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ABSTRACT

The mechanical and rheo-optical properties of two

ethylene-propylene random copolymers containing 77 and 68

mole percent of ethylene were studied.

The viscoelastic properties were measured by "Vibron"

at four different frequencies.

The crystallinities of the copolymers were measured

by x-ray diffraction method in the temperature region from

room temperature to the melting temperature of the copoly-

mers.

The orientation functions of the (110) normals were

also measured by x-ray diffraction method.

The Young's modulus and the birefringence of the

samples were measured at the same time using the Instron

tester equipped with a Babinet compensator and a light

source. By combining the mechanical and the birefringence

measurements, the anisotropy of the statistical unit in the

amorphous phase was discussed on the basis of the statistical

rubber elasticity theory.

The form birefringence of the copolymers was estimated

by measuring the variation in birefringence of the stretched

sample with swelling.

The superstructures of the crystallites in the copoly-

mers were studied by small angle light scattering method.

The anisotropics caused by the strain field around the

crystallites were studied by small angle light scattering



method and polarized microscope.



I. INTRODUCTION

The unique properties of rubbery materials have drawn

the attention of many scientists from an early date. The

discovery of vulcanization has resulted in rubbery materials

becoming among the most important materials in practical

use. Chemical structures of these materials have been stud-

ied together with their physical properties.

1—4The thermodynamic approach has revealed that most

of the restoring force of the stretched rubber is attribut-

able to an entropy decrease. It was soon realized that the

application of the statistical theory5
to the material

could lead to quantitative expressions for the mechanical

properties of the materials. The development of this aspect

of the subject has in fact been in many ways the most im-

pressive feature of the statistical theory.

Kuhn 5
showed that the elastic modulus could be direct-

ly related to the number of network chains per unit volume

of the material, or alternatively, to the mean molecular

weight between crosslinks. The first explicit treatment of

6 7
the network was given by James and Guth. ' Alternative

methods of attack on the same problem which led to essen-

tially the same conclusion were published in the same period

8— "10 "11 "12

by Wall and by Flory and Rehner.

Nowadays, comprehensive theories capable of giving a

quantitative description of the elastic properties of a
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rubber for any type of deformation is available. The theory

had also been successfully applied to the treatment of the

swelling phenomena and, by a slight modification, to the

rheo-optical properties of rubbers. 5,13,14

The development of stereospecific catalysts 15
" 18

in

the 1950s has opened a new field in polymer physics. Vari-

ous highly crystalline polymers have emerged, one after

another. Crystalline structures of these new polymers have

been studied extensively ever since.

One of the general structural features found in the

bulk state of these polymers is that they have spherulitic

superstructures. Microscopic studies on these structures

have revealed that the spherulite consists of crystalline

fibriles radiating from the center, twisting and inter-

19-24
twining with each other.

25 26
The discovery of single crystals 9 from solutions

of polyethylene has given a clue to solve the finer struc-

tures of fibriles in spherulites.

The crystalline lattice structure has been studied by

x-ray, electron, and neutron diffraction methods. Even the

positions of atoms in the lattice has been determined in

27
some cases.

In addition to morphorogical studies, the response of

the crystalline lattice, fibriles, and spherulite to mechan

ical and electrical stimuli has been studied by various

methods

.
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In contrast to rubbery and highly crystalline poly-

mers, the study of low crystalline polymers has been left

behind because of the inapplicability of those materials for

practical use, and because of their lack of clear-cut struc-

tures. But there are some interesting features in these

polymers. In low crystalline polymers, the strong inter-

actions between crystallites found in highly crystalline

28polymers may be reduced drastically. By changing the

crystallinity, the intensity of interactions between crys-

tallites may be changed, revealing the various aspects of

interactions in the polymer.

There are several ways to attain low crystallinity.

One of the most effective methods is to copolymerize the

different monomers randomly. Monomers which do not cocrys-

tallize must be used. The advantage of this method is that

one can attain very wide ranges of crystallinity. In addi-

tion to this, if one attains equilibrium, crystallinity may

not change drastically by orienting the amorphous chains

under deformation, because of the irregularities in the

polymer chain.

