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ABSTRACT 

ON THE ORDERING, MICROSTRUCTURE AND HOLE TRANSPORT 
CORRELATIONS IN SEMI-CRYSTALLINE POLY(3-HEXYLTHIOPHENE) 

 
FEBRUARY 2015 

 
XIAOBO SHEN, B.S., ZHEJIANG UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Thomas P. Russell 

This dissertation focuses on describing the research work done on poly(3-

hexylthiophene) (P3HT), which represents one of the most important p-type semi-

conducting polymers widely used in the field of organic optoelectronics. P3HT is also 

identified as a typical semi-crystalline material comprising different phases that would 

yield distinct impacts on its properties when integrated as an active component in 

optoelectronic devices. In particular, as the material finds great use as a hole-conductor, 

the objective of the dissertation is to develop a fundamental and quantitative 

understanding of the relationship between the semi-crystalline morphology and hole 

transport properties in P3HT. 

The first section provides a general introduction of the material P3HT and its role 

as the hole conducting material in various devices including organic photovoltaic solar 

cells, organic field effect transistors (OFET) and time-of-flight (TOF) devices. 

Characteristics of the OFET and TOF measurements are discussed. In parallel, structural 

characterizations of P3HT involving various methods are also described, followed by the 

introduction of current research progress in the field, and the motivations of the research 

presented in this dissertation. 
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Three projects are detailed following the introduction section. In the first project, 

a correlation between the hole transport and corresponding structural properties of the 

bulk regioregular poly(3-hexylthiophene) (rr-P3HT) is studied as a function of 

temperature by the time-of-flight (TOF) and wide angle X-ray diffraction (WAXD) 

techniques. Combining the measured transport characteristics and structural evolutions, 

two temperature regions with distinct transport mechanisms are identified. At T<120oC, 

the transport-related structural changes are negligible, and the hole transport is limited by 

the amorphous phase and can be thermally activated. At T>120oC, a microscopic thermal 

expansion along the π-π stacking direction within the nanocrystals and a macroscopic 

deterioration in the ordering both contribute to the decrease in the hole mobility at high 

temperatures. 

As demonstrated in the first project, the semi-crystalline morphology at different 

length scales plays a crucial role in dictating the hole transport properties in P3HT. The 

second project is aimed to gain a quantitative understanding of the ordered structures of 

P3HT at different length scales. Specifically, by utilizing a combination of wide angle X-

ray diffraction (WAXD), density and 13C solid-state nuclear magnetic resonance (NMR) 

measurements, the absolute degrees of crystallinity in different P3HTs are determined 

and compared. The results suggest that, in addition to the two-phase picture pervading in 

the literatures, a 10wt% local short-range ordering in the amorphous phase should be 

included, which may greatly influence the resulting macroscopic hole transport 

characteristics in P3HT-based optoelectronic devices. 

As an extension of the first and second projects, the third project presents a 

detailed investigation of the effect of ordering and microstructures on the hole transport 
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properties involving P3HT with different molecular characteristics. Interestingly, two 

important features are universally resolved in different materials: (i) a significant increase 

of the hole mobility measured by TOF at low temperatures in physically aged samples; 

(ii) an abrupt jump in the hole mobility at high temperatures. Taking advantage of the 

sensitivity of 13C solid-state NMR to local structures, the low temperature aging effects 

and high temperature mobility jump are attributed to the growth of the local ordered 

phase in the non-crystalline region during physical aging and an improvement of the π-π 

stacking within the crystalline phase, respectively. 

Based on the research results summarized in the three projects, the last chapter 

provides insights on the possible routes to further the understanding of structure-property 

relationships not only in the P3HT but also in other classes of semi-conducting polymers 

of similar semi-crystalline nature. The new understanding and strategies developed on the 

model P3HT materials in this dissertation are expected to shed light on improving the 

future design and processing of new types of high-performance semi-conducting 

polymers. 
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CHAPTER 1 

INTRODUCTION TO THE ORDERING, MICROSTRUCTURE AND HOLE 

TRANSPORT IN SEMI-CRYSTALLINE P3HT 

1.1 Introduction to Organic Photovoltaics and Regioregular P3HT 

In the past two decades, tremendous efforts have been invested in nearly every 

possible aspect of the development of organic photovoltaics (OPVs) ranging from 

advanced molecular design and synthesis, manipulation of the active layer morphology to 

device engineering.1–6 Consequently, encouraging results have led to a recent power 

conversion efficiency (PCE) surpassing 10% barrier,7 pushing the system closer to the 

boundary of commercialization. Yet, further improvements would rely on a more 

thorough examination and understanding of the aforementioned factors, for instance, 

active layer morphology. It is well known that in typical bulk heterojunction (BHJ) OPVs 

as shown in Figure 1.1(a),8 where a thin film (e.g. 100~200nm in thickness) consisting of 

polymeric electron donor (e.g. rr-P3HT) and small molecule electron acceptor (e.g. [6,6]-

phenyl-C61-butyric-acid-methyl-ester (PCBM)) is solution processed, the morphology is 

of critical importance to the charge separation, transport, collection processes and 

therefore, the ultimate PCE.1–3 The exciton or the bound electron-hole pair has a limited 

diffusion length of ~10nm, however, the dissociation of the bound-pair only occurs at the 

donor-acceptor interface, where an energy level offset effectively pulls electron and hole 

apart. Once dissociated, the positive and negative charge carriers need to be transported 

to the respective electrodes through the donor and acceptor domains and subsequently, 

collected by the electrodes to form a closed circuit. As a result, a desirable morphology 

would require a phase separation with sufficient interfacial area, a length scale that is 
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commensurate with the exciton diffusion length, and bicontinuous transporting pathways 

for electrons and holes to reach respective electrodes. The degree of phase separation, the 

miscibility of the two components and the distribution of the components within the 

active layer profoundly influence the charge separation and transport; while, 

microscopically, the crystal structure and orientation within the crystalline domain, the 

degree of crystallinity, etc. play a crucial role in determining charge transport. It is worth 

noting that all the above morphological parameters are, in general, closely related to the 

processing conditions, such as the choice of casting solvent,9 annealing conditions10 and 

the use of additives.11 

Among numerous polymeric semiconductors, semi-crystalline rr-P3HT has stood 

out as a prototypical p-type material owing to its ease of solution processing, good 

stability, well-studied structural properties and good performance in organic field-effect 

transistors (OFET) and OPV devices, therefore, providing an excellent model for the 

study of charge transport, in particular, hole transport. The chemical structure of P3HT is 

shown in Figure 1.1(b). Like all semi-crystalline polymers, rr-P3HT consists of an 

ordered crystalline phase, with stacks of crystalline lamellae, and a disordered amorphous 

phase, with non-crystallizable chains.12 On one hand, the degree of crystallinity in rr-

P3HT - a critical parameter that quantifies the relative amount of crystalline and 

amorphous phases in the material - complicates the characteristics of the pathways 

through which the holes travel within the active layer, since the crystalline phase serves 

as transporting highways and the amorphous phase as charge traps.13 On the other hand, 

within rr-P3HT crystalline phase, the different directions, namely, alkyl chain stacking 

direction a, π-π stacking direction b and backbone direction c, are found to favor hole 
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electrodes. Interestingly, it was reported that only the first two polymer molecular layers 

at the semiconductor/insulator interface dominate the charge transport, underscoring the 

significance of interfacial interaction and polymer chain orientation at the interface.22 In 

stark contrast, in TOF measurement, a rather thick film (on the order of μm) of 

semiconducting polymer is sandwiched in between two electrodes and the charge 

carriers, holes in this case, are generated by a laser excitation and transported from top Al 

electrode to bottom ITO electrode by an external electric field. Consequently, the 

photocurrent response is recorded from which a characteristic transit time, τtr, is 

determined and therefore, the charge carrier mobility can be calculated by Equation 1-1, 

where L and V are film thickness and applied voltage, respectively. Noticeably, the holes 

travel through the thick polymer film in the transverse direction, indicating that the 

resulting mobility carries information about the “bulk” morphology of the polymer film. 

Therefore, OFET mobility is particularly sensitive to the polymer morphology at the 

buried interface, highlighting the importance of interfacial interactions;23 whereas the 

TOF technique probes charge carrier transport in a bulk sense and is useful to elucidate 

the intrinsic charge transport characteristics in semi-crystalline rr-P3HT.13,24 

One of the most commonly used tools to characterize the microstructures of semi-

crystalline polymers, in the form of either bulk or thin film, is wide angle X-ray 

diffraction (WAXD) which can be done in either transmission or grazing incidence 

geometry, respectively.5,25 Complementary to real-space techniques such as transmission 

electron microscopy (TEM), scanning force microscopy (SFM), etc., WAXD, as a 

reciprocal space technique, yields important information concerning the crystalline phase 

such as the crystal size and d-spacing, the degree of crystallinity as well as the crystal 
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from various physical methods involving inherently different limitations and 

assumptions. 

Conventionally, the degree of crystallinity in a semi-crystalline polymer has been 

experimentally determined by several physical methods including wide angle X-ray 

diffraction (WAXD), density measurement, differential scanning calorimetry (DSC), 

nuclear magnetic resonance (NMR), and infrared spectroscopy. It is noteworthy that, due 

to the unique nature and assumptions involved, each approach has distinct advantages 

and disadvantages which, in turn, normally lead to disparate values of the degree of 

crystallinity for the same sample. For thin film samples which are directly relevant to the 

optoelectronic devices, the multiple uncertainties originating from the presence of 

surfaces and interfaces inevitably add complexity to the quantification, resulting in, rather 

than absolute numbers, mostly indirect comparisons as measured by grazing-incidence X-

ray diffraction (GIXD) and optical absorption techniques.21,25 As far as GIXD is 

concerned, it is suggested by Toney et al. that a pole figure must be obtained for an 

accurate comparison of the relative degree of crystallinity, where the distribution of 

crystallites having every possible orientation with respect to the underlying substrate 

normal is well accounted for.25 On the other hand, the optical absorption coefficient of rr-

P3HT in the low photon energy region, which features the π-π* transition, is shown to be 

proportional to the area under the X-ray diffraction peak, hence, the degree of 

crystallinity.21,28,29 It is therefore proposed that the degree of crystallinity can be 

conveniently compared in terms of the optical absorption. However, it can be deduced 

that a quantitative determination of the degree of crystallinity in samples involving thin 

films is hindered by multiple complexities. 
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As for bulk samples, in most cases, the aforementioned physical measurements 

are all suitable and the analytical methods are well documented.30 In a differential 

scanning calorimetry (DSC) measurement, for instance, the mass fraction degree of 

crystallinity for a semi-crystalline polymer is simply given by Equation 1-2, where ∆Hm 

and ∆Hm
∞ are the heat of fusion for the sample and a perfectly crystallized sample with 

100% crystallinity, respectively. In actual practice, since it is not trivial to prepare a 

polymer sample with a crystallinity of 100% due to the ubiquitous chain packing defects 

during crystallization, the determination of ∆Hm
∞ requires elaborative extrapolation with 

oligomeric samples of known crystallinity. 

                                                                                                                Eq. 1-2                           

Owing to the fact that ordered crystals have a higher density than the disorganized 

amorphous region, a density-based method is readily developed which yields both the 

volume and mass fractional degrees of crystallinity in the polymer sample by Equations 

1-3 and 1-4, respectively. In the context of density method, knowledge of the density of a 

completely crystalline material (ρc) and completely amorphous material (ρa) is necessary. 

Typically, the ρc is calculated based on the knowledge of crystal unit cell parameters 

while the ρa is either experimentally measured if a completely amorphous state can be 

prepared upon rapid quench or calculated by extrapolation methods. It should be noted 

that the validity of the density method relies on the assumptions that ρa is independent of 

the size of the amorphous phase and its orientation as well as that no voids exist in the 

specimen to be measured. 

