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ABSTRACT

FLEXIBILITY AND CAPACITY ALLOCATION UNDER
UNCERTAIN PRESCHEDULED (NON-URGENT)

DEMAND AND SAME-DAY (URGENT) DEMAND IN
PRIMARY CARE PRACTICES

FEBRUARY 2015

XIAOLING GAO

B.Sc., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

M.Sc., NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ana Muriel and Professor Hari Balasubramanian

In this dissertation, we are applying and extending well-established concepts of

flexibility in manufacturing and service sectors to a healthcare setting: primary care.

In the healthcare scenarios, appointments are booked over time and thus future re-

source capacity is sequentially being allocated under partial demand information. In

manufacturing flexibility is typically presented as a technology choice that requires

heavy investment for expensive flexible equipment, or highly cross-trained workers,

but can then be used at little or no cost to satisfy demand. In primary care, however,

the resources are inherently flexible, as primary care physicians are naturally able

to see other panel’s patients. There is therefore no long-term cost to the system for

“installing” flexibility, but a cost for “using” this flexibility. This cost results from the
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loss of patient-physician continuity which may induce patient dissatisfaction, require

longer appointment durations as the physician needs to study the unfamiliar patient’s

history, and potentially lead to poorer medical outcomes.

Appointments in primary care are of two types: 1) prescheduled appointments,

which are booked in advance of a given workday; and 2) same-day appointments,

which are booked as calls come during the course of the workday. This creates two

competing demand streams with different continuity needs. For same-day patients,

the need for timely access often outweighs the need for continuity. Prescheduled

appointments, on the other hand, include patients with chronic conditions who require

regular monitoring and follow ups, and for whom continuity is essential.

Within this context, we address two interrelated problems: 1) the capacity alloca-

tion between prescheduled and same-day patients and how it is impacted by flexibility

and the addition of extra resources; 2) the dynamic allocation of same-day patients

to an existing schedule as they call over the day. The study of the former aggregate

capacity allocation problem is based on a 3-stage framework. We assume different

flexibility configuration to study the impact of flexibility in primary care practices.

Our study of flexibility in primary care practices suggest that better management of

the inherently flexibility inside primary care practices helps to balance prescheduled

and same-day demand streams. We then study the latter dynamic allocation problem

based on a simulation model, which captures several realistic issues like, patient’ pref-

erences, call-in frequency of same-day requests, and policies to reserve time blocks for

prescheduled patients, etc. Our study provides guidelines for clinic to provide better

quality of care for patients.
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CHAPTER 1

INTRODUCTION, RESEARCH MOTIVATION AND
LITERATURE REVIEW

1.1 Introduction and research motivation

Many manufacturing and service firms generally face important decisions on how

to allocate limited resources/capacity among multiple demand classes. In this disser-

tation, motivated by a health care setting (outpatient primary care), we formulate

a general model to study this problem. Throughout the dissertation, we focus on

how to allocate primary care physicians’ capacity to balance two successively realized

demand streams: prescheduled (non-urgent) patients vs. same-day (urgent) patients;

however, the model can be adapted to any other limited resource allocation problem

with two demand classes , where one demand stream is realized and fulfilled in ad-

vance and the other demand stream arrives at short notice and needs to be urgently

fulfilled. To avoid computational intractability, we first formulate higher-level aggre-

gate model without considering the dynamic arrival of demand, to study capacity

allocation involving two demand classes. Later we relax the aggregate assumption

and evaluate the impact of dynamic arrivals. The most important decision variable in

our capacity allocation problem is the booking limit for non-urgent demands, which

arrive in advance. A booking limit seems necessary because otherwise there would

not be sufficient capacity left for short-notice urgent demands, which arrive later.

Another key theme in this dissertation is the impact of flexibility on the capacity

allocation process. The concept of flexibility (sharing or pooling of capacity) was ini-

tially proposed in manufacturing, as an effective way to balance demand for various
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products with the capacity of different plants/resources. We are applying and extend-

ing well-established concepts of flexibility in manufacturing and service sectors to the

primary care setting. In outpatient primary care, there are often multiple providers

working in the same practice. These providers may choose to pool their capacity so as

to effectively meet the variability in demand. In manufacturing flexibility is typically

presented as a technology choice that requires heavy investment for expensive flexible

equipment, or highly cross-trained workers, but can then be used at little or no cost

to satisfy demand. In primary care, however, the resources are inherently flexible,

as primary care physicians, due to their medical training, are naturally able to see

their own patients as well as the patients of other physicians. There is therefore no

long-term cost to the system for “installing” flexibility, but a cost for “using” this

flexibility. Using flexibility results in the loss of patient-physician continuity. [22]

shows that improving continuity could help patients be more satisfied with their care

and could also help to improve the efficiency for both physicians and patients. [23] re-

ports that reduced continuity could increase the likelihood of emergency department

visits. Therefore flexibility must be used intelligently in primary care practices. We

elaborate on this further in the discussion below.
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Figure 1.1. Different flexibility configurations

A practice can achieve maximum continuity of care by mandating that patients

should see only their own provider. This, however, hampers timely access to care.

At the other extreme, a practice may allow patients to see any provider. This is

ideal for timely access, but hampers continuity of care. The two extremes are shown

in Figure 1.1(a) and Figure 1.1(b). In the first case, the providers are dedicated

while in the second the providers are fully flexible. Figure 1.1(c) (d) (e) show par-

tially flexible configurations that offer a middle ground between Figure 1.1(a) and

Figure 1.1(b). In each of them, a patient sees only one other physician other than

her own physician. Figure 1.1(d) is referred to as the 2-chain in the manufactur-

ing flexibility literature [34] and allows demand variation to be absorbed effectively

by the entire practice. While 2-chain is a new concept to health care, practices do

use the subgroup configuration (Figure 1.1(c)). Physicians here may be divided in-

to independent, self-contained teams (Mayo Clinic and other academic primary care
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practices). The dedicated with additional provider configuration of Figure 1.1(e) is

also common - here if the patient’s own physician is unavailable, the patient tends

to see an “overflow” physician or nurse practitioner (we have observed this setting

at a small private practice as well as a community clinic in Western Massachusetts;

academic medical centers also use this model). Figure 1.1(f) is actually another full

flexibility configuration with additional provider, in which physicians could be seen

by any physician or newly hired additional provider.

These flexibility configurations must be considered in light of the two different

appointment types that a primary care practice schedules: 1) prescheduled appoint-

ments, which are booked in advance of a given workday; and 2) same-day appoint-

ments, which are booked as calls come during the course of the workday. This creates

two demand streams competing for the practice’s capacity, but with different con-

tinuity needs. Prescheduled appointments include patients with chronic conditions

who require regular monitoring and follow ups, and for whom continuity (seeing their

own provider) is more essential. For same-day patients, on the other hand, the need

for quick access often outweighs the need to see one’s own physician. With this in

mind, how should a practice allocate the limited capacity of its multiple providers

among prescheduled (non-urgent) patients and same-day (urgent) patients? What

flexibility configurations are better suited to address demand effectively? These are

the key questions we consider in this dissertation.

This dissertation also has policy relevance in the healthcare environment currently

prevailing in the United States. The US faces a growing crisis of national wide

shortage of primary care providers. For example, the rate of Massachusetts internists

accepting new patients was 69% in 2006, and this rate was reduced to 52% in 2008

[4]. Other states like Texas and Vermont also have reported similar shortages in [17],

[2], [45], [3] and [1]. To improve access, practices need to be more flexible and pool

their capacities and yet provide continuity wherever necessary.
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Our study in this dissertation can be broken down into two main parts:

I. In the models we propose, we allow for flexibility in satisfying both prescheduled

demand and same-day demand; potentially a different flexibility configuration could

be implemented for each of these demand streams. We investigate a number of

questions regarding flexibility and capacity allocation. Are there analytical insights

or properties that apply to particular flexibility configurations? What is the impact

of same-day flexibility (the most realistic and useful setting in outpatient primary

care) on the optimal booking limit? How do the optimal booking limits change

with the additional flexibility in the system provided by the sharing of prescheduled

slots while same-day patients are already fully flexibly shared? Will this result in

significant improvements in timely access? Would these results hold true for other

service applications where perhaps continuity is more important to same-day requests

than to prescheduled ones? In a practice with high workloads, what is the impact of

hiring a new provider who sees same-day patients? We use aggregate level stochastic

optimization models for a single workday to answer these questions. We use these

models to both derive analytical insights as well as to provide computational evidence.

II. In primary care practices, there are many realistic issues that impact appoint-

ment scheduling but are difficult to express mathematically in the framework of an

optimization model. This includes the dynamic arrival of appointment requests (as

opposed to the aggregate or lumped arrivals which we assume in part I); presched-

uled patients’ time of day preferences to schedule appointments; and prescheduled

patients’ willingness to be diverted to another physician. We use a discrete event

simulation, applied to a single workday, to model these realistic features and an-

swer questions such as the following. What is the impact of prescheduled patients’

time-of-day flexibility? What is the impact of guiding prescheduled patient to certain

reserved blocks of time so that same-day requests can be adequately fulfilled? And
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what is the impact of flexibility under dynamic arrivals and patient preferences? Do

the results we find the aggregate level stochastic optimization models still hold?

In part I and II, our principal performance measure is a weighted measure of the

number of prescheduled and same-day patients seen by the practice during a workday.

We call this measure “revenue”. We also report on a number of other relevant mea-

sures such as the number of unfulfilled prescheduled requests (prescheduled overflow)

and number of unfulfilled same-day requests (same-day overflow, a proxy for over-

time). Where necessary, we report not just the averages, but also higher percentiles

of some of these measures.

In the entire dissertation, we assume that the prescheduled and same-day demands

are independent of each other and are Poisson distributed. The Poisson assumption

for same-day demand is certainly reasonable in health care. For prescheduled demand

it requires some justification, since a part of the prescheduled demand is generated

by follow-up visits that are scheduled by the clinic. However, when the demand for a

particular workday in the future is considered, a Poisson rate appears to be a good

approximation. Even if the clinic schedules follow-up visits, patient preferences for

specific days imparts sufficient randomness to the demand process.

In this dissertation, computational experiments are based on a range of demand

scenarios, which could represent most common situations in primary care practices.

To describe demand scenarios, we use the term ‘workload’ and the term ‘P/S’ in the

entire dissertation. ‘Workload’ is defined as the ratio of the expected total demand

for the clinic and the total available capacity. For instance, in a practice with two

physicians, suppose each physician has a daily demand rate of 8 for prescheduled

appointment and 16 for same-day appointments. The total expected demand is 2 ×

8+2×16 = 48, and the total capacity is 24×2 = 48, therefore, workload of the clinic

is 100%. In a 120% utilized clinic, the capacity would still be 48, but the expected

demand would be (2×8×1.2) + (2×16×1.2) = 57.6. Here, each physician’s average
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prescheduled demand and same-day demand is multiplied by 1.2 to create the 120%

workload case. The term ‘P/S’ for one physician is used to refer to the ratio of

prescheduled to same-day demand at the 100% workload level for this physician. For

example, suppose a 2-physician practice is under 120% workload, and P/S ratio for

physician 1 is 6/12, then the expected prescheduled demand and the expected same-

day demand for physician 1 are 6× 1.2 and 12× 1.2, respectively. Workload reflects

how busy the clinic is and P/S ratios reflect the type of clinic. For instance, family

medicine clinics are likely to have a greater number of prescheduled appointments;

at the other end of the spectrum, an urgent care center will have mostly same-day

patients but very few prescheduled patients.

Computational experiments in the dissertation cover multiple symmetric scenar-

ios and asymmetric scenarios. In the symmetric cases, each physician in the given

practice is utilized with identical demand, i.e. the P/S ratio and the workload for

individual physician is identical. In the asymmetric cases, we consider practices with

asymmetry in the workload of individual physician as well as asymmetry in P/S ra-

tios. For example, in a 3-physician practice under 100% workload, the P/S ratios of

this practice are set to be 6/12 8/16 10/20 (6/12 for physician 1, 8/16 for physician

2 and 10/20 for physician 3, we always apply this seriation for P/S ratios setting

of a multiple physician practice throughout this dissertation). Then each physician

is associated with same P/S ratio to be 1/2, but each physician is under a different

actual workload. On the other hand, for example, still in a 3-physician practice under

100% workload, we could assume the P/S ratios to be 8/16 12/12 16/8, to construct

a practice with asymmetry in P/S ratios for individual physicians but with identical

workload for each physician. These asymmetries reflect situations where some senior

physicians have greater number of patients than other physicians in the practice,

or may have more patients with chronic conditions, with the result that their total

prescheduled demand is higher in relation to their same-day demand.
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The rest of this chapter is organized as follows: in Section 1.2, we present the liter-

ature review for each relevant concept, including resource allocation problems among

multiple demand classes in manufacturing and service context, flexibility, and health-

care applications. In Section 1.3, major contributions of our research are presented.

Finally, in Section 1.4, we provide an overview of the dissertation.

1.2 Literature review

In this dissertation, we limit our review to the most relevant papers in three topics.

Firstly, we review quantitative results in limited resource allocation among non-urgent

and urgent demands in manufacturing and service context. Next, we review the

principal results in the area of flexibility most related to our research. Finally, we

review the related operations research applications in the context of health care.

1.2.1 Limited resource allocation among non-urgent and urgent demands

in manufacturing and service context

Resource allocation problems among multiple customer classes - especially related

to the allocation of non-urgent demands (scheduled in advance) and urgent demands

(arrive at short notice) - can be commonly observed in many domains. We now

provide a few examples of papers in this area.

[13] address the admission control and sequencing decision problem in a production

system. In their study, one class of orders (long-term contract) is on a made-to-

stock basis and another class of orders (arrive at short notice) is on a made-to-order

basis. They use a simple two-class M/M/1 queue model to study the problem and

characterize the structure of optimal policies under this model. [28] propose two

models to address the admission control problem but with different characteristics.

In the first model, all the orders are produced on a make-to-order basis while in the

second model, the contractual orders (long-term contract) might be produced on a
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make-to-stock basis. They propose a simple threshold policy in the make-to-order

model and the optimal policy becomes complicated in the second model. Then they

present a two-critical-number heuristic, which is shown to perform well. [40] propose a

general model to study the limited capacity allocation problem over different demand

classes when demand is stochastic and capacity is perishable, in a make-to-order

manufacturing system.

Motivated by the challenging problem of scheduling crews in a gas utility com-

pany, [6] study a resource allocation problem to perform both non-urgent jobs (like

non-urgent customer service, regular testing of instruments, construction work, and

replacement work, all of which are usually scheduled in advance) and urgent jobs (like

repairing a gas leak, which usually occurs randomly at short notice). The goal of the

capacity allocation problem is to minimize overtime for the crew, while performing

all non-urgent jobs before deadlines and solving all urgent jobs in required time. The

resulting capacity allocation problem is very challenging. In their work, [6] allow

the resources to be fully shared (i.e. full flexibility) to carry out the unpredictable

emergent jobs, and consider the crew’s overtime cost. The problem is decomposed

into two phases in their model: job scheduling phase and crew assignment phase.

They provide heuristics for each phase. Finally, they use simulation to validate the

recommended strategies from the model and report a financial annual labor savings

of 22.3%.

In healthcare, striking a balance between non-urgent and urgent demand occurs

routinely. For example, limited operating room and surgeon capacity in hospitals

needs to be allocated to balance elective surgeries demand while simultaneously ac-

commodating emergency surgeries. [21] formulate a stochastic dynamic programming

model to study the advance scheduling problem of elective surgery, given uncertain

emergency surgery requests. [33] consider a similar problem to manage capacity over

elective and emergency jobs, but in a multi-resource environment. A Markov Decision
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Process formulation is used to study this problem and the demand information and

resource availability are assumed to be immediately updated.

1.2.2 Flexibility

In our research, we focus on the inherent flexibility inside primary care practices

to share physicians’ capacity. In the manufacturing context, this is known as ‘process

flexibility’. The study of process flexibility started in 1980s. [50] survey several types

of manufacturing flexibility and discuss the associated benefits, challenges, and trade-

offs between no flexibility and full flexibility. Due to high installation cost of flexibility

links, manufacturing firms usually prefer to maintain profit while introducing fewer

flexibility links inside the system.

[34] firstly discuss the benefit of designing limited process flexibility inside system.

They use a simulation method in numerical studies, and the results show that the

long chain flexibility configuration can provide almost similar benefit as full flexibility

configuration. Afterwards, quantities of applications arise with the concept of long

chain and limited flexibility in other settings. For instance, [24] present a framework to

address the flexibility benefit in multistage supply chains. Furthermore, they propose

a flexibility measure to demonstrate the relationship between this measure and the

inefficiencies of the supply chains. However, limited theoretical results explaining

the effectiveness of long chain and limited flexibility have been reported. First, [5]

show diminishing returns in benefit with the increased flexibility inside system. [16]

develop a stochastic-programming-based method to quantify the performance of the

long chain, using performance of full flexibility as baseline. The asymptotic analysis

show that the long chain design performs almost as well as full flexibility when the

system size is large. Furthermore, when the system size is finite, [52] established a

theory to show the effectiveness of long chain design. While most literatures of long-

chain design focus on the expected performances objectives, [15] study the problem
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from the perspective of worse case analysis. The concept of graph expansion was

introduced to study the problem. And they show that, under all demand scenarios,

a variant of highly connected but sparse graphs is within ε-optimality of the full

flexibility graph.

Many papers study the application of process flexibility in different settings, for

instance, queueing systems [51] and [30]. [41] study the impact of increasing flexibility

under a make-to-order environment where flexibility is also used to hedge against

operational variability. [11] use a newsvendor network model to study the classical

capacity and flexible technology selection problem. In this study, each type of resource

is associated with particular flexibility level (ability to process a given number of

different product types). In the case of cross-training in serial production lines, [32]

show that flexibility improves efficiency in two main ways: by balancing unevenness

in capacity or workload between resources; and by handling the variability inherent

in demand. Also in [32], they compare a strategy that balances capacity using the

minimum amount of cross-training with the chaining of skills in the sequence of

the serial line. They find that skill-chaining strategies are more robust, and more

effective in variability buffering. [18] distinguish between range (the different demand

scenarios that can be accommodated) and response (the cost of doing so; that is,

the cost of using secondary rather than primary resources for production/service) of

flexible systems. They show that upgrading system response outperforms improving

system range. This result suggests that in the primary care settings, the benefits of

restricting the number of doctors that can see a particular patient (resulting in lower

cost of service because of familiarity and thus increased response) is likely to outweigh

the higher range provided by a fully flexible team care practice where any doctor can

see the patient.
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1.2.3 Related operations research applications in the context of health

care

The application of operations research to healthcare is a growing area of research.

In fact, the limited resource allocation problem under multiple demand streams in

healthcare has been widely observed, in settings as varied as primary care and surgical

scheduling. In this section, we limit our review on appointment scheduling problem,

which is an extension of the capacity allocation problem under dynamic demand

arrivals.

The appointment scheduling problem in healthcare has attracted significant at-

tention recently. [42] and [43] have recommended advanced access, which implies

that physicians should “do today’s work today” rather than book appointments into

the future. The adoption of open access, which promises patients same-day appoint-

ments, has prompted a series of questions. What is the impact of no-shows? How

many patients can a physician have (panel size) to allow open access? What if pa-

tients have specific preferences to schedule appointments? How to deal with different

type of patients? These questions have necessitated the use of queuing and stochastic

optimization approaches that provide guidelines to practices.

[25] investigate the link between panel sizes and the probability of “overflow” or

extra work for a physician under advanced access. They propose a simple probability

model that estimates the number of extra appointments that a physician is expected

to see per day as function of her panel size. The principal message of their work is

that for advanced access to work, supply needs to be sufficiently higher than demand

to offset the effect of variability.

[26] use a queuing model to determine the effect of no-shows on a physician’s

panel size. They develop analytical queuing expressions that allow the estimation of

physician backlog as a function of panel size and no-show rates. In their model, no

show rates increase as the backlog increases; this results in the paradoxical situation
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where physicians have low utilization even though backlogs are high - this is because

patients that had to wait for long do not show up. [8] show that in addition to panel

size, case-mix considerations are important when it comes to designing physician

panels. Case-mix refers to the type of patients (older versus younger; healthy patients

versus patients with chronic conditions) in a physician’s panel. They propose that in

the long term, panels can be redesigned to improve timely access and continuity. [38]

represent a clinic’s appointment system based on the framework of [26] and further

assume a no-show risk for patients in the queue. This no-show risk is characterized

with some probability decided by appointment delay. They show that, comparing to

the impact of the magnitudes of patient show-up probabilities on the optimal decision

of panel size, the impact of the sensitivity of these probabilities changing with delays

has even more impact on the those optimal decisions.

Motivated with finding a proper appointment window to maximize the efficien-

cy, [37] extend the framework in [38] by controlling the capacity of the queue (i.e.,

appointment window) to serve multiple types of patients who differ in arrival rates

and show-up probabilities (i.e., heterogenous populations). The principle results of

their work is, offering longer appointment window to patients with lower no-show

rates is always optimal in a heterogenous population but may perform worse in a

homogeneous population.

[27] conduct an empirical study of clinics in the Minneapolis metropolitan area

that adopted open access. They provide statistics on call volumes, backlogs, num-

ber of visits with own physician (which measures continuity) and discuss options for

increasing capacity at the level of the physician and clinic. [35] use discrete event

simulation to study the effects of clinical characteristics in an open access scheduling

environment on various performance measures such as continuity and overbooking.

One of their primary conclusions is that continuity in care is affected adversely as the

fraction of patients on open access increases. The authors mention provider group-
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s (or physicians and support staff) working in teams as a solution to the problem.

Numerous studies have studied the impact of no-shows and proposed overbooking s-

trategies for single physician clinic sessions. Examples include [36], [44], and [14]. [49]

compare the performance of two types of appointment-scheduling policies (tradition-

al appointment scheduling and open access scheduling systems) for single provider.

Though both of these two scheduling policies have substantial variability in the num-

ber of patients seen per day, the variability comes from different sources. In the

traditional scheduling system, patients schedule their appointments well in advance,

the variability in the number of patients seen per day results from no-shows within

the fixed number of appointments for that day. In the open access system, the vari-

ability in the number of patients seen per day results from the day to day demand

variability. Their numerical analysis reveals the open access generally outperforms

the traditional appointment system when the objective function is a weighted average

of patients’ waiting time (lead time to appointment), the doctor’s idle time, and the

doctor’s overtime. The traditional system works better than the open access system

only when the patient wait time is held in little regard or when the probability of

no-show is small. [39] propose new heuristic policies for dynamic scheduling of patient

appointments under no-shows and cancelations. They find that open access works

best when patient load is relatively low.

[53] consider an appointment booking problem for each workday separately to

maximize clinic revenue. The patients’ preferences are modeled explicitly by defin-

ing different acceptance probabilities for each physician and time-block combination,

then are learned dynamically and updated to improve the booking decisions as book-

ing preferences are different for each patient and they change over time for the same

patient. A major criterion as patient-physician match rates measures patients’ satis-

faction in this paper. They also model two types of demand as advance-book (non-

urgent) and same-day (urgent) demand which is similar in our model. For this multi-
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physician practice, a sequential call-in process for prescheduled appointment request

are considered while the same-day demand in their models are assumed to arrive just

before the start of the workday. Their model is limited for low no-show rate practices.

The most closely related papers to our study are [29], [20], [48], [10], [19] and [7].

[29] explicitly model the capacity reservation problem under consideration of the

patients’ choice behavior to maximize the clinic revenue. The patients’ choice be-

havior is characterized by a set of values to indicate the probability that a patient

to request an appointment. The patients’ preferences contain a specific slot in a

day as well as a preference for their own physician’s. They use a Markov Decision

Process model to obtain booking policies that provide limits on when to accept or

deny requests for appointments from patients. Both of one single physician practice

and multiple physicians practice have been discussed to establish the optimal book-

ing policies. The principal difference between their model and ours is that, in terms

of flexibility, their clinic is fully flexible with regard to both non-urgent and urgent

appointments while we consider different flexibility configurations and the associated

impact in primary care practices.

[20] study the appointment scheduling problem with consideration of patient pref-

erences regarding which they would like to be seen, based on an electronic appoint-

ment scheduling system. In their model, patients could choose a day to schedule

appointment among the options provided by the system, or be refused if her prefer-

ence does not match. No shows, revenues for shows, and service cost are considered in

the model and the objective is to maximize the expected net profit for the proposed

system. They initially propose an optimal policy with bounded optimality gap based

on a static model. They then develop a dynamic model and propose a heuristic solu-

tion procedure. In our research, we also consider the appointment scheduling problem

based on patients’ preferences; however, the patients’ preferences in our model is the

preference for specific hours/times in a workday.
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[48] consider an essential question for primary care practices: how many presched-

uled appointments should a physician plan for in a workday given that the physician

also has to see same-day patients? Their model considers different show rates for the

two appointment types. They derive conditions under which a solution for the num-

ber of prescheduled appointments to reserve is locally optimal. [10] show a stronger

result for the single physician problem, guaranteeing global optimality, by first show-

ing that the revenue maximization function has diminishing returns under mild as-

sumptions. They present a stochastic optimization model to determine the number

of prescheduled appointments each physician should plan for and how this number

changes depending on how flexible physicians are in seeing same-day patients of other

physicians. An important conclusion of the study is that partial flexibility - where

same-day patients are seen by a smaller subset of physicians, thus maintaining an

acceptable level of continuity - comes very close to matching full flexibility with re-

gard to the number of patients a practice is able to see per day. In our dissertation,

we establish a similar framework as [10] and focus on the impact of flexibility in

the resource allocation problem among multiple demand classes. We also extend the

diminishing return property to hold under some particular flexibility configurations.

[19] examines the effect of reserving slots for urgent patients in health care prac-

tices on balancing long appointment queues with overtime to see urgent patients.

Their model is based on a carve-out mixed with advance-access scheduling system.

In their model, a fraction of the daily capacity is reserved for urgent patients, and the

same-day appointments are scheduled on a first-come-first-serve basis. In addition,

if the current day’s capacity is full, the appointments of routine patients are carried

over to the next day and all urgent overflow are satisfied on the same day by double

booking, or referred to other physicians or emergency clinics. [7] focus on a hospital

setting and formulate a general dynamic-programming model to study the problem

of allocating fixed capacity among multiple customer classes. They assume that, for
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some customer classes, the demand can be fully backlogged while for other customer

classes, the demand will be lost if it is not fulfilled with available capacity. In this

paper, they show that problem involving lost sales and backorders leads to a not so

simple optimal structure yet exhibits desirable monotonicity properties. They pro-

pose a simple threshold heuristic policy in the computational study. In our research,

we are interested in the impact of flexibility on resource allocation among multiple

demand classes. To avoid computational intractability, we ignore the dynamically

allocations in chapter 2 - 5, but use an aggregate model to capture the allocation

process based on a simple threshold based heuristic policy, which performs well in [7]

and is shown to be optimal in [19].

1.3 Contributions

In summary, our study of flexibility in primary care practices builds upon the

extensive literature on manufacturing flexibility and its more recent application to

service systems and worker training and allocation. There are, however, key opera-

tional differences that make the application of flexibility to primary care worthy of

further analysis: (1) two demand streams associated with each resource, where one

(prescheduled demands) gets realized before the other (same-day demands); (2) two

conflicting objectives, timeliness and continuity of care; (3) no fixed cost associated

with installing flexibility, but a loss in continuity for using it;(full flexibility config-

uration might be a good choice because it is easily implemented in practices with

no installation cost) (4) appointments are booked over time and thus future resource

capacity is sequentially being allocated under partial demand information. The latter

point is mute in our aggregate analysis of the capacity allocation problem, but key

to the dynamic clinic scheduling problem ([31]), which is considered in Chapter 6.

[10] propose a model to formulate the described capacity allocation problem in

primary care practices, under two successively realized demand streams as a two stage
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stochastic integer program. In their work, only same-day patients are allowed to be

flexibly shared by different physicians while prescheduled patients are always dedi-

cated. In our dissertation, we first extend the formulation in [10] to a more general

case (Section 2.4), where both prescheduled patients and same-day patients could be

flexibly shared. A practice can choose any flexibility configuration to serve patients.

This extended formulation depends on the analysis of relationship between the ran-

dom demand scenarios, the sequential realization of these demands (i.e. prescheduled

demands are realized before same-day demands), and the actual allocations based

on different flexibility configurations. Furthermore, we propose a new framework,

in which prescheduled patients from different panels share a common booking limit

while same-day patients are fully flexibly shared (Section 2.5). In this framework,

prescheduled patients are always served by their own physicians as long as the actu-

al demand does not exceed the corresponding physician’s total capacity. This new

framework is particularly beneficial in primary care practices because it could help to

maintain the continuity for prescheduled patients (for whom continuity is much more

critical) while improving access of patients as a regular full flexibility configuration.

We analyze different flexibility configurations and find that the diminishing return

property holds for the revenue function under two particular groups of flexibility

configurations (Section 3.2). One is any flexibility configuration as long as same-

day patients are fully flexibly shared; and the other one is any same-day flexibility

configuration as long as prescheduled patients are seen by their own provider (the

dedicated case). Furthermore, under the former configurations, we prove that the

optimal booking limit is always non-increasing when prescheduled flexibility inside the

system increases (Section 3.3). Under the latter configurations, the optimal booking

limit is shown to be non-decreasing with increased same-day flexibility when system

is low-utilized, but non-increasing with increased same-day flexibility when system is

over-utilized (Section 3.3). In Section 3.4, we show that greedy heuristic leads to an
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optimal solution under symmetric cases. Interestingly, greedy heuristic yields optimal

solution in our capacity allocation problems under all tested demand scenarios under

a subset of all possible configurations. With this computational evidence, we propose

the greedy heuristic as an effective approach to reduce computational efforts (Section

3.4).

Next, we computationally study the impact of flexibility in primary care practices.

We focus on the prescheduled dedicated and same-day fully flexible configurations,

which are commonly observed in practices due to the needs of maintaining continuity

for prescheduled patients and the needs of increasing access for same-day patients.

Surprisingly, in this capacity allocation problem, we find that, prescheduled flexibility

always produces only a marginal revenue gain as long as same-day patients are fully

flexibly shared. We also show that although the expected revenue of the entire system

is not sensitive to the prescheduled booking limit, beyond some point, operating a

threshold policy for prescheduled appointments could help to reduce the risk of long

overtime (Section 4.2.2).

We study the impact of a newly hired additional provider in primary care practices,

where the additional provider is limited to serve same-day patients. We find that this

configuration can increase access for prescheduled patients, for whom continuity is

critical. This is yet more evidence to support the finding that prescheduled flexibility

only produce marginal gain as long as same-day patients are fully flexibly served

(Section 5.2.1-5.2.2).

Finally, we establish a simulation model under dynamic arrivals to study the

capacity allocation problem (usually called the appointment scheduling problem in

health care under dynamic environment). In this dynamic model (Section 6.2), we

capture some realistic issues in primary care practices, such as patients’ preferences

for time of the day, patients’ willingness to be diverted to another physician, dynamic

and non-homogeneous same-day arrivals, etc. Till now, few papers have considered
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these issues. We still allow flexibility in the physician’s capacity-sharing behavior in

the simulation to study its impact.

We use the simulation to also quantify the impact of patient preference flexibil-

ity on a practice’s performance. We vary this flexibility by varying the number of

time-of-day preferences the patient will allow. Surprisingly, we find that the prac-

tice performs quite well even if a patient has only limited time-of-day choices under

different patient preference distributions (Section 6.3.1). [9] showed that the earlier

in the day prescheduled appointments are scheduled, the better the practice’s abil-

ity of satisfy same-day appointments during the 8-hour workday. However, [9] did

not consider the fact that prescheduled patients have time-of-day preferences. We

therefore test cases where a practice blocks certain hours of the day for prescheduled

appointments, based on the same-day call frequency from a small, private 3-provider

practice in Amherst, Massachusetts. The results suggest a better policy for this clinic

to always leave more slots for same-day patients in the afternoon (Section 6.3.2).

