Intolerance of ambiguity and anxiety: physiological reactivity to an unavoidable noxious stimulus

Lewis. Breitner
University of Massachusetts Amherst

Follow this and additional works at: https:// scholarworks.umass.edu/theses

[^0]FIVE COLLEGE DEPOSITORY

INTOLERANCE OF AMBIGUITY AND ANXIETY:

PHYSIOLOGICAL REACTIVITY TO AN UNAVOIDABLE

NOXIOUS STIMULUS

A Thesis Presented
By
Lewis Breitner

Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
$\frac{\text { April }}{\text { (Month) }}$
$\frac{1973}{\text { (Year) }}$

INTOLERANCE OF AMBIGUITY AND ANXIETY:

PHYSIOLOGICAL REACTIVITY TO AN UNAVOIDABLE

NOXIOUS STIMULUS

A Thesis Presented
By

Lewis Breitner

Approved as to style and content by:

$\frac{\text { April }}{\text { (Month) }} \frac{1973}{\text { (Year) }}$

ACKNOWLEDGEMENTS

I wish to express my appreciation to the members of my Committee, Castellano Turner, Ph.D., Rachel Clifton, Ph.D., and especially to Seymour Epstein, Ph.D., for their patience and assistance. I would also like to thank Dr. Epstein for encouraging me to view science as a broad human enterprise, rather than as a narrow, restrictive process.

Thanks also to Mrs. Sally Ives for her excellent typing of the final draft.

TABLE OF CONTENTS

Introduction 1
Method 14
Subjects 14
Apparatus 14
Procedure 15
Preference Request 18
Post-experiment Interview 19
Results 19
Heart Rate 20
Heart Rate, Range-Corrected 28
Basal Skin Conductance 31
Basal Skin Conductance, Range- Corrected 35
Phasic GSR 40
Phasic GSR, Range-Corrected 47
Number of Non-Specific GSR/Min. 49
Number of Non-Specific GSR/Min., Range-Corrected 55
E-F Anxiety Scale 55
Sound Preference 57
Group Preference 58
Discussion 58
Summary 65
References 69
Appendices 73

LIST OF TABLES

1. Mean Scores on the Autonomic Anxiety Subscale of the E-F Manifest Anxiety Scale as a Func- tion of Groups and Conditions 74
2. Mean Scores on the Striated Muscle Tension Subscale of the E-F Manifest Anxiety Scale as a Function of Groups and Conditions 74
3. Mean Scores on the Feelings of Insecurity Sub- scale of the E-F Manifest Anxiety Scale as a Function of Groups and Conditions 75
4. Mean Scores on the Combined Subscales of the E-F Manifest Anxiety Scale as a Function of Groups and Conditions 75
5. Frequency of Sound Preference as a Function of Groups, Conditions, and Ambiguity Level of Choices 76
6. Frequency of Choice of Condition as a Function of Actual Condition 77
7. Frequency of Choice of Condition as a Function of Groups 77
8. Summary of F-Values for the Anticipatory Phase 79
9. Summary of F-Values for the Impact Phase (Post-7 to Post-8) 80
 (Pre-8 to Post-8) 81
10. Summary of F-Values for the Recovery Phase 82
11. Summary of F-Values for the Trial 5 Stimulus 8 vs. Surprise 83
12. Summary of F-Values for the Surprise Alone 84

LIST OF FIGURES

1. Heart Rate During the Anticipatory Phase As a Function of Groups, Trial, and Stimuli 21
2. Heart Rate-Trial 5, Minus Heart Rate-Trial 1, As a Function of Groups and Stimuli, Dur- ing the Anticipatory Phase 23
3. Heart Rate (Anticipatory Deceleration) Prior to Impact for All Subjects, Trial 1 and Trial 5 Combined 24
4. Heart Rate As a Function of Pre, Post Im- pact and Trials 26
5. Heart Rate As a Function of Pre, Post Im- pact and Trials 26
6. Heart Rate During the Recovery Phase As a Function of Trials and Stimuli 27
7. Heart Rate Pre-Stimulus 8 Minus Heart Rate Post-Stimulus 7 (Range-Corrected), As a Function of Groups and Conditions, During Anticipatory Deceleration 30
8. Heart Rate (Range-Corrected) During Impact As a Function of Trial 5, Stimulus 8 vs. Surprise 32
9. Basal Skin Conductance As a Function of Stimuli Pooled over Trials, Groups, and Conditions 34
10. Basal Skin Conductance During the Antici- patory Phase As a Function of Conditions, Trials, and Stimuli 36
11. Basal Skin Conductance (Range-Corrected), Trial 5 Minus Trial 1, As a Function of Conditions and Stimuli, During the Antici- patory Phase 37
12. Basal Skin Conductance (Range-Corrected) During Impact, As a Function of Trials and Stimuli 39
13. Basal Skin Conductance (Range-Corrected) During Impact, As a Function of Trials and Stimuli 39
14. Basal Skin Conductance (Range-Corrected) During Impact As a Function of Trial 5 vs. Surprise, Conditions, and Stimuli 41
15. GSR During the Anticipatory Phase As a Function of Groups and Stimuli 43
16. GSR During the Recovery Phase As a Function of Groups and Stimuli 45
17. GSR During Impact As a Function of Trial 5 Stimulus 8 vs. Surprise and Conditions 46
18. GSR (Range-Corrected) During Impact, As a Function of Conditions, Trials, and Stimuli 48
19. Number Non-Specific GSR/Min. During the An- ticipatory Phase as a Function of Conditions and Stimuli 51
20. Number Non-Specific GSR/Min. During Impact As a Function of Trials and Stimuli 52
21. Number Non-Specific GSR/Min. During the Recovery Phase As a Function of Trials and Stimuli 54

Since Frenkel-Brunswick $(1948,1949)$ introduced the concept of Intolerance of Ambiguity, many investigators have tried to establish both its validity and generality as a personality variable, and its relationship to other personality variables, especially anxiety. The results have been mixed and contradictory. This study further explores the relationship between Intolerance of Ambiguity and anxiety, taking into account certain methodological difficulties in previous work.

Brim and Hoff (1957) attempted to correlate various measures of desire for certainty (i.e., intolerance of ambiguity). Operationally, desire for certainty referred to the extremeness of responses on several attitude and judgment instruments, and scores on a specially constructed test of desire for certainty. The latter consisted of estimates of the probability of various events and of certainty ratings for the estimates. Responses were scores for the tendency to make estimates approaching 0 or 100%, and to claim high certainty for these. Significant correlations were obtained between response extremity and test scores, indicating that individual differences in desire for certainty were consistent over different measures.

Messick and Hills (1960) constructed objective personality tests for two aspects of Intolerance of Ambiguity; the tendency to reach perceptual closure quickly, and the tendency to form generalizations on the basis of specific
information. Reliability was adequate on both measures. Scores on both tests correlated significantly, providing evidence for the construct validity of Intolerance of Ambiguity. The authors were guarded in this conclusion, and offered a possible alternative construct.

Rushlau (1957) studied Tolerance of Ambiguity as a personality trait. He defined it as the capacity to endure and deal with situations and relationships whose structure was not clear.

He hypothesized that: 1) Subjects differentiated on the Berkeley Questionnaire for Intolerance of Ambiguity would show concomitant variation on a series of tasks believed to be related to Intolerance of Ambiguity; 2) Manipulation of the degree of ambiguity in instructions for the performance of a series of tasks would produce differences in the performance of those tasks. The experimental tasks included an art preference task, a generalization task, a figure-relationships task, and a problem-solving task. Significant differences were found between ambiguity-tolerant and ambiguity-intolerant subjects on all but the first task. Instructions affected figure-relationships and problem solving. Rushlau took these results as evidence for the existence of Intolerance of Ambiguity as a personality trait.

Martin (1954) measured Intolerance of Ambiguity in an interpersonal situation by counting the number of questions
asked by subjects in attempting to clarify ambiguities in the situation. He correlated this measure with scores on three perceptual tasks. Only scores on the Aniseikonic Illusion correlated significantly. (This illusion refers to the apparent tilting of a horizontal surface around a vertical axis.)

Kenny and Ginsberg (1958) tested the construct validity of several measures of Intolerance of Ambiguity. Seventysix female subjects were given 13 tests of Intolerance of Ambiguity and an authoritarianism-submission scale. Only 7 of 66 correlations were significant at the . 05 level, with 2 being opposite to the predicted direction. No measure correlated with the authoritarianism scale.

Bogen (1962) studied the construct validity of Intolerance of Ambiguity as well as its relationship to adaptation to anxiety. Positive and negative adaptive responses to anxiety were measured by the Jewell Anxiety Adaptation Scale (AAS). Anxiety was measured by the Taylor Manifest Anxiety Scale (Taylor, 1953) which was given to 317 female subjects. The 50 highest scoring and the 50 lowest scoring subjects were asked to fill out the AAS. Subjects were then divided into 4 groups of 15 each. These were High TMAS-High AAS, High-Low, Low-High, and Low-Low. Intolerance of Ambiguity was defined using 4 different measures. Bogen hypothesized that High-Low subjects would be more intolerant of ambiguity
than Low-High subjects, and that all 6 measures would have a significant degree of variance in common. No significant differences were found, arguing against the construct validity of Intolerance of Ambiguity, and against the existence of a relationship between Intolerance of Ambiguity and anxiety.

Wolff (1955) studied the relationship between certainty and anxiety. He defined subjective certainty as the degree of consciously experienced conviction, and behavioral certainty as the amount of information requested before making a choice. Certainty was hypothesized as showing an inverse relationship to anxiety. He gave 60 female subjects 3 learning tasks, and derived subjective and objective certainty scores from each. Anxiety was measured using the Anxiety Scale from the MMPI. Wolff found no evidence for the generality of certainty as a concept, and no relationship between certainty and anxiety.

Davids (1955) intercorrelated authoritarianism, EgoStructure, anxiety, academic achievement, reactions to ambiguous visual stimuli, and reactions to ambiguous auditory stimuli. There were no significant correlations between reactions to ambiguous stimuli and any other variables.

Blood (1961) explored the relationship between anxiety and ambiguity tolerance in a situation involving variation in the level of ambiguity of a visual stimulus. Low, medium,
and high anxious subjects were selected using the Taylor Manifest Anxiety Scale. Tolerance of ambiguity was measured using the Ambiguous Figures Test, a series of 16 projected figures presented at various levels of focus. The focus setting at which a subject made his first guess determined the ambiguity-tolerance score. An inverse relationship between anxiety and ambiguity-tolerance was predicted. The results were negative, and Blood concluded that anxiety and tolerance of ambiguity were not related in a non-stress situation.

On the positive side, Siegel (1954) considered several variables as correlates of authoritarianism, including manifest anxiety as measured by the Taylor Scale, and intolerance of cognitive ambiguity, as measured by a specially designed test, which required matching statements with pictures of people who could have made them. Both anxiety and Intolerance of Ambiguity were highly correlated with authoritarianism as measured by the Ethnocentrism-Fascism Scale developed by Adorno (Adorno et al., 1950). Siegel concluded that anxiety and Intolerance of Ambiguity were related, and that both were aspects of the broader concept of authoritarianism. Hamilton (1957) administered a battery of tests designed to elicit differential responses to a variety of ambiguous situations. His subjects were a group of psychiatric patients diagnosed as neurotic, and a control group. The

Neurotic group was divided into Anxiety Syndromes, Conversion Hysterics, and Obsessionals. He found marked individual differences, and considerable evidence for individual consistency in avoidance/non-avoidance of ambiguous situations. A high percentage of significant correlations suggested that the tests measured a few, closely related variables. As a group, neurotics avoided ambiguity significantly more than the Controls. Hamilton concluded that avoidance of ambiguity serves to reduce anxiety and conflict.

Smock (1957) gave junior high school students a deci-sion-location task, a measure of response perseveration (generalization), and a recognition test for mutiliated pictures (perceptual closure). Early and late responders on the decision-location test showed significantly more generalization and faster perceptual closure than a middle group. Smock took this as support for the hypothesis that anxiety is an important determinant of Intolerance of Ambiguity, since response perseveration and perceptual closure are functional properties of anxiety.

In a related study, Smock (1955) tested the following hypotheses:

1) People under psychologically stressful conditions tend to become intolerant of ambiguity, i.e., in an ambiguous situation, they would be likely to make some response before enough information is available for a more appropriate response;
2) Experience in the situation would result in a decline in intolerance of ambiguity and in anxiety, due to the learning of relevant cues, as measured by the trial of first response. Eighty subjects were divided into a "stress" group, and a "security" group. In the stress group, a feeling of failure was induced by E's rejecting behavior, while in the security group a warm atmosphere prevailed, emphasizing that the experimental task was being studied. The task involved 5 series of 15 pictures of increasing clarity. Subjects were required to organize the partially structured stimuli into a complete picture to get the right answer. The dependent measures were the trial of first response, and the trial of correct response. The results showed a strong but non-significant trend in the predicted direction for the first hypothesis. The second hypothesis was confirmed in the secure group but not in the stress group. Smock concluded that the results supported the existence of a weak relationship between Intolerance of Ambiguity and anxiety. Dibner (1958), viewing anxiety as a momentary trait rather than as a personality variable, studied its relationship to the presenting situation as objectively measured, and as subjectively perceived by the person. Forty neuropsychiatric patients were given clinical evaluative interviews by 4 interviewers. In half the interviews, the interviewer gave few clues to guide the patient (Ambiguous Condi-
tion). In the others, he took an active part in guiding the discussion (Structured Condition). All interviews were recorded, and Skin Conductance was measured. Subjects were then asked about their reactions to the talks.

Two measures of structuredness were obtained; a measure of the structuring qualities of the interviewer's behavior, and a rating of the subject's perception of the interview as analyzed from his post-interview report. The anxiety measures used were changes in Skin Conductance, ratings of anxiety by a clinical judge, subjects' self-report of tension by means of an adjective checklist, and two indices of disturbed speech. Each anxiety measure showed a significant relationship to objectively measured structure, except Skin Conductance. Two of the five showed significant relationships to subjectively perceived structure (Skin Conductance being one). Dibner concluded that anxiety can be manipulated by varying the amount of structure in a situation.

In an interesting field study, Hudson (1965) subjected college students, in an otherwise normal classroom situation, to sounds which were ambiguous in their origins, meaning, and implications. Intermittent sounds of fire equipment and aircraft were presented over a 25 minute period. The data consisted of post-experiment interviews and questionnaires, motion pictures, and ongoing observer recordings. Common interpretations were war, fire, and threat of war. Anxiety
was a very typical response, and was correlated with, among other things, suggestibility, and need for organization. These results support the existence of a relationship between Intolerance of Ambiguity and anxiety.

In a study with 1000 subjects, Soueif (1958) gave a Personal Friends Questionnaire to various groups of Egyptians. Extreme response scores were obtained by counting the number of most extreme responses assigned by each subject. Soueif hypothesized that those social groups with a higher assumed level of tension would earn a higher extreme response score than those with a lower tension level. (He gave a detailed explanation of the sociological basis for each of the assumptions of tension level.) Independent variables were age, sex, membership in a religious minority, and socioeconomic status. All the predictions were confirmed.

Dittes (1961) studied the effects of feelings of failure on impulsive closure. He hypothesized that failure should induce closure only among persons with low self-esteem, because those with high self-esteem would be less threatened, i.e., anxious. Subjects were graduate Divinity students. After having filled out a self-esteem questionnaire, subjects took the Space-Relations Test, with either ego-involving or non-involving instructions. They were then given either "success", or "failure" feedback. He then had them interpret or explain an incoherent story written in biblical
style, and also write impressions of persons described by a list of adjectives, some of which were inconsistent. The story was scored according to previously determined criteria. The results showed that ego-involved low self-esteem subjects found positive meaning in the passage, and based their impressions of the people on prominent traits, ignoring inconsistencies. High self-esteem subjects weren't affected by the instructions. Dittes concluded that anxiety and impulsive closure were related.

Brown (1953) tested the hypothesis that a relationship between rigidity and authoritarianism would hold only under stressful, i.e., anxiety-arousing, conditions. As in Dittes' study, the independent variable was the ego-involving nature of the testing atmosphere. He gave subjects the California F-Scale (authoritarianism), the Einstellung arithmetic problems (rigidity), and McClelland's projective measure of need for achievement. There was a significantly greater correlation between authoritarianism and rigidity in the ego-involved group than in the relaxed group. Also, both dependent variables were associated with anxiety about achievement in the former group, while only authoritarianism was associated with anxiety in the latter group. Brown concluded that the "same" measure of rigidity will yield different results, depending on the tension in the experimental situation.

