Color and form variables in relation to the Rorschach Test.

Saundra. Lisk
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

[^0]
COLOR AND FORM YARABLES INEREMA MOM TO THE RORSCHACH TESI

LSK +250

COLOR BND FCRM VAHIABLEO IN ILSATIEN TO THE RORSCHECH TENT

Saundra Lisk

Thesis Submitted in partial fulfillaent of the requirements for the li.s. degree in
Psychology
University of Massachusetic, Amhersi

$P_{2, G 5}$

lhooroteal and hmorimental Backeround I
statemont oi sic iroulen $1]$
Txperimental listhod 13
Subjec 13
Binulus haverial $\%$:operatus 13
rrocedure 30
Scor*ne 1.6
Resulis 19
Form 19
Volor 25
DOIOM x Fom 28
Discussion 45
Sumary 46
Moforerses 53
hpyendix 57
Acknowlodgements 59

Historical Background

In the scoring and intereretition of the Rorschach, consideration is given the degree to which the subjoct responds to the form (i.e. outione appearances) and to the color in the blots. If the subjoct uses only fom to dotermine his response, the response is scorod "En" (e.g. "a Dat because or the outine"). If the fom is used primanily to detormine the resonse, but color also enters, the responsc is scored "re" (e. "a red flower mainly because of the colori). If colo is the only detarainant, the response is scorea "C" (e.g. "a lake Wecause it is wiuc"). The interprotative maning of the relationship of color and form nas been invesifigated by Beck (3.4) Klopier et a1, (17), and Rorschach (2/i) by comparing forschach protocols with the casc histories of patients. They maintain that if a person is unable to control his emotional responsivenoss, it will be revealea by such sims as puxe colos responses, color maning, (i.e. "rea", "blue") color shock, (measurcd mainly by uelay in reaction time) and aifferential productivity on the color and non-color cards. fortior (11) accents the above hypothesized relaionship betiven culor ine errotional responsivenoss as an establisheci fiacu und autemptus to account for it by posiulating a. relationshin between color and ego runctioning. He reviews two viewpoints, namely that of Schechiel (II), and aickers-ovaiankina (II), who belicve in common with Forvier that the relationshif butween
color and emotionality is based on a more basic relationship of color and ego functioning. The first view posiulated by schachtcl (11) maintains that the experionce of colox and the experience of affect have two important characteristics in conmon: (a) "passivity" of the subject, and (b) inmediacy of the relution between object and subject. hecording to Schachtel, it is the ego chat controls and directs the affective reactions. An inoividual of high ego strength would inhibit or delay his irencijate reaction and thus would eive "in" or "fC" resporses on the Dorschach whereas an indivicukl of low ego strength would not inhibit sis kinaediate reaction and thus oy mesponcing to the most saitent foatures of the blot, he woulu give pure "C" responses on the Rorschuch. Therefore the degree of "passivity" exhibited by the individual kould be a function of his anount of ego strength and the "inmediacy of the relation between object and subject" would ve exhibitca by the amount of inhibition displayed by the individual in an "emotionally" toncd situation. It should bo romombered here howevor that this theory depends on the ability to measure ego tunctioning and as Jet there is no valid measure of efo strongth. The socond view, postulated by Rickers-Orsiankina (11), is a uecuctive theory inferred from genctic changes. She had observed that chiluren from 3 to 4 years of age are interestad in color and cisreeard form, and that cinlaren from 4 years of aye anc up are capable of interrating color and fom. She then concluded that the youger children, having lower ego strength, respond to the iumediate
or salient features such as colors, thus procucing "pure" color responses on tho torschach, wereas upon agoing, there is an increase in ego Iunctioning which rosults in a cecrease in color dominant responses on the iorschuch. Whe further contendis that the dogree of efro strencth is not onjy related to indivicual capacity but also the individual's opportunity to learn. Iherefore those individuals who exinibit little or no reaction to color: (a) have an inherently linited capacity for affective experience, (b) have ropressed affective experience or, (c) mave never have leamed to express aficeive life on a conscious level.

The hypothesis that there is a relationsinip between color and cuotionality poses two cuestions: (1) is there such a relationship existing and (2) if vere is, what is the basis lor the relationship: Foriex, Rickers-ovsiankina and Schachtel (11) assunce a positive answer to the first guestion and a.tiompt to answer the scond question by postulating that the reletionsinis between color and emotionality is due to a more basic relationship between color. and Ggo functioning. I'his however only poses another hypothesis to be confimed, narely, the relationsinip botiveen color and eqo functioning. Keehn (16) in evaluatiac Joziter's asticle (11) in accord with oxperimental evidence $(15,19,25)$ conclucied that the majority of eviconce cited by Fortion is irrelovant. Ite based this view on his own woliofs that the use of the mosults of Rorschach studies bither to supcort ox to refute the color-cmotionality hypothesis has been invilidated by vague tominology, unjustified
comparisons due to dilierent methods, and erroneous statistical motisodis.

In an elfort to unswer the (ruection, "is where a rem Iationship between color and erobionality?" several wayirical studios havo been purtomod. Saracon and l'oticr (2́) up on fiving the sume croud of childron a kohs and Binet tat clausificd the childaren into two eroups on the basis of the li.f. (mentiat. age) received on both lests. The firm group cansisted of children who recoived a highor M.A. on the hohs as compared to the Binct; Whe second group consisted of hose chiluren who riceived a higher A.A. On the lifinct as condured to the kohs. I'he loreschach Vest was then adninietered end it was round thet the children Whose II.A. on whe hohs was below that of their I..A. on the Binet were unable to hande the colos revponses on the forschuch intellactually or conctructively. Further investigation revealed that these oame chiluron aithough they passed dificult items on the kohs failed to pise tho easy itcms. Tho authors arrived at two altumative explanations: (a) color brings up eaocional reactions that intisicure witin intell ctual furctioninge, and (b) color makes visual aresp of iiguro and rumad relationsinips difficult thereby resullint in emotional rachiona which make for inerificiont intellectual functioning. In shoulci iso nolod however what in drawing theix conclusion, the authors assumed that it was the color in the lohs blocks what rave it more difficult than the Binet for same chiluren. How vor, the difriculty may be altributed to some other featurees of the block,
 The only fain hesi of wheim havehents mould be to coripure dient

 form bearis to plychotion, neurowios whe wormis found the.

 than ele the othry tho roms. the axthory wanducide viut

 corralatod wita his 3us color scoms or the wrock oh end
concludod that a sroater number of "Cr" ressonses is linked with emotional responsivencss resulting in inpulsive behavior and a lack of social consciousness.

Wishner (32) invostigated che relationshis of plysiologicel and Rorschach measurss in a trons of nomals and neurotics. The results revealod a different pittorn botwoen tho neurowic Eromp and tho nomal group but not at a cimisicand level for the overall pattom. Howeres the sur of weidhed colos responses on the Forschach corrolated significanty with the galvenic skin iesponse and frontal musclo action potontial, thus implying a relam tionship between enntionality and ciegree of color rosponse.