1.4 Dissertation overview

This dissertation consists of seven chapters. In Chapter 1, we discuss the moti-

vation to study the impact of flexibility in limited capacity allocation problem under

non-urgent demand (booked in advance) and urgent demand (arrive randomly) and

then report the literatures in three related topics: 1) limited resource allocation among

non-urgent and urgent demands in manufacturing and service context; (2) flexibility

(3) related operations research applications in the context of health care. In Chapter

2, we present a general 3-stage framework to capture the capacity allocation problem

and then propose the mathematical formulations under different flexibility configura-

tions. Chapter 3 presents all the analytical results based on the analysis of different

flexibility configurations. Chapter 4 focuses on a primary care practice to discuss the

insights by adapting models introduced in Chapter 2. Chapter 5 studies the impact of
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additional providers introduced to a primary care practice. In Chapter 6, we establish

s single workday simulation model to study a real clinic, where patients’ preferences,

call-in frequency over a day, clinic’s policy to guide prescheduled appointments, etc.,

are considered. Finally, in Chapter 7, we discuss applications of our study in other

contexts and implications for primary care practices based on our findings. Then we

present possible directions for future study.
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CHAPTER 2

MATHEMATICAL MODELING AND FRAMEWORK

2.1 Introduction

In this chapter, we introduce a 3-stage stochastic models to capture the physicians’

capacity allocation problem in primary care practices. In Section 2.2, we state the

framework and major assumptions to establish the model. The model in Section

2.3 is under the cases that prescheduled patients are seen by their own physicians

and flexibility is only allowed for same-day patients. The models in Section 2.4 are

under the cases that flexibility is allowed for both prescheduled patients and same-

day patients. Finally, in Section 2.5 we model the cases that an overall system limit

on prescheduled appointments is used, and same-day appointments are fully flexibly

shared (thus pooling the capacity available to prescheduled patients).

2.2 Modeling framework and assumptions

We consider the daily capacity allocation of a general primary care practice with

m physicians, indexed by i = 1, 2, ...,m, each physician i with Ci patient appointment

slots available. Physicians have their own patient panels, indexed by j = 1, 2, ...,m,

to serve. Let A be the set of all possible panel-physician links (j, i) such that patients

in panel j can be served by physician i. The set A represents the particular flexibility

configuration under consideration; that is, the network of allowed patient redirection-

s within the practice. In our general model, we assume physician flexibility can be

used by both prescheduled and same-day patients. That is A = Ap ∪ As. We use

Ap to represent prescheduled flexibility configuration and As to represent same-day
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flexibility configuration. In some particular computational experiments in Chapter

4 and Chapter 5, we focus on the most relevant cases in practice, where physician

flexibility can only be used for the time-sensitive same-day patients. This is be-

cause patient-physician continuity is highly beneficial to prescheduled appointments,

in which major physicals or follow-ups of chronic conditions are performed.

Each patient panel j generates two demand streams: Dp
j for prescheduled appoint-

ments, for whom continuity is critical, and Ds
j for same-day appointments, for whom

timely access is essential. Dp
j and Ds

j are general random variables. The demand

for prescheduled and same-day appointments can be represented by a random vector

D = (Dp,Ds) = (Dp
1, D

p
2, ..., D

p
m, D

s
1, D

s
2, ..., D

s
m). Note that Dp is realized before Ds,

since prescheduled appointments are scheduled far in advance of a workday, same-day

appointments are typically requested over the course of a workday. At the aggregate

planning level we assume that all prescheduled demand is realized at once and, sub-

sequently, all same-day demand is realized at once, at the beginning of the day. We

ignore the dynamic/sequential arrival over the course of the scheduling period for

prescheduled appointments and throughout the day for same day patients.

Each prescheduled patient from panel j seen by physician i, for any (j, i) ∈ Ap,

brings the practice a revenue of Rp
ji and each same-day patient from panel j a higher

revenue of Rs
ji, when being seen by physician i for (j, i) ∈ As. We assume that the

revenue associated with same-day patients is higher because these patients (1) have

a lower no-show rate, and (2) if no appointment slot is available, will either go to an

emergency room and be lost to the practice, or require overtime at the practice. The

prescheduled patients, on the other hand, can be offered a later appointment date

in most situations. Thus, the practice needs to reserve some capacity to satisfy the

urgent requests, and curtail the number of slots offered to prescheduled appointments

to some level Np
i ≤ Ci. Note that any leftover unused slots, after the prescheduled

allocation is completed, can now be used by the same-day patients. In addition, some
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practices may make use of the inherent flexibility that primary care physicians have

to see patients from any panel to better accommodate the demand.

We use a 3-stage model to formulate the capacity allocation problem for any

given flexible configuration. Np
i (i = 1, 2, ...,m) are the first stage decision variables

which denote the booking limits, that is, how many slots should be made available for

prescheduled appointments of each physician. The second and third stage decision

variables are denoted by xpji and xsji, the number of booked prescheduled appointments

and the number of same-day patients from panel j assigned to physician i, respectively.

Let Np = [Np
1 , N

p
2 , ..., N

p
m], Xp = [xp11, x

p
12, ..., x

p
mm] and Xs = [xs11, x

s
12, ..., x

s
mm].

The objective is to maximize the expected revenue of satisfying prescheduled and

same-day appointments. The mathematical formulation is as follows:

3-stage General Model

First Stage

max
Np

E[R(Np,Dp,Ds)] (2.1)

R(Np,Dp,Ds) = Rp(Np,Dp) + E
Dp

[Rs(Np,Xp∗(Np,Dp),Ds)] (2.2)

s.t.Np
i ≤ Ci, ∀i = 1, 2, ...,m (2.3)

Np
i ≥ 0 and integer (2.4)

Second Stage

Rp(Np,Dp) = max
Xp

m∑
i=1

∑
j:(j,i)∈Ap

Rp
jix

p
ji (2.5)

s.t.
∑

j:(j,i)∈Ap

xpji ≤ Np
i , ∀i = 1, 2, ...,m (2.6)

∑
i:(i,j)∈Ap

xpji ≤ Dp
j , ∀j = 1, 2, ...,m (2.7)

xpji ≥ 0 and integer (2.8)
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Third Stage

Rs(Np,Xp∗(Np,Dp),Ds) = max
Xs

m∑
i=1

∑
j:(j,i)∈Ap

Rs
jix

s
ji (2.9)

s.t.
∑

j:(j,i)∈As

xsji ≤ Ci −
∑

j:(i,j)∈Ap

xpji, ∀i = 1, 2, ...,m (2.10)

∑
i:(j,i)∈As

xsji ≤ Ds
j , ∀j = 1, 2, ...,m (2.11)

xsji ≥ 0 and integer (2.12)

2.1 - 2.4 describe the first stage of this capacity allocation problem: maximize the

total revenue gained from the prescheduled appoiontments and from the same-day

appointments. Np
i (i = 1, 2, ...,m) are the only decision variables in this stage. And

constraint 2.3 requires Np
i do not exceed total capacity of physician i.

2.5 - 2.8 establish the second stage of this capacity allocation problem: given

booking limit Np
i , we maximize the total revenue gained from prescheduled appoint-

ments to find the allocation of prescheduled demand. The allocation is given by xpji

(i = 1, 2, ...,m, j : (j, i) ∈ Ap). Constraint 2.6 and constraint 2.7 limit the number

of prescheduled appointments to the allocated capacity Np
i and the realized demand

Dp
i , respectively. Note that the decision variable Xp(Np,Dp), which describe the al-

location of prescheduled patients, are determined only with consideration of reserved

capacity Np
i and prescheduled demand realization, without consideration of same-day

realizations.

2.9 - 2.12 formulate the third stage of this capacity allocation problem: given

booking limit Np
i and allocations xpji for prescheduled patients obtained from the

second stage, we maximize the total revenue gained from same-day appointments

to find the allocation of same-day demand, which are given by xsji (i = 1, 2, ...,m,

j : (j, i) ∈ As). Constraint 2.10 ensures that the total same-day appointments for

any physician i do not exceed remaining capacity and constraint 2.11 limits the total
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number of same-day appointments scheduled from a panel to the realized demand for

such appointments from that panel.

A computationally intensive (and intractable) approach is to solve the three stage

problem using an exhaustive search. In this approach, for any given booking limits

and prescheduled demand scenario, the allocation of prescheduled requests is made

independently of the potential outcomes of the later realized same-day demand, as

would occur in practice. The allocation of same-day demand to the remaining capacity

is then optimized. To reduce computational efforts, we prefer to establish a simpler

stochastic program instead of the 3-stage model presented earlier, while still capture

all the natures of this capacity allocation problem.

Modeling the problem as a common stochastic program is deceivingly difficult.

The major challenge in formulating the three-stage capacity allocation problem is

correctly capturing the second step, where prescheduled demand can be allocated

up to the desired booking limit while ideally considering the expected revenues on

the third stage (same-day demand allocation). The difficulty is in making sure if

the booking limit Np
i for physician i is reached under given prescheduled demand

scenarios. In an inappropriate formulation, a physician may reject or divert her

prescheduled requests to another physician without reaching her booking limit, so

that the leftover prescheduled slots are used to fulfill higher revenue same-day requests

in scenarios where same-day demand is high. However, this allocation definitely

contradict with the natures that (1) prescheduled demand is realized and fulfilled

before same-day demand is realized and (2) physicians always satisfy the prescheduled

patients from their own panels as much as possible. To correctly capture these natural

characteristics of the capacity allocation problem, we propose multiple formulations

under different flexibility configurations.

First, under dedicated prescheduled scenarios, where prescheduled demand can

only be satisfied by the patient’s own physician, this challenge can be easily over-
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come by defining binary variables for each scenario that indicate whether or not the

booking limit has been reached as a function of the observed prescheduled demand

(Formulation I).

Second, when prescheduled patients can be fully flexibly shared, we could de-

fine a single binary variable for each scenario to indicate whether or not the total

booking limit has been reached. Then the allocation of prescheduled demand and

same-day demand could be optimized by the model (Formulation II). However,

when prescheduled patients are partially flexibly shared, such formulations become

much more complicated to be established. Because the allocation of prescheduled

demand depends on not only the actual demand but also the allowed flexibility links.

We present an approach to establish the formulation for a case, under which presched-

uled flexibility configuration is 2-chain (Formulation III). This approach could be

extended to other prescheduled partially flexible configurations.

Finally, if same-day patients are fully shared by all the physicians in the practice,

i.e. under a full flexibility configuration for same-day requests, then it makes sense

to implement a single booking limit for prescheduled requests that applies to the

entire practice (Formulation IV). Prescheduled requests from each panel will be

assigned to their physician until the practice-wide booking limit is reached. Again

here whether or not the limit is reached can be evaluated directly based on given

prescheduled demand scenarios. Thus the stochastic program can be formulated in

the usual way with the addition of a single binary variable under each scenario that

indicates whether or not the total booking limit is reached.

In Formulation I - Formulation IV, to solve the capacity allocation problems,

we use a sample average approximation method. As described before, the demand

for prescheduled and same-day appointments can be represented by a random vector

D = (Dp,Ds) = (Dp
1, D

p
2, ..., D

p
m, D

s
1, D

s
2, ..., D

s
m). Let Ti be the size of physician i’s

panel. Dp follows a discrete distribution that assigns a probability qt to each possible
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realization of demand for prescheduled, indexed by t, t = 1, 2, ..., T , where T ≡ T1 ×

T2×...×Tm; that is, P [Dp = (dp1t, ..., d
p
mt)] = qt. Given a particular realization t of Dp,

let ptu denote the conditional probability P [Ds = (ds1u, ..., d
s
mu)|Dp = (dp1t, ..., d

p
mt)].

We introduce the following decision variables:

Np
i : number of slots allocated for prescheduled demand of physician i, i = 1, ...,m.

xpjit: number of slots booked by prescheduled demand in panel j assigned to physician

i under demand realization t, i = 1, ...,m, j = 1, ...,m and (j, i) ∈ Ap.

xsjitu: number of same-day patients in panel j assigned to physician i under demand

realization t for prescheduled and demand realization u for same-day, for all i =

1, ...,m, j = 1, ...,m and (j, i) ∈ As.

2.3 Model I: prescheduled patients are dedicated

In primary care practices, patient-physician continuity is important both for effi-

ciency of service and improved patient outcomes, especially for prescheduled patients

with chronic conditions. Thus, restricting prescheduled patients to see their own

physicians while allowing flexibility for urgent patients to see other physicians is an

attractive configuration to balance timely visits while ensuring continuity to the pa-

tients for whom it is critical. Based on this requirement, our general 3-stage model

can be written as a simpler stochastic programming model, which is similar to the

one in [10]. Np
i are first stage decision variables, and xpjit and xsjitu are second stage

decision variables. Note that xjit = 0 ∀j 6= i.

We introduce binary variables φit (∀ i = 1, 2, ...,m and t = 1, ...T ) in order to

indicate whether or not there is left-over capacity initially reserved for prescheduled

demand to be used by same-day appointments.

φit =


1, if Dp

it < Np
i

0, otherwise

(2.13)
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Formulation I

max

TL∑
t=1

m∑
i=1

qt × [Rp
jjx

P
jjt +

Ut∑
u=1

ptu
∑

(j,i)∈As

Rs
jix

s
jitu] (2.14)

subject to Np
i ≤ Ci, ∀i = 1, 2, ...,m (2.15)

Np
i ≤ Dp

it + Ciφit, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.16)

Np
i ≥ Dp

it − Ci(1− φit), ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.17)

xpiit ≤ Np
i , ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.18)

xpiit ≤ Dp
it, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.19)∑

j:(j,i)∈As

xsjitu ≤ Ci −Dp
itφit, ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.20)

∑
j:(j,i)∈As

xsjitu ≤ Ci −Np
i + Ciφit, ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.21)

∑
i:(j,i)∈As

xsjitu ≤ Ds
jtu, ∀j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.22)

φit binary, ∀i = 1, 2, ...m, t = 1, 2, ...T (2.23)

Np
i , x

p
jjt, x

s
jitu ≥ 0 and integer,∀i, j = 1, 2, ...,m, and (j, i) ∈ As,

t = 1, 2, ...T, u = 1, 2, ...Ut

(2.24)

Constraints 2.16 - 2.17 ensure that φit = 1 if Dp
it ≤ Np

i and φit = 0 if Dp
it > Np

i .

Constraints 2.18 - 2.19 limit the number of prescheduled appointments to the allocated

capacity and the realized demand, respectively. Constraints 2.20 and 2.21 ensure that

the total same-day appointments for any physician i do not exceed remaining capacity,

when φit = 1 and φit = 0 respectively. Constraint 2.22 limits the total number of

same-day appointments scheduled from panel j not to exceed the demand from this

panel.
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2.4 Model II: prescheduled patients are flexibly shared

Some primary care practices do allow for some flexibility in the allocation of

prescheduled patients to physicians beyond their physicians. To study the effect

of the flexible policies on timely access, we could use a full-blown 3-stage model;

however, as explained earlier, the model requires an exhaustive search and sequential

computation of the solutions to the different stages resulting in prohibitive run times.

In Section 2.3, we reduce the original 3-stage model to a simpler formulation un-

der the scenarios that prescheduled patients are dedicated. In fact, another special

case is that prescheduled patients are fully flexibly shared. Under these scenarios, the

general 3-stage model could also be simplified by introducing single binary variable φt

for each prescheduled demand scenario t (∀ t = 1, ...T ) in order to indicate whether

or not the total booking limit is reached by prescheduled demand in the entire system.

φt =


1, if

m∑
i=1

Dp
it <

m∑
i=1

Np
i

0, otherwise

(2.25)

Similarly, Np
i are first stage decision variables, and xpjit and xsjitu are second stage

decision variables. Note that xjit = 0 (∀j 6= i, i, j = 1, ...,m).

Formulation II

max

TL∑
t=1

m∑
i=1

qt × [
∑

j:(j,i)∈Ap

Rp
jix

P
jit +

Ut∑
u=1

ptu
∑

j:(j,i)∈As

Rs
jix

s
jitu] (2.26)

subject to Np
i ≤ Ci, ∀i = 1, 2, ...,m (2.27)∑

j:(j,i)∈Ap

xpjit ≤ Np
i , ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.28)

∑
i:(j,i)∈Ap

xpjit ≤ Dp
jt, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.29)

m∑
j=1

Dp
jt ≤

m∑
j=1

Np
i +

m∑
j=1

Ci × (1− φt), ∀t = 1, 2, ...T (2.30)
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m∑
j=1

Dp
jt ≥

m∑
j=1

Np
i − φt ×

m∑
j=1

Ci, ∀t = 1, 2, ...T (2.31)

m∑
i=1

xpjit ≥ Dp
jt × φt, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.32)

∑
j:(j,i)∈As

xsjitu ≤ Ci −Np
i + Ciφt, ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.33)

∑
j:(j,i)∈As

xsjitu ≤ Ci −
m∑
j=1

xpjit +Ci(1− φt), ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut

(2.34)∑
i:(j,i)∈As

xsjitu ≤ Ds
jtu, ∀j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.35)

φt binary, ∀t = 1, 2, ...T (2.36)

Np
i , x

p
jit ≥ 0 and integer,∀i, j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.37)

xsjitu ≥ 0 and integer,∀i, j = 1, 2, ...,m, and (j, i) ∈ As, t = 1, 2, ...T, u = 1, 2, ...Ut

(2.38)

Constraints 2.28 - 2.29 limit the number of prescheduled appointments to the allo-

cated capacity and the realized demand, respectively. Constraints 2.30 - 2.31 ensure

that φt = 1 if
∑m

i=1D
p
it ≤

∑m
i=1N

p
i and φt = 0 if

∑m
i=1D

p
it >

∑m
i=1N

p
i . Constraint

2.32 is a key constraint only hold for prescheduled patients fully flexibly shared scenar-

ios, which ensures that when φt = 1(total prescheduled demand does not exceed total

reserved capacity), all the prescheduled demand could be perfectly allocated. Con-

straints 2.33 and 2.34 ensure that the total same-day appointments for any physician

i do not exceed remaining capacity, when φit = 0 and φit = 1 respectively. Constraint

2.35 limits the total number of same-day appointments scheduled from panel j not to

exceed the demand from this panel.

By using Formulation II, computational effort could be reduced a lot under

prescheduled patients fully flexibly shared scenarios. However, is it possible to es-

tablish similar formulation under prescheduled patients partially flexibly shared sce-

narios, by introducing appropriate decision variables? In fact, it is doable but very
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distinctive for different flexibility configuration because not only actual demand but

also flexibility configuration will impact on whether or not the booking limit of one

physician is reached.

Figure 2.1. Performances of 2-chain and full flexibility configuration under an ex-
treme prescheduled demand scenario

For example, Figure 2.1 shows the performances of a 2-chain configuration and a

full flexibility configuration under one extreme prescheduled demand scenario. In this

scenario, the demand from first panel is extremely high while the demand from third

panel is zero. In fact, these two configurations have equal amount of prescheduled de-

mand, which is Np
1 +Np

2 +Np
3 ; however, in the 2-chain configuration, one prescheduled

request from panel one could not be served due to the limited flexibility in the system.

In that case, the booking limit of physician 3 is not reached under the 2-chain configu-

ration while it should be reached under the full flexibility configuration. Actually the

2-chain configuration performs almost same as the full flexibility configuration except

under some extreme cases, for example, Dp
1 > Np

1 + Np
2 , Dp

1 + Dp
2 > Np

1 + Np
2 + Np

3 ,

etc. Note that, different partial flexibility configuration will have different optimal

allocations to assign patients (certainly none of them could perform better than ful-

l flexibility). Then, for any prescheduled partially flexible configuration, we have
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to analyze all the possibilities of relationships between the allocations and different

demand realizations to establish the constraints.

In this dissertation, we illustrate how to formulate the capacity allocation problem

based on a 3-physician practice, inside which 2-chain configuration is allowed for

prescheduled patients and any flexibility configuration could be allowed for same-day

patients. This approach can be extended to any other prescheduled partial flexibility

configurations.

As described earlier in Section 2.2, the difficulty to establish the formulation is to

create appropriate decision variables to indicate if booking limits are not reached (2.30

and 2.31 in Formulation II) and then to introduce constraints to guarantee correct

amount of prescheduled patients are satisfied when booking limits is not reached

(2.32 in Formulation II). In the prescheduled fully flexible configuration, single

decision variable to indicate the situation in the entire system is sufficient because

the full flexibility for prescheduled patients could perfectly redirect demand if there is

available capacity from any other physician. However, when prescheduled flexibility

is partial, we need such decision variable for each physician, because the links inside

the system is not sufficient enough to adjust demand with available capacity under

some demand scenarios, recall Figure 2.1.

Under the given prescheduled 2-chain configuration for a 3-physician practice, we

use binary variables φit for each physician i under prescheduled demand scenario t (∀

i = 1, ...3, t = 1, ...T ) in order to indicate whether or not the individual booking limit

is reached or not (0 reached, and 1 not reached). Different demand scenarios lead

to different value of φit and the conditions of demand scenarios are not as visualized

as prescheduled full flexibility configuration. Based on our analysis, we propose 4

cases to jointly illustrate the relationships between demand scenarios and described

decision variables. For each case, we introduce a group of decision variables φkit (∀

i = 1, ...3, t = 1, ...T , k = 1, ..., 4) to indicate if any individual booking limit is reached
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or not (always 0 reached, and 1 not reached in every case). We start analysis with

the simplest case, then explore new case to take off the exceptions from known cases

to revise the decision variables.

In addition, we introduce a group of important decision variables φ∗it for each

physician i under prescheduled demand scenario t (∀ i = 1, ...3, t = 1, ...T ):

φ∗it =


1, if Dp

it < Np
i +Np

k , k = (i+ 1) mod 3

0, otherwise

(2.39)

to indicate if prescheduled demand for physician i exceed the potential maximum

number of prescheduled patients could be seen (in this prescheduled 2-chain config-

uration, one panel is linked to two physicians, so the maximum number of satisfied

prescheduled demand will never exceed the sum of booking limits of those two physi-

cians).

The mentioned four different cases to decide if individual booking limit is reached

or not are listed as follows:

(1) Although flexibility is allowed, prescheduled patients from one panel will be

firstly served as much as possible by their own physicians to maintain continuity.

That is, if the demand from panel i does not exceed the corresponding physician’s

booking limit Np
i , all the prescheduled demand Dp

it will be fulfilled. We introduce

binary variables φ1
it for each physician i (∀ i = 1, ...3) under prescheduled demand

scenario t (∀ t = 1, ...T ):

φ1
it =


1, if Dp

it < Np
i

0, otherwise

(2.40)

to indicate if prescheduled demand from panel i exceed physician i’s booking limit.

(2) If prescheduled demand from panel i does not exceed physician i’s booking

limit, is it still possible for this booking limit to be reached? The answer is yes

because of the flexibility links. For example, if Dp
2 < Np

2 , case 1 will decide φ1
2t to be
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0; however, consider a prescheduled demand scenario t1 [Dp
1t1
, Dp

2t1
, Dp

3t1
] that satisfied

Dp
1t1

+ Dp
2t1

> Np
1 + Np

2 , here then physician 2’s booking limit is reached due to the

flexibility link (1,2). To revise the decision variables, we introduce binary variables

φ2
kt for physician k (k = (i+1) mod 3, i = 1, 2, 3) under prescheduled demand scenario

t (∀ t = 1, ...T ):

φ2
kt =


1, if Dp

it +Dp
kt < Np

i +Np
k

0, otherwise

(2.41)

(3) If for physician i, φ2
it is 1(limit is not reached), is there any case to lead this

physician’s limit to be fulfilled? The answer is yes. Suppose Dp
2 + Dp

3 < Np
2 + Np

3

but Dp
1 > Np

1 + Np
2 , then any demand scenario satisfying Dp

2 + Dp
3 ≥ Np

3 leads

physician 3’s booking limit to be fulfilled. This is because, physician 1’s reserved slots

is much highly-utilized, then 2-chain flexibility tends to make the third physician’s

reserved capacity occupied by prescheduled demand from panel 2, in order to reduce

prescheduled loss from panel 1. As long as Dp
2 +Dp

3 ≥ Np
3 , physician 3’s booking limit

is always reached.

Recall the decision variable φ∗it to indicate if prescheduled demand for physician

i exceed the potential maximum number of prescheduled patients could be seen. To

revise decision variable based on above case, we introduce binary variables φ3
k1t

for

physician k1 (k1 = (i+ 2) mod 3, k2 = (i+ 1) mod 3, i = 1, 2, 3) under prescheduled

demand scenario t (∀ t = 1, ...T ):

φ3
k1t

=


1, if Dp

k1t
+Dp

k2t
< Np

k1
+M1φ

∗
it

0, otherwise

(2.42)

M1 is a sufficiently large number.

(4) Finally, if Dp
2 + Dp

3 < Np
2 + Np

3 but Dp
1 ≤ Np

1 + Np
2 (actually this case is

a complement of case 3: Dp
2 + Dp

3 < Np
2 + Np

3 but Dp
1 > Np

1 + Np
2 ). As long as

Dp
1 +Dp

2 +Dp
3 ≥ Np

1 +Np
2 +Np

3 , physician 3’s booking limit must be fulfilled, because

the flexibility links could shuffle demand as perfectly as a full flexibility under this
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case. Then, we introduce binary variables φ4
k1t

for physician k1 (k1 = (i + 2) mod 3,

k2 = (i+ 1) mod 3, i = 1, 2, 3) under prescheduled demand scenario t (∀ t = 1, ...T ):

φ4
k1t

=


1, if Dp

it +Dp
k2t

+Dp
k1t

< Np
i +Np

k2
+Np

k1
+M2(1− φ∗it)

0, otherwise

(2.43)

M2 is a sufficiently large number.

Till now, we could not explore any other cases to revise the proposed decision

variables. The revising policy is, if under any one among above 4 cases, physician

i’s limit is decided to be reached (decision variable is 0), then the final decision of

physician i should be zero as well. Only when physician i’s limit is never reached

under all the cases, the final decision of physician i is 1. That is,

φit = min
k∈{1,...,4}

φkit (2.44)

In summary, for a given 3-physician practice, inside which prescheduled flexibility

is 2-chain and sameday flexibility is any configuration, the mathematical formulation

is as follow:

Formulation III

max

TL∑
t=1

m∑
i=1

qt × [
∑

j:(j,i)∈Ap

Rp
jix

P
jit +

Ut∑
u=1

ptu
∑

j:(j,i)∈As

Rs
jix

s
jitu] (2.45)

subject to Np
i ≤ Ci, ∀i = 1, 2, ...,m (2.46)∑

j:(j,i)∈Ap

xpjit ≤ Np
i , ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.47)

∑
i:(j,i)∈Ap

xpjit ≤ Dp
jt, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.48)

Dp
it ≤ Np

i +Np
k +

m∑
i=1

Ci × (1− φ∗it), ∀i = 1, 2, ...,m, k = (i+ 1) mod 3, t = 1, 2, ...T

(2.49)
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Dp
it ≥ Np

i +Np
k −

m∑
i=1

Ci×φ∗it, ∀i = 1, 2, ...,m, k = (i+1) mod 3, t = 1, 2, ...T (2.50)

Dp
it ≤ Np

i +
m∑
i=1

Ci × (1− φ1
it), ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.51)

Dp
it ≥ Np

i −
m∑
i=1

Ci × φ1
it, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.52)

Dp
it+D

p
kt ≤ Np

i +Np
k+2

m∑
i=1

Ci×(1−φ2
it), ∀i = 1, 2, ...,m, k = (i+1)mod 3, t = 1, 2, ...T

(2.53)

Dp
it +Dp

kt ≥ Np
i +Np

k −2
m∑
i=1

Ci×φ2
it, ∀i = 1, 2, ...,m, k = (i+ 1) mod 3, t = 1, 2, ...T

(2.54)

Dp
k1t

+Dp
k2t
≤ Np

k1
+ 4

m∑
i=1

Ci × φ∗it + 2
m∑
i=1

Ci(1− φ3
k1t

)

∀i = 1, 2, ...,m, k1 = (i+ 2) mod 3, k2 = (i+ 1) mod 3, t = 1, 2, ...T (2.55)

Dp
k1t

+Dp
k2t
≥ Np

k1
− 4

m∑
i=1

Ci × φ∗it − 2
m∑
i=1

Ciφ
3
k1t

∀i = 1, 2, ...,m, k1 = (i+ 2) mod 3, k2 = (i+ 1) mod 3, t = 1, 2, ...T (2.56)

Dp
it +Dp

k2t
+Dp

k1t
≤ Np

i +Np
k2

+Np
k1

+ 4
m∑
i=1

Ci × (1− φ∗it) + 2
m∑
i=1

Ci(1− φ4
k1t

)

∀i = 1, 2, ...,m, k1 = (i+ 2) mod 3, k2 = (i+ 1) mod 3, t = 1, 2, ...T (2.57)

Dp
it +Dp

k2t
+Dp

k1t
≥ Np

i +Np
k2

+Np
k1
− 4

m∑
i=1

Ci × (1− φ∗it)− 2
m∑
i=1

Ciφ
4
k1t

∀i = 1, 2, ...,m, k1 = (i+ 2) mod 3, k2 = (i+ 1) mod 3, t = 1, 2, ...T (2.58)

φit ≤ φkit, ∀i = 1, 2, ...,m, k = 1, 2, 3, 4, t = 1, 2, ...T (2.59)

φit ≥
4∑

k=1

φkit − 3, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.60)

∑
i:(j,i)∈Ap

xpjit ≥ Dp
jt × φ1

jt, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.61)

∑
i:(j,i)∈Ap

xpjit +
∑

i:(k,i)∈Ap

xpkit ≥ (Dp
jt +Dp

kt)× φ
2
jt

k = (i+ 1) mod 3, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.62)
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∑
i:(k2,i)∈Ap

xpk2it +
∑

i:(k1,i)∈Ap

xpk1it) ≥ (Dp
k2t

+Dp
k1t

)× φ3
k1t
− 2

m∑
i=1

Ciφ
∗
jt

k2 = (j + 2) mod 3, k1 = (j + 1) mod 3,∀j = 1, 2, ...,m, t = 1, 2, ...T (2.63)∑
i:(j,i)∈Ap

xpjit+
∑

i:(k2,i)∈Ap

xpk2it+
∑

i:(k1,i)∈Ap

xpk1it) ≥ (Dp
jt+D

p
k2t

+Dp
k1t

)×φ4
k1t
−4

m∑
i=1

Ci(1−φ∗jt)

k2 = (j + 2) mod 3, k1 = (j + 1) mod 3,∀j = 1, 2, ...,m, t = 1, 2, ...T (2.64)∑
j:(j,i)∈As

xsjitu ≤ Ci −Np
i + Ciφit, ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.65)

∑
j:(j,i)∈As

xsjitu ≤ Ci−
∑

j:(j,i)∈Ap

xpjit+Ci(1−φit), ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut

(2.66)∑
i:(j,i)∈As

xsjitu ≤ Ds
jtu, ∀j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.67)

φit, φ
k
it, φ

∗
it binary, ∀t = 1, 2, ...T, k = 1, 2, 3, 4 (2.68)

Np
i , x

p
jit ≥ 0 and integer, ∀i, j = 1, 2, ...,m, and (j, i) ∈ Ap, t = 1, 2, ...T, u = 1, 2, ...Ut

(2.69)

xsjitu ≥ 0 and integer,∀i, j = 1, 2, ...,m, and (j, i) ∈ As, t = 1, 2, ...T, u = 1, 2, ...Ut

(2.70)

Constraints 2.47 - 2.48 limit the number of prescheduled appointments to the

allocated capacity and the realized demand, respectively. Constraints 2.49 - 2.50

ensure that φ∗it = 0 if the demand from panel i exceeds the sum of booking limit

connected with this panel under given configuration; otherwise, φ∗it = 1. Constraints

2.51 - 2.58 correspond to the designed decision variables in those 4 cases explained

earlier. Constraints 2.59 - 2.60 guarantee φit = min
k∈{1,...,4}

φkit. Constraints 2.61 - 2.64

require correct amount of prescheduled patients are all satisfied when booking limits

is not reached, corresponding to those 4 cases, respectively. Constraints 2.65 and

2.66 ensure that the total same-day appointments for any physician i do not exceed

remaining capacity, when φit = 0 and φit = 1 respectively. Constraint 2.67 limits

the total number of same-day appointments scheduled from panel j not to exceed the

demand from this panel.
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2.5 Model III: prescheduled patients are pooled

In the general 3-stage model, each physician i allocates a number of slots Np
i to see

prescheduled patients. Alternatively, the total number Np =
m∑
i=1

Np
i of prescheduled

slots could be shared by all physicians to see prescheduled patients from their own

panels until the overall limit is reached. Under this policy, prescheduled patients are

always assigned to their own physicians. This policy minimizes loss of continuity

for these patients. Meanwhile, as the prescheduled capacity is pooled together, the

coefficient of variation of the demand satisfied by the single capacity limit lowers, in

much a similar way as when prescheduled flexibility is present.

