The process of learning as shown by the mirrordrawing experiment

Agnes E. Knightly
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

[^0]
PROCRSS OF BFARNING AS SHOWN BV THE MRROR DRAWING EXPERMENT

RN1GXTLX - 1984

DATE DUE

DATE DUE				

UNIV. OF MASSACHUSETTS/AMHERST LIBRARY.

LD

2HE RROCES O LEARIIMG AS EHOEN BY THE MIRROS-DKAING EXPERIUTMT

BY
AGNES E. KIIGIITLI

THESIN SUBMTKED TOB DEMREE OF BAETEH OF SCIBACE

MASSACIUSETTE STATE CULLEGE, NENHET

1934

TABLEOFCNTENTS

CIMPTERS PAGES
I. INTHODUCTION 1-17
II. TTIL MEXHOD USED 18-33
III. ARHARGMEMT OI SCORLS 39-55
IV. ANALYSIS OF SCOREA ACCORDING TO TIME AND ERROLS 56-77
V. VAFIOUS COMPARISONS $78-103$
VI. THE LEFT-IIAKDED 10s-105
VII. CROSE-EDUCATION $106-110$
VIII. FHE SPECIAL OH OPPORTUMITY GH:OUP 111-115
IX. THRER OTHEN Glidups 116 - 121
X. SJumiary ald Cuitclusions 122-124
XI. BIBLIOGKAPHY $125-127$
AGKINOLLTDCMEETES 128

1. Scores in the Star Teet ror Throe Groups of Bedrora herormatory women 5
2. Scores Arranged iccording to EADOFiS, for Highteen Successive Triale $40-45$
3. Scores Armanged According to TIKE, for Elghteen Successive Trlals $46-51$
4. Scores Showing tho Mirror-drawins RATUS, and Theix Component Fectors, true and brrors $53-55$
5. Time in Seconds ror Mirror-drawing 57
6. Errors in nirror-drawing 68
7. Distribution of 2upils recording to Errors 70
8. Nators Mado by a Boy who 1 a jeztally Defective 115

LIST OF RIGUKES

1. Photograph of a Boy Uaing the Mirror- drantig Apoaratus Frontispiece
2. Drawing of the ※irior-crawng Apparatus 18
3. The Star Used in the Fxperimant (Sterch) 21
4. A Poorly Traced Star (100 errors) 25
5. A Star Traced with Great Accuracy 26
C. A Sugsested Improvement 29
7, 3, 9, 10, 11, 12, 13, 14 Copies of stars, showing scores $31-38$
6. A graphic Representation Showins the Erfect of Practice upon the Average Speed for 167 Boys and Girls 59
$16,17,18,19,20$
An Interesting Group of Time Curves 60-84
7. A Copy of a Tracing Showing Very clearly That the points ere the liost Difficult of All, and That the Degree of Dirficulty Varied Among Thom 66
8. Grapinic Ropresentation Showinc the Erfect of Practice Jpon Errors 72
23,24
Graph1c Representation of Two Individual scores 73, 74
9. The Effect of Practice of the 3irror- drawing fianks for 107 Boys and Girls 75
26,27
Graphic Ropresentation of Two Individual scores 76,77

LIST OF FIGURES
 (continued)

28. Graphic Ropresentation Showing the Effect of Practice on the Time Curve (Boys and girls separately) 82
29. Graphic Representation Showing the Effect of Practice Upon the Error Curve (Boys and girls separately) 84
30. Bar Graph Showing the Relative rrequency of the I.民.": 86
31. Graphic Representation Showing the effect of Practice Upon the Time curve (an A group and a D group) 38
32. Graphic Iepresentation Showing the Effect of Practice Upon the Error Curve (an A group and a D groupl 39
33. Soatter-diagram Showing the Relationship of Typewriting and Mirror-drawing 93
34. Scatter-diagram Showing the Relationship of Drawing and Mirror-drawing 96
35. Scatter-diagram Showing the Relationship of Drawing and Errors in uirror-drawing 93
36, 37Copies of Two Tracings Showing the Per-sistence of Mirror-drawing101, 102
36. Copy of a Star Traced by the Author 118
37. Time Curve of the Author for 16 Trials (Comparison with the norm) 119
38. Time Curve of the Author for 110 Trials 120

Figure 1. Photograph of a boy using the mirror-drawing apparatus.

CIz. PTER $^{\text {I }}$

INTHODUCTIOR

What are we to understand by "loarning", the process of wich we are to study in this mork? Rearly every test on psychology hes its own poculiar definition of learning, dependent upon the psychological school to which the author belongs, and the typo of learning thich he has in mind. Professor Troland (30) says: "The conception of learning which predominates both in common sonse discussion and in psychological research is thent of the process by which particular kinds of motor reaction become connected with spocific stimuli.......ie assume in tho beginning that there is an horoditary connection betweon a certain stinulus and a particular reaction. s purciy afferent process can lay down a patterned record in the cerebral cortex mich sinultanoously involvos or includes certain other stimulus factors. The pattern wich is thus formed makes it possible for the new afforent or sensory component to set off the efferent reaction because it has become ansociated with an afferent element wich alroady has this spocific motor connection. The siaplest kind of learning would seen to consist in the mere recording of such patterned impressions upon the cortex. Such leaming doos not involve the forsation of habitis, and, in itself, cannot be dotected by purely behavioristic obser-
vations......Another aspect of learning which is asphasized in popular thoucht seams to be the acquisition of skill. Cort in kinds of skill very obviously involve the evolution of a close cooraination between sensory and motor factors." iatcon strosses the irportance of kinaesthetic inpressions in learning, and in such case, it is not an exclusive motor acquisition.

Larning may take placo either by practice, by imitation, or by some fors of instruction or reasoning. Sotor control is accomplished primarily by prectice, comonly known ns the "trial and orror" method. This consists of the making of randon attompts until, by chance, some of them aro successful. These trials, may and usually are, supplowented by sowe atterpts at reasoning.

In the beginning of the mirror-drawing test, the conditions prohibit imitation, and there is littlo opportunity for reasoning; improvenent is due apparently to a process of trial and error. Although randan movements soem to predominate at first, such a tern appears inadequate to describo the complote learning process. Statement of the problen:

This study attempts to analyze the loarning curve of the mirror-drawing test. Sjecial attention is paid to a comparison of skill in inirror-drawin, and that in type-
writing and drawing, both motor abilities. It also attompts to discover any practical use to which mirror-drawing may be put, enpecially with reforence to its possible use as an aptitude test.

Mistory of the roblem:
Agos old and bred in us is the idea that certain tendencies poculiar to fom dominate many. The world was forced to accept as true, for oxemple, thet mon are cleverer at eathematics than women, or that a skull of a certain shape proclaims the musician. After conturies of passive accoptance of these traditions, a scientific stuay into affairs of this nature bocan only comparatively recently-not more than seventy-five years ago. Those investigations fall Within the realm of experinental psycholazy and had their beginnings in the universities of Europe. A favorite theme was the process of learning, of ton comonstrated by the mirrordrawing exporiment. More than with any other group this particular experiment seems to have been popular with the French. Interest was thriving frosk 1590 well into the new century, "ith the result that we have row after row of French books on this subject on our library shelves. In Gerwany, Dr. Lochte made the most exhaustive study of any one investicator. lic oxamined 2804 school childron and classified the results. In our country, the work of ise June Downey, the character analyst, has boen the most elaborato. Starch, Judd,
and whipple have each included the mirror-drawng test in his manual. Dearborn devised tho star mich later, somewhat enlareed by Starch, became the almost-classic tracing pattern. Wo class of pooplo has escaped experimentationnof ther college men nor reformatory E1F13, opiloptic boys nor serub wonen. The subjects have practiced oith their Pight hands and with their left hends, and even with their feet; they have made from one single copy to over two hundred, bolng timed fos speed and accuracy. Vassar college, the Flome for Epiloptics at Vineland, New Jersey, and the Boaford heformatory for iomen, ach in tum has been included in type of institution which has offered itself for the benefit of posterity.

To quote from hipple (33) in regard to the delinquents: "Comperative study of the star-test in five successive trials with college girls, maids in college cormitories, and girls at Bedford Hills, N. X., fiefornatory conducted by Liss Jean woidensall, roveals a number of interesting results........" I have selected data referring primarily to the time recorde only. The table shows that there exists a good corpespondence betweon both the time and errors for tho star-test and the classification mado by the institution into threo eroups doponding on outlook for roforation. The differences are more striking in tho first tian in the firth tracing.

TABLE I

Scores in the Star Tost for Three Grcups of Bedford Roformatory Women (Voidonaall)

In addition to those quantitative results, the star test proved to possess a value in a porinaps unexpectoo direction, viz. as a devico for acrting out "S" B of the unstable and less tractablo type.

On this point Dr. oidensali writes: This test isolates bettor than axy we have tried at rearord those who ere incapable of sustained effort undor difficulties. It isolated, of course, the low-grade feeble-ininded, for, no matter how hard they try, they do not succead in trecinc a star. The eplloptics have a chacacteristically bad time and thelr stars are all Enotted up Fith blind spots whore thoy were coucht and held inderinitely. Chiefly, howovor, is the tost of interest In the case of those who aro bright cnclich to trace the star well, but too urstable to do wo. These are invariebly the G1mis who are difficult to manego in the institution. The tracing eoos mell acugh until sucdenly the pencil st some hard point stants off in the wrong diroction. Tho subject then tugs and pulls, srows mono and moro iniltatec, disturbed and cxcitod, makes bis black airclos and finally throw down the pancil and gives up. ..hen calned, praised anc urgea to try again, she will continue and usuelly in the end draw a falrly good fifth star. This behavior in tracing the star is typical of thois bohavior in the institution when the pressure of disciplino or responsibility becones the least bit too exacting. ${ }^{\text {Pr }}$

Whipple himself concentrated ins attontion upon the patterm to be traces. As woll as onlarging the star devised by Dearborn, printing it in red ink, and tipping it somenhat away from the vertscal position, in order to avold the too easily dram vertical lines, he experimented with still another rapification, $\nabla 12$; the use of double concentric stars in the hope that this pattern would restrict the extent of permisuible variation fram the printed outline. No publishod results as to the differences in the conclusion Which he drew fron this nodification can be found.