In surmary, the major curclusions (not all sould) rem Ievant to emotionaliuy and volor responses on the sorschach inn dicated by the awove studies aro that: (a) color clieits emotional reactions that interfare rith intellectual functionimg (questionable), (b) schirophrenics give more responses to color than do controls, (c) eyclotiganes five more colow dominant resconses than ao sehizothones (d) the relitionship between a physiological and Iorschach measure ainfexs between tho neurotic group and the nomal sroup and indily, (e) meleduawnent on the M.2.1.I. is positively correlated with an inctuave oi colos dominant responses on the lorschuch. hess conciusions are consistant with the theoreuical view of iveck (4), llopior, et al. (Iry), and Horschich (2h) that color is relatoci to cmotionaitity. However, they indicate nothing about the nabur oi such a relabionship.

To understand sowturing about the moaning of color as relatod to bonevior outsiče on the foxechech, is would scen holpful to firsu investioute the influtace of color within the Rorachach. In this comection, Siivola (27) foun no dinieronce in the reaction times to "anoiional" responses (i.e. reswonses such as "blood", "fight", or "make") as comparod to non-canotional responses. She also found tho same responces that we: presumed to have been due to color in a chrometic version of the hious occured in an achromite version of the blows. Wiais loa hur to concluce that the eifect of color in the Rorschach is probably cua to the intoraction of various color and fona vaciablis noula be fruititul. Furthemore she founc (20) that ancre color and form were incongmous (e.e. rea tiger, blue bear) a longer reaction bine rem sulted thun where color and form inre concucus (3 . bluck bear). In a later study, bilpola (29) found that wure the 10 orin is highy sirucbured, the inconervent hue coes not invertere, ind the form ewerts prinary influmec. Zefining her theory, she nywothesised that where une porm is unstmuctured and the fuc incondrueus atir the fom, the Swill ba in conflict thas eflecting wai she terms "coloro shook" (i.e. longur roccuicn tine for chromuice curds). inipola Dolieves that when colon is aidod to a form, the concoptuht task bocomes more diflicult for tho S. Under prossume corditions (respondings within a linited tinc), sho found wat hes resoried to pure "f" responses where the form was unvituetured or "vegue",

Whereus under free conditions (when the response cion be delayed), the S's atterpted to intograte form and color and gave pure "C" responses jess frecuentiy (29). Sinola cancludes that the hueform inconguity hy ohnesis is epplicablo only mon cpereting under frue condjitions on the forschich.

Iazums (IE) investigating the inturnce of the color Varianlo in whe forschoch used a standard set and an ectromatic roproduction. In presutini" botin these sets io tho same college population, Lawuras founia that: (a) space responses (i.c. reasonciang to the wite parts in the blot) and, minus remponses decreased nonsiminicanty in the achromatic set, (b) color did not sicrificanty afiect the numbor of responses in amy incividual florschach seoring cutegocies or tho occursence of "color shook", (c) the shapes of the chrometic slides in the stanuwer set when reprochaed in the whionatic set were nore dirficult to interpret than the shapes of the achronatic carcis in the standera set. leanus concluaed that structural teatures of the blots onastitute the only cioteminant of "goodress" of responses. Iarurus int rpretca his fincinge of no difference botween the achromatic and chromatic cards in relation to "color shoch" 43 an inaicution that ine-Form inconymizy is not as factor in the conceptuel conflict which Silpola postulates.

Silinola has eriticimed Lraums fow fainne to use tho same procedure or mothod of anajysis that sho did. In response, lazuxus reanalysed his data accorving to Nifpola's suandards. The yesults suppoxtod his previcus fincings. In adidion, using
the usual dotails f rod the lowsohwon blote in the same mamer as did ふipola, Lomurs (19) made comparisons buween coneruous versue incongmous bjots, chromatuc versus achromatic blots and achronatic vorsus incongmous blots. Inanms concluded that color plays a very minor rola in determining reactjons to inkblots; the extent of the vio varyin; directly as a function of the degree of structurecness (neasured by the number of ciefinite coricepiual rasponses muce to thet blot) of the blote. He maintainod that siructurel and other tyr. 35 of factors as woll as personality variaibles should bs invosizigted when oxperimentution is done with reactions to irkblots.

Sapponficid and Buker" (25) poxtormed an maveriment emolojine the last whroe curus (the major color cards) on the forschach and their achromatic voroions, in a manner sinilar to the study by Laturus. They concJuded, as dic Lamans, that color coes not aifoct eitinu individual scoros or the occurrence of "color shock". They ciad not, however, find a decreaso in P minus responses in the achronatic version nor any indication tiat the shape of the chromatic cards is more ajficult to interpret than the shape of the achiomatic carcis on the Morschach.

Dere and folytu (5), in testine Bi土 ole's lypotheses, concInded that degree of anbiguity, (meesured wy the wount of asreenent in responsc) concruitr, and presence of color were rot aignificent fuctors in effecting a lonsor woaction time for response. They also contend that form factors are fiar more
sighificant in deterning that is seen in a coniouration that hue. Thair resulit, howevur, are based on corfinmutions taken from loonert's "clocure" ted and nou fru\%. "he liomschach blow, and therefore the validitg of thir conclusion in regarat to the Rorschach is cucstionable.

In sumaxy, the major conchuviort frou the above investigations in regind to the color and forn variablos are that:
(a) unier non-pressure conuitions where ecion and form are inconguous and the fom is oir delativoly urstructurod nature, a longor reaction tino will de elicited for the responee.
(b) where the is forced to respond under precture concitions color will piay an infiuntial role in detemanine the response, (i.e. fore indutimite color responses will be elicit 32 .
(c) the doncarance of color in a fow teras to suk the conceptual tasis in gencral a more ditrincult one as axhibited by a Ionger reaction finu and incroasca productivity to the ehmomatic caris with a cominance of "Ch or "ur" resnonses.

Contradictory to the avove finuings that color iniluences responses:
(a) color plajs a vory minor role in uciermintig the response.
(a) hu-form inconerrity is not a fencior is ibe conortual confilict.
(f) pronactivity to the lest three cards ist uho Rowschach is not a runctio: of color.

The dewn contmorsial evidnce is indicative of uncertaint." rulading to characteristies of the color and form variables. Atorefore iu voula seem what furthor inviowigation of the cinfucturictics o! the color and fom variablen woald be a prinary ste e_{1} prociudiat any hypothesibod color-anotionalicy, or color-ow-ivicilonitg relationonip.