Berlyne (1960), after reviewing the literature, concluded that ambiguity is related to anxiety, and intolerance of ambiguity is related to difficulty in dealing with anxiety. Berlyne further states that anxiety and ambiguity both contribute to increased arousal.

Budner (1962), agreeing with Berlyne, defines Intolerance of Ambiguity as the "tendency to perceive (i.e., interpret) ambiguous situations as sources of threat", while tolerance is "the tendency to perceive ambiguous situations as desirable" (p. 28). Budner adds that those tolerant of ambiguity should in fact find highly structured situations threatening.

One factor which seems to differentiate those studies showing positive from those showing negative results is the amount of stress they attempt to induce in the subject. Those studies showing negative results (Blood, Bogen, Davids, Wolff) used either the Taylor Scale or the MMPI anxiety scale to measure dispositional anxiety, and did not attempt to induce anxiety during the experiment. Those with positive results attempted to induce varying amounts of stress. As Brown has shown, intolerance of ambiguity may be manifested only under stressful conditions. If intolerance of ambiguity is viewed as a protective mechanism in a person's behavioral repertoire which is utilized to avoid the anxiety produced by ambiguity, then both a stimulus and a response must be
available for the behavior to occur. If the person cannot avoid the anxiety by structuring the situation, then some anxiety response should be manifested. If a situation is not a source of threat, Intolerance of Ambiguity is not a probable response.

Another source of difficulty in previous research relates to the measurement of anxiety. As stated above, virtually all measures of anxiety (with a few minor exceptions) were "paper and pencil", self-report measures. While these are valuable techniques, they tap only conscious responses, and only verbal ones. As Epstein (1967) has pointed out, emotions have verbal, gross motor, and physiological components. Of the studies cited above, only Dibner's employed a physiological measure, and then only one, out of five measures of anxiety.

The present study examined the relationship of several physiological indices of anxiety, specifically Heart Rate, Skin Conductance, and Galvanic Skin Response (GSR), and Intolerance of Ambiguity as a personality variable revealed in attitudes towards ambiguous situations.

Several investigators have used a paradigm consisting of a countup to a noxious stimulus, introduced by Deane and Zeamon (1958) to study anxiety. This paradigm allows one to vary the nature of the stimulus, its occurrence or non-occurrence, and its time of occurrence, in addition to many other
variables. This study varied ambiguity in terms of the amount of information available to the subject about the occurrence or non-occurrence of a noxious stimulus.

The following hypotheses were derived from the above review:

1) Subjects high in intolerance of ambiguity show greater arousal in an ambiguous than in an unambiguous condition;
2) Subjects low in intolerance of ambiguity show greater arousal in an unambiguous than in an ambiguous condition;
3) In an ambiguous condition, subjects high in intolerance show greater arousal than those low in intolerance;
4) In an unambiguous condition, subjects low in intolerance show greater arousal than those high in intolerance;
5) Those moderate in intolerance of ambiguity fall between Highs and Lows in arousal, in both ambiguous and unambiguous conditions, and show greater arousal in the former condition.

In this experiment, increased arousal was indicated by an increasing Heart Rate, Skin Conductance, and size of GSR, except in one special case (Anticipatory Deceleration).
6) Those high in intolerance manifest greater anxiety on a measure of dispositional anxiety, than those low in intolerance, with a moderate group falling in between.

METHOD

Subjects
Two-hundred fifty potential subjects filled out the Budner Intolerance of Ambiguity Scale (Budner, 1962), a 16item Lickert-type scale, which is intended to tap attitudes towards ambiguous situations (see Appendix IV).

In the present study, 16 subjects scoring 34 or below, 16 scoring 40-50 inclusive, and 16 scoring 56 or greater (representing the lowest, middle, and highest 7%), were considered to be relatively low (L), moderate (M), or high (H), respectively, in intolerance of ambiguity.

All were male undergraduates at the University of Massachusetts. Subjects were volunteers, and were paid $\$ 2.00$ each. Their mean age was 20.0. Fifty-four subjects were run, 6 being eliminated due to equipment failure or procedural error.

Apparatus

A Beckman Type RN Dynograph was used. Heart rate was recorded directly with Beckman Bio-Potential Skin Electrodes, Telectrode paste, and a Beckman Type 9806 A A-C coupler, and was simultaneously converted to Beats Per Minute (PBM) using a Type 9857 Cardiotachometer coupler. The electrodes were placed approximately 2 inches below each pectoral muscle, and slightly to the side.

Galvanic Skin Response (GSR) was measured using 2 Beckman electrodes (are exposed to skin $=2.75 \mathrm{sq} \cdot \mathrm{mm} . /$ electrode), and Beckman Offner Paste. Phasic responses were measured in micromhos conductance (mmhos) with a Beckman Type 9842 GSR coupler. Basal conductance was recorded on a separate channel using a Type 9806A A-C coupler. The electrodes were placed on the palm of the right hand, $\frac{1}{2}$ inch apart.

A 108 db . "white noise" sound, . 5 second duration, produced by a Grason Stadler Model 901B Noise Generator, was the noxious stimulus.

The subject (\underline{S}) was seated in a reclining chair in an AIC soundproof room. The room contained an electric counter which faced \underline{S}, a two-way intercom, and a speaker through which the sound was delivered. The timing of experimental events was controlled by a series of relays and timers located in the adjacent control room.

Procedure

The experimental session took place within 2 weeks of each S's pre-screening. Within each experimental group, Ss were alternately assigned to either an ambiguous (A) or an unambiguous (U) condition. Eight SS from each group were in Condition A, and eight were in Condition U. Event ambiguity was varied, holding time ambiguity constant.

The experiment proper consisted of five trials. Each trial consisted of a countup from $0-12$, with a 15 second interval between each count (i.e., stimulus). The schedule for all Ss was:

Trial	Event
Practice----------------No Sound	
1--------------------Sound @ 8	
2-------------------No Sound	
3-------------------No Sound	
	ound @ 8
5---	und @ 8

There were three significant aspects of the situation that S could know; 1) the nature of the sound; 2) whether or not he would receive a sound on any given trial; 3) if so, when it would occur.

For Trials 1-5, subjects in condition A were not told whether or not they would hear the sound on any given trial, although they knew when it would occur, if it did occur. Subjects in condition U were told whether they would or would not receive the sound on any given trial, in addition to being told when it would occur. Thus on Trial 1, Ss in A knew only the time of possible occurrence, while those in U knew both the time of occurrence and whether the noxious sound would occur at all. By Trial 5, Ss in A knew the nature and time
of the possible stimulus, while those in U knew all the relevant aspects of the situation.

The subject was seated in the soundproof room, and E pointed out the intercom, counter, and speaker, and questioned S as to the presence of any hearing difficulties. The electrodes were then attached. A writing board and a subjective loudness rating scale were placed across S's lap, and he was instructed to use his left hand only to check the rating scale. E cautioned S against excessive movement, and then entered the control room to calibrate the instruments. The following instructions were then read to \underline{S} :

Condition A - "This experiment consists of several trials. Each trial consists of a countup from 0 to 12. On each trial the indicator in front of you will count off the numbers at 15 second intervals, starting at 0. There will be a slight click on the indicator each time a number appears.

On any given trial you may or may not hear a single blast or noise. If you do hear the blast, it will only occur on number 8 ; never on any other number. It will be the same loudness each time you hear it. The counter will reset to 0 at the end of each countup, and there will be a slight pause between trials.

On those trials on which the sound occurs, please mark the appropriate place on the loudness rating scale in front of you, after the end of the countup. Please don't mark the scale during the countup. Wait until number 12 appears. Do you have any questions? We'll now run one practice to familiarize you with the situation. There will be no sound blast on this trial."

Condition U - "This experiment consists of several trials. Each trial consists of a countup from 0 to 12. On each trial the indicator in front

```
of you will count off the numbers at }15\mathrm{ second in-
tervals, starting at 0. There will be a slight
click on the indicator each time a number appears.
    On any given trial you may or may not hear a
single blast of noise. If you do hear the blast,
it will only occur on number 8; never on any other
number. It will be the same loudness each time
you hear it. I will tell you before each trial
whether or not you will hear the sound on that
trial. The counter will reset to 0 at the end of
each countup, and there will be a slight pause be-
tween trials. On those trials on which the sound
occurs, please mark the appropriate place on the
loudness rating scale in front of you, after the
end of the countup. Please don't mark the scale
during the countup. Wait until number }12\mathrm{ appears.
Do you have any questions? We'll now run one prac-
tice trial to familiarize you with the situation.
There will be no sound blast on this trial."
```

After any questions were answered, the experiment was run through Trial 5, with E verbally signalling the start of each trial.

Preference Request

After Trial 5, \underline{S} was told that he would receive one more sound, but that he could choose the manner in which he would receive it. The choices were: 1) in a countup on number 8 ; 2) by complete surprise; 3) by "Ready, Set, Go". The aim was to allow \underline{S} to choose the level of time ambiguity he preferred, surprise being the most ambiguous, and the countup being least so. The order of presentation of choices was counterbalanced. No sound was given.

One last countup was then run, during which no sound was given. This control trial was run in order to relax the
subject, and to indicate the apparent end of the experiment to the subject. After the control trial, \underline{S} was told that the experiment was over, and that E would join him momentarily. Thirty to forty seconds later \underline{S} received a surprise sound, the purpose of which was to study the effects of differential experience on $\underline{S S}^{\prime}$ reaction to a completely unexpected stimulus.

After the surprise, E apologized and removed the electrodes. The subject then filled out the E-F Manifest Anxiety Scale, which is a modification of the Taylor Manifest Anxiety Scale. (For a detailed description of the E-F scale see Appendix IV, Fenz \& Epstein, 1965 and Fenz, 1967.)

Post-experiment Interview

After filling out the E-F Scale, \underline{S} was then asked to describe his reactions to the sound, to the situation in general, and to the various countups. The subject was also asked whether he would have preferred to be in the Ambiguous or Unambiguous Condition after the difference between the two was described. The interview ended with a thorough explanation of the experiment.

RESULTS

Each trial consisted of a countup from 0-12. Each count in each countup was regarded as a stimulus with a 15 second
inter-stimulus interval. Only the post-stimulus intervals for Stimuli 1, 4, 7, 8, 9, 10, and 11, on Trials 1 and 5, were considered. Stimuli 1, 4, and 7 constituted the Anticipatory Phase; Stimulus 8 was the Impact Stimulus, on which the sound occurred, and 9,10 , and 11 were the Recovery Phase.

Heart Rate

Heart Rate was measured by recording the fastest beat in the first 5 seconds after each of the above stimuli (and in the last 5 seconds before Stimulus 8). Heart Rate was recorded in Beats Per Minute (BPM).

In addition, Lykken's (1966) Range-Correction for individual differences was applied to the data. Lykken has shown (1966, 1971) that conflicting and confusing results caused by tremendous individual variability in psychophysiological reactivity can be made more orderly and understandable by the application of his Range-Correction, which removes the effects of individual variability.

Anticipatory Phase. A 3 X $2 \times 2 \times 3$ Anova was done comparing Groups, Conditions, Trials, and Stimuli 1, 4, and 7. The data consisted of the fastest beat in the period described above. There was a significant Groups X Trials X Stimuli interaction $(F=3.89 ; p<.01,4 / 84 \mathrm{df})$. Figure 1 shows that on Trial 1 all groups showed little change from
Trial 5

Figure 1. Heart Rate During the Anticipatory Phase As a
Function of Groups, Trial, and Stimuli

(Wवg) әұеч 7теән

Stimulus 1 to 4, and a rise in Heart Rate from 4 to 7, with the Moderate group showing the greatest increase. Figure 1 and Figure 2 show that by Trial 5 the Moderate group showed a shift in peak Heart Rate from just before Impact, backwards in time to the middle of the Anticipatory Phase, while the other groups did not show this shift.

Anticipatory Deceleration. Several recent studies of anxiety (Obrist, Wood, \& Perez-Reyes, 1965; Zeamon \& Smith, 1965; Epstein \& Clarke, 1970) have found that an anticipatory Heart Rate deceleration develops just prior to Impact, with repeated trials. In order to analyse this deceleration, a 3 X 2 X 2 X 2 Anova was done comparing Groups, Conditions, and Trials, on the fastest beat in the 5 second post-Stimulus 7 and pre-Stimulus 8. For this phase, increased arousal was indicated by a decrease in Heart Rate. As can be seen in Figure 3, an overall anticipatory deceleration occurred ($F=6.93 ; \mathrm{p}<.02,1 / 42 \mathrm{df})$. However, no other significant effect was found.

Impact Phase. The Impact effect was analysed in two ways. A $3 \times 2 \times 2 \times 2$ Anova was done comparing Groups, Conditions, and Trials on the fastest beat within 5 seconds post-Stimulus 7, and the fastest beat within 5 seconds postStimulus 8. A similar Anova was done comparing pre-8 and post 8 .

Figure 2. Heart Rate-Trial 5, Minus Heart Rate-Trial 1, as a Function of Groups and Stimuli, During
the Anticipatory Phase

Figure 3. Heart Rate (Anticipatory
Deceleration) Prior to Impact for All Subjects, Trial 1 and Trial 5 Combined

The only significant effect for the first Anova was a Trials X Stimuli interaction ($F=5.42$; p 0.025 , $1 / 42 \mathrm{df}$). As can be seen in Figure 4 the Impact effect on Trial 1 was a 10.1 BPM increase in Heart Rate. On Trial 5, the Impact effect dropped to a 5.5 BPM increase.

The second Anova also showed a Trials X Stimuli interaction $(F=14.20 ; p<.001,1 / 42$ df). Figure 5 shows that on Trial 1 the Impact effect was a 13.9 BPM increase in Heart Rate, while on Trial 5, it was only a 6.6 BPM increase. Thus, both Figure 4 and Figure 5 indicate that regardless of experimental conditions, subjects developed a marked habituation in Heart Rate to the Impact Stimulus from Trial 1 to Trial 5. None of the hypotheses was confirmed in the Impact Phase.

Recovery Phase. A 3 X 2 X 2 X 2 Anova was done comparing Groups, Conditions, Trials, and Stimuli 9, 10, and 11 on the fastest beat within 5 seconds post-stimuli. The only significant effect was a Trials X Stimuli interaction (F = 4.33; p $\langle .05,2 / 84 \mathrm{df})$. As can be seen in Figure 6, there was an overall decrease in Heart Rate during the Recovery Phase, from Trial 1 to Trial 5, as well as a general decrease within each trial. The decrease over trials was similar to that for the Impact Phase, and indicates a general habituation effect. None of the hypotheses was confirmed in the Recovery Phase.

Stimuli

Figure 6. Heart Rate During the Recovery Phase As a Function of Trials and Stimuli

Surprise Stimulus. The Surprise Stimulus was analysed in the following ways: 1) A $3 \times 2 \times 2 \times 2$ Anova comparing Groups, Conditions, Trial 5, and the Surprise, on the fastest beat within 5 seconds pre and post-stimuli; 2) A 3 X 2 X 2 Anova comparing Groups and Conditions, on the fastest beat within 5 seconds pre and post-Surprise.

For the first Anova, other than a strong pre, postImpact effect pooled over trials $(F=45.21 ; p<.001,1 / 42$ df), there were no significant findings. The same was true for the second Anova ($F=22.98 ; \mathrm{p}<.001,1 / 42 \mathrm{df}$). None of the hypotheses was confirmed. (See Appendix III for the complete Heart Rate Anovas.)

Heart Rate, Range-Corrected

The formula for the Lykken Range-Correction, for any given subject, is $p=\frac{p_{i x}-p_{(\min)}}{p_{i(\max)}-p_{i(\min)}} ; p_{i x}=$ Raw Score. The range-corrected scores were multiplied by 100 to remove the decimal points. All Anovas were identical to those for the uncorrected data.

Anticipatory Phase. The results were the same as those for the uncorrected data. The only significant effect was a Groups X Trials X Stimuli interaction $(F=3.56 ; p<.01,4 / 84$ df). The curve forms were the same as those for the uncorrected data (see Figure 1).

Anticipatory Deceleration. The only significant effect was a Groups X Conditions X Stimuli interaction ($F=3.63$; p $.05,2 / 42 \mathrm{df})$. This effect did not occur with the uncorrected data. As can be seen in Figure 7, both the Moderate and High groups showed an anticipatory deceleration in the Ambiguous condition, with the High group showing a marked decrease in Heart Rate. The Low group showed a slight increase in Heart Rate.

In the Unambiguous condition, the Low and Moderate groups showed mild decelerations, while the High group showed a slight increase. Thus, in Condition A, the High group was the most reactive just prior to Impact, with the Low group being least reactive. In Condition U, the High group showed a complete reversal to low reactivity, the Moderate group was slightly less reactive, and the Low group was more reactive, showing a mild deceleration. These results tend to confirm the first 5 hypotheses.