In fact, when demand from one panel exceeds the total capacity of the associated

physician, restriction of prescheduled patients to be dedicated might result in a small

amount of loss for revenue. Example 2.5.1 shows an extreme demand scenario to

illustrate this rare case. In that case, we modify the policy to allow additional full

flexibility to serve the excess prescheduled demand and avoid loss of revenue if the

overall limit is not reached.

Example 2.5.1 Suppose m = 3, Ci = 24, the reserved capacity Np = [10, 10, 10]

in the prescheduled fully flexible system, and Np = 30 for the prescheduled pooled

system, the demand realization is Dp = [25, 2, 2] and Ds = [15, 14, 14]. The system is

perfectly 100% utilized but different number of patients can be served by these two

systems. In the prescheduled fully flexible system, all the patients can be seen while

in the prescheduled pooled system, one prescheduled patient will be lost because Dp
1

exceeds the physician’s individual capacity.

In the following sections and chapters, for the prescheduled pooled model, we

always allow the additional prescheduled full flexibility for the part of prescheduled

demand that exceeds the total physician’s capacity, which rarely happens. In oth-

er words, in our prescheduled pooled model, most of prescheduled patients are only

served by their own physicians, except under a very extreme case (prescheduled re-
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quests are larger than physician’s total capacity) in which they may be served by

other physician in the clinic.

Comparing to a framework where prescheduled patients and same-day patients are

both fully flexibly shared but with a separate booking limit for each physician, what

is the benefit of the prescheduled pooled model? In fact, when same-day patients

are fully flexible, the prescheduled fully flexible model and the prescheduled pooled

model (additional prescheduled full flexibility allowed) with Np =
∑

(Np) will always

see same number of prescheduled patients and same number of same-day patients,

because all the capacity can be used in the most efficient way due to the pooling

and full flexibility effects. The only difference between these two systems is in the

number of diversions for prescheduled patients and the number of diversions for same-

day patients. The pooled system usually will not divert any prescheduled patients

(except under extreme cases that the pooled system may produce a small amount

of prescheduled diversions, which is still much less than a prescheduled fully flexible

configuration) but may result in further same-day diversions. Since the number of

additional same-day redirections in the pooled system cannot exceed the number of

additional prescheduled redirections in the fully flexible system, the pooled system

will always give a better performance than the prescheduled fully flexible system, as

long as the same-day diversion cost is smaller than the prescheduled diversion cost.

Given a fully flexible same-day configuration, the following example illustrates the

comparison of the performance of the prescheduled pooled model and the prescheduled

fully flexible model.

Example 2.5.2 Suppose we still have m =3, Ci = 24, the reserved capacity Np =

[8, 8, 8] in the prescheduled fully flexible system, and Np = 24 for the prescheduled

pooled system, the demand realization is Dp = [20, 2, 2] and Ds = [20, 14, 14]. The

system is perfectly 100% utilized and all the patients can be served; however, different

number of diversions occur in these two systems. In the prescheduled fully flexible
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system, there are 12 prescheduled diversions and 4 same-day diversions, while in the

prescheduled pooled system, there are no prescheduled diversions and 16 same-day

diversions. As prescheduled diversion cost is higher than same-day diversion cost in

primary care practices, the prescheduled pooled model would work better under this

demand utilization.

Using a single booking limit, we introduce binary variables φt (∀ t = 1, ...T ) in

order to indicate whether or not the limit is reached in prescheduled demand scenario

t.

φt =


1, if

m∑
i=1

Dp
it < Np

0, otherwise

(2.71)

Formulation IV

max

TL∑
t=1

m∑
i=1

qt × [
m∑
j=1

Rp
jix

P
jit +

Ut∑
u=1

ptu
∑

(j,i)∈As

Rs
jix

s
jitu] (2.72)

subject to Np ≤
m∑
i=1

Ci, ∀i = 1, 2, ...,m, (2.73)

m∑
j=1

Dp
jt ≤ Np +

m∑
i=1

Ci × (1− φt), ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.74)

m∑
j=1

Dp
jt ≥ Np −

m∑
i=1

Ci × φt, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.75)

m∑
i=1

m∑
j=1

xpjit ≤ Np, ∀t = 1, 2, ...T (2.76)

m∑
i=1

xpjit ≤ Dp
jt, ∀j = 1, 2, ...,m, t = 1, 2, ...T (2.77)

m∑
j=1

xpjit ≤ Ci, ∀i = 1, 2, ...,m, t = 1, 2, ...T (2.78)
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m∑
i=1

m∑
j=1

xsjitu ≤
m∑
i=1

Ci − φt ×
m∑
j=1

Dp
jt, ∀t = 1, 2, ...T, u = 1, 2, ...Ut (2.79)

m∑
i=1

m∑
j=1

xsjitu ≤
m∑
i=1

Ci −Np + φt ×
m∑
i=1

Ci, ∀t = 1, 2, ...T, u = 1, 2, ...Ut (2.80)

m∑
i=1

xsjitu ≤ Ds
jtu, ∀j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.81)

m∑
j=1

xpjit +
m∑
j=1

xsjitu ≤ Ci, ∀i = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.82)

φt binary, ∀t = 1, 2, ...T (2.83)

Np, xpjit, x
s
jitu ≥ 0 and integer, ∀i, j = 1, 2, ...,m, t = 1, 2, ...T, u = 1, 2, ...Ut (2.84)

Constraints 2.74 - 2.75 ensure that φt = 1 if
∑m

i=1D
p
it < Np and φt = 0 if∑m

i=1D
p
it ≥ Np. Constraint 2.76 limits the overall number of prescheduled ap-

pointments to the allocated capacity. Constraints 2.77 - 2.78 require the individual

prescheduled allocations to satisfy the corresponding demand limit and capacity lim-

it, respectively. Constraints 2.79- 2.80 ensure that the total same-day appointments

for any physician i do not exceed remaining capacity, and constraint 2.81 requires

the total number of same-day appointments scheduled from panel j not to exceed the

demand from this panel. Similarly, constraint 2.82 limits the sum of prescheduled and

same-day allocations to one single physician not exceed the total individual capacity.

Note that, we only need to slightly modify Formulation IV, if prescheduled pa-

tients are restricted to be seen only by their own physicians. First,the binary variable

φt (∀ t = 1, ...T ) is changed to:

φt =


1, if

m∑
i=1

min[Dp
it, Ci] < Np

0, otherwise

(2.85)
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to ensure the excess prescheduled demand is lost. Meanwhile we need to add the

constraint xpjit = 0 (∀j 6= i, i, j ∈ {1, 2, ...,m}) to restrict prescheduled patient all

dedicated.

2.6 Computational effectiveness and scalability of formula-

tions

To test the computational effectiveness and scalability of the four formulations p-

resented in Section 2.3 - Section 2.5, we focus on a 3-physician practice and summarize

the running time (in seconds) in Table 2.1.

We allow 5 different flexibility configurations for this practice. In this table, ‘P-D

P-D’ and ‘P-D P-F’ denote ‘prescheduled is dedicated and same-day is dedicated’ and

‘prescheduled is dedicated and same-day is fully flexible’, respectively, which are both

computed based on Formulation I. ‘P-F P-F’ denotes ‘prescheduled is fully flexible

and same-day is fully flexible’, and results under this configuration are calculated

based on Formulation II. ‘P-C P-F’ denotes ‘prescheduled is 2-chained and same-day

is fully flexible’, which is calculated based on Formulation III. Finally, ‘P-P P-F’

denotes ‘prescheduled is pooled and same-day is fully flexible’, and results under this

configuration are computed based on Formulation IV.

Note that, the size of input for each run is decided by number of prescheduled

demand scenarios × number of same-day demand scenarios, based on sample aver-

age approximation method. We increase this size of input from 10 × 10 to 50 × 50.

The tested cases are all symmetric cases (each physician has identical P/S ratio and

workload, refer to section 1.1 for more details about definitions of P/S ratio and work-

load). We tested four different P/S ratios (4/20, 8/16, 16/8 and 20/4) and workload

is always 100%. All the experiments are computed using cplex 12.3. Running en-

vironment is [Intel(R) Core(TM) i7-3770M CPU@ 3.40GHz, RAM 32.00GB]. Note
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that all the results in Table 2.1 are based on single replication. ≥ 99999 means the

running time is longer than the breakpoint we set, which is 99999 seconds.

Table 2.1. Running time comparisons of formulations: single replication (unit:s)

size sym 4/20 sym 8/16 sym 16/8 sym 20/4

10×10 1.06 3.15 2.64 2.6
20×20 3.18 3.12 3.14 3.17

P-D S-D 30×30 4.7 5.43 3.74 3.16
40×40 9.07 9.74 10.17 6.22
50×50 17.13 18.14 15.74 8.76

size sym 4/20 sym 8/16 sym 16/8 sym 20/4

10×10 2.23 3.64 3.1 3.19
20×20 9.59 7.94 12.57 3.73

P-D S-F 30×30 20.45 15.39 15.75 6.89
40×40 38.97 44.69 71.51 22.97
50×50 91.81 98.08 173.76 41.3

size sym 4/20 sym 8/16 sym 16/8 sym 20/4

10×10 3.67 3.08 2.61 3.16
20×20 3.76 3.79 3.69 3.66

P-F S-F 30×30 10.32 11.62 9.72 9.81
40×40 17.17 22.46 22.65 20.81
50×50 40.37 57.37 42.1 37.72

size sym 4/20 sym 8/16 sym 16/8 sym 20/4

10×10 6.25 6.86 3.75 3.65
20×20 234.59 262.6 17.42 4.24

P-C S-F 30×30 676.98 15817.88 66.41 4.26
40×40 66293.98 ≥99999 129.05 6.44
50×50 ≥99999 ≥99999 2785.03 15.21

size sym 4/20 sym 8/16 sym 16/8 sym 20/4

10×10 2.53 2.51 2.6 3.05
20×20 2.61 2.65 2.68 3.07

P-P S-F 30×30 4.21 3.76 3.16 3.76
40×40 3.87 4.43 3.85 3.34
50×50 4.36 4.76 4.84 4.41

Generally, Formulation I, Formulation II and Formulation IV are computationally

quite efficient. When the number of scenarios is increased from 100 to 2500, the
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running time for a replication is not significantly increased. The only exception

is prescheduled dedicated and same-day fully flexible configuration (also computed

based on Formulation I). This configuration needs time to be solved than a fully

dedicated configuration and the running time is also significantly impacted by the

size of input.

Due to the large number of constraints, the computational intractability of For-

mulation III is not a surprise. We find that, under most scenarios, the running time

of Formulation III is highly impacted by the increase in the size of the input. This

impact varies depending on the different demand scenarios. For example, under the

symmetric case 8/16, the impact of increasing size of input on the running time is

the highest (an input size of 40× 40 results in running time to be greater than 99999

seconds while other cases can still be solved within this time limit). In addition, we

observe that, under the symmetric case 20/4, the impact of increasing size of input

on the running time is almost negligible.
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CHAPTER 3

STRUCTURAL PROPERTIES AND ANALYTICAL
RESULTS

3.1 Introduction

In this chapter, we study structural properties of the practice’s capacity alloca-

tion problem and derive analytical results comparing the optimal booking limits under

various flexibility configurations. In Section 3.2, we define the diminishing returns

property, and show under what flexibility configurations this property holds. In Sec-

tion 3.3, we determine the impact of flexibility on the optimal booking limit under

some particular flexibility configurations, for which the diminishing returns property

holds. The diminishing returns property suggests that a greedy procedure (adding

one unit of prescheduled capacity at a time to the doctor with the greatest expected

revenue increase) should work well. We introduce such a greedy heuristic in Section

3.4, and show it to work well for small practices: 1) it provides the exact optimal

solution in all the cases tested under a wide range of parameters, and 2) it is compu-

tationally effective. For larger practices we will approach the problem numerically in

later chapters and use sample average approximation.

For simplicity, we ignore diversion costs throughout this section.

3.2 Diminishing returns property

3.2.1 Diminishing returns property

Based on the framework of the 3-stage model proposed in Chapter 2, the ex-

pected revenue of a given flexibility configuration for a practice with m physician-
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s is E[R(Np,Dp,Ds)], where Np = [Np
1 , N

p
2 , ..., N

p
m], Dp = [Dp

1, D
p
2, ..., D

p
m], and

Ds = [Ds
1, D

s
2, ..., D

s
m]. Naturally, we are interested in identifying properties of the

revenue function that we can exploit to derive analytical results and develop effective

solution approaches.

In this dissertation, we find that the Property of Diminishing Returns, defined

below, holds for the configurations most common in practice.

Definition 1 (Diminishing Returns Property). Let ∆k(N
p
1 , ..., N

p
m) = ER(Np

1 , ..., N
p
k+

1, ..., Np
m) − ER(Np

1 , ..., N
p
k , ..., N

p
m) denote the difference in revenue associated with

increasing the number of slots offered to prescheduled patients of physician k by 1.

The capacity allocation problem has the Property of Diminishing Returns if (i) when

∆k(N
p
1 , ..., N

p
m) ≥ 0, then ∆k(N

p
1 , ..., N

p
m), is non-increasing in Np

1 ,...,Np
m and (ii)

when ∆k(N
p
1 , ..., N

p
m) < 0, then ∆k(Ñ

p
1 , ..., Ñ

p
m) ≤ 0 for any vector (Ñp

1 , ..., Ñ
p
m) such

that Ñp
i ≥ Np

i for all i = 1, 2, . . . ,m.

Observe that we only require the difference in revenue to not increase while it

is still positive. If it is negative, it may increase, but will never become positive.

As a result, an optimal search can stop once the returns are negative, since further

increasing the booking limits will never result in a better solution.

In other words, the diminishing returns property requires that each time a com-

ponent of Np is increased by one unit, the associated revenue change function is

non-increasing in any component of Np, as long as the previous revenue change was

still positive. This property suggests that a greedy algorithm that increases Np once

component at a time following the path of myopic maximum revenue increase at each

step will work well. Before we develop a greedy heuristic, we need to understand

when the diminishing returns property holds, and further analyze its ramifications.

Will the diminishing returns property always hold for a general flexibility configu-

ration? The counterexamples in the next section show that the answer is no in general;

in Section 3.2.3, however, we show that the diminishing returns property holds for
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any flexibility configuration of same-day patients given a dedicated prescheduled ap-

pointment strategy, and also for any prescheduled flexibility configuration given a

fully flexible same-day appointment strategy.

3.2.2 Counterexamples: diminishing returns property does not always

hold

To illustrate when the diminishing returns property does not hold we describe

some simple examples based on demand points, rather than distributions, where the

revenue difference increases at some points when the vector Np increases.

Example 3.2.1

Consider a 2-physician practice where each physician has 8 slots of available ca-

pacity. The physicians face deterministic demand: demand for prescheduled and

same-day appointments is (8,0) for physician 1, and (0,8) for physician 2, respec-

tively. Prescheduled demand is fully flexible, but same-day demand is dedicated.

If Np
1 = 4 and Np

2 = 4, adding one more prescheduled slot to physician 1, i.e.

making Np
1 = 5, will actually allow us to release one more slot for same day pa-

tients of physician 2 (since still Np
2 = 4 but only 3 slots will be used). Then,

R(5, 4)−R(4, 4) = Rs > R(4, 4)−R(3, 4) = Rp.

In general, this example shows that if flexibility for prescheduled appointments

is allowed and same-day patients are not equally flexible, additional capacity for

prescheduled appointments may result in a better allocation of the realized demand

for prescheduled appointments to the various physicians, releasing precious capacity

to same-day appointments who are not flexible to see the other physicians. As a

result, an increase in the capacity allocated to prescheduled appointments may allow

the system to serve an additional same-day patient with the consequent increase in

revenue. Therefore, same-day patients need to also have access to flexibility in order

for diminishing returns to hold. The issue is, how much flexibility would be sufficient?
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The following example shows that diminishing returns would not always hold unless

same-day patients enjoy full flexibility (given some prescheduled flexibility).

Example 3.2.2

Consider a 3-physician practice where 2-chain flexibility is used for both patient types,

so that patients of panel i can see physicians i and (i+1) (i = 1, 2) and patients of

panel 3 can see physicians 3 and 1. Each physician has capacity 8 and the initial Np is

4 slots for each of them. Demands are (3,12), (4,0) and (5,0). In the current setting,

all prescheduled demand is served (with physicians 1, 2, and 3, seing 4 prescheduled

patients each and one patient from 1 diverted to 2, and one patient from 2 diverted

to 3), but only 8 of the 12 same-day patients can be seen, as they cannot reach the

capacity of physician 3. Let’s now increase Np
3 to 5. In that case, we can still satisfy

the 12 units of prescheduled demand, with physician 1, 2, and 3 seeing 3, 4, and 5

patients respectively. This frees one additional slot in physician 1 that can be used

to serve one more of her same-day patients, so that now 9 can be seen. We have:

R(4, 4, 4)−R(4, 4, 3) = Rp < R(4, 4, 5)−R(4, 4, 4) = Rs.

In the next example, we show that even for the case of a single physician after

the revenue change becomes negative, we no longer necessarily have non-increasing

returns.

Example 3.2.3

Consider a single physician with capacity 2B and demand for prescheduled always

equal to B and demand for same-day patients equal to 2B. Then as we increase the

number of slots offered to prescheduled patients from 0 to B, the revenue difference

associated with each unit increase is negative, equal to Rp − Rs. Once Np > B

then the additional slots will not be used by prescheduled appointments and thus

result in no change in the number of prescheduled or same-day patients seen, with

a revenue difference of zero. For instance, R(B) − R(B − 1) = Rp − Rs < 0, but
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R(B + 1)− R(B) = 0. Therefore, we don’t necessarily have decreasing returns once

the returns are negative.

Example 3.2.1 - Example 3.2.3 show that for general flexibility configurations,

where prescheduled patients can be seen by multiple physicians and same-day patients

are not fully flexible to see all of the physicians in the practice, the expected revenue

does not always exhibit diminishing returns.

3.2.3 Configurations that satisfy the diminishing returns property

To establish a general analysis, let us consider any flexibility configuration contain-

ing prescheduled flexibility and same-day flexibility, A = Ap
⋃

As. For any physi-

cian k, if we increase the reserved capacity Np
k by one unit, let ∆k(N

p
1 , ..., N

p
m) =

ER(Np
1 , ..., N

p
k + 1, ..., Np

m)−ER(Np
1 , ..., N

p
k , ..., N

p
m) denote the expected revenue dif-

ference. From the point of view of revenue change for a particular demand realization,

four possible events can happen when offering one additional slot to prescheduled pa-

tients of physician k:

(i). No change in the number of prescheduled patients and the number of same-day

patients seen, that is ∆k = 0.

(ii). 1 more prescheduled patient is gained and no change in the number of same-day

patients seen. ∆k = Rp.

(iii). 1 more prescheduled patient is gained while 1 more same-day patient is lost.

∆k = Rp −Rs.

(iv). No change in the number of prescheduled patients seen while 1 more same-day

patient is gained. ∆k = Rs.

Observe, however, that under either no prescheduled flexibility or full same-day

flexibility, only events (i)-(iii) can happen. The reason is as follows: (a) Under no

prescheduled flexibility, the additional slot Np
k + 1 can only be used by patients of

panel k. In that case, the available slots to same-day patients of any of the physicians
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can never increase, and thus no additional patients can be seen. (b) Under full same-

day flexibility, all available slots in the practice after prescheduled demand is fulfilled

can be used by any of the same-day patients. Since the practice-wide number of

available slots to same-day patients can never increase by increasing Nk, the number

of same-day patients seen can never increase in this case.

In any other case, we can construct counter-examples in the same spirit as those

above where event (iv) would happen and the diminishing returns property is violat-

ed. Fortunately, the two special cases, no prescheduled flexibility and full same-day

flexibility, are the most commonly used in practices due to the critical requirement of

continuity for prescheduled patients and the shortage of capacity in the whole clinic

to provide quick access for acute needs. Let’s thus focus on those two important cases

and show that the objective function exhibits diminishing returns.

Theorem 1. In settings with a dedicated configuration for prescheduled patients (giv-

en any configuration for same-day patients), and in settings with a fully flexible con-

figuration for same-day patients (given any configuration for prescheduled patients),

the expected practice-wide revenue exhibits diminishing returns. That is, the gains as-

sociated with increasing the booking limit of any of the physicians by one unit decrease

as the initial booking limit vector grows.

The proof of Theorem 1 is shown in the next section.

3.2.4 Proofs of Theorem 1

In this section, to provide intuition, we first analyze two simple cases (1) ded-

icated configuration for both prescheduled patients and same-day patients and (2)

dedicated configuration for prescheduled patients and full flexibility for same-day pa-

tients. Then we extend the analysis to the general cases: (3) dedicated configuration

for prescheduled patients and any flexibility configuration for same-day patients; (4)
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any flexibility configuration for prescheduled patients and full flexibility for same-day

patients.

To show that the diminishing returns property holds in the four cases below, we

need to study how the function ∆k(N
p
1 , ..., N

p
m) changes as Np

1 , ..., N
p
m increase.

Case 1. Dedicated configuration for both prescheduled patients and same-

day patients

Proof. As explained before, if we increase Np
k by one unit, only events (i)-(iii) can

happen. We thus have the following mathematical expression of the difference in

revenue:

∆k = 0× P [(i)] +Rp × P [(ii)] + (Rp −Rs)× P [(iii)] (3.1)

= Rp × P [Dp
k > Np

k ∩D
s
k < Ck −Np

k ] + (Rp −Rs)× P [Dp
k > Np

k ∩D
s
k ≥ Ck −Np

k ]

After simplifying, we have

∆k = P [Dp
k > Np

k ]
{
Rp −Rs × P [Ds

k ≥ Ck −Np
k |D

p
k > Np

k ]
}

(3.2)

The first term, P [Dp
k > Np

k ], is the complement of the cumulative distribution

function and thus always non-increasing in Np
k . Similarly, P [Ds

k ≥ Ck − Np
k ] is non-

decreasing in Np
k , and thus the second term is non-increasing in Np

k for any joint

demand distribution where the prescheduled and same-day demands are independen-

t, or more broadly as long as they are not strongly negatively correlated. Thus the

revenue difference ∆k, if positive, is non-increasing in Np
k . When the revenue differ-

ence get to be negative, it may increase to zero when P [Dp
k > Np

k ] = 0 but is otherwise

non-increasing.

For i 6= k, the revenue difference in k, ∆k will not change as Np
i increases for this

dedicated configuration. The returns are thus non-increasing in any component of

Np.
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From the above proof, we know that, when the ∆k > 0 is positive, then ∆k > 0

is a non-increasing function in any Np
i . On the other hand, when the ∆k > 0 is

negative, it satisfies the diminishing returns property until it jumps up to 0 because

additional prescheduled capacity will never be used. As a result, once the negative

revenue difference is produced, it can never become positive again.

The above proof, holds when prescheduled and same-day demand are independent,

or not heavily negatively correlated. However, we have not characterized the degree

of negative correlation as the answer also depends on the demand distribution and

the flexibility configuration.

Case 2. Dedicated configuration for prescheduled patients and full flexi-

bility for same-day patients

Proof. Similarly, we have

∆k(N
p
1 , ..., N

p
m)

= Rp × P
[
Dp
k > Np

k ∩
m∑
j=1

Ds
j <

M∑
i=1

Ci −
M∑
i=1
i 6=k

min[Np
i , D

p
i ]−N

p
k

]

+ (Rp −Rs)× P
[
Dp
k > Np

k ∩
M∑
j=1

Ds
j ≥

M∑
i=1

Ci −
M∑
i=1
i 6=k

min[Np
i , D

p
i ]−N

p
k

]

= P [Dp
k > Np

k ]
{
Rp −Rs × P

[ M∑
j=1

Ds
j ≥

M∑
i=1

Ci −
M∑
i=1
i6=k

min[Np
i , D

p
i ]−N

p
k |D

p
k > Np

k

]}

Similarly to case 1, if we assume prescheduled demand and same-day demand are

independent, or at least not heavily negatively correlated, the second term is non-

increasing in Np
i for all i = 1, 2, ...m. The diminishing returns property thus follows

as in case 1.

Case 3. Dedicated configuration for prescheduled patients and any flexi-

bility configuration for same-day patients
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Here we extend analysis to a more general case: prescheduled patients enjoy no

flexibility and same-day patients follow any given flexibility configuration.

First, we recall some notation used in Chapter 2. Let A denote the network to

illustrate a given flexibility configurations, where link (j, i) belongs to A, if patients

from panel j can see physician i.

Second, we introduce the shortfall expression derived in [34] for a multi-plant

multi-product flexible production system. The optimal value of shortfall associated

with a flexibility configuration A is shown to be

V (A) = max
M

∑
j∈M

Dj −
∑

i∈P (M)

Ci


where M is any subset (including the null set) of the index set {1, 2, ...,m} and P (M)

is the subset of plants that can produce at least one of the products in M . Extending

this to our health care problem, M is any subset of panels and P (M) is the subset of

physicians that can see patients of at least one of the panels in M . Thus, i ∈ P (M)

if and only if there is at least one panel j ∈M such that (j, i) ∈ A. Each term within

the maximization is the difference between the demand for some subset of panels

and the maximum capacity available from the physicians which are connected to that

subset of panels.

The shortfall of same-day patients under a configuration A only containing same-

day flexibility is given by,

V s
A(Np

1 , ..., N
p
m) = max

MA
{
∑
j∈MA

Ds
j −

∑
i∈P (MA)

(Ci −min[Np
i , D

p
i ])} (3.3)

Proof. If we increase Np
k by one unit, by 3.3, the shortfall of same-day patients be-

comes
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V s
A(Np

1 , ..., N
p
k + 1, ..., Np

m) = max
MA
{
∑
j∈MA

Ds
j −

∑
i∈P (MA)

P (MA):k 6∈P (MA)

(Ci −min[Np
i , D

p
i ]),

∑
j∈MA

Ds
j −

∑
i∈P (MA),i 6=k

P (MA):k∈P (MA)

(Ci −min[Np
i , D

p
i ])− (Ck −min[Np

k + 1, Dp
k])}

Observe that the shortfall of same day patients, V s
A(Np

1 , ..., N
p
m), is non-decreasing

in (Np
1 , ..., N

p
m) since the number of open slots available to same day patients for

any physician will never increase when increasing the booking limits of any of the

physicians in the case of dedicated prescheduled patients. When increasing one of the

booking limits by one, the shortfall will either go up by one or stay the same. For

convenience, we introduce the function Lsk(A,Np) to illustrate the event that if we

lose one same-day patient when we increase Np
k to Np

k + 1.

Lsk(A,Np) =


1, if V s

A(Np
1 , ..., N

p
k + 1, ..., Np

m) > V s
A(Np

1 , ..., N
p
m)

0, otherwise

(3.4)

Note that if the shortfall goes up by one when increasing a particular booking limit k

from Np
k to Np

k + 1, given a vector of limits Np = (Np
1 , ..., N

p
m), then it will continue

to go up by one for any vector of booking limits Np′ , such that Np′ > Np. Lsk(A,Np)

is thus non-decreasing in Np
i , i = 1, 2, ...,m.

Based on this notation, for this general case that there is no flexibility for presched-

uled patients and full flexibility for same-day patients, we have

∆k(As, Np
1 , ..., N

p
m) = Rp × P [Dp

k > Np
k ∩ L

s
k(A,Np) = 0]

+ (Rs −Rp)× P [Dp
k > Np

k ∩ L
s
k(A,Np) > 0]

= Rp × P [Dp
k > Np

k ]−Rs × P [Dp
k > Np

k ∩ L
s
k(A,Np) > 0]

= P [Dp
k > Np

k ]
{
Rp −Rs × P [Lsk(A,Np) > 0|Dp

k > Np
k ]
}
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Since Lsk(A,Np) is non-decreasing in Np
i , i = 1, 2, ...,m, we have as in the previous

cases that the revenue difference ∆k is non-increasing in Np
i , i = 1, 2, ...,m, for any

distributions of prescheduled and same-day demands that are independent, or in

general not heavily negatively correlated.

In summary, if there is no flexibility for prescheduled patients, the non-increasing

property is always true when the difference associated with one more reservation for

physician k is greater than zero, regardless of the flexibility configuration of same-day

patients.

Case 4. Any flexibility configuration for prescheduled patients and full

flexibility for same-day patients

In this case, the shortfall of prescheduled patients under the setting containing

any prescheduled flexibility configuration and full same-day flexibility A = (Ap,As)

is given by V p
A(Np

1 , ..., N
p
m), here V p

A(Np
1 , ..., N

p
m) = max

MA
{
∑

j∈MA
Dp
j −

∑
i∈P (MA)

Np
i }.

Proof. If we increase Np
k by one unit, then the shortfall of prescheduled patients

becomes

V p
A(Np

1 , ..., N
p
k + 1, ..., Np

m)

= max
MA
{
∑
j∈MA

Ds
j −

∑
i∈P (MA)

P (MA):k 6∈P (MA)

Np
i ,
∑
j∈MA

Ds
j −

∑
i∈P (MA)

P (MA):k∈P (MA)

Np
i − 1}

For convenience, we introduce the indicator function Gp
k(A,Np) to signal when

an additional prescheduled patient can be seen as Np
k is increased to Np

k + 1.

Gp
k(A,N

p) =


1, if V p

A(Np
1 , ..., N

p
k + 1, ..., Np

m) < V p
A(Np

1 , ..., N
p
m)

0, otherwise

(3.5)
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Let uC(Np
1 , N

p
2 , ..., N

p
m) denote the capacity used by prescheduled patients under

a given booking limit vector Np = [Np
1 , N

p
2 , ..., N

p
m] and a particular prescheduled

demand realization; then we have

∆k(Ap, Np
1 , ..., N

p
m)

= Rp × P [Gp
k(A,N

p) > 0 ∩
m∑
j=1

Ds
j <

m∑
i=1

Ci − uC]

+ (Rp −Rs)× P [Gp
k(A,N

p) > 0 ∩
m∑
j=1

Ds
j ≥

m∑
i=1

Ci − uC]

= Rp × P [Gp
k(A,N

p) > 0]−Rs × P [Gp
k(A,N

p) > 0 ∩
m∑
j=1

Ds
j ≥

m∑
i=1

Ci − uC]

= P [Gp
k(A,N

p) > 0]× {Rp −Rs × P [
m∑
j=1

Ds
j ≥

m∑
i=1

Ci − uC|Gp
k(A,N

p) > 0]}

The probability of gaining one further prescheduled patient, P [Gp
k(A,Np) > 0],

is clearly non-increasing in all Np
i for i = 1, 2, ...,m. Observe also that P [

m∑
j=1

Ds
j ≥

m∑
i=1

Ci − uC] is always non-decreasing in Np
i , because increasing any Np

i by one unit

will never decrease the number of prescheduled patients seen, uC. In that case, when

∆k > 0, ∆k(N
p
1 , ..., N

p
m) is always the product of two terms, both of which are always

non-increasing in Np
i . Therefore, the non-increasing diminishing returns property

holds also for this case, as long as the returns are positive and the prescheduled and

same-day demands are not heavily negatively correlated.

