The aquatic botany of Cranberry Pond

W.H. Hodge
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

[^0]Retrieved from https://scholarworks.umass.edu/theses/1612

THE AOUATIC BOTANY OF CRANBERRY POND

HODGE-1936

THE AQUATIC BOTANY OF CRANBERRY POND

by
WALTER HENRICKS HODGE

A Thesis submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
Massachusetts State College
Amherst, Hassachusetts
1936

ACKNOWLEDGMENTS

The writer wishes to express his sincere thanks for the interest and assistance given by all members of the Massachusetts State College Department of Botany. To members of the Departments of Forestry and Zoology the writer is also indebted. Particular thanks are here given to Dootor R.E.Torrey and Doctor K.A.Mckenzie for helpful suggestions and criticism; to Professor R.P.Holdsworth for his kind cooperation in making available a boat for collection purposes and in extending the use of the Forestry Departmentis field house; to Doctor C.E. Gordon for information ooncerming the geology of the region; to Miss Miriam Morse and Mrs Irene A Goodell for theix continued aid in the field; to Miss Carrolle E.Anderson and Miss Barbara Taylor for indispensable assistance in the typing. Additional thanks are due Miss Anderson and Doctor Kckenzie for the kind use of theix respective cars for field trip purposes. Above all the writer appreciates the interest and guidance of Professor A.Vincent Osmun at whose suggestion this survey was made both possible and enjoyable.
TABLE OF CONTENTS
PAGE
I INTRODUCTION 1
II REVIEW OF LITERATURE 2
III HISTORY OF CRANBERRY POND 9
IV PROCEDURE 14
∇ DISCUSSION 23
The Flora of Cranberry Pond 23

1. Plants other than Algae 23
2. Algal Plants 28
a. Phytoplankton 28
b. Benthos 38
c. Special forms 45
3. Relation of Flora to Pond Fish--46
VI SUMMARY 54
VII LIST OF ALGAL SPECIES 56
VIII LIMERATURE CITED- 62

INTRODUCTION:

In March of 1935, at the suggestion of Professor A. Vincent Osmun, Head of the Massachusetts State College Department of Botany, the writer undertook an introductory systematic and ecological survey of the aquatic plants of Cranberry Pond. This pond, a small, very shellow body of water, is situated on the lit. Toby forest reservation of the Nassachusetts State College in the eastom part \& the town of Sunderland, Massachusetts. Cranberry pond itself lies approzimately north of that portion of the mountain lnow as $0 x$ Hill and is the northern drainage basin of the mountein.

The recent formation of an enlarged pond due to damming, with tho accompanying addition of new food supplies for the aquatic life of the pond, suggested that this might well be used as a model pond for fish culture and in this connection a biological survoy became of moment. That part of the survey pertaining to the plant life of tho pond was entrusted to the Department of Botany. The completion of such a survey will require years of study and should embrace all seasons.

This paper, therefore, is essentially a preliminary listing of the equatic plant forms supplemented by a brief ecological commentary on the nature of the existing plant relationships. As such it should be of importance in extending the knowledge of algal distribution, in pointing out the important and characteristic forms, in correlating these forms with the habitat, and in arranging the species
involved in the relative order of abundance as dominant and subordinate forms. It is hoped that the included data may also holp towards a knowledge of the management of the pond for fish culture.

REVIEV OF IITERATURE:

Investigations in aquatic botany are numerous but In the past have been more limited to taxonomy than to ecology. The taxonory of the algae of New England has been very well cared for. F.S.Collins (2), besides having contributed a number of papers to such journals as Phodora has also left his best work in:"The Green Algeo of North America". Synopses of algal genera, particularIy members of the desmids, have also appearod in Rhodora under the name of J.A.Cushman (6). More recent is C.J. Hylander's (14), "The Algae of Connecticut", which constitutes perhaps the best reference for Massachusetts algae. Sooner or later, in a study of an aquatic flora, reference mast be made to one of the algal classics. "Die süsswasser Flora Mittoleuropas", by A. Pascher (20) stends first on such a list with, "A Treatise on the British Fresh-Water Algaen, by G.S.West and F.E.Fritsch (37) and also G.M.Smith's (29), "Fresh-water Algae of the United States", following closely.

In the ficld of ecology the work of the last named author (26)(28), on the plankton relationships of certain New York and Wisconsin lakes, is outstanding. Fritsch (11) and Hodgetts (13) in England and Moore (16) and Transeau (33) in this country have also contributed to the particu-
lar field with which this paper deals. A summary of most of this type of woriz done, particularly that which may be included in the field of limnology, may be found in the very recent reference text, "Limology", by Paul s.Welch (36).

Algae may be separated conveniently into two main ocological groups, namely pelagic fomas (organisins inhabiting the open wators) and Ittoral or benthic forms (organisms inhabiting the shores or bottom). The pelagic or, better, the plankton algae will be considered first.

Under the plankton algae are considered all normally froo-floating species. Such floating algal plants, termed phytopiankton, make up, as Smith (28) says: " - a definite plant association and not an accidental heterogeneous collection of algae that grow in mid-lake. In a collection from mid-lake the greater part of the individuals are those to be found only in the plankton and not in the shore flowa; there are, however, a small proportion of shore forms that hafe drifted out into the open lake. The former have been called the eulinnetic phytoplankton and the latter the tycholimetic".

Hore Smith has made definite reference to the plankton divisions of lakes as opposed to ponds. The question of physical distiaction between lakes and ponds has not beon considered. Such a distinction is usualiy made on the basis of size, depth, otc. Smith, however, believos that the latter should not bo some arbitrary depth but rathor ono based on thermal stratification, - successive
heat layors, as is characteristic in lalsos of great depths. Depth of a body of water insufficient to produce thermal stratification would indicate that that body of water is of the pond category. All conceivable transitions between ponds and lakos exist, hence a hard and fast line should not be drawn.

According to Zacharias (1898)(Smith-28), certain small bodies of water have a rather constant eulimetic flora whereas the same species are only of sporadic occurrence in large bodies of wator. The presence of such constant oulimatic species in the flora of small ponds suggested to him the term heleoplankton to describe the plankton comunity of a pond as difforentiated from the limoplankton of a lake, Such types can be readily singled out as true planktors. Their very structure, modifiod for the floating, suspended condition, identifies them as members of the open water commity. Furthermore, eulimetic phytoplankters readily roproduce in their floating environment. Casual visitors from the littoral or benthic zones are out of place and thus camot maltiply.

Since 1896 there have boen several attempts to classify the plankton flora of any given pond or lake on the basis of the constituent organisms present. In that year Apstein (Smith-28) divided lakos into Chroococcus and Dinobryon types. The former is dominated by Chroococcacean forms, "with comparatively few Dinobryon colonios with a general quantitative riehness of the phytoplankton; the
latter have few Chroococcacceae, numerous Dinobryon colonics and clear waters, owing to the small bulk of plankton". Due to the fact that many lakes cannot be considered in such a classification criticism of it has been general. Agreeing that "distinction should be made between types of planikton Plora, G.S.West (Smith 28) suggests that such should be based on a more far-reaching division.
W.J. and G.S.West first notod in Scotland (1903) lakes whose plankton was particularly rich in desmids. Since that time this fact has been accepted as world-wide with the result that lake phytoplankton is now divided into two types based on the richness of storility of its dosmid flora. Toiling (Smith-28) in 1916 called a dosmidrich planicton flora a Caledonian formation. This is in contrast to lakes which have few desmids which are then said to possess a Baltic plankton formation. These two typos of formations in lako phytoplankton have veen generally accepted and in this country have been shown to exist. Smith points thom out in his studies of the phytoplankton as boing typical for certain lakes in ontario, Wisconsin and New York. Furthermore, he states that tho Caledonian formation is characterised by a small proportion of the Ifyzophyceae, whereas the Baltic formation has a relatively large proportion of these algae.

Just what are the factors lying back of these two distinct formations has been the subject of nuch dis-
cussion but Smith holds to the opinion after investigation, that desmid distribution is govornod "not by the antiquity of the lake but by the chemical nature of the water". The chemfcal nature would be directly affected by the geological source of all water ontering a lalce and so Smith is corroborating the view of the two Wests, that the prime factor controlling the distribution of the plankton desmids is the geological conditions. Not much is known about the offect of the specific compounds on a desmid flora, but it is interesting to note that rich desmid floras (Caledonian fomations) are never found in limestone rogions, but such regions invariably support the Baltic formation. That lime is either toxic or inhibitory to desmid growth would seem to be the logical conclusion.
liany lakes or ponds pass a period in the annual succession of their algal flora in which one or two plankton species multiply to such numbers that they give to the water the color characteristic of the individual cell. A pond or lake in such a condition is said to be in "bloom". For the most part algal blooms are disagrecable pond conditions for they pollute water supplies, inhibit the full recreational use of lakes and also upset the proper balance of an aquatic comunity. The most comon bloons are found to be caused by planiton members of the liyxophyceae although members of the other great algal groups aro not uncormon constituonts of blooms.

As stated above, algal blooms are characteristic of a definite time in the seasonalcyicle of certain lakes and
ponds, at which time one species is usually found to be the causal agent. Investigators find that recontly built artificial ponds bloom soon after their formation, whereas certain mature ponds have no blooming whatevor. Tho ecological factors causing such happenings are not well undorstood, and will remain so only until a careful study has beon made of the relationships of the various pond organisms.

Several things havo been roted, however. In the first place, blooming of recentiy formed artificial lakes or ponds has been limited to those whose basins have not beon well cleared before flooding (Smith). In other words, it would seem to suggest that the mass of uncleared and hence dccaying organic matter is affocting the watcr in such a way as to produce conditions favorable for blooming. Such conditions are known to be favorable to cortain plankton organisms - particularly the blue green algae which have been cited in numerous cases as increasing tremendously in waters overladen with organic or inorganic materials. Tho blue greens with their slimo sheaths seem to be a group of algae which are well adapted to the unusual condition, and under such a condition, seem to thrive. They seem to thrive, not because of but rather in spite of conditions which are toxic to most algal types. Onc need only think of their unusual habitat - in hot springs, as epiphytes, etc., to realize that a hyperdose of the products of decay would hardly stifle their normal frowth.

