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ABSTRACT

Synthesis and Characterization of
Polybutadiene-Containing Polyurethanes

February 1981

Mark B. Rossman

B.S, - University of Massachusetts
M.S. - University of Massachusetts

Directed by: Prof. William J. MacKnight
Prof. Robert W. Lenz

Several segmented polyurethanes have been synthesized,

based on a variety of hydroxyl-terminated polybutadienes

(HTPB) , two of which included a free radically polymerized,

branched polybutadiene with an average functionality of 2.1,

and a hydrogenated derivative. The third was an anionically

polymerized, high vinyl content polybutadiene with an aver-

age functionality of 1.9. Polyurethanes were prepared in

bulk, without added catalyst, by a two-step process, where

first the HTPB was endcapped with an excess of 2,4-toluene-

diisocyanate followed by chain extension by 1 , 4-butanediol

.

Series of samples of varying hard segment (urethane) con-

tent were prepared by this method.

Structure-property relationships for these materials

were studied by mechanical, thermal, and spectroscopic

methods. Results indicated that the polyurethanes were well

phase separated. The complete absence of hydrogen bonding

within the soft segments, due to the all hydrocarbon na-

ture of the butadiene backbone, promotes this phase sep~

iv



aration. In this way, the extent of hydrogen bonding,

which occurs only in the hard segment domains, is an in-

dication of the degree of phase separation in these sys-

tems .

Synthesis of model hydroxy-telechelic prepolymers via

a Grignard coupling reaction was also investigated. This

novel route to linear, difunctional oligomers showed some

success , and furthur modification of the procedure may pro

duce materials suitable for preparation of polyurethanes

.
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CHAPTER I

INTRODUCTION

Since their development in Germany during the 1920 's

and 1930' s, the polyurethanes have become one of the most

rapidly growing classes of materials today. Two major

factors leading to this growth are the wide range of ap-

plications and versatility of these polymers. Formulations

for fibers, foams, coatings, plastics, and elastomers are

available, based on a wide range of raw materials and com-

ponents. It has been estimated (1) that polyurethane de-

mand in the western hemisphere alone will grow 9% annually

over the next five years . Solid polyurethane elastomers

are widely utilized as engineering materials due to their

good toughness, wear properties, tear strength, and abra-

sion and chemical resistance. This work is concerned with

one particular class of these polyurethane elastomers.

The basic chemistry of the polyurethanes is that of

the highly reactive isocyanate group. Their reaction with

active hydrogen-containing compounds such as alcohols or

0
ii

amines, leads to the formation of urethane, -N-C-0- ,
or

I

H

0
ii

urea, -N-C-N- grout) s ,
respectively. For the case of poly-

I I

H H
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functional reactants
,
high polymers containing urethane

and/or urea segments are produced. Other important reac-

tions are also possible. Reaction of isocyanate with water

produces an amine and carbon dioxide (eq. 1), the latter

R-N=C=0 + H
20 > R-NH

2
+ C0

2 (1)

being incorporated as a blowing agent formed in situ in

a typical foam formulation. Excess free isocyanate can

react with active hydrogen in already formed urethane and

urea groups to form allophanate (eq.2) and biuret (eq. 3)

0 0
ii

ii

-N-C-O- + OCN-R > -N-C-O- (2)

I I

H C=0
I

N-H
I

R

0 OH
•

ii
"I

-N-C-N- + OCN-R > -N-C-N- (3)

I I
I

H H C=0
I

N-H

linkages, respectively. Dimerization and trimerization is

also possible, especially in the presence of specific cat-

alysts (eqs. 4 and 5).



0
II

c
/ \

2R-NC0 > R-N^ N-R (4)

C

it

0

R
I

N

3R-NC0 0=C ^0=0 (5)
I I

R-N N-R
\ /

C
ii

0

In most cases
,
homopolymers produced from the reac-

tion of diisocyanates with diols are not the most useful

po lyurethane s . Instead, block copolymers which incorporate

moderate molecular weight polyols in the polymer backbone

are used. The most common of these are hydroxyl- terminated

polyethers and polyesters with molecular weights in the

range from about 1000 to 10,000. These usually liquid poly

ols are produced as intermediates in the polyurethane syn-

thesis. Some typical polyols are shown in figure 1. Two

systems are generally used to prenare polyurethanes of this

type. In the two-shot method, the polyol is first end-

capped with an excess of the diisocyanate to give an iso-

cyanate end-capped prepolymer, This prepolymer is then

converted to high molecular weight by use of a low molec-

ular weight diol or diamine chain extender. In the one-
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POLYESTERS

0 0
II

II

HO-4-C- (CH
2 ) 4

-C-0-CH
2
CH

2
-0-^rH

Spandex, Lycra

POLYETHERS

:

HO- (CH2 ) 4-0-^-fl

Polytetramethylene oxide (PTMO)

CH -O-^-CH CH-0-4—(-CH.CH
o -0-^—

H

6 ^| X Z Z y

CJH -O-f-CH CH-0-) ^-CH CK -0-4- H
2

|

x 2 2 v

ch
? -o-£-ch 9ch-o-)—(-ch 9 ch 0 -o-)- h* i-

i

X 2 2 y
y

Polypropylene oxide endcapped with polyethylene
oxide (block copolymer) ; initiated with glycerol

Fig, 1, Typical polyols used in polyurethane synthesis.



shot method, polyol, diisocyanate
, and chain extender are

mixed together in one step. Such a system is used in the

reaction injection molding (RIM) process now used commer-

cially, in which polyol and chain extender stored within

one chamber are mixed with diisocyanate and catalyst stored

in another chamber. The reactions are typically catalyzed

by tertiary amines or organotin compounds. By proper

choice of catalyst, side reactions can be controlled.

Catalysts for isocyanate reactions have been reviewed (2)

.

Urethane elastomers so produced are segmented poly-

mers consisting of alternating hard and soft blocks. The

hard blocks are formed in the chain extension step where

sequences of diisocyanate and diol or diamine chain ex-

tender are built up (eq . 6), The soft blocks consist of

0 0
ii ii

OCN-R-NCO + HO-R'-OH > 4-R-N-C-O-R' -O-C-N-)- (6)

H H

the long, flexible polyol chains. The combination of the

usually amorphous, flexible soft blocks with the rigid,

sometimes crystalline hard blocks gives rise to many of

the properties of these materials

.

It is now generally accepted that many of the prop-

erties of these polyurethanes are due to microphase sepa-

ration of the hard and soft domains (3) . The rigid hard

domains, dispersed in a soft segment matrix, serve to rein-

force the elastomeric matrix by acting as tie down points
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or filler particles. In this way, the elastomer behaves

like a crosslinked rubber at temperatures up to the soft-

ening point of the hard segment domains. Above this point,

thermoplastic flow is possible in the case of linear poly-

urethanes

.

