales, di, using data from the Upper West Branch (UWB) of the 

Westfield River watershed and the randomly generated costs used in the budget sensitivity 

analysis.  Budget constraints of $1 million and $2 million were set to allow the removal of 10 

and 20 barriers, respectively.  Values of 0.01 km, 0.1 km, 1.0 km, 3.0 km, and 10.0 km were 

used for di and the model was run for 500,000 evaluations. 

 Figure 6a illustrates the effect of di on the value of objective function.   Below values of 

1km, the value of di appeared to have little influence on the net gain of the objective function 

value.   At values of 1.0 km and greater the net gain in the objective function increases 

exponentially with di.  It should be noted that the value of 1 km is also approximately equal to 

the average hydrologic distance between barriers in the UWB.  Figure 6b shows that the net gain 

as a percentage of the original value also increases with dispersal distance.   These results are not 

surprising, as organisms with greater dispersal abilities will benefit more from barrier removals.  

On the other hand, low values of di force the value of the objective function to a value so low 

that most solutions will have approximately the same ecological connectivity value.  This reflects 

the fact that barrier removal would be an ineffective conservation strategy for organisms without 

the ability to disperse farther than the distance between barriers. 

Despite the order-of-magnitude changes in di, solutions were highly similar in terms of 

barriers selected for removal across dispersal values (67% or greater similarity in barriers chosen 

for all trials with a budget of $1 million, and 74% or greater similarity for all trials with a budget 

of $2 million).  
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 It is possible that the resolution of the habitat quality data used in this case study is too 

low in terms of spatial resolution or diversity of habitat types to allow changes in model behavior 

or in the importance of the input variables to be discerned in relation to changes in di.   Future 

analysis of the impacts of di might incorporate higher resolution habitat quality data, and should 

include analysis of the impacts of changing di on the relative importance of other input factors.  

Relationships between dispersal distance and spatial characteristics of the watershed should be 

explored further as well. 

 

Figure 6: a) The net gain in the objective function, achieved through barrier removal and b) the percent increase in 

objective function achieved over its original value (before any barriers are removed) vs. the expected dispersal distance, 

di.  The objective function increases exponentially with di, with major gains seen above di=1.0 km.  Greater objective 

function values are achieved for higher budgets due to the ability to remove greater numbers of barriers. 

a) 

b) 
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Appendix B:  Future Research 

 

 In addition to the ideas discussed in the article above, many questions remain in what is a 

relatively new field of study.  Future avenues of research are discussed below. 

Further Analysis of the Current Formulation 

Preliminary results are presented regarding a sensitivity analysis of dispersal distance, di, 

in Appendix B.  Further analysis on this topic is warranted and might reexamine the influence of 

expected dispersal distance on the objective function using a different range of dispersal distance 

values.  In addition, it is possible that averaging habitat quality data over stream segments of 1 

km or longer caused portions of the watershed to appear relatively homogenous in this respect.  

Among other things, this may have masked any changes in model behavior or in the importance 

of the input variables in relation to changes in di.   Future analysis of the impacts of di might 

incorporate higher resolution habitat quality data, and should include analysis of the impacts of 

changing di on the relative importance of other input factors.  Relationships between dispersal 

distance and spatial characteristics of the watershed should be explored further as well. 

Future researchers might consider the loss of optimality associated with limiting the 

selection of removable barriers to allow mitigation only of dams or only of road-stream crossings 

as opposed to allowing the removal of any anthropogenic barriers present.  It is likely that 

limiting these choices reduces the efficiency of the solution, especially if omitted barriers are 

located in or near high-quality habitat patches or near the center or mainstem of the network.  

Therefore, the results of an analysis such as this are likely to be watershed-specific.   

The analysis of the barrier removal solutions discussed in the main article included a 

qualitative description of spatial characteristics in the barriers selected for removal (as opposed 



38 

 

to those that remained unselected).  Quantifying these spatial patterns may reveal important 

impacts of barrier arrangement and stream network structure on prioritization.  Spatial 

autocorrelation between barriers and/or stream segments should be assessed, as well as any 

possible links between levels of spatial autocorrelation and the value of di.   

A Monte Carlo simulation may also provide valuable information.  To perform the 

simulation, the dataset of existing barriers might be randomly sampled to select multiple 

portfolios of 13 barriers.  The characteristics of these barrier portfolios may then be compared to 

the characteristics of the 13 barriers included in the solution provided by the optimization 

formulation for a budget of $1 million, in order to determine if spatial characteristics or other 

parameters differ significantly.  The process could be repeated at a budget of $2 million, 

selecting random sets of 22 barriers for comparison to the solution produced by the optimization 

formulation.   

Specifically, the analysis might be used to compare the spatial arrangement of the barriers 

(e.g. average distance from the mouth; average number of stream kilometers within one 

hydrologic kilometer of each barrier; or average distance to adjacent barriers) as well as factors 

already discussed above (barrier passability and cost of barrier removal).   

Informing the Formulation 

It has been shown in the results above that accurate a priori knowledge of individual 

barrier mitigation project costs is relatively important, since the solution produced by the 

formulation tends to select the lowest-cost barriers from the set of barriers available for removal.  

Currently, cost data is not available for the vast majority of barrier removal projects in 

Massachusetts, and is particularly lacking for culvert removals.   
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As part of the Conservation Assessment and Prioritization System (CAPS) project, data 

regarding physical characteristics of culverts is collected and uploaded to a public database 

(Jackson et al., 2007).  This data could be incorporated into a deterministic model for estimating 

barrier removal costs, to be used in conjunction with database information.    

Model validation would require a significant amount of information regarding the cost of 

previously completed barrier removals.  An online survey such as that created by researchers at 

the Center for Limnology at the University of Wisconsin 

(https://docs.google.com/forms/d/1YLxLFkU91HwQoygKlST0P3fInYoZX2VodDFAJvWmAtE

/viewform) may be used to collect barrier removal cost data from contractors, landowners, 

agencies, and NGOs. 