Impact Phase. For the first Anova, the results were identical to those for the uncorrected data. The only significant effect was a Trials X Stimuli interaction $(F=4.88$; $p<.05,1 / 42 \mathrm{df})$. The curve forms were the same as those for the uncorrected data (see Figure 4).

For the second Anova, the results were again identical to those for the uncorrected data. There was a Trials X Stimuli interaction ($F=12.56 ; \mathrm{p} .001,1 / 42 \mathrm{df}$). The curve

Figure 7. Heart Rate Pre-Stimulus 8 Minus Heart Rate Post-Stimulus 7 (Range-Corrected), As a Function of Groups and Conditions, During Anticipatory Deceleration
forms were the same as those for the uncorrected data (see Figure 5). No hypotheses were confirmed.

Recovery Phase. The results for the Recovery Phase were the same as those for the uncorrected data. There was a Trials X Stimuli interaction ($F=5.89 ; p<.01,2 / 84 \mathrm{df}$). The curve forms were the same as those for the uncorrected data (see Figure 6). No hypotheses were confirmed. Surprise Stimulus. The first Anova showed a strong Trials X Stimuli interaction ($F=12.56 ; \mathrm{p}<.001,1 / 42 \mathrm{df}$). This effect did not occur with the uncorrected data. Figure 8 shows that Range-Corrected Heart Rate increased from pre to post-Impact on both Trial 5 and the Surprise, but the increase to the Surprise was less than that to Trial 5 Stimulus 8 , indicating that subjects were less reactive to the totally unexpected stimulus than they were to what was at least a partially expected stimulus.

The second Anova showed the same results as for the uncorrected data. There was a strong main effect for pre, post-Surprise ($F=26.80$; $p<.001,1 / 42 \mathrm{df}$). No other significant findings were obtained, and none of the hypotheses were confirmed. (See Appendix III for the complete Anovas for Heart Rate, Range-Corrected.)

Basal Skin Conductance
Basal Skin Conductance was measured by taking the high-

Figure 8. Heart Rate (Range-Corrected) During Impact As a Function of Trial 5, Stimulus 8 vs. Surprise
est point between 2 seconds and 7 seconds post-stimulus onset, and converting it directly into mmhos conductance. (The 2 second delay accounts for the latency of skin conductance.) Due to the use of an electrode paste which reduced skin resistance over time, an artifactual increase in Basal SC occurred over the course of the experiment. Those results which were due to this artifact are not reported here.

The Anovas for Basal SC were the same as those for Heart Rate.

Anticipatory Phase. A main effect for stimuli was the only significant result $(F=13.25 ; p<.001,2 / 84 \mathrm{df})$. Skin Conductance was 8.9 mmhos on Stimulus 1, dropped slightly on 4, and increased to 9.4 on 7 (see Figure 9).

Impact Phase. When post-7 and post-8 were compared, there was a strong Stimuli effect $(F=77.00 ; p<.001,1 / 42$ df). As can be seen in Figure 9, there was a sharp rise in Skin Conductance from post-7 to post 8. When pre and post-8 were compared, the same Stimuli effect occurred $(F=68.02$; p<.001, 1/42 df).

Recovery Phase. Again, there was only a main effect for Stimuli ($F=40.50 ; p<.001,2 / 84 \mathrm{df})$. As can be seen in Figure 9, there was a monotonic decrease in conductance 9 to 11, indicating that subjects were progressively more relaxed as the countup neared its end.

In summary, Figure 9 shows Basal Skin Conductance over all recorded stimuli, pooled over trials, groups, and conditions. There was a drop in tension at the middle of the Anticipatory Phase, then a marked increase to a peak at Impact followed by a decrease.

No differences were found between groups or conditions, and thus none of the hypotheses were confirmed.

Surprise Stimulus. The Anovas were the same as those for Heart Rate, and they showed similar results. Pooled over trials, there was a strong pre, post-stimulus effect $(F=67.88 ; p .001,1 / 42 \mathrm{df})$. When the Surprise was analysed alone, the same effect occurred $(F=63.10 ; p .001,1 / 42$ df). No hypotheses were confirmed. (See Appendix III for the complete Anovas for Basal Skin Conductance.)

Basal Skin Conductance, Range-Corrected

Lykken's Range-Correction for individual differences was applied to the data. However, in order to remove the artifact mentioned above, high and low values were determined for each trial individually.

All Anovas were the same as those for the previous measures.

Anticipatory Phase. The only significant effect was a Conditions X Trials X Stimuli interaction ($F=3.42$; p .05, $2 / 84$ df). As can be seen in Figures 10 and 11, the Unambi-

Figure 11. Basal Skin Conductance (Range-Corrected), Trial 5 Minus Trial 1, As a Function of Conditions and Stimuli, During the Anticipatory Phase
guous condition showed a much greater rise in conductance prior to Impact than the Ambiguous condition on Trial 1. By Trial 5, the Unambiguous condition's reaction prior to Impact had been reduced, while that of the Ambiguous condition had increased markedly.

Impact Phase. The only significant effect for the first Anova was a Trials X Stimuli interaction ($F=34.10$; $\mathrm{p}<.001,1 / 42 \mathrm{df})$. As can be seen in Figure 12, there was a sharp rise in conductance on Trial 1, from post-7 to post-8 and a milder rise on Trial 5 .

The same held true for the second Anova ($F=58.10$; p<.001, 1/42 df). Figure 13 shows that conductance increased from pre to post- 8 on Trial 1, and increased less on Trial 5. These results indicate that overall, subjects' Basal Skin Conductance habituated to the Impact Stimulus over trials. This was very similar to the habituation of Heart Rate (See Figures 4 \& 5). Due to the artifact mentioned above, these results did not occur with the uncorrected data.

Recovery Phase. There was a main effect for Stimuli $(F=65.36 ; \mathrm{p}<.001,2 / 84 \mathrm{df})$. Overall, subjects showed a decrease in Basal Skin Conductance during Recovery. This was similar to the results for the uncorrected data.

Also, a Conditions X Trials interaction occurred ($F=$ 5.96; p<.001, 1/42 df). Pooled over Stimuli, subjects in Condition U were more reactive than those in Condition A,

on Trial 1, but by Trial 5 the conductance level of Condition U had decreased markedly, to a point below that of Condition A, which had also decreased.

Surprise Stimulus. The Anova for Trial 5 Stimulus 8 vs. Surprise showed a Conditions X Trials X Stimuli interaction ($F=5.76 ; \mathrm{p}<.025,1 / 42 \mathrm{df}$). Both conditions showed bigger reactions to the Surprise than to Impact on Trial 5. However, Figure 14 shows that on Trial 5, Condition A produced a bigger increase in conductance to Impact than Condition U, while the reverse was true for the Surprise. Thus, subjects having complete knowledge of the approaching stimulus were less reactive than those having only partial knowledge, but when the stimulus was totally unexpected, subjects whose experience had been ambiguous were less reactive.

The Anova for Surprise alone showed a main effect for Stimuli ($F=264.29$; $p<.001,1 / 42 \mathrm{df}$). Conductance increased from pre-Surprise to post-Surprise. This result was similar to those for previous measures.

None of the hypotheses were confirmed by Basal Skin Conductance (Range-Corrected). (See Appendix III for the complete Anovas.)

Phasic GSR
Phasic GSR was measured by recording the distance in

Figure 14. Basal Skin Conductance (Range-Corrected) During Impact As a Function of Trial 5 vs. Surprise, Conditions, and Stimuli
millimeters between the peak and through of any GSR from 3 seconds to 4.5 seconds post stimulus-onset for Ss 1-30, and 1.5 seconds to 3 seconds post-stimulus-onset for the remaining subjects. (The difference in time was due to a change to a recording pen of a different length.) Distance was converted directly into micromho's conductance. A GSR was any positive deviation of 0.5 millimeters or greater. The Anovas were the same as those for previous measures. Anticipatory Phase. The only significant finding was a Trials X Stimuli interaction ($F=3.42$; $p<.05,2 / 84 \mathrm{df}$). As can be seen in Figure 15, there was a monotonic increase in Phasic reactivity throughout the Anticipatory Phase on Trial 1. A mild increase occurred from Stimulus 1 to 4, and a sharp increase occurred from 4 to 7. On Trial 5, GSR remained the same from 1 to 4, and increased sharply to 7 . This indicates that overall, rather than a general decrease in arousal during the Anticipatory Phase occurring over trials as subjects became more familiar with the situation, there was a gradual focusing and intensification of arousal at a point close to Impact.

Impact Phase. A $3 \times 2 \times 2 \times 2$ Anova was done comparing Groups, Conditions, Trials, and Stimuli, on GSR post-7 and post-8. The only significant effect was a main effect for Stimuli $(F=40.38 ; p<.001,1 / 42 \mathrm{df})$. Phasic reactivity increased from post-7 to post-8. The result was similar to

Figure 15. GSR During the Anticipatory Phase As a Function of Groups and Stimuli
that for Basal Skin Conductance. However, it was different habituation to Impact over trials, while GSR did not differ over trials.

Recovery Phase. The Anova was the same as that for previous measures, using GSR post-9, 10, and 11. There was a main effect for Trials $(F=4.24 ; \mathrm{p}<.05,1 / 42 \mathrm{df})$. Overall, reactivity during the Recovery Phase on Trial 1 was 0.24 mmhos, and was 0.15 mmhos on Trial 5, indicating that over trials subjects learned to recover more completely from the Impact.

There was also a Groups X Stimuli interaction ($F=2.83$; $\mathrm{p}<.05,4 / 84 \mathrm{df})$. As can be seen in Figure 16 , the High group was the most aroused group on Stimulus 9, dropped sharply at 10, and increased slightly to 11. The Moderate group was the least reactive at 9, dropped further at 10, and rose moderately at 11. The Low group was the only group to show a linear increase during Recovery.

Surprise Stimulus. Comparing Trials 5 post-Stimulus 8 to post-Surprise, there was a trend towards a Conditions X Trials interaction ($F=3.96 ; \mathrm{p}<.06,1 / 42 \mathrm{df}$). Figure 17 shows that, while subjects in both conditions were less reactive to Trial 5 Stimulus 8 than to the Surprise, the difference in reactivity to the two stimuli was much greater for Condition U than for Condition A. This was similar to the results for Basal Skin Conductance, Range-Corrected.

Figure 16. GSR During the Recovery Phase As a Function of Groups and Stimuli

Figure 17. GSR During Impact as a Function of Trial 5 Stimulus 8 vs. Surprise, and Conditions

The Anova for post-Surprise alone showed no significant effects.

None of the hypotheses was confirmed by Phasic GSR. (See Appendix III for the complete Anovas.)

Phasic GSR, Range-Corrected

Lykken's (1971) Range-Correction for phasic measures was applied to the GSR data. The formula used was $\phi_{p}=p_{i x} / p_{\max }$. In the case of $G S R$, where the minimum score was 0 for all subjects, this formula was identical to that for basal measures.

All Anovas were the same as those for the uncorrected data.

Anticipatory Phase. The only significant effect was a Trials X Stimuli interaction ($F=6.17 ; \mathrm{p}<.005,2 / 84 \mathrm{df}$). The curve forms were identical to those for the uncorrected data (See Figure 15).

Impact Phase. Comparing GSR post-7 to post-8, there was a weak trend towards a Conditions X Trials X Stimuli interaction $(F=3.53 ; p<.07,1 / 42$ df). As can be seen in Figure 18, subjects in both conditions showed a reduction in reaction to Impact from Trial 1 to Trial 5, with Condition U being more reactive than Condition A on Trial 1, and less reactive on Trial 5. These results are similar to those for Basal Skin Conductance (Range-Corrected), and

Heart Rate, in that there was an overall habituation to Impact over trials. However, in this case Condition U habituated to Impact to a greater extent than Condition A.

Recovery Phase. The only significant effect was a Groups X Stimuli interaction ($F=3.50$; $p<.02,4 / 84 \mathrm{df})$. The curve forms were similar to those for the uncorrected data. (See Figure 16.)

Surprise Stimulus. For the first Anova, there was a main effect for trials ($F=5.50$; $\mathrm{p}<.025,1 / 42$ df). Subjects were more reactive to the Surprise than to Trial 5 Stimulus 8. This result is opposite to that for Heart Rate (Range-Corrected), which was less reactive to the Surprise than to the expected stimulus.

The Anova for the Surprise alone showed no significant results.

None of the hypotheses was confirmed by GSR (RangeCorrected). (See Appendix III for the complete Anovas.)

Number of Non-Specific GSR/Min.
Number of Non-Specific GSR/Min. was measured by counting the number of deviations from 4.5 seconds to 18 seconds post stimulus-onset for $\operatorname{Ss} 1-30$, and from 3 seconds to 16.5 seconds post stimulus-onset for the remaining S. (This change was due to the change in recording pens.) This score was then converted into number of Non-Specific GSR/Min. by
the following formula: $\frac{\text { Deviations }}{\text { Time }}=\frac{X}{60}$, where Time $=$ the time from the peak of any GSR specific to a stimulus to the end of that stimulus interval. When no specific GSR was present, Time $=13.5$ seconds. All Anovas were the same as those for previous measures.

Anticipatory Phase. The only significant effect was a Conditions X Stimuli interaction ($F=4.58 ; \mathrm{p}<.02,2 / 84 \mathrm{df}$). As can be seen in Figure 19, Condition A showed a slight drop in number of GSR/Min. from Stimulus 1 to 4 and then a sharp increase from 4 to 7 , while Condition U started lower, showed a slight rise from 1 to 4 , and then a marked increase from 4 to 7 , which was almost double that of Condition A.

Impact Phase. The Anova comparing post-7 to post-8 showed a Conditions X Trials X Stimuli interaction (F = 7.24; p $<.02,1 / 42 \mathrm{df})$. Figure 20 shows that both conditions reacted similarly to Impact on Trial 1. However, on Trial 5, while Condition A showed a larger decrease than on Trial 1, Condition U showed a massive decrease, starting from 14.6 at post-7 and dropping to 3.9 at post-8.

It is interesting to note that no measure other than number of Non-Specific GSR/Min. produced a decrease to Impact. This decrease was probably in part an artifact resulting from the effect of the large phasic response to Impact. However, though the decrease itself may have been artifactual, the differences between Trials and Conditions

Figure 19. Number Non-Specific GSR/Min. During the Anticipatory Phase as a Function of Conditions and Stimuli

Figure 20. Number Non-Specific GSR/Min. During Impact as a Function of Trials and Stimuli
may not have been, because Phasic GSR showed no differences between Trials or Conditions.

Recovery Phase. The only significant effect was a Trials X Stimuli interaction ($F=3.42$; $p<.05,2 / 84 \mathrm{df}$). Figure 21 shows that on Trial 1 subjects produced a sharp drop in number of Non-Specific GSR/Min. from Stimulus 9 to 10, and then levelled off from 10 to 11. On Trial 5 there was an overall drop in reactivity compared to Trial 1, and a stable reaction over the whole Recovery Phase. This result was similar to that for Heart Rate in that a general decrease in reactivity during the Recovery Phase occurred over trials.

Surprise Stimulus. The Anova comparing Trial 5 Stimulus 8 to post-Surprise showed a main effect for Trials $\left(F=28.53 ; p^{<} .001,1 / 42 \mathrm{df}\right)$. Number of GSR/Min increased from Trial 5 Stimulus 8 to post-Surprise, indicating that subjects were much more reactive to the Surprise than to the expected stimulus. This result was similar to that for Phasic GSR.

The Anova for the Surprise alone showed no significant results.

None of the hypotheses were confirmed by this measure. (See Appendix III for the complete Anovas.)

Figure 21. Number Non-Specific GSR/Min. During the Recovery Phase as a Function of Trials and Stimuli

Number of Non-Specific GSR/Min., Range-Corrected
Lykken's Range-Correction was applied to the uncorrected data.

Anticipatory Phase. The only significant was a Conditions X Stimuli interaction ($F=3.89$; $p<.05,2 / 84 \mathrm{df}$). The curve forms were the same as those for the uncorrected data (see Figure 19).

Impact Phase. The results for the Impact Phase were the same as those for the uncorrected data $(F=4.73 ; p<.05$, 1/42 df; see Figure 20).

Recovery Phase. There was a trend towards a Trials X Stimuli interaction ($F=2.97$; $p<.06,2 / 84 \mathrm{df}$). The curve forms were the same as those for the uncorrected data (see Figure 21).

Surprise Stimulus. The only significant effect was a main effect for Trials ($F=10.57 ; \mathrm{p}<.001,2 / 84 \mathrm{df}$). The curve form was the same as that for the uncorrected data.

The Anova for the Surprise alone showed no significant results.