Even as the abundance of growth of land plants is dependent upon physical and chomical conditions, so are all aquatic plants dependent upon the same factors. Thus a given amount of water can only support a certain sized plant communitz that is dependent on availablo food meterLals, etc. According to Smith, light, chemical relations and temperature are the three factors most inportant in the consideration of an aquatic flora.

By means of light, aquatic plants, like land plants, are able to carry on photosynthesis and thus to manufacture their foods. Temperature, too, is a factor in tho growth of algae. It is a familiar fact that algal commenitios are at ebb during periods of low temperature (1.0. winter), and that growth picks up with the raising of the tompera ture. An optinum soems to exist for various algal groups so that in any annual study of a pond or lake various hoights will be found expressed in quantity. Thus diatoms are $\mathrm{mo}_{\text {st }}$ prevalent in the spring and fall-blue-greens during mid-summer.

The chief factor governing the abundance of algae is the amount of available raw materials from which to make food. In the process of photosynthesis carbon dioxide is used for carbohydrate manufacture and so, according to Smith, the surest index of the amount of plankton algae to be found in a pond or lake is the available carion dioxide present. Quoting from Smith:
"Carbon diaxid exists in lake water in a dissolved stato, and whon it has been withdram by the activity of the plant it must be replonished vither from the air, by surface waters flowing into the lake, by respiration of Iiving organisms within the lake, by decomposition of organic mattor, of from the dissolved bicarbonates of calcium and magnesium. The first mentioned sources ere of little importance, and the major portion of carbon dioxid comes from the last two sources mentioned."

HISTORY OF CRANBERRY POND:
Prior to 1933 the pond, surrounded by a swampy area of peaty nature, covered less than 5.702 acres, and was drained by a stream, Cranberry Brook, Iunning northward through a similar swampy area hermed in by ridges of glacial material. In the winter of 1933-1934 a small dam was constructed across Cranberry Brook about 1000 feet below its exit from the pond with the result that a new, greater Cranberry Pond was formed with an area of about 30.31 acres. The new pond has an average dopth of $2 \frac{1}{2}$ 5 feet as compared with the 10-20 feet average of the older basin. In some portions, however, the water has a depth of more than 25 feet.

Granberry Pond lies in a pocket of land north of the portion of Mt. Toby lmown as Ox Hill. The northern part of tho hill drops quite precipitously to tho southem border of the water. The pond is sheltored from the mest

by a ridge which drops similarly into tho water on the western border. This ridge boars a forest made up of mized hardwoods with a ground oover of forns, lycopods and straggling ericaceous types. The ridge extends a little way around the northern end of the pond, by the road, in the inmediate neighborhood of the dam and for a distance around the southern end so that wo find a good mixed forest on the north, south, and west portions. For the most part the eastem side, which para allels the Central Vermont railroad, is more or less open or shrubby due to cutting off. Several lots of young pines are found here, but this side is quite open in comparison to the other pond borders.

We find the pond to be, then, in a rather sholtered locality - sot as it is behind a ridge that extends from Ox Hill on the south along the western border to the north whore the ridge is pierced by the draining stream, Cranbery Brook. The pond is more open on the east but even hero the land rises rapidly by ridges to the hills of the east.

Due to the well-sheltered nature of Cranberry Pond, as well as to its small size, its shores have not boen open to wave action, with the result that its nature fulfils all the characters of a typical pond. Unlike most quiet ponds, however, its shores are not extensively occupled by higher equatic plants with the result that
there is no apparent zonation. This may be caused by the rocont upset of water levol due to daming with the result that any existing zonation has beon destroyed. It seems probable, though, that there was no extensive zonIng but rather a bog with creoping margins to form mats as described above.

Before its recent enlargement Cranberry Pond might well have boen clessified among those bodies of water known as bog lakes, for while it had some of the characters of a true pond, it had even more of the characters of a bog lake. In the first place Cranberry Pond has always been a permanent pond, a kettle-holo pond of glacial origin. As such it has not rollowod the cycle of many such permanent ponds which owe their origin to the slow filling in of lakes. As a bog lake it lacked the luzuriant swamp-plant growth of a pond and instead had an area of open wator surrounded by true bog margins - a wide semi-floating mat which accompanied as an overgrowth, marginal peaty deposits. The mat was of the type known as a heath swamp being dominated by the ericaceous species of Vaccinium and Chamedaphne. Around the periphery, no doubt, existod the same type of filamentous algae and floating plants (Utricularia) that are now found. The size of the marginal mat indicates that cranberry Pond nust have beon a pond well on its way to maturity for eventually the overgrowth of such a margin would result in the final filling in of the open water. A quaking bog would be the result.

Figure 1

View of Cranberry Pond looking southwest from a point on the dentral Vermont R.R.track. The main body of the pond lies beyond the cove in the foreground. The ring of mat islands can be seen at the center of the picture enclosing, on their farther sicie, the original pond basin. All the rest of the water that is visible constitutes recently flooded areas. In the background and to the right lies Mt. Toby; to the left lies Ox Hill.

Figure 2

View of Cranberry pond looking south from its northern border. In the immediate foreground is the small, recentlyformed dam. Water is flowing over it into Cranberry Brook. The mat islands are again visible far down the pond, the water lying between them and the dam constituting the northern flooded area. In the background rises ox Hill.

Figure 3

View looking down on Cranberry pond from the western ridge, The mat islands are here well visible enolosing the old pond basin, seen here in the middle of the picture. Dead maples, standing in the water on the eastern side, can be seen across the pond. Beyond them is the Central Vermont R.R. embankment.

Fig. 1

Fig. 2

Fig. 3

The recent radical change due to daming has no doubt upset certain of tho old pond conditions and from one standpoint is unfortunate, for the study of the conaitions in such old bog lakes has been noglected in this country. It is hoped that the present aquatic forms are typical of the species existent in the old pond. If so, this paper should aid, in a small way, this field of limnology. The nature of the aquatic flora best relegates Cranberry Pond to the class of bog lakes but a description of this had best be left until the plankton forms are considered.

According to Doctor C.E.Gordon of the Massachusetts State College Department of Geology, Cranberry Pond is probably glacial in origin. The wholo surrounding region is one covered with glacial till and one which possesses a number of glacial kettie-holes. Most of these not having their bottoms extending below the water table are dry but Cranberry Pond is formed by the basin of ono kettle hole which extends below the water table. The pond basin stands lowor than the stream bed of Cranberry Brook so probably Cranberry Pond just incidentally stood. in the path of stream drainage from the mountain. Cranberry Pond Brook is the only stream draining the pond. Entering tho pond from the south - from Ox Hill - are sevoral temporary streams. One of these, lying just east of Ox Hill, has quite a large dry stream bed which, the writer has boen informed, formerly carried considerable
water into the pond when the ridges to the east of the pond were heavily forested.

Cranberry Pond is on the border of the int. Toby conglomerate and eastward-Iying crystalline rocks. However, most of the underlying rocks of the ilt. Toby region consist of the Mt. Toby conglomerate or "puddingstone". Outcrops of this rock may be found on the north face of OX Hill and also on the slopes of the main part of the mountain. The presence of limo in this conglomerate has permitted a number of lime-loving plants to gain foothold in this region. The glacial till probably contains somo porcentage of lime also and the existence of such lime may cause it to find its way into the water of the pond. This is not known but if present it is ovidently neutralized, for the pond water has a silghtly acid nature.

PROCEDURE:

The actual collecting of specimens was begun in the spring of 1935 when weekly trips were wiode to the pond site. These collecting trips extended throughout the season up to the time of freezing over. Though planned woekly, thet schedule could not always be carried out.

Through the courtesy of the state College Department of Forestry, a boat was placed at the Writer's disposal and also the use of the Forestry field laboratory. The nearness of this building was of distinct advantage in permitting a quick surveiliance of collections, espe-
cially since some of the forms are so shortilived when placed in collecting jars.

A standard net of fino bolting silk was usod for obtaining plankton samples; various scoops, grapples and nets were used for deoper bottom samples; an iron pipe attached at one end to a rope served in collecting even deeper bottom samplos in its coro. In order to give a rough quantitative comparison of plankton at various stations in the pond, the net was towed for a definite length of time at each station. "For the physical constants an ordinary laboratory thermometer was usod. A thermometer for reading sub-surface temperatures was used for a time to get surface and bottom temperature but inaccuracies developed so its use was abondoned. The laboretory thermometer served very well, for in the shallow body of water it was soon found thet surface and bottom temperatures were closely approximate. The pH was taken by the Winkler colorimetric method, and until the exhaustion of the oxygen content reagents, the percentage of that gas was taken. Determinations of this type were carefully checked by two observers.

With the aid of tho rowboat the pond was narked off into definite stations - those points bcing chosen which, through dirference in exposure, situation (as to old or new pond), dopth, percentage of vegetable matter - best offered or suggosted variety in aquatic life, species and numbers. Theso stations, marked on the pond map, are found on page 17.

At the ond of a few weeks collecting it was appar-
ent which stations should be kept as being dieforent, and which ones should be dropped due to close similarity with the flora or fauna of another station. At the beginning the temperature at the surface and at the bottom was taken, the percentage of oxygen in the water, a plankton sample, and a bottom sample. Plankton and bottom samples were carefully labelled as to station and then put into vials for later identification at the field house. Any unusual microscopic growth was recorded.