Extension of the Current Formulation 

 The formulation as it is presented above assesses connectivity for only one watershed at a 

time.  However, the formulation is scalable such that the analysis could be extended to account 

for multiple watersheds with a common outlet or confluence by incorporating all barriers and 

stream reaches within the watersheds or subwatersheds into a single network.  Alternatively, the 

analysis could be extended to determine connectivity across multiple unconnected watersheds by 

simply summing connectivity over multiple watersheds, as in O’Hanley et al. (2013).   

The formulation proposed here could also be extended to account for the diversity of 

habitat types which may be present in a stream and which may have different levels of value for 

different organisms.  O’Hanley et al. (2013) accomplished this by including additional variables 

in their formulation and determining habitat quality from Strahler stream order.   Instead, we 

suggest that habitat diversity and suitability might be determined using metrics (e.g. 

urbanization, traffic, and land cover class) which have already been calculated within CAPS as 

https://docs.google.com/forms/d/1YLxLFkU91HwQoygKlST0P3fInYoZX2VodDFAJvWmAtE/viewform
https://docs.google.com/forms/d/1YLxLFkU91HwQoygKlST0P3fInYoZX2VodDFAJvWmAtE/viewform
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intermediate values in the calculation of the Index of Ecological Integrity (IEI).  It will be 

important to use the individual metrics in this case rather than simply relying on IEI because the 

suite of metrics used to calculate the IEI include connectedness and similarity metrics that reduce 

IEI values in the presence of habitat heterogeneity (McGarigal et al., 2008) . 
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Appendix C:  Data Preparation Using GIS 

Data Sources 

Vector shapefiles containing dam locations, road-stream crossing locations and 

streamlines were obtained from the Conservation Assessment and Prioritization System (CAPS) 

project.  The barrier shapefile contained point locations for 25,529 barriers (2189 dams and 

23,340 road crossings) in Massachusetts.  Barrier attributes for both barrier types are listed in 

Table 1.   

The Streamlines file was a heavily corrected as described in McGarigal et al. (2008).  A 

raster layer containing Index of Ecological Integrity (IEI) values scaled to the Westfield River 

Watershed was obtained from the same project but was downloaded from 

(http://www.umasscaps.org/index.html).   

A vector shapefile containing the watershed boundary of the West Branch of the 

Westfield River was downloaded from the National Hydrography Dataset (NHD: 

http://nhd.usgs.gov/).  This watershed is of the smallest selected watershed size/number in the 

NHD.  This feature class shapefile contained information regarding subbasins within the 

boundary as well as attribute data.   The watershed boundary for the Upper West Branch (UWB) 

of the Westfield River, a subbasin of the West Branch was then extracted from the subbasins 

embedded in the West Branch boundary using the Select (Analysis) tool using an SQL expression 

and saved to a new feature class. 

 

  

http://www.umasscaps.org/index.html
http://nhd.usgs.gov/
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Table 1: Attributes Provided for Road-Stream Crossings and Dams 

 Road-Stream Crossings Dams 

Attributes X-coordinate 

Y-coordinate 

Aquatic Passability 

Terrestrial Passability 

Surveyed (Binary, yes/no) 

X-coordinate 

Y-coordinate 

Dam (name) 

River 

Dam Height 

Aquatic Passability 

 

Data Processing 
 

Extraction of relevant data for this project required considerable data processing and 

analysis in ArcMap.  All data processing and analysis was performed using ArcGIS 10.2.1 for 

Desktop (http://www.esri.com/).  The XTools Pro 10.1 extension for ArcGIS 

(http://www.xtoolspro.com/) provided additional tools that were not available in the ArcToolbox. 

The first task was to extract the data necessary for this case study from the larger regional 

ad state-wide datasets provided.  To do this, it was necessary to ensure that all barriers located 

within the watershed of interest were properly located on streamlines within the watershed.  

Because the barrier data provided consisted of points extracted from a raster file, barriers were 

not initially located directly on streamlines. The Snap (Editing) tool was used to snap each 

barrier in the dam and crossing datasets to the nearest streamline, within a tolerance of 15 meters.   

The Clip (Analysis) tool was then used in batch mode to simultaneously clip the dam, 

crossing, and streamline feature classes to the watershed boundary of interest, creating new 

feature classes which included the points and streamlines within the UWB boundary.  The new 

barrier feature classes contained 136 barriers (126 crossings and 10 dams)  

The stream network provided to us originally consisted of many separate poylines 

divided in a way which had no bearing on our analysis.  The Dissolve (Data Management) tool 

was used to merge all of the streamlines into one streamline.  The Split Line at Point (Data 

http://www.esri.com/
http://www.xtoolspro.com/
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Management) tool was then used to divide this network into segments, using barriers as point 

features and a search radius of 2 m.  This tool also divides segments at all line intersections, 

resulting in a stream network broken both at barriers and at stream junctions.  The resulting 

shapefile was manually edited using the Editor toolbar to correct this problem.  The Merge tool 

on the Editor toolbar was used to merge sections at the stream junctions, so that barriers served 

as the only breakpoints and so that each branched or unbranched segment between barriers were 

connected as a single segment.  This produced a feature class containing 145 individual branched 

and unbranched stream segments unbroken by any anthropogenic barriers.  Segment lengths 

could then be determined using the Identify tool. 

The average IEI score was determined for every individual stream segment by sampling 

the IEI raster layer at uniform intervals along the network and averaging the IEI sample values 

across each segment.  The dissolved stream network created as the first step in dividing the 

stream network above was utilized once again.  The network was split at 10m intervals using the 

XTools Split Polyline tool.    Points were created at the newly created vertices of the divided 

stream network using the Feature Vertices to Points (Data Management) tool, resulting in the 

creation of 26,020 points.     

IEI values were then determined at these geographic locations using the Extract Values to 

Points (Spatial Analyst) tool.  In effect, this tool overlays the IEI raster with the points along the 

stream network and samples the IEI value at each point.  The IEI value within each segment was 

determined as the mean of the sampled IEI values along each segment, and this value was used 

as the habitat quality score, H, for the segment within the formulation. 