Miss Calfeo's (33) tests of Texas freshmen included three tests previously used by Burt, viz.: carc doaling, card sorting, and alphabet orting. Correlations found by Burt between mirror-drawing and these three tests when applied to sohool dillaren were $.40, .34$, and .29 , respectively: those by liss calfes for school childran were only . 1l, 126, and . 06 , for freshmen men $.19, .11$, and .22, and for freshmen women -37, 20 , and . 29 respectively. Save then, for the last mentioned correlation her flgures are invariably lower than those of Burt. Othor 'corrected' correlations reported by Burt far mirror-drawing (averase corrolations for various groups) are: tapping .74, dottins apparatus . 22 , spot-paitern tost. 75 , 1madinte momory . 38 , discrinination of lifted weights .30. Off hand, one would not expect to find that factors wheh enter into the discrimination of pitch
would be tho semo as those which contribute to successful mirror-dreming. There aprears to be no eviciont reason why some of the correletions should be so high. She sumarizes her findings as follows: (33)
"1. The analysis of the mirror-test presents distinctive loaming types. Somes subjects cain control of the aituation by a fairly regular procedure, others tempomarily lose control at some point in the series. The fourth or rifth trial in a series of six tests in the airror drawing.
2. This examination further indieates that, where the time of each individunl sertes is roforrec to the total timo curve, fast, slow, and iregular, are fairly fundamontal distinctions.
3. Finally, an accurate knowledge of the learning process, must, in the last analysis, be based on individual and gnall group curves."
In regara to sex differences, sho wites: "Mith one exception where two places of difficulty occur for the girls, their records are always lower than the corresponding trials in the boys' records. Notmithstendins this superiority in ebsolute speed, they give the same variation ad the boys from trial to trial."

Burt's experiment was to show that the offoct of ewen a short period of tima was persietont. Ho aduinistered six tests in succession, and then twolve weeks later, two additional tests. The average speed developed was 34.5 seconds in the first, and 27.4 seconds in tho socond: in other words, the seventh testr surpassed the sixth, made twelve weeks previously-a condition found in the records of sirteen out of twenty-six boys.
professor stareh, in an article in the psycholotical Bulletin (28), presents method of demonstrating the trial and error learning process, and fires a learning curve. wisarning by trial ane error is undoubtediy the mast fundamental method by winill the child acquires motor control. The two other methods of learning, by imitation and by understendif, are chiefly suplementary to this primary method."

His experinent consisted chiefly of tricin- a six-pointed star as seen in a mirror. "Itis activity (28) is partioularly well adapted for damonstrating trial and orror because it involves the establishment of new co-ordinations betweon motor and porcoptual processes. The experiment was also usod advantegeously to investigate several probleas in tho psychology of learnine; in particular, the cenetic devolopment of muscular co-ordnations, comoring children with adults, adeptation in aoquivins a now motos habit, cross-education, transforence
of training, and the effect of affferent intervals between records upon the rate of improvement.

The first attempts demonstrate in a convincing way the trial end error procedure. It is broucht out particuharly woll by the several dirficult places encountered. In those situations an effort to reason out the airection of movement is of little or no help. Apparently the only way to reach the line is to keey on tryins until one succeeds."

He shows by graphic method the records made by hinself With the richt hand at the rate of one a day for one hundred consccutive days, without interiuption except betwoen the fortieth and forty-first (one day) and between the fortysixth añ forty-seventh records (two days). His curves for both time and errors ropresent the usual course of learning in that they indicate very rapid improvement at rirat, followod by slower progress later. The rapid inprovement extonds in the error curve over the first seven records, while in the time curve it extonds over the first twenty records. Except for the first seven or eight records, the improvement in time and errors is at no tire parallel. Eithor the orcor curve improves raplaly and the time curve remains stationary, or vice-versa. The ersor curve shows a sradual lowerins after the ripst rapid drop until about the firtieth record. This accompanied in the timo curve by the first rapid drop and
then a continuous standstill and even loss until about the firtioth rocord. Aftan that the arror curve renches its dead level and the time ourve again kows a gradual improvement until about the ningticth record when both seen to have rachea their limitg.

He adds that the implication seoms to be that tae plateaus during wids there is ifttle or no improvement are an Indication of more rapid development in some other aspoct of the learning process which is not measured by that particular curve.

Starch found the tronarer of practlee to bo as ereat as 90 percent. ilis method of deteminine transier, however, has beon challengea, and according to improved mothods should be much 20 wer.

Starch's study attracted tho attention of David spence IM11 (12). Durine 1911 Hilll roported tentatively upon a stuay of mirpor-drawing undertaicen by one subject durins uctober, November, and Decmber of 19i0. The trisis, one each dey, were continued through firty days. Nearly three years to a day aftor the first series, the subject campleted (December 16,1913) elght daily trials as before in 1910, when the practice or daily trials axannted to fifty. A comparison of the proeress curves, both for speed and accuracy, for 1910 and for 1913 indicated that in about threa or four
dally trials in 291 : tho subject had attarned her stendard of 1910 onthat, in fact, at the beginnine of tis 1315 experiment ber status was not consederably bulo tris of 1910-the spoed slichtly lesa, tha accuracy a fratiom movo. The curve for the 1310 record is merkedy like that of starch, and exhibits the usicl cally variations.

In minor siudios in toaming and ko-larmsact (12)
 little of the proviously-nçuired aill: had been lost in the interim. There was littie relamininc to be accornnlizhed, littis had been forsotten, and it spyonem thet after the waming-up tho lost associntions were quickly recovered. Our observations of the moris of hundreds of. trinis of mincorarasing lead to then opinion that theto is very littlo of the trial am owro mothod used in ximor arening after the first two or throe twisals. This accounts, in nert, for the initiel rapic improvement. Beasoning and even initation of the attitude and movements of other oxperimenters very soon interyene. It is the usunl happening for certrin kinaesthetic sensations to appear nlain, and these becom asenciated whth percentions of drection and form and time. It is the recollection of these caplexes wion constitute ro-learnine of the act, modified by changes in maturity and in attitude of tbo subject at the time. Those complexes of association constitute the fabzic of the nouro-
muscular mearory; and their inpessions, retention, and recall may not be different from tine usual aspects of the momory consefousness. In contrasting the first and last curves one mast allow for poesible orrui in the latter part of the first, and for renewea zest, curiosity or interest in the matter of re-leurning. the performance seems no nore reantable than in the instantaneously pieking-up of a neglected tune by an old nianist after years of incifference and forctiulness. Aside from the danger of generalizing from an individual case wo cannot sea in this case any safe ground for assuning that the mina continued its activity for a time in the furtherance of a loarnine procesa after practice and study have ceased." Juda used aimrormeanin to illustrato hoolt forming. "In ordar to modify a motor habit it mill be necossary to berin with a process that is relatively littlo dovolopod and repeat it a lares nuaber of times." (16) He used nirrordraming as a mans of alscovering the varlous differences between movements, and the influences fich arfect these characteristics. In the caso of mirror-drawing, he claims that the visual and motor factors involve zothing new or complex in themselfes, but the normal relation is disturbed and must be readjusted. Fie suggests thet the results may bo treated quantitatively by counting the number of corrective movements in attempting to follow the pattern, and by measuring the time required to make a complete tracing. The intro-
spective record shculä show what the process of roadjustant involves on the subjective sice.

Mies Downey made exhaustive stucies in mipror-readine and mirror-writine with epecial roforence to (i) the extent to mich individuals differ in their capacity to interpret miryor reversais; (2) explanation of such incividual variation; (3) the extent to fhich reading mirror scrist (visual) Is correlatad with abillty to mrite it (wotor), and with abllity to read and write inverted scrips; (if) the reiative ekill of th risint and left hanc in the production of mirror script; (5) the reiction of capacity in mirror readins mith capacity to interpret form ia general.
finug oiner things, site soxit to determine the range of variation in skill in wirfor-aritins avons twenty-ive college rreshrean, ana to daturinue how far such ckill
 pointed to a correlation or a corresponding fectee of hendadness and efficieney in mpror-draving.

Miss Loulse i. Ordahl publichou in "Consciousness in nelation to Leamins: (2E) the reaults of a slightiy filforont type of mirsor-iraving experinent. dise wote most intoresinialy of hor experiments in learniag to nrito mipur script (that io, writing wieli begins at the right-hund side of the peaber, urad any bo radi by holaine it up to a mizrori of from
the reversed side of a shetl wheh were carpied on for a poriod of fourteen days with siz observers. The subjects wrote an assicned mentence three times with tho right dand and threa tines with the let, and vioe-verge on aiternate days, the mizting of aich sentance being tined, Bave in the case of two observers. As trming seemed to have no offect, untlmed experiments were not xade by tho others.
he greatost difflculty was noticed by all ouservers in the first fow trials, as noted by starch and Hill, and consisted in knowins miat the form of the letters should Do. A certain amount of cxtranepus practice was alloved In ordor to meet thit pecullar hindrance. Two obsorvers began by witing on the blackoosen with both hands at once, ripror-scrigt with the loft hand and nomzal seript with the light. Phis was sasier tham the wilting with the pon, Thich paquitod sunlle movaments. The othor obsorvera souted at a desk 1 th paper before thew, were toid to write tho scitsnce 1z mixos-meript, aftor it had been explained
 tine sentence, to hold the papor to the 11 ght and to correct mistares.

Attention at tha start wes sorsinec to the writing us a whole, but soon genoral dificulties decreased and particular ones were attonded to, since cortain lottor camblnetlons were Eore difficult than others. Excessive muscular
tension was shewn at flrst but later dissppeared. She axplafined in detall how ease of meiting anc freeton from attontion ajlowed cifflcultlee to be antlofpated end ovorcome before they were zet only fter ocmeidsmable praocice. withe runstion of Inszuing is to inprove the process by beincing erpors to lieht mis correeting thon, amu by aropt-
 on fy como faca sis to botitar posnibilitios. Tho 1more juroly zuccular tive process to bs loaraod, the less cuaccioun it the learnint of !t........ In the uirroraniting amber inents, ajnchoumees glazer a greater pole ! than in tacet throsing In sumervizing ad sarpostine the grocest, aud for soms

 his own nctivities and to smorten, by shojstac not mothoas or mystinc observable inistakes, a procask Thick woull other-
 thet in learning of sny sont both conselo: sh and uncomacious rnctors exist. Uneongoious factore are those fnyolver in the firin of the asconiation by nectice, ant the aropinay out of moisfications of bohavion eubsozuentiy utillzef by consclorsness. The anre intellectual snd bichly consclous the matertal to ho lenmer, tho more imentate ard direct the effect of conscinus entrol. Practice cesults in a standing
out of conan features of tho process; these are focalized, and gene-alized into mulss foz new snd better procedure, which immediately takes placo. In complex prosessen involvine both an intellectual and ruscular side, the antivity as s wolo is conscious. Dotails are gmadually mechanized, laving the attention rree to attack ze: Cifflculties. Factors of the aotivity mheh are at Ifist only at the 'parowntual level' became clearly exnsolous, are than zeasticed and limpowed upon, anà finally bocowo mechanizod and unconscious again." Just at present the psycholozists of renown ere not antively concerning thaselves aith the mirpor-dravinc oxporimont, al thuugh vestiges of it romain in the nowor Eanuala which they present to their atucents. Ocensionally, howser, some une of note mill use it, of an adantation of it, to shor handodnees or transfer. liss Dompy and prom cessor Judd ara examles of such authorities.
wieror-draning, then, as an infleation of Loarnins, is not a novel experiment. Its variations are many; its adaptations, even creater.