None of the hypotheses was confirmed. (See Appendix III for the complete Anovas.)

E-F Anxiety Scale

Separate Anovas were done for the Autonomic Anxiety, Striated Muscle Tension, and Feelings of Insecurity sub-
scales, as well as for the Total Anxiety score, which was a combination of the subscales.

The Anova for Autonomic Anxiety showed a main effect for Conditions ($F=5.79 ; p<.05,1 / 42 \mathrm{df}$). Mean score for the Ambiguous condition was 30.5 , and for the Unambiguous Condition was 35.9 (see Table I in Appendix I). This was an unexpected result, since the E-F Scale was not designed to measure the effects of experimental conditions on subjects' responses, and can only be attributed to the particular sample chosen. Although it was not significant, there was a trend towards a direct relationship between Intolerance of Ambiguity and Autonomic Anxiety.

The Anova for Striated Muscle Tension showed a main effect for Groups ($F=3.75$; p<.05, 2/42 df). Mean score for the Low group 26.2, for the Moderate group was 28.4 , and for the High group was 32.9 (see Table II in Appendix I). Thus, Striated Muscle Tension increased with increasing Intolerance of Ambiguity.

The Anova for Feelings of Insecurity showed no significant results, although the High group had a higher mean score than the other groups (see Table III in Appendix I).

The Anova for the Total Anxiety score showed no significal results, although again the trend was towards a direct relationship between anxiety and Intolerance of Ambiguity (see Table IV in Appendix I).

Overall, the High group consistently showed higher anxiety scores than the other two groups, which were quite similar. (A t-test for Total Anxiety scores between the Low and High groups was significant at p<.03, one-tailed; $t=1.97,30 \mathrm{df}$. A t-test between the Moderate and High groups was significant at $p<.05$, one-tailed, $t=1.80,30$ df. No difference was found between the Low and Moderate groups.)

Thus, the overall trend was that the High group showed more anxiety on the questionnaire than the other groups, which did not differ from each other.

Sound Preference

When asked to choose the means by which the final sound would be delivered subjects as a whole showed a preference for the relatively ambiguous choices. A X^{2} test, pooling "Surprise" and "Ready" choices, was significant at $p<.01\left(X^{2}=9.18,1 \mathrm{df}\right)$.

No difference was found between the groups, although there was a slight trend towards a direct relationship between Intolerance of Ambiguity and choice of the Countup for the final sound. (See Table V in Appendix I for the exact frequencies.)

A X^{2} test for Conditions pooled over Groups showed no difference between the Ambiguous and Unambiguous condi-
tions. (See Table V in Appendix I).

Group Preference

During the post-experiment interview subjects' overall tendency, when asked what condition they would have preferred being in, was to choose the condition they were in fact in $\left(X^{2}=4.47 ; p .05,1 \mathrm{df}\right)$. (See Table VI in Appendix I.) The Groups comparison showed no significant differences. There was no difference between the Low and Moderate groups, with about half of each choosing each condition, while the High group showed a strong preference for the Unambiguous condition. (See Table 7 in Appendix I for the exact frequencies.)

DISCUSSION

In general, the results for the physiological data did not support the hypotheses. Although the interaction predicted in Hypotheses $1-5$ did not as a rule occur, the physiological measures did provide some reliable indications of how subjects reacted to the situation.

During the Anticipatory Phase, all measures other than Heart Rate showed a general tendency to decrease during the middle of the waiting period, and then to increase prior to Impact. In the Groups X Trials X Stimuli interaction for

Heart Rate, both the Low and High groups showed the above pattern. However the Moderate group was markedly different in that it developed an inverted-V curve which was similar to that found by Epstein (1967) in his studies of the mastery of anxiety in sport parachuting. Like the parachutists, the Moderate group learned with experience to shift its peak arousal to an earlier point in time. The reason the other groups did not develop a peak shift, and were actually more reactive prior to Impact on Trial 5 than on Trial 1, might have been that they were more concerned with the ambiguity or lack of ambiguity in the situation than the Moderate group, and first had to deal with that before they could deal with the sound. A parachutist who is afraid of heights might react very differently than one who isn't afraid of heights. He would first have to master his anxiety about the heights before dealing with the jump.

The Conditions X Trials X Stimuli interaction for Basal Skin Conductance (Range-Corrected) indicated that Condition U's knowledge of the occurrence of the noxious stimulus caused greater arousal on Trial 1 than no knowledge, but this allowed subjects in Condition U to reduce their arousal in anticipation of a later impact.

This was not the case for the Ambiguous condition, whose anticipatory arousal increased over time. The reaction of the Ambiguous condition on Trial 5 was similar to that of
the Unambiguous condition on Trial 1. Perhaps the development of a reaction pattern over time would be similar for both conditions, with the Ambiguous condition needing more exposure to the stimulus than the Unambiguous condition in order to build a reliable expectancy. (See Table 8 in Appendix II for a summary of significant F-tests during the Anticipatory Phase.)

Overall, subjects showed a reliable Heart Rate anticipatory deceleration. In addition, the anticipatory deceleration (Range-Corrected) showed the only Groups X Conditions interaction of any measure. The High group showed a marked deceleration in the Ambiguous condition, and a slight acceleration in the Unambiguous condition, while the reverse was true for the Low group.

This result supports Hypotheses 1-5. Given the interpretation of the anticipatory deceleration as facilitating attention to emotionally arousing stimuli (Zeaman \& Smith, 1965; Epstein \& Clarke, 1970), this result indicates that the Ambiguous condition elicited the most attention before Impact from the High group, and the least from the Low group, while the situation was almost completely reversed in the Unambiguous condition. Since this interaction did not occur during any other phase of the countup it is possible that Intolerance of Ambiguity affects the attention paid to stimuli rather than the reaction to them. This is consis-
tent with Budner's (1961) suggestion that Intolerance of Ambiguity is a way of evaluating reality as opposed to a way of dealing with it.

Both Heart Rate and Basal Skin Conductance (Range-Corrected) showed an habituation effect over trials in response to Impact. However, GSR (Range-Corrected) and number of Non-Specific GSR/Min., both phasic Measures, showed that, although both conditions habituated to Impact, the Unambiguous condition habituated to a greater extent than the Ambiguous condition. This is consistent with previous findings (Epstein, 1967; Epstein, Breitner, and Hoobler, 1971) that an accurate time and event expectancy may not reduce initial reactivity, but allow for greater subsequent habituation than an inaccurate or incomplete expectancy. (See Tables 9 and 10 in Appendix II for a summary of significant F-tests for the Impact Phase.)

During the Recovery Phase the overall trend was towards a reduction in reactivity across trials. Since there was a general habituation to Impact over trials, this result is not surprising, and again indicates that increased familiarity leads to reduced reactivity.

The Conditions X Trials interaction for Basal Skin Conductance (Range-Corrected) was similar to that for Impact, discussed above, and the same interpretation applies. (See Table 11 in Appendix II for a summary of significant F-tests during the Recovery Phase.)

When Trial 5 Stimulus 8 was compared to the Surprise, the general finding was that subjects showed greater arousal to the Surprise than to the expected stimulus.

This general finding supports the conclusion that habituation is a form of learning and not due to fatigue, since fatigue would cause reduced reactivity to the Surprise.

The finding that the Unambiguous condition was less aroused than the Ambiguous condition when the stimulus was at least partially expected, and more aroused when it was totally unexpected, indicates that a precise expectancy facilitates habituation to a greater extent than an imprecise expectancy as long as conditions remain constant, but that a precise expectancy may leave one vulnerable to greater arousal if conditions change. (See Tables 12 and 13 in Appendix II for a summary of significant F-tests during the Surprise.)

The results for the E-F Scale showed a weak but quite consistent direct relationship between Intolerance of Ambiguity and anxiety. This provides some confirmation of Hypothesis \#6. It is interesting that the Striated Muscle Tension subscale showed the strongest relationship to Intolerancy of Ambiguity, since Epstein \& Fenz (1970) found that scores on this subscale were directly related to habituation of GSR to a loud sound over trials. As Epstein and Fenz have suggested, and as the above results indicate, previous
negative results might have been due to the use of too global a measure of anxiety and a consequent failure to consider particular subsets of anxiety. Since the E-F Scale does differentiate between different forms of anxiety, it may be superior to the Taylor Scale in terms of studying the relationship between anxiety and personality variables.

The general failure of the physiological measure to indicate a relationship between Intolerance of Ambiguity and anxiety may be accounted for by considering the experimental sample and the Budner Scale.

Forty-eight male undergraduate volunteers at a large state university are likely to be a relatively homogeneous group on any given personality variable, when compared to the population at large. Budner's original sample of 813 consisted of various classes of undergraduate and graduate students in New York City, which is probably a similar sample to the present one. The range of scores for his sample was 25-79, and the mean was 47.2. The range for the present sample was 25-72, and the mean was 45.3. Since the maximum range is 16-112, and the expected population mean is 64 , it seems clear that these samples are biased towards tolerance of ambiguity. The sample standard deviation in the present study was 9.6. Given the cutoff points between the groups, there would seem to be a fair degree of overlap between the groups. It would be useful to obtain scores on the Budner

Scale for a more representative range of subjects, e.g., a group of career military officers (assumed to be relatively intolerant of ambiguity) vs. a group of free-lance artists or writers (assumed to be relatively tolerant of ambiguity). This would provide data on the validity of the Budner Scale, and assuming group differences, they could then be compared as to their reactions to stressful or ambiguous situations. Finally, on a conceptual level, the terms "Intolerance" and "Tolerance", although intended to be merely descriptive, imply a value judgment which seems inappropriate. The concept originated in the context of research on anti-Semitism just after World War II, and was related to the presence of authoritarianism and anti-Semitism, which are regarded as negative qualities. Thus, "Intolerance of Ambiguity" is regarded implicitly as a negative quality. However, in terms of adaptation to a given situation, an "intolerant" person would be expected to function more effectively than a "tolerant" person in a highly structured environment, and thus "intolerance" might be a positive quality. It is suggested that "preference for Structure" be used in place of "Intolerance of Ambiguity", since no value judgment is implied.

SUMMARY

The purpose of this experiment was to compare the physiological responses of subjects showing differences in Intolerance of Ambiguity in a situation involving varying levels of ambiguity. It was hypothesized that subjects high in Intolerance of Ambiguity would show greater arousal in an ambiguous than in an unambiguous condition, and that the reverse would be true for those low in Intolerance of Ambiguity. It was hypothesized that in the Ambiguous condition subjects high in Intolerance of Ambiguity would show greater arousal than those low in Intolerance, and that the reverse would be true for the Unambiguous condition. A moderate group was expected to fall between the other groups in arousal in both conditions, and to be more aroused in the Ambiguous condition than in the Unambiguous condition.

A direct relationship between Intolerance of Ambiguity and a measure of dispositional anxiety was predicted.

Forty-eight male subjects were assigned to groups of Low, Moderate, or High Intolerance of Ambiguity, on the basis of scores on the Budner Intolerance of Ambiguity Scale.

Heart Rate, skin conductance, and Galvanic Skin Response were monitered while subjects say through five trials of a countup and waited for the possible occurrence of a noxious, 108 decibel, white noise of 0.5 seconds duration. In the

Ambiguous condition subjects knew on what count the sound would occur if it occurred. However, they did not know if it would occur. The subjects in the Unambiguous condition knew both when and if the noxious sound would occur. At the end of the experiment subjects were given the E-F Manifest Anxiety Scale.

During the Anticipatory Phase the Moderate Intolerance group developed an inverted-V curve over time on the Heart Rate measure, while the other groups did not. The hypotheses were partially confirmed by evidence of heart rate anticipatory deceleration which suggested that the High Intolerance group was most attentive (i.e., it showed the greatest deceleration) in the Ambiguous condition, and the Low Intolerance group was most attentive in the Unambiguous condition, with the Moderate Intolerance group showing moderate reactivity in both conditions.

Habituation to Impact occurred over trials, as shown by decreases on all measures. Range-Corrected GSR and (Uncorrected and Range-Corrected) Number of Non-Specific GSR/Min. indicated that although subjects in the Unambiguous condition were initially more reactive than those in the Ambiguous condition, they became less reactive over trials. That is, subjects in the Unambiguous condition habituated to a greater extent than those in the Ambiguous condition. Arousal during the Recovery Phase was reduced over trials on both

Range-Corrected and Uncorrected measures of Heart Rate, GSR, and Number of Non-Specific GSR/Min. Basal skin conductance was higher on Trial 1 for Ss in the Unambiguous condition than for Ss in the Ambiguous condition, and the reverse was true for Trial 5, although both groups exhibited some degree of habituation.

When reactions to an anticipated stimulus were compared to reactions to a surprise stimulus, subjects in the Unambiguous condition were found to be less aroused by the anticipated stimulus, and more aroused by the surprise stimulus, than subjects in the Ambiguous condition. This was interpreted as indicating that a precise expectancy facilitates habituation when conditions remain constant, but causes greater arousal if conditions change.

There was a weak but consistent direct relationship between questionnaire measures of Intolerance of Ambiguity and dispositional anxiety, confirming the final hypothesis. Results for subscales of Autonomic Anxiety, Striated Muscle Tension, and Feelings of Insecurity indicated that it is necessary to separate anxiety into its different forms in order to establish relationships with personality variables. The Striated Muscle Tension subscale showed the strongest relationship to Intolerance of Ambiguity, while the other subscales showed weaker trends.

Results for $\underline{S S}^{\prime}$ subjective preference indicates that S High in Intolerance of Ambiguity tended to prefer being in the Unambiguous condition to a greater extent than SS in the other groups. There was also a weak but consistent trend towards a direct relationship between Intolerance of Ambiguity and preference for the countup vs. the Surprise stimulus. These results tend to validate the Budner Scale.

REFERENCES

Berlyne, D. Conflict, arousal, and curiosity. New York: McGraw-Hill, 1960.

Blood, K. A study of the relationship between anxiety and ambiguity intolerance. Dissertation Abstracts, 1961, 21 (11), 3521.

Bogen, I. Some operational definitions of intolerance of ambiguity, and their relationship to adaptation and anxiety• Dissertation Abstracts, 1972, 22 (10), 3738.

Brim, O. \& Hoff, D. Individual and situational differences in desire for certainty. Journal of Abnormal and Social Psychology, 1957, 54, 225-229.

Brown, R. A determinant of the relationship between rigidity and authoritarianism. Journal of Abnormal and Social Psychology, 1953, 48, 469-476.

Budner, S. Intolerance of ambiguity as a personality variable. Journal of Personality, 1962, 30, 29-50. Davids, A. Some personality and intellectual correlates of intolerance of ambiguity. Journal of Abnormal and Social Psychology, 1955, 51, 415-420. Deane, G. \& Zeamon, D. Human heart rate during anxiety. Perceptual Motor Skills, 1958, 8, 103-106.

Dibner, A. Ambiguity and anxiety. Journal of Abnormal and Social Psychology, 1958, 56, 165-174.

Dittes, J. Impulsive closure as reaction to failure-induced threat. Journal of Abnormal and Social Psychology, 1961, 63 (3) , 562-569.

Epstein, S. Toward a unified theory of anxiety. In B. Maher (ed.), Progress in experimental personality research. Vol. 4. New York: Academic Press, 1967.

Epstein, S., Breitner, L. \& Hoobler, R. The influence of hope vs. resignation on anticipatory arousal and reaction to the impact of an unavoidable noxious stimulus. (Paper presented at Psychophysiological Convention, New Orleans, 1970).

Epstein, S. \& Clarke, S. Heart rate and skin conductance during experimentally induced anxiety: Effects of anticipated intensity of noxious stimulation and experience. Journal of Experimental Psychology, 1970, 84 (1), 105-112.

Fenz, W. Specificity in somatic responses to anxiety. Perceptual and Motor Skills, 1967, 24, 1183-1190.

Frenkel-Brunswick, E. Tolerance toward ambiguity as a personality variable. American Psychologist, 1948, 3, 268 (abstract).

Frenkel-Brunswick, E. Intolerance of ambiguity as an emotional and perceptual variable. Journal of Personality, 1949, 18, 108-143.

Hamilton, V. Perceptual and personality dynamics in reactions to ambiguity. British Journal of Psychology, 1957, 48, 200-215.

Hudson, B., McDavid, J. \& Benner, M. Group responses to threat: perception and learning under stress. Journal of Social Psychology, 1965, 67, 115-137.

Kenny, D. \& Ginsberg, R. The specificity of Intolerance of Ambiguity measures. Journal of Abnormal and Social Psychology, 1958, 56, 300-304.

Lykken, D., Rose, R., Luther, B. \& Maley, M. Correcting psychophysiological measures for individual differences in range. Psychological Bulletin, 1966, 66, 481-482.