The proofs of the four cases above follow the same argument. First, the probability

of gaining one additional prescheduled patient when offering them one more of the

slots of physician k can never increase as the original number of slots available to them

through each of the physicians in the practice increases; that is, P [Gp
k(A,Np) > 0]

is non-increasing in Np
1 , N

p
2 , . . . , N

p
m. Second, the probability of losing one additional

same-day patient as the number of slots that they can use decreases when one more

prescheduled is seen will never decrease as long as the demands of prescheduled and
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same-day patients are independent or positively correlated. That is, when Dp,Ds

are not negatively correlated, P [Lsk(A,Np) > 0|Gp
k(A,Np) > 0] will never decrease

as Np
i increases.

In the proof of Theorem 1, we assume independence or positive correlation of

prescheduled and same-day demands to prove the diminishing returns property; how-

ever, when demands are heavily negatively correlated, there are cases where the con-

ditional probability P [Lsk(A,Np) > 0|Gp
k(A,Np) > 0] decreases, as shown in the

following example.

Example 3.2.4

Negative correlation makes increments potentially increasing, even for a single physi-

cian when the increments are positive. Consider the same setting as in Example

3.2.3, where a single physician has capacity 2B, but with two possible demand

realizations; (B, 2B) with probability p and (2B, 0) with probability 1 − p. The

revenue increments behave just as in Example 3.2.3 for the first demand realiza-

tion. For the second, every time Np is increased, the revenue grows by Rp. Thus

ER(B)−ER(B − 1) = p(Rp−Rs) + (1− p)Rp < (1− p)Rp = ER(B + 1)−ER(B).

Observe that for p sufficiently small the expected revenue difference is positive. In

this case the demands are negatively correlated.

3.3 Impact of flexibility on booking limits

In the previous section, we prove that the diminishing returns property holds for

two cases with a fixed level of flexibility: (i) configurations that allow only same-day

flexibility [that is, no prescheduled flexibility and any same-day flexibility], or (ii)

configurations that allow any prescheduled flexibility and full same-day flexibility. In

this section, we study the impact of flexibility on the optimal booking limits just

under those two sets of configurations, for which the diminishing return property

holds.
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In fact, these two special groups of configurations are the most meaningful for

primary care practices. Due to the shortage of primary care providers, same-day

patients are frequently assigned to see other physicians when their own physicians are

not available when the call comes in. Moreover, prescheduled patients are sometimes

assigned across panels due to multiple factors such as patients’ preferences, time

of available slots, the urgency of the request of appointment, etc. Although these

patients usually require higher continuity, some do not mind to trade continuity for

timely access temporarily. Consequently, both prescheduled flexibility and same-day

flexibility can exist in primary care clinics. What is the impact of these two types of

flexibility on the optimal capacity allocation to prescheduled vs. same-day patients?

Prescheduled flexibility and same-day flexibility are designed similarly in our model.

Nevertheless, our analysis shows different trends in the optimal booking limits Np

as the amount of flexibility increases, depending on whether it is prescheduled or

same-day flexibility that is added. This is because of the sequential assignment, first

of prescheduled demand up to the booking limits, and then of same-day demand to

all remaining capacity, including unused prescheduled capacity.

Definition 2. A configuration A′ is said to be more flexible than a configuration A

if it contains all the panel-physician links of A; that is, A ⊆ A′.

Theorem 2. Given full flexibility for same-day patients, the optimal Np is non-

increasing as the flexibility for prescheduled patients increases.

Proof. Recall that Gp
k(A,Np) and Lsk(A,Np) represent the events of gaining one more

prescheduled patient and losing one more same-day patient, respectively, when the

number of slots of physician k available to prescheduled patients increases from Np
k

to Np
k + 1 in a system under configuration A.

Given any flexibility configuration available to prescheduled patients combined

with full flexibility for same-day patients, we have the following expression of the
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revenue difference function ∆k associated with the increase from Np
k to Np

k + 1.

∆k = P (Gp
k(A,N

p) > 0)× [Rp −RsP (Lsk(A,Np) > 0|Gp
k(A,N

p) > 0)]

= P (Gp
k(A,N

p) > 0)× [Rp −RsQ]

where Q = P (Lsk(A,Np) > 0|Gp
k(A,Np) > 0). Given full flexibility for same-day

patients,

Q = P (
m∑
i=1

Ds
i >

m∑
i=1

Ci − uC|Gp
k(A,N

p) > 0),

where uC is the used or unavailable capacity after prescheduled demand has been

assigned. We will keep the notation ∆ for the original flexibility configuration A and

use ∆′ to denote the incremental revenue under a more flexible configuration A′.

Observe that:

(1) In the fully flexible same-day configuration, the probability of losing a patient only

depends on the system-wide number of slots left over after the allocation of capacity

to prescheduled patients, that is,
m∑
i=1

Ci − uC. The total number of slots uC used by

prescheduled patients under a set of booking limits Np is always no lower in a more

flexible configuration, where more allocation options are available. Therefore, for a

more flexible configuration A′, such that A ⊆ A′, we always have QA ≤ QA′ .

(2) As the vector Np increases, the term P (Gp
k(A,Np) > 0) could become 0 before

the left term [Rp − RsQ] becomes non-positive; in this case, further increasing the

booking limit will not affect the revenue, and a solution with larger Np
k would continue

being optimal. This implies that if increasing one component of the booking limit

has a positive revenue for A′, then it will have a non-negative revenue for A.

Assume now that booking limits Np∗ and Np′ with Np∗ < Np′ are optimal for

A and A′, respectively, and Np∗ is a maximal optimal vector (meaning that for

any Np > Np∗ the revenue will be strictly lower and thus ∆k(N
p∗) < 0 for all
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physicians k = 1, 2, ...,m). Using the facts observed above, we can easily arrive to a

contradiction:

Since Np∗ < Np′ , and the revenue function exhibits decreasing returns, there must

be a physician k such that ∆′k(N
p∗) > 0. This means that P (Gp

k(A′,Np∗) > 0) > 0

and QA′ < Rp/Rs. In turn, for A this means that either P (Gp
k(A,Np) > 0) = 0 or

(P (Gp
k(A,Np) > 0) > 0 and QA < QA′ < Rp/Rs). In both cases, increasing Np∗

k to

Np∗
k + 1 will result in greater or equal revenue, contradicting the maximality of the

optimal solution Np∗.

When utilization is high, the more flexible system will be able to accommodate

the prescheduled demand with fewer slots, and will have a higher probability of filling

the available prescheduled slots because of the additional allocation options flexibility

affords. Thus, it must set tighter booking limits to ensure enough capacity is available

for the same-day patients. When utilization is low, on the other hand, having extra

capacity available to prescheduled patients in the less flexible system comes at no

cost, since those slots will simply be left over and available to same-day patients.

The following theorem shows that the optimal booking limits exhibit very different

behavior for the case where only same-day patients enjoy flexibility.

Theorem 3. Assume no flexibility is allowed in serving prescheduled patients and

normal distributions of same-day demands, independent from each other, from presched-

uled demands, and across symmetric doctors, with equal capacities and identically

distributed same-day demands. As the flexibility to accommodate same-day patients

increases from dedicated to fully flexible, we have that:

1) If Rp/Rs ≤ 0.5 the optimal booking limit Np is non-decreasing regardless of the

level of system utilization. 2) If Rp/Rs > 0.5 the optimal booking limit Np is non-

increasing when the system utilization is sufficiently high, and non-decreasing when

the system utilization is low.
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Proof. Let the same-day demands be i.i.d. normal distributions with mean µ and

standard deviation σ. We will denote with a D the dedicated configuration and all

its associated parameters, and with a F the same-day fully flexible configuration

and all its parameters. For instance, Np∗
D and Np∗

F are the optimal booking limits

for the dedicated and fully flexible configurations respectively. Since the setting is

symmetric, we assume that all doctors have the same capacity, C, and will be given

the same optimal booking limit, N ; that is, Np
1 = Np

2 = ... = Np
m = N . This is not

true in general due to the integrality requirements of the booking limit, but we make

this continuous approximation to simplify the problem into having a single booking

limit decision N .

Let the optimal booking limits be Np∗
D = (ND, ND, ..., ND) and Np∗

F = (NF , NF , ..., NF ).

Because of the diminishing returns property, they will occur at the points where the

revenue difference becomes zero, that is, for ND and NF such that

QD = P [Ds
k > C −ND] =

Rp

Rs

QF = P [
m∑
i=1

Ds
i >

m∑
i=1
i6=k

(C −min{Dp
i , NF}) + (C −NF )] =

Rp

Rs

respectively.

Applying the usual transformation into standard normal distributions we get that

ND and NF must satisfy:

P [Z =
Ds
k − µ
σ

>
C −ND − µ

σ
] =

Rp

Rs

P [Z =

m∑
i=1

Ds
i

m
− µ

σ/
√
m

>

m∑
i=1
i 6=k

(C −min{Dp
i , NF}) + (C −NF )−mµ

√
mσ

] =
Rp

Rs

respectively.
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Observe that the only difference between the expressions of QD and QF after

standardizing the probability terms is their right hand side (RHS). At optimality the

RHS’s need to be equal since they lead to the same standard normal probability.

Comparing the two RHS’s we will be able to establish the relationship between ND

and NP .

Case 1: Rp

Rs ≤ 0.5 In this case, P [Z > RHS] = Rp

Rs ≤ 0.5 implies that RHS ≥ 0

at optimality, and we can compare the right hand sides as follows:

m∑
i=1
i 6=k

(C −min{Dp
i , N}) + (C −N)−mµ

√
mσ

>

m∑
i=1

(C −N)−mµ
√
mσ

=
C −N − µ
σ/
√
m

>
C −N − µ

σ
> 0

Therefore, for the same booking limit N the RHS for the dedicated system is

positive and lower than the RHS of the flexible system. Since the RHS’s are decreasing

in N , and at optimality they need to be equal, we have that NF > ND.

Case 2: Rp

Rs > 0.5 In this case, P [Z > RHS] = Rp

Rs > 0.5 implies that RHS < 0 at

optimality, and we need to consider different subcases in order to compare the right

hand sides.

Case 2a: High System Utilization In this case, with high probability, all the

slots allocated to prescheduled patients will be used and thus the capacity available

to same-day patients is
m∑
i=1

(Ci −Np
i ) = m(C −N).

This allows us to simplify the expression of QF at the optimal booking limit, NF :

QF = P [Z >
C −NF − µ
σ/
√
m

] =
Rp

Rs

respectively.
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Since Rp

Rs > 0.5 and thus the RHS’s are negative, we have that C−N−µ
σ

> C−N−µ
σ/
√
m

,

and thus ND > NF to make the terms equal.

Case 2b: Low utilization As the system utilization decreases, the probability of

prescheduled slots going unfilled and available for same day patients increases. Then

we have that Dp
i < N , for any i = 1, 2, ...,m, with a high probability, and the capacity

available to same day patients in the flexible system is
m∑
i=1
i 6=k

(C −min{Dp
i , N}) +Ck −

Np
k ≥ m(C − N) with an even greater probability. As a result for sufficiently low

utilization, so that the
∑

(N −Dp
i )

+ is large, we have

m∑
i=1
i6=k

(C −min{Dp
i , N}) + (C −N)−mµ

√
mσ

=
C −N − µ
σ/
√
m

+

m∑
i=1
i 6=k

(N −Dp
i )

+

√
mσ

>
C −N − µ

σ

At optimality then NF > ND must hold.

When the relative revenue of same-day patients is very high, then flexibility al-

ways allows the allocation of more slots to prescheduled patients. When the revenue

of prescheduled patients is no less than 50% of that of same the patients, then it

depends on the load on the system. As the utilization of the system increases, there

is a greater demand for same-day appointments, which still produce higher revenue

than prescheduled appointments. This prompts the practice, under any flexibility

configuration for same-day appointments, to further restrict the number of presched-

uled appointments offered, i.e., to reduce their booking limits, so that more same-day

appointments can be seen. The more flexible configurations will offer even fewer

prescheduled appointments, thus reserving more capacity for open access, since there

is a higher probability of fully using the additional capacity when it is shared across

same-day appointments in the practice. When system utilization is low, the need
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for booking limits decreases, especially when same-day patients are flexibly shared;

thus, higher optimal booking limits for prescheduled patients are optimal for the more

flexible configurations.

Note that, Theorem 3 requires same-day demands to be i.i.d. normal distributions

and only shows the property of the optimal booking limit under dedicated configu-

ration and full flexibility configuration. In addition, computational results shown in

Section 4.2.3 support the generality of Theorem 3 to other partial flexibility config-

urations and to other demand distributions (Poisson distributions assumed for both

prescheduled and same-day demands).

These monotonicity patterns, allow us to identify bounds on the booking limits of

any general flexibility configuration. As mentioned in the discussion of our modeling

approach, the booking limits are hard to find for general configurations but relatively

easy for the extreme ones.

Corollary 1. The optimal booking limit associated with any flexibility configurations

that have either dedicated prescheduled or fully flexible same-day patients is higher

than or equal to the minimum of the booking limits associated with the two extreme

configurations:

I. No flexibility is allowed for either patient group.

II. All patients can be flexibly shared.

Proof. Recall that D denotes dedicated configuration, A denotes any flexibility config-

uration and F denotes full flexibility configuration. For example, (Np)∗DF denotes the

optimal capacity allocation for a practice with dedicated flexibility for prescheduled

patients and full flexibility for same-day patients.

By Theorem 2, we have (Np)∗FF ≤ (Np)∗AF ≤ (Np)∗DF.

By Theorem 3 and computational results shown in Section 4.2.3, when utiliza-

tion is sufficiently high and Rp/Rs ≥ 0.5, (Np)∗DF ≤ (Np)∗DA ≤ (Np)∗DD, that is,
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(Np)∗FF ≤ (Np)∗AF ≤ (Np)∗DF ≤ (Np)∗DA ≤ (Np)∗DD. Under this case, (Np)∗FF always

provides a lower bound for both (Np)∗DA and (Np)∗AF .

When the utilization decreases beyond a threshold point (sufficiently low) or

Rp/Rs ≤ 0.5, then (Np)∗DD ≤ (Np)∗DA ≤ (Np)∗DF. As (Np)∗FF ≤ (Np)∗AF ≤ (Np)∗DF

always holds, min{(Np)∗DD, (N
p)∗FF} must provide a lower bound for (Np)∗DA and

(Np)∗AF

In summary, for any configuration A with either dedicated flexibility for presched-

uled patients or full flexibility for same-day patients, min{(Np)∗DD, (N
p)∗FF} must

provide a lower bound for (Np)∗A.

Corollary 1 leads to an easy-to-calculate bound, which provides us with a good

starting point for possible heuristic procedures discussed in next section.

3.4 Greedy search heuristic

In this section, we propose a greedy search heuristic to solve the capacity allocation

problem, and discuss the generated solution quality and computational performance.

The greedy algorithm starts with no slots available to prescheduled patients and will

myopically add one extra slot at a time to the physician for whom it will result in the

maximum increase in revenue. It will stop when no positive returns can be obtained

by further adding slots to any of the physicians. The diminishing returns property

shown to hold for the most practical cases, where either prescheduled patients are

dedicated or same-day patients are fully flexible, implies that the greedy algorithm

provides the exact optimal solution in the case of a single physician, and suggests that

it should work well in general. While we have not been able to prove that the greedy

algorithm always finds the optimal solution, it did identify the optimal solution to the

capacity allocation problem in every single case tested in our extensive computational

experiments, under a wide range of parameter values; please see Section 3.4.2.1 for

details.

66



The greedy heuristic provides us with an efficient alternative to solve moderate

size problems, whereas for large instances we will use sample average approximation

methods to solve the mathematical formulations presented in Chapter 2. In what

follows we investigate the performance of the greedy search heuristic.

3.4.1 Iterative search procedure

The greedy search heuristic iteratively searches the possible capacity allocation

decisions as follows.

Step 1: Initialization. Set Np
k = 0 for all k = 1, 2, . . . ,m and N = Np

1 +Np
2 +...+Np

m =

0

Step 2: Iteration.

a) Increase N by 1

b) Calculate ER(Np
1 , ..., N

p
k + 1, ..., Np

m) for each k = 1, 2, . . . ,m.

c) Find ∆N = max
k

∆k(N
p
1 , ..., N

p
m), where ∆k(N

p
1 , ..., N

p
m) = ER(Np

1 , ..., N
p
k+1, ..., Np

m)−

ER(Np
1 , ..., N

p
k , ..., N

p
m), and let i be the maximum argument.

d) If ∆N ≤ 0, go to Step 3.

e) Increase Np
i by 1 and go to Step 2.

Step 3: Termination. The current solution Np = (Np
1 , N

p
2 , . . . , N

p
m) is given.

The number of available prescheduled appointment slots is increased by one unit

at a step, greedily for the physician that results in the highest revenue increase, until

the system revenue can no longer be improved. If a lower bound on the number of

prescheduled slots to make available can be derived, then it could be used in the

initialization step. The analysis of the behavior of Np as flexibility increases could be

used to derive lower bounds; for instance, we could use the knowledge of the booking

limits under say a dedicated configuration to derive initial setting for other flexibility

configurations.
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3.4.2 Performance of greedy search heuristic

The benefit of the greedy algorithm is the reduction in computational effort. In

fact, a full search of the solution space would entail considering C1 × C2 × . . . × Cm

possible vectors Np. However, the greedy algorithm will only visit m booking limits in

each iteration, for at most C =
m∑
i=1

Ci (the total number of slots available system-wide)

iterations, which significantly reduces the search space.

We could also see the full or exhaustive search algorithm as iterating from N =

0, . . . , C. At each step, there are N slots that can be distributed in any way among

the m physicians. The number of Np vectors to explore at each iteration can be

calculated as follows. For any N > 0, let i be the number of physicians with no

available prescheduled slots, where i may vary from i = 0 to i = m−1. The remaining

m− i physicians have to share the N slots. The number of ways in which the N slots

may be assigned to the (m − i) physicians is (N−1)!
(m−i−1)!(N−m−i)! (combinations of N-1,

taken in groups of m-i-1) [This is because we can pose the problem as finding m−i−1

breakpoints in 1, 2, ..., N − 1 that represent the last slot out of the N that is assigned

to physician k for each of the first m − i − 1 physicians. The remaining slots will

be assigned to the last physician.] Then the total numer of vectors to visit at each

iteration then is
m−1∑
i=1

[
m!

(m−i)!i! ×
(N−1)!

(m−i−1)!(N−m−i)!

]
.

Greedy algorithms may yield potentially bad solutions for some problems, as they

may get stuck in a local optimum and never get close to optimality. We thus need

to evaluate the performance of greedy algorithm for our capacity allocation problem.

Under a fully dedicated configuration for both prescheduled and same-day patients,

the greedy algorithm safely yields the optimal solution since the problem can be split

into m problems in a single dimension. The risk of missing a global optimum only

occurs under multiple dimensions, when the various resources interact under a flexible

configuration. To illustrate our discussion, Figure 3.1 shows the spanning tree of the
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search space for a 2-physician practice. We assume the practice allows same-day

patients to be flexibly shared.

Figure 3.1. Spanning tree of the search space of the capacity allocation problem :
2-physician practice

Under a particular value of N , the nodes on the corresponding line represent all

the possible vector solutions (Np
1 , N

p
2 ) at this step. Instead of checking all the nodes

at each step N , the greedy algorithm only tours the nodes branched from the previous

local optimum at step N − 1. As a result the greedy algorithm might miss the global

optimal node. For example, suppose ∆1(0, 0) > ∆2(0, 0) , ∆1(1, 0) > ∆2(1, 0) and

∆1(2, 0) > ∆2(2, 0), the greedy algorithm reports locally optimal solutions to be

(1, 0)→ (2, 0)→ (3, 0). Some nodes, such as (0,3) will never be visited in the greedy

search. Could such a node be the global optimal solution? In fact, under symmetric

cases, this is not possible. Under symmetric configurations and demands (the amount

of demands for each physician are identical), for node (0,0), ∆1(0, 0) = ∆2(0, 0), the

greedy algorithm will increase the first component by one unit, then due to symmetry

and diminishing returns, ∆1(1, 0) < ∆2(1, 0), so the locally optimal solution obtained

from the greedy algorithm is (1,1), which is also global optimal solution at this step.
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In other words, the greedy algorithm never deviates from the middle axle of the

spanning tree, where the global optimal solution lies in the symmetric case.

For asymmetric physician demands, however, it is not so clear that the optimum

at a particular step, for a given value of N , will always be found in the branches out of

the previous optimal node at step N − 1. The diminishing returns property suggests

that this should be the case in general. Furthermore, an exhaustive search over all

nodes for each value of N results in the same path through the tree as that followed

by the greedy algorithm in all of our computational tests. We thus conjecture that the

greedy algorithm is in fact exact, and always finds the optimal solution to the capacity

allocation problem. In what follows, we describe the wide range of parameters tested

in our computational experiments and provide a sample of the results, which provide

insight as to how the solution evolves at each step N .

3.4.2.1 Computational results

To test the conjecture that the greedy algorithm always finds the optimal solution

to the capacity allocation problem, we run computational experiments under a range

of asymmetric demand scenarios, which cover most practice situations.

We focus on a 3-physician practice and assume that prescheduled patients are ded-

icated and same-day patients are fully flexibly shared. Capacity for each physician is

identical to be set to 24 slots per day (roughly 8 hours because one slot generally takes

20 mins). To test the performances of greedy algorithm under different asymmetries

in demand scenarios, we run computational experiments over four different P/S ratio

settings: (1) 6/12 8/16 10/20, (2) 12/6 16/8 20/10, (3) 8/16 12/12 16/8, and (4)

4/20 12/12 20/4. Each P/S ratio setting is repeated under 3 different workloads

(80%, 100% and 120%) [Refer to section 1.1 for more details about the definitions of

P/S ratios and workload, and how we create the asymmetry of practices].
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In fact, all the computational results support the conjecture that greedy algo-

rithm yields optimal solution for this capacity allocation problem. In that case, it

is reasonable to suggest greedy algorithm as an efficient heuristic for our capacity

allocation problems. Interestingly, not only the final destination (optimal solution)

of a full search and that of a greedy search are same, the search path under these two

search method always matches.

For example, Table 3.1 shows the results under the case that P/S ratio setting is

6/12 8/16 10/20 and workload is 120%. The columns of ‘NP*’ present the optimal

solutions under restricted N (N = 0, 1, ... , 72) and the columns of ‘revenue’ show the

associated revenue. A greedy search will start from Np = [0, 0, 0]. Due to the demand

input, ∆3(0, 0, 0) > ∆1(0, 0, 0) and ∆3(0, 0, 0) > ∆2(0, 0, 0), the third component of

Np needs to be increased by one, resulting a solution just matches the optimal solution

(from a full search) with restriction N = 1. Then, as ∆2(0, 0, 1) > ∆1(0, 0, 1) and

∆2(0, 0, 1) > ∆3(0, 0, 1), the second component of Np needs to be increased by one

due to greedy algorithm, resulting a solution matches the optimal solution (from a

full search) with restriction N = 2 again. Continue the analysis, these observations

hold until the global optimal solution is reached (N = 23 and Np∗ = [5, 8, 10] in this

case). Beyond global optimal point, there is no such regularity.
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Table 3.1. Optimal solutions under given amount of N : asymmetric 6/12 8/16
10/20, 120% workload

N NP* Revenue N NP* Revenue N NP* Revenue

0 0 0 0 51.22397
1 0 0 1 51.94617 25 7 8 10 60.81347 49 24 19 6 60.65315
2 0 1 1 52.6597 26 9 8 9 60.79365 50 24 20 6 60.65267
3 0 1 2 53.36243 27 10 8 9 60.78013 51 24 21 6 60.65244
4 0 2 2 54.05165 28 12 7 9 60.77311 52 24 22 6 60.65234
5 0 2 3 54.72485 29 13 7 9 60.77006 53 24 23 6 60.65229
6 1 2 3 55.37871 30 14 7 9 60.76849 54 24 24 6 60.65228
7 1 2 4 56.00928 31 15 7 9 60.76774 55 24 24 7 60.64787
8 1 3 4 56.61369 32 16 7 9 60.76742 56 24 24 8 60.62078
9 2 3 4 57.18599 33 17 7 9 60.76728 57 24 24 9 60.57699
10 2 3 5 57.72528 34 18 7 9 60.76723 58 24 24 10 60.52326
11 2 4 5 58.22696 35 19 7 9 60.76721 59 24 24 11 60.46636
12 2 4 6 58.68454 36 20 7 9 60.7672 60 24 24 12 60.4121
13 3 4 6 59.09718 37 21 7 9 60.7672 61 24 24 13 60.3646
14 3 5 6 59.46737 38 22 7 9 60.7672 62 24 24 14 60.32603
15 3 5 7 59.78735 39 23 7 9 60.7672 63 24 24 15 60.29677
16 3 6 7 60.05745 40 24 7 9 60.7672 64 24 24 16 60.27591
17 4 6 7 60.28286 41 24 8 9 60.7586 65 24 24 17 60.26189
18 4 6 8 60.46567 42 24 9 9 60.73391 66 24 24 18 60.25296
19 4 7 8 60.60318 43 24 11 8 60.70468 67 24 24 19 60.24757
20 4 7 9 60.70303 44 24 13 7 60.6838 68 24 24 20 60.24446
21 5 7 9 60.77438 45 24 14 7 60.67038 69 24 24 21 60.24275
22 5 8 9 60.81369 46 24 15 7 60.66108 70 24 24 22 60.24185
*23 5 8 10 60.82961 47 24 17 6 60.65597 71 24 24 23 60.2414
24 6 8 10 60.82929 48 24 18 6 60.65412 72 24 24 24 60.24118

Generally, under all the tested scenarios, we find the optimal solution obtained

under restricted N is always branched from the optimal solution from previous step

(i.e. if two components of the optimal solution from previous step are changed, the

yielded solution will never be optimal for current step). A rigorous analysis to further

analyze this observation could be an interesting topic for our future study.

3.4.3 Analytical method to calculate expected performances

Once again we need to make use of Jordan and Graves’ term to capture the

shortfall associated with a given configuration and set of demands. It was also used
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in Section 3.2 to prove diminishing return property. Given a system with m panels

and m physicians, for any flexible configuration A, the optimal value of shortfall is

given by

V (A) = max
M

∑
j∈M

Dj −
∑

j∈P (M)

Ci


where M is any subset (including the null set) of the index set {1, 2, ...,m}. For any

given subset of panels M , P (M) is the subset of physicians that can serve at least

one of the panels in set M . Thus, j ∈ P (M) if and only if there is at least one panel

j ∈ M such that (j, i) ∈ A. Each term within the maximization is the difference

between the demand for some subset of panels and the maximum capacity available

from the physicians which are connected to that subset of panels.

Using the result of [34], we can analytically calculate expected overflow for a given

flexibility configuration. Here overflow is equivalent to the unfilled demand of a given

configuration. Then expected satisfied demand can be calculated based on the results

of expected overflow. Particularly, for a fully flexible configuration A, the expected

number of diversions can be calculated as the expected overflow of the corresponding

dedicated configuration minus the expected overflow from this configuration A.

We assume all the prescheduled and same-day demand follow Poisson distributions

(this method could be easily applied to any other discrete probability distribution). λpj

and λsj denote the poisson distribution rates for prescheduled and same-day demand

in panel j. By adapting Jordan and Graves’ terms, we analyze multiple flexibility

configurations for small practices (m ≤ 4).

For illustrative purposes, here we consider the 2-physician case for dedicated with

one additional provider system. Refer to the appendix A to see results based on other

flexibility configurations we explored.

Given one demand realization [Dp
1, D

p
2, D

s
1, D

s
2], the overflow for prescheduled de-

mand is just the sum of the overflow for each panel, max{0, Dp
1−N

p
1}+ max{0, Dp

2−

Np
2}, because physicians are not allowed to share prescheduled demand. Here we only
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have two terms inside the maximization, then the expected value of overflow is easy

to calculate. However, for same-day demand, the situation becomes more complex.

The overflow under a particular demand realization will be

max{0, Ds
1 − [C1 −min(Np

1 , D
p
1) + Y ], Ds

2 − [C2 −min(Np
2 , D

p
2) + Y ],

Ds
1 +Ds

2 − [C1 + C2 −min(Np
1 , D

p
1)−min(Np

2 , D
p
2) + Y ]}

which is the maximum of four terms. It is not easy to calculate the expected value for

this maximization directly. Based on the analysis of these four terms, we find each of

them corresponds to a disjoint condition or case. For example, the cases correspond

to the 2-physician practice for dedicated with one additional provider system is as

following four cases:

(i) Ds
1− [C1−min(Np

1 , D
p
1) +Y ] is max⇔ Ds

1 ≥ C1−min(Np
1 , D

p
1) +Y and Ds

2 < C2

(ii) Ds
2− [C2−min(Np

2 , D
p
2)+Y ] is max⇔ Ds

2 ≥ C2−min(Np
2 , D

p
2)+Y and Ds

1 < C1

(iii) Ds
1 + Ds

2 − [C1 + C2 −min(Np
1 , D

p
1) −min(Np

2 , D
p
2) + Y ] is max ⇔ Ds

1 + Ds
2 ≥

C1 + C2 −min(Np
1 , D

p
1)−min(Np

2 , D
p
2) + Y,Ds

1 ≥ C1 and D
s
2 ≥ C2

(iv) 0 is max, otherwise

We can thus calculate the expected value of overflow based on the conditional

probabilities under each of these conditions. For settings with more physicians, there

will be more terms inside the maximization but not all of them need to be considered

because some terms dominate others. However, in this dissertation, we only explore

this method to calculate expected revenue for small practices such as m ≤ 4. We

didn’t explore for larger practices because the number of terms involved in calculation

exponentially increases.
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3.4.4 Example: apply the greedy heuristic to the capacity allocation

problem

To clarify how the heuristic works, we first consider a 2-physician practice where

the P/S ratio for each physician is 8/16 and workload of the practice is 100%. If each

physician has a capacity of 24, what should a nice solution of Np of each physician be?

Since the physicians are identical with regard their workloads, our heuristic would

start with Np values of [0, 0] and increase the Np value of each physician by 1, and

calculate the total expected revenue for the clinic. Using the difference in expected

revenues, the algorithm either stops or increments the appropriate physician’s Np

value by 1. Since the physicians are identical, there is no reason to favor one physician

over another in the search. The trajectory or path taken by the algorithm would

be fairly straightforward: [0,0], [1,0], [1,1], [2,1],[2,2] and so on until the optimal

pair of values is reached. For this example, the optimal pair of Np values for the

dedicated case is [9,9] and for the fully flexible case is [8,8], assuming 0.75 and 0.9 as

revenue for seeing one prescheduled and one same-day patient under 120% workload.