                                                                                                                      Eq. 1-3 
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                                                                                                            Eq. 1-4 

Another widely used and well-established method is wide angle X-ray diffraction 

(WAXD), which is most sensitive to the electron density difference present in the 

crystalline and amorphous phases. In a WAXD measurement, the crystallites yield sharp 

diffraction reflections and, instead, the amorphous materials give rise to diffuse halos, 

and consequently, the degree of crystallinity can be determined by assessing the relative 

contribution of each component in the measured intensity. However, the challenge is that 

the contribution of X-ray absorption, incoherent scattering, etc. to the diffusive 

background should be appropriately corrected and that a reliable boundary separating the 

diffraction peaks and the underlying amorphous background should be drawn properly. 

Ruland thoroughly demonstrated a proper treatment of the scattering background arising 

from incoherent scattering, lattice imperfections, thermal vibrations and determined the 

degree of crystallinity of polypropylene by WAXD.31 Concerning the boundary between 

crystalline and amorphous phases in the diffraction, the amorphous halos from a fully 

disordered sample could be taken to represent of the amorphous phase in the semi-

crystalline sample and therefore, provide assistance in the separation. 

1.4 Correlating the Semi-Crystalline Morphology with the Hole Transport 

Properties in rr-P3HT 

1.4.1 Correlation Based on rr-P3HT OFET Devices 

As stated in 1.2, achieving desirable orientations of polymer chains at the 

dielectric interface is of critical importance for enhancing the hole transport along the 

conduction channel in OFET devices. Taking rr-P3HT as an example, chains within the 

nanocrystals mostly adopt three distinct orientations with respect to the underlying 
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substrate, namely edge-on, face-on and vertical, respectively.32 As suggested by both 

experimental33–35 and theoretical results,14 the hole mobility exhibits highly anisotropic 

characteristics along different axes in rr-P3HT with the polythiophene backbone direction 

(c-axis) providing the most efficient pathways for intramolecular hole transport. Along π-

π stacking direction (b-axis), the second most efficient route for holes, the intermolecular 

hole transport between the adjacent chains is greatly promoted; while, due to the presence 

of insulating alkyl chain along the edge-on direction (a-axis), the hole mobility is largely 

limited. Based on the hole mobility measured in OFET devices comprising rr-P3HT films 

with different regioregularities, Sirringhaus et al. reported a large hole mobility 

anisotropy of more than 100-fold, which was attributed to the markedly different chain 

orientations within the crystalline domains.15 In particular, the dominant edge-on 

orientation was shown to result in the hole mobility as high as 0.1 cm2V-1s-1 owing to the 

in-plane intermolecular π-π stacking which highly delocalizes the holes between adjacent 

chains. Consequently, the chain orientation within the crystalline domain was proposed to 

limit the charge transport properties. The charge transport anisotropy associated with the 

rr-P3HT chain orientation is further supported by an investigation on the effect of surface 

treatment on OFET performance by Kline et al. where the self-assembled monolayers 

(SAMs) were varied from hexamethyldisilizane (HDMS) to octadecyltrichlorosilate 

(OTS).23 Using X-ray diffraction rocking curves allows a direct examination of chain 

orientation at the critical buried interface between rr-P3HT and the dielectric where the 

flow of charge carriers occurs. Thus, a correlation between the hole mobility and rr-P3HT 

crystal orientation is established where the 100-fold increase in hole mobility observed in 

low and medium molecular weight rr-P3HT on OTS-treated silicon oxide substrate 
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limited differently depending on the material properties (e.g. molecular weights, 

regioregularities, etc.) and the corresponding morphologies. To evaluate the contribution 

from each phase in rr-P3HT, Pingel et al. measured the hole mobility of rr-P3HT with 

different molecular weights at a local and macroscopic scale by PR-TRMC and OFET, 

respectively.21 As shown in Figure 1.5, it is interesting to note that while the OFET hole 

mobility increases with the molecular weight, the intra-granular hole mobility is weakly 

dependent on the molecular weight of the material and remains on the order of 10-2 cm2v-

1s-1, suggesting that the variations in macroscopic hole transport that are commonly 

reported with different rr-P3HT molecular weights are likely related to the amorphous 

phase surrounding the crystalline phase. Following further temperature-dependent OFET 

hole mobility and absorption measurements, it is concluded that the long tie chains 

spanning neighboring crystalline domains in high molecular weight sample effectively 

transport the holes by bypassing the amorphous phase and are responsible for the 

enhanced hole mobility at high temperatures; whereas, the increasing amounts of 

amorphous phase in the low molecular weight samples at elevated temperatures impose 

greater barrier for intergranular hole transport and significantly limit the hole mobility. 

Similar arguments based on the molecular weights are implied or reported in several 

other studies as well.14,18,33,34 

It is worth noting that, depending on the material properties (e.g. molecular 

weights, polydispersity (PDI) and regioregularities) and measurement conditions (e.g. 

temperature, etc.), the aforementioned morphological parameters, by influencing both the 

intra- and inter-granular hole transport to various extents, are of direct consequence for 

the ultimate macroscopic hole transport properties in rr-P3HT based OFET devices. 
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CHAPTER 2 

ON THE STRUCTURE – HOLE TRANSPORT CORRELATIONS IN SEMI-

CRYSTALLINE P3HT 

2.1 Introduction 

Electronic and optoelectronic applications of polymer-based organic 

semiconductors, such as organic light-emitting diodes (OLED), organic field-effect 

transistors (OFET), and organic photovoltaic devices (OPV), are currently approaching 

the stage of maturing technologies.1,2 Most of these applications would benefit from the 

development of new materials with improved charge carrier transport properties and 

enhanced mobility. Among the numerous potential polymeric semiconductors, a 

regioregular poly(3-hexylthiophene) has become the prototypical p-type material due to 

its efficient performance in devices, an ease of processing and a good stability, advancing 

the commercialization of OPV products (e.g. large area flexible solar panels).3–5 The 

initial success has subsequently stimulated a significant amount of synthetic efforts that 

have led to a widespread material availability in sufficient quantities, development of 

various structural isomers, like materials with different regioregularities,4,6,7 and 

polymers with a wide range of molecular weights.8–10  

Like all semi-crystalline polymers, rr-P3HT consists of an ordered crystalline 

phase, with closely packed conjugated chains, and a disordered amorphous phase.11–13 

Due to the nature of rr-P3HT, with a polythiophene backbone and pendant alkyl side-

chains, there is also a possibility that rr-P3HT may have a nematic, liquid crystalline-like 

form, wherein the adjacent chains are oriented with respect to each other but there is no 

registry between them.14 The crystalline phase consists of a monoclinic-type unit cells 
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with two chains per cell (a=1.60nm, b=0.78nm, c=0.78nm and γ=86.5o) as proposed in a 

recent rotation-tilt electron diffraction study.15 An amorphous phase, on the other hand, 

has been modeled by a regiorandom P3HT.16 

The differences in optical properties of rra-P3HT and rr-P3HT are assigned to a 

delocalization of electron wave functions along the planarized backbones (intra-chain), 

i.e. in the (001) direction, and along the π-π stacking (inter-chain), i.e. in the (020) 

direction, in the latter material.17,18 Charge transport is more efficient along these 

directions, as compared to the (100) direction where it is prohibited by the insulating 

hexyl side chain. The larger mobility in materials with higher regioregularity, as shown 

with OFET5 and time-of-flight techniques,19 emphasizes the role of a high degree of local 

structural order for improving macroscopic charge transport properties. The preferential 

alignment of the π-π stacking along the macroscopic charge transport direction imparts 

an anisotropy into an otherwise random orientation of domains and leads to a further 

increase in mobility.20 A recent study by Pingel et al.21 shows a thermally-activated hole 

transport with similar activation energies for high molecular weight rr-P3dHT (Mn~27K) 

on the local length scale inside the crystalline domains, and on the macroscopic length 

scale, throughout the semi-crystalline material, measured by the pulse-radiolysis time-

resolved microwave conductivity (PR-TRMC) and OFET measurements, respectively. 

Unlike in the low molecular weight counterpart (7.2K), a better interconnection between 

the ordered domains in the high molecular weight rr-P3dHT was argued to be responsible 

for the enhanced charge transport at high temperatures. On the other hand, the amorphous 

phase has also been argued to dictate the hole transport in rr-P3HT in several studies.9,10 

In general, it is clear that the hole transport properties in rr-P3HT vary with molecular 
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weight, regioregularity, temperature and more importantly, the morphology.4,9,10,21,22 

Thus, it would be worthwhile to establish a detailed correlation between the micro- and 

macroscopic structure in the semi-crystalline rr-P3HT and its hole transport properties, so 

as to better understand the interplay between the crystalline and amorphous phases. 

In this chapter, by using the temperature-resolved TOF and WAXD techniques, 

we present a detailed investigation of the bulk rr-P3HT with a relatively high molecular 

weight (Mn~23K) and regioregularity (>98%), and correlate its structural evolution with 

the macroscopic hole transport at different temperatures. The transport-related structural 

features in the crystalline and amorphous phases are probed individually, in the 

regioregular and regiorandom P3HTs, respectively. 

2.2 Experimental Section 

2.2.1 Time-of-Flight Mobility Measurements 

For TOF measurements, samples were prepared by a drop-casting method. A ~30 

mg/ml solution of rr-P3HT (number-average molecular weight Mn~23k, PDI~2.0, 

regioregularity >98%) in ortho-dichlorobenzne (o-DCB) was carefully dropped onto pre-

cleaned indium tin oxide (ITO) coated glass substrate (Thin Film Devices Inc.) on a flat 

surface inside a N2-filled glove box. The slow evaporation of o-DCB resulted in a thick 

film (~1.8μm) with a smooth surface and uniform thickness. It is noteworthy that the 

well-controlled drop-cast process with uniform evaporation is important for sample 

preparation, since gradient structures and surface roughness were usually observed when 

the evaporation was non-uniform. The sample was kept in a vacuum oven overnight at 

room temperature to remove the residual solvent. Finally, a semi-transparent Al electrode 

(25nm thickness, 6mm2 area) was thermally deposited onto the film under high vacuum 
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(2×10-6 mbar) using an evaporator in the glove box. The slow drying of a high-boiling 

point o-DCB after drop-casting of rr-P3HT solution produces a smooth, thick film. 

Unlike the spin-coated thin film, whose morphology is far removed from its equilibrium 

state, the morphology of the slow-dried film is expected to be closer to the 

thermodynamic equilibrium. All the TOF samples were thermally annealed at 210oC for 

30min (as close to the melting point as the sample fabrication procedure permits in order 

to maintain the geometrical film integrity). 

The third harmonic of a pulsed Nd:YAG laser (Continuum Lasers, Surelite II) 

was used for the photo-excitation of charge carriers at a 355 nm wavelength. Illumination 

by 4-6 ns pulses through the Al electrode produced a gradient of excess carrier 

concentration along the smallest film dimension due to a non-uniform light absorption at 

this wavelength. In order to apply an external bias voltage (V), either a set of 

electrochemical batteries or a power supply (Stanford Research Systems, PS3100) were 

used in different voltage ranges. The sign of the applied bias determines if electrons or 

holes move through the sample. In this study, the transport of holes is reported. The 

intensity of the laser pulse was kept sufficiently low to avoid a distortion of the electric 

field, due to a non-uniform distribution of photo-generated charge carriers. A Tektronix 

TDS 3052C oscilloscope was used to record the photocurrent transients, using a 50 Ω 

load resistor. 