At the conclusion of a visit to all the stations enumerated the collections were taken immediately to the forestry house and would then be examined by moans of compound and binocular microscopes, particular attention boing paid to the species and also the relative numbers of individuals. Although no exact method of determining quantitative data was used, a fairly accurate account of the dominant plankton species was obtained by taking the consensus of opinion of three obscrvers. Each looked at a given sample as it lay in a small stender dish or Syracuse watch glass with the aid of a binocular microscope. A list of the species noted was kept along with the other data obtained from the days' collecting. Thenover a questionable species was seen it was put into proservative and set aside to provide a source of material for idontification during the winter. Tho preservative used was formol-alcohol because of its ease of use,for all that had to be dono was to add onough of the preservativo to a vial containing plant material, to fill it. Formol-

Station lumber	Depth of Wator in ft.	Description of St
I	3.5	-new-filooded area; center of cove in northwest corner of pond--just above dam; permanent station.
II	3.5	-new-flooded area; northwest shore of the old Cranberry Brools channol (About one half the distance from the dam to nearest met islands); temporary station.
III	6.8	-new-flooded area; midway on a line drawn between stations \#IV and $\frac{H}{\pi} X$; temporary station.
IV	6.0	-In center of channel on east side of old pond basin and joining it to the newly floodod area; permanent station.
V	20.5	-approximate center of the old pond basin; pemanent station.
VI	3.0	-new-flooded area; middle of south cove next to R.R.; temporary station.
VII	11.0	-old pond basin; edge of island growth west of entrance to station \#VI; tomporary station.
VIII	7.0	-old pond basin; tiny cove in southwest corner, south of entrance to station "IX; permanent station.
IX	4.0	-new-flooded area; middle of southwost cove; permanent station.
X	3.0	-new-flooded arca; middle of entrance to northorst cove: permanont station.
XI	7.0	-new-flooded area; midway between stations $\frac{\pi}{W I I}$ and III; temporary station.

alcohol is also a good killing agont to precede staining. In a few cases slides were lator mado of somo of the more easily mountod species to make thoir study easior during the winter.

In an ecological discussion of a pond flora it is woll to at least briefly survey the results of physical and chomseal observations, those talten at Cranboryy Pond being littlo more than indicators of existing conditions. During such a short period cortain phases of this woris had to be slighted. They happened to bo these constants. Perhaps future worf will find them justly treatod.

Temperature recordings are the most complete of any of the constants taken. As has boon mentionod proviously they were taken with an ordinary laboratory thermometor but represent only surfaco temperatures. At first this type of temperature reading was taken at ovory station but it was soon learned that temperatures of this sort varicd little all ovor the pond surface. Due to its shellowness Cranberry Pond has no truo therral stratification so one finds the few bottom tenperatures taken approzimate closely the corresponding surface temperetures at the sarn station. A table, ropresenting one month (liay) of 1935 shows the existing relations. The greater portion of the pond area is less than six feet deop. It is seen that at such a depth 5 degrees is the greatest difference between surface and bottom temperatures. As would bo expocted the groatest variation---
up to 20-25 degrees---is found at station V, which marks the center of the old pond and the deepest part ($25 \mathrm{ft}$.) of that body of water. In midsummor such a difforence in temperature at the old pond center is of distinct advantage to the cool-water loving trout population, for It offers a place of retreat during hot spells. The shallowness of Cranberry Pond not only insures general uniformity in temperature throughout its area but also makes for a fluctuation of that temperature to more or less oqual the existing atmospheric temperature.

A study of the annual temperature curve of the pond best illustrates this latter statement. It will be seen that the temperature follows rather consistently that of the atmosphere at least during the period of open water which in 1935 existed from the middle of March to the first of Decomber. Here the curve of water temporature parallels that of the atmosphere and reaches its peals in July and August with temperatures at the surface up to 85-90 degrees - then a gradual fall to freezing at the appearance of ice in the latter part of liovember. For a short time pH and oxygen content analyses were taken. Data gatherod, though small in amount, will serve as an indication of conditions existing at the pond. These data have been included in the temperature table. From the pH column we see that the water of Cranberry Pond is about ton times more acid than pure wator, avoraging as it does around pII 6. We may say

CRAMBEREX POID WATER

Results of the determination of Physical and Chemical Constants May - June 1935

Station Mumber	Water Depth at Station (in feet)	Date of Determination	Water Temp. (in dogrees Fahrenheit Top-Bottom	م	Oxygen Content Parts per million
I	3 $\frac{3}{2}$	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \\ & 57-55 \\ & 65-65 \\ & 65-65 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.2 \\ & 6.0 \\ & 6.0 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8.3 \\ & 6.0 \\ & \text { (110 reagent } \\ & \text { (Mo reagent } \end{aligned}$
IV	6	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 51 \frac{2}{3} \\ & 58-57 \\ & 55 \frac{2}{2}-51 \frac{1}{2} \\ & 64-58 \\ & 65-60 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \\ & 5.85 \\ & \hline 6.1 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 7.9 \\ & 6.7 \\ & \text { (110 reagent) } \\ & 11 \end{aligned}$
V	20줄	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 57-44 \\ & 50=45 \\ & 50=45 \\ & 64 \frac{2}{8}=45 \\ & 65=45 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.1 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.9 \\ & 7.5 \\ & \text { (H0 reagont) } \end{aligned}$
VIII	7	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	57-52 $57-57$ $57-56$ $65-59$ $65-60$	$\begin{aligned} & 6.4 \\ & 6.0 \\ & 6.0 \\ & \hline 6.0 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 8.3 \\ & 8.5 \\ & \text { (110 reagent) } \\ & \text { " } \end{aligned}$
IX	4	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 60-57 \\ & 59-57 \\ & 55-51 \\ & 64=62 \\ & 64-60 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \\ & --- \\ & \hline .4 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.5 \\ & 6.4 \\ & \text { (No Reagent) } \\ & \text { 1. } \end{aligned}$
X	3	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 59-59 \\ & 61-59 \\ & 56=55 \\ & 65 \frac{1}{3}-65 \\ & 65{ }^{2}-61 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \\ & 5.9 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.9 \\ & 5.8 \\ & \text { (MO reagent) } \end{aligned}$
XII	6	$\begin{aligned} & 5 / 9 \\ & 5 / 16 \\ & 5 / 23 \\ & 5 / 29 \\ & 6 / 6 \end{aligned}$	$\begin{aligned} & 59 \frac{2}{2}-59 \frac{1}{2} \\ & 59 \\ & 55-52 \\ & 65-64 \\ & 65-61 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.2 \\ & 6.0 \\ & 6.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \\ & 5.8 \\ & \text { (No reagent) } \\ & \text { il } \end{aligned}$

Table III - Cont.
 Results of Physical Constant Determination

then that the waters of Cranberry Pond are slightly acid. This fact would tend to disprove the statement that limo (an allealine compound) leaching in from the lift. Toby side, would have any direct effect on the pond life for it is ovidently offset by the acid conditions of the water.

There is no shortage of light at Cranberry Pond. The water surface is, for all practical purposes, opon to full sunlight throughout the day. Tho shallowness of the pond permits free access of light even to the bottom so that in a consideration of physical factors light penctration with lack caused by obsorption by suspended particles need not be considered. There is sufficiont light for any sized algal formation.

DISCUSSION: THE FLORA OF CRANBERRY POND

> 1. Plants other than the Algae

From tho accompanying map it may bo seon that Cranberry pond may be divided into two parts. Ono part, the original pond (5.702 acres) exists more or less in the centor of the new flooded area, which constitutes the second part.

The original pond possesses a marly basin (10-20 feet deep) which appears quite free of any larger submerged aquatic vegetation. A water moss, Fontinalis antipyretica var. gigantoa Sull., covers the bottoms of
several of the smallor coves, notably the southeastern cove where springs are known to exist, but for the most part the bottom of this area is free of highor rooted plants. The marly basin is well marked by a ring of quaking and partially floating vegetation forming small mat-islands which ropresent the bog plant encroachments surrounding the old pond. These floating islands have been built up by a cover dominated by the low evergreen shrub, Chamacdaphne calyculata (I) Moench. This shrub seems to be the initial pioneer in mat formation, growing out into the open part of the pond in a loose, tangled form which ficats on the surface of the water. The gradual filling in of the tangle with debris along with the creeping out of the Carex stricta Lam, and several Sphagnum species oxtends the island border. A number of other forms are found growing in association with the Chamaedaphne on the Sphagnum base, notably Cephalanthus occicentalis L., Rhus Vernix L., Ilex Verticillata (I) Gray., and Alnus incana (L) Moench., all interspersed with Carex stricta. A few low forms--Vaccinium macrocarpon Ait., Eriocaulon articulatum (Fuds.) Morong., Drosera longifolia L., and D_{0} rotundifolia L., are also typical of the Sphagnum cover.

In addition are found certain forms less comon but scattered here and there--mprobably remants of groups slowly killed by a change in water conditions or level. Thus wo have a few representatives of pontederia cordata L. growing near the old outlet of Cranberry Brook near the

GRAPE SHOWING COMPARATIVE SEASONAL TEMPERATURES OF THE WATER AND AIR A CRANBERRY POND

Blue line $=$ atmospheric temperature
Red line = surface temperature of water
mat islands. Near station VIII is also a sizeable colony of Typha latifolia L.

The rise in the water level will no doubt inhibit the growth of the Chamaedaphne mat for now it has no base on which to progreesively build. For a period now there will not be much noticeable replacement of the margins of the pond with zonation aquatics. When thoso marginal forms do take root their growth will be rapid due to the shallowness of the water. Probably the first area to have any active 1111 ing-in will be the south-cast part of the pond near the R.R. tracks where quantitios of Carex stricta humocks oxist in very shallow water. Unless removed as formod, vegetation will soon encroach to capture, for the land, areas now chiefly of open water.