Each IEI sample point was then assigned to one of the 145 stream segments produced 

earlier by using the Intersect (Analysis) tool to identify the individual stream segment in which 
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each sample point was located.  This created a point shapefile in which ever IEI sample point 

was associated with a stream segment ID.  The attribute table for this new file was opened and 

summarized over each stream segment, producing an average IEI value for each stream segment 

ID.  The output was inspected to ascertain that each stream segment had an associate positive IEI 

value.  If a segment was too short to contain even one sample IEI point, the mean of the IEI 

values of the upstream and downstream segments was used as the IEI value for the segment in 

question. 

Data Storage 
 

All final and intermediate files are stored in a file geodatabase on a personal thumb drive. 
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Appendix D:  Adaptation of the Formulation into a Scoring and Ranking 
Process 

Theoretical Framework 

The optimization formulation described above provides a mathematical programming 

method for determining optimal solutions to a complex problem.  However, optimization 

methods can be difficult to implement for conservation planners who lack a specialized level of 

expertise in mathematical and computer programming (Kemp and O’Hanley, 2010), and these 

methods similarly lack transparency when presented to stakeholders, which may prevent their 

widespread application to real-world decision-making (Hajkowicz et al., 2009).  As conservation 

planners adopt more systematic methods for prioritization of barrier removal decisions, it will be 

important to provide prioritization methods that are both accurate and transparent.  In turn, these 

tools may bridge the gap to the use of more sophisticated methods such as optimization in 

conservation planning. 

The following is a scoring and ranking procedure that approximates the optimization 

formulation described above.  In each protocol, habitat quality and dispersal distance are used to 

determine the value of connectivity between different sections of the network.  Whereas the 

optimization formulation utilizes habitat quality and dispersal distance as weights on the value of 

connectivity between segments, this protocol assesses these values in comparison to thresholds, 

in order to screen out sections of the network in which barrier removal will provide little benefit 

for the organism(s) of concern.  By screening out portions of the network, barriers whose 

removal would provide little value are simultaneously screened out of the available solution set,  

Barriers are then ranked according to their passability and their location relative to the 

network.  The results of the UWB case study suggested that barriers located centrally in the 

network provide greater benefit when removed because improved passage at that location 
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improves connectivity between multiple sections of the network.  Cote et al. (2009) similarly 

found that barriers located centrally within a river network had a greater impact on potadromous 

connectivity than barriers located at the extremities of the same network.  The path-counting step 

described in step 4(a) serves as a simple measure of centrality. 

Ties are unlikely to occur given the structure of the protocol and the continuous scale 

across which passability is scored in CAPS.  However, should ties occur, they may be broken by 

considering issues not included in the formulation (e.g. stakeholder support, regulatory barriers, 

or constructability). 

Protocol 

1) Divide the stream network into segments that are unblocked by anthropogenic barriers 

(e.g. barriers or road-stream crossings).  Barriers may be branched or unbranched.  

Assign a score for the habitat quality or integrity of these segments. 

2) Determine a threshold (0-1) for stream segment habitat quality, which will be used to 

select the highest quality segments for connectivity prioritization.   The threshold may be 

a) Associated with individual segments, scaled to allow the selection of a 

predetermined percentage of stream segments or stream length, or may be scaled 

to the actual range of habitat quality values in the watershed. 

b) Associated with the cumulative habitat quality of each segment pair, determined 

by multiplying both quality scores to determine a value that may be compared to a 

threshold.  

3) Each segment pair will be connected by a single linear path along the stream network.  

The path allows bidirectional (upstream and downstream) movement of organisms. 

between the two segments in the pair. 
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a) Determine which segment pairs are blocked by a natural, impassable barrier (e.g. 

a tall waterfall).  Eliminate these segment pairs from consideration if this barrier 

is completely impassable.   

b) Determine which paths are long enough to exceed expected dispersal abilities (di).  

Exclude these segment pairs from consideration. 

4) The remaining segment pairs and the paths between them form the remaining solution 

space.  These paths may intersect to form larger networks.  Select barriers from identified 

paths, constrained by an available budget.  

a) Measure centrality in the network for each barrier by counting the number of 

paths identified in Step 3 on which a barrier exists.   

b) Multiply the centrality value by the passability, pj
0
, for every barrier.   

c) Rank barriers by the value determined in Step 4(b).  Remove the highest ranked 

barriers until the budget is exhausted 

i. In the event of ties, consider issues not included in the formulation (e.g. 

stakeholder support, regulatory barriers, or constructability) to break each 

tie. 

Testing the Protocol 

 The protocol described above is an inexact procedure, and as such, losses in accuracy are 

expected when solutions are compared to the original optimization formulation.  This protocol 

should be tested against the original formulation to determine the loss of accuracy of the 

solutions as well as to compare relative ease of use.  The GIS data described in Appendix C may 

be used but would require significant manipulation.  It is assumed information regarding barrier 

passability and habitat quality will be drawn from the Conservation and Prioritization System 
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(CAPS) as was done in the case study on the Upper West Branch (UWB) in the Westfield River 

case study, described above.  Results of this process could be compared to results from solving 

the formulation described in the UWB case study, solved using both the genetic algorithm and 

using an exact process, to assess losses in efficiency in the solution.   

Discussion and Application 

The procedure described above mimics the behavior of the optimization model in that it 

determines which stream segments provide the most value in terms of quality-weighted habitat 

when connected, then determines which barriers along the routes connecting most efficiently 

improve connectivity when removed, within the limits of a budget.  The procedure thus accounts 

for the underlying spatial network formed by the stream network and the interconnected barriers 

and focuses on the amount and quality of habitat being connected.  Existing scoring and ranking 

procedures consider barrier removal decisions independently, which leads to a loss of efficiency 

in the solutions produced (O’Hanley and Tomberlin, 2005).  To our knowledge, this is the first 

scoring and ranking procedure to incorporate the interaction of barrier removal decisions on the 

overall connectivity of a network. 