In our observation, Np is not sensitive in a certain range beyond one point as the

revenue function produces diminishing returns and when revenue function produces

a positive but small value, the optimal Np does change while not significant impact

on total revenue. Due to these observation, we establish a heuristic to analyze 4

physicians practices in order to reduce computational complexity. Given a arbitrary

small ε = 0.001, when the diminishing return produced by revenue function is equal or

smaller than the ε, stop searching for the locally optimal Np. This heuristic provides

good enough Np solution to achieve high revenue for the whole clinic.

If individual physician workloads are not identical (the asymmetric case, which we

formally describe in the results section), then the path traversed by the algorithm will

not be so straightforward. To illustrate, still consider a 2-physician practice in which

P/S ratios for physician 1 is 6/12 and for physician 2 is 10/20. The entire practice

75



is under 120% workload. Then Physician 1 has a mean prescheduled demand of 7.2

and same-day demand of 14.4, while Physician 2 has a mean prescheduled demand

of 12 and same-day demand of 24, see Figure 3.2. Each physician has a capacity of

24. If we define utilization as the ratio of expected total demand (prescheduled +

same-day) and the capacity, then Physician 1 has a utilization of 90% and Physician

2 has a utilization of 150%. The overall utilization of the clinic or practice is (7.2 +

14.4 + 12 + 24)/(24 + 24) = 120%. There are no additional same-day provider slots

in this example.

Figure 3.2. Revenue of dedicated and fully-flexible systems as a function of the iter-
ation number in the greedy heuristic for a 2-physician practice, with 120% workload
and demand asymmetry.

The path of Np values traversed by our heuristic for the fully-flexible and dedicated

cases is shown in the Figure 3.2 . At selected points on this path, we provide the

expected revenue; the Np values for the two physicians (pair of values in the second

parenthesis); and then the expected missed prescheduled and same-day demands (pair

of values in the first parenthesis).
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3.4.5 Computational efficiency of the greedy heuristic and the lower bound

In Section 3.4.2, we propose the greedy heuristic to be an efficient heuristic for this

capacity allocation problem because in most practical scenarios, the greedy heuristic

yields optimal solutions. In this section, we discuss the computational efficiency of

the greedy heuristic and a lower bound we constructed.

How to establish a lower bound Under the case of dedicated prescheduled and

dedicated same-day configuration, recall that

∆k(N
p
1 , ..., N

p
m) = P [Dp

k > Np
k ]× {Rp −Rs × P [Ds

k ≥ Ck −Np
k |D

p
k > Np

k ]}

, (Np)∗DD is given by the first point to make ∆k(N
p
1 , ..., N

p
m) < 0. In fact P [Ds

k ≥

Ck −Np
k |D

p
k > Np

k ] = Rp

Rs can provide a good estimate of (Np)∗DD.

Similarly, under the case of fully flexible prescheduled and fully flexible same-day

configuration, the difference in revenue can then be written as

∆k(N
p
1 , ..., N

p
m) = P [

m∑
j=1

Dp
j >

m∑
i=1

Np
i ]× {Rp

−Rs × P [
m∑
j=1

Ds
j ≥

m∑
i=1

Ci −
m∑
i=1

Np
i |

m∑
i=1

Dp
i >

m∑
i=1

Np
i > 0]}

By same logic, we know that P [
∑m

i=1D
s
i ≥

∑m
i=1Ci−

∑m
i=1N

p
i |
∑m

i=1D
p
i >

∑m
i=1N

p
i >

0] = Rp

Rs can provide a good estimate of (Np)∗FF under symmetric cases.

Corollary 1 shows that min{(Np)∗DD, (N
p)∗FF} is always a lower bound for the

optimal capacity allocation (Np)∗A, here A belongs to the two sets we discuss in

previous section. In fact, under these two extreme situations(dedicated for both

prescheduled and same-day patients, fully flexible for both prescheduled and same-

day patients), our model is similar to a newsvendor model. If Rp ≥ Rs holds, we need

to increase Np until reaching the threshold Rp

Rs .

Table 3.2 summarizes the running time of Formulation I based on sample average

approximation, greedy heuristic, and greedy heuristic with the provided lower bound.
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The tested scenarios are all symmetric cases (each physician has identical P/S ratio

and workload, refer to section 1.1 for more details about symmetric cases). We tested

three different P/S ratios (8/16, 12/12 and 16/8) and each ratio is repeated under

three different workloads (80%, 100%, and 120%). Formulation I is computed by using

cplex 12.3. Greedy heuristic and greedy heuristic with lower bound are both computed

by using Matlab 7.11.0. Running environment is [Intel(R) Core(TM) i5-2520M CPU@

2.50GHz, RAM 6.00GB]. In this table, ‘SAA’ denotes ’sample average approximation

method’, ‘GA’ denotes ‘greedy algorithm’, and ‘GA.LB’ denotes ‘greedy algorithm

with constructed lower bound’.

Table 3.2. Comparisons of running time under different configurations and demand
scenarios(time:/s)

Dedicated Subgroup Fully

cases SAA GA GA.LB SAA GA GA.LB SAA GA GA.LB

80% 8/16 337.4 0.2 0.3 325.8 3.2 2.8 971.4 545.2 300.9
100% 8/16 1640.5 0.2 0.2 4655.5 1.8 1.2 5951.1 346.1 136.0
120% 8/16 2946.9 0.1 0.1 42787.4 1.0 0.6 45441.4 165.2 22.2

80% 12/12 452.4 0.2 0.2 410.5 3.6 2.8 345.5 566.8 242.9
100% 12/12 1395.3 0.2 0.2 4982.2 2.7 1.8 6365.3 458.4 179.0
120% 12/12 2312.2 0.2 0.2 25190.8 1.7 1.0 45912.4 291.2 58.7

80% 16/8 292.2 0.3 0.3 352.2 4.0 3.5 211.4 579.8 166.9
100% 16/8 901.1 0.3 0.2 1672.2 3.6 2.2 1597.4 552.0 173.7
120% 16/8 866.4 0.2 0.2 14755.3 2.5 1.7 21576.9 384.9 59.8

From Table 3.2, we observe that, greedy heuristic sufficiently reduces the com-

putational time for all tested cases. Furthermore, lower bound is advantage to cut

searching space for complicated cases. Note that, the greedy heuristic is based on our

analytical method to compute the expected revenue for one particular configuration,

which only works for small cases (m ≤ 4) now. Because the number of terms involved

in formula to compute revenue exponentially increases with number of physicians and

the complexity of flexibility configurations.
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CHAPTER 4

IMPACT OF FLEXIBILITY AND CAPACITY
ALLOCATION IN PRIMARY CARE PRACTICES

4.1 Introduction

In this chapter, we apply the framework and models in Chapter 2, and study

the impact of flexibility and capacity allocation problem in primary care practices.

Results in this chapter address the following research questions:

(i) What is the impact of flexibility on average performance in a primary care

practice?

(ii) Is the optimal threshold policy essential for clinics to consider in primary care

practices? If yes, what is the benefit of this optimal threshold policy?

(iii) What is the impact of flexibility on the optimal booking limit? Are the

computational results consistent with analytical results in Section 3.3?

4.2 Computational results

4.2.1 Impact of flexibility in primary care practices

Although we focus on a primary care setting, our model is general and can be

extended under a service setting with two demand classes: urgent demand vs. non-

urgent demand. To understand the impact of different types of flexibility, we run

computational experiments based on Formulation I, Formulation II and Formu-

lation IV.

In all mathematical experiments, we have Poisson samples for both prescheduled

demand and same-day demand. Each practice has 3 physicians and each physician
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has total 24 available slots per workday, since a typical appointment takes about 20

minutes and a physician’s workday may be up to 8 hours. Note that, most clinics will

serve same-day patients with the physicians’ overtime. In our computational study,

we consider the unsatisfied part of demand to be patient overflow, which could be

served with physicians’ overtime or be refused.

Due to the findings from [12], we follow the assumption (also made in [10]) that

prescheduled patients exhibit a no show rate of 25% while same-day patients have a

significantly smaller no show rate of 10%. Therefore, we set revenue achieved from

same-day as 0.9 and revenue from prescheduled as 0.75. Note that in the analytical

part, we assume that there is no deduction cost for referrals for convenience. However,

in order to test the impact of referrals on the total revenue, we assume there will be a

deduction cost if the physician sees a patient not from her own panel. The deduction

cost for same-day referrals is assumed to be 0.05 while that for prescheduled referrals

is 0.15, as losing continuity for prescheduled patients will result a higher loss in

efficiency.

For convenience, we introduce following definitions of three different types of flex-

ibility:

Baseline: prescheduled patients dedicated, and same-day patients are dedicated.

Type I flexibility: prescheduled patients dedicated, and same-day patients are fully

flexible.

Type II flexibility: prescheduled patients fully flexible, and same-day patients are

dedicated.

Type III flexibility: Prescheduled patients are pooled, and same-day patients are

fully flexible.

By using Formulation I, we test the performances of baseline and Type I flexibil-

ity. The difference in revenue between these two configurations provides the benefit

of same-day flexibility (type I flexibility).
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We test the performances of Type II flexibility by using Formulation II. We also

test the performance of Type III flexibility by using Formulation IV. We quantify

the benefit of introducing flexibility to serve prescheduled patient(Type II flexibili-

ty). We also compute the benefit of introducing additional flexibility (in the form

of pooling prescheduled patients together to share a single booking limit) to serve

prescheduled patient when same-day patients are fully flexible (Type III flexibility -

Type I flexibility).

We run eight cases: each with different P/S ratios (recall Section 1.1, P/S ratio

is prescheduled demand rate
sameday demand rate

) for physicians in the practice. The mean of prescheduled

demand is P and the mean of same-day demand is S. Note that the system is

perfectly balanced to have 100% workload. We multiply the demand by 0.8 and 1.2

to create over-worked and under-worked practices. Case 1 - case 4 are all symmetric

cases: each physician has same P/S ratio, and we increase the prescheduled demand

rates over the cases. Case 5 - case 6 are asymmetric cases with two groups of mixed

P/S ratios(first physician has a P/S ratio less than one, second physician has a P/S

ratio of one, and the last physician has a p/s ratio greater than one). Case 7 - case 8

are asymmetric cases with same P/S ratio (case 7 to be 1
2

and case 8 to be 2) but each

physician is differently utilized. These cases are motivated based on our interactions

with small primary care practices as well as larger academic practices. The results

are summarized in Table 4.1.
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Table 4.1. Impact of flexibility in primary care practices

80% utilization Revenue[Improvement in %]

Cases baseline Type I Type II Type III
sym 4/20 49.09 49.81 [1.45%] 49.11 [0.04%] 49.81 [1.45%]
sym 8/16 47.73 48.41 [1.44%] 47.80 [0.17%] 48.41 [1.44%]
sym 16/8 44.45 45.10 [1.45%] 44.69 [0.54%] 45.10 [1.46%]
sym 20/4 43.29 43.85 [1.31%] 43.63 [0.79%] 43.91 [1.45%]

asym 4/20,12/12,20/4 46.79 47.54 [1.62%] 46.99 [0.44%] 47.56 [1.65%]
asym 8/16,12/12,16/8 46.87 47.71 [1.80%] 47.09 [0.48%] 47.71 [1.80%]
asym 6/12,8/16,10/20 47.25 49.07 [3.85%] 47.98 [1.56%] 49.07 [3.85%]
asym 12/6,16/8,20/10 44.40 46.16 [3.95%] 45.42 [2.28%] 46.18 [4.01%]

100% utilization Revenue[Improvement in %]

Cases baseline Type I Type II Type III
sym 4/20 57.79 59.87 [3.60%] 57.92 [0.21%] 59.87 [3.60%]
sym 8/16 55.90 57.98 [3.72%] 56.21 [0.55%] 57.98 [3.72%]
sym 16/8 52.56 54.50 [3.68%] 53.29 [1.38%] 54.55 [3.79%]
sym 20/4 50.92 52.64 [3.37%] 51.92 [1.96%] 52.81 [3.71%]

asym 4/20,12/12,20/4 54.30 56.24 [3.58%] 54.84 [1.00%] 56.26 [3.61%]
asym 8/16,12/12,16/8 54.17 56.16 [3.67%] 54.67 [0.93%] 56.18 [3.71%]
asym 6/12,8/16,10/20 53.76 57.91 [7.73%] 55.67 [3.56%] 57.92 [7.74%]
asym 12/6,16/8,20/10 50.55 54.30 [7.42%] 52.76 [4.38%] 54.37 [7.56%]

120% utilization Revenue[Improvement in %]

Cases baseline Type I Type II Type III
sym 4/20 61.46 62.83 [2.22%] 61.56 [0.16%] 62.83 [2.23%]
sym 8/16 59.44 60.76 [2.22%] 59.53 [0.15%] 60.79 [2.27%]
sym 16/8 55.97 57.09 [2.00%] 56.13 [0.29%] 57.18 [2.16%]
sym 20/4 54.13 55.07 [1.75%] 54.49 [0.67%] 55.26 [2.10%]

asym 4/20,12/12,20/4 57.59 58.82 [2.15%] 57.74 [0.27%] 58.88 [2.24%]
asym 8/16,12/12,16/8 57.54 58.83 [2.24%] 57.64 [0.18%] 58.88 [2.33%]
asym 6/12,8/16,10/20 57.58 60.62 [5.28%] 58.80 [2.11%] 60.69 [5.40%]
asym 12/6,16/8,20/10 53.76 56.72 [5.52%] 55.41 [3.09%] 56.90 [5.85%]

Table 4.1 shows that, the highest benefit achieved from type I flexibility (only

allowing flexibility to serve same-day patients in the system), is observed under 100%

utilization. Under symmetric cases, this benefit is usually in the range of 3%-4%,

even though the same-day average demand is very different. Note that, the benefit
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of type I flexibility is not only achieved from same-day patients: case 3 (symmetric:

16/8) has less same-day patients than case 2 (symmetric: 8/16) but has a higher

benefit due to type I flexibility. Similar benefit can be observed under asymmetric

cases with mixed p/s ratio. In fact, the highest benefit from type I flexibility is

obtained from the asymmetric cases with differently utilized physicians. Although

case 7 (asymmetric: 6/12, 8/16, 10/20) and case 8 (asymmetric: 12/6, 16/8, 20/10)

are different in the expected number of same-day patients, the benefit from type I

flexibility for these two cases is larger than 7%. That is, this type I flexibility performs

significantly better in the asymmetric cases than in the symmetric cases, i.e. when

some physicians have higher demand in relation to others. In this case, flexibility is

not only used to hedge against the variability in arriving same-day patient demands,

but also to balance expected demand and available supply of each of the physicians.

In the flexible system, the busier physician reserves more slots to satisfy prescheduled

patient demands, while the lower utilized physician picks up the extra same-day

appointment burden. Thus while flexibility implies a loss of continuity for same-day

patients (who need it less anyway), it improves a physician’s ability to provide more

prescheduled appointments. These additional appointments can then be used for

non-urgent but important follow-ups for patients with chronic conditions who have a

in greater need for continuity.

Type II flexibility (only allowing flexibility to serve prescheduled patients in the

system), also generates most benefit under 100% workload. However, different from

type I flexibility, the benefit achieved from type II flexibility is closely connected with

prescheduled demand rate. The more prescheduled patients, the greater the benefit

from type II flexibility. Under symmetric cases, benefit from type II flexibility ranges

from 0.20%-2%. No significant benefit can be observed under asymmetric cases with

mixed p/s ratio. The highest benefit from type II flexibility is still obtained for

the asymmetric cases with differently utilized physicians. The benefit from type II
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flexibility under case 7 (asymmetric: 6/12, 8/16, 10/20) is 3.56% and the benefit

from type II flexibility under case 8 (asymmetric: 12/6, 16/8, 20/10) is 4.38%, as

case 8 has more prescheduled patients than case 7. Both of these two values are

significantly larger than the benefit from type II flexibility under symmetric cases -

again due to the ability to pool demand and accommodate unbalanced demand with

available capacity.

Suppose a busy primary care practice is inherently flexible to serve same-day pa-

tients, let us consider following question: is it beneficial to introduce additional flexi-

bility to serve prescheduled patients? Intuitively, there must be some gain in revenue

as flexibility can pool demand to reduce demand variance and balance demand with

capacity. However, in all 8 cases, our observation is quite surprising: when same-day

patients are fully flexible, the introduced additional flexibility to serve prescheduled

patients (type III flexibility - type I flexibility) is usually marginal (0.01%-0.40%).

Why is the impact of this additional prescheduled flexibility small? In fact, same-day

flexibility can balance demand well enough to get a higher revenue. With same-day

flexibility, the additional prescheduled flexibility only generates benefits under the

case that demand for prescheduled is over 24 for one physician and there are unused

prescheduled slots still available to be flexibly used by the system. As this benefit

only occurs in very extreme cases, the corresponding probability is small, resulting

in small benefit. Based on this observation, suppose a practice already allows flexi-

bility to serve urgent demand, the decision to introduce additional flexibility should

be carefully considered based on necessity, because this flexibility results in a very

marginal improvement in revenue. Another surprising observation is that, unlike type

I and type II flexibility, the highest benefit of additional prescheduled flexibility is not

obtained under 100% workload but observed under 120% workload. In other words,

as we explained above, the benefit is higher when the system is busier.
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Note that, Type III flexibility tested in Table 4.1 is not based on a real presched-

uled fully flexible and same-day fully flexible configuration but based on its transfor-

mation, in which prescheduled patients from different panels share a common booking

limit while prescheduled patients are always served by their own physicians as long

as the actual demand does not exceed the corresponding physician’s total capacity.

Note that, the sharing common booking limit structure in this transformation (no

fixed individual booking limit) could work similar as a real prescheduled flexibility

configuration (individual booking limit is fixed), see more details in Section 2.5. In

fact, this special transformation is particularly beneficial in primary care practices

because it could help to maintain the continuity for prescheduled patients (for whom

continuity is much more critical) while improving access of patients as a regular full

flexibility configuration. Then, question comes, what is the difference between these

two configurations?

To answer this question, we use Formulation II to test a prescheduled and same-

day both fully flexible configuration and use Formulation IV to test the transformation

(prescheduled pooled and same-day fully flexible configuration). For each configura-

tion, we still run previous described scenarios (8 different P/S ratios combined with

3 different workloads). All the comparisons are presented in Table 4.2.

Table 4.2. Prescheduled patients are fully flexibly shared vs. prescheduled patients
are pooled while same-day patients are always fully flexibly shared

P-Pooled S-Full P-Full S-Full

Cases 80% 100% 120% 80% 100% 120%

sym 4/20 49.81 59.86 62.80 49.81 59.87 62.85
sym 8/16 48.67 58.02 60.69 48.67 58.04 60.80
sym 16/8 45.41 54.46 57.03 45.41 54.57 57.19
sym 20/4 44.00 52.63 55.11 44.01 52.81 55.26

asym 4/20,12/12,20/4 47.67 56.27 58.75 47.67 56.33 58.88
asym 8/16,12/12,16/8 47.72 56.12 58.74 47.72 56.18 58.89
asym 6/12,8/16,10/20 49.14 57.94 60.53 49.14 57.96 60.69
asym 12/6,16/8,20/10 46.14 54.25 56.69 46.14 54.37 56.92
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Consistently with the analysis in Section 2.5, the prescheduled pooled framework

works better than a real prescheduled fully flexible configuration as long as same-

day patients are fully flexibly shared. However, the difference between these two

configurations is always marginal (0.0%− 0.3%). In addition, under some particular

scenarios (not all the scenarios), as long as same-day patients are fully flexibly shared,

the prescheduled fully flexible configuration work slightly worse than the prescheduled

dedicated configuration while the prescheduled pooled model works slightly better

than the prescheduled dedicated configuration. This is reasonable due to the diversion

cost and the natural arrival sequence of two demand streams.

Generally, when the inherent physician flexibility is used to serve prescheduled pa-

tients as well as same-day patients, continuity in care for the chronic patients suffers

while minimal additional benefits in access are observed. Furthermore, the improve-

ment obtained from the flexibility to serve prescheduled demands is not significant in

increasing access even when same-day flexibility is not viable, in applications where

the same-day demand has greater need for continuity than the prescheduled demand.

This is the case, for example, of a maintenance and repair service for a great variety

of industrial or residential equipment (e.g. furnaces), where prescheduled demand

is for standard maintenance operations, which any technician could effectively com-

plete, while same-day demand will require deeper knowledge of the equipment, spare

part availability, and quick resolution, and thus greatly benefit from the continuity

provided by a technician that is an expert on that particular piece of equipment. In

this case, it is not so much the client-server relationship that matters, but the match

between the particular expertise of the technician and the needs of the client.

4.2.2 Evaluation of booking policies

In our model, we suggest a booking limit for clinics to reserve capacity for presched-

uled patients; however, in most primary care practices, there may not be any such
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booking limit. We find that, when the workload of the various physicians in the

practice is well balanced or less than 100%, the expected revenue of the practice is

surprisingly insensitive to the booking limit. This is true as long as the booking

limit is sufficiently high, suggesting that most practices could function appropriately

without a booking limit, that is, simply accepting all prescheduled patient requests.

Moving beyond the average performance metrics, however, we find that not setting a

booking limit would result in a sizeable proportion of days where significant lack of

access to same-day patients, or alternatively physician overtime to serve them, occurs.

Figure 4.1. Sensitivity analysis: expected revenue vs. booking limit in the entire
system.

For example, Figure 4.1 shows how the expected revenue changes along with book-

ing limit in the entire system, under a 90% workload case with more prescheduled

patients, which is a typical workload in practice. Three different flexibility configu-

rations are tested: baseline, type I flexibility and type III flexibility. All the optimal

solutions are marked with ∗ in the figure. The figure shows that the expected revenue

is not sensitive to the total booking limit beyond some point. With respect to the ex-
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pected revenue, a booking limit does not seem to be necessary; however, inappropriate

booking limit may result risk of having large same-day patient overflow.

Figure 4.2. Sensitivity analysis: patient overflow vs. booking limit in the entire
system.

Still based on same samples from Figure 4.1, Figure 4.2 shows how the 95% per-

centile of overflow changes along with the total booking limit in the entire system.

Note that in our model, we assume that prescheduled overflow is scheduled on an-

other workday or refused while same-day overflow is served with overtime or refused.

Figure 4.2 shows that an inappropriate booking limit could result risk(5%) of hav-

ing large overflow (may be up to 9), resulting long overtime to accommodate the

same-day patient overflow. A suitable booking limit should be considered to balance

prescheduled patient requests and same-day patient requests.

We compare the performances of different booking policies under typical workloads

(80%, 90%, 100%, 110%, 120%) and calculate the 75%, 85% and 95% percentile of

overflow. Selected results (85%) are summarized in Table 4.3. ‘Baseline*’ denotes

the optimal booking limit under no flexibility configuration. ‘typeI*’ denotes the

optimal booking limit under type I flexibility configuration(prescheduled patients are
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dedicated, and same-day patients are fully flexible). ‘typeIII*’ denotes the optimal

booking limit under type III flexibility configuration (prescheduled patients are pooled

and same-day patients are fully flexible). ‘No limit dedicated’ denotes the booking

limit is equal to the total capacity under dedicated system and ‘No limit flexible’

denotes the booking limit is equal to the total capacity under fully flexible system.

‘Pre-over’ denotes the prescheduled overflow and ‘Same-over’ denotes the same-day

overflow.

Table 4.3. Performances of different booking policies: expected revenue and 85%
percentile of patient overflow

Booking Policy Revenue Pre-over Same-over

Baseline* 49.95 0 2
80% Type I* 51.60 0 0

workload Type III* 51.60 0 0
No limit dedicated 49.95 0 2
No limit flexible 51.60 0 0

Baseline* 52.65 4 8
90% Type I* 57.15 0 3

workload Type III* 57.05 0 3
No limit dedicated 52.65 0 11
No limit flexible 57.15 0 3

Baseline* 56.25 3 7
100% Type I* 57.7 0 7

workload Type III* 57.7 2 5
No limit dedicated 56.25 0 10
No limit flexible 57.7 0 7

Baseline* 57 9 11
110% Type I* 57.9 10 9

workload Type III* 57.65 10 9
No limit dedicated 56.25 1 17
No limit flexible 57.6 1 16

Baseline* 57.45 15 14
120% Type I* 58.15 17 11

workload Type III* 57.9 18 11
No limit dedicated 56.85 1 22
No limit flexible 57.4 1 22
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Although the corresponding expected revenues are similar to these different poli-

cies, the performances of patient overflow vary a lot. Meanwhile, policy ‘baseline’,

policy ‘no limit dedicated’ and policy ‘no limit flexible’ tend to be more beneficial

for prescheduled patients to get access, while same-day patient overflow could be

very high. Policy ‘type I*’ and Policy ‘type III*’ have better performance to balance

prescheduled demand and same-day demand. Decisions should be made based on

clinics’ needs to reserve appropriate amount of capacity for prescheduled patients.

4.2.3 Np changes as a function of prescheduled flexibility or same-day

flexibility

In Section 3.3, we shows how the optimal booking limit Np changes as a function of

prescheduled flexibility or same-day flexibility. In this section, we summarize results

from computational study to confirm those analytical results.

Figure 4.3. Np changes as a function of same-day flexibility when prescheduled
patients are dedicated: under asym 6/12 8/16 10/20
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Figure 4.3 shows how the solution of Np changes as functions of same-day flexibili-

ty when prescheduled patients are dedicated. The results in Figure 4.3 are obtained by

using Formulation I and four different flexibility configurations(dedicated, subgroup,

2chain, and full flexibility) are tested. This figure presents an asymmetric case(P/S

ratios are 6/12, 8/16, 10/20). Which is same as presented in [10] and our proof in

Section 3.3, when prescheduled patients are dedicated, the optimal Np is a function

of not only same-day flexibility, but also the system utilization. When the system is

low-utilized, the optimal Np will increase in same-day flexibility; on the other hand,

when the system is high-utilized, the optimal Np will decrease in same-day flexibility.

Not surprisingly, higher flexibility results a higher revenue. When the utilization is

100%, the impact of same-day flexibility on revenue is highest.

From above observations, we find that the practice tends to set aside fewer slots

for prescheduled appointments when the system is over-utilized, and reserve more

when the system is under-utilized, if full flexibility to see same-day patients versus

no flexibility is used. The reason is that when the system is under-utilized or even

at 100% utilization, the total capacity in the system is generally sufficient to address

the total demand. The full flexibility configuration tends to plan for more presched-

uled appointments than the dedicated case since the same-day appointments can be

flexibly shared and easily absorbed in the former but not in the latter. As the utiliza-

tion of the system increases, there is a greater availability of same-day appointments

which in our model produce greater revenue than prescheduled appointments. This

prompts both the fully-flexible and dedicated configurations to decrease the number

of prescheduled appointments so that more same-day appointments can be seen. The

flexible configuration ends up offering even fewer prescheduled appointments than its

dedicated counterpart, thus reserving more capacity for open access, since there is a

higher probability of fully using the additional capacity when it is shared across all

same-day appointments in the practice.
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Figure 4.4. Np changes as a function of prescheduled flexibility when same-day
patients are fully flexible: under sym 8/16

By using Formulation I (Section 2.3) and Formulation II (Section 2.4), we also

discuss how the solution of Np changes as functions of prescheduled flexibility when

same-day patients are fully flexible under a symmetric case (8/16). Figure 4.4 shows

that the total Np is always decreasing in prescheduled flexibility when same-day pa-

tients are fully flexible. Recall our observations in Section 4.2.1 that benefit from the

additional prescheduled flexibility is always marginal, because the same-day flexibility

is enough to adjust the demand uncertainty. However, though no significant benefit

can be achieved in revenue, the prescheduled flexibility has positive impact on balanc-

ing two types of demand in the system. Because if there is no prescheduled flexibility

in the system, the optimal Np is always larger to achieve a better revenue; however,

there would be a risk to have a large amount of same-day overflow due to demand

variance over different workdays. Although a higher continuity could be provided

to prescheduled patients, two demand streams(prescheduled patients and same-day

patients) might be unbalanced. Meanwhile, if there is prescheduled flexibility in the
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system, the optimal Np is smaller, which can stably balance prescheduled demand

and same-day demand. Decisions should be made based on clinics’ particular needs.

4.2.4 Negative correlation study

In Section 3.2.4, we always assume that demands are independent to prove di-

minishing return property for two special groups of flexibility configurations. In this

section, however, we establish a small experiment to roughly study the impact of

negative correlation on the performance of diminishing returns property. To keep the

trials typical and not intricated, we focus on the computational study on single physi-

cian with two negatively correlated demand streams, which are realized successively.

The total capacity of this physician is set to be 8 slots per day. We assume that the

prescheduled and same-day demand both follow normal distribution and these two

demand streams are negatively correlated. In another word, we have Dp ∼ N(µp, σp)

Ds ∼ N(µs, σs), and σDp,Ds < 0 simultaneously.

In our study, µp = µs = 4, and σp = σs is any value from [2, 4, 6, 8]. Based on the

settings, covariance of σDp,Ds is calculated with given correlation {−10%,−20%, ...,

−90%,−100%}. We run the simulation for 100 times, and in each scenario, 1000

demand realizations are generated to estimate the corresponding returns when Np is

increased by one unit. The results under the high variance case are summarized in

table 4.4. The simulation results show that, which is quite surprising, even under the

worst case (high variance with −100% correlation), the diminishing return property

still holds consistently based on the stochastic settings.
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Table 4.4. Does diminishing return property holds when two types of demand are
negatively correlated?

correlation

Np -20% -40% -60% -80% -100%

Np=0 0.578 0.588 0.598 0.613 0.631
Np=1 0.472 0.488 0.506 0.528 0.554
Np=2 0.345 0.367 0.393 0.423 0.459
Np=3 0.220 0.249 0.274 0.312 0.354
Np=4 0.114 0.144 0.176 0.210 0.249
Np=5 0.045 0.068 0.095 0.126 0.161
Np=6 0.007 0.025 0.042 0.068 0.093
Np=7 -0.004 0.005 0.016 0.029 0.049
Np=8 -0.007 -0.002 0.004 0.012 0.022
Np=9 -0.004 -0.003 -0.0004 0.004 0.009
Np=10 -0.002 -0.002 -0.000948 0.001 0.003
Np=11 -0.001 -0.001 -0.0005 -5.4E-05 0.001
Np=12 -0.0004 -0.0003 -0.0003 -4.5E-06 0.0003
··· ··· ··· ··· ··· ···

Consistent with Example 3.2.4, we do observe some scenarios can produce the

increasing returns when the absolute value of correlations are larger than 80%. How-

ever, the number of this type of scenarios is not high thus the diminishing return

property still perfectly hold from the stochastic view.

4.3 Summary and conclusions

For multi-physician primary care practices, we apply the 3-stage stochastic model

established in Chapter 2 to capture the scheduling of appointments for two subse-

quently realized demands, prescheduled and same-day.

Computationally, we investigate the value of different flexibility configurations and

find that when practices flexibly serve same-day patients, any additional presched-

uled flexibility has very marginal value. Restricting flexibility to serve prescheduled

patients provides necessary continuity for prescheduled patients while still maintain-

ing revenue. Furthermore, prescheduled flexibility is not effective in improving access
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even when same-day patients are not flexibly shared. This could be of interest in

service settings where continuity is more relevant in servicing same-day calls than in

routine prescheduled maintenance calls.

When the inherent physician flexibility is used to serve prescheduled patients

as well as same-day patients, continuity in care for the prescheduled patients with

chronic conditions suffers while minimal additional benefits in access are observed.

Furthermore, the flexibility to serve prescheduled demands is ineffective in increasing

access even when same-day flexibility is not viable, in applications where the same-day

demand has greater need for continuity than the prescheduled demand. This is the

case, for example, of a maintenance and repair service for a great variety of industrial

or residential equipment (e.g. furnaces), where prescheduled demand is for standard

maintenance operations, which any technician could effectively complete, while same-

day demand will require deeper knowledge of the equipment, spare part availability,

and quick resolution, and thus greatly benefit from the continuity provided by a

technician that is an expert on that particular piece of equipment. In this case, it is

not so much the client-server relationship that matters, but the match between the

particular expertise of the technician and the needs of the client.