Staterent of the Problem
It appears from the above finoings thet the diflicuity in giving a response to an inkblot may be aue to the degrie of structuredness oi the form of the inkblot. The degree of structurediness may be measurca by the numbor of definite conceptuel responses to the form. ihus those loms lor which there is a high amount of a reenerit in definite conceptual responsos may be found and considered to heve a high degree ori structuredness. In a similar manner, forms of medium strvcture and incefinite structure may be determined. However, the difficulty in developing a response to an inkblot may also be due to the interaction of color and form, color playing an influential rol. when form is relatively unstructured or when color and comare incongruous. An increase in reacition time would be expected in botin circunstances. Briefly, the present study involves an invosuigation of the following questions in regard to color and lom:
(1) Is thore a relationship between type of rosm (high, medium or indefinite degree of structure) and tine it takes to sive an adequate response (F plus, in
accord with Beck's scoring system) to tho form?
(2) Are certain types of form (namely those of indofinite suructuxc) influenced more ber culor than coher types of form (i.e. Mighly structured forms):
(3) Is rutuction time to a colored form in which color and form are incongmous (e. red baar) longor than to a colored form in wich color and fom uro conmruous (e. a. erey vear.) and is this relatod to whe deerne of structure of the form?

Predictions:

(1) ficcurato responses will be given in loss tin to a hichly atructured form than to a form of indofinite structure.
(2) The presemce of color will result in an incroace in the time to five the first F plus response wher the form is of an incicfinite structure bat will not influm ence those forms of dorinite structure.
(3) Where colow and form are conervous, the roctitn tine for the fixs [T Uus will be loss war haen color and form ise inconguous.
Obher aspecis of tho color amk rom: matiunsinty, such as whehner some colore have longer zeceujon times than owhers, are to be enpiricaly investrated.

Subiects

 fiye males ard five comles, …re issim do duck condicion.
 were askod io oliminste thomsolvas.

Btimius Matials an yncritus

 biots. The llorschach cirdo wore projoctech ai varyind disuances onto a whitue paper in such a way that all the form Eupioned wore

 aroa. After buing wracoe, the fome wote cut out and nainucd bie
 cards of the sane sirc at those of the lorschech wad zloro jumed.
 Keyeton overhoad projuctor with a Jupcx simitues autachwont salibrated from $1 / 4 c 0$ ints of L second to $1 / 10$ Uh of a ouconc. The
 The forms ware ain it in thenae carocorits, (I) high degree of ctornture (2) rediun ce free of suructure and (3) indufi-
 based on Deck's scoring system and tarle: (2) witc t ntction usitil
the deta from whe preart sbuay conlu diuner wat vit or refube them. Three popular fomm were scloctad for th tixut cedegory:
 forms emnloyed ane uhos: ICi wion there weu ont a number of dofinite concuzunal rozansass to whe form ont the
 I\%, and D3, card IJI, (0. Pigure I).

 mated those cojoro that apporr in tho Ruruchasia cario. thate-
 orance, encid form in in eray vere cuplicdee of how utjerit
 each color time allowing comeriwons on: \{a; all loms inlting
 the interection of colors and fomme in Graweo-latin suute design was uock in order to control ioz gosition ateoctio (i.e. the sare hue-iors cumicinction boncting to fall curnituventy ui the beginning or enc of sach newentatiari. sach oi the ?

 satiting was so arrannd thai the binge of viuion 1222° on cach sjde, porpondicular to center of uciven) minirizod the anourt of pexcoptral distorizon.

Procesure

The teathine was conducted in an c. erimentai roons where the seatinc hac been prearranged so that there wousa be minimal percopual distomion (cef. Noterials and ipparatus). Alter the Ss had been seated and had read the instrucuions (cf. Appencix), all questions were answered and the overhead lights were tumed ofi. The only renaining light, aifordea by the prom jector, served to endible the is to record theiry responses. The Iights were tur: ... on after vie completion of all seven trials. In onder that all guestions vixing experimentation jant be ansmered with minimal interuptiong an assistant io bremained in the experimental roon to answor any questions wat might arise.

Table 1
Bnoerimontal Design

	Group		C7	63	D4	B2	E5	F6	A1
	Grous	2	15	㯘	GI	57	C4	A2	B3:
	Group	3	F3	85	152	D1	B6	G/4	C7
	Group	4	$B 4$	G2	A3	65	12	47	D6
	Group	5	C2	$B 1$	35	06	47	D3	24
	Group	6	E 2	D?	66	44	c3	85	F2
	Group	7	A6	54	37	E3	D2	01	G5
colors	1 red		green	3 orance	4 pink		5 blue	6 black	$\begin{aligned} & 7 \\ & \text { light gray } \end{aligned}$
Forms ctrig	I^{A}	B	B	C	D		2	F	G

icoring

The St res onses were scor d F lus or mirme docoroing to Bock' is scoring method und nome (3). It response mas soored as "indefinite" where the object cescribed had ro specific shape on mere color appenred to be the only dotaminamt of the resyonse, (e.f多 responses such as "bloon" whon tho stimnlus was rod, "lake" when the stimalus was blue and "coal" whon tho stiming was black). Those responses which were mot Instud in Buck wowe eiven to filve graduate stucients of psycholocer whe served 25 jutares and indepencontly scored each responuc einsw as an fius or an F mime. The majority score was then siverd wo the rexponfo. The mator score reconded whs the muber of whe ixtal in whoh the \underline{G} give an II Jus res; onse (i.e. it the in eve the first plus response in triel 3: his score was 3 for that (axiculer stimius). fny $\underset{\sim}{3}$ who consistently responded with an F ninus wore on who
 score of of on tho assurytion that in another sufficientio lone trial had been ollotted the S womla hive been able to cveriturlly give an pins respone. The responses were aiso soored for "novement" and "rontent" (i.e. animal and human) on the besis of beck's scoring system (3).

Results

Foms

Pable 2 sumarizes the means und suandura cieviations of the time as meesurod by the number of the trial in which the S ge: the firste plus. Hnalysis of variance (Indquist type II desiyn, (20) was used to test the hypothesis of no difierence among these means. Because of markea heterogenetuy of variance, a square-root treansiormation of the score plus .5 was unciortaken. The of 103.71 in tatle 3 incicates that form is a highta significant variaile inf゙luoncing reaction tire, but that color ($F=4.5$) is significant only in so far as it interacts wjet forre ($\mathrm{F}=\mathrm{L} .07$). That is, althoing color is significant, as compared to the error torn, it is not significant in relationship to the sienificant interaction.

Forms were grouped into caucgories of "stmucturedness" on the basis of tho number of deinite conceptuen responses given to the fom (cr. procedure). To deternine the aetinitenoss of the form, a count was racie of tho nuber of indutinite responses riven cech form on the sts first trial. The foms receiving the highest number of indefinite sesponses were considerod forms of inderinite situcture. It was found, (cさ́. tamle 4) that forms "an and "g" were of velatively indefinise structure, forms "B" and "0" of nediua defiriteness in sumeture and foms "A", "D", and "G" of relatively aefinite stircture. an analysis
Table 2

Siean 4.04 3.30 3.78 3.454.274.04 3.44.2.96 3.404.00 3.13 3.26 3.81 3.68
Noteminties wire ir terms as ruv scores.