CHAPTERII

TITL THIOD UNED

anparatus and Matorials:

1. The rireor-drewins apnaratus
2. जtars to trace
3. Thumb tacks
4. Stop match

The apparatus used in this experiment is bolted to the center of an inch bosed about two root long and more than half as wide. The bolt used to attach the apparatus is oquippod with a special head so fasinioned thot it pemits a $\begin{gathered}\text { fire, pasmed parallel to the board through tho hoad of tho }\end{gathered}$ bolt, to revolvo completely around. This wire is one of four, always parallel in pains, connected by joints. To tho ond of one wire a stylus is attachod; to the opyosito ono, a pencil.

In the draving of the apparatus on the opposite page can be seen the stylus manipulated by the student, al though invisible to $11 m$ bocausc of covering laid over the metal burs on the side. This stylus operates the nencil which travels with the stylus but in an opiosite direction. Tho joints connecting the wires pernt the perpendicular distance botweon the two sets of ires to vary, makirs it possible for the poncil to adjust itsels to any change of direction.

The process is still further complicated by the fact that the pupil observes only in the mirror, never the hand directiy. Of course, it was impossible to show in the drawing the eloth used as a screen to cut off the direct view of the hand and star. The photograph at the beginning showe a boy at work, with the screen in place.

The uipror is adjustable, to accomodate the writor in any position he may take and still make the copy visible.

Procedure:

4 star was pinned to tho board in such a position as to be visible in the sirror, but not di rectly so, bocause of the obstruction offered by the shleld.

Instructions were as follows: "Trace the outline of the star, starting in the direction of tho arrow. Nork as rapldiy as you can, but try to keen on the ilne. Tine and accuracy both count-don't slight one for the other. Don't stop--but keep the poncil aoving ell the tino."
ifter the pencil was placed in position on the paper, and the subject's attentron called to the ract that he must observe only in the sirpor, the "leady" signal was efven; the stop watch was then clicked.
on the completion of each set of tracings a serial number was assigned to each pupil for idontification purposes. This is the number, uncor the caption "pupil's number" found

Figure 3. The Star used in the experiment.

A stencil was cut of the above star and from it 2500 stars were run off on a neostyle. Later 1200 additional ones were made. These were fastened to the drawing board of the apparatus by thumb tacks in such a position as to be visible in the mirror. A fresh one was used for each tracing.
at the extrame left of the tables.

The Subjects:

Over two huncrad pupils in Greenfield Figh chool volunteorai to servo as subjocts in this study. Of these one hundrad and sixty-seven completed the task, the results of which are recorded in succeoding chapters. Failurs to complete the sories at one sittins, fallure to trace the stars in the proscribed order, and previous practioe were among the reasons for excluding some of the tracings. occasionally a pupll was found who had been in the school syatem such a short time, that no tests of mental ability were on file; such tracines wore also discarded.

The list of subjects includes boys and cirls from all four classos. Sinco tho first tosts woro made in January 1932 and were continued at intervals throuch February 2934 sone of the pup11s have been graduated and are now at work or are in college.

The rinse of intelligence, as detorminod by their I.w."s (obtained by the use of the stenford teets) showed a considerable spread- Irom 70 to 150. Included in the $11 s t$ is a completo "A" Eroup, and a corresponaing "y" Eroup, about twenty-five Ferbors in each. Any left-handed pupils who camo to tho author's attention wore espectally urged to partieipate. A cordial invitation was extended to those pupils
who had elected work in the art Departinent; as a result, it was possible to correlate the schoul srades in drawing of seventy of the one hundred am sixty-beven with their mirrordrawing scores. Teachers of the manual arts--painting, froehanc and mechonical drawing, and wood-workinc, contributed a list of their nost skilful pupils who formod another group for spocial consideration. Several wore added from the cuthor's own typorritinc classes, considerins that proficiency in typing may be due to manual dexterity, rather than to mental alertness. Five children from a "special" or "opportanity" class joined the ranks of those who "took the test". The ages of these children corresponded to those of lirst and socond year high school boys and cirls, but mentally they wore unable to do the work required in the sixth grade. They are represontative of the class of ohllaren found at the Belchertown State school for the Foeble Minded.

A group of graduate studonts at the Hassachusotts Stato College, and a fev older friends were persuaded to be subjects for the mirror-draming test; thoy, homever, made but fell tracings.

In adaition to the above, the author made over one hundred and firty tracinge of the star.

This study, however, is concerned chierly with the one hunared sixty-seven pupils in the Greonfiold lizgh echool who
zade elghteen tracinge each, in the following order:

1. 1 with the left hand
2. I6 with the Meht hand
3. 1 with the left hand.

These tests by necessity were civen individually as only one person could use the apparatus at a time. Each pupil required about one hour to completo the eighteen tracings although less than half of that time was spent in the aotual tracing of the outilnes. At the beginning of the hour several minutes were consumed in explaining the procedure. Fastoning oighteen papers to the board, removing them, and recording the time for the tracing took about as much more time as tho oxplanation. The subjects aid their work thearnestness and interest, and experionced considerable strain and fatigue at the beginning of the series. As thoy became more faniliar with the reversing offect of the maror, it was customary for thor to deliberate between tracinge as to the proper method of procedure and technique. This was particularly true in the caso of the brichter pupils and scomed to be a repetition of the seving in meohenical practice, which was observed by 41 ss ordanl, and mentioned in her writings.

Altogether, nearly two hundrod and firty personn tried the test, each experimenting approximately an hour.

Figure 4. A star traced by a pupil very inexpert

Name
Date

119

February 15, 1934

Number
Time
Errors
Score
28^{11}
17

Figure 5. A Star traced with great accuracy

The exiterie of accessiul accomplishment in this experizent were three:

1. Wot missing a bot
2. Tho extent of missing
3. Speed

Marking the errors:

When the pupil had been totally unable to follow the outline the errors were scored 100. A porfect star had 0 errors. Figure 4 is an examplo or a star scorod 100. Star tracinges show a mide variation in accuracy, as evicenced by Herure 4 and Ficire 5. The mount of inaccuraoy was much creater at the becinning of the sorios.

Although it was a vory easy matter to resord tive tino, as tho watoh was accurate to a split socond, a more thoroughly standardized mothoa for abecking errors would be dosirabla. It was very airricult to keep the ratines unirom, and fraquent comparisons mero nocessary. It must bo remombered that there aro all degrees of missing a dot and that no two tracings were oxactly alike, and that the enount of error, as woll as the number or errors was taken into consideration.

The schene followed here was very unsatisfactory becauce of certain inevtable discrepaneios, such as the margin of subjective orror; but no more accurato method could be devised.

The rollowing extrect from an article entitled, "An Improved Technique in the Kirror-Traciag Experinentn, by C. E. Lauterbach of West Vireinla in a recent edition of tho "Journal of Experimental psychology": "The tracins of a star, or other figure, by its refloction in a mirror has been widely used in the laboratory as an experfment in trial and orror loaming. Scoring the perfomance has always ofiered considerable difficulty. Two scores heve been necossary, a time score and an error score. This In itacli has boon a di madvantage but an additional oriticisa is round in tho ract that it is requontly impossible to detomane accurately just what constitutos an error.

Tho illustration (IIgure 6) shows the Ilgure to be treced divided into units so that the numbor of unita traced per minute may be conputed and a sincle rato score secured. The total number of units in the star 1s 132. Tuo requiremont is that the 11 ne tracod by the subjoct must cut through, of mun tangent to, each circic constituting the star. In the 11. ustration the subject has falled to moet this requiremont In 34 instances. Hor unit score, as socured sith a stop watoh, 15 93 scconais. Her rato por minuto boosmes $(28+93) \times 60$ or 03.2.

By this method a sinclo score is secured and when succossive tracings aso mode a single leaming curve may bo con-

Figure 6. The eleventh trial of a ten-year-old girl (grade 5, I.Q. 108) in the mirror-tracing experiment. The record shows that she mado 34 errors in a total number of 132 points. Her time score is 1 min. 33 sec .

structed."

If this study had not been so nearly completed at the tive the above sucgestion ayporred in print, part of the schome might have been adopted. Tho use of tho cirole instead of the dot in tho outilne of tho star would make correctine oasier for falrly accurate tracinge, but mould be of little help in judging the poorer ones which are much harder to eveluate.

Other investigators have felt that the greator the number of zassures, the sreator the opportunity for discriminating enalysis.

Name W. J.	Number	8 R	
Date	January 11, 1934	Time	$48^{\prime \prime}$
		Errors	55
		Score	54

Figure 7. A copy of a tracing in which more time was spent on the right side than on the left.

Name	P. M.	Number	12 R
Date	January 11, 1934	Time	19^{11}
			Errors
		11	
		Score	15

Figure 8. A copy of a tracing made by a girl who is mentally defective.

Name F. Y.

Date February 7, 1932

Number	1 L
Time	$90^{\prime \prime}$
Errors	38
Score	64

Figure 9. Copy of a star traced by a left-handed girl. This is the first of the series.

Name A. B.	Number	1	L
Date	June 8, 1932	Time	$2^{\prime \prime}$
		Errors	85
		Score	106

Figure 10. A copy of a tracing made with the left

Name	S. B.		Number
Date	January 22, 1934	Time	R
		Errors	10
		Score	25

Figure 11. Copy of a star traced accurately but in a little longer than the average time.

Name S. D.	Number	$5 R$	
Date	January 5, 1934	Time	$50^{\prime \prime}$
			Frrors
		45	
		Score	48

Figure 12. Oopy of a star showing a large amount of variation from the dotted line. Apparently, there is little effort toward greater aocuracy.

Name	R. S.	Number	7 R
Date	January 23, 1934	Time	$45{ }^{\prime \prime}$
		Errors	80
		Score	63

Figure 13. Copy of a star traced by a boy with
an extremely nervous temperament.

Name	R. H.	Number	15 R
Date	February 1, 1934	Time	$11 "$
			Errors
		Score	40

Figure 14. Copy of a star, near the end of the series, traced quickly but with no degree of accuracy.

CIIAPTER III

ATRANGLEDITS OF SCORES

The IIrst part of CHAPM县 III consists of an arrangement of scores, showing first the number of errors and then time measurement. The tables are complete in that they show the result of eizteen trials with the right hand, and the total: followed by the rosult of two trials with the laft hand, and the final total, completo for all tracings.

Table 2 shows the number of errors; Table 3 is a tho record.

These two tables are followed by the mirror-drawing scores.

xəqumn s.tIdnc
TABIE II - ERRORS

ләqumin s. TIdnd

Jəqumn
s, TTdnd

iəqumn
s, tTcind

The M1rmor-Draving Score:

The Mirror-draming Score is a more or loss arbitrary arrangoment for the sake of convenience in handing tho data, and for comparison with other scores. It was derived by taking the averase betweon time and orrors. For the sake of the conVonience affordod by the mallor numbers, average time and avorage orrors mere used. The lest-hand trials were discarded and only the sixtecn trials vi th tho fight hand were includod 12 ouputing the mimor-draming scoro.