The rocently flooded area constituting the new Cranberry Pond may in turn be divided into two parts. One part, that seen extending fres the dam at the north, south to tho northern extremities of the old pond is an open body (with the few mat islands) of shallow water in which most of the troes caught by flooding have been removed. This ares is mado up of the old winding bed of Cranberry Brools which follows, roughly, the westorn side of the pond and rekes an exit at the dam. The path of tho submerged stroam bed may be detormined by the floating aquatic Nymphaea odorata (Ait.) Woodville and wood, which, existing before the dam construction, still marks its channol. This channel portion is the
deepest part (5-6 feet) of this portion of the flooded area and supports the two floating aquatics - Ilymphozanthus varlegatus (Engelm.) Fernald and Iymphaea odorata. Such a well-established stream bed differs somewhat from the irmediato surrounding pond bed which has an average depth of $2 \frac{7}{2}-3$ feet and which, unlike the former, is not woll established, but consists of the flooded grasses, sedges, and other vegetation of the swamp which prior to the damming followed the exit stream. At the present time tho newiy flooded bottom is in a state of active decay, thus making available large amounts of inorganic substances for aquatic plant and animal forms and malking the study of such most interosting. Some higher plants, of course, have already migrated into this food-laden area, so it is not surprising to find masses of Utricularia vulgaris L. in these shallows. The presence of so nuch decaying bottom matter at Cranberry Pond nust mean an abundant supply of carbon dioxide for photosynthesis. Algac should be correspondingly abundant.

The remaining flooded part has not been cleared of its former cover so that its area appears much smaller than it really is. Here the dominant swamp maples are intermixed with numerous alders, birches etc. - all drowned due to the flooded conditions. Such an area would serve admirably for wild life, sholtering aquatic birds, otc. This portion of Cranberry Pond is untouched
in this paper due chiefly to the inability to nevigate around the trees and brush tangles, but its floristic nature is undoubtodiy similar to that which is to be discussed.

Pond floras may be roughly divided into lower and higher plant forms, Thallophyta and Embryophyta. In any body of water the thallophytes greatiy outnumber the vascular forms both in spocies and in quantity. The thallophytes of Cranberxy Pond are no exception.

Embryophytes, omitting the swamp forms which have already boen mentioned as dominant members of the pond "islands" and shores, are limited to a few species notably the members of the genera Utricularia, Nymphaea, Nymphozanthus, Lorma, Vallisneria and Ludvigia. Tho only other higher plant of note is one of the fountain mosses, Fontinalis gigantea, which is well established on the pond floor at Station XIII. With this briof mention of the highor forms we may pass to the thallophyte group which is dominated by the algae.

2. The Algal Plants

a. Phytoplankton

The results of water temperature recordings at Cranberry Pond show that no true stratification exists throughout its area and so, following the divisions of Smith, it may be classed as a typical pond. In such a small body of shallow water one would think that there would
be ample chance of invasion of the plankton realm by plant members of the bottom and shoro. From an examination of the list of plankton species it will be seen that a great number of these (i.e. Spirogyra, Mougeotia, Hyelotheca, etc.) are casual migrants from the benthic region. The presence of such forms was inevitable in all collections taken, with the possible exception of net collections from the basin of the original pond, for the plankton net was in most cascs but a fow feet from the bottom and frequently lodged against the submerged branches which are quite cormon in the recentIy flooded basin. Since these migrants wore found in plankton collections, they have been included in this 1ist. In addition to such migrants we find, evon in such a homogeneous body of water as that of Cranberry Pond, a small number of true (eulimetic) plankton forms such as Dinobryon, Uroglonopsis ote. - forms which only roach their best and greatest devolopment in their planixtonic optimum. Those contribute to the eulimetic flora of Zacharias.

An examination of a plankton sample from Cranberry Pond reveals a phytoplankton flora poor in species but seasonally rich in individuals. The dominant form is the dondroid colony of Dinobryon sertularia Ehr. Which can be Pound in water taken from any portion of the pond. Fluctuating in quantity present, it is at certain
periods representod in a water mount by but a few individuals but at other periods is so numerous as to coat tho planition net with a mass of brownish slime. Although distributod throughout the pond, it yet is most abundant, as would be expectod, in the open doep water of the old pond basin. At all times during this survey Dinobryon has been dominent in the plankton, even at times surpassing the animal forms in numbers. Winter and spring are its low seasons. From then on the growth is such as to have an almost constantly increasing quantity - with no sign of diminishing - throughout the later spring, summer and fall periods.

More variable in numbers are the spherical colonies of Synura uvolia Ehr. and Uroglonopsis americana (Calkins) Lenm. These species, with the possible exceptions of Tabollaria fenestrata IKtz, and Coratium hirundinella ($0 . F . \mathrm{Mi}_{\mathrm{i}}$) Schrank are the only forms which approach the dominancy of Dinobryon. Synura, Uroglenopsis and the diatom Tabellaria might well be called sub-dominants in as much as they are, liko Dinobryon, regulax members of the plankton, though not as comon. For a time, particularly in the late spring (liay, June) Synura became the dominant species but not for long. Jroglonopsis, too, soemod to have its period of prevalence in llay or June. These two Chrysophycean forms might well be called late spring annuals for that season represents the period of their greatest numbers. Dinobryon and Tabellaria, on the other hand, are moro nearly peronnials; the formor with
numbors increasing to an carlg fall height; the latter always present, but with a spring and fall maxirum. Ceratium might bo callod ephemeral for it reached tremendous numbors at soveral stations but only for a very short time - hardly mose then a weok at the beginning of June. On the list of plankton algao are found but six genera of desmids, possibly represontative of a dozen species. The jority of the species listed are probable migrants from the littoral zone for only in that area were the desmid species of the pond anywhere near what might be called numerous.

Thus we sec that three Chrysophycean species and a species of the Bacillarieae existing together constitute the dominant members of the phytoplankton of Cranibery Pond. All other species ilsted are usually represented, in a plankton sample, by but very fow individuals. If the phytoplanizton of Cranberry Pond is to be classified on the basis of its constituont organisms, it will be seen to fall most easily into the proposed classification of Apstein (1896)(Smith-28) who, as mentioned previously, separates ponds or lakes into the Clsroococeus and Dinobryon types. Dinobryon sertularia was always represented in plankton samples and for most of the samples it was the dominant phytoplaniton spocies and frequentiy the dominant planlton spocies. Furthermore the planition flora of the pond had few if any Chroococcacean species, the only two forms recorded being a species of Chroococcus and Microcystis incerta Lem. The lattor
was the moro prevalent of the two but was never conmon. In all respects thon, namely, in the numorous Dinooryon colonies, in the absence of Chroococcacean forms, and in the small bulle of planicton, Cranberry Pond fills to the lettor the Dinobryon type of Apstean's classification. Unlike the marity of phytoplanizton formations of this country the formation at Cranberry pond cannot bo relegated to oither of tho formations of the wests it seoms to be neither Calodonian nor Baltic. Toiling's Caledonian is supposed to have a rich desmid plankton flora with a noticcable lack of Niyxophyccac. The phytoplankton of Cranberyry Pond is seen to lack both of these types, and whoreas, in so doing, it follows the desrid paucity characteristic of the Baltic it yet has not the latter's laige proportion of Myxophyceac. It will be rocallod that in many cases the absence of a rich desmid flora has been caused by the presence of lime leached from underlying limestone (Smith). It would seem, then, that the absence of lime may be a factor which permits desmid develoment. The absence of dosmids at Cranberry Pond may have its explanation in the geology of the lit. Toby region. It is probable that the conglomerate which is found in outcrops on Toby underlies the Cranberry Pond basin. Certain it is that lime exists in sufficiont amounts in the poby conglonerate to support such limeIoving plants as Cystoptoris bulbifera (I.) Bernh, and Pellaca atropurpurea (L.) Link. It is possible that
the glacial till out of which Cranberry Pond has been couged contains some percentage of 11 ne. Whother such Inme is leached into the basin of the pond is a question that can only be answered by calcium determinations. The acid condition of the pond waters seems to indicate that any lime finding its way into the pond is neutralized. A lack of plankton Myzophycea is also signiffcant. In its present condition, Cranberry Pond exists in a rejuvenated state. Bofore the recent damming, its flora was probably well balanced and old. Recent flooding has creatod a new area. Here we have a rebirth which is being accompanicd by organic decay and by a leaching of the submerged soil of its inorganic compounds. In this respect Cranberxy Pond may be compared to certain types of newly made reservoirs. A change in tho chemical constituency of the pond must have been effected or is being offected by such flooding - and as such, has probably been changing the nature of the old aquatic commenty. Unfortunately there was no pre-daming blological survey of the pond so it is difficult to say just what is characteristic of the aquatic flora of the old pond, or what new things have been added. The writer has no lenowledge of any annual blooming in the old basin, a condition whicin would gonerally be the case in an old pond where an aquatic balance is the rule.

During the period covered by this study the closest approach to an algal bloom in Cranberry Pond was caused by the previously mentioned Dinobryon and Uroglonopsis,

Which at the height of their occurrence existed in great nurbers in practically all parts of the pond. Their presence was at all times apparent, due to an unmistakable fishy odor which they added to the water. It would be interesting to know whether their period of dorinance has beon an annual ovent during the infe of the pand, or whether the change in the condition of the water due to flooding has called forth such a Chrysophycean flore.