Because of the diversity of components which are used

for producing po lyurethanes , there is a large number of

different combinations of components which can be used, An

almost endless array of systems consisting of different

polyols, diisocyanates , and chain extenders is possible.

Of these, some are more important than others, of course.

Most of the previous work on polyurethanes has been con-

cerned with systems incorporating a polyether or polyester

soft segment, these materials being the most important

commercially. Of the available diisocyanates, 4,4' -di-

phenyl -methane diisocyanate (MDI) and toluene diisocyanate

(TDIj 2,4 and 2 , 6-isomers) are the most common of the aro-

matic diisocyanates (fig, 2) and have received the most at-

tention. A variety of techniques have been used to study

the properties of MDI based polyurethanes (4 - 7) ,

Much of the previous work on segmented polyurethanes

has dealt with materials based on symmetrical diisocyanates,

such as MDI and 2,6-TDI, Schneider and others (8 - 11)

have studied polyurethanes based on toluene diisocyanates

to determine the effects of asymmetric placement of iso-

cyanate groups on polyurethane structure and properties,
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ISOCYANATES

:

OCN-f CH_>- NCO
^ 6

CH CH

Hexamethylene
diisocyanate

4,4' -diphenylmethane
diisocyanate (MDI)
(also polymeric
and saturated
forms)

Toluene diisocyanate
(TDI - two isomers)

MC0

2,4 2,6

CHAIN EXTENDERS

HO-4 CH )— OH
2 4

1 ,4-butanediol

H0-(- CH )— OH
2

2

H
2
N-4 CH

2>y
NH

2

Ethylene glycol

Ethylene diamine

CH
2
CH

2
CH

2
-OH

CH
2
CH

2
CH

2
-OH

Hydroxy propyl aniline

Fig. 2, Common diisocyanates and chain extenders
used in polyurethane synthesis.
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Using the two isomers of TDI
, 2,4-TDI and 2,6-TDI, samples

with hard segments containing asymmetric and symmetric

isocyanate placement, respectively, were prepared. It

was found that the 2,6-TDI samples showed crystallinity in

the hard segment, while the 2,4-TDI samples did not. In-

frared analysis (9) was used to determine the extent of

phase separation and the role of hydrogen bonding in deter-

mining properties. It was shown that the 2,4-TDI samples

showed extensive phase mixing and poorly defined domain

structure due to the amorphous nature of the hard segments.

Dynamic mechanical studies of similar samples were done by

Senich and MacKnight (12). In all of these cases, inter-

urethane hydrogen bonding plays a part in the organization

of the hard segment domains. An interesting question which

arises is to what extent do hydrogen bonding and phase sep-

aration affect the properties of these materials.

In recent years , there has been increasing interest

in segmented polyurethanes based on polybutadiene soft seg-

ments. The low moisture permeability (13) of these materi-

als makes them more suited for certain applications than

the more conventional polyether or polyester based poly-

urethanes, despite inferior abrasion resistance and ten-

sile and tear strength (14) . One useful application of

the polybutadiene-based materials is as electrical potting

and encapsulating compounds (13) ,

In light of the earlier work on phase segregated poly-



urethane systems already referred to, one very interesting

feature of the polybutadiene-containing polyurethanes is

the complete elimination of hydrogen bonding to the soft

segment due to the hydrocarbon nature of the butadiene

backbone. By restricting hydrogen bonding to the hard seg-

ments only in this way, phase segregation is promoted. As

such, these materials provide a system for studying the role

played by microphase separation in determining polyurethane

properties, in the absence of inter-phase hydrogen bonding.

Many other factors which would also affect polyure-

thane properties have been investigated. Seefried and

others have done studies on the variation of soft segment

molecular weight for MDI polyurethanes with polyester soft'

segments (15, 16). Mechanical studies of the effects of

composition on relaxation properties of MDI based polyure-

thanes were done by Kuh and Cooper (7) , Studies have also

been done on polyurethanes with hard blocks of controlled

molecular weight distribution and no hydrogen bonding (17)

.

Legasse has done studies of the morphology and transition

behavior of butadiene based polyurethanes (18) . The influ-

ence of butadiene soft segment molecular weight on mechani-

cal properties of segmented and nonsegmented polyurethanes

has been reported by Ono and coworkers (19)

,

Although extensive studies have been carried out on

segmented polyurethanes, relatively little work has been

done with polybutadiene-containing polyurethanes, Hydroxy-
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telechelic polybutadienes have been in existence, and

their synthesis and applications have been reviewed (20) .

Studies of polybutadiene based polyurethanes have been

carried out by Ryan (21) , and their applications have been

investigated (13, 20, 21).

This work represents part of a fundamental study con-

cerning the effects of composition and structure on the

properties of segmented polyurethanes. The systems inves-

tigated consisted of hydroxyl-terminated polybutadiene

(HTPB)
, 2,4-toluene diisocyanate (TDI), and 1 , 4-butanediol

.

As already mentioned, the incorporation of a hydrocarbon

soft segment restricts hydrogen bonding to the hard seg-

ments, thereby promoting phase separation. Use of the un-

symmetrical 2,4 isomer of TDI reduces the possibility of

crystallinity in the hard segments, which along with the

amorphous nature of the soft segment, eliminates any in-

fluence of crystallinity on properties. Therefore, in the

ideal case of a linear polyhutadiene-containing polyure-

thane, with the absence of inter-phase hydrogen bonding and

crystallinity, properties will depend on the extent of

phase separation and the organization of hard and soft

domains

,

Polyurethanes were prepared of varying hard and soft

segment concentrations, and were characterized by various

techniques including dynamic mechanical and tensile test-

ing, differential scanning calorimetry, and fourier trans-
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form infrared spectroscopy, as well as other methods when

applicable

.



CHAPTER II

SYNTHESIS AND CHARACTERIZATION OF HYDROXY -TERMINATED

POLYBUTADIENE OLIGOMERS AND DERIVATIVES

Introduction

Background information . As has already been stated, the

incorporation of a polybutadiene soft segment in a seg-

mented polyurethane leads to many desirable characteristics

in the elastomer. The most important for this study is the

restriction of hydrogen bonding to the hard segments only.

The all hydrocarbon backbone will also result in better

hydrolytic stability than polyether or polyester based mat-

erials as well as improved low temperature properties

.

Polybutadienes in general can be synthesized by a

number of polymerization methods and processes (20) . To

be useful as a raw material for polyurethane production,

certain characteristics are required. The two most impor-

tant are perhaps moderate molecular weight (less than

10,000, typically) and hydroxyl (or amine) functionality.