The mirror-draving scomes range fron 14 to 67 . It is ovident that the maller the socre fewest errore and shortest tiro), tho hifher it is.

In the same mannor as tho carponent factors, time and errors, the mirror-aremins scores show Greatest improvement at the beginning.

TABIS IV

AMD MEIER COHONENT EACTORS
3 STB ATD ERNORG

			$\begin{aligned} & \text { © } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				
115	55	38	30	88	33	61	6
66	31	32	30	40	28	84	23
55	42	68	20	23	33	47	20
13	52	63	1	110	24	22	25
155	20	19	22	156	50	71	29
161	20	19	21	119	18	33	8
50	65	78	51	34	30	49	20
17	27	20	28	106	19	50	8
51	24	25	24	63	30	66	22
13	58	56	17	124	62	34	20
19	20	35	20	108	42	75	8
127	23	34	12	105	19	14	25
11	27	28	25	66	26	27	25
36	24	52	16	51	56	55	\%
2	47	70	25	129	26	82	20
06	30	43	17	134	45	57	34
62	30	48	54	141	49	12	51
160	27	ร2	22	154	25	25	22
49	35	40	51	167	37	59	14
74	50	16	44	153	57	66	48
165	54	50	19	123	24	50	19
123	24	30	19	61	19	53	5
152	17	21	14	185	57	01	22
20	21	51	11	163	34	50	19
25	22	25	17				

TABLE TV

TIT ND LTTOR

			$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				
41	20	26	16	79	77	25	5
113	56	17	55	93	15	26	4
148	40	22	76	180	67	67	46
155	10	25	18	12	50	5	26
124	23	48	10	39	60	B3	56
114	30	46	22	131	20	20	11
80	56	44	23	105	20	20	19
14	81	40	18	2	29	34	25
65	42	54	52	40	49	68	28
35	57	52	62	50	20	60	©
23	32	46	17	23	17	10	10
7	23	50	27	70	34	47	21
48	24	57	11	107	23	22	24
157	34	52	16	59	25	59	10
70	20	37	10	63	32	50	33
100	20	35	20	111	54	57	23
112	44	82	6	152	35	13	53
67	27	40	14	35	34	24	45
05	50	43	56	71	27	25	51
130	cos	06	34	27	5.	36	25
22	5	68	12	101	20	28	28
50	31	34	25	4	48	01	27
120	10	19	12	102	20	22	17
57	55	30	32	147	50	70	32
159	62	100	20	121	34	81	57
E2	48	49	88	48	20	57	21
140	20	16	36	75	30	35	25
142	15	20	12	151	4	16	00
ช2	16	46	9	78	42	27	53
47	24	50	19	7	20	26	25

TABLE IV

MID Miner contoutur Factons
5xis Ald manons

110	33	46	19	128	38	31	35
125	24	50	10	69	24	35	20
166	54	78	50	29	25	40	11
64	22	0	23	35	52	43	20
07	23	59	7	54	31	47	15
132	25	32	24	155	50	28	\％12
98	53	75	41	92	34	54	14
04	33	30	35	145	21	81	20
153	25	24	26	72	25	预	12
156	30	26	5	60	58	85	32
53	57	78	23	8	22	28	44
100	35	13	58	6	52	45	20
42	56	51	22	104	25	24	20
10	53	39	66	150	47	69	26
44	39	57	20	149	34	50	19
164	43	60	25	57	29	48	15
125	89	46	58	O	26	30	24
00	23	22	25	142	52	38	20
∞	34	53	21	52	23	56	10
61	52	78	16	21	13	26	11
16	40	43	4	135	29	51	7
180	51	37	20	262	45	65	24
165	30	51.	26	45	23	42	6
84	20	31	20	82	27	43	11
55	80	53	27	220	52	28	74
3	56	62	50	5	23	28	18
15	42	33	55	73	43	55	31
117	14	16	12	116	27	43	10
80	24	30	19	83	82	24	22
50	27	35	20	87	54	69	38

CHMPMEA IV

In this cisaptor an explanution and interpeotation or scores will be made; firet, nin explanation centering around tho element of tino, secondiy, in regard to the errors; and Lastly, an analysis of tho mimor-drawinf scores, involving both time and errors.

21me:

The tize cunsumed for the entire olghteen tracings varied fran 210 seconds to 1773 seconts.

The Bhortest time noeked ror tracing the first star ซas 15 seconds; the longest, 480 seconds. In the final tracing two buys finished in 11 seconds; the longest time, In the final tracing for the fight hand was 70 sseonds.

The average twie rar :ins el ehtecn tracinge tas 45 seconds; the modian, 36. liknety-eleht finished thels work In loss than averaeo time. The ranks of ninety stucentor fell Within the san 21 range botween 20 and 40.

Accoselng to the oviconce in mablo 5 , tho individunl Afferences swe striking. The wesults of the sectes of no one person appeat more tiran once in the table. In other words, it dia not follow that beeauso a subject made the first iracing in the shortest time, he mould also ininich tho eeries

2ADIS 3
Tive in ceoonde for wirror-draming

Trial	Pluct Left	First Right	16th IISent	Scoond LeIt
Fantont	15	10 (1)	6 (2)	11
Slomest	220	356	70	100
Avereaso	97	∞	27	22
Hodien	65	69	25	30
Iiodo	00(3)	co (4)	20	40

Figure 5
2. 3 prasicmenil girle
2. 2 pupile-both boye
3. 11 60's
4. $860^{\circ} \cdot$
first, nor, in liko senner, beause he was very slow at first that he would continue to bo slow. The greatost gain in time, from first to final tracines was 395 seconds-miting the time to 25 seconds from 420. Three increased the time by one, trio, and three seconds, respectively.

In Figure 15 we have a "typical" learning curve. There is a high initina error, which decreases falrly rapidiy in the first trials, but "ith slow iproverent lator. This curpe was computed for sixteen trials, and sinoe tilere are no "plateaux" we infer that the paetice has not beon continued long enough to registor the comploto laarning process, where lack of ingroyement mould be indicsted by the fletness in the curve.

Figure 16 shows the latming curve for one particular boy. Notice that rapid lrarovement is often followed by perlods af loss. It indicates the attompt that was dade to reduce the number of arrors ing extending the time.

Flgures $17,18,19$, and 20 were included as erapicic proof of individual difforences. They are interestine in that they vary from the nom (Figure 15) so strikingly. other graphe could have beon added incefinitely. An idea of the extent of the irdividual differences can be realized only by taking into consideration the ifferences of scale to which the Eraphs wore oram.

50.
45.
40.
35.
$30-$
$25 ;$ $23 \quad 4 \quad 5 \quad 6 \quad 7 \quad \begin{array}{lllll}8 & 3 \\ \text { Trials }\end{array}$

Figure 15. The effect of practice upon the average speed for 167 boys and girls.

The vertical axis represents the time in seconds. The horizontal axis shows the number of trials.
(16 with the right hand)

50 .

Figure 16. A typical individual practice curve, showing periods of rancid improvement followed by periods of loss:

 Figure 17. Time curve of a boy with epileptic tendencies. The curve gives an indication of his unstable nature.
30.
70.
Time in seconds

Figure 18. Time Curve of a girl now an inmate of a reformatory. The cause of the long period of time used in Trial 1 was an uncontrolled fit of bad temper.

Figure 19. Time Curve of the boy who made the best Mirror-drawing score. This boy ranks high in scholastic achievement; his I. Q. is 149.

Trials

Figure 20. The Time Curve of the girl who made the fewest errors. In trial ll (smallest number of seconds) there were no errors.

Minety-two pupils traced the right side of the star in less thon one-haif the time reculret for tho complete tracing. Of the reaining seventy-five, eichteen used exuctly tho same time for both eldes, and thirty spant a longer time on the laft side. The records of the rowinder were lost. Tho midpoint proved a difficult spot for rany. shen considerable time was spent in turning the anglo waich zarked tro dividinc point detwean the $t=0$ sides the felay was charged aguinst tho secone helf, on the grounds that the right-hand hulr was already complotod.

At no point in the tracing of tho star did prosress adrane of th olock-like re ularity. tho greatest anount of the was consunsed at the inside and outside points, and even arong these thore was a ounsleerablo difference. Point No. 5 सns consldered the most difficult by the greatest number of pupila; others vohemently roclainod point No. 3 to be "a bak one". Wo point escaped mention at some time by some pupil. Fipure 21 shows the effect of a long period of time spent at some difficult point. It sould rave been interesting to have compared the tims used in the tracine of ench of the twelve lines, or for each of the tweive onclea, but it was inpossible to do 30 With the data availablo.

Some pupils emarked upon the varying degrees of dirficulty whout solicitation; very fow, when the question was

Name	60
Date	June 3, 1932

Number	1 R
Time	302^{11}
Errors	90
Score	196

Figure 21. Copy of a star showing very clearly that the points were the most difficult, and that the degree of difficulty varied among them.
put to then, railed to observe that diffor neos existea.

craxer:

For the entire eighteon tracings, the tewest erors recorded were sl--made by a pup11 (vo. 119) whose misrorm drain scort runks 5. Another pupil made two trueings aboolutely in thout error as for as I could seo.

In mepetition, ccordine to the schome used for marking errars, the frestest possible nutber was 100, fos any one irial; 1800 for exgnteen trinic. A close oxinunation of the tracinge of owe pupil revanac leas sivors. It misht bo wel 2, yerhays, to disregard this cano becsure of the fact that, altrough she took the test of her osn accord, she appearen bosed and uninterastar, and apparently dic not care to exert herseli to mate any effomt. A rusther exnainetion of Table 5 reveals that pun 11 No. $1: 6$ made 1380 cF=0=e. This pup11 (B boy) is nara-workine end trust morthy-ma friend to all he reets. His atinjt was an honest erdonvor. Fhile the number of exnors made by the riest is approciably wore than that by the sccond, the lattor wis docidedly inexpert. Fis last star, in respect to errory (100 errors) was not so good as the iirst one (90 errors). For Lim, tho whole provien was st111 unsolved.

The average mumbr of ermes for the ontire elehtaen trials wns 20.33; tho modian, 26.

TABU: 6

Wrross in thryor-dreating
(18 irlels for 167 prapile)

In a greaz many eases, the fletsengt trauine wes bettor then the slxtaentin. Ynueligr, meroly the remark, mphis is the last one," wuld cause s moticasble incresso in the length of time and the number of orzors. :\%o exount of eood intention woild overcane tho paralyzing arfoct of the nervousnoss oxperienced. Consequentiy, it my bave boen a mistake to have race eny sugeostion at all.

Plgure 21 is a copy of star irecen by boy (Io. 131) now in tho सraval doedemy at farapolis. Tis oxapienced a tremondous anount of difficulty et first, as evidenced herc. sot to de congurve by anythim; hich he attmpteds he repeatodly Foturned for practioe, an f inally becamo very expert.
bevie el औore very clearly that a greater asount of aifcievity was exmerienced at efferent spots, and that the points Fere the wost aifilcult of all. Uf tus six noints, point 10.4 Nis somuleted in the longest time and with the cweytnst number of ervors.