Table 3

Analysis of Variance of reaction time to first plus. (Transformed data)

Source	df	53	ms	F
between 31s	69	16.27	.24	
color-form (i)	6	1.43	. 24	
crror(${ }_{\text {c }}$)	63	12.43	. 20	
within Sis	420	160. 10	. 33	
color	6	3.79	. 63	4.5\%
Sorml	6	87.15	14.52	103.72\%
color-iorme (w)	30	17.19	. 57	4.07%
error(i)	378	52.26	.14	
total	459	176.67		

*Significant at . OOI lovol
of Veriance was cione to test the hypothesis of no difference among the means of those forms of "dex̃nitc" structure as compared to "mecium derinite" or "incefinite" strncture. as there were 7 foms in all and it was cosirous to have the erouns belanced (i.e. cnly two foms in a eroun) form "1", the aost indefinite of the "definite" croup wac onitted. The E or 233.05 in table 5, significant at the . 0001 level, is incicetive of a relationship between the degree of structure of fome und the time to respond accurataly to that form. It wes found thet the more definite the fom, the shorter the reaction tine as beastred by trial to the first plus resuonse. The sicsilicance ($2-233.05$) is due mairly to the "cielinite" structured forms (i.e. form "an", mean $=1.54$, and 10 man "grean $=1.63$) in contrast to both the "medium definite" (i.e. fomm "h": mearn $=4.66$, and form ${ }^{\text {nen }}$, mean $=4 \cdot 48^{\circ}$) and "ircierinito" xomm (fomm "E", mean - $5 \cdot 43$ and fom "Fr, mean $=5.74$) (cf. table 2).

Table 4

Number of Inderinite responses busec on sis first association.

fomes			0	0	0	0	0	0
A.	0	0	0	1	1	3	5	17
B.	3	2	2	2	4	2	1	20
G.	4	4	3	2	10			
U.	1	2	2	1	2	1	1	10
I.	7	3	7	5	7	4	6	39
F.	7	4	7	8	7	7	8	48
G.	1	1	4	1	0	0	2	9

Sum	23	16	25	18	21	17	23

Table 5

```
Analysis of variance-relabionship of reacifon tine amd
    degree of structure of form.
```

Source	2ís	SS	ms	F
colors	6	3.75	.63	3.70
sisucturedness	2	79.25	39.62	233.05\%
forms w/l structure	3	. 22	. 07	-
color x struc.	12	1.94	. 16	--
color x Porm	18	4.65	. 26	1.53
resioual error	378	65.95	. 17	
total	429	155.77		

*Sigriliicult at the . 001 level
施Significent at the . 0001 level

Color

The possibility that color wisds to roduce the rutber of derinite conceptuel responses was investigated und it was found that although the colors red and orarge tend to allow for more indefinite reovonses than do the other culors (ct. table a) they do not differ sigmificunty from the other colors. To investigetc the possibility that some colors are more "salient" than others, a count vas made of the number of individuils wio ariviluarily named the color as part of their response (c. E . yed bear) and those who used color as a ceteminat of the respanse (o.g. "blood" when the similus is red and "lake" when the stimulus is blue) at one time curing the presentation of the stimali (table 6). Chi squaces were used to detumine significant difilorences betwen colors. Here it was founc that the color red was mentioned nore than the other colors (uillering si nificantly fron blue and gray at the .02 level), anc was also used as a deteminant more than other colors (diliforing significantiy irom black at the .01 level). Whese finuines suggest that red is a salient color which is nore apt io be used as a cetemining Pactor in the response. Orange does not show this sulimen, sugesting that othor facuors are operatine. Furthervore, no significant difference was founc in the numbor of responses using color in general, as a cetcminant in the first association (total of responses usine color $=23$) as compared to trial 7 (total of

Fumber of indivicuale who named color With their response at one time curing the presentacion of triuis 1 thyu $\%$ red green orange pink blue black eray sun forms

A.	2	3	1	0	1	1	2	10
B.	6	0	2	1	0	0	1	10
U.	1	5	0	2	0	0	0	8
D.	0	0	2	1	1	0	0	4
E.	0	0	3	5	1	3	0	12
F.	1	0	0	1	3	0	2	7
G.	5	1	1	1	0	3	0	11
Sum	15	9	9	11	5	7	5	

Number of indivinuels who used color as decamcinant of their response at one tine auring precentauion or trivis 1 thru 7.
red Ereen orange pink blue black eray sura

forms

A.	2	0	0	0	0	1	0	3
B.	4	1	2	2	0	0	0	9
C.	4	5	2	3	2	0	2	18
D.	0	3	4	4	1	1	3	16
B.	3	1	2	2	6	2	4	20
E.	3	0	1	1	3	2	1	11
Sun	22	14	16	16	14	8	15	

responses usine color = 19), twas Lnaicaing that "tine to delay" does not influonce the aponance of color as a dotemunath of the response. On "a priuri" basis, it w s bslievod that bjuck difiered significanty from rray due to the ofrect of contrat of the color relative to the buck rounc and that this offect might aliso expliin why orange dinfered significanty from the other colors. To investigate the efiect of contiat, 3 judges ranked the projected imases i? defferent colors rppearine in the same form?. The directions given to the judres were as follows: "7 imases vilill be projected on the sereen. You are to rank the colors according to their derree of contrast with the bacheround. nrite ank "H" aftex the colors that have a hitgh degmee of cornorast, un Mht anter those of medium degree of contrast and an "L" after those of low darree os contrast. Nfter you have done this, the inages will we projected for a second time. However, this time you are to differentiate between the colors falling in the sans "contract" group by assignince a sumber from 1 to 7 fol cach color, number 7 Deing for the color with the lowest degree of conmest and numer 1 lor the colore with the himest degree of contrast (e.g. if three colors are assigned an "ry value on the Einst showing, the number assigrea thon, 1 , 2 , or 3 on we secend shoring will
> thus difierentiouc amons thom cotemaring the "nighest" among the "high" and so forth)."

The moun ritain; of the colere were fouk to be: red 2.0, blue 2.2, black 2.4, ,rten 3.6, pink 4.8 , orange ó. 4 and yoay 0́6. A cocinicient of concordance, used to detemane how reliable these rankings aise, was simpilicant au the . 01 level (0 - . s21). This then sugests than orarde and suay ray uiner significunty from other colors due to their low ceeree of contrust with background. Color \times Iorm

The annalysis of variance of reaction tine to first pIus inderated that color was siguliscant only so fur as it intoracted with form. In ordor to fetermine which form accounted for the siemificant interaction, a separato analyeis of variance Wh cone for cach form, (cf. table ?). Only forioma fill were the colnrs found to diefer signixicanty (l, level). In orcer to detamine which colors were respensible for the siminicance in fom "r", comparisono were mace by computing the critical difformee (20) betroon the means of the urarsiomod culor scores (ci. table 8). It was found thab red and orance difiered sicrsfincanty fron all other colors and thew in datition, hlack diflered Sienificanly from gray, hed and orange dic sot diffor siznificanty fron each obher. blowever, it was seen thaw the signiricerne interuction of color and fora is not due to the ciegree of

Table 7

Summary of soparaie Abalyses of Variance for cacil Fome Based on reaction Tire to First pips

2.	. 05	. 08	.75	--
B	. 37	. 20	2.42	-
0	. 46	. 30	1.53	--
D	. 21	. 20	. 55	--
is	. 33	. 22	1.50	-
F	. 23	. 05	5.50	. 001
G	. 22	. 14	1.57	-

- not sinnificand

Note: degrees of fresdum for color mank scuares are b. dogrees ol ineedon for all error meen scuares ure 63.