The two most useful methods for preparation of hydroxy-

telechelic polybutadienes are free radical and anionic

polymerization processes, For the purposes of this study,

several additional characteristics are desired for the soft

segment. To minimize effects due to variation in structure

along the butadiene backbone, a simple, well defined struc-

12
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ture is desired for such a model study. First, the pre-

polymer should be linear and preferably of all 1,4-addition

products (from here on, the term prepolymer shall refer to

any HTPB)
. Any long branches or pendant vinyl groups from

1,2-addition of butadiene monomer will have a definite ef-

fect on chain mobility and soft segment T . Ideally, these

materials should contain exact difunctionality which would

allow preparation of linear polyurethanes . Any excess

functionality, which is introduced by branching, results in

chemically crosslinked polyurethanes. In this case, the

materials are thermosetting and characterization is ex-

tremely complicated. Molecular weight and molecular weight

distribution of the hard and soft segments are also impor-

tant factors in determining polyurethane properties (17)

.

A narrow molecular weight distribution in the soft segment

is most desirable in this case.

In general, the characteristics desired for the poly-

butadiene soft segments in this work are those which pro-

duce the least complicated systems to be studied. In the

ideal case, the prepolymer should be linear with exact di-

functionality, narrow molecular weight distribution, and

all 1,4-addition butadiene segments (preferably trans). Un-

fortunately, it would be extremely difficult if not impos-

sible to prepare such a model prepolymer, and so available

materials must be used or new materials synthesized to ap-

proach the characteristics of a model soft segment.
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Commercial materials . Of the commercially available

hydroxy-terminated polybutadienes
, two were found to be

useful and were used in the synthesis of phase separated

polyurethane s
.

In each case, some desired properties were

available at the expense of others, as will be seen.

ARCO Poly-bd
. HTPB produced by free radical polymer-

ization with hydrogen peroxide initiator was obtained from

The ARCO Chemical Company. Due to the free radical process

used in the manufacture, transfer reactions lead to branch-

ed polymers (24) and result in an average functionality

greater than two. This is especially the case in the pres-

ence of high initiator concentration, as is needed to ob-

tain the moderate molecular weight desired. In addition,

there is little control over microstructure and molecular

weight distribution will be rather broad in these polymers.

The polyurethanes prepared from these materials will be

crosslinked and thermosetting, and therefore will most

likely be insoluble and difficult to characterize,

JSR HTPB . Anionically polymerized HTPB. was obtained

from The Japan Synthetic Rubber Company, In this case, the

prepolymer was linear, and soluble polyurethanes could be

prepared which are free of urethane crosslinks,

Hydrogenation of HTPB , In addition to using these

commercial oreoolvmers as received, catalytic hydrogena-

tion of the ARCO HTPB was carried out using palladium on

activated carbon catalyst. The hydrogenated prepolymer,
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as well as the two commercial HTPB's, were converted into

polyurethane s , as will be discussed,

Grignard synthesis . In an attempt to prepare prepolymers

that are more well defined than those obtained commercially,

the synthesis of linear, difunctional
, hydroxy-telechelic

hydrocarbon oligomers was carried out. This procedure is

based on a Grignard coupling reaction of ct , o> -dibromo-n-

alkanes using copper catalysts, Yamamoto and others (.26,

27) have reported the use of transition metal compounds to

catalyze the coupling of aromatic and aliphatic dibromo

compounds to give linear polyphenylene (eq. 7] and poly-

Br-(^^)-Br + Mg > Brn^^MgBr J?L>

methylene (eq. 8) type polymers, Preparation of several

Br 4 CH 9^~ Br + Mg Br~4 CH9 }- MgBr ^ -(-CH9}_ (8)
L n L n ^ xn

(n = 5 - 12)

linear polymethylenes was reported. In each case, ir spec-

tra were shown to be essentially that of high density poly-

ethylene. Also, analysis for bromine showed that both ends

of the polymer chains were bromine terminated. This method

was thereby seen as a possible route to linear, difunction-

al hydroxy-telechelic prepolymers.

A modification of this method was attempted to prepare
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a linear polymethylene with hydroxyl endgroups . Instead

of using an A-B type polycondensation as described by

Yamamoto, an A-A, B-3 system was used in hopes of producing

hydroxyl functionality. The reaction scheme used was an

extension of that described previously, as shown in figure

3. The product, a linear, hydroxyl -terminated polymethy-

lene, would correspond to a completely hydrogenated , linear

polybutadiene . An attempt was also made to produce an oligo-

mer with unsaturation by starting with an unsaturated dibromo

compound, 1 , 4-dibromo-2-butene

.

Experimental

Characterization of commercial HTPB ,

NMR and IR . Proton and carbon-13 nmr of the poly-

butadienes were obtained on a Perkin Elmer R-32 90 MHz

and a Varian CFT-20 spectrometer, respectively. Infrared

measurements were made on a Nicolet 7199 Fourier Transform

Infrared spectrometer. All nmr measurements were made in

chloroform solution with TMS internal reference. IR spectra

were obtained from films cast from chloroform solution onto

KBr disks

.

Functionality determination . The hydroxyl values of

the HTPB's were determined by a procedure suggested by ARCO

Chemical Co. (25). The hydroxyl groups were acetylated with

an excess of acetic anhydride in pyridine. The amount of

reagent which reacts with the sample was determined by ti-
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Br^CH^Br + 2Mg > BrMg (CH^>-.^MgBr

xs BrMg^CH ) MgBr + 3r<CH 0>- Br
Cu(PPN)9

1 10 2 10

BrMg 4CH
0)—MgBrz n

BrMg<CH
2
^-MgBr + V7 > BrMg-0<CH

9)— O-MgBr
^ n+4

CH.OH—v > H0<CH 9 > OH +
L n

Mg(OCH
3
)Br

Figure 3. Reaction scheme for synthesis of hydroxyl-
terminated polymethylene via a Grignard
coupling reaction,
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trating the excess hydrolyzed anhydride and resulting

acetic acid with alcoholic potassium hydroxide. The hy-

droxyl value was reported as the milliequivalents of hy-

droxyl groups per gram of material. The average function-

ality was then determined by multiplying the number of

equivalents per gram by the molecular weight of the HTPB

.

For each HTPB, three samples and one blank determination

were run

.

Hydrogenation of ARCO R-45H HTPB .

Materials
. ARCO R-45M HTPB was used as received..