2.2.2 Temperature-Resolved Wide Angle X-ray Diffraction Measurements 

For temperature-resolved WAXD measurements, a polymer powder was directly 

melted in a hermetically-sealed differential scanning calorimeter (DSC) pan on a heating 

stage inside a N2-filled glove box. Since the pan would be placed vertically in WAXD 
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experiment, a sufficient amount of polymer was placed in the pan so that, during the 

experiments, the x-ray beam penetrates through the same thickness of sample, even when 

molten. After cooling to room temperature in the glove box, the pan was rapidly sealed 

using a crimper. Subsequently, the pan was heated to 250oC in a DSC (TA instruments, 

Q200-DSC) and held at that temperature for 10min to remove any thermal history, then 

ramped down to 150oC at a rate of 10oC/min and finally annealed at 150oC for 30min to 

induce ordering, prior to the WAXD measurement. Temperature-resolved WAXD 

measurements were performed on Beamline 7.3.3 at the Advanced Light Source (ALS) at 

the Lawrence Berkeley National Laboratory (LBNL). A transmission geometry was used. 

The wavelength of the x-rays is 1.240Å and the diffracted photons were collected by a 

two dimensional Pilatus 1M detector. A heating stage (Linkam) with a built-in sample 

cell accommodating the DSC sample pan, was mounted into the beamline with a sample-

to-detector distance of ~302.6 mm. The sample was heated at a rate of 10oC/min and then 

kept at each temperature set-point for 5 min. Each measurement was done with 60s 

exposure times. During the experiment, a N2 atmosphere was maintained by purging with 

N2. Correction for geometry and polarization was carried out for the diffraction followed 

by subtraction of background arising from the pan and parasitic scattering. 

2.3 Results and Discussion 

2.3.1 Hole Transport in rr-P3HT Measured by the TOF Technique 

Shown in Figure 2.1 are the typical photocurrent transients measured in rr-P3HT 

films at 20oC for different applied voltages. A clear shift of the transit time (τtr) to smaller 

values can be seen as the applied voltage increases from 5V to 15V, indicating that the 

passage of holes through the entire thickness of the film is accelerated with the higher 
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For T<120oC (40oC and 80oC in Figure 2.3 (a)), the mobility initially increases 

with increasing electric field, i.e. shows a positive slope in the range of small electric 

fields, and then levels off; while for T>120oC (160oC and 200oC in Figure 2.3 (b)), the 

mobility shows a continuous, linear decrease over the entire E1/2 range, giving rise to a 

negative slope. Notably, the mobility measured at 200oC is smaller than that at 160oC 

across the same E1/2 range, which is consistent with the decrease seen in its temperature 

dependence. It is interesting to note that the temperature of 120oC, at which no significant 

electric field dependence is seen, seems to be the point at which the change of the slope 

occurs, which is in good agreement with the onset of the deviation observed in the 

temperature dependence. The GDM was used to understand the sign reversal of the slope 

in the electric field dependence of mobility. According to Equation 2-1, the slope is given 

by the difference between (σ/kT)2 and Σ2 at fixed temperatures. Thus, the relative 

magnitude of the energetic disorder parameter, a measure of the width of density of states 

(DOS) normalized to the thermal energy, and the positional disorder parameter, a 

measure of the inter-site separation and coupling, can be evaluated and related to the 

difference in the hole mobility over different temperature ranges. In the recent work by 

Mozer et al.,25,26 a negative field dependence was also observed, however, starting at a 

much lower temperature of ~250K (~-23oC), above which, a negative electric field 

dependence was maintained up to 310K (~37oC). This significantly differs from our 

electric field dependence results which show a positive dependence up to 120oC. 

Although there is no information provided regarding the rr-P3HT employed in their study, 

this difference might be explained by the differences in the rr-P3HTs studied, which, in 

turn, would also result in different energetic and positional disorder parameters. In short, 
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the functional dependences of the hole mobility on the temperature and electric field 

unambiguously suggest a structural change of rr-P3HT at high temperatures. 

Consequently, the knowledge of structural changes, namely the changes in crystalline and 

amorphous phases at different temperatures, is required to fully understand the charge 

carrier transport properties. 

Considering the semi-crystalline nature of rr-P3HT, it is not possible to examine 

the crystalline and amorphous phases separately. To approach this problem, regiorandom 

P3HT (rra-P3HT, Mn~22k, PDI~3.3, regioregularity~57.7%), which is amorphous19 and 

chemically identical to rr-P3HT, has been introduced to model the amorphous phase 

existing in rr-P3HT.16 

2.3.2 Thermal Evolution of the Structure of rr-P3HTs Probed by WAXD 

The temperature dependence of the (100) and (020) reflections in the rr-P3HT on 

heating is shown in Figure 2.4. The changes in the peak intensities (Imax) and the full 

widths at half maximum (FWHM) are also shown. As can be seen in Figure 2.4 (a), the 

(100) spacing, characteristic of the distance between the ordered rr-P3HT backbones that 

are separated by the alkyl side chains, shows a continuous increase with temperature over 

the entire range from 30oC to 230oC. This expansion along the a direction was also 

reported recently in a thin-film geometry.22,27–29 Considering a resemblance between the 

hexyl side chain and linear polyethylene (PE), the expansion of rr-P3HT along the a 

direction is somewhat unexpected, since the thermal expansion along the PE backbone is 

negligible.30 According to the electron diffraction study by Brinkmann et al.,15 the hexyl 

side chains of rr-P3HT are not interdigitated and are tilted with respect to the a,c plane. 

Based on the temperature-resolved infrared spectroscopy measurements by Tashiro et 
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direction, the change of tilting angle of hexyl side chain during heating is likely 

responsible for the initial shrinkage along the π-π stacking direction as well. The 

persistence length of the crystals along the π-π stacking direction shows an initial 

increase, then, plateaus near ~70oC before reaching the melting point. The Scherrer 

analysis yields a persistence length of ~10 nm along the π-π stacking direction. Finally, 

the peak intensity, relevant to the ordering and crystallinity in the system, remains 

relatively constant up to ~130oC followed by a decrease with increasing temperature as 

the melting point is approached. This trend is similar to that seen in the (100) direction. 

On cooling, almost identical d-spacing and similar changes in the FWHM and Imax were 

found along both the (100) and (020) directions as shown in Figure 2.5, indicating a 

reversibility of the structural change as a function of temperature. 

Thus, the structural evolution of rr-P3HT on heating and cooling can be divided 

into two temperature regions as shown by the dotted line in Figure 2.4. In Region I, from 

30oC to ~120oC, there is an initial expansion along the (100) direction (~0.47Å) and a 

shrinkage along the (020) direction (~0.01Å), due to a disordering process in the side 

chain induced by the introduction of the gauche± conformation. The persistence length 

and ordering in both directions are increasing. Subsequently, the π-π stacking distance 

plateaus at ~3.74Å while the (100) spacing continues to expand (~0.34 Å). Meanwhile, 

the ordering and persistence of (100) crystal planes continue to increase, whereas, those 

of the (020) crystal planes remain relatively constant. The degree of crystallinity of the rr-

P3HT at 30oC was determined to be ~59%, suggesting a comparable mass fraction of 

crystalline and amorphous phases. In Region II above 120oC, a loss in the ordering occurs 

close to the melting point along both the (100) and (020) directions, resulting in a 
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decrease of crystallinity. A detailed analysis of the degree of crystallinity as a function of 

temperature is undergoing and will be summarized elsewhere. The linear thermal 

expansion coefficients along the (100) and (020) directions are determined for T<120oC: 

α(100) = 6.1×10-4 oC-1 and α(020) = -6.6×10-5 oC-1 (shrinkage); and for T>120oC: α(100) = 

2.2×10-4 oC-1 and α(020) = 1.8×10-4 oC-1. Their similarity at higher temperatures to that of 

an amorphous PE (1.7~2.7×10-4 oC-1)32 indicates a 3-dimensional thermal expansion of 

disordered hexyl side chain. We suggest that there is a nematic-like liquid crystal phase 

in Region II, based on the fact that the side chains are in the molten state while the 

ordered packing of polythiophene backbones is preserved. Notably, larger expansion was 

observed along both the (100) (~0.5Å) and (020) (~0.08Å) directions in comparison to 

Region I. Interestingly, at ~120oC, where the Region II in structural data begins, the 

turning point in TOF data is also seen. The hole transport along the polythiophene 

backbone, i.e. (001) direction, the fastest propagation pathway, is not expected to change 

significantly with increasing temperature due to the covalent bonding along the chain. 

The (100) direction, along the insulating hexyl side chains between the backbones, has 

limited influence on the hole transport as compared to the more favored π-π stacking 

direction. Consequently, two mechanisms can be considered to account for the rate-

limiting step in the hole mobility above 120oC: (i) the microscopic π-π stacking 

expansion inside the crystalline phase which may decrease the hole mobility due to an 

increase in the hopping distance or (ii) the macroscopic decrease in the crystallinity 

which would require for holes to pass a greater distance in the amorphous phase. Since 

the transition between the two regions of distinct structural behavior is rather broad, we 
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with 1/T2, showing a typical thermally-activated hopping which can be described by the 

GDM. In the corresponding WAXD data, there is no significant change in the d-spacing 

and crystal persistence length along π-π stacking direction, supporting the applicability of 

GDM with the temperature-independent energy and positional disorder parameters. From 

the electric field and temperature dependences of hole mobility below 120oC, the σ, Σ and 

C were determined to be 116 meV, 3.3 and 7.9×10-4 (cm/V)1/2, respectively. An alternate 

approach is to extract σ from the slope of logarithmic zero field mobility vs. 1/T2. The 

values of Σ and C can be calculated from the slope of electric field dependence 

(dlnμ/dE1/2), assuming that σ is constant at lower temperatures. Similar values of σ=124 

meV, Σ=3.6 and C=7×10-4 (cm/V)1/2 were obtained. The positional disorder parameter Σ 

agrees well with value of 3.3 reported by Mozer et al.;25 however, the energetic disorder 

parameter σ is somewhat larger than the typical values previously reported for different 

rr-P3HTs,19,23,25 suggesting that the difference in the materials might be responsible for 

this disagreement. Indeed, σ and Σ in our calculations are very similar to the 

representative values reported for disordered polymers,24 implying that the amorphous 

phase surrounding the crystalline phase, hence, limits the charge carrier transport in 

Region I. This is also supported by a comparison to the temperature dependence data for 

rr-P3HT obtained from PR-TRMC, which probes the charge transport on a local length 

scale inside a crystalline domain and, therefore, depends weakly on the molecular 

weight.21 The slope derived from the hole mobility vs. 1/T2 in PR-TRMC21 is two orders 

of magnitude smaller than that from our TOF data in Region I, indicating that the 

energetic disorder is larger in the case of macroscopic hole transport, which is limited by 

the amorphous phase in between the crystalline phases. 
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Above 120oC (Region II), the increase in the distance between the hopping sites 

along the π-π stacking direction in the liquid crystal phase and the increase of the 

amorphous phase concentration occur simultaneously and both can contribute to the 

decrease in the hole mobility at high temperatures. Assuming that (i) the hole mobility 

inside the liquid crystal phase remains much larger than in the amorphous phase despite 

the thermal expansion along the π-π stacking direction and taking into account that (ii) 

there is no thermal inter-molecular expansion in the amorphous phase, the effect of 

reduced crystallinity can be further rationalized – the holes travel longer distance in the 

amorphous phase, resulting in a lower hole mobility. It is interesting to note that the 

negative slope in temperature and electric field dependences of hole mobility have been 

recently observed in a discotic liquid crystal mesophase of the triphenylene derivative.33 

Though those data were interpreted in terms of a reduced electron transfer integral due to 

the thermal activation of phonon modes, they can be described by the thermal expansion 

along the π-π stacking direction in the columns equally well. This might indicate that the 

two types of organic materials share the same charge transport mechanism in the 

respective temperature ranges.  