Table 8

Cribical Difforcmec, ficran "p", Deaed on reaction time to first F gus response

red	r,reen	orance	¢isus	siue	blact:	gray
red	-. $30 \times \%$	f. 03	-.25\%	-. 30%	-. 44%	--.21*
(2) ${ }^{\text {chat }}$		t. $\because 2 \%$ \%	+6. 6	-	-. 14	f.09
orange			- - . 2 8\%	-.33 3.0	-.4.4\% ${ }^{2}$ \%	-. 24 *
Pink				$-.05$	-. 18	t. 04
b]ue					$\cdots{ }^{-14}$	+.09
black						6.23\%

* Gilnixicant at the . 05 Invel

2** simmiricant at the . Ul lovel
$\frac{1}{6}$ = Ioneer reaction time than eclor with which ju is compured

- = shorter menetion tine than color wo which it is comuared
stmacture of the ford (the for the intervaction of color x degree of structure of Porm being 1.53, which was not simificant at the 5\% lovel;. This would inuicave that foms of indefinite structure (such as "E") are not influoncod more by color (as indicated by a longer reaction tirue), consecuently, there nust Wo some other Pactor to account for fom "F" being the only form to be influenced by color.

To determine in the desree of inconmmity between color and town excris an intluance on the reaction time (i.e. causes a longer reaction tinc where the color und form are highly incongruous - reaction time here coes not refer to time to the first If, but to any response) an incongruity inciex was cerivod (table 9) baised on the procedure used by siipole (27). The reaction time to the firsi association is measured oy the number of the trial in which the subject givos his first response (i.e. ir the \underline{S} gives his first responsc on trial 2 - his score will then be 2). The content clicited for the achromatic (eray) version of the blot on the first association was used to detemane the irrree of inconcruity between tho colors and the pariticular forms. For cxample, form "A" elicited 10 animal responses (such as "boar", "bat") when seen in gray on the first associetion. Thesc responses in all chromatic versions of the form would be incongruous (e.g. green vear) therefore 10 out of 10 responses are incongous with color resulting in lloh degree of

Huc-form incongruity Inaex-based on content olicitea by achromatic vession.

Foms (contcrit elicitoca)
by

incongruity (cx. table 9-fom "f"). In comparing the mean reaction tine based on the finct association of the color and fom combinations, it was found that the degree of incongruity did not influence the reaction tine (i.c. althou;h form that was 100% incongruous in its chromatic versions, it eifcoued a shorter reaction tine than form "B" mich was less incongrous in itos chromatic versions). Iurthemore form "rit wen shom in pink is inconruous 50% of the time. However, its mean reuction time (1.4) is not heightened relative to gray (reen roactiontine =1.4). In acuition, fom "En when prabentec in green being incongrucus 30, of the tine, voula be expected to elicit a shorter reaction tine. However, the mean roactiont time elicited is 2.0 , thus in controversy with the huc-10rm incongruity hypothesio. In sumbary, the more incongmous color-horth combinations do not appear to efiect a longer reuction time, and furthermore the simpiacant interaction in fom "pu cannot be satissiaccorily explained by the huc-form incongruity hypothesis as form "pu which was of modium incongruity should have precipitated a. shorter reaction tint than other forms with a high ciesree of incongruity, but thin wes not found to be the case.

In addition, an ambigity index, (table 10) constructed after Lerg and Yolyot's procedure (5) and based on the percent of occurrence of the one nost, comon response relalive to all

miviguity Index－determined by the percent of comon response in content on the first association．
ix＂dy imbiguity 3
0
0
0
0
0
3
3
3
3
3 \square

3
$\therefore 9$

in i i o
black
$\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & -1\end{array}$
\circ 앙
if
？ 8

Fost cormon

Corm
content alicited

dnimal
筑
舜
$=$
$=$
感
号
animel
＂c＂numana
3
3
3
acimal
human
$\stackrel{\square}{\square}$
numan
amirill
Humain
$\ddot{\#}$
$=$
butuian
anzone
numan
$=$

mumen
order to detemine if a reletionship existis between degree of ambituity of a form and reaclion tine to the first F plus resionse. For example, if a fom cliciued 9 out of 10 animel respouses, the form was considered highly urambisuous. It can be scen in table 10 that forms "f" and "D" ure relatively unamisuous. forms "B", "F", and "G" moderaiely ambiguous, and forms "心" and "is" are relabively anbiguons. On the awsurgtion that the most anisiguous forms woula elicit a longer mean reuction tine, a comparison betweon mean reuction time of the forms (cf. table a) and their degroe of anbiguity (e.g. Porm "Cs und "Ni") aiu not dicit a loncer mean reaction time than forms of soderaie ambisuity (e.g. form "Fn). However, the least ambiguous forms (e.g. form "h" and "D") clicited the shortest reaction times.

In detomining in thare is a rolationsuip betweon color and derree of anbicuity, it can be sear that witifuity is not markediy different for the chromauic and achromitic cards by conparing the anount of argrement in response of the chromatic versions of whe blot with the achromatic verstoris of the biot (table 10).

Several. factore could have entered in actor:ining the significant rosults in the andysis of variance of reaction tine to the lirst F plus. The reaction time to firet F plus
 sponse apart irom whother it was if plus, (b) the number of
rejections (i.e. whe more rejections, the higher the scone for the firct F glus), (c , the number of F minus rosponses (i.c. the more frinus regponses, the more the scores worle inciecte a high reaction time to F Wlus responsesi.