It might well bo that such a bloom has for years charactorized Cranbery Pond. Such a bloon is of necessity dependent for its abundance and size upon tho amount of organic or inorganic compounds aviliablo in the wator. "For all practical purposes the formation of new plants is correlated with the formation of food materials" (Smith-28). That such ultimate food sources find their way into a pond from tho surrounding drainage aroa and particularly from the immediate pond surroundings has been pointed out by smith. It has beon scon that ponds which are bounded by marshy or swamy areas are more frequent supporters of annual blooms, and naturally, for the surrounding swamp is a constant natural source of raw food materials - coming as they do chiefly from the decoying plant materials. On the other hand the present number of Chrysophycean types at Cranberry Pond may be the direct result of the flooding; but ir their numbers havo romaned the same since the dam was built it would bo logical to expect an increase in their ranks
or in the ranks of some other plankt on form which gains by such organic content increase of water. Such an incroaso in algal blooming forms or the appearance in soveral years of nev "algal oloomers" is somothing to be looked forvard to as highly probable. Unloss new planition miegrants to Cranborry Pond appoar it is only seasonable to look to the other local plankton forms as possible nuclei for future blooms. Smith has compiled a list of algac by families which have boen seen at some time, in somo place in the world as bloom producors. From his list the following genora are found to be prosent, thougli vory sparingly, in Cranberry Pond planicton samples: - Microcystis, Anabaona, Gleotrichia, Euciorina, Protococcus, Scencdosmus and Mabellaraa. Of this list tho first three are My=opinycean genera and as such their presence is significant, for the Myxophycoae are noted as bloom formers, particularly in ponds the percentage of whose organic water content has been appreciably raised. Such is the case at Cranoorry Pond, so it is somethine of a surprise not to find a planiton dominated by lifxophycean gonera. It ray well be that not onough time has clapsed for such a flora to appear - unloss other unimown factors are at work. The paucity of a phytoplaniton ricil in spocies and mado up of only a fow similar dominants that occur in rich numbors suggests that thero my bo cortain physical or chenical properties of tho mater rinich do not permit a moro varied floma
to exist. It is also peculiar that the Chrysophycean genera can reach such numbers. They may bo forms particularly suited to the chemf cal content of that type of pond.

The type of phytoplankton just described is one roason for classlfying Cranberry Pond as a bog lake. Investigations of European bog lakes show them to have similar characteristics. As in the case of Cranborry Pond, this is based more on a survey of the net plankton catch, rather than on the nannoplankton, so the statement that the pond is very poor in plankton noy not be entirely correct. However, like bog lakes in general, Cranberry Pond is slightly acid, it has a restricted number of plankton species, a diversity of algel genera as compared with the number of species, a good representation of dinoflagellates, and a great number of planktonic rotifers. Unlike bog lakes the Chlorophyceae do not dominate the phytoplankton; the myxophyceae are not common; there is no preponderance of desmids; fish, sponges, nomatodes and flatworms are present. From this and what has been said bofore, it will be seen that Cranberry Pond possesses, about equally, characters which are liko and unlike those of a bog lake. The best that can be said is that the mixed charactors of the pond indicate that procosses of change are going on in its waters - procossos which, due to pond enlargement, will possibly bring it closer to the lines of a true pond from a probable bog lako ancestry.

Before consideration of the other main ecological algal division - the species of the benthos - it might be well to briefly mention the animal relationships of the phytoplankton - or at least to see with what animal types they wore associated in a plankton sample.

All but the dominant zooplankters have been omitted. It will be seen from the lists of daminant specios in plankton catches throughout the year just which animal forms were most numerous. Generally speaking, the plant and animal plankton were about equally divided as to number of species as well as to quantity. A list of the ten plankton members most conmonly found from Hay to December (1935) follows, each being placed in order of comparative abundance: -

1. Cladocera (several species) 6. Synchaeta stylata 2. Synura uvella

DInobryon sertularia
3. Copopoda (cyclops sp.)
4. Hotholca longispina 5. Nauplil
7. Uroglenopsis americana
8. Stentor pyriformis
9. Ceratium himuninella
10. Tabellaria fenostrata

This list was compiled from the tables giving the plankton members in the order of their abundance at each of the various stations, and on each of the days on which samples were taken. A list in order of dominance was made for each collection day and then an avorage of all the days resulted in the above list.

As can be seen, cladocerans dominated the plankton with Dinobryon and Synura closely following and about equally distributed for second place. Copopods, reprosented by the genus Cyclops, takes third place with thoir larval Nauplius form following as fifth in the scqle.

Fourth and sixth places were filled by two free-swiming rotifors, Notholca longispina Kollicott and Synchaeta stylata Wierzejski. These first $s i x$ and the tenth, Tabellaria, could be found almost anytime in a plankton sample. The four remaining wore not as numerous but rather fluctuated between periods of scarcity and periods of tremendous numbers. Stentor might bo called an exception to this, for it was at all times apparent tim the pond, even to the unaided eye. It had, however, the habit of being more often benticic than planktonic, being found around the pond margins attached to submerged leaves, coloring them a vivid green, or else attaching itself to growing Utricularia and was even seen covering entirely a twelve inch pickerel suspended motionless in the shallows.

b. Benthos

On page 5 it is stated that there are two main ecological groups of algal plants. So far only those forms incluced in the planiton or free floating commity have beon considered. We now turn to a survey of the algal plants which are not typical of the plankton flora in other than the category of a casual migrant. These represent the benthos. Undoubtedly a good number of the forms listed from the planiton are but transient members from the benthos; they could never roproduce in the free-floating life. In other words they are true benthic types.

These forms, the benthos, represent the greater number of algal species of Cranbery Pond. They are largely restricted to the shores - the littoral regions, and in as much as Cranberry Pond is so shallow throughout its area we find that these littoral forms are pretty well univercelly scattered close to the pond bottom. The old pond basin is the sole portion that does not support such forms in any great numbers excepting around its borders. Such littoral algae are very diverse in character. They ropresent all the main groups of algae. In addition they inhabit all types of situations boing found on most any submerged object. The filamentous types in particuler are found coating twigs, rocks, higher plants, etc., with their streamer formations, and frequently become so tangled that mat formations come into being. These large forms in turn support hosts of smaller ettached forms so that stalked opiphytic diatoms, desmids, etc., are found.

Close study of the pond throughout the year would doubtless shom that most of the algal species havo dolinite cycles represented by nomal growth curves with opening periods of scarcity, periods of growth resulting in abundance, and final periods of decadence bringing again paucity of numbers. Individual species of algae have curves of growth which mature at different times throughout the year. Thus, according to Transeau (33), we may spoak of Spring, Sunmer, Autumn, and Winter annuals. Each

of these groups is typified by a curve which rises as is shown by the chart of Transeau. Since a good many of the algae listod in this paper may be placed in one or more of Transcau's groups, his chart has been included in this paper.

As in the case of the plankton, benthic species are considered in the order of their dominance and hence importance to the life of Cranberry Pond.

In quantity, the filamentous types are dominant. Throughout the mhole year they represent the types which can most readily be noted, tangling and attaching themselves to submerged debris in the shallows - and floating as derelict algal masses in the flooded areas. The middle of the pond basin is rarely visited by other than lone torn filaments. However, the floating islands are usually surpounded by tangles of one or more filamentous forms.

Best represented in quantity, if not in species, is the order Zyenematales. In this order we shall list as dominant the filamentous genera Spirogyra and Mougeotia of the family Zygnemataceae, and Hyalothoca of the family Dosmidiaceae. These genera are the principal mat formers of the pond margins, existing as floating or slightly submergod twining masses which form one of the characteristic groupings of the pond - a grouping which may be known as the filamentous alga group or as the SpirogyraMougootia association. Sporulation of Spirogyra and Mougeotia was not observed and hence the species remain
undetermined. The genus Spirogyra, however, is represented by probably three or four species, most of them growing intermingled with one another and with the unidentified species of Mougeotia in a Charactexistic mat fomation.

Hyalotheca dissiliens (Smith) Breb. is the commonest of the desmids and as a slimy-sheathed, filamentous type, drapes itself upon the subnerged twigs and roots, which constitute the submerged border of the floating islands. From here it migrates by fragments to place representatives in the phytoplankton. Unlive Spirogyra and Mougeotia, which were abundant through the year, Hyalothoca did not make its appearance in abundance until the season was well advanced. Its yellowish-green filaments were first noted at mid-summer and it reached its peak in the early fall.

Not as common, but ocupying a similar habitat on submerged peaty outliers of the floating island ring and upon rootlets and branches, was the genus Tolypothrix, represented by tho species I. Ianata (Desv.) Vartm. and T. tonuis Kutz. This genus was not prevalent until the beginning of the summer when its masses wore first noted on those twigs later to be covered by Hyalotheca. Its growth, unlike that of Hyalotheca, was low, creeping, and closely applied to the substratum. Later on, in the carly fall, Tolypothrix took on a reddish to red-orango tinge as its filaments began to give back to the waters
by its disintegration the materials it had takon. Filamentous algae other than the species of Spirogyra, Hougeotia, Hyalotheca and Tolypothrix were not common and so will be merely annotated on the Cranberry Pond last.