Here, we would like to note that our goal was to characterize the bulk structural 

and charge transport properties of rr-P3HT and, therefore, the TOF and WAXD 

techniques with “thick-film” and powder sample geometries, respectively, were selected. 

Also, the sample fabrication procedures were optimized for the material morphology to 

be as close to the thermodynamic equilibrium as possible in both cases. A complete 

thermal reversibility of structural and charge transport data was used as an indication. 

However, though we think that our choice of experimental techniques and optimized 
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sample preparation conditions has led to that fact that the structural and charge carrier 

transport properties were compared on the same physical length-scales and in the nearly-

identical experimental conditions, the sample geometries and preparation conditions were 

different.  

2.4 Conclusions 

In this Chapter, the structural changes of rr-P3HT have been shown to influence 

the intrinsic hole transport in the bulk rr-P3HT with changing temperature. A separate 

examination of the amorphous phase in the rr-P3HT is assisted by the introduction of an 

amorphous rra-P3HT in which a temperature-independent intermolecular distance was 

observed. For T<120oC, no significant hole transport-related structural changes are found 

and GDM is suitable to describe the hole transport. The temperature and electric field 

dependences of the hole mobility yield the energetic disorder (σ~120meV) and the 

positional disorder (Σ~3.33) parameters, suggesting that the amorphous phase in rr-P3HT 

limits the hole transport. For T>120oC, the GDM with temperature-independent 

parameters is no longer applicable and both the decreased crystallinity and π-π stacking 

expansion occur simultaneously, either of which could lead to a decrease in the hole 

mobility in rr-P3HT at high temperatures. The correlated, temperature-dependent studies 

of structural properties and charge carrier transport mechanisms facilitate in 

understanding the material functionality upon its incorporation into electronic and 

optoelectronic devices. This not only allows gaining a better understanding of the 

mechanisms of device operation at various temperatures but also serves as an efficient 

tool for a further optimization of the material properties and device performance. 
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CHAPTER 3 

PROBING THE MULTI-SCALE ORDERING IN SEMI-CRYSTALLINE P3HT 

3.1 Introduction 

From a morphological perspective, one of the most important structural 

parameters for P3HT is the degree of crystallinity, which influences the UV-Vis 

absorption, the miscibility with n-type [6,6]-phenyl-C61-butyric-acid-methyl-ester 

(PCBM) in the OPV active layer, charge transport properties and, therefore, the ultimate 

device performance.1,2 Although the P3HT has been intensively researched, agreement on 

the degree of crystallinity of P3HT simply does not exist, due to the disordered nature of 

the crystals,3,4 possible order within the amorphous phase, the interpretation of the results 

obtained with different techniques, and batch-to-batch variations in the polymers (for 

example regioregularity and molecular weight distribution). For thin film samples, due to 

the multiple uncertainties originating from the presence of surfaces and interfaces, 

indirect comparisons, rather than absolute numbers, are frequently reported by techniques 

including grazing-incidence x-ray diffraction (GIXD) and UV-Vis absorption.5–7 While 

for bulk samples, WAXD,3 density measurements,8 DSC9,10 and NMR10–13 have been the 

most commonly used methods to determine the degree of crystallinity in P3HT. Pascui 

and co-workers, by discerning different conformational states of side chains belonging to 

order and disordered phases in 13C solid-state NMR, concluded that the typical degrees of 

crystallinity range from 37 to 64% for low molecular weight P3HTs (Mn 5.2K and 7.9K, 

respectively).13 Along with DSC results, the maximum heat of fusion for 100% 

crystalline rr-P3HT was estimated to be ∆Hm
∞~37 J/g, which has come under significant 

scrutiny subsequently. Nieuwendaal and co-workers suggested that, when the molecular 
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weight of P3HT is high (Form I), the side chains in both ordered and disordered regions 

appear to be highly dynamic and disordered, and, therefore, solid-state NMR could not be 

used to assess the degree of order.11 These authors developed a spectral editing method in 

an attempt to separate the ordered from disordered fractions in a T1ρ-filtered 13C 

CP/MAS NMR experiment, and determined that the degree of crystallinity was ~55% for 

a slow-dried P3HT (Mn~65K), which included contributions from chain segments that 

were locally ordered.11 Balko and co-workers, using a WAXD method originally 

developed by Goppel,14 reported degrees of crystallinity of P3HT on the order of 70~80% 

for a series of P3HTs having different molecular weights (ranging from 5K to 34K), and 

arrived at a modified ∆Hm
∞ of 33±3 J/g.3 The degree of crystallinity was determined by 

evaluating the intensity at a specific scattering angle between the (100) and (200) 

reflections, where the additional background arising from incoherent scattering and 

diffuse scattering was neglected.3 More recently, Snyder and co-workers reported good 

agreement between the DSC-derived and NMR-derived crystallinities and determined 

∆Hm
∞ of 49±2 J/g, calculated by extrapolating the measured heat of fusion of P3HTs with 

different molecular weights to an infinite chain length.10 

The degree of ordering in P3HT can be assessed by a variety of methods, 

however, care must be taken to note that each method is unique and what defines order or 

crystallinity depends, to some extent, on assumptions made in the analysis of the data. 

For example, the degrees of crystallinity of linear polyethylene obtained from density 

measurements are always found to be greater than those obtained by DSC. Manelkern 

concluded that the disparity arises from the presence of quasi-ordered interfacial region, 

which contributes to the density but is too weak to be counted in the measured heat of 
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fusion.15 Similarly, the assignment of 13C NMR peaks to crystalline chain segments is 

based on the segmental conformations or regularity of packing, which does not require 

long-range order as is required by WAXD.16 As a result, the degree of crystallinity 

determined by NMR is usually greater than that determined by WAXD, owing to the 

additional inclusion of the short-range order in the form of crystalline-amorphous 

interphase, local rigid packing in the amorphous phase.17 These disparities in the degrees 

of crystallinity reported for P3HT arises not only from the different methods used to 

determine the degree of crystallinity but, also, from differences in the molecular weight 

and molecular weight distributions of the polymers investigated and differences in the 

regio-regularities of the polymers. 

Consequently, we undertook a study on the evaluation of ordering of one P3HT 

by a range of characterization methods. With WAXD, a very large q range was measured, 

taking into account the incoherent scattering and scattering from the amorphous 

component using a regio-random P3HT (rra-P3HT).18 With solid-state NMR, we adopted 

Nieuwendaal’s approach11 and used a modified spectral editing method to interpret 13C 

solid-state NMR.  

In this Chapter, we present a quantitative study on the determination of the degree 

of crystallinity in bulk rr-P3HT by using a combination of WAXD, density measurements 

and 13C solid-state NMR. By comparing the results from these different methods, the 

presence of an ordered amorphous component is evident, which is of significant 

importance in determining the transport characteristics of the polymer. 
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For WAXD, density and NMR measurements, samples were prepared in the same 

manner with precisely-controlled thermal history. Powders of each material were sealed 

in a hermetical differential scanning calorimeter (DSC) pan to ensure good thermal 

conductivity, which was placed on a HSC302 heating stage constantly purged with N2 

gas. Subsequently, the heating stage was programmed to hold at a temperature well above 

the melting point of rr-P3HT, that is 260oC, for 1 hour to fully remove the thermal history 

of the original powders, and then slowly ramp down to room temperature at a rate of 

0.2oC/min. It is our experience that the extremely slow cooling process allows rr-P3HT to 

fully order and yields reproducible samples, which is particularly crucial for density 

measurements since any potential voids formed in the bulk during rapid cooling will be 

detrimental to the accuracy of the measurements. Finally, the DSC pan was carefully 

opened and the bulk polymer sample was taken out of the pan as a piece of chunk with 

size comparable to the DSC pan. 

3.2.2 Wide Angle X-ray Diffraction (WAXD) Measurements 

WAXD measurements were performed on Beamline 7.3.3 at the Advanced Light 

Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). A transmission 

geometry was used. The wavelength of the x-rays is 1.240Å and the diffracted photons 

were collected by a two dimensional Pilatus 1M detector. A home-made helium box 

purged with He gas was used to reduce the unwanted air scattering and ensure clean 

background. Extra background was further avoided by attaching the bulk samples onto 

annular washers so that the bulk sample, without any additional container, is in the beam 

path between the exit of X-rays and detector. The sample-to-detector distance was ~207 

mm. Corrections for sample absorption, thickness, normalization and polarization were 
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The fitting of the incoherent scattering of P3HT and an exemplary subtraction of 

the incoherent scattering from the experimental data are shown in Figure 3.3(a) and (b), 

respectively. 

3.2.3 Density Gradient Column Measurements 

A saturated sodium chloride (NaCl) solution (ρ ~ 1.2 g/cm3) and deionized water 

(ρ ~ 1.0 g/cm3) were used as the two miscible liquids with higher and lower density, 

respectively. The linear gradient in a column (American Density Materials, Inc) was 

established by a sequential mixing of saturated NaCl solution into deionized water and 

was maintained at constant temperature of 25oC by water bath during the course of 

measurement. Density floats of precisely known densities (American Density Materials, 

Inc) were wet with water and then released into the column. As exemplarily shown in 

Figure 3.4, a linear calibration curve of the gradient was obtained by plotting the densities 

of floats against their positional readings in the column. Both rr- and rra-P3HT specimens 

were thermally treated with the same slow cooling recipe as in the WAXD 

measurements. Subsequently, a chunk of the polymer specimen was first wet with 5mM 

sodium dodecyl sulfate (SDS) solution and carefully introduced into the column from the 

top of the gradient so that no air bubbles were adhered to the sample. After the specimen 

was stabilized in the column, the position was read and consequently the density of the 

specimen was determined from the calibration curve. In general, four to five readings 

were recorded and averaged for each measurement. 
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3.3 Results and Discussion 

3.3.1 Crystallinity Determined by WAXD Approach 

Detailed reviews of the theoretical foundation and mathematical derivation of 

various WAXD-based approaches for the determination of the degree of crystallinity in 

polymers have been published.3,14,18 The success of these treatments, in particular those 

put forth by Ruland and Goppel, rely on an accurate assessment of the contributions to 

the diffraction from incoherent scattering, Iinc(q), the crystalline component, Icr(q), and 

the amorphous component, Iam(q), to the overall diffracted intensity I(q). Several 

important issues must be addressed. Iinc(q), which contains no structural information must 

be removed from the measured data before considering the coherent scattering from the 

structure in the material. Since the Iinc(q) increases as a function of q, this procedure is 

particularly important for high q data. The incoherent scattering for P3HT in electron 

units can be calculated as described in 3.2.2. To subtract the calculated Iinc(q) from the 

experimentally measured data, the measured diffraction intensity is converted to an 

absolute scale. An effective means to describe Iam(q) for P3HT is critical. Quenching 

from the melt has had little success, since P3HT crystallizes rapidly. Since the diffraction 

contains reflections from the inter-thiophene chain and the inter-alkyl side chain 

separation distances, which have different thermal expansion coefficients, extrapolation 

of melt data to room temperature, for example, cannot be done without making numerous 

assumptions. Also, a thorough subtraction of the background arising from the heating 

compartment (i.e. aluminum pan) is not practically straightforward.25 Therefore, we 

assumed that Iam(q) was described by the scattering from rra-P3HT. While this route 

assumes the chain configuration and packing density of the rra-P3HT is identical to 
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Three semi-crystalline rr-P3HT samples with number-average molecular weights 

of 13K, 23K and 34K, and a rra-P3HT sample were used in this study. The characteristics 

of the polymers are shown in Table 3.1. 