Spectrophotomic grade toluene (Fisher Scientific Co,) was

used without furthur purification. Palladium on activated

carbon catalyst was obtained from Alfa Chemical Co, and

was used as received,

Procedure . Hydrogenation was carried out at room

temperature in a Parr 2 litre high pressure reactor bomb,

100 g. of ARCO R-45M HTPB was dissolved in 500 ml, of

toluene in a 2 litre glass reaction sleeve. Approximately

0.5 g. of palladium on carbon catalyst was added and the

sleeve was placed in the bomb chamber, which was equipped

with a mechanical stirrer and gas inlet and outlet valves.

The bomb was assembled and was then connected to a hydrogen

cylinder. The reaction sleeve was flushed for 15 minutes

with a slow flow of H« gas. The bomb was then pressurized

with H
2

to a starting pressure of 47Q psi. The stirrer

was engaged and the reaction was allowed to run for about
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20 hours. Initially, a substantial pressure drop was ob-

served in about the first two hours, after which the pres-

sure decreased at a slower rate. The stirring was stopped

when the pressure reached 140 psi, and the remaining gas

was vented out of the reactor. The bomb was dismantled,

and the reactor sleeve was allowed to stand for a day to

allow most of the catalyst residues to settle. The solu-

tion was then filtered by suction through Celite filter

aid to remove the catalyst residues, and the solvent was

then removed under vacuum on a rotary evaporator, isolating

the hydrogenated prepolymer.. The product was noticeably

more viscous than the starting material. The yield was

91.9 g.

Characterization of hydrogenated HTPB , The extent of

hydrogenation was determined by proton nmr (28), The frac-

tion of butadiene units hydrogenated, F, was calculated as:

F = 1 - 2^

1 + 2R
,

where R is the total integral due to the protons on resid-

ual double bonds (5.4 ppm) divided by the total integral

due to methylene groups CI . 3 and 2.0 ppm). Proton nmr spec-

tra of the hydrogenated and non-hydrogenated prepolymers are

shown in figure 4. Functionality determination and infrared

analysis were also carried out,

Grignard coupling reaction of d , co-dibromoalkanes ,

Materials. Tetrahydrofuran (Aldrich Chemical Co.,
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99+%) was dried over calcium hydride for 24 hours and then

distilled and stored under argon, 1 , 10-dibromodecane and

magnesium (Aldrich) were used as received. The catalyst,

CuBr(PPh
3

)
2

(PPh
3

= triphenyl phosphine) was prepared as

described previously (29) . Ethylene oxide (Linde Div.

,

Union Carbide Corp.) was used as received, dispensed as a

liquid from a pressurized cylinder.

Procedure . 3.3 g. (0.13 mole) of magnesium turnings

were placed in a three-neck round bottom flask equipped

with a mechanical stirrer, reflux condenser, and dropping

funnel. All glassware had been oven dried overnight prior

to setting up. Argon was passed through the system, during

which time the whole apparatus was flamed out. When cool,

20 g. (0.067 mole) of 1 , lQ-dibromodecane was added to the

dropping funnel, followed by addition of 100 ml. of THF,

the transfer of THF being done by use of a double-ended

transfer needle to prevent any exposure to air of moisture.

The dropping funnel was shaken to dissolve the monomer in

the THF,

A small amount of the THF solution of monomer was then

added to the magnesium in the flask, In some cases, reac-

tion started with stirring only, as evidenced by the evolu-

tion of heat and small bubbles appearing on the surface of

the magnesium. When the reaction would not start on its

own, the flask was externally warmed by use of a heat gun,

after which the reaction would begin and continue on its ow
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With the reaction underway, THF would begin to reflux, and

the monomer solution was added dropwise to the reaction mix-

ture with stirring, the rate of addition maintained about

the same as the rate of THF reflux. During this time, the

reaction mixture turned slightly yellow. When all monomer

had been added, the mixture was stirred for an additional

three hours
, after which heat was applied to continue re-

fluxing of THF for another three hours. The flask was then

allowed to cool to room temperature, maintaining argon flow.

Only a small amount of unreacted magnesium metal remained.

At this time, 15,7 g, CO, 052 mole) of 1 , 10-dibromo-

decane was dissolved in 100 ml, of THF in the dropping fun-

nel as before. 0.10 g. of CuBrCPPh^^ was added to the

reaction mixture followed by addition of the monomer solu-

tion from the dropping funnel with stirring under argon

flow. After a short while, the mixture turned dark, and

small amounts of white precipitate could be noticed, The

polymerization was allowed to continue overnight. The mix-

ture was then heated to reflux, at which point the pre-

cipitated polymer dissolved.. An inlet tube extending be-

low the level of the reaction mixture was added to the

flask, the other end of which was connected to an ethylene

oxide cylinder.. A dry ice/acetone cold finger was added

to the top of the condenser, A small amount of ethylene

oxide was allowed to pass through the solution, followed by-

addition of 5 ml. of methanol, The reaction mixture was
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stirred as it cooled to room temperature and was then pour-

ed into 800 nl. of methanol to give a fine, white precip-

itate. The precipitate was collected over a glass filter,

and was then reprecipitated from hot toluene. The product

was isolated by suction filtration and was washed several

times with methanol, then dried under vacuum at 60°C over-

night to give a fine, white powder. The powder had a melt-

ing range of 93° - 103°C, and the yield was 6,9 g. (41%

yield, based on the amount of carbon taken into the poly-

mer) .

ANAL: Calc. C: 85.7, H; 14,3 Found C; 81,6, H; 14.3, Br i .86

Results and Discussion

Commercial HTPB . The properties of the two commercial

HTPB's, whether supplied by the manufacturer or indepen-

dently determined, are presented in tables 1 and 2, In

the case of the ARCO R-45M, the hydroxyl value of 0,75

meq./g. corresponds to an average functionality of 2,1

hydroxyl groups per molecule, using the molecular weight

given as 2800. This excess functionality leads to the pro-

duction of polyurethanes which contain urethane crosslinks.

The microstructure consists of both cis and trans 1,4-addi-

tion products as well as 1 , 2-sequences (fig, 5a), as con-

firmed by ir analysis (14)

.

The JSR HTPB, with molecular weight given as 2120,

was found to contain approximately 55% 1,2 -addition se-
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Molecular weight 2800

Hydroxyl value 0.75 meq
. /g

.

Average functionality 2.1

Microstructure : cis-1,4 20%

trans -1 ,

4

607o

vinyl-1 ,

2

20%

Table L. Properties of ARCO R-45M HTPB

Molecular weight 2120

Hydroxyl value 0.91 meq
. /g

.