As has been montioned, algal mass groupings such as are formod by the filanantous types, offer places of harborage for the aquatic plant and animal forms. Among the plents are represented particularly those unicellular types which are not found as froe floating plankton. Diatoms, desmids, chlorococcacean forms, otc. are particularly prominent in such a situmion. Their presence is probably due to the similar nature of this habitat close to the surface - to their natural habitat in the shallows of the pond's odge. The latter situation is where such forms reach their greatest numbers - floating in , and around, and attached to the barely summerged Utricularia whorls, or on the detritus,-sticks and dead leaves - which are found everywhere washod close to the shore. The desmids, with the exception of Hyalotheca, hore have their most frequent occurrenco; they aro nevertheless sparce in number. Spocies of Closterium dominato but Xanthidium, Staurastrum, Micrasterias, Docidium, Gonatozygon, Spirotaenia, Plourotaenium, Euastrum, Cosmarium, Dosmidium, and Gymnozyga are also reprosented. In just such locations are found the mombers of the diatom groups. By far the most common is the genus Tabellaria, represented by the two spocies T. fenestrata and T. Plocculosa (Roth) Kutz. The former is the more prevalont, and in fact is well nigh universal in distri-
bution in the pond, for not only is it found in tremendous numbers attached to the detritus of the Iittoral zone, but its chains are even found in goodly numbers in plankt on samples from among filamentous algal mats, etc. T. flocculosa 解 rare in comparison. Not nearly as common as Tabollaria fenestrata, but surpassing in numbers I. flocculosa, is the wedge-shaped, stalked form Gomphonoma acuminatum Ehr. var. coronata (Ehr.) w. Smith. Littoral samples which do not contain a fow examples of this stalked epiphyte can hardiy be found. Other more common diatom genera are Brebissonia, Navicula (numerous unidentified species), Synodra, Pinnularia and lifolosira. The lattor is the only Centricean form thus far found at the pond. In among such a varied grouping of plants was occasionally collected an elongated form of Synura uvella which was most peculiar in structure, being more or less sausage-shaped with the diameter of an ordinary normal colony. Whether these individuals were due to a nonfragmentation of a growing colony is not known. No reference to such a form has been found in the literature. Finally in this discussion of the more common habie tat types may be cited the nodular types of algae. These forms, typically benthic, are found existing as radiating, sometimes branching, masses embedded in a firm gelatinous matrix which affixes them firmily to the substratum, usually found to consist of submerged leaves, twigs, branches, grass stalks, Typha bases, and trunks of trees. The

Myxophyceae are represented in this class by several species of the genera Rivularla and Gleotrichia while the Chlorophyceac have as their one example the genus Chaetophora with species C. incrassata (Hudg.) Hazen and C. elegans (Roth) Ag. The former, though surrounded by a gelatinous matrix is not globose in colony habitat, but rather exists in elongated, irrogularly-lobed colonies.

c. Special forms

In this listing of both planktonic and benthic algae one habitat typo of alga has been until now purposely omitted. This type includes the symbiotic forms and although represented so far by but one genus, they are yot so numerous quantitatively that they are one of the more noticeable members of the pond life.

On the list of the dominant plankton forms it will be seon that Stentor pyriformis Johnson stands at eighth place. This ciliate protozoan, duo to its large size, was at all times microscopically visible during the yoar and because of this, might easily have beon listed as first in numbers amongst the plankton. Its presence could be noted everywhere, particularly reating on the numberless submerged leaves and debris which characterized the submerged pond margin. It also was quite well represented in open water and on the submerged and floating aquatics. The animal's vivid green color is due to the presence of numerous sphorical algal cells con-
tained within the ciliate, and which probably live in a symblotic relationship with the animal. In return for its "travels" it undoubtedly gives to the Stentor cell some of the products of its photosynthesis. The species containod in Stentor is Chlorella conductrix Brandt. Anothor species, Chlorella parasitica Brandt., is comon in the tissuos of the fresh water member of the Spongillidae ropresented by the specios, Hetoromeyenia ryderi Potts. Heteromeyenia finds easy sustenance at Cranborry Pond and Is found wherecer submerged branchos offer harborage. The nature of the Hoteromeyenia -Chlorella relationship is similar to that of Stentor-Chlorella.

3. Felation of Flora to Pond Fish

Since the establishment of the new enlarged Granberry Pond, trout have been introduced into its waters with the idea of forming a balanced and controlled aquatic area for pond fish. After a year's freedon in the pond, intermpted by several open periods for fishing during the 1935 season, the trout seem to be doing well, finding the waters suitable to their growth despite the recent upset of the old pond conditions. Due to this upset and the probablo increase in inorganic basic plant food substances it wes believed ultimate food for fish would bo greatly increased.

The work here reported was first suggested, as has been previously stated, with the idea that an introduc-
tory survey be made of the aquatic plant life of the pond, and if possible to correlate it with the life of the introduced PIsh .

Trout are typically carnivorous in food habit and those of Cranberry Pond are no exception. During the period in which fishing was porinitted at the pond 0.11 stomechs of fish taken were preserved for their stomach contents, these contents being sent to the Massachusetts State College Department of Zoology for analysis. As would be expected, insect forms made up the bulk of the stomach contents, forms representod being for the most part the larvae of mosquitos, dragon flies, chironoralds, etc. In addition, fingeriling pickerel wore irequently found. There is, then, no general direct use of plant forms for food.

Indirectly, however, algal forms of Cranberry Pond are probably of the utmost importance in completing the food cyclo of trout. Much work could be done along this line in establishing food chains by serial stomach analyses of certain invertebrates, and also of fry and fingerlings of the pond fish.

That the source of all availablo energy of animals is the green plant in whose cells complex foods are built up from inorganie compounds in sunlight by the aid of chlorophyll and with carbon dioxide is an extablished fact. More and more recent investigations show that the algal flora of a pond has its place in the biologic cycle and that without its presence animal life could not go on.

Cortain fundamental facts bear out tho above state-
mont. Wolch (1935) has expressed them thusly: -

1. The ultimate, basic substances are (a) inorganic nutritive materials dissolved in the water and (b) certain energies and gases from the atmosphere.
2. Only the chloronyll-bearing planizters, the chloro-phy11-bearing 1ittoral flora, and certain bactoria can utilize directly these ultimate basic materials in constructing living matter.
3. All other organisms, plant or animal, rest as a dependent superstructure upon those mentioned in item 2.
4. Every organism of a laire population may, (a) by death and disintegration, contribute directly to the dissolved materials and detritus, or (b) be consumed as food by other organisms.

In the open regions of Cranberry Pond the inorganic materials in the water must be taken in by plankton forms. Those species which have been listed as most abundant, and which as plants contain chlorophyll or allied substancos, are represonted by Synura, Dinobryon, and Uroglenopsis. These, then, must represent the majority of the all-important basic food synthesizers of the open water. As such, they are found to be prevalent in goodiy numbers for the greater part of the year. They are minute forms and are found associated in their open water habitat with about equal numbers of the Cladocera and Copepoda. The only other important (in numbers) mombers of the phankton were the two rotifers Synchaeta and Notholca. It should be noted that throughout the whole collecting season large numbers of zooplankton went hand in hand with large numbers of phytoplankton, indicating that there may be a close dependence of the animal upon the plant form, a
dependence that can only be proven by sufficient stomach analyses. It would not be too extreme to suggest, however, that the zooplankton for the most part feod upon the phytoplankton. The theoretical must, however, be backed with evidence.

Naumann (1921) (Welch-36), in studies on the food of Cladocera and Copepoda, found that practically all particulate matter - inorganic debris, organic debris, living organisms - is filtered from the water as it comes, without selection, and is passed into the digestive tract of the animal. In the case of the Cladocera, algae were present among the granular stomach contents - algal forms evidentily varying as to the size of the particular Cladoceran species. The Copepoda, too, were found to have minute algae present at all times in their digestive tracts. It would seem, then, that in part at least, Crustacea foed upon phytoplankton forms.

The same author, in a survey of the stomach contents of various rotifers, amons them Synchaeta and Notiolea, reported the presence of numerous minute algae. In the case of these two, the algae would nocessarily have to be smaller than the colonial fons mentioned, probably consiating of menbers of the not-toomoll lonown (from Cranborry Pond) nannoplankton.

The probable food cycle that exists among the plankton is graphically shown in the following diagram:

Hore it is seen that a strong Inkk in the food chain is being taken by the phytoplankton winich form most of the available food of the zooplaniton. The members of this group, in turn, are the basic animal food forms of the higher aquatic forms for tho insects and the vertebrate fish. The link with adult fish is apparent.

Of all the benthic algac the filamentous types are probably the only forms which have any real importance in pond control voris.

According to Josephine Tilden (1935)(32) there are at least two important reasons why the growth of filamentous green algae in fish ponds should bo encouraged. According to this investigator they are: -
"1. Algae, when in thriving condition, leep the water supersaturaged with oxygen. Fish can not live in water in which there is a deficiency of oxfgen.
2. Masses of floating filamentous algae, sometimes tormed "blanket algae" form the natural home of the minute aninels upon which some fish species, or developmental stages of others, live. Theso minute organisms feed on and are protected by the algae so that they are able to roproduce abundantly and thus maintain the animal food. supply".

It will be reaalled that Cranberry Pond is small and sheltered from the prevailing winds which might tend to keep, by wave action, a well oxygenated body of wator. There are also very fow submerged higher plant forms which might serve as "oxygenators". The builk of the work of plant oxygen formation would seem, therefore, to be left to the lower plant forms, particularly the fairly abundant filamentous algae.