All samples were subject to the same thermal history prior to each WAXD 

measurement, namely cooling from 260oC to room temperature at a rate of 0.2oC/min. 

This slow cooling process maximizes the degree of ordering within the semi-crystalline 

samples. For each measurement, the resulting diffraction intensity was normalized and 

corrected for polarization, absorption, sample thickness and parasitic scattering, followed 

by conversion to absolute units using a pre-calibrated glassy carbon sample.21 

Subsequently, the calculated incoherent scattering of P3HT was subtracted from the 

experimental data on an absolute unit scale. (see 3.2.2) The diffraction intensity I(q) in 

electron units for all the samples is plotted against q in Figure 3.5 over a scattering vector 

range from ~0.2 Å-1 to ~3.8 Å-1. 

Sharp reflections indicative of semi-crystalline order were evident in all 

regioregular samples with the smallest molecular weight sample exhibiting more small 

crystalline peaks.9 It is interesting to note that an additional peak located at q~2.68 Å-1 is 

present in all the regioregular samples, which can be important for the determination of 

crystallinity. Most diffraction profiles reported to date do not report this reflection due to 

the limited q range measured. In contrast to the multiple sharp Bragg reflections seen in 

the semi-crystalline sample, the rra-P3HT sample yielded three broad amorphous halos 

corresponding to d-spacings of 15.7Å, 4.3Å and 2Å, which are attributed to the averaged 

separation distance between thiophene backbones, the average separation distance 
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sample. This overall trend is consistent with previous results: the 13K sample 

(determined by SEC), below the chain folding onset, forms extended chain crystal 

featuring highly crystalline lamellae;3,10,28 while for the 34K sample, both chain folding, 

broader PDI and lower regioregularity can lead to the observed reduction in the degree of 

crystallinity.29 We note that the highest degree of crystallinity of 56% in the 13K sample 

is considerably smaller than 70~80% reported by Balko et al.,3 suggesting that the 

absolute value is highly dependent on the material properties such as PDI, regioregularity 

and molecular weight.3,29 

The disorder parameter k is found to be in the range of 4~6 for the three different 

samples, which corresponds to <μ2>0.5 range of 0.55~0.68Å. In addition, the most 

pronounced disordering effect (k=6) or the displacements of atoms in the crystal lattice 

(<μ2>0.5=0.68Å) was found in the 34K sample with the highest molecular weight. Given 

that the materials also differ in PDI and regioregularities, both the low regioregularity of 

93% and high molecular weight of 34K may contribute to the disorder within crystals by 

having T-T regio-defects incorporated in the lattice and large kinetic constraints during 

crystallization, respectively.29 It is interesting to note that an increase of the disorder in 

the crystalline packing has been directly observed by Brinkamann et al. in high molecular 

weight P3HT (Mw>18.8K) by high-resolution TEM,4 the origin of which was attributed 

to the stress on chain packing induced by chain folding. This is in agreement with the 

increasing trend of k with molecular weight in our WAXD analysis but we do not have 

direct evidence of chain folding. Furthermore, the determined k value is larger in 

comparison with that found for polythiophene (PT, k=3Å2),27 but, smaller than 7~15Å2 

which was derived by Balko et al. on a series of P3HT with different molecular weights.3 
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The hexyl side chains attached to the polythiophene backbones are found to be highly 

dynamic by solid-state NMR, as evidenced by 13C T1 relaxation times. This is, more than 

likely, responsible for the disorder difference seen between PT and P3HT. Considering 

the difference in the molecular characteristics between our materials and the ones used in 

the study of Balko et al., we assigned the low k parameters in our materials to the slow-

cooling thermal history, which is expected to lead to more perfect crystals with a higher 

degree of crystallinity. 

3.3.2 Crystallinity Determined by Density Approach 

Another commonly employed physical method to determine the degree of 

crystallinity is mass density, which yields either volume fraction (ϕc) or mass fraction (xc) 

of crystallinity as given by Equations 1-3 and 1-4, where ρ, ρc and ρa are the densities of 

semi-crystalline, completely crystalline and completely amorphous rr-P3HT, 

respectively. 

As seen, independent knowledge of the densities of completely crystalline, ρc, and 

completely amorphous, ρa, are necessary to determine ϕc and xc. Using the structural 

information from the unit cell determined by electron diffraction,30 the density of a 100% 

crystalline rr-P3HT is calculated to be ~1.132 g/cm3. Due to the rapid kinetics of 

crystallization of rr-P3HT, we were not able to prepare a rr-P3HT sample that is fully 

amorphous. Instead, rra-P3HT, was used to approximate the amorphous form of rr-P3HT. 

A density gradient column was used to measure the densities of rr- and rra-P3HT 

specimens having the same thermal history as the WAXD samples. The densities of rra- 

and rr-P3HTs were determined and are tabulated in Table 3.4. 
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four thiophene carbons in the crystalline state, and the broad shoulder to those in the 

amorphous or disordered state. Comparing the solid- and solution-state spectra, Figure 

3.8 shows large up-field shifts for C7 and C8 in the crystalline state, which are due to the 

magnetic field generated by ring current in the neighboring thiophene rings as a result of 

π−π stacking, termed aggregation shifts or nucleus-independent chemical shifts 

(NICS).12,31,32 For the samples with higher regioregularity or crystallized with conditions 

favoring higher crystallinity (such as slow cooling from the melt), the four peaks are 

taller and the broad background is relatively lower, further confirming the assignment of 

the sharp peaks and the broad background to crystalline and amorphous region, 

respectively. We note that the resonance peaks of C9 and C10 only exhibit small 

aggregation shifts. While aggregation shift of the only proton on the thiophene ring has 

been used to calculate crystallinity and studied for the geometry of stacking,12 13C 

aggregation shifts have received little attention. 

Nieuwendaal et al. reported that the signals from ordered domains exhibit longer 

T1ρ than those from the disordered region, which allows a spectral editing method to 

quantify crystallinity.11 We confirm similar findings, and employ the same 7-ms spin-

lock filter that results in different extent of T1ρ relaxation for the crystalline and 

amorphous signals. We developed the following spectral editing method: 

1. Accurately calibrate peak position for both the spectra with (A in Figure 3.9) and 

without (B in Figure 3.9) T1ρ filter, which would minimize the extent of 

dispersiveness on the difference spectrum. We found that even experiments 

conducted back to back can have 1-3 Hz shift, which for high-crystallinity 
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factors could contribute to this partial ordering. First, the rra-P3HT sample is not 

completely random, which can be seen from the solution-state NMR spectrum in Figure 

3.10 in which the regioregular triad at 128.6 ppm is the tallest peak. Second, even in a 

regiorandom sample, there may exist longer regioregular segments that can self-assemble 

and give rise to short-range order. The signatures of local ordering in rra-P3HT were also 

found in our recent photophysical characterizations of rra-P3HT thin films. (data not 

shown) 

It is to be noted that CP is fundamentally not a quantitative NMR technique. 

Fortunately, several structural aspects of P3HT make CP a reasonably quantitative 

method for crystallinity determination: (1) the molecular dynamics in both crystalline and 

amorphous phases are very similar, as evidenced by a 1H wideline spectrum that can be 

fitted by a single-component Gaussian with high fidelity (adjusted R2= 0.999). The 

spectrum has a full-width-at-half-maximum (FWHM) of 33 kHz, indicating efficient 

cross polarization for both phases. (2) The 13C MAS side chain peak shapes are single 

component, and all of their 13C T1 relaxation curves are single-exponential, further 

suggesting very similar molecular dynamics in both phases. (3) The T1ρ of both 

crystalline and amorphous phases are relatively long (approximately 15 ms and 5 ms, 

respectively). During the 3-ms contact time, most of the non-protonated signals are 

excited while the amorphous signals suffer minimal loss due to T1ρ relaxation (most of 

the excited amorphous signals are generated during the latter part of the contact time). 

This makes the CP experiments a semi-quantitative experiment for P3HT. 

At spinning speed of 5 kHz, signals in the spinning sidebands represent ca. 20% 

of the total area, so the contribution of spinning sidebands must be considered. We find 
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that the amorphous-to-crystalline signal intensity ratio in the first-order spinning 

sidebands are roughly the same as that in the centerband. This means that the chemical 

shift anisotropy for crystalline and amorphous signals is about the same, which suggests 

that we can only perform spectral editing only on the centerband in the crystallinity 

calculation. 

3.3.4 Ramifications of the Results From Different Techniques 

Although the decrease in the degree of crystallinity with increasing molecular 

weight reported here is seen for all the WAXD, density, NMR and DSC measurements, 

an unambiguous explanation is not readily available since the materials differ not only in 

molecular weights but also in regioregularity and PDI. It is of most importance to 

compare the results from exactly the same material to gain insight into the morphology. 

In comparison with WAXD and NMR results, density method tends to underestimate the 

amount of ordering, which is possibly linked to the existence of short-range ordered 

packing in rra-P3HT resulting in a higher mass density than that of a fully amorphous 

P3HT; whereas the WAXD, after compensations for the disordering effect are made, 

yields the fraction of crystalline grains persisting 3-dimensionally in long range. For 

NMR, not only do the long-range ordered grains as seen ordered by WAXD contribute to 

the ordered resonance peak, the short-range ordering, for instance, (i) the intermediate 

phase between the crystalline grain and amorphous phase which is reported for 

polyethylene,15,33,34 (ii) the locally ordered chain stacks in the amorphous phase which 

may share the same origin with the local order in rra-P3HT, or (iii) possible tie 

chains/grains connecting neighboring crystal grains, are all visible and considered as 

ordered fraction of the semi-crystalline rr-P3HT. Consequently, the quantitative 
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may also apply to the case of rr-P3HT, which, however, cannot preclude the possibilities 

of other types of short-range ordering as postulated above. It is also expected that the 

local short-range order would have a positive impact on the charge transport 

characteristics in P3HT at a macroscopic scale. Detailed investigation on the correlation 

between the hole transport and the local short-range ordering is summarized in Chapter 4. 

The interfacial regions between the crystalline and amorphous phases are counted 

as ordered fraction in density measurements, which suggests that the density-determined 

crystallinity is most likely consistent with that obtained by NMR, representing an upper-

bound of the ordering in the material. Thus, by equating the NMR-determined 

crystallinity to density-determined one, the density of a fully amorphous sample, ρa, was 

calculated by rearranging Equation 1-4 for the three P3HT samples. The results (1.061 

g/cm3 for 13K, 1.053 g/cm3 for 23K, 1.055 g/cm3 for 34K), again, significantly deviated 

from the 1.094 g/cm3 reported by Lee et al.8 by extrapolating density data to zero heat of 

fusion. As discussed above, the density measurements include the short-range order that 

is not typically captured by the DSC measurements,15 due likely to the fact that those 

short-range ordered phases melt at a much lower temperature than the melting point and 

are gradually destroyed during the heating ramp with negligible heat of fusion. Therefore, 

the correlation between the density results and the heat of fusion is questionable. 

Additionally, according to Lee’s results, the overall trend of measured mass density with 

respect to measured heat of fusion is largely smeared by the large error bars in the density 

results, and consequently, the extrapolation is also severely affected. Another possible 

reason is that, as suggested by Snyder et al., a proper crystal size correction may be 

necessary for determining the heat of fusion in their DSC measurements.10 
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Finally, it is interesting to note that in the recently reported high-performance p-

type semiconducting polymers exhibiting state-of-the-art hole mobility, long-range order 

is usually absent and instead, only weak reflections, if any, were shown, suggesting that 

the local short-range ordering may be a general feature for high-performance 

semiconducting polymers having rigid conjugated backbones.35–38 Moreover, it is 

proposed by Noriega et al. that, provided good interconnectivity between aggregates, 

short-range intermolecular aggregations are sufficient for efficient long-range charge 

transport.38 Therefore, developing a quantitative understanding of the short-range 

ordering by using a combination of characterization techniques covering different length 

scales as demonstrated above would be highly desirable to designing and modifying new 

classes of semiconducting polymers. 