Tahlo 7 nay se intorpretad to show, in a littio difrernit way than any hitherto described, that puyils vary indiFLually in the numbar of ormoss made. In other ords 73/ of tho pupils mate fower errors than the 量ndinn; 27 made 1.ore. Tho greatest rumber of puyile, in rezard to numbor of orrore, fall in wartile II.

To overcome the miking of errass, it mas necossary that

TABI宫 7

Fotal maber of pupile, 267
the pupils becoce adjusted to the reverstng effoct of the rairor. In the beginning the adjustant was hophazard. Lrrors in the general direction droppoa out rapldiz aftor the fi-st rem trikls, persisting lonzer at the points of the etarg. In ajjusting thenselves to the reversins uffoet of the nirror several methods were fuorted. For axample, when the penci 1 was movivg in a cirection away feom tho outline, The subject tricd to reverge the direction of tal sovarent, and go in the oppost te cirection-mtilis alwection butne cetorminec̆ kinaestheticnily. Visual porcoption playad but Iittle part in this process, being used only to detaratne the antstence of errors, but not theip dirgetion. ansther method used by a fow subjectis, wats to try to go rusthor in the apperent rirection of an error just previously made. Becsuce of the reversing eifect of the mir:or, this, they reasoned, should bring the poncil beck toward tho line. They iound, too, in trying to onrrect an error thet there was a tendoncy to overcorrect. As a result many avolded correcting smell errors-that is, they would continue to the point of the star, even though they "just missed" sevaral cots.

Figure 22. The Effect of practice upon Errors. (Average number for 16 trials)

Improvement in errors travels apace with that in time. Starch found that the error curve continued to improve after the time curve had reached its dead level. 16 trials were not enough to show this.

Figure 23. Graphic representation of Errors of the boy (No. 126) who made the greatest number.

It would appear that sixteen trials had scarcely commenced to overcome the reversing effect of the mirror.

Figure 24. Graphic representation of Errors, made by the pupil who made the fewest.

In Mirror-drawing Score she ranks 5.

10 .
; $\dot{2}$ i is is i i \dot{i} is in in is is is is is

Trials

Figure 25. The Effect of practice on the Mirror-drawing Rank. (Average scores for 167 boys and girls.)

Figure 26. The Effect of practice on the Mirror-drawing Rank.
Pupil No. 140--the boy who made the poorest rank, 67.
30.

Figure 27. Graph showing the effect of practice on the Mirror-drawing Scores
Pupil No. 117--the boy whose mirror-drawing score was best--14 Greatest number of errors Longest time (per trial)

30
38 sec .

CIPTETV

VAnICUS : ill in Isoms

Boys and Cirls:
In this group of ninety-seven Girls and sevonty boys, tho eircor-draving ranks failed to revaal any real differencos minch oould bo attributed to sex. this is in dipeot Violation to whipnlo's assortion: "that girls decidedly aurpass boys and that woman decidedly surpass men is shown in all the publishod results of mirror-dravins, with the exception of two scoups roported by Surt and loore, and in then cortair alvergencies in sothod and in other test conditions offer a sufficiont explanction of the apparent excoption. 2133 Calfeo's averages, for six trials, give for the freshrion momen 64.4 sec. 3. . 22.3 , for tho freshmon men 101 soc., P. 5. 23.5. She finds tint only 6 percent of the fien reach the monen'a racian, while 90.1 percent of the women reach the men's modian. It is not only possiblo, but probable, that this sex-difrorence, is in some part duo to sreator farallarity of women ith the use of the mirror. Durt believes there is also an innate sex difference at work." (33)

In till study, the averago acore for boys was 34, for givls, 33 ; avorago time in soconds, for boys and girls was the anae, 41; the everage orrors, for givis, 26, for buys, 27. Tho above results co not inolude the two lert-hand
tracings. In the suttor of avcrages, the relationship could hardly have beon closer.

The best score, and the poorest one as vell, were each nade by boys. But the record for fevest errors, forty-two arross in elghtoen traolnge, belongs to a Eirl. Thero wore two trocincs without errore, both by the samo girl, but not the girl tao made th femest errors. ivo boy mado tracirg free from orrors; but more than twice as many boys as Birls made one only. The average acore for errore, per tracing, almost matched-3 for sirls, and 4 for boys. For a single tracing, the Grestest spread in time lies with the boym--six seconds, the shortest, to four hundred and twenty, the lonjest. Sriefly, in the compsison of the two ractors-mpeed and accuracy--wr find that honors do not stay with either sex for long. If wo consider ermors, the firls mado the fswoat errors, but they sade the most, too. If it is with spead that wo concern ourselves, we find boys at botr encs of the scale. the have the boy who neatly traced star in six scconds, and with bis is the boy who in Great bewilderasat took sev in full minutes for hie. hntever the anclo of consideration, thore is no factor that can be singled out that is pecullar to elther side.

Incivicual cases aro always of intorest, but the actual relationship existing between two sots or scores is most
accurately shown by their coerficient of enrrelition. "The coerficiant of comelation is userul whenever each menber of a Eroup of individunls has boen measured in two or more traits. It exprosses in one figure the avarace degree of resesblance or zutual i plication of the two traits. This reasure has been abundantly userul in expressing the rolation botween mental and physical traits, and in foretelline the probable standing on tost from the scores of nother. Its reliabillty deponds upon tho number of cases included and the closeness of the corrolation."

Porfect sorrelation is +1 , chance corveletion betroen relationships is 0 , ad perfect nes tive correlation is -1. Furthermone, ruge's genoral principles of (coerficiont of cormolation) boing nezifeible or indifferent winen It is .15 or . 20 ; nresont but 10%, fron . 20--ien; marked, Prom . $35-60$; and hish when above 60 or $\cdot 70$, Give us a rough measure of the closeness of relationship.

To be significent I must be at least four times the possible error. (15)

Pron eny of the evidence shown in this study, there is nothing to indicate that the rolationsilp between miprordrawling ability of boys end efirls muld bo ef ther close or substantial. Nor do we find that such a relationship, elther positive or negative, exists. Botreen the niryor-drawing ratines or the boys and the girls the coefricient is only .04.

The group in this study was nearly twice as large, and the number of tracings three tilies thet of 从iss Valree's. If her records are rollable, theso should be too. Hers were published over trenty years ago. Can it be that the fincings in this more rocent study justify the prosent trend or modern oducation, sililar training for both soxos?

The boys showed theaselves rovo mechanicelly-sinded than the Eirls. Fhen the apparatus fallod to operate satisfactorily, thoy were exreatly concerned. They not only recognized the fact that a dirficulty existed, but they proceeded to produce a remedy. one boy took the apparatus to the manual-arte department and lined up the Wires; another fillod a pencil-cap with molton lead, to holp the pencil suke a havier impreasion. Still another, porhaus to avold living orfense, reported to a shop instructor of uncuestionable mechanical skill, that ho felt thet ho could do a botter job if certain adjustinents were made on the apparatus. The boys appoared to be more interested in the results, too. Thoy discussed the moblem of mirror-drawn all over the building wh theny one who would listen-and many and varicd were the theories they formulated. Rot a sinfle girl came back to find out her scoro; about twenty-five boys returned to inquire about their rating.

Pigure 23 shows the efrect of practice on the time curve,

110°

100.

20°
11.
 Trials

Figure 28. Graphic representation showing the effect of practice upon the Time curve.
(Boys and girls separately)
for boys and Givis, computed for the sixteen right-hand trials. The averago lencth of time is practically the same; the spread for the sirls is squewhat eroater. The girls were slower eetting started, but they overtook the boys on the sixth tracing. Toward the ond they tried hardor than the boys to do better, flich had no other effect than to retard their syeed. This brought the boyo for Inal placing bottex than the girls. Thare wer no roliable quantitative differencos apparent for boys and Eirls. There is, however, some evidence of a qualitative difference that is more cunsistent them reliable. liotice that tho curve for boys is steadier, and steaciler in apito of the fact that thero were fower boys than sirls.

Flgure 29, sfimiar to F1cure 28, excopt that it tolls the story of the orrors, reveals nothine now alther in form or in interpretntion.

Intellieence:

Intelligenoe, in this investigation, ropsesants that type of ability wich can be moasured by school erades and psyohological teats. HeDrugall says: whe capceity to acquire knowledge and skill we call varuely 'memory'-the capacity to apply them offectivaly wo call intelligence." (18)

The first part of this chapter falled to revenl anything
$50-$

$10=$

Figure 29. Graphic representation showing the effect of practice upon the Error curve. (Boys and girls separately)
very distinctive in the difference between El:le scores and those of boys. for is there enything very striking whon it is intelligence that is beine o nsidered. Sxactly the some subjects wore used here as in the first part of this chapter. Betwoon intellignnee, as show by the I. .'s the coefficiont of correlation 1 silehtly negative. This corrolistion does not prove, of course, that general intelligence is or no value in adaptation to the tost. It is a common occurronce to find surpeisince expertness or inoxpertness in unexpected quarters. It is intoresinng to olto here, that while the coefricient of correlation between intelilgonce and mirrordrawing is nogative in this study, the boy with the best mifror-drawing mank stands high in both scholastic achievement, and in psyahological testing (I. . 143); and that the boy with the poorest mimpor-draning rank is the school's most skilled worker in wooc-working. (I. . 110) Intoresting examples may be contrauictory, but tho trend is unmistakablo. aith a group of this size such a coerficient is indecisive, but at least it volghs against the possibility of a very high positive correlation.

There is evidence that studonts seldon wors to capacity. In reny cases only the offort necossary to satisfy requirements is expended. It has of ien been noted that tho very intelligent do not soom to achlove school success in eny

Figure 30. Bar Graph showing the relative frequency of the I.Q.'s. The skewness may be charged up in part to the fact that there was a relatively small number of people in the group, and that there was considerable selection.
corresponding proportion. Soticoably wiee is the difference found betreen those or superior intellisence and their soholastic achievenent. Conversely, iniorior intelligence does not necossurily laply a completely unsatisfactory ecconslishment in sehool success. Petimee, persistenco, painstaking effort, and stick-to-1tiveness overtake cap city. The pupils in the Greonfield High school are divided into sections on a basis of ability. It so sayponed that tho time of wiritIng this paper, an A group, and a D group, in the same subject, wore botis incluted in my classes. since tisere were two sectlons betwoen these two , and since these two interzodiato soctions met th another instructor, the differonce botween them as superior and inferior groups, was most marked. Comparisons of the rasults of the two groups in mirror-draning were used as additional data in connection of the influence of intelligence on the zitror-drawing score.