Lykken, D. \& Venables, P. Direct measurement of skin conductance: A proposal for standardization. Psychophysiology, 1971, 8 , 656-672.

Martin, B. Intolerance of ambiguity in interpersonal and perceptual behavior. Journal of Personality, 1954, 22, 494-503.

Messick, S. \& Hills, J. Objective measurement of personality: cautiousness and intolerance of ambiguity. Educational and Psychological Measurement, 1960, 20, 685-698.

Obrist, P., Wood, D. \& Perez-Reyes, M. Heart rate during conditioning in humans: Effects of UCS intensity, vagal block, and adrenergic block of vasomotor activity.

Journal of Experimental Psychology, 1965, 70, 32-42. Rushlau, P. An experimental study of ambiguity tolerance as a trait. Dissertation Abstracts, 1957, 17, 2067. Siegel, S. Certain determinants and correlates of authoritarianism. Genetic Psychology Monograph, 1954, 49, 329-334.

Soueif, M. Extreme response sets as a measure of intolerance of ambiguity. British Journal of Psychology, 1958, 49, 329-334.

Smock, C. The influence of psychological stress on the "Intolerance of Ambiguity". Journal of Abnormal and Social Psychology, 1955, 50, 177-182.

Smock, C. The relationship between "Intolerance of Ambiguity", generalization, and speed of perceptual closure. Child Development, 1957, 28, 27-36.

Taylor, J. A personality scale of manifest anxiety. Journal of Abnormal and Social Psychology, 1953, 48, 285290.

Wolff, W. Certainty: generality and relation to manifest anxiety. Journal of A.bnormal and Social Psychology, 1955, 50, 59-64.

Zeamon, D. \& Smith, R. Human cardiac conditioning: In W. F. Prokasy (ed.), Classical conditioning: A symposium. New York: Appleton-Century-Crofts, 1965.

APPENDIX I

Table 2. Mean Scores on the Striated

Table 4. Mean Scores on the Combined Subscales of the E-F Manifest Anxiety - Condition

Table 3. Mean Scores on the Feelings Insecurity Subscale of the E-F
Manifest Anxiety Scale As a
Function of Group and Condition

Sound Preference

Table 5. Frequency of Sound Preference As a Function of Group, Condition, and Ambiguity Level of Choices

Table 6. Frequency of Choice of Condition As a Function of Actual Condition

Table 7. Frequency of Choice of Condition As a Function of Group

Table 8
Summary of F-Values for the Anticipatory Phase

Measure	Source of Variance	df	F
Heart Rate	GX T X P	$4 / 84$	$3.89^{* *}$
Heart Rate (RC)	GX T X P	$4 / 84$	$3.56^{* *}$
Basal SC	P	$2 / 84$	$13.25^{* * *}$
Basal SC (RC)	C X T X P	$2 / 84$	3.42^{*}
GSR	T X P	$2 / 84$	3.42^{*}
GSR (RC)	T X P	$2 / 84$	$6.17^{\text {t }}$
\# Non-Spec GSR/m.	C X P	$2 / 84$	4.58°
\# Non-Spec GSR/m. (RC) C X P	$2 / 84$	3.89^{*}	

*p<. 05
${ }^{\circ} \mathrm{p}<.02$
** $p<.01$
$t_{p<.005}$
***p<.001

Table 9

Summary of F-Values for the Impact Phase

 (post-7 to post-8)| Measure | Source of Variance | df | F |
| :---: | :---: | :---: | :---: |
| Heart Rate | T X P | 1/42 | 5.42° |
| Heart Rate (RC) | T X P | 1/42 | 4.88* |
| Basal SC | P | 1/42 | 77.00*** |
| Basal SC (RC) | T X P | 1/42 | 34.10*** |
| GSR | P | 1/42 | 40.38*** |
| GSR (RC) | C X T X P | 1/42 | $3.54{ }^{-}$ |
| \# Non-Spec GSR/m. | C X T X P | 1/42 | $7.24{ }^{\circ}$ |
| \# Non-Spec GSR/m. (RC) | $C X T X P$ | 1.42 | 4.73* |

$$
\begin{gathered}
\text {-trend } \\
\text { *p<.05 } \\
\text { op }<.025 \\
* * p<.01 \\
t_{p}<.005 \\
* * * p<.001
\end{gathered}
$$

Table 10
Summary of F -Values for the Impact Phase
(pre-8 to post-8)

Measure	Source of Variance	df	F
Heart Rate	T X P	$1 / 42$	$14.20 * *$
Heart Rate (RC)	TXP	$1 / 42$	$12.56 * * *$
Basal SC	P	$1 / 42$	$68.02^{* * *}$
Basal SC (RC)	TXP	$1 / 42$	$58.10 * * *$

Table 11
Summary of F-Values for the Recovery Phase

-trend
*p<. 05
${ }^{\circ} \mathrm{p}<.025$
**p<. 01
***p<. 001

Table 12
Summary of $F-V a l u e s$

for the Trial 5 Stimulus 8 vs. Surprise

-trend
${ }^{\circ} \mathrm{p}<.025$
***p<. 001

Table 13
Summary of F-Values for the Surprise Alone

Measure	Source of Variance	df	F
Heart Rate	P	1/42	22.98***
Heart Rate (RC)	P	1/42	26.80***
Basal SC	P	1/42	63.10***
Basal SC (RC)	P	1/42	264.29***
GSR	No significant results		
GSR (RC)	No significant results		
\# Non-Spec GSR/m	No significant results		
\# Non-Spec GSR/m (RC)	No significant results		

APPENDIX III

Hent Rate
anal sis of variance for dependent variable 1 SOURCE

MEAN $84, ? 2361$
CELL YEANS

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE antacyathy Duelleation SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE EXPECTED ME FREEDOM

MEAN 85,29375
CELL MEANS
$G=$

$$
84, \frac{1}{26563}
$$

85,79688 86,71875
$C=$ $80, \frac{1}{6} 1250$ 84,37500
$T=$

$$
86,17708 \quad 85,01042
$$

86,1250
84,37500

$G=$| $C=$ | 1 |
| :---: | :---: |
| 1 | 80,05625 |
| 2 | 89,18750 |
| 3 | 84,59375 |

81.87500
$G=\begin{array}{ll}T= & 84,0937 \\ \frac{1}{2} & 87,0250 \\ 3 & 80,8125\end{array}$
2
$C=\begin{array}{cc}T=\frac{1}{1} \\ 2\end{array} \quad 88,20833$
84,43750
83,96875
86,62500

$G=$| $P=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 84,81250 | 83,71875 |
| 2 | 87,28125 | 84,31250 |
| 3 | 88,34375 | 85,09375 |

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1 Impact
SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE FREEDOM

MEAN $\quad 90.15000$
CELL MEANS

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1 mpact Peccid Pro poot-8 SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE EXPECTED ME FREEDOM

MEAN $\quad 89,23125$
CELL MEANS

$$
\begin{aligned}
& G=\begin{array}{ccc}
1 & 2 & 3 \\
88,42188 & 88,93750 & 91,23439
\end{array} \\
& C= \\
& 8915002 \\
& 89.75000 \quad 89.31250 \\
& {\left[\begin{array}{lc}
T= & 1 \\
91,26042 & 87.80208
\end{array}\right]} \\
& G=\begin{array}{ccc}
C= & 1 & 2 \\
1 & 90,57500 & 86,46875 \\
2 & 91,53125 & 86,34375 \\
3 & 87,54375 & 95,12500
\end{array} \\
& G=\begin{array}{ccc}
T= & 1 & 2 \\
1 & 89,09375 & 87,75000 \\
2 & 91,1875 & 86,15625 \\
3 & 92,16875 & 89,50000
\end{array} \\
& C=\begin{array}{ccc}
T= & 2 \\
1 & 91,09583 & 87,60417 \\
2 & 90,62500 & 88,0000
\end{array} \\
& G=\begin{array}{ccc}
Q= & 2 \\
1 & 83,1875 & 93,12500 \\
2 & 84,1250 & 93: 56250 \\
3 & 85,09375 & 97: 37500
\end{array}
\end{aligned}
$$

analysis of variance for dependent variable i Recovery Period

CELL MEANS

$$
\begin{aligned}
& \text { G }= \\
& \begin{array}{ccc}
1 \\
85.01458 & 85,15625 & 88,54167
\end{array} \\
& C= \\
& 87,08333 \quad 85,79167 \\
& {\left[\begin{array}{ll}
T=\frac{2}{2}, 25000 & 83,62500
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 1 & 3
\end{array}\right]} \\
& G=\begin{array}{ccc}
C= & 2 & 2 \\
1 & 85,06667 & 85,56250 \\
2 & 88,55833 & 81,35417 \\
3 & 86,82500 & 90,45833
\end{array} \\
& \begin{array}{lll}
T= & 1 & 2 \\
1 & 88,60417 & 82,62500 \\
2 & 88,59583 & 81,91667 \\
3 & 90,15000 & 86,33333
\end{array} \\
& C=\begin{array}{ccc}
T= & 1 & 2 \\
1 & 89,48333 & 85,08333 \\
2 & 89,41667 & 82,16667
\end{array} \\
& G=\begin{array}{cccc}
P= & 1 & 2 & 3 \\
1 & 87,65000 & 87,90625 & 81,68750 \\
2 & 86,43750 & 85,62500 & 82,90625 \\
3 & 91,40625 & 91,43750 & 82,78125
\end{array}
\end{aligned}
$$

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1 Surprise Nos.sffim8 fre-Poot SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE FREEDOM

MEAN
$8 \%, 75833$
CELL MEANS
$G=80, \frac{1}{5,3125}$
$\begin{array}{cc}2 & 3 \\ 87,10938 & 88,23438\end{array}$
$C=\quad 1$
88,55417
87,56250
$T=\frac{7}{87.00208}$
88,11458
$\sum_{C}^{Q}=$

$$
84,0312
$$

2
91,88542
$G=\begin{array}{ll}C= & 1 \\ 2 & 90,46250 \\ 2 & 85,15375 \\ & 8,15625\end{array}$
87,00000
84,37500
$G=\begin{array}{ccc}T= & 1 & 2 \\ 1 & 8 \%, 15000 & 89.31250 \\ 2 & 86,15625 & 88,06250 \\ 3 & 89,20000 & 86,96875\end{array}$
$C=\begin{array}{ccc}T= & 2 \\ 1 & 87,00417 & 89,10417 \\ 2 & 88,00000 & 87,12500\end{array}$

$G=$| $Q=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 85,43750 | 91,62500 |
| 2 | 83,67500 | 90,34375 |
| 3 | 82,18125 | 93,68750 |

analysis of variance for dependent variable 1 Surprise Alone he-pooit SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE EXPECTED ME, FREEDOM

CELL MEANS

$$
\begin{aligned}
& \begin{array}{cccc}
G= & 2 & 3 \\
C= & 89,1250 & 88,06250 & 86,96875 \\
\hline 89.10417 & 87,12500 & 3
\end{array} \\
& {\left[\begin{array}{cc}
Q=\frac{1}{20} & 2 \\
85.9047 & 92,62500
\end{array}\right]} \\
& C=1 \quad 1 \quad 2 \\
& G=\begin{array}{lll}
1 & 90,22500 & 88,50000 \\
2 & 91,92500 & 84,50000 \\
3 & 85,26250 & 88,37500
\end{array} \\
& G=\begin{array}{ccc}
0= & 1 & 2 \\
1 & 86,57500 & 92,25000 \\
2 & 83,52500 & 92,50000 \\
\hline 3 & 80,81250 & 93,12500
\end{array} \\
& C=\begin{array}{ccc}
0= & 1 & 2 \\
1 & 82,04167 & 93,16667 \\
2 & 82,16667 & 92,08333
\end{array} \\
& G=1 \\
& C=\begin{array}{lll}
0 & = & 2 \\
1 & 80,25000 & 94,00000 \\
2 & 86,20000 & 90,50000
\end{array} \\
& G=2 \\
& c=\begin{array}{ccc}
Q & = & 2 \\
1 & 87,20000 & 95,75000 \\
2 & 79,15000 & 89,25000
\end{array} \\
& \begin{array}{llc}
G= & & \\
0= & 2 & 2 \\
2 & 81,57500 & 89,75000 \\
2 & 80,25000 & 96,50000
\end{array}
\end{aligned}
$$

Hent Pate Rangecmected
ANALYSIS OF VARIANCE TDR WEPE DEEIT VARIABLE - Antecupatryperiod
SJURCE SLIF OF SQUARFS MERREEG OF MEAIV SQUARF FEEEDOII

CELL MEANS

$\bar{G}=$| $C=$ | 1 | $?$ |
| :---: | :---: | :---: |
| 1 | $44 U .54583$ | 402.56250 |
| $?$ | 411.64583 | 382.14583 |
| 3 | 466.2500 | 25.42083 |

$G=\begin{array}{ccc}T= & 1 & ? \\ 1 & 453.21250 & 289.39583 \\ ? & 403.25000 & 342.54167 \\ ? & 444,16250 & 397.20833\end{array}$
$C=\begin{array}{ccc}T= & j & 2 \\ 1 & 442, y 0278 & 390.12506 \\ 2 & 447,04722 & 362.13889\end{array}$

$$
G=\begin{array}{cccc}
\mu= & 1 & 2 & 3 \\
1 & 405.33750 & 361.28125 & 437.59375 \\
3 & 300.15625 & 384.21875 & 458.31750 \\
325.57500 & 401.28125 & 512.25000
\end{array}
$$

ANALYSIS OF VARIANCE FOR TEPENDENT VARIABIE 4

Antecepatoy Deccellecafion

SJURCE SUM OF SQUANEES
RERREES
meAN SQUARE
EXPECTED MEA FREEDCM

F

$$
\begin{array}{r}
35412205.0469 \\
15441.0625 \\
300.2552 \\
79446.3802 \\
261443.8802 \\
198718.3958 \\
81740.6458 \\
69999.5052 \\
46393.7708 \\
129844.0052 \\
71340.6302 \\
85500.5736 \\
15645.7708 \\
152509.5833 \\
64311.2718 \\
11147.7552 \\
80386.9650 \\
419.3 .8013 \\
1549.3333 \\
35117.3966
\end{array}
$$

$192.000(1)$
64.000 (2) 96.000 (3) $96.000(4)$ 95.000 (う) 32.000 (6)
32.000 (7)
$48.000(8)$
32.000 (9)
$48.000(10)$
$48.000(11)$
4.000(12)
$16.0013(13)$
$16.000(17)$
16.000(1ち)
$24.000(15)$ $2.000(17)$ 2.000(18) 8.1)00(19) $1.000(20)$

MEAN $43 \% .18438$
CEI.L MIEANS

$G=$| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 420.04063 | 414.23433 | 449.57813 |

$0=1$ 2
$431.11453 \quad 433.85437$

$T=$| 2 | $?$ |
| :---: | :---: |
| 422.00208 | 412.06667 |

$P=\begin{array}{cc}1 & ? \\ 46 \% .08542 & 395.59333\end{array}$
$C=$

1	2
489.68750	567.54375
400.18750	438.28125
403.46875	4955.68750

$G=$| $T=$ | I | 2 |
| :---: | :---: | :---: |
| 1 | 422.05625 | 434,02500 |
| 2 | 479.84375 | 358.02500 |
| 3 | 450.40625 | 144.75000 |

$C=$| $T=$ | 2 |
| :---: | :---: |
| 1 | 470,42083 |
| $?$ | 434,2833 |
| 23,20833 | |
| | 433,12500 |

$G=$| $F^{\prime}=$ | 1 |
| :---: | :---: |
| 1. | 437.25375 |
| 2 | 419.01250 |
| 3 | 512.25000 |
| | 380.15625 |
| | 386,90625 |

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1 impact Pencil Post alone soURCE SUI A OF SQUARES DEGREES OF MEAN SQUARE FREEDOM

MEAN
587,55417
CELL YEANS

$G=$| 2 | 2 | 3 |
| :---: | :---: | :---: |
| 564.07188 | 570,12500 | 627,26563 |

$G=$| $C=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 599,31250 | 530,03125 |
| 2 | 541,49375 | 599,15625 |
| 3 | 612,25000 | 642,28125 |

AN:ALYSIS CIT VAFIANCE FOR WEPENDENT VAFI:BIE impactPencid Prepost 8 SOURCE SURI OF SOUARES TER:REE? DF MEAN SOUARE

EXPECTED MEA FBEEDCM

MFAN $\quad 550,4531.3$
CELL WEANS

$G=$| 555,11875 | 2 | 3 |
| :---: | :---: | :---: |
| 531.04588 | 564.59775 | |

$C=$ $523.01250 \quad 579.59375$

$\left[\begin{array}{lc}T= & 3 \\ {[002.05625} & 498.25000\end{array}\right]$

$G=\begin{array}{cc}T= & \\ \begin{array}{l}1 \\ \hat{b} \\ 3\end{array} & 52 \\ 61\end{array}$
J.