3.4 Conclusions 

In summary, we have used a combination of scattering (WAXD), physical 

(density measurement), and spectroscopic (solid-state NMR) methods to determine the 

absolute degree of crystallinity in three different P3HT bulk samples with identical pre-

determined thermal history, and shown that the results for the three samples differing in 

molecular characteristics, obtained from three different characterization techniques, are in 

qualitative agreement. Quantitatively, owing to the greater sensitivity to the 

intermolecular ordering at short-range length scale, the NMR-determined crystallinity, 

for all three samples under investigation, is consistently ~10% greater than those 

determined by WAXD, suggesting the existence of a short-range ordered phase located in 

the amorphous region of rr-P3HT. Interestingly, it is shown that the local short-range 
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ordering also exists in regiorandom P3HT, which obviously lacks long-range order and is 

regarded as amorphous in WAXD, UV-Vis and DSC measurements. 
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CHAPTER 4 

REVEALING THE SIGNIFICANT EFFECT OF SUBTLE STRUCTURAL 

CHANGES ON THE HOLE TRANSPORT PROPERTIES OF P3HT USING 

SOLID-STATE NMR 

4.1 Introduction 

rr-P3HT represents a prototype of side-chain substituted semi-crystalline 

polymers and is undoubtedly one of the most studied p-type semiconducting polymers. It 

has found wide use as hole conductor in organic electronic devices such as thin film 

field-effect transistors (FET)1 and bulk heterojunction solar cells.2 It is well documented 

in a great number of literatures that the electronic properties of P3HT in devices are 

strongly dependent on the semi-crystalline morphology and stacking structures, which 

can be effectively tuned by varying the molecular parameters (i.e. molecular weight, 

regioregularity) and processing conditions (i.e. thermal and solvent annealing, chain 

alignment).3–9 Taking FET devices for instance, structural factors such as macroscopic 

degree of crystallinity,6,10 grain boundaries8 and microscopic molecular order and 

orientation with respect to the substrate and the transport channel,11,12 have been 

identified as keys to improving the hole mobility, suggesting that the charge carrier 

transport in semi-crystalline P3HT may have a hierarchical nature.13 Indeed, as suggested 

in Chapter 2, at a macroscopic length scale, the coexistence of ordered phase favoring 

hole transport and disordered phase impeding holes carriers would largely complicate the 

transport paths along which the holes must travel; while at a microscopic length scale, 

similar to the heterogeneity present in the molecular packing and dynamics of P3HT,14 

the hole transport within the P3HT crystalline region is also found to be highly 
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anisotropic as suggested by quite a few experimental and theoretical studies.11,15,16 

Interestingly, the important issues of molecular and microstructures at multi-length scales 

has been further discussed in a recent work by Noriega et al., where, by compiling 

mobility data obtained for a broad range of semiconducting polymers available in the 

literatures, it is generalized that, the macroscopic connectivity between the ordered grains 

and the microscopic π-π stacking paracrystalline disorder are the limiting factors in the 

low and high molecular weight regimes, respectively.16 These studies clearly indicate that 

the macroscopic charge transport behaviors are strongly correlated with a wide array of 

structural properties scaling from segmental level up to inter-grain level. Yet, a thorough 

and quantitative understanding of the highlighted features, for instance, the macroscopic 

connectivity, the microscopic lattice disorder, is still limited even for the “golden 

standard” rr-P3HT. 

13C solid-state NMR methods have been reported to be useful in revealing the 

local structural changes in poly (3-alkylthiophene) (P3ATs) based on its sensitivity to 

molecular conformation and dynamics.14,17–20 By using 13C Magic Angle Spinning 

(MAS) NMR, Pascui and co-workers have studied a crystal-crystal transition at ~60oC 

featuring low molecular weight P3HT of Form II,21 and concluded that, during the 

transition, the initially ordered hexyl side chains undergo disordering processes with the 

introduction of more disordered gauche content, while the average conformation and 

mobility of main chains remain unaffected.14 In addition, a quantitative determination of 

the degree of crystallinity was enabled by a differentiation of distinct side chain 

conformations in ordered and disordered phases. In a recent 13C CPMAS NMR study 

employing high molecular weight P3HT of Form I, Nieuwendaal et al. have observed 
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dynamic motions in both the side chain and main chain in rr-P3HT crystals in 

temperature-dependent measurements and suggested that rr-P3HT crystals contain 

dynamic disorder even at room temperature.20 Another interesting 13C CPMAS NMR 

work by Yazawa et al. have highlighted a solid phase structural transition in regioregular 

poly(3-butylthiophene) (rr-P3BT) at around 67oC and, based on FTIR and 13C NMR 

results, attributed it to a twist-glass transition involving a quasiordered phase with 

thiophene twist in the crystals.18 

In this Chapter, we present intrinsic hole transport properties of rr-P3HT 

measured by TOF as a function of physical aging as well as temperature, which 

demonstrate significant aging effects at low temperatures and a structural transition at 

high temperature. The corresponding structural changes in the bulk have been primarily 

characterized by 13C CP/MAS NMR, which helps to establish a correlation between the 

hierarchical transport behaviors and the multi-scale structures in rr-P3HT. Our NMR 

results indicate that the local short-range ordered phase located in the noncrystalline 

region, as we describe in Chapter 3, grows during physical aging at room temperature 

and, thus, coarsens the efficient pathways connecting crystalline grains, leading to the 

improved hole transport properties and providing experimental evidence for the 

connectivity argument described above. On the other hand, we show that the resonance 

peak of the protonated carbon on the thiophene ring can be used as a sensitive indicator 

of molecular packing structures within the P3HT crystals, and that the crystalline phase 

undergoes a stress relaxation process above certain temperature range, which is thought 

to be responsible for the observed jump in TOF hole mobility. 
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4.2.2 Temperature-resolved Wide Angle X-ray Diffraction Measurements 

For temperature-resolved WAXD measurements, the 32K rr-P3HT listed in Table 

4.1 was used as a representation. The samples were prepared in a similar manner. 

Polymer powders were sealed in a hermetical differential scanning calorimeter (DSC) 

pan to ensure good thermal conductivity, which was placed on a heating stage constantly 

purged with N2 gas and subject to the same slow cooling thermal treatment as described 

above. Finally, the sample enclosed in the DSC pan was physically aged at room 

temperature for ~9 days prior to the WAXD measurements.  

Temperature-resolved WAXD measurements were performed on Beamline 7.3.3 

at the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory 

(LBNL). A transmission geometry was used. The wavelength of the x-rays is 1.240Å and 

the diffracted photons were collected by a two dimensional Pilatus 1M detector. A home-

made helium box purged with He gas was used to reduce the unwanted air scattering and 

ensure clean background. A heating stage (Linkam) with a built-in sample cell 

accommodating the DSC sample pan, was mounted into the beamline with a sample-to-

detector distance of ~205 mm. The aged sample was heated to 250oC stepwise at a rate of 

10oC/min and then kept at each temperature set-point for 10 min before the measurement. 

After cooling from 250oC in ambient condition, measurement was repeated for a second 

heating cycle as well. Each measurement was done with 60s exposure time. Correction 

for geometry and polarization was carried out for the diffraction followed by subtraction 

of background arising from the pan as well as parasitic scattering. 
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4.2.3 13C Solid-State Nuclear Magnetic Resonance Measurements 

For NMR measurements, due to the lack of previously studied materials, a 34K 

rr-P3HT was used instead (PDI~2, regioregularity~93%). The NMR samples were 

prepared in the same way as the WAXD samples except that the rr-P3HT bulk sample 

was taken out of the DSC pan after the thermal treatment. The thermal treatment 

procedures for investigating the low temperature aging effects and high temperature 

structural transition are described in 4.3.2. Although the important features resolved in 

TOF at low and high temperatures seem to be relatively independent of the molecular 

parameters as shown in Figure 4.1, we note that the introduction of the new material to 

the structural investigation may not lead to a strict one-to-one comparison with the TOF 

results in an absolute sense. 

All NMR experiments were conducted on a Bruker DSX300 spectrometer, 

operating at a 1H frequency of 300.12 MHz and 13C frequency of 75.47 MHz, in 4mm 

CP/MAS probes.  The pulse sequence was a 90° pulse followed by an optional 1H spin 

lock pulse before CP and high-power 1H decoupled 13C detection. The chemical shift was 

externally referenced by polydimethylsiloxane peak at 1.4 ppm.  For crystallinity 

determination, 7 ms of spin lock with a field strength of 60 kHz was used. A RAMP-CP 

scheme was used for cross polarization, which has been shown to generate a more 

quantitative representation of non-protonated carbons.22 The ramp size was 5 kHz and the 

contact time was 3 ms. The recycle delay, decoupling field, and spinning speed were 1.2 

s, 65 kHz and 5 kHz, respectively. 
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4.3 Results and Discussion 

4.3.1 Hole Mobility Measured by Time-of-Flight Technique 

Three rr-P3HT materials having similar polydispersity and regioregularity, but 

with increasing number-average molecular weights (Mn), 10K, 24K and 32K, were 

chosen for the TOF measurements. The hole mobility was measured by the Time-of-

Flight technique, which, as described previously in 2.3.1, probes the intrinsic transport 

characteristics of the charge carriers in the bulk of materials. All the thick films used for 

TOF measurements were thermally treated in the same way. Specifically, the P3HT thick 

films were molten on a hot plate and then ramped down to room temperature at a rate of 

0.2oC/min. This process, termed slow-cooling in the following text, is intended to remove 

the previous unknown thermal history, and impart maximum degree of ordering in P3HT 

by allowing the chains to fully order during the extremely slow cooling process. After Al 

electrode deposition, the samples were measured either immediately or re-heated up to 

210 oC/min and cooled down to room temperature at a constant rate of 1oC/min prior to 

measurements. During the hole mobility measurements on heating, the temperature was 

increased in step-like increments of 10oC and stabilization time of 10 minutes, and on 

cooling  - with a ramp of 1oC/min and stabilization time of 5 minutes. This procedure 

produced a relatively good reversibility of hole mobility during the heating and cooling 

cycles in such “non-aged” samples. The hole mobility for the “non-aged” rr-P3HT of 

different molecular weights is shown in Figure 4.1 (blue squares). To investigate the 

effect of physical aging on the hole transport properties of rr-P3HT, same samples were 

stored in a N2-filled glove box for ~14 months and, subsequently, measured by TOF as a 

function of temperature under identical change of temperature and electric field (Figure 
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temperature is elevated, indicating that the aging–induced changes are gradually erased 

by increasing temperature. In the non-aged samples, the hole mobility at room 

temperature showed a negative dependence on the molecular weight, which is consistent 

with previous TOF investigations on P3HT with different molecular weights.23 We note 

that the decrease of TOF hole mobility with increasing molecular weight contradicts the 

general increasing trend found in FET devices, which may be attributed to the marked 

difference in the sampling geometries and transport length scales. Nevertheless, the 

drastic improvements of hole mobility in the physically-aged samples across the 

molecular weights from 10K, forming extended-chain crystals, to 32K, forming chain-

folded crystals, strongly suggest that physical aging at room temperature has introduced 

significant transport-relevant structural changes, most likely in the amorphous phase in 

the materials.24,25 In qualitative agreement with the results shown in Figure 2.2 (a), the 

hole mobility of non-aged samples initially increased with elevating temperature, reached 

maximum at a high temperature of ~140oC for 10K and 24K samples and at ~180oC for 

32K sample, and then decrease with further heating. Similar trend is also observed for the 

aged samples at low and high temperatures except that the mobility at intermediate range 

from 70oC to 140oC (80oC to 180oC for 32K) was leveled off and weakly dependent on 

temperature. Additionally, another striking feature is that, regardless of the aging history, 

a vertical jump in the hole mobility was found at high temperatures, although the changes 

in the aged samples seem to be more significant than those in non-aged ones. The abrupt 

nature of the increase, coupled with the fact that both the magnitude and temperature at 

which the jump in mobility occurs increased with the P3HT molecular weight, suggest 

the occurrence of a sudden structural change at high temperature and that the origin of the 
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corresponding structural change may be related to kinetic factors. In comparison to 

results presented in section 2.3, it is evident that finer features, for instance, the abrupt 

jump at high temperature, are more prominent in the current temperature-dependent 

measurement. We attribute this primarily to the fact that the unknown thermal history in 

the current samples were removed by melting the films prior to cooling, whereas the 

samples in previous measurements were annealed at 210oC without being molten. Also, 

the broad polydispersity (PDI~2) of our previous sample may smear out the fine features 

resolved here on narrow-dispersed materials (PDI: 1.2~1.3). It should be noted that, 

although we report the effect of physical aging after 14 months, the most drastic changes 

in the temperature dependence of mobility occur over the period of the first 10 days (not 

shown). Due to positive electric field dependence of hole mobility in the low temperature 

range and a negative one in the high temperature range (See 2.3.1), the largest contrast in 

the temperature dependence of hole mobility was achieved for the lowest values of 

electric fields that the measurements were feasible, 20 kV/cm. 