Figuro 31 and sieure 38 shor that the A Eroup took a litile longer time, and nace a fev leas errors. This is Guite in accoriance with the sentiment that superior students, as a group, siof peristonce, initiative, courage, and control to bo comon characteristics, while the inforior group is mariced by timidity, impatience, and carolessnoss, wich in a moasure, account for thelr fallure. The nost striking difforence, however, between the superior and the inferior

10

Figure 31. Graphic Representation showing the Effect of Practice upon the Time Curve.
(An A group and a D group)

Figure 32. Graphic Representation showing the Effect of Practice upon the Error Curve.
(An A group and a D group)

Group lay not in achievemant, but in the oncern which they manifested in the process. The inforior group, calloused from attemptine problems which over-tax thelr copocities, rade littie effort to overcose the difficulties. The superior group, on the other hand, offared many apologies for their lack of skill, as they wiped away the persuiration. There were some in both groups who rejolced in their success; of theso the rejoicing was groatost th tho D group, since -ith them success comes lees of ton.

Another group of factors closely allied with intelligence are those of the emotional and temperamental varioty. The nervous child, regardless of intelligence, became panicky at the jutset. If he was especially nervous he seldom fully recovered. One partimlarly conceited girl burst into tears whon a irlend, supposedly duller, exulted at his own superior accomplishment. Inferiority complexes, and shifting states of embarrassment and olntion wero only tov ovident.

Syperriting and Drawing:
Assueing, then, thit mirror-drawing is a motor accomplishment, we N11 proceed further in this investigation by comparing the mirror-scores with other scorea likswise motor by nature. Pirst, it maj be said that no learning process is purely mental and that relatively fow on the hwan side at
least, are purely motor by nature. The terms "purely motor" and "purely mental" simply refer to the extremo points on the behavior scale, with nost human learninf actually falling somewhore in botween.

Typeriting and drawing were choson as types of motor abilities. Typowritine was solected ror no more losical reason then famillarity. since typenriting is inoluded in the commercial currioulum, these ranks wore essily availablo to the author as a teacher of comercial subjects. Furthernore, it is woll known that success in typewritine does not wholly depend on intelligence.

It had been observol before actual statistical nork had been begun, that as a rule those pupils who were skilful in typing showed mirror-draving ability as well. Fith this in mind a correlation between school grades in typewriting and ranks in mirror-arawing was besun. In our school 60 is a passing grade in all subjocts. The average mirror-drawins score, wich includes both timo and errors, for all righthand trials, was taken on a besis of judgnent for mirrordrawing. The average score was 36.23 ; for the salo of convonience 36 was used. It must still be remembered that the suiler the mirror-drawing scoro, the ereater the ability. It is also true that in nornal distribution the "average" rank 1 s somewhat bottor then what is just "passing".

This would advance the score 36 toward 40; how far it is hard to say.

2ypowriting:

There were elchty cases includod in the comparison of typowriting and miryor-draming.

Interpretation of M1qure 33:
The satter diagram is ahown dividod into four sections on a basis or ability in towriting and mirror-draning.

The upper left section chows the cases with inferior grades in both typewriting and mirror-drawing, the upper right shows superior typewriting but inferior mirror-draming, the lower right shows ouperior typowriting as well as superior mirror-drawing, and the lower lert tho cases that excel in mirror-dpawing but with inferior typenritine.

A glance at Fisure 33 shows that the majority of casos fall in such a position as to indicate that ability in mirrordrawing carries $\begin{aligned} \text { th } \\ \text { it the abllity to co typoriting, and }\end{aligned}$ that lack of ability in one is accompanied by lack of ability in the other. This accounts for 70 percent of all cases. Those results were disappointin, if not surprising. Porhaps, after all, seven out of ton cises, as the diafran shows, is ali that fhould be expecten, since wo have never been led to

Typewriting

40455156065707580859095100 $444954 \quad 796469747984899499$

Figure 33, Soatter-diagram
showing the relation between
Typewriting and Mirror-draving.
belleve thet superiority in one form of motor ability nocessarily signifles equal success in every other.

The coefficiont of corrolation is .279 , postive, but not very high. There are too many wose typewriting is watisfnctory but ose mirror-drawing score is very poor.

Porhaps the most striking point to observe is that while the lowest score for the entire group of one hundred sixtyseven pupils is 67, there is no one taking typenriting of th a mirror-drewinc score below 55, and only sixteon with a mirror-arawing score below the sverace. If the factors that govern mirror-drawing aro the same as those for typing, then either of two things alcht be true-olthor the practice in typing has been transferred to mirror-drawing, or some of tine poorest have already been olimimted from the typewriting croup. Fithout a control group it would be impossible to prove the transfer; in regard to the latter possibility, the best students rarely drop out, and in a sense those pupils who continue in any aubjoct over a considerable period of tine become a "survival of the fittest".

The group in the upper ficht section is the hardest to understand. It is a sizeable group, too largo to be 1 gnored, consisting of those who are skilful typlsts, but with little ability in mirror-drawing. The most satisfactory explanation there is to orfer is that there is a possibility that for them
skill in typing ceme only as the result of groater effort and practice.

Drawing:

Whon the results of the comparison of mirror-draving With typewriting scores faled to disclose enything of unusual interest or importance, the campariaon with mirror-drawng and drawing was attompted in sinllar manner, and with more pertinent results.

It was possible to compare the scores in mirror-drewing with those in drawlus, for ninety pupils.

Intapretation of Incupe 3A:

The scatter diagran for drawing and miror-drawing boars a stront rasemblance to the preceding one for typewriting and mirsor-drawing. It also is sown divided into four soctions. The upper left section, containing no extreme cases, indicates thet superior art does not exist with very poor alror-drawing. Tho upper slight ahoms superior drawing with superior mirrordrawinc. The lowr Meht show superior mirror-drazing with poor grades in drawing. The nunbor of cases is surficient to whrent investigation. The lower left section sichifies lack of ability in boti drawing and misror-drawing.

The upper sight and Iower left sections incicate the cases where exoellence in mirror-drawint and drawing exist

Figure 34. Scatter-diagram, showing the relation between Drawing and Mirror-drawing.
tocether, or conversaly, where absonce in skill in one is accompanied by absence of skill in tho other. Although these two sactions include more than inlr of all caben, the cooffecient of correlation for dravins and mirror-araming is not large, .29\%. Hevertheless, it is the highest found In this study. Other correlations havo beon with tian and errors, boys and firls, mirror-draving seores mith intolliEence guotionts, and miprox-drawing seores aits school grades in typewritigg. Nono of them is large mough to bo sigailicant.

The lower richt section, with thirty-aix enses, is perhops the hardest to understand. These are tho pupils whil cood mirror-draving ranks, but who are railing in dravins, although thej elected it. in our sohool drawing or "art" as it is called, is alective, but crecite earned count toward graduation. An "ertistic tuperament" has bean the traditional explanation roi many lapacs from expected belivior in the past. Lay it not be used here to explain the unaccounted-ror cases in the lower wight of the diagran? Wo do not vish to strain the data to Nhow that these pupils who heve the ability to exeel in draving are unablo to resist the opportunity to waste their time wich the freedom from discipline offered in the atmosphere of the drawing department. The novelty of the alroc-crawing experiment, complete in one thort sittin?, overcomes thelir usual boredom, and permits their
natural ability to assert itsoli.
Iavins obsorved the pupils wo woy. Torking in the dresin: ajopertmert, as a alism, wero siover than tho arerage, and that they ragniced the exporiment mopo as a proulan to be morked out then es a nsturt, it mes docised to drop for the than bsing the that factor and consilor omiy acouracy. As a further investigation into the comparison betnean mirosdraving and art, scattor diagran bstwon deanin; and errom in mirwoncrewing was mopnred. (Ilcuro 35) The resuits found camare very sevorably wh the upper lect gection of the preceding diasram- that abslity in draving sarely oxisis without ability in nizmymdrawns, or canversely, accuracy in mircop-arawing mifht bo used as an inasx for ability in art. It atrons but throe ceses wth wors than f1fty-rive orrors in mixror-drawngs and only alavan casos yith move then the averare aroms. (Mme average used is for the orisinn) one hundred and sixty-aeven cases.) In other ords, succoss in art ceens to go hand in hamd mith a cusacy in mimor-draving. It is at this point thet the author orfers whatever ovicomen this atudy may contank, to shon that the renl value of the mirrox-draning exporimont is not value in its own sight, but value that mignt be usea in some form of orientation.

Persintence of the Erfects of 3irror-drawine:

Heror-draving provides no exception to the ecxeral

Grades in Drawing

Figure 35. Scatter-diagram
showing the relation between
Errors in Mirror-draving and Drawing.
primeiple that motor learning is lasting. One does not heve to learn to skate each winter; the loss in speed in typewritine due to lone intervals sithout practice may be regained in a conparatively short time. Do it ia with mirror-drawing. It mas possible to make nome retests after a lapse of two years. Hithout exception the first or the second aeries thowed somo ikprovemont over the initial trecing; usually there was marked improvement. Of course, the opportuinty for showing the persistence was greatest when the first tracings wore unusualiy poor.

In this experiment, the average time for the first tracing was 90 seconds, two yoars later it was 32 seconds. (The second Eroup did not contain all those students of the flrai group.) on an avarage, the re-learning was so rapld that efter fipe trials, accurecy h d been eoained that was equal to the final records of the orisinal series.

Figure 36 shows the first tracing in tho orisinal sories or pupil No. 2. Flgure 57 is a copy of the first tracing in a series made arter an interval of two years. This was an unusual exse, in that the begining of the second series was decidedly bettor than where the lirst lert orf two years botore. This ray be explainod by the fact that she was one of the first to try the experiment then everything was now and strange. Ficure 36 ie mute testinony of her initial nervousnoss and marked self-conscioumess. Lilthough she did

Name	2	Number	1 R
Date	Januery 17, 1932	Time	$6^{\prime} 40^{\prime \prime}$
		Errors	100
		Score	250

Figure 36. Copy of a star, the first of a series, traced by the girl who experienced the greatest difficulty in adjusting herself to the reversing effect of the mirror.

Name
Date 2

Number	1 R
(second series)	
Time	$48^{\prime \prime}$
Errors	9
Score	27

Figure g7. Copy of a star traced by the same girl two years later, and without practice during the interval. It shows the persistence of mirror-drawing.
not attempt a traing durine tio interval she eram verg much accustormod to the apparatus ind yrocedure. The nervous attitude disaponared and the subject denorstrated ho: ability in tho phanomenal lixuptement.
virror-črafirg seate, theroforo, to resomblo muscular habits, like skating and typewritine, in tho momer. in which skill once devolopel is retained, Witil litzio loss over long portods, ratrer than tho associative connections of mental ectivitios with their relatively lesser pereistence.