$C=$| $T=$ | 2 |
| :---: | :---: |
| 1 | 581.72917 |

641.00417

$$
\begin{array}{ccc}
Q= & 1 & 2 \\
G= & 419.68750 & 691.75000 \\
- & 380.25625 & 081.93750 \\
3 & 350.90525 & 742.28125
\end{array}
$$

analysis of varia ct fop mependfnt variable a Recovery Period Sourct. SUIA OF SQUARES TERIRFE'; UF MEAA SQUARE: EXPECTED MEA

			F	
	MEAN	506141011.3467		50014100.6467
1	G trent	541789.2569	3.092	$270844 \cdot 6285$
?	- 0 (.001)	35600.0139		35040.0139
4	r ¢ (.001)	$2356258: 68115$	29.171	-35625:5805
h	- * ($-\infty 01)$	1821.172.7986	12.052	Y 10506.3903
6	$\therefore \mathrm{C}$	147607.7153	2	758u3. 8576
7	ST	86583.5009	2	4 3? \% 1.75: 4
8	CT	206328.3472	ns 3.301	< 0.10328 .3472
Q	GP	2133977.0346	us	50974.2587
	cP	231538.882 .9	1.51 .53	115709.4410
11.	TP**(.01)	451007.5009	5.892	215503.7534
12	S(IIC)	$36 र 10424.66606$	42	87629.1587
13	GCT	$372945.38 \% 11$	n52.3/2	$1864 / 3.1910$
14	GCP	16253?.5764	2.3/2	10603.1441
15	GTF	10044.6183	4	2401.1546
16	STH	38572.84114	2	19206.4202
17	ST(GC)	$33^{4} 2010.4108$	42	¢u716.5814
18	SP(GC)	$634826 \% .70830$	8.4	755/4.1156
19	BCTP	231856.74 .30	is 1.58	57904.1857
20	STH(ITC)	$3074 \% 59.9589$	8.4	36644.2852

$288.10011)$ 96.0011 (2) 144.11011 (3) 144.0015 (4) 96.000 (5) 48.6110 (6) 48.0011 (7) 72. 1011 (8) 32. 1061 (9) 48.0110 (10) 48, $10010(11)$ 6. 10 U (12) 24.1100 (13; $16.000(14)$ 10.000 (15) 24.01010(16) 3.006(17)
2.004 (18)
$8.0010(19)$

1. $11004(20)$

MFAIN 454. Yロよ28

CFLI. YEANS
$G=\frac{3}{470.63533} \quad 395.11875 \quad 3$
$0=$
445.04722466 .08333
$\left[\begin{array}{cc}T= & 1 \\ 545.41067 & 364.21389\end{array}\right]$
$\left[\begin{array}{ccc}3 & 3.0 .017 & 512.03125 \\ 511.0542 .5144^{\prime}\end{array}\right]$

$G=$| $C=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 167.47717 | 472.1 .8750 |
| $?$ | 400.12500 | 385.31750 |
| 3 | 455.33750 | 147.75000 |

$G=\begin{array}{ccc}T= & 1 & 2 \\ 1 & 555,15700 & 387.41667 \\ 2 & 510,14583 & 281,29167 \\ 3 & 572,0517 & 424,53333\end{array}$

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 505,08889 | 383.80526 |
| $?$ | 580,44444 | 345.22222 |

3

ANALYSIS OF VAKIANCE FUR IEPENDEIT VARIABLE 1 Sumpres fis sfims
SJURCF
SUII OF SQIAAFES MECREES OF
MEAN SIJUARE
EXPLCTEU ME， FمEEDOM

MFAN $\quad 551.95313$
CFIL Yt．ANS
$G=$
55っ．11875
531.44686
3
504.59 アグ
$\mathrm{C}=\quad \mathrm{I}$
521.51250579 .54375
$\left[\begin{array}{cc}T=1 & 2 \\ 602.05625 & 198.25000\end{array}\right]$

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 581.12917 | 454.89583 |
| 2 | 017.28333 | 541.60417 |

$G=$| $0=$ | 3 | 2 |
| :---: | :---: | :---: |
| 1 | 419.08750 | 691,75000 |
| $?$ | 386.3 .5625 | 681.43756 |
| 3 | 380.70625 | 742.28125 |

ANALYSI: OF VARIAP.CE FOF LEPENDENT VARIABIE i Surprease elone SCUFCE SUM OF SQUARES DIFRRFE: CF MEAN SQUARE

EXFECTFD ME, FFEEDCM

MFAN 517.0645%

CELL VEANS
$G=\begin{array}{ccc}1 & 2 & 3 \\ 574.01250 & 503.46875 & 474.3125 n\end{array}$
$C=\frac{1 .}{504.43333} \quad=20,80583$

Sorre usucouckes dale

$G=\begin{array}{ccc}Q= & 1 & 2 \\ 1 & 494 \cdot 47500 & 654 \cdot 25000 \\ 2 & 368 \cdot 43750 & 634,50004 \\ 3 & 289.53750 & 650,68750\end{array}$
$C=\begin{array}{cc}Q=-1 & \% \\ 1 & 381,07500 \\ ? & 680,02500\end{array} \quad 673.16667$
$\begin{array}{lll}G= & 1 & \\ 0 & = & 2 \\ 1 & 494.12500 & 707.12500 \\ ? & 442.42500 & 01.37500\end{array}$
$G=$?
$0=1.503 .02500$
$c=\begin{array}{lll}1 & 359.15000 & 593.02506 \\ ? & 371.12500 & 83.375011\end{array}$

 SOUFLF SHM IF SOLARFS TFEREESUR NLANSGUARE FXPECTEL MY FBEFLICM

MFAN $\therefore 24043:$

CFLL MEANS
$G=$
308.554 10.1:25\%
$8 \cdot[19167$
$C=0.1021$

F. 11450
0.4812

C =

MFAN I！！：4ら31
CFLL MFANS

$$
G=
$$

$$
111 \cdot \operatorname{c53} 13
$$

$$
11 \cdot 1137=
$$

$$
11.33004
$$

$$
\left.\begin{array}{l}
C= \\
T=1 \\
{\left[\begin{array}{lll}
1 & 16250 & 11 ., 2313
\end{array}\right]}
\end{array}\right]
$$

$$
c=
$$

$$
G=\begin{array}{ll}
1 & 10.8437 \\
2 & 14,4575 \\
3 & , 40037
\end{array}
$$

$$
\begin{array}{r}
0.218 \% \\
1.00375 \\
11.16475
\end{array}
$$

$$
G_{i}=\begin{array}{r}
T= \\
3 \\
3 \\
3
\end{array}
$$

$$
\begin{array}{r}
\therefore .43751 \\
11.13100 \\
\because 17912
\end{array}
$$

$$
12,7687=
$$

$$
\begin{aligned}
& 1.350011 \\
& 13.70000
\end{aligned}
$$

$$
C=\begin{array}{ccc}
T= & i & 7 \\
1 & y, 121183 & 1 \% .10417 \\
2 & y .1145 & 1 ? 14167
\end{array}
$$

$$
\begin{array}{ccc}
Q= & 1 & 2 \\
C=1 & y .124187 & 11.40335
\end{array}
$$

MEAN $\quad 10.0 .5117$
CELL YEANS

$G=$	1	$10,1218 \%$	11,01375

CELL YEANE

$$
\begin{aligned}
& 6=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1.1.23751 } \quad \text { •8.55: } \\
& 2 \\
& G=\begin{array}{ll}
1 & 11.0501100 \\
2 & 1.40661 \\
3 & 2.5535
\end{array} \\
& \text { 1.425011 } \\
& \text { 1. } 1.27501 \\
& \text { 1.9.10716/ } \\
& G=\begin{array}{cr}
T= & 10.495 \\
1 & 0.4957 \\
3 & 111.05259 \\
& 0.02703
\end{array} \\
& \text { 1:30122 } \\
& \text { 1.2.27911 } \\
& \text { 1 ? 4リプ: } \\
& C=\begin{array}{ccc}
T= & 1 & \\
\frac{1}{2} & y .341223 & 11,0263 " \\
& 4.1523 & 11,1011
\end{array} \\
& G=\begin{array}{cc}
P= & 1 \\
1 & 11.15525 \\
? & 11.49631 \\
3 & 11 ., 01100
\end{array} \\
& \text { - . } 1900 . \\
& \begin{array}{r}
47.167 \\
0.2500!
\end{array} \\
& \text { ?.3156\% } \\
& \text { 11. } 69.375 \\
& r= \\
& c=1 \quad 15,111 \times 7 \\
& \text { 13.11・グ } \\
& \text { 11月.nitinn }
\end{aligned}
$$

AMALYSIS , VAFIMCF FC: HEPEHLENT YARIABLE A SurpresevolualSStumshePoot 104 s.auter

Qu. uf Sifuhities nfftices Of MEAN SOUAKE fのFELCM

MFAN - $1 K .72 \therefore 6$
CFLL MFANS

$$
\begin{aligned}
& G=12,05181
\end{aligned}
$$

ANALYSIS UF VAFIACL TO? NEDENELVT VARIABIE + surprese alone Pre Post
SLIM UF SOUARES

$$
\begin{aligned}
& \text { TF:NEES OF MEAN SQUARE FXPEUT=D MEA } \\
& \text { FZESDMM }
\end{aligned}
$$

MFAN 15.2843°
CFLL YEANS

$$
\left.\begin{array}{ccc}
G= & 10.0458 & 14,23750 \\
C= & 13.11172 & 13.257011
\end{array}\right]
$$

CFLL JEVIATIUT.S

$$
x(1 i \ldots)-\times(\ldots)
$$

ANALYSIG DF VARIANCE FCP DEPENDENT VARIABLF 1 Cutucupafore Pheze SURCF SUM OF STUARES

NEGRTES OF NEAN SQUAKE
EXPECTETI MEA FRFFDCM

MFAN 19\%.58611
CFLL EANG

$$
\begin{aligned}
& \text { C: }= \\
& 988.28472 \quad 137.68750 \\
& T=\begin{array}{cc}
1 & 2 \\
199.42083 & 185.95139
\end{array} \\
& {\left[\begin{array}{l}
F= \\
i 50.16667
\end{array}\right] 132.35417} \\
& G=\begin{array}{ccc}
T= & 1 & 2 \\
1 & 20^{8} .16567 & 203.60^{417} \\
2 & 192.12500 & 171.47917 \\
3 & 190.7708 ? & 185.77083
\end{array} \\
& r=\begin{array}{ccc}
T= & 1 & 2 \\
2 & 195,5722 ? & -100.5972 ? \\
202,6044 & 193.30556
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
2 & 3 \\
169.03125 & 310.87500 \\
113.15425 & 280.90625
\end{array}
\end{aligned}
$$

ANALYSIS OF VARIANCE FQR HEPEMDFNT VAFI $\triangle E!E E 1$ /rupech ETflet SUFCF SUH OF SOUARES TEIIRFES OF MEAK SQUARE

MFAN 571.5468\%
CFLL EANS

$$
G=\begin{array}{ccc}
1 & 2 & 3 \\
575.00 ? 50 & 557.46475 & 587.10938
\end{array}
$$

$C=1 \quad 2$
$560.02083 \quad 577.072 .92$

$$
\left[\begin{array}{lcc}
T= & 1 & 2 \\
F= & 627.58333 & 520.51042
\end{array}\right]
$$

$559.62500 \quad 555.312511$
$590.25000 \quad 573.96875$

$G=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 651.31750 | 458.81250 |
| 2 | 616.71875 | 108.21875 |
| 3 | 590.71875 | 564.50000 |

ANALYSIS OF VARTAUCE FOR IEPENDFVT VARIABI.E SUURCF SUM OF SMIARES NEAREES OF NEAN SOUARE FREFDOM

MFAN 609.13750
CFLL MEANS

$C=1.2$
$593.30 ? 0^{6} \leqslant 25.5729 ?$

$G=\begin{array}{ccc}C= & 1 & 2 \\ 1 & 570.28125 & 617.37500 \\ 2 & 604.53125 & 600.25000 \\ 3 & 605.09375 & 659.29375\end{array}$

$G=$| $T=1$ | 2 |
| :---: | :---: |
| 2 | 645.46575 |
| | 671,68750 |
| | 521.59 .375 |
| | 634.109375 |
| | 636.5975 |

$\begin{array}{cc}T= & 1 . \\ 2 & 20.77 n 83\end{array}$
2. 667.0625? 584.08333

$G=$| $P=$ | 1 | $?$ |
| :---: | :---: | :---: |
| 1 | 351.40625 | 830.250011 |
| 2 | 370.75000 | 834.03125 |
| 3 | $244.4000 n$ | $400 \operatorname{4n50}$ |

ANALYSIS OF VARIA CE FO? DEPENDFVT VARIABLE 1 S URCF

TUM OF SOUARFS TEGR=ES FRE=DOM

MFAV 457.8454?
CRLL EANS

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE $1 / 1.5$ Sfems. vosuruse Pre-fist sOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE EXPECTED ME FREEDOM

MEAN $\quad 623,00000$
CELL MEANS

FEEEDクM

$$
0.51 .90
$$

CFLI MEANS

$$
\begin{aligned}
& G= \\
& \text { 1. } 355^{2} 13 \quad 0.52708 \quad 0.27=00 \\
& \text { 0. } 55 \text { ล27 ? ? ? \& 4 ? } \\
& T= \\
& {[4.689940 .35486} \\
& 0.151[4 \\
& 7.1958{ }^{\circ} \\
& 0.60537 \\
& \text { 亿 } \\
& G=1 \\
& \text { Q. } 42 \text { 250 } \\
& \text { か, でと125 } \\
& \begin{array}{ll}
4.5355 E & \text { 1. } 3145 \text { 2 } \\
0.69275 & n .25625
\end{array} \\
& T=1 \\
& G=1 \\
& 0.03125 \\
& 0.37501 \\
& \text { 0.27500 - - . 37917 } \\
& 0.23558 \quad 0.3104 \% \\
& C=T \\
& \text { 4. } 22517 \\
& \text { 苟. } 17 \text { t } 34 \\
& \text { 7.03333 } \\
& G=\begin{array}{cccc}
P= & 1 & \ddots & 3 \\
2 & 0.16=5 & 02187 & 6.6700 \\
3 & 0.12813 & 0.6625 & 0.6467 \\
3 & 0.15937 & 0.5071
\end{array} \\
& p=
\end{aligned}
$$

CELL MEANS

ANALYSIS OF WHFIA CE FOO ,EPEUCFINT VARIVFIE
"H5 Stums ios shergeriee

MFAN
$\therefore .29583$
CFLL YEANS
CFLL-MEVIATIUNS

$$
x(-17, \ldots)-k(\ldots,
$$

$$
\begin{aligned}
& G= \\
& \begin{array}{cc}
1 & \text { ? } \\
7.48757 & 3 \\
7.7287 & \text { 2. } 7299
\end{array} \\
& \mathrm{C}= \\
& 2.03958 \quad 3.55 ? 08
\end{aligned}
$$

$$
\begin{aligned}
& G=\begin{array}{ccc}
T= & 1 & ? \\
1 & 2,23125 & 2.04375 \\
2 & 2.51250 & \therefore .0325 \\
3 & \cdots .46250 & 3.40375
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& C=\begin{array}{ccc}
T=1 & 1 & ?, 251 \\
2 & 2,5000 & \because 2509
\end{array} \\
& G=? \\
& C=\begin{array}{cll}
T= & 3 & 2 \\
2 & 2,43750 & \because 1250 \\
2 & 2,45001
\end{array} \\
& \begin{array}{rll}
G= & 3 & \\
T= & 2 & 2 \\
C=1 & \% .0000 & 3.1250 \\
2 & 3.02500 & 3.275011
\end{array}
\end{aligned}
$$

$\frac{\text { ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE } 1 \text { Surprise Alone }}{\text { SOURCE }}$ SUM OF SQUARES DEGREES OF MEAN SQUARE EXPECTED MEAn FREEDOM F

MEAN $\quad 3.25625$
CELL MEANS
$G=\frac{1}{2.64375} \quad \frac{?}{3.63125}$
3
3.49375

$C=$	$\stackrel{1}{2}$
2.96250	3.55000

$G=$| $C=$ | 2 |
| :---: | :---: |
| 1 | 2.86250 |
| 2 | 2.31250 |
| 3 | 3.71250 |
| | 3.95000 |
| | 3.27500 |

CELL DEVIATIONS

$$
x(G \ldots) \quad-x(\ldots)
$$

$C=$| 1 | |
| :---: | :---: |
| -0.29375 | 0.29375 |

$x(G C$.