In ethylene copolymers it has long been recognized

that the introduction of propylene units decreases the crys-

tallinity and also some of the propylene units are accommo-

dated into crystalline phase, expanding the cell dimen-

sions?
9 ' 3 In this study ethylene-propylene copolymers are

chosen because of the reasons mentioned above, and because
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of their availability.

As has been pointed out in the work from this labo-

ratory, it is possible to study the response of crystal

lattice, fibriles and spherulites to static and dynamic

mechanical stimuli by birefringence, 31 ' 32 1 33 light scatter-

. 34 . 35,36,37ing and x-ray scattering » * measurements. For low

crystalline polymers used in this study, it may be difficult

to apply x-ray and light scattering techniques because of

the weak intensities of diffracted rays by their crystalline

portion. For low crystalline polymers it may be appropriate

to apply static and dynamic birefringence measurements to

study the behavior of crystalline and amorphous part.

As has been shown, the birefringence of a crystalline

polymer may be resolved into three parts
, amorphous and

38crystalline contributions and form birefringence. If the

structure and orientation of the crystalline phase are

known, it is possible to estimate the crystalline contribu-

tion. Combining the measurements of crystallinity and ori-

entation function, it is possible to calculate the amorphous

contribution. The amorphous contribution can be discussed

on the basis of well established statistical rubber elas-

ticity theory. 13,14 In addition to this, the light scat-

tering measurement give a clue of interactions between

crystalline and amorphous phases.
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II. EXPERIMENTAL

1. Materials

Two ethylene-propylene random copolymers of different

ethylene content were provided by Esso Research & Engineer-

ing Co. Those samples were laboratory preparations synthe-

sized in heptane (solution or slurry depending on solubil-

ity) at about 25°C in a continuous stirred tank reactor with

a Ziegler-Natta type homogeneous catalyst. For this

catalyst the reactivity ratio product was about 0.5. The

copolymers were heterogeneous in both composition and mo-

lecular weight. This in part was due to the presence of

more than one active catalyst species. However 98 % of the

polymer was within 10 weight percent ethylene of the stated

average value. These statements are based on column elution

fractionation data and on studies on the kinetics of the

polymerization processes. Some of the properties of those

samples, which were given together with the samples by the

company, are shown in Table 1.

The samples contain approximately 1 % calcium

stearate, 0.01 % catalyst residue, and 0.1 % inhibitor.

2. Sample Preparation

The copolymers were used without further purification.

Sheets of about 12.5 cm x 15.1 cm x (3-30)mil were molded

in a laboratory press. Samples were pre-heated for five
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minutes at 375°F (190°C) between metal plates with covers

of cellophane film prior to pressing under the force of

20,000 pounds for another 8 minutes. After the pressing,

the temperature of the sample was decreased rapidly to room

temperature in about 15-20 minutes by passing water through

the cooling system of the press. After the molding, the

sheets were melted at a temperature of 250°F (121°C), under

the pressing force of 20,000 pounds, and slowly cooled over

about 12 hours without using cooling water.

The heat treated sheets prepared by the above method

were then covered through the same procedure as that of

initial pressing. The samples were then left at room tem-

perature at least more than 3 days before using them.

3. Experimental Procedure

(1) Measurement of viscoelastic properties.

(i) Measurement procedure. The viscoelastic prop-

erties of the ethylene-propylene copolymers were measured

by the "Rheovibron" made by Toyo Measuring Instruments Co.,

Ltd. (Tokyo, Japan).

A specimen of dimensions of 18.5 mil x 157.5 mil x

1.02 inch was cut from the press sheet. The specimen was

attached to the clamps of the equipment. Zero adjustment

and calibration were done before attatching the sample.

The temperature was lowered to approximately -150°C,

using liquid nitrogen. Dried nitrogen gas was sent into



sample chamber during the experiment. The temperature was

then raised, first without heating. When the temperature

reached approximately -50°C, the heating chamber was heated

by electric power so that the temperature rise was approx-

imately 1.5°C/min. Measurement was continued to as high a

temperature as the equipment permitted.

One specimen was used to measure at each specific

frequency. Viscoelastic properties were measured at the

frequencies of 110 c/s, 35 c/s, llc/s and 3.5 c/s.