We find that the practice tends to set aside fewer slots for prescheduled appoint-

ments when the system is over-utilized, and reserve more when the system is under-

utilized, if full flexibility to see same-day patients versus no flexibility is used. The

reason is that when the system is under-utilized or even at 100% utilization, the total

capacity in the system is generally sufficient to address the total demand. The full

flexibility configuration tends to plan for more prescheduled appointments than the

dedicated case since the same-day appointments can be flexibly shared and easily ab-

sorbed in the former but not in the latter. As the utilization of the system increases,

there is a greater availability of same-day appointments which in our model produce

greater revenue than prescheduled appointments. This prompts both the fully-flexible
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and dedicated configurations to decrease the number of prescheduled appointments

so that more same-day appointments can be seen. The flexible configuration ends up

offering even fewer prescheduled appointments than its dedicated counterpart, thus

reserving more capacity for open access, since there is a higher probability of fully

using the additional capacity when it is shared across all same-day appointments in

the practice.

When the workload of the various physicians in the practice is well balanced, the

expected revenue of the practice is surprisingly insensitive to the booking limit. This

is true as long as the booking limit is sufficiently high, suggesting that most practices

could function appropriately without a booking limit, that is, simply accepting all

prescheduled patient requests. Moving beyond the average performance metrics, how-

ever, we find that not setting a booking limit would result in a sizeable proportion of

days where significant lack of access to same-day patients, or alternatively physician

overtime to serve them, occurs.

Several future research directions are possible. First, our research focuses on the

aggregate level of considering the capacity allocation problem for one single workday.

The results help us understand the impact of flexibility in a multi-physicians practice;

however, our model does not capture the reality of dynamic allocation decisions as

calls come in over the course of the day in the practice; decisions are made under

partial knowledge of future demand. Second, we discuss prescheduled patient overflow

in the paper, and assume the patient overflow will be assigned to another workday if

prescheduled, result in overtime if same-day or simply lost. The impact of flexibility

in the dynamic setting is worthy of further study.

Finally, the root cause of inadequate patient access in primary care practices is the

shortage of primary care providers. Due to this reality, some clinics employee primary

care practitioners (registered nurses or other medical assistants) to improve access

for same-day patients. This additional provider typically focuses on flexibly serving
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same-day patients across the practice. In such settings, given adequate capacity of

this additional, flexible provider, little is gained by allowing physicians to flexibly

share either prescheduled or same-day patients.
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CHAPTER 5

IMPACT OF FLEXIBILITY AND CAPACITY
ALLOCATION IN PRIMARY CARE PRACTICES WITH

ADDITIONAL PROVIDER

5.1 Introduction

In this chapter, we apply the framework and models in Chapter 2 and study the

impact of flexibility and capacity allocation problem in a primary care practices with

extra capacity due to an additional provider. Given a heavily utilized practice and the

need to accommodate day-to-day variability, we consider the addition of Y flexible

slots, perhaps through a nurse practitioner or a part-time provider, to serve same-day

patients that cannot be seen by their own physicians. Observe that we denote this

additional same-day provider by Y as well. The model for this configuration is an

extension of model I in Section 2.3 by introducing an amount of capacity Y from

additional provider. We assume that additional provider can only serve same-day

patients while prescheduled patients are still only served by their own physicians in

this chapter.

The results presented in this chapter cover the following topics:

(i) Expected performances under primary care practices with additional provider

in the system, for a range of clinic types that occur in practice.

(ii) Impact of extra capacity from additional provider on the performances, such

as expected revenue, expected overflow for two types of demand and the overflow

probability.

(iii) Impact of the extra capacity due to the additional provider on the optimal

booking limit.
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5.2 Computational results

We use the greedy heuristic described in the Section 3.4 to determine Np values

for the physicians for a variety of experimental cases. Our outcome measures are: 1)

expected revenue; 2) expected satisfied prescheduled demand; 3) expected satisfied

same-day demand; 4) expected number of non-PCP diversions (loss of continuity for

same-day patients); and 5) probability that the per-physician overtime needed to

satisfy same-day requests exceeds an hour.

Similar as in Chapter 4, note that the expected revenue is a weighted function

of the expected number of prescheduled and same-day patients seen by the practice.

‘Revenue’ in our model is a surrogate for timely access. Each prescheduled appoint-

ment satisfied generates a revenue of 0.75 while each same-day appointment generates

a revenue of 0.9. These are based on [12], where the no-show rates for prescheduled

patients is 25% and for same-day patients is 10%.

A typical appointment in primary care takes about 20 minutes and a physician’s

workday may be up to 8 hours. Therefore, in our experimental setting, each physi-

cian has 24 appointment slots in a day. In practice, this amount varies from physician

to physician and from practice to practice. Our model can easily adjust for differ-

ent capacities. The additional same-day provider, a nurse practitioner or physician

assistant, works from Y = 0 to Y = 24 slots a day since we just explained this.

We still assume that the prescheduled and same-day demands are independent

of each other and are Poisson distributed. Refer to Section 1.1 for more details and

discussions. In our experimental results, we consider practices with asymmetry in the

actual utilizations of individual physicians as well as P/S ratios. These asymmetries

reflect situations where some senior physicians have greater number of patients than

other physicians in the practice, or may have more patients with chronic conditions,

with the result that their total prescheduled demand is higher in relation to their

same-day demand.
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For asymmetric utilization in a 2-physician practice, we use P/S settings of 6/12

and 10/20 for Physician 1 and Physician 2, respectively. The total expected demand

for Physician 1 is 6 + 12 = 18, and for Physician 2 it is 10 + 20 = 30. Since each

physician works 24 slots a day, the utilizations of the two physicians are 75% and

125% respectively, while the overall clinic utilization remains 100%.

For asymmetry in P/S ratios, we consider a 2-physician practice with a P/S

ratio of 8/16 for Physician 1 and 12/12 for Physician 2. Our experimental setup is

summarized in the table below.

Physician capacity 24 slots per day
Number of physicians in practice 2,4

System Workload 100%,120%
Workload among physicians Symmetric, Asymmetric

P/S Ratios 8/16; 12/12; 6/12/;10/20
Y (Additional same-day provider slots) 0-24

‘Revenue’ of seeing one prescheduled patient 0.75
‘Revenue’ of seeing one same-day patient 0.9

Table 5.1. Numerical experiment setting
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5.2.1 Expected performances: under symmetric case

Figure 5.1. Expected revenue, prescheduled appointments satisfied, same-day pa-
tients satisfied and diversions for fully flexible and dedicated configurations as a func-
tion of Y

In Figure 5.1 (a), (b), (c), (d) show the expected revenue, expected prescheduled

demand satisfied, expected same-day demand satisfied and the expected number of

diversions for the 100% and 120% utilization cases. These results are for a 2-physcian

practice with a P/S setting of 8/16 for each physician: the physicians have identical

workloads in this symmetric case. All performance measures are graphed as a function

of Y . Recall that the additional same-day slots (denoted by Y ) represents a new

provider (a physician assistant, a nurse practitioner or a newly hired physician) who

will see same-day requests that the physicians in the practice are unable to satisfy.

We see from Figure 5.1 (a) that the impact of flexibility is not particularly signif-

icant (around 2% improvement in revenue) when Y = 0 for both the 100% and 120%
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utilization cases. Also, as Y increases, the difference between the dedicated and the

fully flexible systems decreases even further.

The expected prescheduled demand and expected same-day demand satisfied are

also not that different under the two configurations (Figure 5.1 (b) and (c)). Although

these two performance measures have non-smooth curves, they combine to give a

smooth curve for the revenue function in Figure 5.1 (a). The non-smooth curves are

because Np values for the two physicians depend on both the flexibility configuration

as well as the utilization of the system. The utilization of the system decreases with

the increase in Y. This variation in optimal Np values in turn impacts the number of

prescheduled and same-day patients seen. For a detailed discussion on how utilization

and the level of flexibility impact optimal Np values, see [10].

Finally, we also notice that the expected number of diversions - which reflects losses

in continuity for same-day patients - do not differ by much, although as anticipated,

we see about one more diversion per day on average for the fully flexible case when

compared to the dedicated case at Y = 0. This difference diminishes as Y increases

but the total number of diversions in both configurations increases, especially in the

120% case, where the demand is higher than the available capacity.
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5.2.2 Expected performances: under asymmetric Case

Figure 5.2. Expected revenue, prescheduled appointments satisfied, same-day pa-
tients satisfied and diversions for fully flexible and dedicated configurations as a func-
tion of Y

In the asymmetric case, one physician has a P/S setting of 6/12 while the other

has as a P/S setting of 10/20. Here, the impact of flexibility is more significant, as

shown in Figure 5.2. The optimal expected revenue is higher by nearly 5% in when

Y = 0 for both the 100% and 120% cases. Flexibility is useful in the asymmetric

case not only to absorb the variability in demand but also to smooth the workload

imbalance between the two physicians. As in the symmetric case, we note that the

non-smooth curves for the satisfied prescheduled and same-day demand in Figure 5.2

(b) and (c) together combine to give us a smooth curve for the optimal expected

revenue, shown in Figure 5.2 (a). Figure 5.2 (a) also shows that the additional same-

day provider would have to work for Y = 3 slots (about an hour) each day if the

dedicated case is to match expected revenue of the fully-flexible case at Y = 0.
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Next, we note that while flexibility applies only to same-day requests, it nev-

ertheless allows a practice to see more prescheduled patients. As discussed before,

prescheduled follow-ups for patients with chronic conditions require typically greater

continuity than same-day requests for acute conditions. If each physician sees more

prescheduled patients each day, then the wait for a prescheduled appointment will de-

crease. This means improved access for patients with non-urgent chronic conditions

- a large percent of the United States population - for whom continuity is vital. In

the Y = 0 case under 120% utilization, the fully flexible 2-physician practice is able

to see nearly 3 more prescheduled patients a day than the dedicated case.

Thus, for the many practices in the US that struggle to provide timely appoint-

ments to non-urgent requests, same-day flexibility will be beneficial, especially when

the physicians have uneven workloads as often happens in practice. Figure 5.2 (c)

shows that the fully flexible practice succeeds simultaneously in satisfying more same-

day demand.

Finally, Figure 5.2 (d) gives the expected number of same-day diversions. When

Y = 0, the fully flexible case uses 4 additional same-day diversions to non-PCP

physicians on average to satisfy same-day demand. That is out of a total of 32 (38.4)

same-day requests that the practice expects to see in the 100% (120%) utilization case,

about 4 (4) of these same-day patients experience a loss in continuity on average. With

the increase in Y the expected number of diversions increases in both configurations,

but the difference between the two diminishes as the dedicated system begins to utilize

the additional provider to satisfy same-day demand.
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5.2.3 Impact of flexibility and additional provider on the optimal booking

limit

Figure 5.3. 120% workload: comparison of optimal capacity allocation between
dedicated with additional same-day provider and fully flexible with additional same-
day provider system

Why does flexibility produce a higher impact on prescheduled demand satisfied?

To understand this, it is instructive to look at the optimalNp values in the asymmetric

case as a function of Y in both configurations. Figure 5.3 shows the optimal Np values

in the 120% utilization case. In this case, the average prescheduled and same-day

demand for Physician 1 is [7.2, 14.4] (shown in Figure 5.3 as well) and Physician 2

is [12, 24] respectively. Each physician has a capacity of 24, so the total capacity

of the clinic is 48. The total expected demand (prescheduled + same-day) is 57.6,

which leads to an overall clinic utilization of 120%. While Physician 2 (150%) and

the clinic as a whole (120%) are over-utilized, notice that Physician 1 is relatively

under-utilized (total demand of 21.6 and utilization of 90%).

105



Consider the Y = 0 case at the begining point in Figure 5.3. We notice that

the dedicated case paradoxically has a lower Np value for physician 2 (Np = 5)

compared to physician 1 (Np = 13), even though it is the second physician that has

a higher prescheduled demand. This is because physician 2, whose utilization is high,

has to make space in her schedule for higher revenue same-day appointments. As a

result physician 2 compromises on the number of prescheduled patients she is able

to see. In the long term, this means that the wait for a non-urgent appointment

with this physician will be very high. This is in fact the prevailing situation in

many primary care clinics in underserved areas, where the sheer proportion of urgent

requests forces non-urgent appointments to be pushed months into the future. In

contrast, physician 1, who is underutilized, can afford to have a high Np value since

any leftover prescheduled slots can be shifted on the day of the appointment to meet

same-day demand.

In the fully flexible case same-day patients are shared between the two physicians,

hence the optimal Np values (6 and 10) are more in proportion with the physicians’

respective prescheduled demand averages. Physician 2’s same-day patients are seen

by physician 1, and this flexibility allows Physician 2 to increase the number of

prescheduled appointments she is able to see. While Physician 1’s Np value of 6 seems

much lower than 13 in the dedicated case, this does not translate proportionally to

fewer prescheduled patients seen, since physician 1’s utilization is relatively low to

begin with.

As Y increases, the dedicated case is able to address the imbalance between the

physicians somewhat: notice that the Np value for physician 2 increases quickly,

while the Np value for Physician 1 remains mostly steady. In the fully flexible case,

the increase in Y is used by both physician 1 and physician 2 to increase their Np

values. This is because same-day flexibility had allowed them to set their Np values

in proportion to their respective prescheduled demands to begin with.
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5.2.4 Expected performances: under asymmetric P/S values

Figure 5.4. Expected revenue, prescheduled appointments satisfied, same-day pa-
tients satisfied and diversions for fully flexible and dedicated configurations as a func-
tion of Y

So far we have seen P/S values that are symmetric across physicians. In other

words, the ratio of prescheduled to same-day demand for each of the two physicians

has been identical. In practice, physician panels differ in their case-mix. Some physi-

cians have more patients with chronic conditions than others [8] and [47]. Therefore

some physicians will have higher prescheduled or same-day demands than others. To

reflect this reality, we test the fully flexible and dedicated cases when physician 1 has

a P/S setting of 8/16 and physician 2 has a P/S setting of 12/12.

Figure 5.4 shows the expected revenue, expected prescheduled and same-day pa-

tients seen, and expected number of diversions under the two configurations at 120%

and 100% utilization. Note that while the physicians differ in their P/S values, their

utilizations are identical. The figure reveals that - as in symmetric case - flexibility
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does not have a strong impact on expected revenue or on diversions. The expected

prescheduled and same-day patients seen do differ but this is because of the differences

in P/S values.

5.2.5 Expected performances: under asymmetric 4 physician practices

Figure 5.5. Comparison of impact of flexibility in 4 physicians’ practice and 2
physicians’ practice

We have seen already in the 2-physician case that flexibility has the highest impact

when the physicians have imbalances in their total workloads and hence unequal

utilizations. Now we study a 4-physician asymmetric practice with P/S settings of

6/12, 7/14, 9/18 and 10/20 (two of the physicians are under-utilized and two are

over-utilized). We plot the difference in expected revenue between the fully flexible

and dedicated cases as a function of Y for two different utilizations, 100% and 120%.

This difference is plotted for both the 2 and 4 physician practices to evaluate the

impact of practice size.
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In Figure 5.5, we see that the impact of flexibility is higher at 100% utilization

for both the 2 and 4 physician asymmetric practices. This is very much in line with

the findings in the flexibility literature [34]. Furthermore, at Y = 0, the gains due

to flexibility in the 4-physician practice are approximately twice the gains in the 2-

physician practice. The difference in gains decreases as Y increases. In the 120%

case, the benefit of flexibility is lower in both 2-physician and 4-physician practices.

Because of the high utilization the difference between the 2 and 4 physician cases

does not decline as much as in the 100% case with the increase in Y. This analysis

confirms the impact of flexibility is highest at 100% utilization, for larger physician

practices, and when the physicians have unequal workloads.

It is also necessary to point out that the number of diversions for same-day patients

- which measures the loss in continuity for these patients - is also higher when full

flexibility is used in a 4-physician practice. Diversions in a 4-physician practice, where

a same-day patient can end up seeing up 3 other unfamiliar physicians (in addition to

the additional same-day provider), are likely to have a greater impact on continuity

of care compared to a 2-physician practice, where a same-day patient sees one of two

providers.
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5.2.6 Impact of extra capacity from additional provider on the probability

of overtime

Figure 5.6. Impact of additional provider on the probability of overtime

We looked at the probability that the total missed same-day appointments exceeds

6 patients in a 2-physician practice. Recall that each unit of capacity in our model is

a 20 minute slot. Therefore if the total missed same-day demand equals or exceeds 6

patients, it implies that the practice as a whole spends at least 2 hours of overtime

(one hour per physician). Another way of thinking of this is that the overtime per

physician will be an hour or more.

An important measure for practices is the probability of a given amount of over-

time for the physicians in the practice. In many practices, same-day requests are not

refused but squeezed into the schedule, often after regular working hours. This is true

for the 3-provider family medicine practice we have collaborated with for this paper.

If a request is triaged to be truly urgent, the practice makes sure that the patient is

seen (though not always by the patient’s own physician).

We have seen so far that same-day flexibility has a significant impact on the

expected number of patients seen only when physicians have unequal utilizations.
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But does flexibility help in reducing the probability of overtime as we expect it to?

And if so, how significant is the impact of flexibility? Figure 5.6 shows the probability

of missed same-day demand exceeding 6 patients in the fully flexible and dedicated

2-physcian practice for 120% and 100% utilization, under symmetric and asymmetric

cases. We clearly notice that the flexibility has a significant impact on reducing the

probability of practice overtime exceeding 2 hours total (one hour per physcian).

For example, at Y = 0, in the 120% symmetric case, the overtime probability is

60%. For every 60 of 100 workdays, a physician in the practice will have to spend at

least one hour of overtime, which seems unsustainable. Same-day flexibility reduces

this probability significantly down to 40%, but this still seems high. A number of

studies in the clinical literature have suggested that high workloads combined with

low reimbursement rates are causing burnout among primary care physicians, which

in turn has contributed to the nationwide shortage of primary care providers in the

US. The overtime results of our model at 120% only confirm this reality.

Even at 100% utilization, the probability that the practice overtime exceeds 2

hours is nearly 30% in the dedicated symmetric case and nearly 35% in the dedi-

cated asymmetric case, when Y = 0. Same-day flexibility brings this down in both

symmetric and asymmetric cases to 18%. Flexibility helps to adjust the capacity allo-

cation due to demand variability, however, the limited flexibility among physicians is

not enough to appropriately satisfy appointment requests. More additional slots are

needed in the system to reduce the risk of overlong overtime. As we observe, when

Y increases, the probability of overtime decreases in both systems. If an asymmetric

practice needs to manage the risk of overtime is larger than 2 hours total to be small-

er than 10%, at least 8 more slots needs to be employed without flexibility among

physicians. By adding same-day flexibility, about 5 slots can be saved to mange the

risk.
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In summary, while same-day flexibility does not have a significant impact on the

expected revenue in the symmetric case, it does significantly reduce the probability

of overtime in both symmetric and asymmetric cases. This makes the use of same-

day flexibility worthwhile. We note that the other significant advantage of flexibility

is that it allows clinics with uneven physician utilizations to see more prescheduled

patients.

5.2.7 Sensitivity analysis: flexibility vs. booking limit

Figure 5.7. Performance of dedicated and fully-flexible systems as a function of
the iteration number in our algorithm for a 2-physician practice, with y = 0, 120%
workload and demand asymmetry

We have seen Figure 5.7 in section 3.4 once to discuss the searching path of

the greedy heuristic. Now we discuss the sensitivity analysis based on flexibility vs.

booking limit, still based on the searching path figure.
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Note that the values shown in each frame contain three rows. First row gives the

expected revenue at the current iteration; second row gives the Np values of the two

physicians at the current iteration; third row provides the expected number of missed

prescheduled patients and the expected of missed same-day patients for the practice

at the current iteration.

We see, as anticipated, that the expected revenue of the fully flexible case remains

always above the dedicated case. We also see the property of diminishing returns.

The benefits are higher in the early iterations. In the later iterations, an increase

in the Np values does not produce a significant change. For a practice, therefore,

there exists some flexibility in the choice of Np values - within a certain range the

expected revenue does not change substantially. We can also use this property to stop

the search earlier, by mandating that an increment in an Np value (and therefore an

additional iteration) is not necessary if the difference in revenue is less than some

satisfactorily small (predetermined) value.

The expected missed (or unsatisfied) prescheduled and same-day demands are ad-

ditional measures that provide useful perspective for a practice. In the early part of

the search, as the Np values are small, the number of missed prescheduled appoint-

ments is high. These appointments will have to be scheduled on other workdays.

There is some flexibility around the specific day on which a prescheduled appoint-

ment is booked. But in general a high value of missed prescheduled demand implies

more delays in obtaining a non-urgent appointment or scheduling follow-up appoint-

ments for patients with chronic conditions.

A high value of missed same-day appointments implies either that 1) the request-

ing patients visit an emergency room for their care, thereby increasing healthcare

costs; and 2) the practice spends a significant amount of overtime. For example, the

expected value of missed same-day appointments for the fully flexible case in the last

iteration of the algorithm - when the optimal Np values are reached - is 6. This
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means that approximately 2 hours of overtime for the two physicians on average - or

(approximately) an hour of overtime for each physician.

We will analyze the reasons for the significant difference in the optimal Np values

between the fully flexible and dedicated case for the asymmetric case again in the

summary section.

5.3 Summary and conclusions

We compare dedicated with additional same-day provider configuration and fully

flexible with additional same-day provider configuration under the following cases:

1) All physicians have identical utilizations (symmetric case); 2) Physicians differ

in utilizations (asymmetric case); and 3) Physicians have identical utilizations but

each physicians prescheduled and same-day distributions differ from that of the other

physicians. The demands in our model are Poisson distributed. For the configurations

where a same-day provider is introduced, we consider system utilizations of 100% and

120% in the absence of the additional resource. These cases are motivated based on

our interactions with small private primary care practices as well as larger academic

practices. For each of these cases, we also study the benefits of incrementally adding

capacity to the new provider who sees same-day patients. Our conclusions can be

summarized as follows:

While the loss of continuity has to be minimized for all appointments, we show

that it can be appropriately sacrificed for urgent appointments needing immediate

attention by introducing partial flexibility. More specifically, we have found that ap-

propriately limiting the number of physicians a patient sees (hence promoting patient-

physician continuity in urgent visits as well) can yield virtually the same timely access

benefits as a system in which the patient is seen by any of the doctors in the practice.

The full flexibility configuration tends to plan for more prescheduled appointments

than the dedicated case since the same-day appointments can be flexibly shared and
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easily absorbed in the former but not in the latter. As the utilization of the sys-

tem increases, there is a greater availability of same-day appointments which in our

model produce greater revenue than prescheduled appointments. This prompts both

the fully-flexible and dedicated configurations to decrease the number of presched-

uled appointments so that more same-day appointments can be seen. The flexible

configuration ends up offering even fewer prescheduled appointments than its dedicat-

ed counterpart, thus reserving more capacity for open access, since there is a higher

probability of fully using the additional capacity when it is shared across all same-day

appointments in the practice.

We find that the fully flexible configuration performs significantly better in the

asymmetric case, i.e. when some physicians have higher demand in relation to others.

In this case, flexibility is not only used to hedge against the variability in arriving

same-day patient demands, but also to balance expected demand and available supply

of each of the physicians. In the flexible system, the busier physician reserves more

slots to satisfy prescheduled patient demands, while the lower utilized physician picks

up the extra same-day appointment burden. Thus while flexibility implies a loss of

continuity for same-day patients (who need it less anyway), it improves a physician’s

ability to provide more prescheduled appointments. These additional appointments

can then be used for non-urgent but important follow-ups for patients with chronic

conditions who are in greater need for continuity.

In order to provide adequate capacity to their increasing demand, primary care

practices can choose to either (i) maintain continuity by restricting each physician

to seeing patients of its own panel, but adding substantial capacity in the form of

an additional provider (a nurse practitioner or physician assistant) to absorb the

excess same-day demand; or (ii) allow full flexibility for physicians to see same-day

patients and add minimal, if any, additional capacity. Not unsurprisingly, as more
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capacity is added to the additional provider, the differences in performance between

the dedicated and fully-flexible system decrease.

Generally, we observe that the fully flexible configuration help to achieve 2.70%

more in revenue under 100% for symmetric practice. If adding flexibility for presched-

uled patients, about 1% more revenue can be produced. For asymmetric case, the im-

pact of same-day flexibility on revenue is 9.12% and impact of same-day and presched-

uled flexibility is observed to be 10.30%. Compare to context in manufacturing, our

report of impact of flexibility is much smaller. The reason is that, in primary care

practices, we are usually facing to demand streams with small ratio of demand vari-

ance and demand mean, for example, poisson distribution, which is frequently used

in health care research. For the small primary care practice, which has a smaller

demand mean but larger variance, a much more impact of flexibility is expected to

be seen.
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CHAPTER 6

SIMULATION: APPOINTMENT SCHEDULING
PROBLEM IN PRIMARY CARE PRACTICES UNDER

DYNAMIC ARRIVALS

6.1 Introduction

Thus far in the dissertation, we have focused on the impact of flexibility in prima-

ry care practices. Results in Chapter 4 and Chapter 5 are based on the framework

described in Chapter 2, which are stochastic models at an aggregate level. In those

models, in order to analyze different flexibility configurations, we assume that de-

mands are realized and fulfilled instantly to avoid computational intractability. Based

on this key assumption, we study the capacity allocation problem under two succes-

sively realized demand streams - prescheduled appointment requests and same-day

appointment requests, and we also study the impact of flexibility in primary care

practices.

However, in reality, appointment requests arrive over time. We not only need to

know the capacity allocation for prescheduled patients vs. same-day patients, but also

need to study what time slot a patient request should be scheduled to see a doctor. As

mentioned before, a stochastic optimization model that considers such realistic issues

would be both difficult to formulate and computationally intractable. We therefore

create a simulation model under dynamic arrivals to study the described appointment

scheduling problem. In this simulation model, we capture some typical realistic issues

in primary care practices, such as patients’ preference for time of the day, patients’

willing to be diverted to another physician, dynamic and non-homogeneous same-

day, etc. We also allow flexibility in the physician’s capacity-sharing behavior in the
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simulation model. Because we want to validate the threshold policy proposed in the

aggregate model and we are also interested in the impact of flexibility in primary care

practices under dynamic arrivals for both prescheduled and same-day requests.

In this chapter we first describe the details (assumptions, data, etc.) of the simula-

tion model. Next, we describe results of the computational experiments. Our results

revolve around the following research questions:

(i) As mentioned earlier, we capture prescheduled patients’ preference for time of

the day. Some prescheduled patients may prefer an early morning hour, while others

may prefer an appointment during an afternoon hour and so on. If this is the case,

then what is the impact of number of choices we allow patients to have on a practice’s

performance measures?

(ii) Some clinics may reserve parts of the workday for prescheduled patients, and

leave the remaining slots for same-day patients. For example, some clinics usually

allocate prescheduled appointment requests early in the morning and late in the

afternoon and use the remaining slots for urgent same-day appointment requests.

How much impact does the location of such blocked slots have? For example, what is

the difference between the policy that a practice blocks the morning for prescheduled

patients versus the policy that the practice blocks afternoon for prescheduled patients?

(iii) In Chapter 4 and Chapter 5, we propose a threshold policy for the capacity

allocation problem. We are now interested in validating and testing the robustness of

this threshold policy in a dynamic environment with patient time-of-day preferences.

(iv) We are also interested in the impact of flexibility in primary care practices

under dynamic arrivals. In particular, are the findings from Chapter 4 robust under

dynamic arrivals and patient preferences?
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6.2 Simulation model and assumptions

We establish a simulation model to capture the appointment scheduling problem

for a single workday. In our model, both prescheduled and same-day appointment

requests arrive dynamically. We assume that the physician works 9:00am - 5:00pm

each day (usually Monday - Friday for primary care practices). In reality, some

physicians work longer than 8 hours and others may work part time. However, a full

time physician’s work time is typically 8 hours per workday.

As in the aggregate model, we still assume that each appointment slot is 20 min-

utes in length, so that each physician provides 24 slots in one single workday and

that appointments are always scheduled in 20-minute increments, at 9:00am, 9:20am,

9:40am, etc. Note that this study does not deal with stochasticity in appointment

durations; the focus is only on the appointment call in and slot allocation process.

Also note that, we still keep the capacity reservation policy in the simulation

because we want to evaluate the proposed threshold policy for the booking limit

under dynamic arrivals. For example, if we run simulation for a single physician

practice and Np = 10, then we accept prescheduled patient requests until the number

of prescheduled appointments is equal to 10. In previous study based on aggregate

model, we found that, with respect to expected revenue, actually reserving optimal

Np policy performs almost same as the no threshold policy. Recall from the aggregate

case that the benefit of reserving an optimal quantity of slots, Np, is to reduce the

risk of long overtime to see same-day patients.

Our simulation model is capable of evaluating either single or multiple physician

practices. In our study, we focus on a 3 physicians practice to test different flexibility

configurations. We assume that different flexibility configurations could hold for

both prescheduled patients and same-day patients, which means physicians could see

patients from other panels if there is flexibility allowed to do so. We use similar
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revenue coefficients as shown in Chapter 4 and Chapter 5 to make the results from

dynamic model and the results from aggregate model comparable.

6.2.1 Modeling the appointment call-in process

Based on prescheduled demand mean and same-day demand mean, we calculate

the average number of appointment requests per time unit (p-value for the Bernoulli

trial), and then the use Bernoulli trial to randomly determine whether a patient

request arrives in that time unit or not.

Prescheduled and same-day requests arrive in different time-scales and we explain

this below. Recall that we are simulating the appointment allocation process for a

single workday. Prescheduled requests for a particular slot on this workday can arrive

up to 3 months prior. This translates to approximately 63 workdays. If a practice’s

phone lines are open for 10 hours a day (8:00am to 6:00pm, as is often the case),

then there are 630 hours in which these requests can come in. We assume that in one

hour at most one prescheduled request arrives. If the mean prescheduled demand is

16 then the probability that a prescheduled request arrives in any hour is 16/630 =

0.0253. Thus p=0.0253 in the random Bernoulli trial for each hour in the simulation.

Same-day calls arrive only after the particular workday being studied begins -

8:00am in our model - and the practice stops satisfying same-day requests at 5:00pm

since no more appointments are available beyond 5 pm. In total this is a 9-hour

range. We assume at most one same-day call arrives each minute. We can generate

a Bernoulli trial for each minute similar to the one described above. However, unlike

the arrival of prescheduled requests, which we assume to be uniform due to lack of

empirical data, we do have some data on frequency of calls by hour of day. Thus

the p value of the Bernoulli trials for same-day requests in a particular hour can be

raised or decreased to reflect this non-homogeneity. Figure 6.1 shows the relevant
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time-scales of our simulation model for a two physician practice. Figure 6.2 ([46])

shows frequency of calls over a workday.

Figure 6.1. The simulation time-scales: example of two physicians practice

Figure 6.2. Phone call frequency over a workday
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6.2.2 Modeling patient preferences

In our simulation model, we capture the important issue of patient preferences.

Both prescheduled patients and same-day patients have preferences to scheduled ap-

pointments due to constraints on availability and also due to their need to see physi-

cian as quickly as possible. The final slot chosen is usually a complicated decision

based on information exchanged between the patient and the scheduler.

Till now, few papers have studied the impact of patient’s preferences. In primary

care practices, patient’s preference usually is impacted by two issues: (i) the time of

the day the appointment is preferred, and (ii) if the patient insists on seeing his/her

own physician. We call issue (i) as time-of-day preference and issue (ii) as physician

preference.