- X(.C.)
- X (G...)
$+x(\ldots)$

$$
8
$$

$$
\begin{aligned}
& 8 \\
& \operatorname{nin}^{9} / \mathrm{s}^{2} \text { an mil } \\
& { }^{8} 245 \\
& 8 s^{2} \text { दा } \\
& 80 わ \text { se } \\
& \text { ns el } \\
& \varepsilon
\end{aligned}
$$

MEAN $\quad 163.26042$
CELL MEANS

$$
\begin{aligned}
& G=\begin{array}{ccc}
1 & 2 & 3 \\
175.92708 & 166.06250 & 147.79167
\end{array} \\
& C=\frac{1}{177.50694}-\frac{2}{149.01389}
\end{aligned}
$$

$$
\begin{aligned}
& G=\begin{array}{ccc}
C_{1}= & 1 & \text { 208.87500 } \\
1 & 142.91917 \\
2 & 183.62500 & 148.50000 \\
3 & 140.02083 & 155.56250
\end{array} \\
& G=\frac{1}{T=} \frac{2}{1} \begin{array}{l}
151.81250 \\
2 \\
3
\end{array} 117.81250 \begin{array}{l}
200.04167 \\
127.77083 \\
\hline
\end{array} \\
& C=\begin{array}{ccc}
T= & \text { ? } \\
\frac{1}{2} & 153.25000 & 201.76389 \\
& 111.68050 & 106.34722
\end{array} \\
& G=\begin{array}{cccc}
P= & 1 & ? & 3 \\
1 & 91.06250 & 117.78125 & 318.93750 \\
2 & 78.71875 & 105.28125 & 314.18750 \\
3 & 79.75000 & 89.84375 & 274.78125
\end{array}
\end{aligned}
$$

aNALYSIS OF VARI ANCE FOR DEPENDENT VARIABLE SOURCE SUM OF SQUARES DEGREES MF MEAN SQUARE FREEDOM

EXPECTED MEA
58441360.3330 15237.5104 $10770 \cdot 1208$ 355008.0000
11911165.0208 52943.2604 43535.2188 59692.3218 24938.1980 $457{ }^{18} \cdot 7502$ 3187952.3751 51825.2504 76?39.0308 109456.5973
2.23586 .7997 nS 3.54 328y603. 2004 $3931560 \cdot 2002$ $99528 \cdot 7071$ 2652349.37?5
$53441360 \cdot 3330$ 7613.7552 $10770 \cdot 0208$ $355003 \cdot 0000$ 11911165.0208 2.6471 .6302 ?1817.61994 69692.5208 12469.0990 18.7502 457275.5210 75903.6399 25912.6302 38119.5154 54728.3489 223586.9997 78323.8810 93610.9524 $49764 \cdot 2035$ $63151 \cdot 1755$
$192.000(1)$ $64 \cdot 000$ (2) 96.000 (3) 46.000 (4) 96.000 (5) 32.000 (6) 3?.000 (7) $48.000 \quad(8)$ 32.000 (9) $48.000(10)$ $48.000(11)$
4.000(12)
$16.000(13)$
$16 \cdot 000(14)$ $16.000(15)$
24.000(16)
?. 000 (17)
2.000(18)
8.000 (19)
$1.100(20)$

MEAN 551.74833

CELL MEANS

$G=$| 1 | $?$ | 3 |
| :---: | :---: | :---: |
| 556.21875 | 559.64063 | 539.26563 |

$C=\frac{1}{2}$
$559.1979 ? 541.21875$

$G=$| $C_{1}=$ | 1 | $?$ |
| :---: | :---: | :---: |
| 1 | 558.40625 | 554.03125 |
| 2 | 589.59375 | 529.68750 |
| 3 | 529.59375 | 548.93750 |

$G=$| $T=$ | 1 | $?$ |
| :--- | :--- | :--- |
| 1 | 528.25000 | 584.18750 |
| 2 | 496.03125 | 623.25000 |
| 3 | 501.84375 | 576.68750 |

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 2 | 497.14583 | 621.25000 |
| | 520.27083 | 568.16667 |

$G=$| $P=$ | 1 | $?$ |
| :---: | :---: | :---: |
| 1 | 318.93750 | 793.50700 |
| 2 | 314.18750 | 8115.09375 |
| 3 | 274.78175 | 803.750110 |

ANALYSIS OF VARIANCE FOR DFPENDFNT VARIABLE

I) EGRESS OF MAN SQUARE

EXPECTED MFA
SOURCE

SUM AF SQUARES FREEDOM

MEAN 85.09722

CELL MEANS

$G=$| 1 | 2 |
| :---: | :---: |
| 101.35417 | 61.12500 | 92.81250

$C=1$ 86.1319484 .06250
$T=\quad 11 \quad$? $\quad 90.78472 \quad 70.40972$
$P=\quad 9.1$
2
82.67709

3
7た. 87500

$G=$| $C=$ | 1 | $?$ |
| :---: | :---: | :---: |
| 1 | 93.58333 | 109.12500 |
| 2 | 66.56250 | 55.68750 |
| 3 | 98.25000 | 87.37560 |

$G=$| $T=$ | 1 | 2 |
| :---: | ---: | :---: |
| 1 | 121.14583 | 81.56250 |
| 2 | 77.91667 | 44.33 .33 |
| 3 | 100.29167 | $85.333 i 3$ |

$C=$| $T=1$ | 1 | 2 |
| :---: | :---: | :---: |
| 2 | 94.68056 | 77.58333 |
| 104.88889 | 03.23611 | |

$\left.G=$| $P=$ | 1 | $?$ | 3 |
| :---: | ---: | ---: | ---: |
| 1 | 87.90625 | 132.75060 | 83.41625 |
| 2 | 47.40625 | 53.90625 | $8 ? .06250$ |
| 3 | 151.90625 | 61.37500 | 65.15625 | \right\rvert\,

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1.
SOURCE
SUM OF SQUARES
DEGREES OF
FREEDOM

		69200792.0410
1	MEAN	1913.2708
2	G	104808.1667
3	C	280368.1667
4	T	125236.8958
5	$G C$	025
6	$G T$	74347.6458
7	$C T$	2325046.3750
8	$S(G C)$	87219.4375
9	$G C T$	2142435.3745

$$
\text { MEAN } \quad 349.02083
$$

CELL MEANS

$$
\begin{aligned}
& G=\begin{array}{ccc}
1 & ? & ? \\
852.50000 & 842.71375 & 851.84375
\end{array} \\
& C=\frac{1}{382.06250} \quad \begin{array}{l}
\text { 815.97917 }
\end{array} \\
& \begin{array}{rcc}
T= & 1 & ? \\
G=\begin{array}{cc}
794.97917 & 903.06250
\end{array} \\
\begin{array}{rl}
1 & 910.37500
\end{array} & 794.62500 \\
2 & 824.68750 & 860.75000 \\
3 & 911.12500 & 792.56250
\end{array} \\
& G=\begin{array}{ccc}
T= & 1 & ? \\
1 & 802.00000 & 903.00000 \\
2 & 790.7500 & 894.68750 \\
3 & 792.18750 & 911.50900
\end{array} \\
& C=\begin{array}{ccc}
T_{1}= & \text { ? } \\
\begin{array}{l}
1 \\
2
\end{array} & 855.95833 & 908.16567 \\
& 734.00000 & 847.95333
\end{array} \\
& C=\begin{array}{lll}
G= & \\
T= & 1 & 2 \\
1 & 856.25000 & 964.50000 \\
2 & 747.75000 & 841.50000
\end{array} \\
& G=2 \\
& C=T^{T}=841.2500 \% \quad 808 \text { ? } \\
& \begin{array}{lll}
c=\begin{array}{ll}
1 & 841.25000 \\
2 & 740.25000
\end{array} & 808.12500 \\
& 981.25000
\end{array} \\
& -G=3 \\
& C=\begin{array}{cc}
T= & 2 \\
1 & 870.37500 \\
2 & 714.00000
\end{array} \quad 871.87500
\end{aligned}
$$

CEIL DEVIATIONS
analysis of variance for dependent variable 1 Surpnuae alone
SOURCE SUM of SQuares degrees of mean square FREEDOM

MFAN $\quad 903.06250$
CELL YEANS

$G=$	1	2	3
903.00000	894.68750	$911.50 \cap 0 n$	
$C=$	1	2	
$C=$	1	2	
	908.16667	897.95833	
1	964.50000	841.50000	
3	808.12500	981.25000	
3	951.87500	871.12500	

CELL DEVIATIONS

$$
x\left(G_{\ldots}\right)-x(\ldots)
$$

$G=$| -1 | 2 | 3 |
| :---: | :---: | :---: |
| -0.06250 | -8.37500 | $8.4375 n$ |

$C=\begin{array}{cc}1 & 2 \\ 5.10417 & -5.10417\end{array}$
X(GC.)

- X(.C.)
- Xe..)
$+x(. .$.
$G=\begin{array}{rrr}C= & 1 & 2 \\ 1 & 56.39583 & -56.39583 \\ 2 & -91.66667 & 91.66667 \\ 3 & 35.27083 & 35.27083\end{array}$

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABIE 1 Anfecepalory fecicod

SOURCE

SUM DF SQUARES DEGREES OF FREEDOM
19956.6901 34,1776 0.0006 0.0035
$1466.6672 \quad 29.77$
81.0942
70.9026
74.4200 88.4658
$225.8409 \quad 4.58$
135.9709
3196.3975 98.2290 ns 2.54
1.902.4
129.5387 77.7344
812.8717
2068.7738
99.8448
1998.0746

$$
8.32431
$$

MEAN
CELL MEANS

$G=$	$\frac{1}{2}$	2
8.80833	8.13021	8.03437
$C=$	2	

$$
8.32569 \quad 8,32292
$$

$T=$| 1 | 2 |
| :---: | :---: |
| 8.32083 | 8.32778 |

$[P=$	1	2
	6.70625	6.75104
$C=$	1	2
1	8.46458	9.15208
2	7.72708	8.53333
3	8.78542	7.28333

$G=$| $T=$ | 1 |
| :---: | :---: |
| 1 | 9.10833 |
| 2 | 7.42708 |
| 3 | 8.42708 |

8.50833
8.83333
7.64167

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 8.83056 | 7.82083 |
| 2 | 7.81111 | $8.8347 ?$ |

$G=$| $P=$ | 1 |
| :---: | :---: |
| 1 | 7.95000 |
| 2 | 5.81875 |
| 3 | 6.35000 |

2
$7.28750 \quad 11.1875 n$
12,2750n
6.29688
11.08437.

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABIE I mpaCt Pencod
SUM OF SQUARES NERREES OF MEAN SQUARE FREEDOM

F

16764.5563	$192.000(1)$
2.8676	$64.000(2)$
8.5430	$96.000(3)$
26.1813	$96.000(4)$
905.2376	$96.000(5)$
4.5948	$32.000(6)$
5.2854	$32.000(7)$
0.6888	$48.000(8)$
48.5754	$32.000(9)$
169.6888	$48.000(10)$
331.5380	$48.000(11)$
67.3895	$4.000(12)$
2.8116	$16.000(13)$
14.2829	$16.000(14)$
61.8798	$16.000(15)$
152.4751	$24.000(16)$
30.1614	$2.000(17)$
49.6600	$2.000(18)$
45.7813	$8.000(19)$
21.0554	$1.000(20)$

MFAN
9.34427

CFLL YEANS

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABIE 1 Recovery period source

SUM OF SQUARES DEGREES OF FREEDOM

MEAN SQUARE
EXPECTED PEA

MEAN $\quad 6.71979$
CELL YEANS

$G=$| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 7.57500 | 6.76042 | 5.82396 |

$C=1 \quad 2$

6.75069

$G=$| $C=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 6.95625 | 8.19375 |
| 2 | 6.85208 | 6.66875 |
| 3 | 6.25833 | 5.38958 |

$G=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 9.43542 | 5,71458 |
| 2 | 7.61875 | 5.90208 |
| 3 | 6.80625 | 4.84167 |

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 7,49583 | 5,88194 |
| 2 | 8,41111 | 5,09028 |

$G=$| $P=$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 1 | 8.32500 | 6.44375 | 7.95625 |
| 2 | 7.83437 | 6.49687 | $5.8500 n$ |
| 3 | 7.32187 | 5.33125 | 4.81875 |

ANALYSIS OF VARIANCE FOR DEPENDENT VARIABLE 1 heals ffunsios furpuise SOURCE SUM OF SQUARES DEGREES OF MEAN SQUARE

EXPECTED ME FREEDOM

E

MEAN $\quad 8.43958$
CELL MEANS

$$
\begin{aligned}
& G=1 \quad 1 \quad 2 \\
& 9.51875 \quad 7.36250 \quad 8.4375 n \\
& C=1 \quad \text { ? } \\
& 9.05208 \quad 7.82708 \\
& {\left[\begin{array}{ccc}
1 & 2 \\
5.48958 & 11.38958
\end{array}\right] K} \\
& C=1 \\
& \begin{array}{rrr}
1 & 10.96250 & 8,07500 \\
2 & 7,46250 & 7,26250
\end{array} \\
& 3 \quad 8.73125 \quad 8.14375 \\
& G=\begin{array}{ccc}
T= & 1 & 2 \\
1 & 6.68750 & 12.35000 \\
2 & 2.97500 & 11.75000 \\
& 6 & 6.80625 \\
\hline
\end{array} \\
& C=\begin{array}{ccc}
T= & 1 & 2 \\
1 & 7.05000 & 11.05417 \\
2 & 3.92917 & 11.72500
\end{array} \\
& C=\begin{array}{ccc}
G= & & \\
T= & 1 & 2 \\
1 & 9.91250 & 12.01250 \\
2 & 3.46250 & 12.68750
\end{array}
\end{aligned}
$$

$$
\text { MFAN } 130.6250 ?
$$

CFIL YEANS

$$
\begin{aligned}
& G=-\begin{array}{cc}
1 & ? \\
432 \cdot 49533 & 420.13333
\end{array} \\
& C=1.2 \\
& T= \\
& 1 \\
& 1 \frac{1380}{623.30111} \\
& \begin{array}{rl}
{[r=} & 1 \\
343.13750 & 246.27083 \\
= & 1
\end{array} \\
& \begin{array}{ccc}
T= & 1 & \text { ? } \\
G=-\frac{1}{2} & 450 \cdot 0 n 250 & 415.72917 \\
3 & 468 \cdot 25009 & 411.57157
\end{array} \\
& \begin{array}{cccc}
& T= & 1 & ? \\
C: & 409.208,33 & 40^{5} .61111 \\
? & 400.56044 & 41.11111
\end{array} \\
& G=\begin{array}{ccc}
H= & 1 & 2 \\
1 & 383.81250 & 354.13750 \\
2 & 308.28125 & 329.19025 \\
3 & 331.4075 & 357.46876
\end{array} \\
& \begin{array}{c}
3 \\
563.43750 \\
610.06750 \\
674.75000
\end{array}
\end{aligned}
$$

ANALYSIS IF VAKIAIC＝FDP IEDENDF NT VAPIABI．E i hmpoct Peucod STURGE ZU：If S？UARIFS

NFTRTEE OF MEAN STUAR ： EXPE：TEO FlRE FRMM

1	UEAN	43^{42423}		i	74512103	197．00．）（1）
，	？	17si6s		？	5495 \％．	64．010，（2）
3	2	17\％		1	112	76． 11011 （3）
4		1へ135ん		：	1ヶ1䛔	96．1101］（4）
5	$3 \mathrm{cosec}(.100)$	290919	20.65	1		36．0ひリ（5）
6	3C	6154.5		？	22211	32．110：（\％）
$?$	TT	7344.3		$?$	369 cl	32．110！（7）
8	TT	136		1	185？	48.11011 （8）
\bigcirc	2P	1773.15		：	6でしい？	32．1010（9）
1 n		14732，	1153.25	1	447 つつう	$48.11019(19)$
11	TPHAt（ ．WOD）cherh	72515．	13,57	1	125イン4	43．00，1（11）
13	S（rC）	161797！		！？	11712	4．1） $0110(12)$
1.3	今CT	5723		？	2304	10．001（13）
14	3 CP	671.04		\％	3350 ？	15．100（1．4）
15		250374	ns 2.34	？	175131	16．0U＂（15）
16	STP＊（．05）	？ 5372	4.73	1	253025	24．0011（16）
1.7	ST（GC）	3332804		72	21フワ7	2．0011（17）
19	Sp（GC），（0）	「フッフ「9．3		4 ？	38057	$2.0011(18)$
10	sctp arares	3＇2536	3.05	？	L62？S1	8．0011（18）
2 n	STP（SLC）	$22^{4} 52 y$		\cdots	53702	1． $1005(20)$