It has been the custom in the past in the control of 81 sh ponds to remove so called "mat-algae" or "blanketalgae", because of the idea that such types were useless and in fact obnozious to the well being of the fish. That such practices are incorrect has boen definitely shown by various algologists. In fact, such practices may even be harmful to the bost fish productivity of a pond by upsetting the natural pond balance. Such "blanket algae" serve vory definitely the functions stated under \#Z above. Certainly anyone who has examinod at all the filamentous algal forms of a pond w111 marvel at the amount of life teeming in its filaments. Such masses are natural broeding centers for many forms of crustaceans and insocts, which ultimately become fish food. They also
sorve to protect fry from the ravages of their adult enerales. Undoubtedly the green algae are as much usod as food by water insects as are our higher plants by terrestrial insects, so again we find algal species forming a valuable link in the food chain of fresh water pond life. Miss Moore (1020)(16) in a study of some plants of importance in pond fish (bass) culturo, indicatos that algal mats of the Spiragyra or Hougeotia type are of utmost importance to close the link in the food cyclo of fish. She points out that in order to insure an abundant and continuous supply of natural forage in ponds they must bo correctly rationed - and such rationing can only be accomplished by a more precise knowledge of animal and plant associations. Her studics on tho food demands of bass indicate the type of work that needs to be done. She finds that in the case of carnivorous young bass chironomid larvae are one of the most important single items of their dietary. Furthermore, the gonus Mougcotia seems to be the staple food of the chironomids. This completes a Mougeotia - chironomid - bass food cycle. In Cranboryy Pond wators chironomids abound - indeed at certain times so plentiful are they that the water surface is covered With the shod pupal sizins of the omerged adult. The prosence of Mougeotia has already been noted. A similar relationship of food my well exist at Cranberry Pond. Miss Moore has indicatod that such relationships as have been sot down by her are undcubtediy widespread

In occurrence. Stomach analyses of Cranberry Pond trout show that they, like bass, feed on chironomid larvae. Horeover, another animal food form is present in great numbers at Cranberry Pond, a member of the plankton, - cladocerans, representing several genera. Such forms have been long lnown to be the fresh water equivalents of the plankton crustacea of the sea, which form the strong link in the chain of foods of the marine fishes. Fry of all sorts of fresh water fishes feed on cladocerans, which in turn also feed upon algal fragments - particularly those forms that mat into "floating blankots". Cladocerans were at all times numerous in among masses of floating algae. Analyses of their storachs should show fragmonts of filamontous forms, while the stomech contents of Cranborry Pond fry and fingerlings should consist largely of cladocera and chironomids. The members of such a plausible food chain are present and in sufficient abundance to balance good pond-fish numbers. This food cycle is the same except in the replacoment of plankton algae by littoral forms: -

From the preceeding survey the writer hopes the importance of the relationship of the algal members of the pond with reference to the fish may be emphasized.

SURMARY:

1. Recontly enlarged Cranberry Pond exists as a body of water of questionable classification.
2. In its slightiy acid nature, in its resiricted number of plankton specios, in its diversity of algal gonera as compared with the number of species, in its representative dinoflagellates, and in its large proportion of planktonic rotifors, Cranborry Pond fits into the category of a bog lake.
3. Unlike bog lakes the Chlorophyceae do not dominate the phytoplankton; the Ifyophyceae are not common; there is no preponderance of desmids; fish, sponges, neratodes and flatworms are present.
4. Its mixed condition indicates that an old bog lake is evidentiy being changed into a true pond.
5. Flooding, with subsequent progressive decay of submerged terrestrial plants, has increased the organic content of the water. The result of such increase is either the present dominance of Chrysophycean plankton algae or will be the appearance in the noar future of a more truly typical algal bloom.
6. Marginal highor plants are represented by fow specios. Plant overgrowth of the original pond margins has beon
raised by flooding to form floating mat islands formed chiefly by the two species, Chamaedaphne calyculata and Carex stricta. These two forms will undoubtediy be important as agents in any future filling in of the pond basin by plant growth.
7. The algal flora of the pond is not a rich one. The phytoplankton is dominated by great numbers of individuals representing few species, namely Dinobryon sertularia, Synura uvella, and Uroglenopsis amoricana. Thus the plankton flora can be classified as the Dinobryon type of Apstein. The benthos contains a numbor of spocies, but is not great quantitatively. Hougeotia, Spirogyra, and Hyalotheca are representative of the dominant filamentous type.
8. As direct and indirect sources of food, as "oxygenators" of a water lacking in higher submerged vascular plants, and as sources of harborage for fish fry, the algal plants aro of utmost importance in the life of the fish of Cranberry Pond.

LIST OF ALGAL SPECIES FROM CRAMBERRY POND (With Ecological Notations)

Wote: 1. All listed have been found as benthonic forms. Tho lottor P after the name indicates that the particular species has been also collected from the plankton.
2. Rolative abundance of a species is indscated by the following symbols in the progression from plants seldom found to those often found:

A - rare
AI - scarco
12 - Coman
A3 - ebundant
A4 - very abundant
3. This list follows the classification as given
 TIIE UNITED STATES" (29)

CLASS IYXXOPHYCEAE

ORDER CHROOCOCCALES

Chroococcus Sp. AI, P
-mixed witis other bluo-greons in littoral debris.
Gleocapsa sp. AI
-in littoral debris
Microcystis incorta Lem. A2, P
-freo floating in lititoral zone.
HerIsmopedia glauca (Ehn.) NHEG. A1
-With desmis amonsst othor algac and dobris.
Oscillatoria sp. (at loast two spocios) A2, P
-forming felt-like mats on bottom at pond magins; also covoring stones and submorged branchos.
Lyngiya sp. A1, ?

- Fomang stratum in littoral zone.

Anabaena sp. R1, P
-singlo filamonts mized in Chaotophora nodules, also in littoral debris.
Tolypothrix tomuls Kutz, AS゙
-envodops subreerged Chamodaphno twigs of mat islands; also forms stratum over submerged peaty masses.
Tolypothrix Ianata (Desv.) Wartm. A3
accompanies proceding specios in mat formation.
Stigonema ocollatum (Dillv.) Thur. Al
-found amongst Iittoral algal mats and upon submerged twigs -etc.

IISI OF ALGAL SPEGIES (Cont.)
 -2-

Hapalosiphon hibemicus W. \& G.S.West AI -in littoral fegion; -orten upon old Ttricularia stems.
Rivularia dura Roth. A3,?

- Found averywnore in Iittoral zono in gelatinous nocules upon submerged stones, stems, twiga, Ieaves, and stumps; associatod with Cheotophora and Gleotrichia
Gleotrichia Plsum (Ag.) Thus. A3
-thali fimmy golatinous and growing in similar locetions with Chaetophora and Rivularia.

CLASS PHODOPITYCEAE

ORDER MMMALIOILAJES

Batrachospermum moniliforme Roth. Al
-found in close proximity to springs at station XIII (bottom) (collocted by MIss C.E.Anderson '34)

CIASS CHRYSOPHYGEAE

ORDER CIRYSORONADALES

hallomonas sp. A, ?
-found but once in a plankton haul from station VIII.
Synura uvalla Ihr. A4, P
With Dinopryon, most abundant planiston species at the pond - everywhere; a pocullar sausage-shaped fovir collectod sevoral times from littorel zone from amoncet dead leavos.
Uroglonopsis amoricana (Calkins) Lenm. 13 , P
-ossentially planiktonic.
Donobryon sortilaria Ehr. A4; P
-with Synura, the most abundant plankton species in the pond waters.

GLASS BACIILARTTAE

ORDER CEMMRALES

Melosira undulata (Enr.) Kutz. Al

- In littoral region of pond amidst filamentous alea.

LISH OF ALGAL SPECIES (Cont.)
$-3-$

ORDIRR PEHIALES

Tabollaria flocculosa (Roth) Kutz. Al, P
-mixed with T.fenestrata; most provalent
from scrapings from Utricularia stens.
Tabollaria fencstrata (Iyngo.) Kutz. AJ, P
-the most conmon diatom in the plenkton and benthos; particularly prevalont as an epiphyte.
Nabellarla fonestrata (Lyngy.) Kutz Var. asterionelloides Gmun. A, P
-several times recorded from both plankton and benthos.
Diatoma sp. AI, ?
-intermixed with Tabellaria in sinilar situations.
Fragilaria viroscons Ralfs, A2, P
-present especially amongst littoral detritus.
Fragilaria sp. $12, \dot{p}$
-difforent erom last species but found in similar situations.
Synedra ulna (IIItzsch.) Ehs. A2, P
-anothor common genus universally distributed throughout pond.
Synedra ulna (Mitzson.) Ehr. var. bicops (iutz.) A2, P
-as with type species.
Smedra acus Futz var. angustissima Gmun. AI, P
-similar to above two species in distribution.
Asterionella formosa Hass. A, P
-a fow spocimons in planicton samples alome
with Tabellaria
Navicula sp. $12, p$
-mo of most common genera and probaably
ropresonted in tho pond by a half dozen
unidantifled species.
Pinnularia nobilis Jhmb. A2
-amonrst shone detritus
Pinnularia liasor Kutz. A2
-amongst shore detritus.
Stauroncis sp. A1 ?
-amonget shore detritus
Brobissonia Palmeri Boyer A2, P
-amongst shore detritus.
Gomphonema acuminatum IFir. var. coronata (Bhx.)
W. Smith. A3, P
-the most common stalkod diatom, on Utricularia, Oedoconium, twigg -otc.
Cymbella sp. Al
-amongst shore detritus.
Epithemia sp. $\AA 1$
-amongst shoro dotritus.
Nitzschia sp. Al, P
mostly froe floating.

THTS OE ALGAL SRELXS (COn*.)

```
ORDER PSITAITS (COnt.)
    Odonticliwm ভN. A
                        -2mongat shoro devइ1tua
```


CLASS CHIOROMMCEAS

2WDYR VOLVOCATES

Cnlarylononass sp. A1, P

- Pree swimanng unlealls.

Gonium poetomalo 2avoll. Az,?
-uparingiy intomminglod in somo jlankton samplos.
Pandotina motnum Botry $A 1, P$
-similar to coniunin murbors and distribut10n.
Fudarina ologrna Eithe A2, P
-the most combon volvocalian fomm but novor in eroat numisors.
Volvas globator L. Al, P
-as in tho case of Gonium.

ORU药 TERRASTORAESS

Totraspora gelatinona (Vauch.) Doyv. AL, P - In tho 1Ittoral zono mizod in with silamontous forms.

ORDTER ULOTRTCHALISS
Ulotinvax ap. A3
-In shallown - on soly - ote.
Stigooclontum tenue (Ag.) Kutz. A1
-in littomal zomo attachod to dobwis s somes, otc.
Chaotopiorn incrasceta (ifuds.) ITamon A2

- in impegular laciniate gelatimous colonios attached to sticirs, lonves, otc. in 1stitaral zuno.
Chaotopizona elegans (Rōls) Ag. As
-In gioboso golatincus masses agsoelated vith Revulasia and Glootrichic on sawo typos of subutraita.
Cladontares sp. 41
-attached to stonos in 1fttosal zono
Dociogonlum sy. A2
-mined with other fis lomentonis formes and
aleo covaring stones; covored vith all cinuls of epipiytos.