4.3.2 Low Temperature Structural Changes Revealed by 13C Solid-State NMR 

Given the fact that room temperature is well below the transition temperatures 

reported for rr-P3HT,18,26,27 it is reasonable to assume that physically aging P3HT at room 

temperature is not expected to result in large-scale molecular rearrangements in the rr-

P3HT crystals. Thus, the enhancement of the hole mobility with aging at low 

temperatures is more likely related to structural changes in the amorphous region at a 

local scale. This is supported by a combination of WAXD, DSC and infrared 

spectroscopy (IR) measurements where no obvious changes were discernible for the 

samples with and without physical aging.(Data not shown) Therefore, we have chosen 
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13C solid-state NMR as a primary tool, which is more sensitive to local structural changes 

at short-range scale. Due to the subtlety associated with physical aging, the samples for 

NMR were first molten to remove thermal history and then quenched in liquid nitrogen 

from melt as schematically illustrated in Figure 4.2 (b). The rapid quench from melt is 

intended to maximize the driving force and, hence, the structural changes induced by 

physical aging. 13C solid-state NMR was used to monitor the structural changes for the 

same quenched sample during a total period of 9 days. 

On the other hand, the abrupt jump in hole mobility observed at high temperatures 

(140~180oC) in Figure 4.1 most likely has a structural origin, and appears to be 

independent of the aging history. To approach this structural origin, molten samples were 

first quenched in liquid nitrogen, subsequently annealed below and above the observed 

transition temperature in the hole mobility data, respectively, and finally quenched in 

liquid nitrogen again to freeze the structures. The schematics illustrating the detailed 

thermal treatments including the aforementioned slow-cooling process are provided in 

Figure 4.2. 

In order to better understand and compare the spectral features, a slow-cooled rr-

P3HT sample, representing a well ordered state with high degree of crystallinity, and a rr-

P3HT sample dissolved in deuterated chloroform, representing a truly amorphous state, 

were also measured by 13C NMR and included and shown in Figure 4.3, together with the 

sample measured an hour after quench (termed “as-quenched” in the following) and the 

sample physically aged at room temperature for 9 days. 
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The highly disordered state in the as-quenched sample is most evident when 

compared with the solution sample in which P3HT chains are fully solubilized in a good 

solvent, chloroform, and therefore can be regarded as an amorphous state. Aggregation 

shifts of 3.5~4 ppm for C7 and C8 and ca. 1 ppm for C10 due to π−π stacking are readily 

seen in the spectrum of as-quenched sample, suggesting that the crystallization kinetics of 

P3HT is remarkably rapid and that a truly amorphous rr-P3HT is nearly impossible to 

obtain even by rapid quenching from melt. In addition to the shoulder located at ~139 

ppm, which has been assigned to the amorphous fraction of C7,20 two additional small 

shoulders located at ~134 ppm and 128.5 ppm were consistently observed for the freshly 

quenched rr-P3HT samples in several quench attempts, which were absent in slow-cooled 

samples. It is interesting to note that the locations of the two small shoulders coincide 

with the corresponding carbon resonance peaks in the solution state, indicating that the 

completely disordered fraction is quite large. The disorder in the quenched sample is 

further supported by the much more pronounced C7 shoulder at ~139 ppm as compared 

with that in the slow-cooled sample. Indeed, the as-quenched sample represents the most 

disordered state of rr-P3HT, which, in turn, is expected to provide the largest 

thermodynamic driving force for physical aging.28–30 Another intriguing feature arises 

from the C8 resonance peak, which has been identified to be particularly sensitive to the 

packing structures of P3HT among other main chain carbons18,31: comparing the 13C 

NMR spectrum of the as-quenched sample with that of slow-cooled sample, the 

resonance peaks originating from main chain carbons are positioned at similar positions 

except for C8, the chemical shift of which clearly shows a ~0.8 ppm shift towards up-

field for the slow-cooled rr-P3HT. This shift, given the marked difference between these 
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temperature, the structural change caused by physical aging, even for the extreme case of 

as-quenched sample, is slow and likely confined to local environments in the amorphous 

phase because of the limited chain mobility at this temperature. Moreover, neither the 

shape nor the position of C8 resonance peak was changed after physical aging, suggesting 

that there was no apparent change associated the molecular packing within the original 

crystalline phase and that the ~9% grown ordered fraction has a relatively disordered 

molecular packing similar to that seen in the as-quenched state. Therefore, it is concluded 

that, for the as-quenched P3HT sample, physical aging has led to an increasing degree of 

local short-range ordering in the amorphous phase, which amounts to about ~9% after a 

total aging period of 9 days. The growth of the short-range order at local scale during 

physical aging was monitored in the slow-cooled sample as well, however, the magnitude 

turned out to be much reduced compared with quenched sample and thus disallowed a 

quantitative investigation. Since the amorphous phase has been identified as a potential 

barrier for the hole transport in P3HT at low temperature,6 the growth of the local short-

range order in the noncrystalline region as a result of physical aging is expected to, at 

least, lower the barrier by establishing efficient pathways in the amorphous phase, and 

may provide good connections between the ordered nanocrystal grains. 

4.3.3 High Temperature Structural Changes Revealed by 13C Solid-State NMR 

To address the high temperature jump in TOF hole mobility, high molecular 

weight rr-P3HT (Mn~34K) was employed for the structural investigation using 13C 

NMR. According to Figure 4.1, the transition temperature where the jump in hole 

mobility occurred for the 32K sample is ~180oC. Thus, the high molecular weight rr-

P3HT (Mn~34K) was first quenched in liquid nitrogen from melt, immediately followed 
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chemical shift of the C8 resonance peak in the as-quenched sample shows no change 

even after annealing at 160oC, suggesting that the molecular packing structure was not 

altered after the extended annealing; while for the 200oC annealed sample, C8 peak 

shifted ~0.6 ppm towards up-field to the position of that of a slow-cooled sample, 

indicating an appreciable improvement of the molecular packing (i.e. π-π stacking) within 

the crystalline phase. It is noteworthy that, compared to the single C8 peak of slow-

cooled sample, an additional hump located at 126~126.5 ppm can be seen for the C8 peak 

the sample annealed at 200oC, resulting in a two-component feature. This feature 

suggests that annealing the highly disordered as-quenched sample at 200oC for two hours 

has improved the majority of the molecular packing as evidenced by the up-field shift; 

however, certain part of the sample has remained the disordered molecular packing even 

after annealing, leading to the broad hump attached to the main peak. A modification in 

the π-π stacking as a result of structural transition has been reported by Yuan et al. in a 

temperature-dependent FTIR study, whereby a solid-state transition occurring at 54oC in 

slowly evaporated rr-P3HT crystals was assigned to a transition from Form I’, a new 

crystal modification of rr-P3HT characteristic of a modified π-π stacking mode, to the 

most commonly observed Form I crystal.24,26 Therefore, the improvement of molecular 

packing structure that we observed may be regarded as a crystal modification.26 Most 

importantly, as suggested by Dag et al., this can have a profound impact on the electronic 

structures and, hence, the transport characteristics of rr-P3HT.35 Furthermore, since the 

annealing time of two hours are quite long, the different chain packing structures from 

160oC and 200oC treatments is likely due to the annealing temperature: a critical 

temperature that is higher than 160oC may exist for the packing modification process to 
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take place. Although the concomitant variations of other structural factors during heating 

from 160oC (below the transition temperature) to 200oC (above the transition 

temperature) should be taken into the consideration, the improvement of the π-π stacking 

structure within the crystalline phase is clearly crucial for enhancing the inter-molecular 

hole transport and can positively contribute to the hole mobility jump as seen in all the 

materials. 

4.3.4 Structure – Hole Transport Correlations at Low Temperature 

In Chapter 3, it has been emphasized that, in addition to the classic two-phase 

picture depicting crystalline and amorphous phases, the local short-range ordering in the 

amorphous phase should be introduced to properly describe the semi-crystalline 

morphology. Indeed, the significant hole mobility enhancement observed at low 

temperature is closely related to the growth of the local short-range ordering during 

physical aging, which stems from the amorphous phase of rr-P3HT that has a Tg lower 

than room temperature. This is supported by the low Tg of ~6oC found in regio-random 

P3HT as shown in Figure 4.6, which is chemically identical to its regio-regular 

counterpart and can be taken as a reasonable representative of the amorphous fraction of 

the rr-P3HT as regio-defects are partially excluded during crystallization and 

concentrated in the amorphous regions. Consequently, the physical aging process can be 

thought as a low temperature annealing process whereby the neighboring P3HT chains in 

the amorphous phase having truncated sequences of regioregularity can pack together, 

forming short-range ordered packing.36  
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occurs at very small length scales and indicating that the subtle structural changes can 

indeed have remarkably great influence on the hole transport properties in rr-P3HT at low 

temperatures by overcoming the limiting factor --- the amorphous phase. It has been 

proposed in recent literatures that the hole mobility is limited by the amorphous phase 

and can be improved by having better connectivity between the crystalline grains.16,37 

Therefore, as schematically shown in Figure 3.11, it is reasonable to consider the short-

range ordering as an intermediate phase located in the amorphous phases with widespread 

distribution, thereby functioning as efficient transport highways connecting crystalline 

grains. We suggest, but cannot unambiguously prove, that the grown short-range ordered 

phase during aging may exist in multiple forms, such as small tie-crystals comprising a 

few π-stacked P3HT chains,38 interfacial components between crystalline and amorphous 

phases39,40 or simply locally packed chains. We also note that, according to the C8 

chemical shift difference between the aged sample and slow-cooled sample in Figure 4.3, 

the packing quality of the grown local short-range order is still poorer than that in the 

slow-cooled crystals. This implies that the holes may prefer to propagate along the intra-

molecular direction when transport in those connecting domains. As discussed above, the 

contribution of the growth of local ordering to hole mobility is gradually diminished at 

intermediate temperature regions (i.e. 60oC~140oC for 10K and 80oC~180oC for 32K). 