(ii) Data processing for viscoelastic measurement.

The absolute value of complex modulus was calculated ac-

cording to the following equation.

E = 2.0 x 10
9

x L / ( A x D
±

x S ) (1)

where

2E = the absolute value of complex modulus (dynes/cm )

2
S = cross section of the sample (cm )

A = constant given in Appendix I

= the value of dynamic force dial

L = the length of the sample (cm).

The dynamic storage modulus E ' and loss modulus E"

were given by the following equations.

E» = E cos 8 (2)

ft _ E sin S <3>
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where

£ = phase angle

A computer program was used to perform these calcula-

tions and is shown in Appendix II.

(2) Measurement of crystallinity.

(i) Procedure of crystallinity measurement. The

crystallinity of the sample was measured by transmission

x-ray diffraction method. The dynamic x-ray diffractometer

35was used to measure the diffracted intensities at various

Bragg angle ( 20 ) without adding strain to the sample. An

x-ray beam was passed normally through the sample. Inten-

sities of diffracted x-ray were measured every 1° of 20 in

the region of 5° to 15°. From 15°to 17°, they were meas-

ured at 0.5° intervals, and from 17° to 24°, at every 0.2°.

From 24° to 28°
, they were measured at every 0.5°, and

from 28° up to 32°, every 1° respectively.

After the scanning was over, the temperature was

raised. The diffracted intensities were measured again.

This was repeated until the melting occured. The intensi-

ties of diffracted x-rays at various Bragg angles were

corrected by the procedure described in II. 3. (2). (ii)

and plotted against the Bragg angle. The crystalline and

amorphous peakes were resolved by the method described in

II. 3. (2). (iii)

The areas of these peakes were measured by planimeter.
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(ii) Data processing for measurement of crystal-

Unity. The correction of x-ray intensity was done accord-

ing to the following equation.

I
corr

= C
pol

# K
abs*

( Z
exp " ^kg } " ^orapt (4)

where

I„. = corrected intensitycorr J

I
fiXp

= experimental intensity

Ijjj^g = background intensity

"^compt
= ComPton effect (incoherent) intensity

C
pol

= P01^^23^^ 011 correction factor

K
abs

= correct^on factor for sample absorption and

changes in scattering volume.

The Compton intensity is given by

I = C • F. . (5)
compt compt incoh

M 2;

F. . =y x. • (Z, - 5^f,, 2
) (6)

incoh / * i i ij

where

x^ = mole fraction of atom type i

= atomic number of atom type i

f - scattering factor for the j electron of the

i
th atom

C = experimentally determined constant
compt

N = number of types of atom.

40 _
In a previous report from this laboratory, ccompt
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was evaluated by assuming that at a sufficiently high 2 9
value (50° was used), the entire sample scattering intensity

consists of Compton scattering. However, Krimm and
41Tobolsky did not assume that the coherent intensity

vanishes at large 20 . Though the theoretical work done by
42A. H. Compton is in favor of Krimm and Tobolsky, the

method developed in our laboratory was chosen for its sim-

plicity in this work. Then the value of C
compt is given by

the following equation.

C . KSO")
C°mPt F

incoh<^>
where

1(50°) = intensity of diffracted x-rays at 50° of

Bragg angle

F
incoh (5 °0) = the value of F

incoh
at 50 ° of Bragg I

angle.

The intensity of incoherent scattering at various Bragg

angles is then calculated using Equation (5). The atomic

scattering factors used in equation are taken from Compton'

s

42book and are compiled as part of the computer program.

The polarization correction factor is given by the

following equation.

C ,=2/(1 + cos
2 20 ) (8)

pol

The absorption correction depends on the angle of

incidence of the x-ray beam relative to the polymer film
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surface. Gingrich » has shown that for the incident

beam normal to the film surface, K is given by the

following equation,

v Mtisec 2 9 - 1)

1 - exp^-yUt(sec 2© - 1
)J

where

JJ = linear absorption coefficient

t = the thickness of the sample film.

The linear absorption coefficient of the polymer is

given by the following equation.