CHAPTER VI

THE LEFTT-HANDED

M1ss June Dowey, in her findings in the various fields of handwriting analysis, has made valuable contributions over a long period of years to the study of left-handedness. "About four out of a hundred are born left-handed, but three of them are using the minor hand. Among the one hundred supposedly right-handed persons whom we measured, we found three who gave constantly, for the four measures, an excess In favor of the right side. One of the subjects reported himself as ambidexdrous, and in fact the difference in favor of the left is very slight. He is very inexpert at mirrorwriting. The other two belong in our best quartile. One of them admitted that he was left-handed. He calls himself right-handed because of writing with the right hand; he does, however, a number of things with the left hand. No particular pressure was exerted to make him write with the minor hand. As a matter of fact the difference between the two hands is not extreme. The third case shows an extreme difference between the two arms and hands. Questioned in detall this pupil does many things with his left hand. He supposed this was due to accident in forming certain habits." (10) In this same report, "Unidextrality and Mirror-iriting,
the result of a comprahensivo research, she finds little dirference as to hanc, provided the subjects are not rehiftovers". The detection of the ah1rt-overs alrendy referred to, by arm and hand measuramonts, is a contribution of Ernest Jones, of the Untveresty of fyoming, who worked contemporanoously with uiss Downey. "Some leftwhanders," writes Professor Jonos, "are transfers, since their right side monsurements are considerably larger then tho lert-side ones. A parent is lorthanded; the left-handedness of a child may be explained hy 1usitation (10)

In this study aleven of the one hundred sixty-seven peoplo were left-hanied. Sinso not more than four lafthanders to the hundrod are anticipatod, this is rathor more than the evorace, due to the fact that every availablo ono was inciuded. It hed been hoyod that spocial attention might be given here to the relationship of left-handedness to skill in mipror-drawimg, but data were too moagre.

He would like to pass the mattor by, however, with the statesent that the lert-hended people in this group revealed an expertness quite above the average. They were careful, accurato workors, al though individual differonces wero as apparent here as elsewhere. The small number observed, of course, mako tho results mere speculation.

CHAPTR VII

SNOS:-EDUCACION

It is well known that training given to ne ruscle group will carry over to other muscle groups, and that a considerable amount of practice gained with one hand is transferred to the other unpracticed hand. Becinning with weber a long line of investigators heve noted this phenomenon, usually called cross-education. Outstanding exporiments in the flold have bean performed by Soripture, inith, and Brown on steadineas of hand, woodworth on ability to hit a tarjet, and starch, Ewert, and Bray on mirror-drawing. K. S. Lashloy, of the University of onicago, hns also noted transfer offects in the course of work on cerobral function in learning. He taught monkeys to open a problem box with the rient hand. We then iostroyed the motor srea of the left cortex, thus paralyzing the rifot hand. when the antmals were again placed in front of the box they used the leit hand, the seet, and even the head to opon 1t. The animals are sala to have sho:n littlo ar no randoa movement.

In 1928 Prorescor Charles i. Bray, in the Psychology Laboratory of Pinceton University, undertook an exporiment to study transfer from on part of the body to other jarts, mirror-draving being chosen es the task. The procedure rollowed that dessribed by Dearborn and used by Starch and

Brort. The subject traced a star wich he could see only through a mirror, similar to tho method used here. An effort was made, so to adapt the exporimont that the task could be performed by the reet as well as by the hands. Pechnical difficulties as well as the difficulties of the task prevented the atterapt to obtain data from hands to foet; but the impression of the oxperimenter and thet of tho subfects as well was that the feot gained considerably fron the practice of the hands. Transfer from right to left was kown by the results; but because of certain errors in the procociure this mork wes unsatisfactory. The results confirmed, in genernl, those of fuert (il) on transfor from preferred to non-preferred hand. Professor Bray (2) found that varying the mount of hand practice from ton to sixty trials had no effect on transfor of learning to the foot. He interprets this to mean that the slight improvemont characteriatic or the hand pratico arter the first fow trials is not transforrod.
T. W. Cook (6) (7) of Acadia University is at present expending all his energy in a modification of this same task of tracing a six-pointed star seen in a nirror. Ho round, using himself as a subjoct, that one hundred trials practice tracing a six-nointed star with the left foot, resulted in a marked gain at the same task with the right hand. The euperiority of hand over foot, howevar, again made
comparison difficult. He is at present at work on the same task, Wi thew subjects, three groups or ten each lone is a control eroup), with now apparatus wich enphasizes the direction component.
soveral types of explanation have been proposed to account fur transfer from one met of the body to others. The early investigators found an explanetion in torms of the kinprovement of some faculty. Explanation by faculties is no longer acceptable, belng rezarded purely varbal. other explanations of crass-education and transfer fram one part of the body to another have been drawn from the related fiold of transfor froa one situation to another. This has 10il to two theories, that of identical elomonts, and that of generalizetion. The thoory or identical olements would say that transfer fram ono part of the body to another bakos place when the subjoct learno part activities involved in the perforamice of both members. Thus woodworth suegests (31) that common head or oye morements may be invoived in the performance of an act of skill by either hand. "L'exeroise d'une main n'est pas entiorment sopare de celui d'autre; lee mains sont souvent innervees ansemble ot done ontrainoes epecirequement on mene temps." The theorg of generalization does not Eiffer Ereatiy frow that of identical elemonts excopt
that it erphasizes conscious rather than behavior factors. It Eusgests tha transfar is dus to the generalization of rethods, atsitudes, or iceals learnca in prectice by one part of tho body and applied by a perfomance of the sot to another part.

The two theories are wore or less complenentary. They ann therefore be combined and called the theory of "coman elements."

One further poesibility has been advancen to explain transfer. Prom 需. Davis, of Yaie, we Learn of the theory that assumes some sort of prectice of the unused momber. More familiarity with the set-up of the experiment and the overcoming of nervousness is probably important in transfer. Of the existence of transfor there is no doubt; the emount of transfer is not so easy to deternine. Jy the old method two tests were made on some pirt of the body, interposing a period of pradtice wi th some other nart. Tho difrosonce between the rirst and the laat tosts is assumed to show the transferret inprovement. Unfortunatoly the method fails to consider the ofrect of the flrst test upon the second. Acts of akill are known to inpmove greatly in the ifst fow trials; so it is oniy to be expected that the second tast will show an indrovemont over the firat. For this reason the method described fives no adequate measure
of transier. This defect was pointed out by P. H. Swert, who has shown that early estimatos of tho amount of transfor rust be alscounted, and a different method followed.
gwert used two groups of subjecte, one of wich followed the usual procedure. The other group acted as controls, receiving only the end-tests of the unprecticed part. Comparison of the relative improvement of the two groups gives on adequate mount of transfer. Evert found that the nonpreforred hand improved 36 percont in time, and 21 percent in errore in firty-trials practice with the preferred hamd. Measured in tho old way the transfer would have bean 32 percent in time, and 76 percent in errors. This shows that previous estimates of transfer have been too high, but that some transfor actually occurs. Starch, one of tho first in the field, reported 90 percent. Ewert was also ablo to show that tranafer is grector from the preferred hand than in the opposite direction.

This oxperiment atteapted nothing more ambitious than the transfer of learning from the preferred to the non-preferred hand. In tho absence of a control group, it would be safor not to say how much--except, perhaps, that the anount was so considerable that it surprised and astonished all ooncerned. A glance at the tables on pages 40-51 confims this.

CHAPTER VIII

THE SPECIAL OR OPPOLTUNITY GROUP

Perhaps the group of greatest interest, and surely the one which procuced the most unexpected results were five pupila, two girls and three boys, from a special or "opportuinty" class, enrolled in the public schools of Groenfield. The procrams of these pupils are so arranged that thoy come to the Migh School a scheduled number of periods each weok that thes may take advantage of the greater opportunities for shop and laboratory work wilch a school of trelve hundred pupils offers, and where it was hoped they micht mingle socially with others of equal age. But the responsibility of protectint then from bodily ham mas more than the teachors of printing and carpentry cared to assume, so oventually they found places only in the placid atmosphere of the drawing room mere there were nolther presses nor sams. It was there that the authior found them, and from whore they were slady loaned out as many and as of ten as the author wanted. In chronolozical aco they varied from fourteen to aixteon years. But their montal ases were so low that it had been impossible for then to take tho tests mich purpose to measure intellisence. As several pupils' recoras are on Nile with I. Q.'s in the $60^{\prime} \mathrm{s}$, the inferenco is that theirs was bolow that. In araining, lowever, they showed considerable native ability.

All five that I net were in every sense of the word perfect examplos of the "under-privileged" child. The first boy to come to the author was a state ward, with parents "unknom", eccording to the school records. Not only did he have the molsfortune of belng mentally derective and homeless, he was the blackest littlo urchin imasinable, on whom some one with a perverted sense of humor had bestowed the naise "Golden"! He arrived wearing a pair of patont-leather dancing silppers several slzes too large, from which the soles had beon almost completely worn anky. Ife matched ne inquiringly while I oxplained what it was I wanted him to do, but showed no inclination to start until asoured that this had no conmection (for him at least) with school work. From that point on all my romarka were intersporsea with many "Yes ma'an's" in true negro style. Then I sam that his suspleions were calmod and that he was ready to start. His procedure was caln and dellberate; thore was an air of confidonce in his manner. Although wo have every reason to belleve that every thing was new to hin, ho forked as if with a practiced hand. lor did ho appear in any way different from other boys. lio macio sixteen tracings ith his richt hand and a final ono with his lert. 1113 rork was outstanding In that it was so rree from orross. In both time and errors, it rell in the best quartile; his mirror-drawing rank is 10.

All tine pupils from tils group woro under-sise and underwoicht. Indood, lack of vitality has been mida a feature of a diacnostic schamo for dotectine intellectually subnormal children. The next boy to como was no larger than a ten-year old, althouch there was something that stamped him as being older. He sas quicker than the first boy, and while rot so accurate, still kept his score in the first quartile. He socmed vory much pleased with himself when he found that he could do whet was expectes. The oncouragine renark, "You're a prize pupil!" brought back the response, "Oh, is there a prize?" This sives an lea of the frmaturity of his inind; no regular pupil would so have construed the author's moaning. And then there was a subject nemed Sophie. She was the thinnest of the: all, a particularly frail looking littlo eirl, with big blue veins that stood out on her temples. The mirror-drawing apparatus was on a table in a small room opening off the typewiting roam. Throuch the open door she watched the puplls operating typemriters at to speed, a group busily engaged running off copies on a neastyle, firty a minute, and it just happened that over in the corner still others were cleaning stencils and hansing the: up to dry on an inprovised clothes line. Sophie was fascinated. Althouch her record shoms her to be one of the slowest in mirror-draininc, her time was not spent in maning random movements as was the case of
other pupils who spent longer than the average. She would draw a fow lines and look around. Thon realizing she wasn't doing what sho crice to do, would work steadily on a little longer, only to lose horself acain in her unaccustomed surroundings. Perhaps it would have boen wise to havo slosed the door when the adjoining room was in use, but other pupile had not found it distracting. As for errors, they were surprisingly few. And so it was with the other two. In general, the pupils of this class took less time than the avorage; but the greatest affrerence lay in the fact that they made such few errors.