ORDIT ULOTRICHALES (Cont.)

Bulbochaoto Breoissonil Kutz. A2 affixed in the shallows to dobris, otc. Characium sessilo Hemm. A2 -growing as an epiphyto on other algee and also on higher plants.
Pediastrum Boryanum (Turp.) ISenegh. Al, P -freo floating in plankton
Chlorella parasitica Brandt. AZ
-syribiotic in the fresh vator sponge, Heteromeyenia ryderi, and as comon as 1ths.
Chlorella conductrix Brandt. A3, P
-symbiotic in the ciliate protozoan, Stentor pyriformis, one of the dominant plankton members.
Selenastrum sp, A, P
noted but several timos from tho plankton
Kirchneriella sp. A, P
-similar in habit to Sclenastrum
Scenedesmus bjugatus (Turp.) Kg. A1, P
-infrequentiy noted from planikton
Crucigenia rectangularis (Mag.) Gay. Λ, P
-infrequentiy noted from tho plankton

ORDER ZYGNEDATALMS

$$
\begin{aligned}
& \text { llougeotia sp. A3, P } \\
& \text { - commonly found mixed with other fila- } \\
& \text { mentous species ospecially Spirogyra } \\
& \text { to form large masses in the shallows; } \\
& \text { Zygnema pectinatum (Vauch.) Agardh. Al, p } \\
& \text {-filamonts mixod in with those of } \\
& \text { Hougeotia and Spirogyra. } \\
& \text { Spirogyra sp. A4, P (several specios) } \\
& \text {-one of tho commonest of the filamentous } \\
& \text { algae; tho several specios undextormined } \\
& \text { due to lack of materlal bearing zygospores. } \\
& \text { Gonatozygon aculeatum Hastings. Al, ? } \\
& \text {-free sloating anongst Iittoral debris. } \\
& \text { Spirotaenia condensata Breb. Al } \\
& \text {-intermingled with other desmids amongst } \\
& \text { littoral debris. } \\
& \text { Closterium toxon West. A2, P } \\
& \text {-Intermingicd with other desmids amongst } \\
& \text { Utricularia whorls and Iltzoral dobris. } \\
& \text { Clostorium moniliferum (Bory) Ehronb. A2, P } \\
& \text {-Intormingled with other desmids amongst } \\
& \text { Utricularia whorls and Ilttoral dobris. }
\end{aligned}
$$

IIST OF ALGAL SPECIES (Cont.)

Closterium Ehrenbergil Menegh. A2, P

- In situations similar to those of C.toxon Closterium rostratum Ehrenb. A2, P
-In siturtions similar to those of c.toxon Clostorium acorosum (Schrank) Ehrenb (?) Al, P
Clostors -in situations similar to those of C.toxon Clostorium abruptum West. (?) Al, P
- In situations similar to those of C.toxon Penium sp. A2, P
-in situations similar to those of C.toson
ium sp. Al
-In situations similar to those of C.toxon Plourotaenium situat

Docidium baculum Breb. AL

- in situations similar to those of C.toxon Euastrum sp. A2
-in situations similar to those of C.toxon Cosmarium sp. Al
- In situations similar to those of C.toxom Micrastorias apiculata (Ehrenb.) Menegh. A2, P
- In situations similar to those of C.toxon Xanthidium antilopaoum (Breb.) Kutz. A2
-in situations similar to those of C.toxom Staurastrum gracile Ralis A2, P
- in situations similar to those of C.toxon Hyalothoca dissiliens (Smith) Breb. A3, P
-one of the commonest filamentous forms; found in midsumer, draping submerged Chamaedaphne twigs.
Desmidium Aptogonum Breb. A2, P
-comon in the plankton and benthos.
Gymozyga moniliformis Ehr. AI, P
-chiefly from the littoral zone.

CLASS DINOPHYCEAE

SUBCLASS DINOFLAGELIATAE

$$
\begin{aligned}
& \text { Peridinium sp. A, } p \\
& \text {-iree swining chiefly in plankton. } \\
& \text { Coratium hirundinella (o. FM. Schrank. AL, } P \\
& \text {-chiofly planktonic and occuring sporadi- } \\
& \text { cally in tremendous numbers, especially } \\
& \text { at station VIII }
\end{aligned}
$$

IITMRATURE CITED

1. Chapman, Royal N.	1931	Animal Ecology McGrav-Hill New York
2. Collins, F.S.	1909	The Green Algae of Horth America. Tufts Colloge Studies 2: 1-480, P1.I-XVIII, Figs. I-160
	1912	The Groen Algae of North Amer1ca (Supplementary Paper) Tufts College Studies 3: 71-109, P1. I-II, Figs. 1-12
4.	1918	The Groon Algae of North America (Second Supplement). Tufts College Studies 1: 1-106; P1. I-III, Figs. 1-28
5. Conn, H. W. and vobs	r,	Lucia 7 . 1908 A preliminary report on the algae of the frosh waters of Connecticut. Stato Geol. and Nat'l H1st. Surv.Bull. \#10 Hartford
6. Cushman, Joseph A.	1903	List of Desmids found in Carver's Pond, Bridgewater, hass. Rhodora, Vol.5, 110.51 IRrch
7.	1903	Notes on New England Desmids Part I; Rhociora, Vol.5, Mo.57, Septomber Part II; Rhodora, Vol.5, Ho.58, October
8.	1905	A Contribution to the Desmid flora of New Hampshire Rhodora, Vol.7, No.78, June Hhodora, Vol.7, IIO.84, December
	1907	A Synopsis of the Now England specios of Pleurotaenia Phodora, Vol.9, No.102, June
	1908	A Synopsis of the New England species of Hicrasterias. Rhodora, Vol.10, No.114, June
11. Fritsch, F.E.	1906	Probloms in Aquatic Biology, with Special Reference to the Study of Algal Periodicity New Phytologist Vol.V 非

Literature Cited (Cont.)
 -2-

12. Gray's Nert Manual of Botany 1908 (Rovised by Bonjamin Lincoln Robinson and liermitt Iyndon Femald) American Boolr Co.
13. Hodgotts, Wr.J. 1921 A study of somo of the factors controlling the periodicity of rreshwater algao in nsture.

---- Now Phytologist, Vol.XX, No. $1 ; 150-164 ; 11$ figures
1922

14. Hylandor, C.John 1928 The Algeo of Connecticut State Geol. and NatII. Hist. Surv. Bull. IIO. 42 Hartford
15. Kemmerer, George; Bovard, J.F.; and Boorman, W.R. 1923 Northwestern lakes of the United States: biological and chomicel studies with reference to possibilities in proauction of fish. Bulletin of the United States Bureau of Fisheries Vol.XXXIX, 51-140 (Document llo:943, June 1923)
16. Fifoore, E. 1920 Some Plants of Importance in Pondfish Culture U.S.Bur.Fish., Doc. 881, pp. 5-20
17. Horgan, A.H. 1930 Field Book of Ponds and Streams Hew York, 448pp.
18. Needham, J.G., and J.T.Lloyd. 1930 The Life of Inland Waters, ind ed. Springfleld, 438 pp.
19. Oltmanns, F. 1922-23 Morphologie und Biologie der Algen (3 vols.) Gustav Fischer Jens
20. Paschor, A. 1913 Dic Süsswasserflora Doutschlands, Österreichs und der Schweiz. Jona
21. Pearse, A.S. 1926 Animal ticology New Yorls 417 pp.
22. Pratt, IIenry S. 1929 A Manuel of the common Invertebrate animals. Mc-Clurg Chicago
23. Proscott, G.W. 1931 Iowa Algae University of Iowa Studies in Ifatural History Vol.XIII H0.6; 5-157; P1. 1 -XXXIX
24. -------------- 1935 Notes on the Desmid flora of New England I. Rhodora, Vol.37; 22-30; p1. 325

Literature Cited (Cont.) -3-

25. Prescott, G.W. $\left.1935 \begin{array}{ll}\text { Motes on the Dosmid Plora of } \\ \text { Iow England II, Dosmias from } \\ \text { Capo Co, and the Elizabeth }\end{array}\right\}$
26. Maylor, William R., and Foge, John M., Jr. 1927 Notes on some of freshwater algae from Hewfoundiand. Rhodora, Vol. 29, No. 344 August
27. Hilden, Josephine E. 1910 Ifinnesota Algae I, Minneapolis Ifyxophycoae of North America: 228 pages; 20 plates, 433 figures.
28. ----------------- 1935 The algae and their lifo relations Univ. linnesota Press, Minnoapolis
29. Transuau, Ed. ITe Ison 1916 The Periodecity of Froshrater Algae. American Journ. of Bot., VoI.III, 110.I; 121-133
30. Ward, Honry B., and

Whipple, Geo.C.
1918 Freshwstor Biology John wiley \& Sons (Inc.) New York
35. Woaver, John E., and Cloments, Fred.E. 1929 Plant Ecology, 520 pp. McGraw-Hill Now Yorls
Iiterature cited (Cont.)

36. Welch, Paul S.	1935	Limology KcGraw-11ill Bk. Co., Inc. Nev York
37. West, G.S. ana Fritsch, F.E.	1932	A Treatiso on the British Freshwater Algao Carabsage
38. Wolle, Rev. Francis	1887	Ereshwater Algae Comorias Press Bethlehem, Pa.
39.	1884	Desmids of the U.S. and IIst or American Pediastrums Moravian Puol.Co. Bethlohem, Pa.
	1890	Diatomacea of North Amorica Comentus Press Bethlohem, Pa .

spproved by

Dieto

[^0]: Hodge, W. H., "The aquatic botany of Cranberry Pond" (1936). Masters Theses 1911 - February 2014. 1612.