(10)

where

f = density of the sample

y.= density of the i element

th
w^ = weight fraction of i element

JU^ = linear absorption coefficient of i
th

element.

A computer program for correction of diffracted

intensities of x-rays is shown in Appendix III. The calcu-

lated value was plotted against Bragg angle and is shown in

Figure 1 in schematic fashion.

(iii) Calculation of crystallinity. The crystalline

and the amorphous diffraction peaks were resolved accord-

39
ing to the method reported by Z. Wilchinsky. The proce-

dure for resolving the two contributions will be described

with reference to Figure 1. A straight base line ab is
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drawn from 20= 7° to 20= 32°. The area above this base

line may now be considered to consist of diffractions from

crystalline and amorphous parts. The height I of the amor-
a

phous halo above the base line is determined, and the points

c and d on the diffraction trace at (7/8)1 and (1/4)1 are
a a

marked to establish the line cd. The average value of

A
a'V A ' was found to be 0.119, the standard deviation being

390.006 in the work of Z. Wilchinsky on the same samples

used in this work. Thus, from measurement of A ' and A " +
a a

A ', one can determine A (=A ' + A ") and A (=A ' + A ").
c a a a c c c

The crystallinity was determined by an adaption of the

procedures reported by Weidinger4 ^ and Hermans.
4 ^ The

weight fraction X of the polymer in the crystalline phase

is thought to be proportional to and the fraction in

the amorphous phase to be proportional to A . These
a

relations may be written as follows.

X - K A (ID
c c c

and

xa " 1 " X
c * K

a
A
a

(12)

where K and K are the respective proportionality factors,
c a

By combining these equations, one may obtain the following

equation.

1 = K A + K Aac c a a
(13)
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Dividing Equation (11) by Equation (13) one obtains

X
c

= 1 / (l + K ( A
a

/ A
c )) (14)

where K ( = K
q / K

c
) is a constant independent of the in-

tensity scale factor used. The value of K for the polymers

used in this work was reported to be given by the following

39equation.

K = 0.55 A / ( A + A ) + 0.54 (15)C C cL

Substituting the values of A and A into Equation
C cL

(15), values of K were calculated. These values were again

substituted into Equation (14) to calculate crystallinity.

(3) Young's modulus, stress and strain optical coef-

ficients measurement.

(i) Procedure for Young's modulus, stress and strain

optical coefficients measurement. Stress and birefringence

were measured simultaneously using a table model Instron

tester equipped with a light source, polarizer and a Babinet

compensator. The set-up of the equipment is shown in

Figure 2 in schematic fashion. Measurements were made with

monochromatic light from a mercury lamp at a wavelength of

5461 A.

Specimens of the dimensions of 1.5 inch x 300 mil x

17 mil were cut from the press film. They were clamped to

the equipment. About 10 minutes after the sample was

clamped, the initial length between the clamps was meas-
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ured. After another 10 minutes ( so that the temperature

of the sample be the same to that of sample chamber,)

retardation of the sample was measured. The sample was

stretched stepwise, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08

and 0.1 inch. Measurements of retardation and stress at

each step was made 10 minutes after the stretching of the

sample. For measurement at lower temperature than room

temperature, nitrogen gas cooled by passing through liquid

nitrogen was introduced directly into the sample chamber.

(ii) Data processing for Young's modulus, stress and

strain optical coefficients measurements. The strain opti-

cal coefficient was calculated from the initial slope of the

reading of the compensator versus strain plot according to

the following equation.

S
r

= C
l
7lV fc (16)

where

S = strain optical coefficient

= waves per turn of Babinet compensator scale

'X. = wave length of the light

fj^ = initial slope of reading of Babinet compensator

versus strain plot.

The Young's modulus of the sample was calculated ac-

cording to the following equation.

E = 9.8 x 10 ( t x W ) (17)
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where

^ 2
= initial slope of total force versus strain

plot (kg)

W = width of the sample (cm).

The stress optical coefficient ( S
qc

) will be given

by the following equation.

S_ = S / E (18)oc r y \ io)

A computer program for calculating these coefficients

is shown in Appendix IV.

(4) Measurement of orientation function.

(i) Procedure of orientation function measurement.