Average functionality 1.9

Microstructure: cis
& 1,4

trans
45%

vinyl-1 ,

2

55%

Table 2. Properties of JSR HTPB
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quences from ir analysis (30) and nmr (fig. 6 ) , The hydrox-

71 value was determined to be 0.91 meq./g,, which corresponds

to an average functionality of 1,9 hydroxyl groups per mol-

ecule, which may have been reasonably expected for an an-

ionic polymerization. In this case, the polybutadiene was

linear, and polyurethanes devoid of chemical urethane

crosslinks could be produced. The JSR HTPB structure is

shown in figure 5b.

Hydrogenated HTPB. The product from the hydrogenation of

the ARCO R-45M was much more viscous than the starting mat-

erial, evidenced by a greater resistance to flow, almost

to a point where it could be called a soft, sticky solid.

It was also somewhat opaque. The functionality was found

to be the same as the non-hydrogenated material (31) , as-

suming the slight change in molecular weight due to the

hydrogenation to be negligible. The extent of hydrogena-

tion was determined by two methods. An estimate of hydro-

gen consumed in the reaction was made based on the pres-

sure drop in the system, This was suspected to be unre-

liable due to possible leakage of during the reaction,

A more definite determination, made using proton nmr (28)

,

showed that 65% of the butadiene units were hydrogenated,

Infrared results (14) showed that hydrogenation preferen-

tially took place in the pendant vinyl groups, as could

be expected since these groups should be more accessible

for reaction. This is consistent with the results of
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Mango and Lenz
,
who showed that the rate of hydrogenation

of the pendant vinyl double bonds was greater than that of

the internal double bonds (32). In addition, it was seen

that hydrogenation in the 1,4-units preferentially took

place in the cis units.

The hydrogenated product x^as actually a copolymer con-

sisting of polymethylene
, poly-l-butene , and residual poly-

butadiene (cis and trans 1,4 and vinyl 1,2) sequences (fig.

7) . Crystallization may be possible if long enough se-

quences of methylene units are present . Some evidence of

crystallinity was seen by ir measurements (14) , but the

random placement of the hydrogenated vinyl groups probably

precludes any extensive crystallinity in these prepolymers

.

Grignard synthesis . The product from the Grignard coupling

reaction of 1 , 10-dibromodecane was a white powder with a

melting range of 93° - I03°C, 1 , 10-dibromodecane was cho-

sen as monomer because this starting material gave favor-

able results in the original work, and it was readily avail-

able. Samples were also prepared by the same method as

used by Yamamoto for comparison. The melting ranges of

these products were generally in the same range as that for

the hydroxyl- terminated samples. In each case, the ir

snectrum of the products was essentially that of high den-

sity polyethylene, showing bands at 2910, 2845, 1470, 146Q,

725, and 715 cm" 1 (fig, 8). In addition, a band in the OH

stretch region was evident for the hydroxyl- terminated sam-
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pie. This result, along with microanalysis for bromine,

showed that at least some of the polymethylene molecules

were hydroxyl -terminated
. The molecular weight of the sam-

ples was estimated to be in the range of 2000 to 3Q0Q, based

on end group analysis. The exact extent of endgroups bear-

ing hydroxyl groups is still open to question, and whether

or not these materials may be useful for polyurethane syn-

thesis is yet to be determined.

Conclusions and Suggestions for Furthur Work

Despite the lack of certain desirable properties in

the commercially available HTPB's, these materials provide

a potentially useful component for polyurethane systems.

Despite the inferior mechanical properties realized in the

final cured polymer, these materials still show a number

of advantages over polyether and polyester based polyure-

thanes, as has already been noted.

It appears that, of the conventional polymerization

methods, the anionic mechanism is potentially the most use-

ful for synthesizing model soft segments. The anionically

polymerized JSR KTPB closely approaches the characteristics

of such a model compound. Choice of an initiator system

which promotes 1,4-addition of butadiene, if possible,

would solve many of the current problems,

The effect of hydrogenation of the prepolymer is

still under investigation, Theoretically, hydrogenation
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should serve to improve the oxidative stability of the

cured polyurethanes by reducing the amount of unsaturation

present. Furthur work should be done to produce a series

of prepolymers of varying extent of hydrogenation
, perhaps

using a different catalyst system than that used here. A

facile reaction at room temperature would be most desirable

to minimize any degradation of the prepolymer or loss of

functionality.

The Grignard synthesis, as a novel approach to tailored

prepolymers, could potentially be used to produce model

compounds on a laboratory scale. Of great interest would

be polymerization of an unsaturated monomer, such as 1,4-

dibromo-2-butene , which by this method would give linear,

1 , 4-polybutadiene (eq. 9). Experiments were attempted us-

Br-CH
2
CH=CHCH

2
-Br BrMg-CH

2
CH=CHCH

2
Br ft

1
» (9)

4 CH 0 CH=CHCH 0>^ ^ n

ing this monomer, with inconclusive results. An indistin-

guishable brown, viscous mass resulted, giving some indica-

tion that some coupling and build-up of molecular weight

may have been accomplished. It appears that in the presence

of the catalyst, side reactions between Grignard groups and

unsaturated groups of the monomer may occur, thereby term-

inating the coupling reaction and neutralizing reactive

Grignard groups. The initial Grignard reaction between
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the monomer and magnesium should proceed without much trou-

ble to a reasonable extent, as has been shown in the similar

case of allyl bromide (33) . In addition, by co-reacting the

unsaturated monomer with a saturated dibromoalkane
,
oligo-

mers could be synthesized which correspond to hydrogenated

polybutadienes of various extents of residual unsaturation

,

up to 1007=, hydrogenation , By choice of proper components,

lengths of saturated sequences between unsaturation points

could be controlled (eq , 10),

BrCCH V Br M£ > BrMg^CH V MgBr CIO)
2 x 2 x

BrCH
2
CH-CHCH

?
Br

> -f^cR (CH 9 CH=CHCH 9
-

cu L x yln



CHAPTER III

PREPARATION AND CHARACTERIZATION OE POLYURETHANES

Introduction

Several segmented nolyurethane films were prepared

by a two-step batch reaction process. The method used is

based on that described by Pigott and coworkers (34) with

minor variations. The components used included one of the

commercial HT^B oligomers or the hydrogenated derivative,

2, 4- toluene diisocyanate , and 1 , 4-butanediol . In all sam-

ples, no catalyst was added to the reaction mixture to

eliminate any presence of catalyst residues in the final

polymer.

In the first step of the preparation, the respective

HTPB was endcanped with an excess of diisocyanate, the

amount of the excess determining the concentration of hard

segment in the final nolymer. As such, series of samples

were nrepared for each prepolymer by varying the molar ratio

of NCO to OH eauivalents in the HTPB, usually in 4:1, 6:1,

and 8:1 ratio increments. The final composition contained

a 5T, molar excess of isocyanate over total hydroxyl groups

(from both HTPB and diol chain extender) to promote al-

lophanate formation.