It is not uncommon for conservation planners to adopt less sophisticated prioritization 

methods that sacrifice accuracy and technical complexity for transparency and stakeholder 

acceptance.  The main advantage of this procedure is that it is relatively easily explained to and 

implemented by stakeholders and users who lack a background in formal optimization methods.  

Despite its basis in an optimization formulation, this procedure does not require specialized 

knowledge of mathematical or computer programming.   As a result, it will likely be more 

readily received by conservation planners and stakeholders not versed in mathematical 

programming.   



49 

 

While the procedure is described as a scoring and ranking procedure, the protocol could 

also be automated as a GIS-based tool that provides visual and tabular data for further use by 

conservation planners.  

Finally, as with the original optimization formulation, this procedure describes a tool that 

assesses ecological connectivity only, with no assessment as to the costs or benefits associated 

with existing barrier vulnerability, disruption of emergency services, or other risks associated 

with barriers and barrier removal.  The procedure is thus presented as an initial screening tool 

which can provide insight into one step of the prioritization process.  
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Appendix E:  Presentations 
 

 The following presentations were delivered in 2014 and cover aspects of the research 

discussed here as well as general concepts in prioritization of aquatic organism passage.   

The first presentation was delivered on June 10, 2014 at the International Conference on 

Engineering and Ecohydrology for Fish Passage in Madison, WI, and covered preliminary results 

of the research discussed here.   

The second presentation was delivered on August 5, 2014 at the Fish Passage Workshop 

presented by the United States Fish and Wildlife Service (USFWS) on August 5-6, 2014.  The 

workshop was a two-day training course for professionals involved in the design, operation, and 

oversight of fish passage projects.  This half-hour presentation discussed prioritization methods 

within a framework of ecological concerns and practical limitations.   

The third presentation covered the same topic as the first presentation and was delivered 

to staff and students in the Civil and Environmental Engineering program at the University of 

Massachusetts Amherst on December 5, 2014. 

 The presentations contain some preliminary data that have since been updated.  However, 

the concepts and conclusions covered in the presentations have not changed.  Authoritative 

results have been provided in the report above.
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Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Prioritization of Fish Passage 
Projects

Fish Passage Workshop, August 5-6, 2014
Rachael Weiter, Masters Student/Graduate Research Assistant, 

University of Massachusetts Amherst

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Topics

• Reasons for prioritization

• Prioritization at different scales

• Factors considered in prioritizing projects

• Prioritization methods 

• Lessons learned
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What is Prioritization?

• Selecting projects for implementation that 

best meet your goals and criteria

• Strategic approach to a complicated 

problem

Dams

Road-stream 
crossings

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Why Prioritize?

• Limited funds are available for restoration

– Justify projects when applying for funds

– Use funds effectively

• Not all barriers are created equal

– Ensure effective habitat restoration by getting 
the worst barriers first

• Inconsistent decisions may harm 

restoration efforts

– Provide clear and consistent recommendations
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Prioritization Scales

StateNation/Region Watershed

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Prioritization Scales
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Regional Prioritization

• Who cares?

– Federal agencies

– National conservation organizations

• Prioritization of barriers across separate 

watersheds

• Requirement for strategic decisions is 

pushing these groups toward a 

watershed-based approach

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Prioritization at the State Level

• Who cares?

– State agencies

• DER/DEC/DNR

• DOT

• Consider state-specific priorities
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Prioritization within a Watershed

• Who cares?

– Landowning public agencies

– Watershed protection associations & 
partnerships

• Consider an entire stream network with 

multiple barriers

– Spatial relationships of barriers matter!

• Political boundaries present challenges

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Anadromous vs. Resident vs. 
Invasive Species

Anadromous Species Invasive speciesResident Species
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Prioritization Criteria

• This depends on your goals

• Common categories

– Environmental

– Economic 

– Sociopolitical

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Common Factors Considered

• Current available passage

• Project cost

• Available budget

• Location with regard to other projects

• Estimated benefits

– Length and quality of stream made available

– Species affected

– Recreational opportunities and costs
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Additional Items to Consider

• Biological limitations

– Can the organism reach or use the habitat?

• Transportation impacts

– E.g. transportation delays, maintenance needs

• Risk

– Changing stormflows due to climate change

• Other socioeconomic factors

– Stakeholder support & concerns

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Prioritization Methods

• Scoring and Ranking

• GIS-Based Analysis

• Optimization Methods

• Expert Opinion
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Scoring and Ranking

• Method

– Barriers are scored based on attributes of 
concern

– Benefit-cost ratios are often used 

• E.g. Habitat gain divided by project costs

– Barriers are ranked by descending score

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Scoring and Ranking

• Benefits

– Simple and straightforward to implement

– Decisions are easy to explain 

• Problems

– Removal decisions are considered 
independently of each other 

• spatial relationships of barriers are not considered

• Not well-suited to a watershed-based 

approach
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GIS-Based Analysis

• GIS data may be used raw or in the form 

of calculated metrics

• Data and metrics can be used to filter 

projects

• Efforts often result in either

– A ranked list of projects

– Project bins

Results of culvert/bridge replacement scenario analyses for a portion of 

Massachusetts. The darker the circles the greater the improvement in aquatic 
connectedness.  http://www.umasscaps.org/about/applications.html

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

GIS-Based Analysis

• Benefits

– Visual representation of results

– Scaling of results is relatively easy

– Easy handling of many data layers

• Weaknesses

– Sometimes limited to systems with small 
numbers of barriers

– May have heavy knowledge and 
computational requirements
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Optimization Methods

• Systems analysis techniques

• Problem statement is set up with:

– Objective function What do I want? 

– Decision variables What can I change?

– Constraints What is required?