Orientation functions were measured using the dynamic x-ray

35
diffractometer . A schematic diagram of the set-up is

shown in Figure 3. A specimen of the dimension of 17 mil x

2 cm x 2.5 in. was cut from the press film and was clamped

to the equipment. After setting the azimuthal angle to

zero, the intensity of diffracted x-rays at various Bragg

angles was measured. The position of the (110) diffraction

peak and the amorphous peak were determined by this Bragg

angle scanning. After setting the detector at the Bragg

angle of (110) diffraction peak, the intensity of diffrac-

ted x-rays at various azimuthal angles was measured. The

measurement of the intensity of diffracted rays was covered

out at every 5° of azimuthal angle from 0° to 90°.

Assuming that the maximum position of the amorphous
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halo is not affected by diffraction peaks due to the cry-

stalline part, and that the amorphous halo is symmetrical

with respect to the maximum position, the intensity of the

diffracted x-rays by the amorphous part at Bragg angles of

(110) diffraction peak was estimated.

The intensity at the Bragg angle which is smaller

than the maximum position of halo by the same amount of

Bragg angle difference between (110) diffraction peak and

that of amorphous halo, was measured.

For evaluation of Compton scattering intensity, the

diffracted intensity at 50° was measured, 40
setting the

azimuthal angle to zero. As it was not possible to set the

detector at 50° of Bragg angle, the x-ray source was tilted

16° from the normal of the surface of the sample and the

detector was set at 34° of Bragg angle.

The orientation function was measured over the strain

range from 0.0 to 1.0 and at temperatures from 25*C to

80° C for the higher crystalline 1248B sample and from 30°C

to 50P C for the lower crystalline 1193A sample.

As it was not possible to stretch the sample from

outside the sample chamber, the cover was removed from the

sample chamber when the specimen was subjected to stretch-

ing. Even though the thermometer reading did not change,

there may be some decrease of temperature during this

operation. About 10 minutes after putting the cover on to

the chamber, the measurement was began. The background was
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measured prior to the main experiment.

(ii) Data processing of orientation measurement.

The intensities of the diffracted x-rays were corrected by

the same data-processing method described in II. 3. (2).

(ii). It was reported48 that orientation function of the

(110) normal could be calculated by the following equation.

The coordinate system used is shown schematically in

Figure 4.

f
110

=
( 3 cos *no " 1 ) f 2 (19)

where f
11Q

is the orientation function of (110) normals.

COS ^110 in tne ecIuation could be expressed as follows.

cos yilQ = cos0
llo

sin^
1Q (20)

By combining Equations (19) and (20)
t
one could obtain the

following expression.

f
110

= ( 3 cos
20lio sin

2?r
i0

- 1 ) / 2 (21)

The value of si^Vi-io cou -1-^ obtained by the following

equation.

sin riio " Tip—. 7—7 (22)

where iflfo/Q) is the relative intensity of diffracted x-rays

of (110) plane at the azimuthal angle *^
l0

« Tne integrals

were evaluated using the Simpson's equation.
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Though one could not see the (110) normals within the

angular region of fi^ from the both poles in reciprocal

space, this method is accurate at the small strain range,

especially when the Bragg angle is small.

A computer program used to calculate the orientation

function of (110) normal according to the above mentioned

procedure is shown in Appendix V.

(5) Photographic measurement of small angle light

scattering. Light scattering patterns in the strain range

from 0 to 2.0 were measured at room temperature using the

photographic set-up developed in this laboratory. 49 The

schematic arrangement for this set-up is shown in Figure 5.

The laser provides a parallel monochromatic polarized light

beam directly, eliminating the need for auxilliary optical

elements except for a guard pinhole to exclude fluorescence

from the laser crystal. The beam is passed normally

through the sample. It then passes normally through an

analyzing Polaroid and finally on a photographic film.

Specimen of the dimensions of 1.2 in. x 150 mil x (3-4) mil

were used. The specimen was clamped to a stretcher and was

put on the stage of the equipment. The sample-to-film

distance was set to 21.4 cm so that one could obtain proper

size scattering patterns. Exposure times were 1.0 and 1/50

seconds for H
v

and V"
v

scattering patterns respectively.