In the second step, the isocyanate end-capped pre-

polymer was chain extended with 1 , 4-butanediol to produce

34
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the final cured polyurethane . In all, three series of

polyurethane samples were prepared, one each based on the

ARCO HTPB, the JSR HTPB , and the hydrogenated HTPB . Each

sample of the three series was characterized by various

methods, including dynamic mechanical and tensile testing,

differential scanning calorimetry, and fourier transform

infrared spectroscopy.

To aid in the infrared analysis , a sample consisting

of pure hard segment was also prepared from TDI and butane-

diol in a solution polymerization. In addition, a repre-

sentative polyurethane sample was prepared from a deuter-

ated butanediol, DCKC^^-^OD . This sample has the unique

characteristic of containing deuterium in the urethane

groups contained completely in the hard segment only (fig.

9) ,
assuming no exchange of hydrogen for deuterium takes

place. The urethane deuterium which was present in the

chain extender can be differentiated from the urethane hy-

drogen which was originally present in the prepolymer by

ir analysis. It is possible that in this way, furthur

analysis could be performed concerning the nature of the

phase boundaries in these systems.

Experimental

Preparation of polyurethane films .

Materials . Liquid hydroxyl-terminated polybutadiene

(HTPB) prepolymers were obtained from ARCO Chemical Co.
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(R-45M) and Japan Synthetic Rubber Co. (JSR) , These ma-

terials were used as received, and with the ARCO R-45M,

one hydrogenated derivative was used,

2,4-toluene diisocyanate (Aldrich Chemical Co,) con-

sisted of 97% of the 2, 4-isomer and was distilled under

reduced pressure, then stored under nitrogen before use.

1,4-butanediol CAldrich) was used without furthur purifi-

cation .

Procedure
, For a typical sample, 10,6 g. (Q.01 eq.)

of JSR HTPB was accurately weighed into a 100 ml, reaction

kettle which was equipped with a paddle stirrer and vacuum

connection. The kettle was assembled and placed into a

controlled constant temperature oil bath. The prepolymer

was then degassed and the temperature was raised to 12Q°C,

Degassing was continued under vacuum at 12Q°C with stirring

for one hour

.

5.4 g. (0.06 eq.) of 2,4-TDI was accurately weighed

and added through a rubber septum into the reaction kettle

by syringe. To insure accurate weights of diisocyanate

(and diol chain extender)
;
the syringes used for transfer-

ring each component were weighed before and after the ad-

dition, to account for any material left in the syringe,

The amount of TDI added was determined by the desired hard

segment/soft segment ratio for the particular sample. The

endcapping reaction was carried out at 120°C with stirring

under constant nitrogen flow for one hour,
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When the endcapping step was complete, the temperature

was lowered to 80°C
, and 2,3 g, (0.05 eq

. ) of 1,4-b.utane-

diol, which had been accurately weighed, was added by

syringe. The amount of butanediol added was calculated to

allow for a 57, molar excess of NCO equivalents over the

total hydroxyl equivalents in the sample. This addition

was followed by rapid stirring of the reaction mixture

which, after a fex^ seconds, turned milky white. The reac-

tion kettle was then degassed briefly by applying vacuum

to remove any trapped gas , and the mixture was poured into

a teflon-lined mold, 15 mil thick, The sample was then

compression molded in air at 120°C for approximately 17

hours under slight pressure. All samples were allowed to

stand for at least one week in an inert atmosphere before

testing

,

Synthesis of pure hard segment ,

Materials . 2,4-TDI and 1 , 4-butanediol were the same

as used in the polyurethane film preparation. Dimethyl

sulfoxide and methyl iso-butyl ketone were used without

furthur purification,

Procedure . 2.5 g. (0.029 eq,) of 2,4-TDI was dissolv-

ed in 80 ml. of a 1:1 mixture (by volume) of DMS0 and methyl

iso-butyl ketone in a 250 ml, round bottom flask equipped

with a magnetic stirrer, thermometer, and argon inlet,

The flask was placed in an oil bath and the temperature was

raised to 75°C as argon was passed over the solution,
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1.2 g. (0.027 eq.) of 1 , 4-butanediol was added dropwise
to the solution with stirring. After the addition was

complete, the temperature was raised to 95°C and was main-

tained between 95°C and 100°C for three hours with contin-

uous stirring. A small amount of methanol was then added

to insure complete reaction of isocyanate, and the flask

was cooled to room temperature. The solution was poured

into 800 ml. of distilled water, resulting in the forma-

tion of two layers. After separating the layers, the pre-

cipitated polymer was filtered and washed several times

with methanol. The product was dried overnight under vac-

uum at 60°C to give a fine, white powder.

Measurements .

Dynamic mechanical analysis . Measurements were car-

ried out using a Vibron Dynamic Viscoelastometer (Toyo

Measuring Instrument Co.) model DDV II at a fixed frequen-

cy of 11 Hz. Samples were tested at a temperature range

from -130°C to 150°C with a heating rate of 1,5 degjmin.

under a dry nitrogen atmosphere

,

Tensile testing . Stress -strain data were obtained on

an Instron Model TM-SM table model universal testing in-

strument at an extension rate of 40 mm./min. Samples were

die cut from the polyurethane sheet 0.015 inches thick with

a gage length of 1.5 inches long and 0.12 inches wide. For

cyclic stress-strain experiments, a single sample was ex-

posed to increasing amounts of prestrain. The sample was
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extended by increments up to 20%, allowed to relax at

zero load for 5 minutes, extended to 40%, and so on..

Data was obtained at 0, 20, 40, 60, and 80% of the ex-

tension at break. All data reported are averages of at

least five tests on different samples.

Thermal analysis . Soft segment glass transition

temperature measurements were made with a Perkin Elmer

DSC-2, purged with helium and cooled with liquid nitrogen.