Consequently, the change of slope in the TOF hole mobility before the abrupt jump can 

be assigned to the gradual disintegration of the pre-formed local short-range ordering 

arising from physical aging. 
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4.3.5 Structure – Hole Transport Correlations at High Temperature 

At high temperatures, an interesting jump in hole mobility is observed for all the 

samples across different molecular weights. It is important to note that the macroscopic 

charge transport in the semi-crystalline rr-P3HT is not dictated by single structural factor 

but rather, an entangled combination of variants, including the degree of crystallinity, π-π 

stacking d-spacing, coherence length, crystal thickness, crystal packing, 

planarity/conjugation length as well as thermal activation.6,41,42 In practice, a quantitative 

separation of the contribution from each factor is difficult. As shown in Figure 4.7, 

temperature-resolved wide angle X-ray diffraction (WAXD) measurements on the 

physically aged sample revealed that the d-spacings of π-π stacking direction (020) 

thermally expanded, while the number of (020) planes along each coherence length 

remained almost constant when the temperature was elevated from 160oC to 200oC. 

Moreover, it was qualitatively concluded from comparing the diffraction area at 160oC 

and 200oC that the degree of crystallinity also decreased during heating. Therefore, all 

these factors are not expected to contribute to the hole mobility increase. According to 

Gibbs-Thomson equation, the crystal thickness is expected to increase in a continuous 

manner. Considering the rather abrupt nature of the mobility increase, we attribute the 

jump in mobility at high temperature to the improvements of molecular packing 

structures inside the crystalline grains as evidenced by the C8 resonance peak shift in 13C 

NMR as discussed in 4.3.3. In contrast to the aging effects, which take effect in the 

amorphous phase, the structural transition within the crystalline phase seems to be more 

important for hole transport at high temperatures. 
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caused by the chain folding.38 It should be noted that the transition temperature observed 

in our TOF hole mobility results is much higher than the solid-state transition 

temperatures of rr-P3HT reported by Yazawa et al. and Yuan et al.18,26 In fact, at such 

high temperature, the side chains of rr-P3HT are molten and the P3HT crystal is expected 

to resemble the structure of a liquid crystal whereby the liquid-like inter-layer composed 

of side chains may, to some degree, lubricate and facilitate the motion of the main 

chains.27,43,44 As a consequence, a structurally possible interpretation for the high 

temperature transition is that thermal annealing above the transition temperature imparts 

sufficient energy to unlock the polythiophene backbones and, hence, relax the local 

stresses inside the crystalline lattice by rotational and/or translational motions of 

backbones, thereby enhancing the inter-molecular transport within the crystalline phase. 

Although the conjugation length may decrease with increasing temperature,42 it is also 

possible that the elimination of the defects along the backbone (e.g. twist) would improve 

the intra-molecular transport, which is the most efficient propagation pathway for the 

holes. Meanwhile, the observation that the transition temperature, at which the hole 

mobility jumps, is higher for higher molecular weight sample seems to suggest that local 

stress developed during crystallization may be engendered by multiple kinetic constraints 

(i.e. chain folding, entanglement, etc.) involved in the organization of long chains into 

crystalline lattices. This kinetically driven stress build-up in the crystals is consistent with 

Brinkamann’s molecular weight dependent study where disordered crystalline packing in 

high molecular weight P3HT was directly visualized by high-resolution TEM.38 We 

would like to note that no detailed structural models are available at this point to fully 

explain the spectroscopic findings presented here. To that end, further quantitative 
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computational efforts would be highly desirable and would be the direction for future 

studies. Nevertheless, it is evidently suggested by our results that, in terms of charge 

transport, the optimum temperature for thermal annealing treatment, which has been 

widely performed on organic electronic devices, should be chosen according to the 

molecular weights so that both the macroscopic crystallinity and the microscopic packing 

within the crystals can be optimized from the initial disordered kinetically trapped states 

(i.e. quenched, as-spun). As the temperature further crosses over the transition points, the 

hole mobility showed a universal decrease in all samples, which has been described in 

2.3.3 and ascribed to the microscopic expansion along the π-π stacking direction and the 

macroscopic loss of crystallinity. 

4.4 Conclusions 

In this chapter, by combining TOF hole mobility results and 13C solid-state NMR 

results, the correlation between the hole transport properties and semi-crystalline 

morphology of rr-P3HT was elucidated. It is found that physical aging rr-P3HT, even at 

room temperature, has led to the growth of the short-range ordering in the amorphous 

phase, thereby establishing good bridging between the crystalline grains and facilitating 

hole transport in the amorphous regions. Consequently, significant increases of hole 

mobility at low temperatures were observed in all the rr-P3HT samples. Interestingly, an 

abrupt jump in hole mobility at high temperatures above 140oC was also found virtually 

for all the samples regardless of aging history. Corresponding NMR investigations 

revealed that, different from the aging effects that occur inside the amorphous phase, the 

structural origin of the high temperature jump in mobility is likely associated with a 

change in molecular packing within the crystalline phase, which can promote both intra- 
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and inter-molecular transport. It is expected that, both the short-range ordering in the 

amorphous phase and molecular stacking structures in the crystalline phase would be 

critical factors to consider in optimizing the processing of rr-P3HT in particular and, 

design of new class of high-performance semiconducting polymers in general. 
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CHAPTER 5 

OUTLOOK AND FUTURE WORK 

5.1 On the Microstructure–Hole Transport Correlations in Semi-Crystalline P3HT 

Two temperature regions with distinct transport mechanisms have been identified 

in rr-P3HT, as shown in Chapter 2: at temperatures below 120oC, the hole transport 

exhibits thermal activation behavior and is limited by the trapping amorphous regions in 

between the crystalline grains; when the temperature exceeds 120oC, significant 

structural changes, namely an expansion along the π-π stacking direction and a 

deterioration of the degree of crystallinity, occur simultaneously at micro- and 

macroscopic scales, respectively, resulting in the decrease of hole mobility.1 The 

demonstrated strategy combining both structural investigations and transport 

characterizations is suggested to be fundamentally indispensible to understanding the 

intrinsic correlation between semi-crystalline morphology-transport properties not only in 

rr-P3HT but also in other classes of conjugated polymers of semi-crystalline nature, 

which may have vastly different structural characters from those of P3HT. Not 

systematically investigated in detail in our study, however, is the effect of the built-in 

molecular characteristics of the rr-P3HT on the morphology and hole transport behavior. 

Molecular weight, PDI and regioregularity are undoubtedly the most important 

parameters inherent to each batch of rr-P3HT among countless other conjugated 

polymers. Despite the fact numerous manuscripts have been published to address the 

individual effect of molecular weights,2–7 PDI8 and regioregularity,8,9 it is not uncommon 

that materials with similar molecular weights would behave differently in two separate 

studies from two research groups, due primarily to the inevitable variation in the PDI and 
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structural origin of the microscopic packing modification at high temperature discussed 

in Chapter 4. 

5.2 Probing the Multi-Scale Ordering in Semi-Crystalline P3HT 

It should be noted that thin films of semiconducting polymers widely used in 

optoelectronic devices such as OPV cells and OFET devices typically have thicknesses 

that are less than 200nm. Consequently, the molecular orientation and ordering of the 

semiconducting polymer in such a thin film geometry will be largely affected by the 

presence of the substrate and air interfaces,10 the confinement effect,11,12 the solvent 

evaporation processes,13 resulting in a significant deviation from the melt-crystallized 

bulk samples used in our study. Due to the aforementioned factors, quantitatively 

determining the degree of crystallinity of rr-P3HT in a thin film turned out to be much 

more complex in comparison to the bulk characterizations (WAXD, density, NMR, etc.). 

It is suggested in a recent review by Rivnay et al. that by using grazing-incidence X-ray 

diffraction, the relative degree of crystallinity in thin polymer film can be evaluated by 

constructing a pole figure, which describes the orientation distribution of specifically 

chosen diffraction peaks as a function of all possibly existed crystal orientations.12,14 

However, the construction of the pole figure requires the access to synchrotron radiation 

sources where high resolution rock-curve can be acquired, and is limited by the 

complexity involved in the procedures. Alternatively, a relatively simple approach based 

on the linear absorption spectrum of rr-P3HT thin films has been proposed by Clark and 

co-workers, wherein the thin film aggregated structures can be related to absorption of rr-

P3HT by using a model developed by Spano.13,15–18 Specifically, the vibronic features 

usually appearing as shoulders at lower energies (longer wavelength) in the rr-P3HT 
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absorption spectrum are attributed to the absorption of planarized chains within the 

aggregates; while the absorption at higher energy (lower wavelength) arises from the 

chains in the disordered states, in reminiscent of the absorption of a dilute solution. This 

contrast, coupled with Spano’s model in the limit of a weakly interacting H-aggregates 

consisting of parallel-aligned and co-facially stacked P3HT chains,19 allows one to 

decompose the absorption spectrum into contributions from ordered aggregates and 

disordered chains, thus providing a quantitative measure of the fractional aggregated 

structures of the film. Figure 5.1(a) shows an exemplary fitting of the P3HT aggregation 

component from the P3HT:PCBM absorption spectrum by Turner et al, where the 

amorphous absorbance component is taken as the difference between the total measured 

absorbance and the fitted aggregation absorbance.15 Subsequently, with the knowledge of 

the molar extinction coefficient ratio between aggregates and amorphous chains,13 the 

degree of aggregates (or crystallinity) can be calculated and an example by Turner et al. 

is shown in Figure 5.1(b),15 which was claimed to be consistent with the crystallinity 

obtained from electron tomography measurements.20 Although little correlation was 

observed in line with GIXD measurements,21 the degree of aggregates of the most 

ordered pristine P3HT film cast from dichlorobenzene (~53%) measured by linear 

absorption spectroscopy seems to be comparable to the degree of crystallinity of 34K 

sample determined by NMR in our study. Presumably, the degree of aggregates 

quantified by the linear absorption spectroscopy would include the short-range order 

phase in the rr-P3HT and, thus, would have some correlations with the NMR-determined 

crystallinity. Another figure of merit is that the absorption approach is suitable not only 

for the thin film samples but also for the solution samples with fibril-type aggregates. 
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phase plays in optimizing the semi-crystalline morphology for hole transport. Given the 

qualitative agreement observed in the transport behaviors of various semiconducting 

polymers from a comprehensive analysis by Noriega et al.,22 it seems to strongly suggest 

that the presence of such short-range ordering is not uniquely seen in rr-P3HT but may 

also be present in other classes of semiconducting polymers, especially those found to be 

weakly ordered by scattering methods.23 One of the possible driving factors leading to the 

locally short-range order is the rigidity and conformation of the backbone: as the rigidity 

of the backbone increases, the chains residing in the amorphous phase would remain 

relatively planar, thus promoting the inter-molecular packing via π-π interactions; or 

alternatively, the increasing rigidity may lead to more efficient intra-molecular transport 

at short length scales as predicted by Noriega et al.24 The pivotal roles of the short-range 

order in semiconducting polymers necessitates an extension of current quantitative study 

of rr-P3HT to other high-mobility conjugated semiconducting polymers. Among the 

high-performance semiconducting polymers, the class of diketopyrrolopyrrole (DPP) 

based polymers as shown in Figure 5.2 could be a good candidate to initiate the 

investigation owing to the good indication of ordering from scattering, UV-Vis 

absorption and DSC measurements.25 Thus, as a next step, a combination of WAXD, 

density, solid-state NMR, DSC and linear absorption spectroscopy measurements can be 

applied to systematically and quantitatively investigate and compare the semi-crystalline 

ordering in the DPP based polymers. The results are expected to further uncover the 

structural origin of the high mobility exhibited by DPP-based conjugated polymers. 
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