Using the transformed detia, an andysis of vaxiance of roachion tine to first ansuciation was performod in oreex to dotemino if the results on first flus could have been an outcone of this iactor. An F of 2.22, sichifleant at the .0001 level (table 11), indicated a sinilicant interaction effect. To inventigute this further, separahe analyses of variusse were done on cach Iomm (table 12j. It was found that in only two
 . (5 levcl) was there a sicnilicunt difference related so color. In orier to determine which colors were responsible for the significance in forms $"_{\vec{\prime}}$ " and "CN", comparisons were macco hy computing the exitical uiffornce (twive 13) bewwen the means of the truasformed color scores. It was revealed that in form " 4 " , green dififorod sienificanty from all other colors as
 a shimilicantly longer reaction wime than red, freen and islack, Gray had a aichilicanty longer zeaction bime thans all colors other than oranse, and black had a signinicanty shomer reccion ifnc than orungo and rray. Urange and gray, duch oi whinch precomed litule contrest dici rou dilifer iron each other. Iaus,

Table 11

```
Analysis of variance of ieaction tince to first escociation.
```

jounce	dit	S	ms	F
Between ${ }^{\text {s }}$	69	16.53	. 24	
color-form (B)	6	1.91	. 32	--
$\operatorname{arror}(3)$)	63	14.62	. 23	
Withir S'S	420	47.57	. 11	
color	δ	.70	. 11	--
form	6	5.96	1.16	12.89%
color-form (ii)	30	6.17	. 20	2.22\%
error (w)	378	33.80	.09	
total	489	64.10		

-- not significant
\% signilicunt at the . 001 level

Table 12

Surmary ot Buparate hnalysis of Variunce for ewu Fora bazed on seacion Tive to Firnt Mssociadion.

form	Color mean squore	Exror mean	souare	F	Sichificance
A	. 038	. 012		3.45	. 61
B	.26	. 1.45		1.85	\cdots
0	.32	. 15		2.13	-
D	. 12	.07		1.71	-
E	. 33	. 18		1.83	-
F	. 33	. 20		1.65	--
G	. 05	. 02		2.50	. 05

- - . ot simnificont

Note: derrees of ircedom for all bolor ncan butures anc 6, and for all Frror mean sauares 63.

Uriticel. Diference-lorm "A" bas á on Reaction Iime to inset associution

	green	0rance	Minds	biuc	Licck	gray
red	f. 10%	-. 07	0.00	-. 07	-. 07	0
green		-. $17 \% \%$	-.10\%:	-. $17^{\text {\% }}$ 立	-. $17 \times 3 *$	-. 10%
orange			f.ori	0.00	0	6.07
pink				-. 07	-. 07	0
blue					0	1.07
WIack						4.07

Critical Difforence-furm "cr" based on ileucuion Time to first assuciation

	red	green	orenge	pink	blue	black	Eray
rec		0	6.14*	t.04	f. 04	0	6.17\%
green			6.14\%	t. 04	+.04	0	f. 17
orange				-. 10	$-.10$	$-.14 *$. 03
pink					0	-. 04	7.13\%
blue						-. 04	6.13\%
black							f.17\%

* Significant at the .05 level

鱼 sicnificant at the .01 level
plus sim-longer reccuion time than color with which it is compared minus sign-shorter reaction time than color wi.h which it is comparce
 When the reaction titue is measured to the firsi plus response, is not siguticant when the reaction thac is measured by the firsi association. Orange end ascos stilll however aftet certain fos.as. It would appear that contrasw wh rot salioncy arepets tive to lisse response. The surprisixg vignilicance of groen in posar "s" cannt be oxpiaines it the neesent time.

A count was rade of whe sumber of inciefinitue iesporses given cach stamius (cr. table if). It was Iound ebah the woloxs ru, orange and bray sliciusd wore inverinile respanses in generul. Form a_{2} cincited ore indefinite responsos ther ary Orher lom. There is the posulbility that wen on dificult fom
 apt to dicit only indefinile responses uncler poressure, thers a measuruble dogrec of interfeconce in time resulus for the first if pius response. Hewever, the negrative reaults in arralysis or oficet of structure (deriniceness) incitcato that imociniteness
 Qogree of inciefinito first responseb, joi was not aifected by color in any of Une meunures. Irderiniteness may weil be an importan aspec, oi the form in cetemminng wevhes color will cxeri an iniluence but other factors are ulso involved as not all indeninite forms (e.f. form "'in) are so influenced.

A further tavulationg based on bite fitust associationg was mace of the number of five responsce, Finas responses,
"animal and human" reasonses and the mumbur of rejocts, (tabilos 14-16) in oxucr to detemine it color inituonecd respones in other nays. Hose it was founc that red asid orange ternded to cilcit loss F plus rosponses, possibly explainod by the lact that they elicited nore indelinite responses. Is vas also found that green tended to fiacilitate finus responses. Ilowever, on inspection of table 15 this facilitation apperrs to de cue to fora "is" (i.e. it was fourci that the ureen lorm "B" elicitod 7 b mitus "frog" responses, whereat when presented ir the other colorn, it olicited only 1 or 2 F niwus "frog" responses. Ihis suigests thut winen color ifit: the concent, the color can throw the bulance to a form that suegests somuthing pooriv, rosuitine in an inaccurate rowonve (i.c. color has a slight eif.ct co:pared to form but it ciar be a decisive deteminant under certuin conditions). An inspection of tho other tables revoulcd no distinct color trends.

Number of Frirus responses-bawed on fixist ansociation. red green orange pink blue black gray sum forms

I.	3	4	2	1	4	1	3	18
I.	4	8	3	1	6	4	1	27
I.	4	3	6	5	3	4	4	29
I.	2	1	2	2	0	1	3	11
C.	2	4	1	2	1	3	2	15
SUR	1	2	1	0	2	1	0	7
	2	0	0	0	0	1	0	3

Number of F flus responses-bused on first association.
red Ereen orange pink blue black eray surt
forms

A.	7	6	8	9	6	9	7	52
B.	3	0	5	8	3	3	3	25
C.	2	3	1	3	3	4	3	19
D.	6	7	6	7	8	8	6	48
I.	1	2	2	3	2	3	2	15
I.	1	4	1	2	1	2	2	13
G.	7	9	6	8	10	9	3	53

SUM
$27 \quad 31$
$29 \quad 43$
$\begin{array}{llll}14 & 33 & 38 & 31\end{array}$

Table 15

Mumber of "animaz" rosponsesmas..d on the fizust association. red Ereen orenue pink blue bluck bray sum forms

A.	9	10	10	10	10	10	9	68
E.	5	8	4	6	6	5	4	40
D.	3	2	2	6	2	3	3	21
L.	2	3	3	5	1	2	6	22
G.	2	2	3	1	0	0	3	11
Sun	31	2	1	0	2	1	2	9

llumber of "hunun" responses-based on tirst associution.
zed groen ozanje pink blue black dray sum
forms

A.	1	0	0	0	0	0	0	1
B.	2	0	4	3	0	3	0	12
C.	1	1	0	0	1	1	1	5
E.	6	5	5	4	7	7	3	37
I.	0	1	0	3	2	2	0	6
O.	0	2	1	2	1	2	0	6
Sum	10	0	0	0	0	0	0	0

$$
\text { Tabla } 16
$$

Number of rejects (no response given on trials I thru 7)

This section is discussed in terms of the predictions In tho section, Statement of the Problom.

It wis precitcted that accurate responses would be giver in a shorice period of tine to a hisily stiructurea form than to an unstructured form. This hyothewis was supportec by the clata. The rolacionshis, Was round to bo due to the highiy structured foms (fomm "h" and "G") as compared to those of the mediux structurci and relatively unstructured troups.