The strain was increased stepwise from 0 to 2.0. After the

scattering pattern was taken at a strain of 2.0, the strain
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was decreased. Both samples recovered to approximately 1.5

times of their original length. Final pictures were taken

at this condition.

M To avoid contribution from scattering from surface

irregularities, films were held between microscope cover

glasses using silicone oil as an immersion fluid. The re-

fractive index of the silicone oil was matched to the re-

fractive index of the polymer by mixing different silicone

oils having different refractive indices. The Becke test

was used to determine whether the refractive index of the

silicone oil was matched or not.

(6) Estimation of form birefringence.

(i) Procedure for estimation of form birefringence.
Op

The swelling method established in this laboratory was

applied in this work. The polymers used were swollen so

rapidly that the method should be modified to apply to this

work. A specimen of the dimension of 1.5 in. x 150 mil x

15 mil was cut from the press film and was stretched about

50 %. It was then fastened to a sample holder shown in

Figure 6. Strain of the sample was determined using a

travelling microscope by measuring the distance between the

two marks put on the surface of the sample. The samples,

fastened to a holder, were immersed in a swelling solvent.

The solvents used in this work are shown in Table 2 to-

gether with the values of their refractive indices and

densities. Swollen samples were put in cells shown in
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Figure 6 so that the evaporation of the solvent could be

suppressed. The birefringence and the weight of the sample

were measured by a set-up shown in Figure 7 together with

that of the cell. The solvent was evaporated stepwise until

the original weight was gained.

(ii) Data processing for form birefringence esti-

mation. Degree of swelling was expressed by the volume

fraction of polymer in the swollen state. The volume frac-

tion of polymer was calculated according to the following

equation.

v
2

= ftW2 / W
2

+ f2 ( W
a

- W
0 )) (23)

where

V£ = volume fraction of polymer

= density of solvent

^2
= density of polymer

= weight of swollen sample and cell

W2 = weight of polymer

Wq = weight of dry sample and cell.

The birefringence of the sample was calculated by the

equation shown below.

*\

A= C
a
-~ ( R

a
- R

Q
- R

c ) (24)

where

A = birefringence of sample

= reading of Babinet compensator of a swollen
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sample in a cell

Rq = reading of Babinet compensator without sample

R
c

= birefringence of a cell expressed in the scale

of Babinet compensator.

The birefringence versus volume fraction of polymer

was plotted schematically as shown in Figure 8, From this

plot, the value of birefringence at 0.9 of volume fraction

of polymer was read and plotted against the strain of the

sample. As it was difficult to stretch the sample exactly

to a specific amount, it was stretched more or less than

the strain wanted. The birefringence at the strain was

interpolated by a straight line.

In this work, birefringence at 0.5 of strain was

determined.
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III. RESULTS AND DISCUSSION

1. Viscoelastic Properties

The dynamic storage modulus and dynamic loss modulus

of the 1248B and 1193A samples measured at various fre-

quencies are plotted against temperature in Figure 9 and

Figure 10 respectively.

The dynamic storage moduli of both samples decrease

gradually with increasing temperature in the low tempera-

ture region, especially at temperatures lower than the glass

transition temperature. They decrease appreciably in the X-

transition region, though the decrease is not so marked as

that in the
f
-transition region. At around -50° C, they de-

crease very sharply from the 10
10

dynes/cm2
to around 10

8

dynes/cm . After this transition, they continue to de-

crease with increasing temperature. Again in the ^-trans-

ition region, they decrease rapidly..

50Nielsen has shown that the dynamic storage modulus

is strongly dependent on the crystallinity of the material.

In some cases, one can estimate the crystallinity of a

51
polymer from its dynamic storage modulus. One could

deduce from the results mentioned above that the bigger

dynamic storage modulus of 1248B as compared with that of

1193A over the whole temperature range studied could be

attributable to higher crystallinity of 1248B.