6.2.2.1 Modeling time-of-day preferences

It is difficult to accurately measure the patients’ time-of-day preferences. [53]

studied appointment processes of a large health system and obtained historical ap-

pointment data concerning 37 primary care clinics that operate in urban, suburban,

and rural areas. In their study, they used the realized appointment times to reflect

patients’ time-of-day preferences. They believed that, although the realized appoint-

ment times could not truly reflect patients’ time-of-day preferences, it is very likely

that clinics tried to respond to patients’ needs. In our simulation model, similarly, we

assume that the observed data of appointment times could reflect the likelihood that

the patient would accept a slot at a particular time. We use the observed data on

appointment frequencies by the hour in [53], see Figure 6.3, to generate an individual

patient’s time-of-day preferences.
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Figure 6.3. Patients’ time-of-day preferences

Patient preferences (for prescheduled requests) in our simulation model work in

the following way. A patient calling in provides three choices for hour of day in

decreasing order of preference; the three choices are randomly generated based on

the observed distribution in Figure 6.3. The scheduler/clinic tries to provide a slot

to the patient, depending on availability, in the same preference order. For example,

suppose a patient’s preferences are 10:00am - 11:00am, 4:00 pm - 5:00pm, and 9:00am

- 10:00am, then the clinic would attempt to schedule this patient in an available slot

in the 10:00am - 11:00am range first. If not successful, then the clinic would attempt

to schedule this patient in an available slot 4:00 pm - 5:00 pm. If not successful again,

then the clinic would attempt to finally search slots between 9:00am - 10:00am. If all

attempts fail, this patient cannot get an appointment for this workday and has to be

considered as prescheduled overflow.
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For a same-day appointment request, we simply assume this patient could accep-

t/prefer the earliest available slot after the phone call to schedule an appointment.

This makes sense since same-day requests typically arise out of urgent needs.

6.2.2.2 Modeling physician preferences

We know that, some patients, especially prescheduled patients are more likely to

insist on seeing their own physicians as continuity is more critical for these patients.

In our simulation, we adapt the observed data for loyalty class shown in [53]. In their

study, Wang and Gupta look at all patients with more than three visits, and then

count the proportion of Patient-Physician matched visits among all his/her historical

visits. For example, if a patient’s proportion of Patient-Physician matched visits is

0.24, then this patient’s loyalty class is 0.2 (there are 10 loyalty classes in increments

of 0.1).

Figure 6.4. Patients’ physician preferences

In Figure 6.4, the x axis shows the loyalty class, the lowest is 0, and the highest

is 1.0, with 10% increments. The y axis shows the proportion of a panel’s patients
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that belonged to a particular loyalty class. For the data set shown in [53], patients

in panel 1 have lowest level of loyalty while patients in panel 2 have highest level of

loyalty.

Based on this reference, we use the loyalty proportion to generate patient’s physi-

cian preference in our simulation. After we generate a prescheduled patient request,

we also generate a random value based on the loyalty distribution in Figure 6.4 to

decide this prescheduled patient’s loyalty. Then another random value could decide

if this patient will accept to be diverted to another physician (only for this particular

request).

6.2.3 Modeling allocation process

Instead of looking for an optimal policy to schedule appointments, we propose

some basic rules in our simulation model to allocate the appointment requests.

For prescheduled patients:

(1) Start with this patient’s first time-of-day preference to see if her own physician

has available slot (less than the given Np) during that hour. If yes, schedule this

patient request with the earliest available slot during that hour. If not, go to the next

time-of-day preference to search until find one available slot for this patient. If none

of her time-of-day preferences matches, go to step (2).

(2) Track if this patient would accept being diverted to another physician. If not,

then this prescheduled patient request is not satisfied. If yes, go to step (3).

(3) Start with this patient’s first time-of-day preference to see if other physicians

have available slot during that hour. If only one of them has availability, schedule

this patient request with that physician’s earliest available slot during that hour. If

both of them have availability, schedule this patient request to the lowest utilized

physician’s earliest available slot during that hour. If neither have availability, go

to the next time-of-day preference to search until an available slot is found. If still
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none of her time-of-day preferences matches with availability, report this prescheduled

patient request could not be satisfied.

For same-day patients, we propose two different scheduling policies: (1) Simply

schedule the same-day request with first available slot after the phone call. If multiply

physician have available slots at that time, schedule the request with the lower-utilized

physician. This scheduling policy is reasonable in practice due to the urgent needs of

same-day requests.

(2) Search if this patient’s own physician has available slot. If yes, schedule this

patient request with the earliest available slot from her own physician. If not, search

if there are available slots for other physicians. Schedule this patient request with the

earliest available slot from other physicians. If two or more of them have available slot

at the same time to be earliest, schedule this patient to the lowest-utilized physician.

If none of the other physicians has available slot, report that this same-day patient

request could not be satisfied.

Note that, if one prescheduled appointment request is not satisfied, it is possible

for this patient to obtain a slot on another workday or it is also possible for this

request to be “lost”. If a same-day appointment request is not satisfied, the patient

is likely to be satisfied with physician overtime or refused. In our study, instead of

assigning particular cost to these refusals, we simply output interesting measures to

compare different policies or strategies. For example, number of satisfied requests,

overflow values for prescheduled and same-day patients, revenue, etc.

Based on the simulation model we described in this section, we run computational

experiments to study the appointment scheduling problem in primary care practices

under two demand streams. We summarize our observations in section 6.3.
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6.3 Computational results

6.3.1 Impact of prescheduled patient time-of-day flexibility

Recall from Section 6.2 that a prescheduled patient lists the hours she would to

schedule the appointment in decreasing order of preferences. The first choice she

prefers the most, the second choice is her second preference and so on. The farther

down the list the patient has to go, the more the patient compromises with her

preferences, and therefore the more flexible the patient has to be. In this section, we

quantify the impact of patient time-of-day flexibility (actually this is a measure to

show how flexible the patient could be with different slots of a day) on a practice’s

performance. We vary this flexibility by varying the number of time-of-day preferences

the patient will allow. If there is only hour of the day the patient can schedule an

appointment, such a patient has least flexibility. If the patient is willing to suggest

another hour of the day to schedule the appointment, the patient is more flexible.

To study the impact of the number of time-of-day preferences, we test single

physician practice, and focus on expected revenue, prescheduled overflow and same-

day overflow. Simulations are run under 4 different demand ratios (4/20, 8/16, 16/8,

and 20/4) and 3 different workloads (80%, 100%, 120%). Simulations are based on

20000 replications (see appendix B.1 for details about the discussion of how many

replications are sufficient for our simulation model). In each setting, the value of Np

is increased from 1 to 24.

Surprisingly, we find that the practice performs quite well even if a patient has

only 2 time-of-day choices. Thus the scheduler requires the patient to have only one

additional time-of-day choice in addition to her first, most preferred choice. Asking

the patient for further time-of-day choices does not contribute significantly to the

overall practice performance. For example, Figure 6.5 and Figure 6.6 show the results

of single physician under demand ratio 8/16, 100% workload and the results of single

127



physician under demand ratio 16/8, 100% workload. The results under other demand

ratios and other workloads follow the same trend.

Note that, Figure 6.5 and Figure 6.6 are based on the observed data shown in [53],

to generate prescheduled patients’ time-of-day preferences. We also run simulations

based on (1) uniformly distributed time-of-day preference (i.e. all hours of the day are

equally preferred); and (2) observed appointment time in a small 3 provider practice

in Massachusetts. Interestingly, we observe similar results: a little patient flexibility

(2 choices for hour of the day for prescheduled patients) performs almost the same as

requiring the patient to have more than 2 choices.

Figure 6.5. The impact of number of time preferences allowed for prescheduled
patients on revenue, prescheduled overflow, and same-day overflow: single physician
under demand ratio 8/16, 100% workload
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Figure 6.6. The impact of number time preferences allowed for prescheduled patients
on revenue, prescheduled overflow, and same-day overflow: single physician under
demand ratio 16/8, 100% workload

6.3.2 Impact of guiding prescheduled patient appointment times

A practice may prefer to schedule prescheduled patients in certain predetermined

blocks of the day. For example, [9] showed that the earlier in the day prescheduled

appointments are scheduled, the better the practice’s ability of satisfy same-day ap-

pointments during the 8-hour workday. However, [9] does not consider the fact that

prescheduled patients have time-of-day preferences. For example, a clinic may block

early morning (9:00am - 11:00am) and late morning (11:00am - 1:00pm) for presched-

uled patients. However, a prescheduled patient calling in may only want an afternoon

appointment.

We therefore test cases where a practice blocks certain hours of the day for

prescheduled appointments, and then simulate two situations: 1) The practice strictly

adheres to these predetermined blocks for prescheduled patients; and 2) The practice

129



books prescheduled appointments outside of these blocks when necessary (i.e. relaxes

its block constraints).

In the first or strict scenario, the practice checks if any of the 3 time-of-day

choices for a prescheduled appointment (a) fall within the predetermined block, and

(b) slot availability exists. If so, the practice schedules the appointment; otherwise

the practice refuses the prescheduled appointment. The unfulfilled patient request is

counted as a prescheduled overflow.

In the second, more relaxed scenario, if there is no overlap between the 3 time-

of-day choices and the the predetermined blocks, the practice agrees to satisfy the

preferences in decreasing order, depending on slot availability, outside of the blocks.

Based on these two different rules, we run simulations under 2 demand ratios (8/16

and 16/8), different workloads (80%, 100% and 120%) and different blocked time over

one workday for a single physician. Note that, we still use 20,000 replications to test

these scenarios. The performances are similar under different demand ratios and

different workload. Here we present Figure 6.7 for the case with demand ratio 8/16

under 100% workload with refusals (i.e strict case) and Figure 6.8 for the case with

demand ratio 8/16 under 100% workload without refusals (i.e. relaxed case).
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Figure 6.7. Expected revenue, prescheduled overflow and same-day overflow: single
physician with demand ratio 8/16 under 100% workload; clinic guides the patients to
schedule appointments with refusals
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Figure 6.8. Expected revenue, prescheduled overflow and same-day overflow: single
physician with demand ratio 8/16 under 100% workload; clinic guides the patients to
schedule appointments without refusals

The legends of Figure 6.7 and Figure 6.8 show six different time-block possibilities.

In fact, regardless of how strict or relaxed the practice is about adhering to these

blocks, the rank of these blocks with regard to expected revenue are same. We order

these six policies from best to worst in the legends of Figure 6.7 and Figure 6.8.

Based on the same-day call frequency shown in Figure 6.2, a better policy is always

the policy could leave more available slots for same-day patients in the afternoon. This

is why the early morning and late morning blocks policy performs best and the early

afternoon and late afternoon blocks policy performs the worst. In fact, we find that,
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the fourth, fifth, and sixth policy all block late afternoon for prescheduled patients.

In other words, although a large proportion of prescheduled patients prefer to be

served with a late-afternoon slot, clinics should avoid guiding prescheduled patients

to those hours, in order to leave sufficient slots to serve dynamically arriving same-day

patients.

However, note that, there are three major differences between the performances

depending on whether the practice is strict or relaxed in its adherence to the blocks.

First, the revenues for the latter are generally larger than the former (around 0.7

higher) because the former has the risk to lose prescheduled patients whose time

preferences do not overlap with the blocks. Secondly, the difference between the fourth

policy (early morning and late afternoon blocks) and the fifth policy (late morning

and late afternoon blocks) are much smaller for the rule without refusals. Finally,

the prescheduled overflows are almost identical for each policy when the practice is

relaxed in its adherence to the blocks. This is because prescheduled patients only get

refused when there are not enough available slots (this is related to the Np constraint),

and not depending on the blocks chosen by the practice.

6.3.3 Evaluation of a threshold policy for the appointment scheduling

problem under dynamic arrivals

6.3.3.1 Impact of different ratios of Rp and Rs

As discussed in Chapter 4, with respect to the expected revenue, reserving an

optimal quantity of NP is not essential for a primary care practice, because expected

revenue is not sensitive to Np beyond some point. We speculate that this is because

of the small difference between Rp and Rs (currently 0.75 and 0.9). We now report

on computational experiments for single physician practice, under different demand

ratios (4/20, 8/16, 16/8, and 20/4), under different workloads (80%, 100%, 120%),

and under different ratios of Rp and Rs (1, 0.8, 0.6, 0.4, and 0.2). Note that all the
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simulations are based on 20,000 replications. The results are very similar so we only

present results for 8/16, 100% and 120% (Figure 6.9) and results for 16/8, 100% and

120% (Figure 6.10) to discuss.

Figure 6.9. Expected revenue increment vs. NP under different ratios of Rp

Rs : single
physician under demand ratio 8/16, 100% and 120% workload

134



Figure 6.10. Expected revenue increment vs. NP under different ratios of Rp

Rs :
single physician under demand ratio 16/8, 100% and 120% workload

It turns out, as we speculated, that a small difference between Rp and Rs leads to

insensitivity in revenue outcomes. From Figure 6.9 and Figure 6.10, we observe that

the revenue becomes more sensitive to Np when the ratio of Rp and Rs is smaller.

Furthermore, for a given Rp and Rs ratio, the revenue is more sensitive to Np when

there is more prescheduled demand in the practice.

In summary, only when the ratio of Rp and Rs is small (for example, less than

0.6), or when the system is over-utilized, is it essential to reserve an optimal value of
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Np for prescheduled demands; in all other cases, a booking limit is unnecessary with

respective to expected revenue.

6.3.3.2 Validation of reserving optimal NP policy: single physician prac-

tices and multiple physician practices

The previous section evaluates the threshold policy with respect to the expect-

ed revenue. Although reserving optimal value of Np does not affect revenue in the

settings we are interested in, it does help to reduce the risk of long overtime due to

same-day overflow. Does this finding still hold when patient requests arrive dynami-

cally and when patients have preferences? The simulation model considers dynamical

arrivals and other realistic issues like patients’ preferences while the aggregate mod-

el does not. We present results for both single and multiple physician practices to

answer this question.

To compare the aggregate models (proposed in chapter 2) and the simulation

model (proposed in section 6.2), we present results from aggregate model and results

from simulations, for single physician practice. In both aggregate and dynamic cases,

we use the same values for Rp and Rs (Rp = 0.75 and Rs = 0.9). Four different

demand ratios (4/20, 8/16, 16/8, and 20/4) and 3 different workloads (80%, 100%,

and 120%) are tested. Results are summarized in Table 6.1 and Table 6.2.

Table 6.1. Comparisons of aggregate model and simulation model: single physician
practice

4/20 8/16 16/8 20/4

NP* Revenue NP* Revenue NP* Revenue NP* Revenue
80% Aggre 11 16.37 14 15.92 20 14.88 23 14.44

Simul 10 15.53 14 14.86 21 13.75 22 13.31

100% Aggre 8 19.25 12 18.66 19 17.51 22 16.97
Simul 11 18.13 13 17.24 20 15.92 22 15.36

120% Aggre 5 20.49 9 19.81 17 18.64 21 18.04
Simul 6 19.49 11 18.51 19 17.21 23 16.54
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Table 6.1 compares the optimal Np and optimal revenue obtained from aggregate

model and simulation model, under different scenarios. Note that, in Table 6.1,

‘Aggre’ denotes ‘aggregate model’, ‘Simul’ denotes ‘simulation model’, and ‘NP*’

denotes ‘optimal Np’.

Generally, aggregate model could provide good guideline for clinic to reserve ca-

pacity for prescheduled patients due to following observations: (i) the optimal booking

limit Np reported by these two models are very similar, and (ii) with consideration

of dynamic arrivals, the expected revenue based on the booking limit from aggregate

model and the revenue under the actual optimal booking limit from simulations are

quite close.

With the same input values of demand ratio and workload, the revenue obtained

from the aggregate model is usually larger than the revenue obtained from the sim-

ulation model (difference range: 0.8-1.6). This observation is reasonable, because

dynamic arrivals always carry an implied risk of losing same-day patients if the same-

day patients arrive too late during a workday. The difference between the aggregate

models and the dynamic models is always largest when the workload is perfectly bal-

anced. Compared to a perfectly balanced system, when the system is low-utilized,

generally there are many free slots in both models, so the difference is smaller. When

the system is over-utilized, there are more same-day requests in relation to slots; the

risk of slots going empty and idle is smaller, resulting a smaller difference between

aggregate model and dynamic model .

Table 6.2 compares the expected revenue, prescheduled overflow, same-day over-

flow, and 95% percentile of same-day overflow under both optimal threshold policy

and no threshold policy under dynamic arrivals and patient preferences. Note that, in

Table 6.2, ‘Pre-Over’ denotes ‘prescheduled overflow’, ‘Same-Over’ denotes ‘same-day

overflow’, ‘95% perc. ‘Same-Over’ denotes ‘95% percentile of same-day overflow’.
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Table 6.2. Comparisons of reserving optimal Np policy and no threshold policy:
single physician practice

P/S: 4/20

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP 10 15.53 0 1.225 5
No threshold 24 15.53 0 1.225 5

100% Optimal NP 11 18.13 0.002 3.069 8
No threshold 24 18.13 0.001 3.07 8

120% Optimal NP 6 19.49 0.191 5.858 13
No threshold 24 19.48 0.002 6.02 13

P/S:8/16

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP 14 14.86 0.019 1.408 5
No threshold 24 14.86 0.019 1.408 5

100% Optimal NP 13 17.24 0.054 3.28 9
No threshold 24 17.24 0.04 3.292 9

120% Optimal NP 11 18.51 0.381 6.027 13
No threshold 24 18.51 0.101 6.256 13

P/S:16/8

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP 21 13.75 0.419 1.389 4
No threshold 24 13.75 0.419 1.389 4

100% Optimal NP 20 15.92 1.084 2.708 7
No threshold 24 15.91 1.074 2.717 7

120% Optimal NP 19 17.21 2.181 4.536 9
No threshold 24 17.21 2.015 4.673 10

P/S:20/4

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP 22 13.31 0.995 0.863 3
No threshold 24 13.31 0.995 0.863 3

100% Optimal NP 22 15.36 2.408 1.56 4
No threshold 24 15.37 2.382 1.572 4

120% Optimal NP 23 16.54 4.345 2.629 7
No threshold 24 16.54 4.345 2.629 7
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As in section 4.2.2, with respect to expected revenue, the difference between the

optimal threshold policy and no threshold policy is not significant, while reserving

an optimal amount of slots could help to reduce the risk of long overtime (see 95%

percentile of same-day overflow). However, the impact of reserving optimal Np on

reducing the risk of long overtime becomes even smaller under dynamic arrivals. The

reason is that, in our simulation, many same-day patients call early afternoon and late

afternoon (see Figure 6.2). Therefore not all same-day patients can be accommodated,

unlike the aggregate case.

We also run simulations for multiple physician practices. We focus on a dedicated

configuration for both prescheduled same-day patients to test 6 different demand in-

puts (symmetric 4/20, symmetric 8/16, symmetric 16/8, symmetric 20/4, asymmetric

6/12, 8/16, 10/20, and asymmetric 12/6, 16/8, 20/10) and 3 different workloads (80%,

100%, and 120%). Unlike previous results, all the simulations are based on 1000

replications with common random numbers (see appendix B.2 for details). The re-

sults under symmetric demands are summarized in Table 6.3 and the results under

asymmetric demands are summarized in Table 6.4.

Table 6.3 and Table 6.4 compares the performances (expected revenue, presched-

uled overflow, same-day overflow, and 95% percentile of same-day overflow) for both

optimal threshold policy and no threshold policy under symmetric demands and asym-

metric demands. The observations are same as the observations for single physician

practice. That is, with respect to expected revenue, the difference between optimal

threshold policy and no threshold policy is not significant, while the impact of reserv-

ing optimal Np on reducing the risk of long overtime is also not significant. And this

observation holds for both symmetric demands and asymmetric demands.
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Table 6.3. Comparisons of reserving optimal Np policy and no threshold policy:
multiple physicians practice under symmetric demands

sym 4/20

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [10 10 10] 46.71 0.001 3.865 10
No threshold [24 24 24] 46.71 0 3.866 10

100% Optimal NP [8 8 8] 54.17 0.039 9.408 19
No threshold [24 24 24] 54.16 0.001 9.442 19

120% Optimal NP [5 5 5] 58.48 1.19 17.497 29
No threshold [24 24 24] 58.43 0.007 18.545 31

sym 8/16

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [13 13 13] 44.55 0.039 4.423 10
No threshold [24 24 24] 44.55 0.033 4.428 10

100% Optimal NP [16 16 16] 51.63 0.157 10.107 19
No threshold [24 24 24] 51.62 0.153 10.111 19

120% Optimal NP [11 11 11] 55.61 1.272 18.031 29
No threshold [24 24 24] 55.58 0.311 18.864 31

sym 16/8

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [21 21 21] 41.29 1.203 4.054 9
No threshold [24 24 24] 41.29 1.203 4.054 9

100% Optimal NP [21 21 21] 47.48 3.088 8.427 15
No threshold [24 24 24] 47.47 3.078 8.436 15

120% Optimal NP [21 21 21] 51.42 6.202 14.051 22
No threshold [24 24 24] 51.41 6.127 14.118 22

sym 20/4

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [23 23 23] 39.79 3.077 2.49 6
No threshold [24 24 24] 39.79 3.077 2.49 6

100% Optimal NP [22 22 22] 45.84 7.187 4.682 9
No threshold [24 24 24] 45.84 7.163 4.705 9

120% Optimal NP [23 23 23] 49.76 13.153 7.863 14
No threshold [24 24 24] 49.76 13.153 7.863 14
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Table 6.4. Comparisons of reserving optimal Np policy and no threshold policy:
multiple physicians practice under asymmetric demands

asym 10/20

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [13 13 12] 44.55 0.075 4.41 10
No threshold [24 24 24] 44.54 0.052 4.285 10

100% Optimal NP [13 12 14] 51.51 0.36 10.031 19
No threshold [24 24 24] 51.50 0.18 10.491 20

120% Optimal NP [12 10 13] 55.62 1.689 18.163 30
No threshold [24 24 24] 55.61 0.404 19.305 32

asym 20/10

NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% Optimal NP [20 18 19] 41.91 1.462 3.205 7
No threshold [24 24 24] 42.88 1.404 3.194 8

100% Optimal NP [21 18 21] 48.41 3.514 6.951 13
No threshold [24 24 24] 48.40 3.583 7.209 14

120% Optimal NP [19 17 19] 52.37 8.178 11.394 19
No threshold [24 24 24] 52.33 6.929 12.619 22

6.3.4 Impact of flexibility in primary care practices under dynamic ar-

rivals and patients’ preferences

In section 4.2, we test the impact of flexibility based on the aggregate capacity

allocation model. We also find that when same-day patients are already fully flexible,

adding additional flexibility to serve same-day patients doesn’t obtain noticeable rev-

enue improvements in that environment. Now, in the simulation, we are interested in

the impact of same-day full flexibility and also the impact of additional prescheduled

flexibility while same-day patients are already fully flexible.

We run simulations for multiple physicians practice under 3 different flexibility

configurations to compare the impact of flexibility under dynamic arrivals. These 3

configurations are (i) prescheduled patients and same-day patients are both dedicated,

(ii) prescheduled patients are dedicated and same-day patients are fully flexible, and
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(iii) prescheduled patients are pooled to share a given amount of Np for the entire

practice and same-day patients are fully flexible. Note that, as discussed in section

2.5, a prescheduled pooled model always work slightly better than a prescheduled

fully flexible model as long as same-day patients are fully flexibly shared. Also note

that, the difference of performances between configuration (i) and configuration (ii)

shows the impact of same-day flexibility and the difference between configuration

(ii) and configuration (iii) shows the impact of the additional prescheduled flexibility

while same-day patients are already fully flexible.

Six different demand inputs (symmetric 4/20, symmetric 8/16, symmetric 16/8,

symmetric 20/4, asymmetric 6/12, 8/16, 10/20, and asymmetric 12/6, 16/8, 20/10 )

combined with 3 different workloads (80%, 100%, and 120%) are tested. All the

simulations are based on 1000 replications with common random numbers.

The results under symmetric demands are summarized in Table 6.5 and Table

6.6. The results under asymmetric demands are summarized in Table 6.7. Note

that, in Table 6.5, Table 6.6 and Table 6.7, ‘P-D S-D’ denotes configuration (i), ‘P-

D S-F’ denotes configuration (ii), and ‘P-P S-D’ denotes configuration (iii). Other

abbreviations like ‘Pre-Over’, ‘Same-Over’, etc., are same as explained in the previous

section.

First, from Table 6.5 - Table 6.7, same-day flexibility is beneficial in both (i)

increasing expected revenue and (ii) reducing the expected same-day overflow. Under

symmetric demands, the improvement of revenue gained from same-day flexibility is

in the 0.5% - 2.8% range and the expected same-day overflow can be reduced by 0.9-

1.4 units due to same-day flexibility. Under asymmetric demands, the improvement of

revenue gained from same-day flexibility is in the 3.6% - 5.6% range and the expected

same-day overflow can be reduced by 2.5-3.9 units due to same-day flexibility. The

impact of same-day flexibility is smaller than that obtained from the aggregate model,

for the same reasons discussed earlier. An available slot that can be used in the
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aggregate model when same-day requests are flexibly shared might go idle in the

dynamic case.

Second, we know that in the aggregate model, same-day flexibility is most benefi-

cial under balanced workload. However, in the dynamic case, although this observa-

tion still holds under most scenarios, we do observe inconsistency under two different

scenarios. For example, when input demand is symmetric 4/20, under 80% workload,

100% workload, and 120% workload, same-day flexibility gains 2.2%, 1.5%, and 0.5%

respectively. And when the input demand is symmetric 8/16, under 80% workload,

100% workload, and 120% workload, same-day flexibility gains 2.4%, 1.9%, and 1.1%

respectively.

Finally, consistent with the findings in Section 4.2, when same-day patients are

already fully flexible, the impact of additional prescheduled flexibility is unnoticeable.

In other words, same-day flexibility is sufficient to balance demands with unused slots

to achieve a higher revenue. In a dynamic environment prescheduled flexibility is not

essential as long as same-day patients are flexibly shared.
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Table 6.5. Impact of flexibility in primary care practices under dynamic arrivals and
patients’ preferences: symmetric demands

sym 4/20

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% P-D S-D [10 10 10] 46.71 0.001 3.865 10
P-D S-F [10 10 10] 47.78 0.001 2.561 8
P-P S-F 20 47.78 0.001 2.561 8

100% P-D S-D [8 8 8] 54.17 0.039 9.408 19
P-D S-F [11 11 11] 55.02 0.001 8.31 18
P-P S-F 20 55.02 0.011 8.301 18

120% P-D S-D [5 5 5] 58.48 1.19 17.497 29
P-D S-F [5 5 5] 58.82 1.19 16.914 29
P-P S-F 12 58.83 2.125 16.116 28

sym 8/16

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% P-D S-D [13 13 13] 44.55 0.039 4.423 10
P-D S-F [15 15 15] 45.70 0.033 3.029 9
P-P S-F 32 45.70 0.033 3.029 9

100% P-D S-D [16 16 16] 51.63 0.157 10.107 19
P-D S-F [19 19 19] 52.69 0.153 8.743 18
P-P S-F 37 52.69 0.153 8.743 18

120% P-D S-D [11 11 11] 55.61 1.272 18.031 29
P-D S-F [17 17 17] 56.30 0.317 17.839 30
P-P S-F 33 56.30 0.638 17.569 29

sym 16/8

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% P-D S-D [21 21 21] 41.29 1.203 4.054 9
P-D S-F [21 21 21] 42.45 1.203 2.667 7
P-P S-F 50 42.45 1.204 2.666 7

100% P-D S-D [21 21 21] 47.48 3.088 8.427 15
P-D S-F [23 23 23] 48.87 3.078 6.741 14
P-P S-F 57 48.87 3.078 6.741 14

120% P-D S-D [21 21 21] 51.42 6.202 14.051 22
P-D S-F [23 23 23] 52.73 6.127 12.481 21
P-P S-F 60 52.73 6.154 12.458 21
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Table 6.6. Impact of flexibility in primary care practices under dynamic arrivals and
patients’ preferences: symmetric demands(continuited with Table 6.5)

sym 20/4

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% P-D S-D [23 23 23] 39.79 3.077 2.49 6
P-D S-F [23 23 23] 40.63 3.077 1.49 4
P-P S-F 60 40.63 3.077 1.49 4

100% P-D S-D [22 22 22] 45.84 7.187 4.682 9
P-D S-F [24 24 24] 46.99 7.163 3.336 8
P-P S-F 63 46.99 7.164 3.335 8

120% P-D S-D [23 23 23] 49.76 13.153 7.863 14
P-D S-F [23 23 23] 51.00 13.153 6.375 12
P-P S-F 68 51.00 13.155 6.373 12
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Table 6.7. Impact of flexibility in primary care practices under dynamic arrivals and
patients’ preferences: asymmetric demands

asym 10/20

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

80% P-D S-D [13 13 12] 44.55 0.075 4.41 10
P-D S-F [16 13 14] 46.93 0.048 1.593 6
P-P S-F 30 46.93 0.049 1.592 6

100% P-D S-D [13 12 14] 51.51 0.36 10.031 19
P-D S-F [19 15 15] 54.40 0.181 6.652 17
P-P S-F 38 54.39 0.174 6.658 17

120% P-D S-D [12 10 13] 55.62 1.689 18.163 30
P-D S-F [15 8 13] 57.60 1.961 15.335 28
P-P S-F 30 57.59 1.268 15.924 28

asym 20/10

optimal NP Revenue Pre-Over Same-Over 95% perc.
Same-Over

P-D S-D [20 18 19] 41.91 1.462 3.205 7
80% P-D S-F [21 20 19] 44.24 1.441 0.478 3

P-P S-F 54 44.24 1.443 0.476 3
P-D S-D [21 18 21] 48.41 3.514 6.951 13

100% P-D S-F [23 20 20] 51.73 3.418 3.068 10
P-P S-F 59 51.73 3.42 3.066 10
P-D S-D [19 17 19] 52.37 8.178 11.394 19

120% P-D S-F [21 16 16] 54.88 8.302 8.187 17
P-P S-F 54 54.89 7.212 9.078 18

Note that, results in Table 6.5 - Table 6.7 are all based on the scheduling policy

that same-day requests are always assigned to the first available slot after phone

call time. In other words, we didn’t consider continuity of same-day requests due to

their urgent needs in those runs. In fact, we also propose another scheduling policy

to consider the continuity needs for same-day patients when same-day patients are

flexible. The policy is, clinic will first try to find available slot for same-day patients

from their own physicians. Only when their own physicians do not have matched

availabilities, clinic will try to assign the requests with other physicians’ availabilities.
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In Table 6.8, the performances of these two policies under different cases are

compared. ‘P-D S-F’ denotes ‘prescheduled is dedicated and same-day is fully flexible’

and ‘P-P S-F’ denotes ‘prescheduled is pooled and same-day is fully flexible’. These

two configurations are tested under two different policies: Policy 1 and Policy 2. Here

‘Policy 1’ denotes ‘always assign prescheduled requests as early as possible’ and ‘Policy

2’ denotes ‘first assign with patient’s own physician then with other physicians’. Four

different symmetric P/S ratios (4/20, 8/16, 16/8 and 20/4) are tested and each P/S

ratio is repeated under 3 different workloads (80%, 100% and 120%). Revenues under

Policy 1 and Policy 2 are presented and then we calculate the deduction of revenue in

percentage. Observe that, with consideration of same-day patients’ continuity needs,

the expected revenue is generally reduced by a small proportion (0% - 1.79%). In

addition, regardless of policies, we observe that the benefit of additional prescheduled

flexibility is always marginal.