Secondy, it was preciicted that color woulci influence the time to give the firsw plus response then the stimulus was one of a low degree of structure but not when it was one of a high degree of siructure. This hypothesis was not suppotca by the data. No sinificant interaction was found between color and degree of structure. It was precizcted the whese culor and form are concucus, the reaction tine for the fircu E plus will be less than where color ano lorm are incongruous. the data did not, however, support this hupothasis. A comparison or the mean reaction time of the color form combinarions (cr. bable 2) with their degree of incongruity (ef. table g) showed thaw the hishly structureà torms, although 100% inconcrious, did not exnivit a Ionger reaction time ior responses. Uther foms that were congruous with color (c.en form :"月) did not precipitate a shorter reaction time when comparci with their achromatic versions or

When compared whth others in thoir same category (i.e. unstructured congruous compured to unstmetured incongruous). Whe chromatic versions did not, in eneral, have a hidhor moan reaction tire than the achromatic versions. lurbermore, there was no evidence that color "per se" influenced reacticn time to the first frlus response. However, it was forma that tho cuior red, which wes associoted with an increased rewcifon time to the firut plus res onse, was nore "salient" than the obher culors. The color orange was also associatod with a longer reastion tine to the Lhrsi plue response, but this tendercy was not a result of "swlioncy", but of a low derme of contrast. Similimiy sray vas associatod with a sinnficanty longer racuton tive to first f pius than bjack, and this too incicales that contrats, apart ison color, erento an cifoct.

Siipola maintins (2\%) that when color is acded to the Pom, the conceptual task becomes more difficult such that when tho form is relatively low in structure and inconcruous with the color w longer reaction tine occurs if the test was aconiniotered under "free" conditions. Is this study did not test the ine-fomm incongruity hypothosis under "iree" conditions, it can noither suppori nor refute this hysothesis. flowever, iakurus, (19) in a study which investigatca the nue-form incongmity hypouthesis, concluded that color flays a very minor role in hetomining Eroup rowisions to indblots, thus supprting the itinuing of the
present stuoy • Bore and Folyot (5), although anployine figures from liooney's "Glowure test,", 21s0 conclucied that whe presence of color and the di gree of congruity was not a significant factor" in influoncine reaction tine. It may be conclusioci that pipola's hypotheses cun not bo rejected au present, wh it is reither support by this stuct or other studies. Irobebly ucgroe of structure is of major importance in cetcmining whether color will influmee reaction time, tut wheher incongruity of color is a fector is questionable, at least in so fer as the degree of inconjurity investipated in the present studs is concernod. An ankicuity jrider was constructed ank funthor investigation was perforned in order to detemine if (a) a relasionstio existicd botween deeree of mbizuity and reiction time to the first p plus reiponse, and (b) ill the colors erexted a dirierchtial eifect counuirg ugon the ambivity of the foms. The resulus incicated that the culors did not exert a ainferential. cficect accomding to amwiguity oí the form, but, as micht be expocted, the reuction time to first fous was Ionest for the loast arbiguous fome.

Due to the negative fining rviewed avore, no exvla-
nation for the wigniricint interaction between the coloru red and orange and the ion "F" is indicated. AIthough $1 \times \mathrm{mm}$ "g" is whe most diflicult form (c.c. it has the lonwest reuction time to finse r jlus) and red and orang aro the colors when roduce the
most interference, forn "S" is aiso inipiculi, wat whoms no interaction ffoct with red or orage. Thus afiliculty, elone, is not a suficiont explanation. The fach that the interaction was ot signivicant ari the andysis of recetion tine to first association might indicate that $\underset{\sim}{\mathrm{S}}$, when Given less tinte for a response, is not concemed with interating form and color, but mainIy uses one or the cther as a doteminant, thoreoy avoiding conflict. Orange, on the other hand, dil not exibit the "impressive" foatures of reci. However, since it was found to be of particularly low contrasi, il may be that this Sacror combined With above described charactoriatics of form Min to make a good resuonse uipicult.

In additio, eray and orenge (low contrast colory) interacted significarty with fom "G:" on the first association by raising the reaction tjre, which would inaicate that certain siructural forms uncier cextain conditions awe offected by colors exhibiting a low ciegree of contrast.

Whe to the paucity of oviaence boarinc on the above posisibilitios, the nced for further invenifiction of the nature of interactions betwoor iom charactominics und culor is requiroci.

Sumary

The mesent study was desined to invectigete the characteristics of the color ard fom Varivbles, thoir interaction, and their relation to the Lorschach test. The main prodictions
investigated in this sway were:
(a) hocurate responses will be given in loss time to a hidehly structured form than to a form of indefinite siructure.
(b) The presence of color will result in an increase in the tine to give the first f plus response when the form is of an incefinite structure but will not influence those forms of ciefinite suructure.
(c) When color and form are congruous, the reaction tine for the first f plus will be less than when color and fom are incongruous. The subjects were 70 undergraduate students who had been drawn from introductory psychology courses and randomy assigned to one of seven exporimental groups. The stimuli were 7 forns selected from the forschach cards co bined with 7 colorm (i.e. rod, green, orance, bluc, pirik, black, and gray) which ap roxinated the colors appearing in the forschech. I. Graeco-Latin sçuare design vas used so that each formocolor combination appeared once and only once in each possible position.

A Keyotone overhead projoctor was used to project these stimuli on the screen in the expurinental room. The stinuli were successively presentod at increasing time intervals.

A1l blots in an experjmental aroup weic exwoscu on triel ans for one kalf second, on the succeeding intarval. Ion trice the amount of the pacvious trial or 1 second, etc. the final trial, tyoial 7, involved an exposure of 32 seconds. ubjecus were mun in groups of ten, five males and inve fomales composing one experimental eroup.

The subject's tabk was to write a response for eich stimulue on each trial. The responses wexe scorod according to

inalysis of variance of tine to the first Ey us response (as measurad by trial miner) indicutod uhat form was a much more decisive variable than color in detomining tine to F olus (i.c. the more bighy strutured the form, the shorter the reaction time). Color was sienificant onis in int craction with a single form. Its effect could not be completely explainod by ambiguity, inconcruity or structurduass. Red, orange, and rave bere associated with elevated rection tines on this rom. Theso colors dienered from the others in that rea was Lore seliont than all other colors, und orenge and bray were lower in decxee of contrast with background than all other colors.

An analysis of time vo tirst ascociation agein movecled a. Significant interaction botreon color Entionm, but althongh two of the same colore were involved (i.c. orance and gray), the

Surae form was not. whis tirding incicarod that the resulto on tine to foirst plus wore not completely a function of a garexal themuse in reaction ifine to all res.onses.

It, inas found bitat forms of a his doaree of stracture were associated nith a shorver raaction timo for an adecuate rowonse (F plus), thus supporting the first precoiction. Howw ever, color did noc appear to infiuence nighly suructured foms
 vag not suppored hy the aded.