The notable plateau region, in which the dynamic
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storage modulus is of the order of 10
7
dynes/cm 2

, lies from

-20°C to 50° C for sample 1248B. Though less marked, the

same plateau region is found in 1193A. The same flat por-

tion is also found in amorphous polymers. In such cases,

it is attributable to the entanglement of the amorphous

chains. The bigger the molecular weight of a polymer, the

more strongly the plateau persists. In highly crystalline

polymers this region is not observed because of the strong

constraints in the amorphous phase.

It is thought from those results that the crystal-

linity is small enough to release the constraint in the

amorphous phase but not small enough to permit molecules

flow in the copolymers used in this study. In other words,

one could assume that crystallites are acting as multi-

functional crosslinks. This means that the properties of

the copolymers may well be described, or analyzed by the

statistical theory, which is well established in the study

of rubber elasticity.

Though it is not clear in the plot of dynamic loss

modulus against temperature, three transitions were observed

for the copolymers. In the plots shown in Figure 11 and

Figure 12, one could clearly spot the three transitions

designated o{ » ^ and Y • A transition, designated by Boyer

as the ^ transition due to the motion in the amorphous

phase above the glass transition temperature, was not

observed in the polymers studied.
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The ^-transition is related to a relaxation process

in the crystalline phase of the polymers. This becomes

very clear when the strong influence of the degree of cry-

stallinity on the magnitude of this dispersion is con-

sidered. As is seen in Figure 11 and Figure 12, the mag-

nitude of tanS is decreased in the lower crystalline 1193a

sample as compared to the higher crystalline 1248B sample.

Also, the transition temperature of 1193A is appreciably

lower than that of 1248B. This result strongly suggests

that the mobility of polymer chains in the crystalline

phase of 1193A is bigger than in the crystalline phase of

1248B. Compared to the result obtained in polyethylene, 53

the ©(-transition temperatures of both samples are very low.

This extra mobility of the chains of ethylene-propylene

copolymers in the crystalline phase may be attributable

to defects or imperfection of the crystals. Actually it

was observed by x-ray diffraction measurement that the cry-

stalline cell dimensions of the copolymers were expanded.

The result will be discussed in the next section.

The jS-transition was found around -40° C in both poly-

mers. It has been attributed to the onset of movement of

molecular chains in the amorphous phase. This transition

54
is also found in low density polyethylene. In this case,

it is found that the transition is due to the branching

of the molecule.

It was noticed that the temperature of c(-transition
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found in linear polyethylene shifts toward the lower tem-

perature at which the f-transition occurs upon introduction

of side groups or bulky atoms. This has been noted in co-

polymers of ethylene-propylene55 and ethylene-vinylacetate56

copolymers and chlorinated polyethylenes

.

57
The results

obtained in methyl-branched polyethylene and ethylene-

propylene copolymers are summarized and are shown in Figure

13 together with the results obtained in this work. Intro-

duction of small amount of propylene or methyl-branch

decreases the transition temperature drastically. It seems

that the reduction of temperature levels-off at about 85 to

95 mole percent of propylene content. The results obtained

in this work agree very well with the values found by other

55 58 59
researchers. '

1 The same trend has also been found in

the variation of magnitude of ^-dispersion with propylene

content.

The ^-transition of the copolymer is located at a

temperature around -120° C. This transition has been

thought to be attributable to the onset of cooperative

motion of small linear segments containing at least 3 or 4

methylene groups. It was reported that in ethylene-

propylene copolymers, the magnitude of the dispersion de-

55
creases significantly with increasing propylene content.

This tendency was also found in this work, though it is not

so marked as found in the lower propylene content region.

55 58 59
As has been demonstrated by Flocke and others, ' the
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temperature at which /-transition occurs is not affected by

the propylene content.

The dynamic storage modulus, dynamic loss modulus and

tanS increase with increasing frequency. The temperature

at which transitions occur become higher with increasing

frequency. These phenomena are well understood by ap-

plying time-temperature superposition principle.

From the frequency dependence of transition tempera-

ture, the apparent activation energy of the process was

evaluated. The frequency dependence of the temperature

at which dynamic loss modulus maxima locate is tabulated

and is shown in Table 3.

The reciprocals of the temperature (°K) are plotted

against the logarithm of frequencies. The results are shown

in Figure 14 and Figure 15. For both £ and f-transition,

straight lines are obtained in both copolymers. The acti-

vation energy was calculated according to the following

equation.