• Solution is an unranked portfolio of barriers 

to be removed

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Optimization Methods

• Benefits

– Ability to account for spatial relationships 
throughout a watershed

– Clearly stated criteria

– Ability to balance multiple and 

often competing goals

• Weaknesses

– Method requires a specialised level of expertise 

– Explanations can be difficult
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Expert Opinion

• Benefits

– Ability to consider factors we rarely model

– Take advantage of personal knowledge

• Weaknesses

– Subjectivity and bias

– Harder to justify to the powers that be 
(funders)

• All model results are subject to final review

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Lessons Learned

• Role of opportunism

– Modeled answers don’t always hold up to reality

• Problem approach

– Know your assumptions

– Prioritizing only one type of barrier may limit 
restoration effectiveness

• Solutions are not always “nested”

– The barriers selected for removal at a lower 
budget level may not be recommended for 
removal at higher budget levels
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Lessons Learned
• Prioritization requires lots of data!

– Barrier characteristics

– Stream and habitat characteristics

– Project cost and budget data

Fish Passage Workshop, August 5-6, 2014, Hadley, MA

Prioritization Data

• Common Data Sources

– Barrier inventories

– GIS data 

– Records of previous projects

• Large data gaps exist

– Many efforts are underway to change that

• Project costs and budget

– Research shows that having accurate cost 
data is crucial
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Questions?



Barrier Removal Prioritization 

on the Westfield River in 

Massachusetts

Optimizing Barrier Removal for Passage of Stream 

Resident Species

EWRE Seminar

December 5, 2014

Rachael Weiter, David Ahlfeld

University of Massachusetts Amherst

Department of Civil and Environmental Engineering

What are Barriers to Fish Passage?

� Dams

� >80,000 in the National Inventory of Dams (NID)

� 3,000 in Massachusetts

� Road-Stream Crossings

� Bridges and culverts

� ~2 million culverts in the U.S. (USFWS)

� ~23,000 in Massachusetts

� These structures prevent organisms’ 
physical movement through a stream 
network

Before Removal

After Removal

http://www.mass.gov/eea/agencies/dfg/der/aquatic-habitat-restoration/river-restoration/dam-removal.html

Wapping Road Dam,
Kingston, MA



� Resident aquatic organisms need access to habitat for

� Foraging

� Reproduction

� Refuge

� Lack of access to habitat threatens survival

Why is this a Problem for Resident Fish?

Resident SpeciesAnadromous Species

Barrier Removal Prioritization

� Prioritization: 

� Selecting projects for implementation that best meet your 
goals and criteria

� A watershed may contain many barriers (thousands!)

� Which do we choose?

� Goal: the highest possible return on restoration funding

Before Mitigation: 

After: http://www.orvis.com/news/conservation/1000-miles-moose-run-post-irene/

Moose Run Crossing
Nason Creek
Rochester, VT



Optimization Methods for Prioritization

� Formal optimization methods:

� Require explicit goals and objectives to be set

� Systematically consider multiple constraints

� Able to solve large, complex problems

� The expected result?

� Greater habitat restoration gains

� More efficient use of funding

What’s the Problem?

� Goal: 

� By removing barriers,  maximize the amount of accessible, 
quality-weighted habitat for “resident” aquatic species.

� Constraint: 

� Limited budget

� Decision: 

� Which barriers do we remove?

� Binary decision variable:  Yes/No decision for each barrier



Problem Formulation

� Approach the problem at the watershed scale 

� Determine the value of the connection from every stream 
segment s to every other stream segment t in the network.

� Consider three factors in determining the value of the 
connection between segments s and t:
� Can they get there? (Aquatic passability, ��,�)
� Is it nice? (Habitat integrity/quality, Ht)

� Are they likely to go that far? (Dispersal distance, Ds,t)

� In this way we account for:
� Spatial relationship of barriers

� Interactive effects of barrier removals on the network

� Biological limitations on movement

Formulation
Maximize ∑ ������	�
� Maximize total passage value- and quality-weighted 

habitat accessible from  every segment

Such that:

�� = 
� ∑ ������,���,�	��� Total value of passage from segment s 

��,� = �
�� ��,���

� Inverse distance weighting factor

��,� = ∏ ������,� Cumulative bidirectional passability from s to t

∑ ���� ≤ �	�
� Budget constraint

�� ∈ 0, 1    ∀# ∈ $�,� Each barrier j between s and t is or is not removed

�� = %��,&  '( �� = 0
1 '( �� = 1 Barrier removal results in full passability pj .  



Barrier

� Passability, pj

� Removal Cost, cj

Destination Segment, t

� Length, Lt
� Habitat Quality, Ht

Formulation Inputs

� Consider

� Length, Lt
� Is it nice? (Ht)

� Can they get there? (��,�)
� Are they likely to go that 

far? (Ds,t)

Origin Segment, s

� Ls
� Hs

Expected dispersal 
distance

Upper West Branch of the Westfield River

� 140 km2

� 136 barriers

� 126 road-stream crossings

� 10 dams

Dams

Road-stream crossings

Cities

Chester,  MAN



Data Source:  CAPS Project
(Conservation Assessment and Prioritization System)

� Goal:  Guide conservation & restoration efforts

� Ecosystem-based approach to assess ecological integrity

� “Ability of an area to support biodiversity over the long term”

� GIS-based tools for use in reconnecting habitat

� Index of Ecological Integrity (IEI)

� Weighted combination of many metrics

� Metric categories: 

� Development and roads

� Pollution

� Biotic alterations

� Hydrological alterations

� Resiliency metrics McGarigal et al., 2008
www.umasscaps.org

Data Source: River and Stream Continuity 

Project

Aquatic Passability

� Weighted score based on multiple metrics

� Assesses a “deviation from the ideal” stream condition

� Scaled 0-1

� 1 = full passability

� 0 = no passability

� Barriers considered more similar to the original stream 
are given higher passability values