It suas founc that color in general was not associaited Witis an increase in rouchion tine to F plus. However, orange, red, and gray vore associuted with an increase in reaction time to "ilu'st f plus. ived was found to ve a particularly saikent color, while orange and sray had a consiaeribly Iower degree of contrast with their buckeround than the other colors. This sugecets the marrer in which color, at tines, nay function in the sorschach. In regurd to the third uredicuion, where was so indication from the data that the dugree of Encorsmity Dore any relainonniy to reaction time. sio relationship was found betreen a measure of ine degree of mbiguity as relitod to the iniluence of color on reaction tinc to the lirst pi plus response. Due to the non-sus: ortive data from this shuay for hypothesis (b) and (c), and an unanticipatod intoraction of
color sind a patuaculan fong, furtien investigetion of incerm acitons betreen colows and forme varied according to lanom Uinen toms is dequiser.

References

1. killen, i. The intiluence of color in tise forschach tesi on reaction iirne in a nomal population. J. proj.tech. 2951, 15, $481-485$.
2. Allen, fi., \& stiff, N., foscnuwaig, N. The role of color in Torschach's tesi: a preliminary survey of neurotic anc psychotic groups. J. clin. Eyycho1., 2953, 2, 31-83.
3. Bock, S. J. Horschach's Test VoI. 1. Nev York: Grunc and Stration, 19it.
4. Bock, S. J. Kozschacn's Test Vol. 2. New Yora: Grune and stratton, 1850.
5. Berg, J. \& Rolyot, C. J. The intucnce of color in reactions to incornlete fisures. J. consult. Psychol., 1956, 20, 9-15.
6. Luker, S. \& williams, N. Colcr as a deteminant of responsiveness to iorschach curds in sinizophrcnia. j. consult. Fisycho1., 1951, 13, 190-202.
7. Ulark, J. Some I. I. . I. comrelaues of the color mesmonses in the group torschach. d. Ccisult. Sychol., 1948, 12, $384-386$.
8. Douglass, A. A tachistascopic study of the ortier of energence in the process of percoption. bsychol. monog., 1947 , 61, 131-133.
9. Dubrovner. R., Von Lackum, . . 妾 jost, H. A study of the effect of color on rociuctivity and reaction time in the Rorschach tost. J. clin. fsychol., 1950, 5, 331-336.
10. Eysenck, fi. Cyclothymia and schizothymia. J. Pers. 1950, 12, 123-153.
11. Fortier, th. The res onse to color and ego functions. Dircino1. Bu1]., 1953, 50, 41-60.
12. Harrower, I. R., \& Sucince, N. E. A Nanual for peychom
 Thomas, 1849.
13. Holrborg, J. \& Schafer, M. An exporimental test of the for"schach assumption of the impact of color on the perceptual and associative processes. J. proj. tech., 1955, 15, 130-135.
14. llughes, H., spstein, L., \& Huason, J. The xelationship betvean certain measuraile functions of autonoric reavousi systom activity and color reskonses on the lorschach test., J. clin. sycho1. 1951, 2, 24.4-250.
1.5. Keohn, J. D. The color-form resjonses of nommal, psychotic, nind murotic subjects. J. abnorm. soc. S3ychol., 1954, 49, 533-537.
15. Kechn, J. I. The resconse to color and ego functions: A critique in the light of recent oxporinoutal evicence. isychol. Bu13. 195\%, 51, 65-67.
16. 1.10, ざer, ib., hinsworth, ..., hiopfer, io, s itolt, iv. nolognt in tho iorcchech Iechicue. Leen Iork: iorld Book CO., I954.
1.8. Lamurus, th. the insiucnce of coloz on the protocol of the

17. Lazurus, in. in investieation of coior in friauion to we

 isychoion Eucation. New York: Saverton Mjeflirn to., 1953.
18. Hezer, B. 4n investigation of color shock in the horschach tosu. U. ©in. PsychoI., 195I, 7, 3ú7-370.
19. Pezlman, J. Lulor and the valivity of the tionschach co-9-10 jer cont. j. consult. Esycho1., 1951, 15, 122-120.
20. Reynert, Ne Fecine and Mrotions. New Ionts: HocrawHill BOOK LO., Inc., 1950 .
21. 1.orocinch, iie isychouignnosides. liev Yorłt: urrune ind Strautor, $19 \% 0$.
22. Sappenficla, B., to buker, S. Valiuity of the - orschich 6-9-10 percent as an invicatur of responsiveness to color., J. consuli. 1sychol. 1949, 13, $20031-271$.
23. Sarason, S., \& Pottar, in. LoIon in the Horschach. and Kohs block cierich. d. consult. MeychoI., 1947, I3. 202-206.
24. Siipola, the The intuerce oí color on reactions to ink Liots. J. Fexs., 1950, 18, 358-382.
 incividual reactions to color in irk blous. J. Eers. $1950,19,153-171$.
 Iree and prossuxe conditions. J. Fers., 1952, 21, 22-4s.
25. Jiteir, I. Eersonality Ractors of tiorschach responses. Sorechach acs. Exch. If J. proj. tech. 1949, 13, 355-413.
26. Thurstone, 2. L. If Factorial Study of Ferceution.

Chicago: Univorsity of Chicago Fress, 1944 .
32. Nishner, J. Neurosis und tension: in explozaucary study of tho rolationsinip of physioiogy and lorschath seasures. J. shroym. soc. =3yuhoJ. , 1953. is, 253-200.

Appendix

Whese instructions wexe mineorraphod and givor to cach subjoct.
"1n this study 211 erou huve to to is Inok an some slides which will bo projected on the sereen and then virite What you see. How the poike about wese sidies is they ane nothing more or lees than reprociuctions of ink bloss. arobam bly all of you at one bimo or another huve sitaken sou pen on
 paper proaucou in weird splouch which "ay or may not have resenbled something you rocognised. Nora these s.litaes aro rothing more than repsorluctions of inkulots formed in this may."
"Your bask is simjzy to :mite dorn what thes miluthes remind you of, resomble, or might be. You will sce cech of
 your answers at you own binic. In noukir! occurs to jou on a particular irial, wate a dash on the appropriaive line. It is not necessary to rive the same zosionse to we staid slide wern it appears on a later trial; if you cure lo, jou say chame your response on later trials."
"You will be given a joo.let to mito your responses in. wech gafe of the buat let io manbered and these nunbers nill corresponu is "urials", (e.c. paso 1 corres. onts to irial I. page 2 corresponis to trial 2). wach trial will consist of ?

Achovinadments

Tho witer rishas to express her apuraciation to 3r. Neymour \because itcin wo samed as her thesis mivisor, and to Dr. C. S. Nect, Ur. Nobert Velman, Dr. Israol lose, and Dr. Lawxerice 1. Bartlect tho se-ved as members of her theuis committce. She is also indobted to ly. . . . Goss ior aduice on whe statisticel antysis of the data. Gruiturie is axtonded to Nr^{2}. Joseph Linch for his co-operation in setting up the apparatus and a mord of thanks to all who geve romel sumport.

4pytimed

$1200122(5)$

[^0]: Lisk, Saundra., "Color and form variables in relation to the Rorschach Test." (1955). Masters Theses 1911-February 2014.1724.
 Retrieved from https://scholarworks.umass.edu/theses/1724