MFAN 48：．5720？
GFLL YEAVG

$G=$| $r=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | $465.507 n 7$ | 457.53125 |
| 2 | 493.73125 | 27.00107 |
| 3 | 503.40625 | 465.21375 |

$C=$| $T=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | 515.52509 | 140.41567 |
| 2 | 505.5910 | 453.750011 |

ANALYSIS IF WAKIAMF FUP WEDE HENT VAQIUBLF Recovery Seccold

SJURC: iU OF SIUAKIS IERZFFS OF FREFTMM

＂EGRFFS OF MEAN SOLLRE EXPECTHD FQEEDR M

90.0011 （1）

3：． 006 （2）
4：．00（3）（3）
45．001（4）
1ヶ． 14011 （5）
1月．n日f（6）
26． 1001 （7）
$? .000$（8）
$1 \cdot 0(11)(9)$
$1.0(10)(20)$

MEALI Z5．5．Aタ79？
CFLL YEANS

$$
\begin{aligned}
& C= \\
& \text { } 1 \text { ? } \\
& \text { 3y2.22"17...31. }{ }^{15 月 6 \%} \\
& \bar{T}= \\
& \bar{C}=
\end{aligned}
$$

$$
\begin{aligned}
& C=\frac{T}{2}=\frac{1}{251}, 70533
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
G= & 1 \\
T= & 489 \\
C=3750 & 479.110000
\end{array} \\
& G=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& G=3
\end{aligned}
$$

ANALYSIS OF VARIA CI：FOR JEPE UF NT＂ARILBLE I Surpuseflotue

STUPCF
TUU OF S＇UARES MESGRFS OF FRESDCM

MEAF STUARF EXPECTED

$$
\text { MEAH } 445.3250 ?
$$

CFLI MEANS

$$
G=
$$

$$
\begin{array}{cc}
2 & 3 \\
2: 7.42^{5} 00 & 113.750017
\end{array}
$$

$$
C=4 \overline{3} \cdot 7540 \quad-\frac{2}{160} \cdot 501101
$$

$$
c=
$$

$$
\begin{aligned}
& \text { CrLL MEVIATIOHS } \\
& \qquad \times(\text { (\%..) }
\end{aligned}
$$

$$
\begin{aligned}
& G=-\frac{1}{-30.12507} \quad 07.50100-20.67507 \\
& x(. C .)-(\ldots) \\
& c=\quad \frac{1}{2}=4.3750 \quad \text { ? } 37500 \\
& x\left(\Gamma_{1} C_{.}\right)-\cdots\left(\tilde{C}_{n}\right)-x(0 . .)+x(\ldots) \\
& G=\begin{array}{ccc}
C= & 1 & ? \\
1 & 74.37501 & -74.37500 \\
3 & -76.2500 & 7.25019 \\
3 & 1.8750 & -1.2700
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 471 \because \because 500 \\
& \text { 1ヶ158), 4011 } \\
& \text { 5う.2? } 6 \%^{\circ} \text {. } 9399
\end{aligned}
$$

CFLL MEANS

CFLL DEVIATIUNS
$x(\therefore, \ldots)-(\ldots)$

$$
G=\begin{array}{ccc}
1 & 2 & 3 \\
=1.31257 & =1.26750 & 1.87500
\end{array}
$$

$$
x\left(, x_{1}\right) \quad-x(\ldots)
$$

$$
\begin{array}{rl}
i= & \frac{1}{2} \\
=2.36+67 & 2.6567
\end{array}
$$

$$
-x\left(i 0_{0}\right)-x\left(.(,) \quad-x\left(0_{\ldots}^{-}\right) \quad+x(\ldots)\right.
$$

$$
G=\begin{array}{ccc}
C= & 1 & 2 \\
1 & 1.75111 & =1.35417 \\
? & =9.52783 & 1.52083 \\
3 & =1.53733 & 1.33333
\end{array}
$$

\qquad

$$
\begin{aligned}
& \text { GU' JF SOUARミS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FQEFD }{ }^{2} \mathrm{~N}_{1} \\
& \text { FAPECTET MEAN } \\
& \text { S JUPए: } \\
& \text { SLI JF GOUAR=5 } \\
& \text { F }
\end{aligned}
$$

$$
\text { MFAN } \quad 2+.16,67
$$

$$
\text { CFLI IH UN } \triangle N E
$$

$$
\left[\begin{array}{l}
G= \\
c=
\end{array}\right.
$$

$$
\left.\begin{array}{ccc}
1 & 2 & 3 \\
20 \cdot 1875 ? & 29.437511 & 22.375 .01
\end{array}\right]
$$

$G=$| $C=$ | 1 | 2 |
| :---: | :---: | :---: |
| 1 | $27.57=00$ | 27.00000 |
| 2 | 21.20507 | 29.37500 |
| 3 | 37.12507 | 33.12500 |

CHLL DEVIAT1GNS

$$
x(3 \ldots)-(6 . .,)
$$

\qquad
\qquad

$$
G=
$$

$G=$ $\begin{aligned}=.9 フ 1 \% 17 & =7.12 \\ = & =(\ldots)\end{aligned}$

$$
=2.97317=7.12311
$$

$$
3.7023=
$$

$$
\times(, C .) \quad-\times(\ldots)
$$

$$
\mathrm{c}=
$$ $=.13333 \quad 7,3333$

$$
=03335
$$ $x\left(f i C_{0}\right)-x\left(. c_{0}\right)-x\left(f_{-}^{-}\right)-x(, \ldots)$ C＝

$G=$

$$
\begin{aligned}
& \text { 11. - }-20033 \\
& \text { なごつらろ } \square \square \\
& 2=0 . \operatorname{nin}^{4} 1^{7} \quad \text {).1c117 } \\
& 3 \quad \because .118 \div 3=3.10333
\end{aligned}
$$

$$
\begin{aligned}
& \text { ANALYSIS JF VARIA:C - ?? EDE:CENT VARIAFIE } 1 \text { Stuaxcep iDlcache } \\
& \text { - STURE } \\
& \text { SU~) F SつUAR: } \\
& \text { TFFFFEECOF MEAR SOUARE } \\
& \text { FOEFORM } \\
& \text { EXPECTET MEAN } \\
& \text { E }
\end{aligned}
$$

FOEFDCN

F

MFAN $40 \cdot 0250$

CF-L_L YEANG

$$
G=\begin{array}{cc}
1 \\
34.255^{\prime \prime} & 32.43751
\end{array} \quad 41.62500
$$

$$
C=\quad 1
$$

$G=\begin{array}{lll}1 & 34.5250^{\prime \prime} & 37.0000 r \\ 2 & 31.22501 & 39,750011 \\ 3 & 41.25007 & 43,3000 \pi\end{array}$

CFLL DEVIATJUNS
$x(i, \ldots)$
$6=$

$$
=1.71251
$$

$$
=7.25751
$$

$$
\begin{aligned}
& 3^{3} \\
& 40000 r
\end{aligned}
$$

$$
x(.(1)
$$

- $\because(. .$.

$$
c=10 \cdot 62^{5} 07 \quad 1=250!
$$

$$
x(\tilde{u}(.) \quad-\quad=x(.1,) \quad x(0, \ldots)
$$

$$
\left\{\begin{array}{rrr}
C= & 2 & =1.43750 \\
1 & 1.43750 & =17.21751 \\
2 & 11.31-50 & 1.75000 \\
3 & =1.15000 &
\end{array}\right.
$$

CF゙LL VEANS

$$
\begin{aligned}
& G=\frac{1}{c_{1} 0.13750}
\end{aligned}
$$

$$
\begin{aligned}
& C=-1
\end{aligned}
$$

$$
\begin{aligned}
& G=\begin{array}{ccc}
C= & 1 & \text { ? } \\
1 & 96.12509 & 13: 150011 \\
2 & 44.12501 & 10511000 n \\
3 & 109: 5020 & 117: 15077
\end{array} \\
& \text { CRELDEVIAT1HVS } \\
& x(1, \ldots)=1(\ldots) \\
& a_{i}=\begin{array}{cc}
1 & =5 .+7717 \quad=2: 35417
\end{array} \\
& x(, 1 .,)-\langle(\ldots,) \\
& C= \\
& =4.20704 \\
& \text { 4. } \operatorname{cnn} 11
\end{aligned}
$$

$$
\begin{aligned}
& C=1 \\
& r_{i}=1 \quad \therefore .0875 \pi \quad=3.5750 \\
& \text { =11, ‘3/511 11, 137う } \\
& =1.15007 \quad 1.75000
\end{aligned}
$$

APPENDIX IV

BUDNER I ITOLERANCE OF ANBIGUITY SCGLE

Name Telephane

Read each statement carefully and place the number of the appropriate response at the end of the statement. If you have: no opinion, or feel neutral about the statement, do not respond to that statement. Although you may feel that a statement is too vague, or that your answer requires qualification, try to take the statement at face value, and respond according to your general feeling. Please answer as honsatly and truthfully as you can. Thank you for your cooperation.

Strongly	Moderataly	Slightly	Slightly	Moderately	Strongly
Disagree	Disagree	Disagree	Agree:	Agree	Agree
1	2	3	5	6	7

1. A good teacher is one who makes you wonder about your way of looking at things.
2. An expert who doesn't come up with a definite answer probably doesn'r know too much.
3. Many of our most fmportant decteions are hased upon insufficient information.
4. A good job is one where what is to be done and how it is to be done are alwaye clear.
5. A person who leads an even, regular life in which few surprisee or umexpected happenings arise, really has a lot to be grateful for.
6. I would like to live in foreign country for a while.
7. The sconer all acquire similar values and ideals the better.
8. Often the most interesting and stimulating people are those who don't mind baing different and original.
9. What are used to is alwaye preferable to what is unfmiliar.
10. It is more fun to tackle a couplicated problem than so solve a simile one.
11. In the long run it is possible to get more dons by tackling small, alruple problems rather than lárge and complicated ones.

Serongly	Modorately	Slightly	Slightiy	Moderately	Strongly
Disagree	Disagree	Diबasrea	Agrec	Agres	Agree
1	2	3	5	6	7

12. People who insist upon a yes or no answer just don't know how complicated things really, arr.
13. There is really no ouch thing as a problem that can't be solved.
14. People tho fit their livea to a schedule probably miss most of the joy of living.
15. Teschera or supervisors tho hand out vague essignomnts give chance for one so shew iniciative and originality.
16. I like partice where i knes mest of the poople more than anes

Nane \qquad
Age \qquad Sex \qquad Date \qquad

INSTRUCTIONS: The following are some statenents on feelinge, daydreans, attitudes, and behavior. nead each statement and decide how often it applies to you. Circle "I" if the statement never applies to you: "5" if you experience it almost all the tine; use " 2 ", " 3 ", and " 4 " for in between ratings.

Mever $=1$, Rarely $=2$, Sometimes $=3$, Fairly often $=4$, Nearly always $=5$

A few itens nay be difficult to answer by ehecking frequencies. For these, you may indicate how true or false the iten is for you by using "1" for "Definitely false," "3" for "Qusstionable," "5" for "Definitely true," and " 2 " and " 4 " for in between ratings. Be honest, but do not spend too auch time over any one statement. As a rule, first inpressions are as accurate as any. Are there any questions?

Never $=1$ Rarely $=2$ Sometimes $=3$ Fairly often $=4$ Nearly always $=5$

1. I am an easy-going person. $\quad 1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
2. I belleve that aggressive feelings should be expressed. $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
3. I have sensations of burning, tingling, or crawling in certain parts of my body.

12345
4. I believe a great many people exaggerate their nisfortune in order to gain the sympathy and help of others.

123435
5. I feel chilly at temperatures that are confortable for others.
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
6. I an quick to anger.
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
7. I belleve it is foolish to be nice to those who are inconsiderate. $\quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
8. I have daydrearıs about hurting someone I don't like. $\quad 1 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
9. My feelings are easily hurt. $\quad 1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
10. I an either too hot or too cold and cannot get confortable at a constant temperature setting. $\quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
11. I have trouble getting my breath, for no special reason. $1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
12. At elections I vote for men about whom I know very little. $1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5\end{array}$
13. My mouth feels dry. $1 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
14. I like to know sone fnportant people because it makes ne feel inportant.

12345
15. I have feelings of panic for no special reason. $\quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
16. I have pounding headaches in which I can feel a definite beat.
i

$$
12345
$$

17. My table nanners are not quite as good at hone as when I an out in company. $\quad 1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
```
Never =1 Rarely=2 Sometimes = = Falrly often = 4 Nearly always = 5
```

18. I am a relaxed person.	1	2	3	4	5
19. I clench ay teeth when anxious.	1	2	3	4	5
20. I an troubled by disconfort in the pit of my stomach.	1	2	3	4	5
21. I worry about little things.	1	2	3	4	5
22. I have a hard tine swallowing.	1	2	3	4	5
23. I laugh at dirty jokes.	1	2	3	4	5
24. I become upset when I have to wait.	1	2	3	4	5
25. My skin becones painfully sensitive.	1	2	3	4	5
26. I notice my heart pounding.	1	2	3	4	5
27. I feel like beating or snashing things.	1	2	3	4	5
28. I take things hard.	1	2	3	4	5
29. I grind ay teeth in ay sleep.	1	2	3	4	5

32. I have daydreans in which I make a fool of someone who knows more than I do.
33. I an troubled.by tension interfering with ay speech.
34. My finger tips or other extremities becone cold.
35. I becone irritable about little things.
36. I belleve we are never really justified in being hostile towards others.
37. I have pressure headaches in which my head feels as if it were caught in a vise or as if there were a tight band around it.
38. I read every editorial in the newspaper.

12345
$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
12345
12345
12345

12345
$1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Never $=1$
Rarely = 2
Socetines $=3$
Fairly often $=4$
Nearly always $=5$
39. When enbarrassed, I break out in a sweat which annoys me greatly.
40. I take things in stride.

41: I have trouble with ay hand shaking while I write.
42. I would rather win than lose in a game.
43. I break out in a sweat which is not the result of heat or physical exertion.
44. Ifeel there are situations where one is justified in hurting another person's feelings.
45. I an troubled with diarrhea.
46. I have pains in the back of ay neck.
47. I suddenly feel hot all over, whout apparent cause.
48. I think it is wrong to seek revenge since two wrongs dor't make a right.
49. I an troubled with backaches.
50. I an a nervous persor.
51. In the absence of physical action ny heart beats wildly.
52. I say things that are not completely true.
53. What others think of ne does not bother ne.
54. My hand shakes when I try to do something.
55. I have stonach trouble.
56. I go to sleep, without thoughts or ideas bothering ae.
57. I feel that aight nakes right.
58. My head fax lendor to the point that it hurts when I corb ry hair or put on a hat.
(cont ${ }^{\prime} \mathrm{d}$)

Never $=1 \quad$ Rarely $=2$ Sometime $\quad=3$ Fairly often $=4$ Nearly always $=9$
59. My sleep is fitful and disturbec.
60. When sogeone annoys me, fy first impulse is to tell hin (her) off.
61. The puiscles in my neck ache as if they were tied in knots. $1 \begin{array}{lllll}2 & 3 & 4 & 5\end{array}$
62. Ifeel that people are too nuch concerned with satisfying
their own desires at the expense of others.
12345
63. I feel that I about to go to pleces.

12345
64. I becóne very angry.
$123 \quad 3 \quad 5$
65. I belleve there are times when physical violence can be jpastified.

12345
66. I andy frightened.

123445
67. I imagine taking revenge on someone I dislike.
$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
68. I belleve that it takes a lot of argupent to convince most prople of the truth.

12345
123435
12345
12345
72. I believe nearly anyone would tell a lie to keep out of trouble.
73. I have trouble with auscles twitching and jumping.
74. I mothered by dizziness.

12343
75. I have net people who were supposed to be experts who were no better than I. $\quad 1 \begin{array}{lllll}1 & 3 & 4 & 5\end{array}$
76. is bothered with constipation.

12345
77. I have trouble concentrating.

12345

```
OaCe
Mame
    -2,
Age
``` \(\qquad\)
Major
\(\qquad\)

What was the found like?

Were you. anxious?

Did you try to ccatrol your reaction in any way?
What were you thinking dui ing the triale?

Whici sondition did you prefer?
Why?

Cumants or Ouestions?
'Id you look at the counter?```

[^0]: Breitner, Lewis., "Intolerance of ambiguity and anxiety: physiological reactivity to an unavoidable noxious stimulus" (1973). Masters Theses 1911 - February 2014. 1350.
 Retrieved from https://scholarworks.umass.edu/theses/1350