Stream Crossings Data

� >23, 000 stream crossings in MA 

� 1000 crossings surveyed

� Most are modeled 

Surveyed crossings

Unsurveyed crossings

Westfield River basin

www.streamcontinuity.org

Barrier Passability in the Upper West Branch

Low 
passability

High 
passability



Habitat Quality in the Upper West Branch

0.00-0.20

0.21-0.40

0.41-0.60

0.61-0.80

0.81-1.00

IEI

Improving 
habitat 
integrity

Project Inputs

� Segment length
� Determined in GIS

� Dispersal Distance, di
� Set to 3km

� Barrier mitigation costs, cj
� Randomly generated for preliminary investigations

� Range:  $50,000 - $150,000

� Average ≈ $100,000

� Dams are priced above the project budget

� Budget, b
� Varies from $0.1 million to $1 million at $0.1 million intervals

� Varies from $1 million to $9 million at $1 million intervals



Implementation

� Solve using genetic algorithm

� Evaluate many solutions, keep the best solution found

Model formulation 
solved by

genetic algorithm

Barrier 
&

Stream 
Data

Set of Barriers 
Chosen for 
Removal

Budget

Results
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� The number of 
barriers removed 
increases nearly 
linearly with the 
budget

� The objective 
function value 
displays a decreasing 
marginal gain as 
budget increases



What’s the price?

The formulation is 
selecting low-cost 
mitigation projects first.

Average mitigation cost for all road-
stream crossings ($97,116)

Threshold Effect:

Drops in average barrier 
mitigation cost are 
accompanied by an 
increase in the rate of 
barrier removal…



Threshold Effect:

Drops in average barrier 
mitigation cost are 
accompanied by an 
increase in the rate of 
barrier removal and in 
the rate of gain in the 
objective function

Results

� Barrier sets are not 
perfectly nested

� Mainstem barriers are 
consistently removed

� Barriers at the edges of the 
network are selected with 
less consistency

Budget = $3 million

Budget = $5 million

Budget = $7 million

Barriers selected 
for removal

Barriers left in 
place



Budget = $7 million

Budget = $9 million

Results

� Barrier sets are not 
perfectly nested

� Mainstem barriers are 
consistently removed

� Barriers at the edges of the 
network are selected with 
less consistency

� The mainstem forms a 
“backbone” which 
connects large sections of 
the network

Barriers selected 
for removal

Barriers left in 
place

Why choose cheaper fixes first?

� Three barriers to choose from:

� Scenario 1:  Budget = $60,000.  

� Scenario 2:  Budget = $70,000

� You would choose the two cheaper barriers, as long as 
they result in greater open habitat than the single, more 
expensive barrier.

� The solutions are not nested.

Barrier Cost Habitat opened

1 $60,000 5 miles

2 $40,000 4 miles

3 $30,000 3 miles



The Takeaway

To make the best possible use of funding…

� Accurate cost estimates matter!

� The formulation seems to favor less expensive projects

� Lack of nestedness implies need for proper prior planning

� Know your long-term project budget

� Run model for multiple budget scenarios

Future Work

� Continued spatial analysis to determine influence of 
watershed characteristics

� Perform analysis with accurate barrier removal costs

� Develop cost estimation method using survey parameters

� Develop method to deal with the lack of nestedness
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Image gredit: http://www.avdmv.com/general/Mao/LES_PHOQUES.htm
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Frequency of Barrier Selection

1 million

2 million

Is Price the Only Important Factor?

� Barriers were assigned new sets of random costs, 100 times.

� The model was run using each new set of costs assuming two 
budgets

� Decay indicates that factor(s) other than barrier cost affect 
barrier removal

Budget

Genetic Algorithm

Evaluation Keep best solution

Select next 
generation

Crossover

Mutation

>100,000 generations

Generation 0



Index of Ecological Integrity: Metrics

� Development and Roads
� Habitat loss
� Wetland buffer insults
� Road traffic intensity
� Microclimate alterations

� Pollution
� Road salt intensity
� Road sediment intensity
� Fertilizer intensity
� Point-source pollution

� Biotic Alterations
� Domestic predators
� Edge predators
� Non-native invasive plants
� Non-native invasive 

earthworms

� Hydrological Alterations
� Imperviousness
� Percent impounded
� Upstream road crossings
� Dam intensity

� Resiliency Metrics
� Connectedness
� Similarity

Aquatic Passability: Metrics

Parameters
� Outlet drop
� Physical barriers
� Water velocity
� Water depth
� Inlet drop
� Crossing span
� Crossing substrate
� Crossing embedment
� Openness
� Scour pool
� Tailwater armoring
� Height

Method

� A score is assigned for 
each parameter

� The score is multiplied by 
a parameter-specific 
weight

� The weighted scores are 
added to arrive at an 
aquatic passage score



 

Appendix F:  Barrier Removal Cost Estimation on the Westfield River in 
Western Massachusetts 
 

The following is a report written by Cassandra Fagan for an Independent Study in 2014, 

supervised by Dr. David Ahlfeld and myself.  The report details a simple deterministic model for 

the estimation of the cost of culvert mitigation (removal and replacement) for aquatic organism 

passage.  It is included to document preliminary work in project cost estimation, in the event that 

the project is pursued as described in Appendix C.  Personal contributions included input on 

ideas and technical operations. 

The Excel spreadsheet tool described in Section 5.0 is available from the authors upon 

request. 
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1.0 Motivation 

Massachusetts has a multitude of lakes, rivers, and streams throughout the state suitable for 

aquatic life, however many of these systems are disconnected due to poorly performing culverts 

at road crossings. These poorly performing culverts cause shallow water, increased stream 

velocities, and other difficulties for aquatic life in the stream.  

The goal of culvert replacements is to improve fish passage, river/stream continuity and wildlife 

passage in streams. This goal is achieved by replacing poorly performing culverts with 

adequately sized culverts based on stream bankfull width. The objective of this study was to 

create an efficient method of estimating the cost of removing and replacing barriers on the West 

Branch of the Westfield River to optimize funds for culvert replacements.  