Thore may be a Elgnificance in this which we cannot afford to overlook. Vental cofectives are a very real morry; any substitute for intelligent self-direction would lighton the burden. This investigation sugsests that raontal defectives show striking variations on the manual side that aight possibly serve to place them into groups. Nirror-drawing is a camplex process. If these pupils are capable of success in mirrormarawing, why mould it not bo posaible for them to achiove equal success in some moro profitable occupation?

TABKS 3

FABM 8 ahows whet the orror-1ree goot scas ho ves able to traco.

CHapTEn IX

TIREE OTHIMR GHOUPS

Berox this study comes to a close, three other groups, more or less involved in this experiment, should be montioned. First, there in anall group from the Lsssachusette state College. At the very becinnias I had plenneả to use some of the gradunte students from the psychology department as subjects. Aftor twelve had ben approached and soveral trials made, the idea was bbandomed. Jo one made more than seven triale-one lort-hnadod one, ond six right. of the twelvo, ten wore al ready "wise" to mirror-arawing proceduro. It was a common occurreme for then to preface their attempta with "I con't do it. I nover could. It drives me crazy." One eirl announced that success was not the award of erfort, so sho made no consclentlous ondeuvor. Furthemore, aware of the results of other investicators, thoy were a bit susplelous about participating in an experimont of doubtful prognostic content. instoad of an investigation to reveml What it sicht, my experiment was transformed into a cemonstretion showing that miror-drawing skill varios inversely wh intelligence: On the mole, the realts were decidediy unsetisfactory; same ono slse had their lcarnins curve. It seened better to confino this study to the less sophisticatod
high sohool students.
The second Group was comprised of fricnds, oldor than either high school or college students. Without excention Hiey regarded mirror-arawing most intricate and perplexing. Usually, they ald not caro even to attempt a left-hand tracing. In any lino it is usually true, adults do not care to take over too much that is now. Ten, twelve, or Eifteen minutes were not uncomoniy long for tho fisst trac1ng. The Iniched product, as a mule, was a falriy respoctable star, but the tracing of it, In many instances, was attonded with much norvous energy. Apjarent with the college students, and still more evident with the older ones, the tire ractor showod an inverse corpolation, though not a high one, with age.

And lastiy, we come to the group of wich the author is the sole reprosentative. In the beginnine it seamed thet of all poor subjects, she was to be the worst. Progress was alow. The initial drop in the time ourve did not come until after more than twonty-rive trackngs, seven more then in the series made by the pupils. Ivon ther it toak moro than a minute to trace a best star. Mhe stare, themselvea, were nervous-looking figures, with no mose distinguishing chercotoristic than the length of time consumed in executing then. Roro than one hundred twenty-plve tracincs have been

Figure 38. Copy of a star traced by the author. (This star was traced fairly early in the series)

200,

Figure 39. Time Curve of the Author, for 16 Trials; below is the average Time Curve for 167 Boys and Girls.
-120-

made, but there secus to be no observable improvement after the eoventy-fifth trial. The best tire, fith a vien to keeping errors at a minimuin was about twenty-fivo seconds. Heither the rete of improvement nor the time required is quite in accordance with the records of other investicators. Starch found that improvemont onntinued for noarly one hundred trials, considerably longer than here, and a truly expert mirror-drawer can trace a better star in less than the tine used by tho author. The ability to draw a good star, or such as it was, and without being in record-bresking time, has been a great convenienca, on occasion. Asking others to do what one cannot do onesel r , may lead to awkward situations.

GEAPTER X

SUIDUARZ AND BOMCLUSION

In the investigation now reported, an attempt wes made to analyze the loarning process. The conclusions advanced were based upon a series of tests in mirror-drawing, an intellicance test, and the school grades in drawing and typewriting, of the subjects. The various messures recorded were compared and correlated. Pupils in the Greenfield High School volunteored their cervices, but there was some selection anong them, to the end that there might be as large a variety as possible in both acedemic and manual accomplichment.

The prinary purpose of this investigation was an analysis of the process of learning. Nirror-drawing, one finds, is a highly speciel ized capacity. The mirror-drawing curve is a typical loarning curve, with a rapid initial arop, and a tondency to flatten out berore practice is aiscontinued. The elinination of errors of direction and of correction was due, in part at least, to the developmont of methois. At the beginning a few subjects tried to use methods but these were usualiy found ineffoctive. In the course of practice, mothods vere used to eliminate tho two sources of inaccuracy mentioned.

The mirror-drawing ranks failed to reveal any real dirference whith could be attributed to sox. Nor does
intalligence, that type of ability which is conaldered to bo measured by sciool srades and psychological tests. function to any appreciable extent. Tho intellisence quotient, vhen corcelated wth mirror-arawing scores, gave a coericicnt that was slightly nogative; but those results by no moans eliminate intalifgence. It is a common occurrence to rind สupprising expertness or inexpertwess in unaxpected quarters. The correlational finding indicate that aramins and mirrordrawng are relatod abilities, but there is no inforonco that one 13 the cause of the other.

Ono furtior factas that Beoned of 1 popotance both in leamine and in transfer was the initial nervousioss and self-conscicusnoss of some subjocts. In many esses this was guito marked and easily apparent. Artow a ion trials, the nervous attitude usualiy, but not always, disappearea and was roplaced by an ols of contildence.

That mircormdraging is a motor ability has beer assumed ard partlally substantiated. The coerficiant of comelation botween typewriting and miror-drawing was positive but not Very high-.279. The scatter-aingram showing drawing and errorg in mirror-drawing incicatos that dreving and mirrordrewns are related abilities. It is special instance of skill in handing spatial meiationshipa.

It is obvious that any conclusions based upon the
results must be regarded as ppeculative and uncertain. A reason for this statement, even more pertinent than the sall number of subjects, is to be found in the fact that an explanation of the process of leaming involves a satisfactory accounting for the entire fiela of human ractions. In so restricted a study as this, any interprotation way be condemned on the ground that the attack was on too small a spot in auch a vast field.

As an outcose of this work I an convincod that the study of mirror-drawing deserves further serious consideraticu. Furthomore, skill in hirror-drawing avpoars to be indicative of a specialized capacity 弗ich is of value in some forms of oflentation. In particulax, it inight be worth detemining whether montal defoctives ahow striking variations on the manual side that micht possibly serve to place them in groups.

The real point of intarest in all this is not, of course, the citing of factoxs concerned in mirror-drawing for its own alke. This is incidental to whother or not mirror-drawing is not indieative of a certain type. the clatm has been hate here, and partiy substantiated, at least, that the mirgor-draming oxperimont micht bo used as a test ior talent in draving.

BIBEIUGRAPHY

1. Boring-A isistory of Experimentol Psychology
 imental psychology, 16: 1933, pp. 443-467
2. Calree, harguerite-College Freshon ark Four General Intollizence Toste-mournal of zeluca气ional Psychology 4: 1913, pp. 223-231
3. Garr, H. A.--PEychology
4. Carroll. Jchn Stever-A Blological Ayproach to Education-The Hich School Teacher, September, 1933
G. Cook, T. W.--studics $2 n$ cross-zducation: Mirror-mracings of the Star-shaped haze-Journal of Experimental Esycholo3y, 16: 1933, M. 144--160
5. Cook, T. \%.--Iurther Stuaies in Cross-sducation: Mirrorrracings of the Star-Shaped Mazo-Joumal of txperimental P3ycholosy, 16: 1933, pp. 679-700
6. Dearborn, 青. F.-Manual of Raucetional Dsychelosy
7. Downey, June E. - On the heading and lisiting of Mirror-script--P3jchological Review, 21: 1914, pp. 408-441
8. Downey, Jume to-ijnidextrality and A1rror-initiagJournal of Experimental Psychology, 2: 1917
9. Garratt, Ienry E.--Stailstice in Paychology and Saucation
10. 11111, D. S.-Minor Studies in Loaming-Joureal of Educetional Psycinolosy, 5: 1914, pp. 375-536
11. Jennings, IJ. S. -A stucy in $2 \mathrm{yperriting}-$ Archives of Psychology, 9: 1022, pp. 71-72
12. Jones, harold Ellis-Dextrality as a Tunction of AgeJournal of Experimortal Psychology, 14: 1831
13. Jordan, A. hi-micucational psycholoey
14. Judi, C. H.-Isboratory ianual of Psyoholosy, 1907
15. Lauterbach, C. 1.-An Improved Technique in the Mrror-Tracing Experiment-Journal of Experimontal Psyaholoç, 16: $1035, \mathrm{pD} .451--454$
16. MoDougall,
page 38
17. Monroe-Theory of sducational Moasurement
18. Linavorsky--Experimental Paychology--Introduction
19. Lekinney, Frod--uantitative and ualitative zssontiai Elaments of Transfor-Joumal of apperimental Psychology, 26: 1933, pp. $354-364$
20. Orachl, Louiso E.-Consciousness in Rolation to Learriins-morioan Journai of Peycholocy, 22: 1911, pp. 158--213
21. Perrin, I. A. C. - An Experimental Study of Lotor A) $212 t y$
22. Pintner, Fudolun-Etucetiomal Paychologi, Chap. VII
23. Foffenbuxrer, A. T. - Appliod Pwrcholory
a6. Pyle, ग. H. -wThe Erycholocy of Leaming
24. Starch, D.-Exvertments and Exercises in Educational Psychology
25. Starch, D.-A Demonstration or the Trial and Error Nethod in Lcarning--Psychological Eulletin, 7: January, 1910, pp. 20--23
26. Morndike, F. L.--Educational 3sychology (Briefer
Courso)
27. Troland, i. T.-Mundamental Principles of Bumer Lotivation
28. Spoarman. C.-The Abilities of "ian
29. hatson, J. B.--Behaviorism, Chep. XIII
30. Whipplo-manual of Lental and Physical fosts
31. $\mathbf{3} 00$ worth, f. S.-Psychology (1921 eattion)
32. Texkes--Introduction to Psychology, po. 402--406
33. Iokua, C. S. and Largueri to Calreo-min Analyais of the M1pror-dirawing Experiment--Joumal of Educational Psychology, 4: 1913, pp. 233

A6Z

The author is indebted to Ir. Frederick . Porter, Superintendent of the Greenfield (Kassachusotts) schools, to ifr. Edear Burr Saith, Principal of the Greenfiela ilgh School, and to those fellow teachers for their help in securing subjects for this study. To these subjects, too, acknowledgent should bo made. Special montion should be made to Alfred Lukous of the Greenfleld High School who contributed the drawings.

The author is ospocially indebted to Dr. H. N. Glick for his holp ana criticism.

Approved by

Cedrem) Cumber
Indinitk Mom louth
Graduate Committee

Date

[^0]: Knightly, Agnes E., "The process of learning as shown by the mirror-drawing experiment" (1934). Masters Theses 1911 - February 2014. 1672.

 Retrieved from https://scholarworks.umass.edu/theses/1672