Runs were made on polymer samples of 15 mg , at a heating

rate of 2Q°C/min. and an attenuation of 2 meal, /sec. The

higher temperature runs were carried out on a DSC-2 equip-

ped with a two stage mechanical refrigeration unit.. Scans

were conducted from 24Q°K to 420°K at 2Q°C/min, with an

attenuation of 2 meal, /sec, Glass transition temperatures

were determined as the temperature corresponding to one

half of the increase in heat capacity at the transition,

Penetrometer analyses were also carried out using a Perkin

Elmer TMS-1 on samples of 50 mil thickness, with a probe

weight of 25 g, ,
heating rate of lQ°C/min, , and an attenua-

tion of 0,5 mil/inch, Transition temperatures were esti-

mated as the intersection of the two lines tangent to the

curve preceeding and following the region of softening.

infrared analysis
,

Spectra of the various prepoly-

mers were obtained from films cast from chloroform solu-

tion on KBr disks. In the case of the insoluble polyure-

thanes, a small amount of the reaction mixture was pressed
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between two KBr disks or teflon coated aluminum plates,

which in most cases produced films thin enough for spectro-

scopic analysis. Infrared spectra (400 - 4000 cm"
1

) were

obtained with a Nicolet 7199 Fourier Transform Infrared

Spectrometer. It is not this author's intention to discuss

the infrared analysis furthur, but only to make reference

to the results for completeness (14, 30)

,

Results and Discussion

In all, three series of polyurethanes were prepared,

one each based on the ARCO HTPB , the hydrogenated HTPB

,

and the JSR HTPB, Typically, each series consisted of

three samples of varying amounts of hard segment content,

as determined by the amount of excess TDI added. Using

the functionality of the respective prepolymer, the amount

of 2,4-TDI to add was calculated to produce ratios of NC0

equivalents to OH equivalents in the prepolymer of 4, 6,

and 8 to 1. The amount of diol chain extender to be added

was then calculated to produce an overall 5% molar excess

of isocyanate in the sample. The sample compositions and

corresponding hard segment (urethane) contents are shown

in table 3. A representative structure of a typical poly-

urethane is shovTn in figure 10, indicating hard segment

and soft segment components, the soft segment alternatively

consisting of either the ARCO HTPB, the hydrogenated HTPB,

or the JSR HTPB.
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The dissimilar reactivities of the isocyanate groups

in 2,4-TDI preclude the occurence of hard segment sequences

consisting 0 f only a single TD1 unit where each isocyanate

group has reacted with, one prepolymer molecule (fig, 11).

In the first step of the polyurethane synthesis, once the

more reactive isocyanate group (that which is para to the

methyl group) reacts with the hydroxyl of the polyol, the

reactivity of the remaining isocyanate group is greatly

diminished, therby preventing furthur reaction at this

stage (35). Therefore, after the first step is complete,

only isocyanate endcapped polybutadiene and free TDI are

present in the reaction mixture, with no real build up of

molecular weight.

In the second step of the synthesis, the chain exten-

sion step, molecular weight is built up by the reaction of

the short chain diol with both the isocyanate endcapped

polybutadiene and the free diisocyanate . The length of

the hard segment sequences will be determined largely by

the amount of excess free diisocyanate in the sample,

leading to the desired hard segment content (also referred

to as urethane weight per cent) , Due to a number of fac-

tors , it is most likely that the hard segment sequence

lengths will be polydisperse
,
ranging from one diol mol-

ecule reacted with two isocyanate terminated prepolymer

molecules up to hard segments consisting of several se-

quences of alternating TDI - butanediol units (fig. 11).
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It is also possible to have reaction leading to pure hard

segment, consisting of TDI and butanediol only. One rea-

son for these occurences is that the reactivity of a func-

tional group is most probably independent of the size of I
the molecule to which it is attached, as is the case in

typical step growth polymerizations (36) , Therefore, the

manner in which the different species of difunctional mol-

ecules react is essentially random, In addition, there is

a problem of incompatibility between the highly polar iso-

cyanate and the hydrocarbon soft segments. In this case,

insufficient mixing may lead to a separation of the two

phases before the reactive groups have completely reacted,

leaving some low molecular weight adducts consisting of

pure hard segment and unextended soft segment,

Polyurethanes based on ARCO HTPB . For the polyurethanes

prepared from the non-hydrogenated and hydrogenated ARCO

HTPB, all of the samples were found to be thermosetting,

as they were insoluble in the usual urethane solvents (DMSQ,

DMF, etc.). Since this indicates a rather complex network

for these systems, many useful characterization methods

were not possible, particularly those requiring dissolution

of the polymer.

Dynamic mechanical analysis . The results for the

dynamic mechanical and tensile properties of the HTPB (ARCQ)_

and the hydrogenated HTPB based polyurethanes are shown in

table 4. Figure 12 shows the temperature dependence of
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Figure 12. Temperature dependence of the storage
and loss modulus for (a) ARCO HTPB based polyurethanes

,

and (b) hydrogenated ARCO HTPB based polyurethanes.
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the storage modulus and loss modulus for the two series of

polyurethanes at each composition. In each case, a major

relaxation (ct) occurs, at about -74°C for the unsaturated

samples (fig. 12a) and at -69°C for the hydrogenated sam-

ples (fig. 12b), This transition is accompanied by a de-

crease in modulus from about 1000 to 10 MPa, and is as-

sociated with the glass transition of the soft segments.

It can be seen that this temperature is independent of

composition, and the of the butadiene in the polyure-

thane is only about 7°C higher than that of the free poly-

butadiene. These facts indicate that these systems are

well phase separated. A hard segment transition, which, was

evident in DSC data, could not be discerned from the dynamic

mechanical results.

Tensile testing . The results of tensile testing on

the two series of polyurethane films prepared from the ARCO

HTPB and hydrogenated HTPB are shown in table 4. In both

cases, the initial modulus increased, as seen in figure 13,

as the less mobile hard segments tended to establish, ri-

gidity in the sample. By the same means, the stress level

increased with hard segment content within each, series,

In addition, the ultimate elongation decreased with in-

creasing hard segment for both series.

With one exception, the initial modulus and stress at

break were higher in the hydrogenated HTPB based samples,

as was the ultimate elongation, This result indicates
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increased toughness in these materials. Cyclic Instron

tests indicated stress softening in these samples. This

type of behavior is typical of phase separated materials.

Thermal analysis . The soft segment T values for

the unsaturated polyurethanes were found to be -65°C to

-72°C by DSC and -68°C by TMA. Hard segment transitions

xvere evident at 35°C to 40°C and at 65°C to 75°C. The

presence of two hard segment T^*s may be due to domains

of different hard segment sequence lengths.

The soft segment Tg for the hydrogenated HTPB based

samples was found to -70°C, compared to a T of -81°C for
g

the original hydrogenated prepolymer.

Polyurethanes based on JSR HTPB . The samples prepared

from the JSR HTPB were found to be soluble in DMF at ele-

vated temperatures. This substantiated the fact that the

prepolymer was linear and therefore no urethane crosslinks

were present in the final cured polyurethane . Reversible

allonhanate crosslinks should be broken at the solution

temperatures (>80°C) . One characterization method made pos-

sible by the solubility of these materials was high resolu-

tion carbon-13 nmr at elevated temperatures. Unfortunately,

it was found that the polymer had undergone some degrada-

tion at the temperatures necessary for dissolution during

the long times needed to accumulate sufficient data for

acquisition of a spectrum. Attempcs were made using DMF

solvent with a D o0 external lock at 80°C with little success.