Table 6.8. Comparisons of two same-day scheduling policies: continuity considered
vs. continuity not considered for same-day patients

P-D S-F P-P S-F

Policy 1 Policy 2 deduction Policy 1 Policy 2 deduction
revenue revenue in % revenue revenue in %

80% 47.78 46.93 -1.79% 47.78 46.93 -1.82%
sym 4/20 100% 55.02 55.02 0.00% 55.02 55.02 0.00%

120% 58.82 58.65 -0.29% 58.83 58.63 -0.33%

80% 45.70 44.94 -1.67% 45.70 44.94 -1.70%
sym 8/16 100% 52.69 52.44 -0.48% 52.69 52.44 -0.49%

120% 56.30 56.20 -0.17% 56.30 56.15 -0.27%

80% 42.45 41.75 -1.65% 42.45 41.75 -1.68%
sym 16/8 100% 48.87 48.33 -1.12% 48.87 48.32 -1.14%

120% 52.73 52.33 -0.76% 52.73 52.31 -0.80%

80% 40.63 40.18 -1.13% 40.63 40.18 -1.14%
sym 20/4 100% 46.99 46.45 -1.14% 46.99 46.45 -1.15%

120% 51.00 50.48 -1.03% 51.00 50.48 -1.04%
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6.4 Summary and conclusions

To study the capacity allocation problem under two successively realized demand

streams under dynamic arrivals, we establish a simulation model in this chapter. In

this simulation model, we capture some typical realistic issues in primary care prac-

tices, such as patients’ preference over different time of the day, patients’ willing to be

diverted to another physician, dynamic and non-homogeneous same-day arrivals, etc.

We also allow both prescheduled patients and same-day patients to share physicians’

capacity based on designed flexibility configurations, to test the impact of flexibility

under dynamic environment.

Prescheduled patients’ time-of-day preferences are considered in the simulation-

s by using clinic data. We study the impact of prescheduled patients’ time-of-day

preferences on the performances of the clinic through simulations under single physi-

cian practice. Interestingly, regardless of the distribution of prescheduled patients’

time-of-day preferences, limited prescheduled patient time-of-day flexibility (2 hours-

flexibility in our simulation framework) performs almost as well as more prescheduled

patient time-of-day flexibility.

We also study the impact of guiding prescheduled patient appointment times over

a workday because some clinics may reserve parts of the workday for prescheduled

patients, and leave the remaining slots for same-day patients. Due to the large fre-

quency of requests arrivals in the late afternoon and the risk of idle time before late

afternoon, although the clinic data shows that prescheduled patients do prefer late-

afternoon as their first choice to schedule appointments, clinic should be cautious to

block late-afternoon for prescheduled patients, in order to leave sufficient later slots

in a day for same-day patients.

In Chapter 4 and Chapter 5, we propose a threshold policy for the capacity allo-

cation problem. Although the performances of a threshold policy and a no-threshold

policy are almost identical due to the small difference between Rp and Rs, the thresh-
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old policy has significant impact to reduce the risk of long overtime in the aggregate

model. To validate and to test the robustness of this proposed threshold policy under

a dynamic environment with patient time-of-day preferences, we run simulations un-

der both single physician practice and multiple physicians practice. Different demand

scenarios are tested to compare the results. Not surprising, the impact of an optimal

threshold policy performs almost identical with no threshold policy, with respect to

revenue. However, the impact of optimal threshold policy on reducing the risk of long

overtime is less significant than this impact in the aggregate model. In fact, for most

primary care practices (not too busy), due to the small difference between Rp and Rs,

a threshold policy is not essential for clinics to be implemented. Simply accepting and

scheduling all the patients requests due to clinic availability could obtain desirable

revenue for clinics.

Finally, we also study the impact of flexibility in primary care practices under

dynamic arrivals. The same-day flexibility gains more significantly under asymmetric

demands (3.5% - 5.6%) than under symmetric demands (0.5% - 2.8%). Meanwhile,

this gain under dynamic cases is less than the gain from same-day flexibility under

aggregate cases, because a planned slot under aggregate cases is possible to be idle

due to late same-day arrivals under dynamic cases. In addition, consistently with the

findings in Chapter 4, when same-day patients are already fully flexibly served, the

additional prescheduled flexibility has unnoticeable gain.
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CHAPTER 7

DISCUSSION

7.1 Applications in other contexts

In this dissertation, we focus on the study of physicians’ capacity allocation prob-

lem in primary care practices. However, the resource allocation problems among two

successively customer classes - non-urgent demands (scheduled in advance) vs. urgent

demands (arrive at short notice) - can be commonly observed in many domains. The

models proposed in Chapter 2 and the analytical results presented in Chapter 3 can

be well applied to any such resource allocation problem in a production/service sys-

tem, with the following characteristics: (i) two successively realized demand streams,

one stream arrives and has to be scheduled in advance and the other stream arrives

randomly and with urgent needs (ii) the total capacity to fill up demands is fixed.

We now provide a few examples of such applications.

For example, we could commonly observe maintenance and repair service for a

great variety of industrial or residential equipment (e.g. furnaces) under multiple

demand classes. Our model could be well extended to this situation; however, as

opposed to the greater continuity needs for prescheduled patients in primary care

practices, the benefit from the continuity provided by a technician is particularly im-

portant for urgent demand. Because under these situations, the prescheduled demand

is usually for standard maintenance operations, which any technician could effectively

complete. And the urgent demand will require deeper knowledge of the equipment,

spare part availability, and quick resolution, to provide quicker and more efficient

service.
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Striking a balance between non-urgent and urgent demand occurs routinely in

other healthcare settings. For example, limited operating room and surgeon capacity

in hospitals needs to be allocated to balance elective surgeries demand while simul-

taneously accommodating emergency surgeries.

If we consider a delivery company, the manager needs to decide how to allocate

two-day delivery in order to leave sufficient capacity (i.e. the postman’s time) to fill

up the urgent needs of same-day delivery.

Another typical example is the air charter problem, which receives much attention

recently. As opposed to an aircraft seats selling problem, air charter companies focus

on the operations of renting an entire aircraft. The air charter service is involved in air

ambulance, individual private aircraft itineraries, and some ad hoc air transportation.

Due to the different costs of different aircrafts and considering urgent demand vs. the

prescheduled calendar, air charter companies need to allocate their limited aircraft

resources (helicopters and business jets).

7.2 Implications for primary care practices

In this dissertation, we focus on the physicians’ capacity allocation problem to

study the impact of flexibility (allowing patients from different panels to share capac-

ity from different physicians) in primary care practices. Generally, when the inherent

physician flexibility is used to serve prescheduled patients as well as same-day pa-

tients, continuity in care for the prescheduled chronic patients suffers while minimal

additional benefits in access are observed. Furthermore, the improvement obtained

from the flexibility to serve prescheduled demands is not significant in increasing ac-

cess even when same-day flexibility is not viable, in applications where the same-day

demand has greater need for continuity than the prescheduled demand. Based on

these findings, we recommend clinics to allow same-day flexibility to increase the

access for patients; however, prescheduled flexibility is not essential in primary care
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practices due to the greater continuity needs of prescheduled patients, as long as

same-day patients are already flexibly shared. If clinics do prefer to involve presched-

uled flexibility in practices, it is better introduced in the form of letting patients

from different panels share a common booking limit while prescheduled patients are

always served by their own physicians as long as the actual demand does not exceed

the corresponding physician’s total capacity. This design is particularly beneficial in

primary care practices to maintain the continuity for prescheduled patients (for whom

continuity is much more critical) while improving access of patients as a regular full

flexibility configuration.

In our model, we suggest a booking limit for clinics to reserve capacity for presched-

uled patients; however, in most primary care practices, there may not be any such

booking limit especially in small primary care clinics. We evaluate the necessity of

the booking limit policy through quantitative computational experiments. Generally,

in a typical primary care practice, in which a prescheduled and same-day patient pro-

duce similar (or not quite different) amount of revenue, the expected revenue of the

practice is surprisingly insensitive to the booking limit as long as the booking limit

is sufficiently high. When the difference between revenues produced by a presched-

uled patient and a same-day patient gets larger, the expected revenue of the practice

becomes more and more sensitive to the booking limit. This finding seems to sug-

gest that most practices could function appropriately without a booking limit, that

is, simply accepting all prescheduled patient requests. However, we do suggest the

booking limit policy for primary care practices due to two reasons: (i) reserving an

optimal amount of slots for prescheduled patients could effectively reduce the risk of

long over time of physicians even when a prescheduled patient and same-day patient

produce similar revenue; (ii) In our study, the revenue coefficients for prescheduled

and same-day patients are decided by show rate, resulting the expected revenue to

be an estimate of number of patients seen, which is not a real profit measure. The
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difference between profits produced by seeing one prescheduled patient and one same-

day patient is definitely larger than what we used because of the higher cost of losing

one same-day patients (same-day patients may end up visiting the emergency room,

which results in huge expenditures in the health system). In that case, the booking

limit policy should become more important to earn higher profit a clinic that is af-

filiated with a larger integrated health system. Based on this, we conclude that the

booking limit policy is still essential for primary care practices. That is, once the

booking limit for a particular physician is reached, any prescheduled request for this

physician in future should be diverted to another physician or refused.

We also study the impact of a newly hired additional provider in primary care

practices, where the additional provider is limited to serve same-day patients. Based

on the results, adding a same-day provider and restricting it to only serve same-

day patients is a good strategy for clinic to increase the access for patients, greater

capacity for this additional provider could help to increase the access for prescheduled

patients under asymmetric practices even though this provider can only serve same-

day patient.

In Chapter 6, we establish a simulation model under dynamic arrivals to study

the capacity allocation problem. To learn more insights for primary care clinics, we

capture some realistic issues in practices, such as patients’ preferences for time of

the day, patients’ willingness to be diverted to another physician, dynamic and non-

homogeneous same-day arrivals, etc. Based on the results, we have two suggestions

for primary care clinics. First, a better policy to achieve higher revenue for the pri-

mary care clinic is to always leave more slots for same-day patients in the afternoon

even though some prescheduled patients do prefer late afternoon slots. Another sug-

gestion is, although the aggregate model does not consider dynamic arrivals of patient

requests, it does provide quite good guideline for practice. We suggest clinic to sim-

ply run the aggregate model to decide booking limit instead of running a complicated

153



simulation. However, note that, in terms of profit (“dollars earned” not “number of

patients seen”), the gap between the estimated solution from aggregate model and a

“true” optimal solution may become larger, and this needs further study.

7.3 Future study

For future study, there are multiple directions to extend our research: First, in

Chapter 3, we computationally show that the greedy algorithm yields optimal so-

lution for the capacity allocation problem under a range of demand scenarios, the

variations of which could cover most primary care practices. We therefore propose

the greedy algorithm to be an efficient heuristic for the capacity allocation problem

in this dissertation. For future research, a rigorous analysis to demonstrate why the

greedy algorithm yields optimal solution for this capacity allocation problem (or at

least yields optimal solution for most practical scenarios) will be an interesting topic.

Second, in Chapter 5, we apply the framework in Chapter 2 to study the impact

of additional provider in primary care practices. However, same-day patients dynam-

ically arrive over a workday and some same-day patients may not agree to be served

with the additional provider. Meanwhile, it is also highly possible for a patient to

stay longer with the additional provider, compared to a regular visit with his/her own

physician or any other physicians. Generally, an additional provider may not be well

utilized even when the practice is busy. This topic needs further validation through

empirical data.

Finally, in this dissertation, we always focus on a single workday model, both for

the aggregate model in Chapter 2 - Chapter 5 and for the dynamic model in Chapter

6. However, a more realistic model to reflect appointment scheduling problem in

primary care practices should be a multiple workday model, in which more factors

needs to be considered. For example, if a prescheduled patient cannot be scheduled

on a particular workday, usually she should be scheduled to another day. However,
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will the patient’s time preference match the available date? If it is not possible to

schedule an appointment for this patient in a long time, will the patient be lost to

the clinic? As a result, other issues like patient delay cost, patient dropout cost, etc.,

need to be appropriately captured and estimated based on clinical data.
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APPENDIX A

EXPECTED REVENUE BASED ON ANALYTICAL
METHOD

A.1 Prescheduled patients and same-day patients are both

dedicated

For dedicated system under two demands streams, given demand realization [Dp
i , D

s
i ],

the overflow for prescheduled demand is:

V p(A) =
m∑
i=1

max(0, Dp
i −N

p
i ) (A.1)

while the overflow for same-day demand is:

V s(A) =
m∑
i=1

max(0, Ds
i − (Ci −min[Np

i , D
p
i ])) (A.2)

Further, the expected overflow for prescheduled demand is:

E(V p(A)) = E(
m∑
i=1

max(0, Dp
i −N

p
i )) =

m∑
i=1

∞∑
o=Np

i

(o−Np
i ) · P (Dp

i = o) (A.3)

Note that the expected overflow for prescheduled demand will always remain same

for all prescheduled dedicated configurations.

The expected overflow for same-day demand is given by

E(V s(A)) =
m∑
i=1

Np
i∑

j=0

P (xpi = j) ·
∞∑

o=Ci−j

(o− (Ci − j)) · P (Ds
i = o) (A.4)

where xpi (i = 1, 2, ...,m) denote the second stage decision variables, which can give

us the number of slots fulfilled with prescheduled demand. As xpi = min[Np
i , D

p
i ], we
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can easily obtain the probability distribution for xpi ,

P (xpi = a) =


P (Dp

i = a), a < Np
i ;

1− Fi(a− 1), a = Np
i ;

(A.5)

From

ER(·) = Rs · [
m∑
i=1

λsi − E(V p(A))] +Rp · [
m∑
i=1

λpi − E(V s(A))], (A.6)

we could compute the total expected revenue for this dedicated configuration based

on E(V p(A)) and E(V s(A)).

A.2 Prescheduled patients are dedicated while same-day pa-

tients are fully flexibly shared

Given demand realization [Dp
i , D

s
i ], the prescheduled overflow is same as Equation

A.1, while the same-day overflow is:

V s(A) = max{0,
m∑
i=1

Ds
i −

m∑
i=1

(Ci − xpi )}

Then the expected prescheduled overflow is equation A.3 and the expected same-

day overflow is given as follows:

E(V s(A)) =

Np
m∑

jm=0

...

Np
1∑

j1=0

∞∑
s=

∑m
i=1 Ci−

∑m
i=1 ji

(s−
m∑
i=1

Ci +
m∑
i=1

ji) · P (Ds = s) · P (xp1 = j1) · ... · P (xpm = jm) (A.7)

Here, Ds = Ds
1 +D2 + ...+Ds

m follows poisson distribution, and the distribution rate

is given by λs =
∑m

i=1 λ
s
i .
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From equation A.6, we compute the total expected revenue for prescheduled ded-

icated and same-day fully flexible configuration.

Note that, it is straightforward to calculate expected revenue for a subgroup con-

figuration, because it is a combination of dedicated and fully flexibility configuration.

A.3 Prescheduled patients and same-day patients are both

dedicated with their own physicians while one additional

provider is added to serve all same-day patients

A.3.1 Analysis of dedicated with overflow system when m=2

First, we name such configurations as ‘dedicated with overflow system’. As the

dedicated with overflow system is more complicated than dedicated configuration, we

start with m = 2.

For dedicated with overflow system, given demand realization [Dp
i , D

s
i ], the same-

day overflow is very complex. To understand easily, we begin with the case of two

physicians under same-day demand only. The overflow under demand realization

[D1, D2] is:

V (A) = max{0, D1 − C1 − Y,D2 − C2 − Y,D1 +D2 − C1 − C2 − Y }

where Y is the extra capacity assigned for the additional physician.

We want to calculate the expected value of V (A). As 0 makes no effect to the

value, we always ignore the term 0. Analyze the terms, we find that:

(1)V (A) = D1 − C1 − Y ⇐⇒


D1 ≥ C1 + Y ;

D2 ≤ C2;

(2)V (A) = D2 − C2 − Y ⇐⇒


D2 ≥ C2 + Y ;

D1 ≤ C1;
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(3)V (A) = D1 +D2 − C1 − C2 − Y ⇐⇒


D1 +D2 ≥ C1 + C2 + Y ;

D1 ≥ C1;

D2 ≥ C2;

Note that, some conditions resulted from double counting cases should be substracted

from above:

(a)D1 − C1 − Y = D1 +D2 − C1 − C2 − Y is maximum

(b)D2 − C2 − Y = D1 +D2 − C1 − C2 − Y is maximum

Then the conditions should be changed to:

(1)V (A) = D1 − C1 − Y ⇐⇒


D1 ≥ C1 + Y ;

D2 < C2;

(2)V (A) = D2 − C2 − Y ⇐⇒


D2 ≥ C2 + Y ;

D1 < C1;

(3)V (A) = D1 +D2 − C1 − C2 − Y ⇐⇒


D1 +D2 ≥ C1 + C2 + Y ;

D1 ≥ C1;

D2 ≥ C2;

From above analysis, we can get the expected overflow for dedicated with overflow

system under demand realization [D1, D2]:

E[V (A)] = P (D2 < C2) · [
∞∑

i=C1+Y

(i− (C1 + Y )) · P (D1 = i)]

+P (D1 < C1) · [
∞∑

j=C2+Y

(j − (C2 + Y )) · P (D2 = j)]

+
∞∑

i=C1

∞∑
j=max(C2,C1+C2+Y−i)

(i+ j − (C1 + C2 + Y )) · P (D1 = i) · P (D2 = j)
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In summary, if the system is under two types of demands, the overflow for presched-

uled demand is:

V p(A) = max(0, Dp
1 −N

p
1 ) + max(0, Dp

2 −N
p
2 )

while the overflow for same-day demand is:

V s(A) = max{0, Ds
1−(C1−xp1+Y ), Ds

2−(C2−xp2+Y ), Ds
1+D

s
2−(C1+C2−xp1−x

p
2+Y )}

The expected overflow for prescheduled demand is similarly with dedicated system

and the expected overflow for same-day demand is provided by

E(V s(A)) = E[E(V s(A)|xp1, x
p
2)]

= [

Np
2∑

b=0

P (Ds
2 < C2 − b) · P (xp2 = b)] · [

Np
1∑

a=0

∞∑
i=C1−a+Y

(i− (C1 − a+ Y )) · P (Ds
1 = i)]

+[

Np
1∑

a=0

P (Ds
1 < C1 − a) · P (xp1 = a)] · [

Np
2∑

b=0

∞∑
j=C2−b+Y

(j − (C2 − b+ Y )) · P (Ds
2 = j)]

+[

Np
1∑

a=0

Np
2∑

b=0

∞∑
i=C1−a

∞∑
j=max(C2−b,C1+C2−a−b+Y−i)

(i+ j − C1 − C2 + a+ b− Y )

·P (Ds
1 = i) · P (Ds

2 = j) · P (xp1 = a) · P (xp2 = b)]

.

A.3.2 Analysis of Dedicated with overflow system when m=4

By Jordan and Graves’ results, following show us the overflow for same-day de-

mand under demand realization [Di] when m = 4:
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V (A) = max{0, D1 − (C1 + Y ), D2 − (C2 + Y ), D3 − (C3 + Y ), D4 − (C4 + Y ),

D1 +D2 − (C1 + C2 + Y ), D1 +D3 − (C1 + C3 + Y ), D1 +D4 − (C1 + C4 + Y ),

D2 +D3 − (C2 + C3 + Y ), D2 +D4 − (C2 + C4 + Y ), D3 +D4 − (C3 + C4 + Y ),

D1 +D2 +D3 − (C1 + C2 + C3 + Y ), D1 +D2 +D4 − (C1 + C2 + C4 + Y ),

D1 +D3 +D4 − (C1 + C3 + C4 + Y ), D2 +D3 +D4 − (C2 + C3 + C4 + Y ),

D1 +D2 +D3 +D4 − (C1 + C2 + C3 + C4 + Y )}.
(A.8)

Analyze the terms in a similar way as m = 2, we have a similar conditions structure

but contained 16 cases when m = 4(number of terms increase exponentially, only

workable for small practices). Based on those disjoint conditions, we get the expected

overflow for dedicated with overflow system under demand realization [D1, D2, D3, D4]

as follow:
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E[V (A)] = P (D2 < C2) · P (D3 < C3) · P (D4 < C4) · [
∞∑

i=C1+Y

(i− (C1 + Y )) · P (D1 = i)]

+P (D1 < C1) · P (D3 < C3) · P (D4 < C4) · [
∞∑

j=C2+Y

(j − (C2 + Y )) · P (D2 = j)]

+P (D1 < C1) · P (D2 < C2) · P (D4 < C4) · [
∞∑

k=C3+Y

(k − (C3 + Y )) · P (D3 = k)]

+P (D1 < C1) · P (D2 < C2) · P (D3 < C3) · [
∞∑

l=C4+Y

(l − (C4 + Y )) · P (D4 = l)]

+P (D3 < C3) · P (D4 < C4) · [
∞∑

i=C1+Y

∞∑
j=max(C2,C1+C2+Y−i)

(i+ j − (C1 + C2 + Y )) · P (D1 = i) · P (D2 = j)]

+P (D2 < C2) · P (D4 < C4) · [
∞∑

i=C1+Y

∞∑
k=max(C3,C1+C3+Y−i)

(i+ k − (C1 + C3 + Y )) · P (D1 = i) · P (D3 = k)]

+P (D2 < C2) · P (D3 < C3) · [
∞∑

i=C1+Y

∞∑
l=max(C4,C1+C4+Y−i)

(i+ l − (C1 + C4 + Y )) · P (D1 = i) · P (D4 = l)]

+P (D1 < C1) · P (D4 < C4) · [
∞∑

j=C2+Y

∞∑
k=max(C3,C2+C3+Y−j)

(j + k − (C2 + C3 + Y )) · P (D2 = j) · P (D3 = k)]

+P (D1 < C1) · P (D3 < C3) · [
∞∑

j=C2+Y

∞∑
l=max(C4,C2+C4+Y−j)

(j + l − (C2 + C4 + Y )) · P (D2 = j) · P (D4 = l)]

+P (D1 < C1) · P (D2 < C2) · [
∞∑

k=C3+Y

∞∑
l=max(C4,C3+C4+Y−k)

(k + l − (C3 + C4 + Y )) · P (D3 = k) · P (D4 = l)]

+P (D4 < C4) · [
∞∑

i=C1+Y

∞∑
j=C2+Y

∞∑
k=max(C3,C1+C2+C3+Y−i−j)

(i+ j + k − (C1 + C2 + C3 + Y )) · P (D1 = i) · P (D2 = j) · P (D3 = k)]

+P (D3 < C3) · [
∞∑

i=C1+Y

∞∑
j=C2+Y

∞∑
l=max(C4,C1+C2+C4+Y−i−j)

(i+ j + l − (C1 + C2 + C4 + Y )) · P (D1 = i) · P (D2 = j) · P (D4 = l)]

+P (D2 < C2) · [
∞∑

i=C1+Y

∞∑
k=C3+Y

∞∑
l=max(C4,C1+C3+C4+Y−i−k)

(i+ k + l − (C1 + C3 + C4 + Y )) · P (D1 = i) · P (D3 = k) · P (D4 = l)]

+P (D1 < C1) · [
∞∑

j=C2+Y

∞∑
k=C3+Y

∞∑
l=max(C4,C2+C3+C4+Y−j−k)

(j + k + l − (C2 + C3 + C4 + Y )) · P (D2 = j) · P (D3 = k) · P (D4 = l)]

+[
∞∑

i=C1+Y

∞∑
j=C2+Y

∞∑
k=C3+Y

∞∑
l=max(C4,C1+C2+C3+C4+Y−i−j−k)

(i+ j + k + l − (C1 + C2 + C3 + C4 + Y )) · P (D1 = i) · P (D2 = j) · P (D3 = k) · P (D4 = l)]
(A.9)

Further, suppose we are facing to two demand streams, then following show us
the overflow for same-day demand under demand realization [Dp

i , D
s
i ],
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V s(A) = max{0, Ds
1 − (C1 − xp1 + Y ), Ds

2 − (C2 − xp2 + Y ), Ds
3 − (C3 − xp3 + Y ),

Ds
4 − (C4 − xp4 + Y ), Ds

1 +Ds
2 − (C1 + C2 − xp1 − x

p
2 + Y ), Ds

1 +Ds
3 − (C1 + C3 − xp1 − x

p
3 + Y ),

Ds
1 +Ds

4 − (C1 + C4 − xp1 − x
p
4 + Y ), Ds

2 +Ds
3 − (C2 + C3 − xp2 − x

p
3 + Y ),

Ds
2 +Ds

4 − (C2 + C4 − xp2 − x
p
4 + Y ), Ds

3 +Ds
4 − (C3 + C4 − xp3 − x

p
4 + Y ),

Ds
1 +Ds

2 +Ds
3 − (C1 + C2 + C3 − xp1 − x

p
2 − x

p
3 + Y ),

Ds
1 +Ds

2 +Ds
4 − (C1 + C2 + C4 − xp1 − x

p
2 − x

p
4 + Y ),

Ds
1 +Ds

3 +Ds
4 − (C1 + C3 + C4 − xp1 − x

p
3 − x

p
4 + Y ),

Ds
2 +Ds

3 +Ds
4 − (C2 + C3 + C4 − xp2 − x

p
3 − x

p
4 + Y ),

Ds
1 +Ds

2 +Ds
3 +Ds

4 − (C1 + C2 + C3 + C4 − xp1 − x
p
2 − x

p
3 − x

p
4 + Y )}.

The expected overflow for same-day demand is provided by,
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E(V s(A)) = [

N
p
2∑

b=0

P (Ds
2 < C2 − b) · P (xp2 = b)] · [

N
p
3∑

c=0

P (Ds
3 < C3 − c) · P (xp3 = c)]

·[
N

p
4∑

d=0

P (Ds
4 < C4 − d) · P (xp4 = d)] · [

N
p
1∑

a=0

∞∑
i=C1−a+Y

(i− (C1 − a+ Y )) · P (Ds
1 = i) · P (xp1 = a)] (A.10)

+[

N
p
1∑

a=0

P (Ds
1 < C1 − a) · P (xp1 = a)] · [

N
p
3∑

c=0

P (Ds
3 < C3 − c) · P (xp3 = c)]

·[
N

p
4∑

d=0

P (Ds
4 < C4 − d) · P (xp4 = d)] · [

N
p
2∑

b=0

∞∑
j=C2−b+Y

(j − (C2 − b+ Y )) · P (Ds
2 = j) · P (xp2 = b)] (A.11)

+[

N
p
1∑

a=0

P (Ds
1 < C1 − a) · P (xp1 = a)] · [

N
p
2∑

b=0

P (Ds
2 < C2 − b) · P (xp2 = b)]

·[
N

p
4∑

d=0

P (Ds
4 < C4 − d) · P (xp4 = d)] · [

N
p
3∑

c=0

∞∑
k=C3−c+Y

(k − (C3 − c+ Y )) · P (Ds
3 = k) · P (xp3 = c)] (A.12)

+[

N
p
1∑

a=0

P (Ds
1 < C1 − a) · P (xp1 = a)] · [

N
p
2∑

b=0

P (Ds
2 < C2 − b) · P (xp2 = b)]

·[
N

p
3∑

c=0

P (Ds
3 < C3 − c) · P (xp3 = c)] · [
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Then we can compute the total expected revenue for dedicated with overflow system

through the above equation A.10 - A.24 immediately.
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APPENDIX B

HOW TO REDUCE VARIANCE OF OUTPUT FOR OUR
SIMULATIONS?

As we know, a simulation model is usually accompanied with simulation errors.

In other words, simulations driven by random inputs will produce random output.

There are several ways to reduce the variance of output. In this dissertation, we use

two different methods to run simulation to reduce the variances. These two method

are described in following two sections.

B.1 Simulations based on large-scaled random numbers

The most common method to reduce the variance of output is to run large-scaled

simulations. Then question is, how many replications would be sufficient to reduce the

variance of output at an acceptable level? We test single physician practices with P/S

ratio (same as described in chapter 4, P/S ratio is the ratio of prescheduled demand

mean and same-day demand mean) to be 4/20, 8/16, 16/8, and 20/4. We set the

number of replication to be 1000, 5000, 10000, 20000, 50000, and 100000. The com-

parisons of expected revenue under different number of replications are summarized

in Figure B.1 - Figure B.4.
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Figure B.1. Revenue vs. Number of replications : single physician 4/20, 100%
workload

Figure B.2. Revenue vs. Number of replications : single physician 8/16, 100%
workload
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Figure B.3. Revenue vs. Number of replications : single physician 16/8, 100%
workload

Figure B.4. Revenue vs. Number of replications : single physician 20/4, 100%
workload

From the study based on aggregate model, we expect to observe a monotonously

increasing then monotonously decreasing curve for a single practice when we increase

Np from 1 to 24, if there is no simulation errors. Due to the disturbance from
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simulation errors, we might observe some up and down curves, when the number of

replication is not sufficiently large.

From Figure B.1 - Figure B.4, we observe that, under any demand ratios, when

we increase the number of replications, the variance of expected revenue becomes

smaller, resulting a much smoother curve. However, the output is converged with

different speed under different demand ratio. For example, when P/S ratio is 4/20, we

still observe unstable curves under 10000 replications, while the results are perfectly

converged under 10000 replications when P/S ratios are 16/8 and 20/4. This is

because when we have very few prescheduled patients, the associated revenue change

with increasing NP by one unit is not large enough, comparing to the simulation

error. In that case, the curve is not stable under the demand ratio 4/20.

Generally speaking, under demand ratios of 16/8 and 20/4, 10000 replications are

sufficiently large while under demand ratios of 4/20 and 8/16, a suitable number of

replications should be no less than 20000 to obtain stable simulation results. For

our simulation, given a fixed combination of values for all input variables, 10000

replications take about 3 minutes for one single physician practice test and take

about 10 minutes for multiple physician practice test.

B.2 Simulations based on common random numbers

Large-scaled simulations could definitely reduce the variance of output, however,

simulations based on large number of replications usually require great amounts of

computer time and storage, appropriate statistical analysis. If appropriate variance-

reduction technique could be used, much less amount of replications would be suffi-

cient to run simulations. In our dissertation, the second simulation method is common

random numbers, probably the most useful and popular variance-reduction technique

of all.
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The basic idea of common random numbers is to compare the alternative con-

figurations under similar experimental conditions. In that case, we know that any

observed differences in performance are due to the configuration differences rather

than to fluctuations of the experimental conditions - actually the variance of input.

Similar as shown in Appendix B.1, we also test single physician practices with P/S

ratios to be 4/20, 8/16, 16/8, and 20/4, based on common random numbers. For each

value of Np under same demand ratio, we use same seeds to run simulations, that is,

the amount of demands and the arrived time of each request are all fixed under same

demand ratio. Keeping the generated random inputs same to run simulations could

significantly reduce the variance of output, even with a small amount of replications.

We test six different number of replications under this method - 50, 100, 200, 500,

1000, and 2000, and compare the expected revenue vs. Np under different number of

replications in .

From Figure B.5 - Figure B.8, we observe that, under any demand ratios, the

output of expected revenue are converged well for any given Np when the number of

replications is larger than 1000. Meanwhile, we could always observe a smooth curve

even under a small amount of replications, like 100. In other words, the variance of

output are controlled well even under a small amount of replications, when we run

simulations under same seeds.
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Figure B.5. Revenue vs. Number of replications : single physician 4/20, 100%
workload under same seed

Figure B.6. Revenue vs. Number of replications : single physician 8/16, 100%
workload under same seed
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Figure B.7. Revenue vs. Number of replications : single physician 16/8, 100%
workload under same seed

Figure B.8. Revenue vs. Number of replications : single physician 20/4, 100%
workload under same seed

Generally speaking, if we run simulations under same seeds, 1000 replications are

sufficient large to obtain a good estimate of the output of simulations, which could

help to reduce computer time a lot.
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