2.0 Project Information 

The Westfield River, located in western Massachusetts is a major tributary river of the 

Connecticut River. The Westfield River flows for a total of 78.1 miles and has a watershed 

encompassing 517 square miles (Westfield River Committee). The Westfield River was 

designated as a state and locally initiated National Wild and Scenic River, and the West Branch 

remains the longest uncontrolled river in Massachusetts (Curtis and Miller, 13-14). This study 

focuses on 13 barriers on the West Branch of the Westfield River consisting of Shaker Mill 

Brook, Depot Brook, and Watson Brook. Many of the crossings on these streams were surveyed 

prior this study. The information collected for the crossings are available on the New England 

Road Stream Crossing Inventory Database.  

3.0 Estimating Width of Replacement Culvert 

General standards for replacement culvert structures require the culvert width to be at minimum 

1.2 times the bankfull width of the stream (Bent and Waite, 2). Bankfull width is the width of the 

stream at bankfull stage. It is difficult to obtain an accurate measurement of bankfull width of a 

stream. For that reason the bankfull width of the stream at each road crossing was estimated 

using a bankfull width regression equation developed by the USGS (Bent and Waite, 22).  
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(1) 

 𝐵 = 15.1988 [𝐷0.4190]  

Where B = Bankfull Width (feet) 

D = Drainage Area (square miles)  

The USGS developed the bankfull width equation for streams in and near Massachusetts (Bent 

and Waite, 22). To find the bankfull width for the crossings in this study, a drainage area analysis 

was performed in ArcGIS using a Digital Elevation Model (DEM) of the Westfield River 

Watershed. A detailed outline of the analysis is found in the Appendix.  

4.0 Estimating Replacement Cost of Culvert 

Cost estimation is a very important aspect of culvert removal. Due to budget limitations, only a 

fraction of the culverts on the West Branch of the Westfield River may be replaced. Cost 

estimation along with information on culvert performance allows for optimization of spending.  

This study developed an efficient method of estimating culvert replacement cost using channel 

geometry and lump sum costs for certain aspects of the replacement. This approach is similar to 

that to that implemented by Diebel et al. for road crossing replacements in Wisconsin. The cost 

estimation for culvert replacement was separated into two categories: design and engineering, 

and construction costs.  

4.1 Design and Engineering  

Design and engineering costs include the following tasks: surveying, geotechnical evaluations, 

footing design & detailing, design preparation & permitting plans, hydraulic, geotechnical & 

structural reports, MassDOT Chapter 85 Review, and technical specifications/bidding 

documents.  These items were estimated as lump sums, and based on culvert replacements 

estimates performed by the Division of Ecological Restoration (DER) using the Massachusetts 

Department of Transportation (MassDOT) project estimator tool.  
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4.2 Construction Costs 

4.21 Traffic Control  

Culvert replacement construction will be taking place on crossings, the crossings in this study 

being roadways. This construction creates a potentially hazardous situation, and will require the 

use of temporary traffic controls to protect the work crew as well as those using public roads. 

Traffic control devices are as traffic control during culvert construction to warn drivers of 

construction and unusual roadway conditions and will and inform them how to move safely 

through or around the work area. (Mass Highway 3) Traffic devices used for cost estimates 

include signs, special lighting units, channelizing devices and warning lights. When used 

together these devices must provide motorists with sufficient warning of the work area, advise 

them of the proper travel paths to follow, and provide protection for the motorists and work 

crew.  

 

There are two main variables affecting the traffic control planning and selection of traffic control 

devises for culvert replacement construction: the type of crossing over the culvert, and the speed 

of the traffic travelling on the crossing. For this study the information needed for traffic control 

estimation is the characteristics of the roadway over the crossing. The road characteristics 

include the number of lanes on the roadway. The roadway information for the culverts in this 

study was found using the Stream Continuity Database and Google Earth. The cost estimations 

for traffic control were based on earlier culvert assessments on the Westfield River that the DER 

used to estimate cost of culvert replacements on the Westfield River.  

 

4.22 Site Preparation  

Site preparation is a critical part of the culvert replacement process consisting of mobilization 

and control of water. Mobilization includes the cost for transportation of contractor's personnel, 

equipment, and operating supplies to the site. The cost estimations for mobilization were based 

on earlier culvert assessments on the Westfield River that the DER uses to the cost of culvert 

replacements. 

Before construction provisions must be in place to control water and use soil erosion and 

sedimentation controls to prevent from entering the stream during and after construction. For 
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streams sandbags, silt, and earthen dikes are used to inhibit flow when possible. Often a pump is 

used to convey water around the excavation/work site, and discharge onto an outlet downstream 

of construction. The cost estimations for mobilization were based on earlier culvert assessments 

on the Westfield River that the DER uses to the cost of culvert replacements.  

4.23 Channel Excavation and Demolition 

In this study demolition consisted of channel excavation. Prior to installing the replacement 

culvert the existing road surface, bed material, and existing culvert must be removed. Channel 

excavation includes the removal and disposal of roadway surfaces and bed material. The cost 

estimation for channel excavation for this study was found using channel geometry to calculate 

the volume of excavation and multiplying the volume by a channel excavation unit price from 

MassDOT project estimator. An angle of repose of 34 degrees was assumed for these 

calculations. The New England Road Stream Crossing Inventory Database provided the length of 

culverts through the crossings, diameter of existing circular culverts, and road information for 

the crossings in this study. The earth cover as seen in Figure 1, is measured from the top of the 

existing culvert structure to the bottom of the road surface.  For these volume estimations the fill 

depth above the replacement culvert was back calculated using the replacement culvert height 

and a new earth cover, or fill depth seen in Figure 2 of 2 feet. It was assumed that 2 feet on each 

side of the culvert would be necessary to properly install the replacement arch culvert. For paved 

road surfaces, it was assumed that the existing conditions would consist of a 0.5 ft. thick subbase 

of gravel, and a 0.5 ft. thick layer of bituminous for removal. For a paved road the 

channelexcavation volume may be calculated using Equation 2. 
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Figure 2: Replacement Arch Cross Section 

 

Figure 1: Existing Culvert Cross-Section 
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(3) 