A total of six samples were prepared based on the JSR HTPB

ranging from TDI/OH equivalents in the prepolymer of 2:1

up to 10:1. The compositions are shown in table 3.

Dynamic mechanical and tensile testing . The dy-

namic mechanical and tensile results for the JSR HTPB based

polyurethanes are presented in table 5. For each sample

composition, a major relaxation occured at about -55°C to

-57 C, which is associated with the glass transition of the

soft segment. In addition, upper relaxations were noticed

in all but the lowest hard segment sample. The three sam-

ples of highest hard segment content (J-4, J-5, J-6) showed

two upper relaxations. This may be an indication that two

distinct sizes of hard segment domains are present as a re-

sult of differences in hard segment sequence lengths (fig.

11). Similar results were obtained from DSC measurements.

Perhaps the most important observation which can be

made from the stress -strain data shown in table 5 is the

occurance of a phase inversion, at which point the polyure-

thane goes from an elastomeric material to one which behaves

more like a brittle plastic. The sample with the highest

hard segment content (J-6) was most likely composed mainly

of a mixture of the hard and soft segment homopolymers

.

The phase inversion appears to occur at about 40% hard seg-

ment content. At this point, the system could be consider-

ed as going from rigid hard domains embedded in an amor

phous soft segment matrix to a system in which the hard
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domains become dominant in determining properties, At this

point, the material takes on the characteristics of a plas-

tic, as a greater concentration of hard segment is present.

Conclusions and Suggestions for Furthur Work

The poiyurethane films prepared from the various pre-

polymers in general appearance showed good clarity and

homogeneity. The method of evacuating the reaction kettle

after the. chain extension step was very effective for pro-

ducing films which were free of bubbles. There is still

a definite problem in mixing the chain extender with the

isocyanate endcapped prepolymer, as the incompatibility

between the two may very likely lead to incomplete mixing

before the reaction is complete. This could be a con-

tributing factor in producing a mixture of two homopolymers

as well as polydispersity in the hard segments, These

problems may be resolved by carrying out the polymerization

in solution, but in this case the structure and morphology

of the products would probably change drastically, The

final structure of the poiyurethane is also probably a

function of the reaction temperatures and times , and small

changes in either could alter the final properties.

In the case of each prepolymer used, the polyurethanes

produced showed evidence of phase separation based on the

mechanical and thermal data. The lack of phase mixin ffi

be attributed to the complete absence of interphase hydro

gen bonding, since crystallinity is not a factor in either
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phase. The JSR HTPB based polyurethanes could conceivably

be considered to be phase separated to a greater extent,

since influence of urethane crosslinks is not a factor as

it is in the ARCO HTPB based materials. This may be in-

dicated in part by the mechanical results, where the dis-

tinct hard segment (upper) transitions show a trend as hard

segment content increases. The higher relaxation tempera-

tures found for the higher hard segment polymers could be

a result of better domain organization.

As an extension of this investigation, other diene

and hydrocarbon rubbers, such as isoprene, chloroprene,

and isobutyiene could be incorporated as a soft segment.

It is likely that similar problems as encountered with the

polybutadiene prepolymers will occur, especially in the

case of free radically polymerized materials. However,

the effect of soft segment structure could be studied in

this way. In addition, prepolymers of various molecular

weights could be used to better define the effects of that

parameter. Hydrogenation could also be carried out on other

diene prepolymers for comparison.

It would also be interesting to prepared samples based

on the polybutadiene soft segments using MDI as the endcap-

ping agent instead of TDI, Since incorporation of MDI in

the hard segments leads to crystalline domains
f

the effect

on properties could be investigated. Also, the MDI based

polybutadiene-containing polyurethane properties could be



compared to other MDI based systems.

A very important characterization method made possible

by the solubility of the JSR HTPB based materials is high

resolution carbon-13 nuclear magnetic resonance spectros-

copy. By treating the two phase polyurethane as a block

copolymer consisting of alternating hard and soft blocks,

a determination of the sequence lengths of each block could

be made. A number of investigations have been made on

polyester and polyether urethanes using nmr techniques (37-

39) , and similar methods could be used for the poly-

butadiene based systems. High resolution proton nmr would

also be used to accurately determine the composition of

each polyurethane, which would aid in the sequence length

analysis

.

The synthesis of model, monodisperse , known sequence

length hard segments should also be investigated. This

could be done by selectively reacting mcnofunctional hy-

droxyl and isocyanate bearing compounds followed by regen-

eration of functional groups, for example, nitration of

an aromatic ring followed by hydrogenation and phosgenation

to give isocyanate functionality. Series of similar reactions

could be used to build up hard segments of known, monodis-

perse sequence lengths. Many factors, such as side reactions

and insolubility of adducts would have to be overcome before

such a procedure would be successful.
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Figure 14. Temperature dependence of the loss tangent

for (a) ARCO HTPB based polyurethanes ,
and

(b) hydrogenated HTPB based polyurethanes,
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Figure 15, Cyclic stress -strain curves for samples

R-51 (non-hydrogenated) and HY-51
(hydrogenated HTPB) ,
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ADDITIONAL POLYURETHANE SAMPLES

In addition to the three series of samples already

mentioned, two series of polyurethane films were also

prepared using an aniline derivative as chain extender

instead of butanediol. The compounds used were p-br

N,N-bis-(2-hydroxyethyl) aniline and p-chloro-N.N-bis-

^-hydroxyethyl) aniline;

/CH CH oh

XCH
2
CH

2
0K

/CH9 CH 9 OH

XCH
2
CH

2
OH

These materials were prepared by the reaction of either

p_-bromoaniline or p_-chloroaniline with ethylene oxide at

about 160°C. Since each of these chain extenders is a

solid at room temperature, heating to the melting point

(80°C - 90°C) was necessary before adding to the isocyan-

ate endcapped prepolymer.

The polyurethane films so produced were generally of

good quality and appeared homogeneous. The inclusion of

bromine and chlorine in these materials could serve a num-

ber of purposes. The bromine could serve to enhance the

electron density contrast in transmission electron micros-

64
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copy studies. The chlorine will act as a chemical tag

for structure studies by X-ray microanalysis. As such

the preparation of these materials was surveyed only,

and no furthur structure or property studies were conducted,

Furthur substitution of halogen atoms on the aromatic ring

may lead to materials with improved fire retardancy. The

effect of any of the component changes mentioned on pcly-

urethane structure and properties has not been investigated,
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