𝐸𝑉 = [(𝐶𝐷 + 𝐸 + 𝑅) ∗  (𝐴 + 4 + (𝐴 + 𝐹 + 𝑅) ∗ 𝑇𝑎𝑛(34) )] ∗ 𝐿 − [(𝐶𝐷)2 ∗ (
𝜋

4
) ∗ 𝐿]   

 

Where EV = Channel Excavation Volume ( in cubic feet)  

CD = Existing Culvert Diameter ( in feet) 

E = Existing Earth Cover (in feet) 

R= Road Thickness ( in feet) 

A = Width of Replacement Culvert (in feet)  

L = Existing Culvert Length (in feet) 

4.24 Culvert Installation  

Culvert installation includes placement of the aluminum arch culvert, backfilling borrow, fine 

grading and compaction, and road surface repair. The cost estimate for the aluminum culvert was 

estimated as a lump sum range using earlier culvert assessments on the Westfield River that the 

DER. For volume calculations in this study it was assumed that the arch culvert will be a semi-

circle with a width equal to 1.2 times the bankfull width of the stream at the crossing, and the 

height of the replacement culvert will be ½ times the width of the replacement culvert.  

The cost of borrow needed to backfill the arch culvert was estimated using the culvert geometry 

and a cost per unit volume for borrow from MassDOT project estimator. It was assumed that half 

of the volume of borrow excavated could be reused for borrow backfill. The volume of borrow 

required for backfilling was calculated using Equation 3. 

(3) 

𝐵𝑉 = [ (𝐴 + 𝐹) ∗ (𝐴 + 4 + (𝐻 + 𝐹) ∗ 𝑇𝑎𝑛(340) ) − (𝐴2) ∗ (
𝜋

8
) ] ∗

𝐿

2
 

Where BV = Borrow Volume 

F= Fill Depth (in feet) 

H =Height of Replacement Arch (in feet)  
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Fine grading and compaction of the borrow material will be the next phase of the installation 

process. The cost for grading and compaction for this study was estimated using arch geometry 

and a cost per unit area for grading and compaction from MassDOT project estimator. The 

estimate area requiring fine grading and compaction was calculated using equation 4. 

(4) 

𝐹𝐶𝐺 = 𝑅𝑊 ∗ [2 ∗ (2 + 𝐴 + (𝐻 + 𝐹 + 𝑅) ∗ 𝑇𝑎𝑛(340)] 

Where FCG = Fine Grading & Compaction Area (in square feet)  

RW = Road Width (in feet)  

 

The gravel base is placed after fine grading and compaction of borrow material. The gravel base 

is a pavement subbase or if the road is unpaved it is used as the top course. The cost of the gravel 

base was estimated using culvert geometry to calculate the required volume and a cost per unit 

volume for gravel base from MassDOT project estimator. The gravel base for paved road 

surfaced was assumed to be 0.5 ft. thick. The estimated gravel base volume may be calculated 

using equation 5. 

(5) 

𝐺 = 𝐺𝑇 ∗ [ 𝑅𝑊 ∗ ( 𝐴 + 4 + (𝐴 + 𝐹 + 𝑅 ) ∗ 𝑇𝑎𝑛(340))] 

Where G = Gravel Volume (in cubic feet)  

GT = Gravel Thickness (in feet) 

 

For stream crossing under paved roads, bituminous concrete pavement repair is required. Similar 

to gravel base, a 0.5 ft. thickness was assumed for the bituminous layer. The estimated volume of 

bituminous was calculated using equation 5, and to find the required area the bituminous volume 

was divided by the thickness of the layer.  
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4.25 Finished Surfaces 

The finished surfaces portion of culvert replacements for this study consisted of the removal and 

replacement of guardrail and the loam, seed and cleanup. The cost for guardrail removal and 

replacement was only included in the estimates if the stream crossing inventory or another 

resource indicated there was a guardrail over the crossing. The cost of the guardrail removal and 

replacement was estimated using arch geometry to find length of affected roadway and a per 

length unit cost from MassDOT project estimator. The estimated length of guardrail to be 

removed and replaced was calculated using equation 6.  

(6) 

𝐺 = 2 ∗ [ (2 ∗ ( 𝐴 + 𝐹 + 𝑅) ∗ 𝑇𝑎𝑛(340)) + 4 + 𝐴 ] 

G = Guardrail Length ( in feet)  

The loam, seed and cleanup for the disturbed area was estimated using a lump sum value 

estimated by the DER during culvert estimates on the Westfield River.  

5.0 Conclusion  

In this study of method of estimating culvert costs was found using channel geometry, crossing 

information, and previous crossing estimates. An excel file was created to perform these culvert 

cost estimates using very few input parameters: bankfull width, existing culvert length and 

diameter, type of road, existing road width, and existence of a guardrail. When these parameters 

are entered into the spreadsheet, the estimated amounts of each task are calculated using the 

formulas in this paper.  

 

6.0 Appendix 

6.1 Drainage area analysis  

The data required to perform the drainage area analysis in ArcGIS for the West Branch of the 

Westfield River included a DEM of the watershed, barriers locations along the streams, and the 

streamlines.  

DEM Processing 

1. Fill DEM 

2. Flow Direction 
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3. Flow Accumulation 

Barriers 

1. Select Using Polygon 

2. Right click on layer in Table of Contents  and create new layer from selection 

3. Snap pour points using 25m distance (or other appropriate distance) 

 

Watershed: 

1. Open watershed tool.  Input Fac and snapped pour points.  Select Value for raster pour 

points or ObjectID for vector pour points 

2. Inspect: Do your watershed boundaries make sense? 

3. Convert Watershed raster to polygon (Data Management >> From Raster >> To 

polygon).  The resulting polygons will have an area attribute in map units.   

a. Map units should be in meters or square meters for our work. 

b. If area is not an attribute, create a new field and calculate polygon geometry. 

4. Extract all data that makes sense, then adjust distances for snapped pour points and run 

Watershed again.  
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