AE = - R / ? 3
(25)

where AE is the activation energy, R is gas constant and

is the slope of the straight line in Figure 14 and 15. The

values obtained are shown in Table 3. The activation ener-

gies of the f-transition in 1193A and 1248B are the same

within experimental error. The same conclusion is obtained

for /-transitions of both copolymers.



2. Crystallinities of the Copolymers

The corrected intensities of diffracted x-rays of

1248B and 1193A at various Bragg angles are shown in Figure

16 and Figure 17 respectively. Two diffraction peaks ob-

served in this Bragg angle region agree very well with the

amorphous and (110) diffraction peaks of polyethylene. In

polypropylene, strong diffraction peaks are found at the

Bragg angle of 12.9°, 15.8° and 17. 3°, 17
which are located I

very differently from that of polyethylene. Those diffrac-

tion peaks have been indexed to (110), (040) and (130)

respectively. None of those diffraction peaks attributable

to polypropylene crystallites was observed. This means that

the crystalline phase of the copolymers consists of poly-

ethylene chains rather than those of polypropylene. This

result could be easily understood on the basis of the

monomer reactivity ratio of the catalyst. Usually the

Zieglar-Natta type catalysts have larger reactivity to

ethylene than to propylene leading to longer and more cry-

stallizable ethylene sequences.

The intensity of the (110) diffraction decreases with

increasing temperature. On the other hand the amorphous

halo increases its intensity with increasing temperature.

Another interesting point is that the Bragg angles at

which amorphous and (110) diffraction intensity maxima

occur decrease with increasing temperature. The behavior of
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the diffraction peaks could be well explained by the thermal

expansions of crystalline lattice and amorphous volume.

The locations of the diffraction peak maxima for amorphous

halo and (110) plane were measured and are shown in Table

4. (110) spacings at various temperature were calculated

using the Bragg *s law shown below.

d = V 2 sinO (26)

The calculated values of the (110) spacings were also shown

in Table 4. In Figure 18, (110) spacings of both samples

obtained are plotted against temperature, together with the

results for polyethylene obtained by E. A. Cole and D. R.

u i 60
Holmes.

The expansion coefficient of the (110) spacings of co-

polymers are substantially bigger than that of Marlex as

reported by Cole et al.^ As has been suggested by him the

expansion coefficient becomes bigger with increasing methyl

side group concentration. The bigger expansion coefficients

in the copolymer may be due to the imperfections of cry-

stallites.

The crystallinities of the copolymers at various tem-

perature are shown in Figure 19. The values obtained by

Z. Wilchinsky
39

are also shown in the same figure. The H
crystallinities of the copolymers at room temperature

obtained in this work agree very well with the values re-

ported by Wilchinsky.
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The crystallinities of both polymers decrease with

increasing temperature. The higher crystalline 1248B melts

approximately at 105°C. The lower crystalline 1193a melts

at 76°C, about 30°C lower than 1248B. Compared to homo-

polymers of ethylene, the melting point of the copolymers

is lower. Crystallinities of the copolymers are also much

lower than that of homopolymers. Melting of copolymers

occurs in very wide temperature range compared to homo-

polymers .

These peculiar behavior of copolymers was studied

extensively in theoretical and experimental field. Assum-

ing that one of the comonomer can not be accommodated into

6

1

crystalline phase, Flory developed a theory concerning

the melting point and crystallinity depression in copoly-

mers.

The copolymer was thought to contain crystallites of

varing lengths expressed in terms of the number, of re-

peating unit A in a single chain running from one end of the

crystallite to the other. Longitudinal growth of estab-

lished crystallites will be restricted by the occurence of

B units in some of the chains where they protrude from the

ends of the crystallites. Lateral growth, however will be

restricted only by the availability of seguencies of A units

in the amorphous region. It was also assumed that acqui-

sition of an additional chain may be initiated at any site

on the lateral surface of a crystallite. Then at equilibri-
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um with the crystallites of length the "concentration"

of acceptable A units in the amorphous phase p| was calcu-

lated. From the value of P® one may then caluculate the

residual concentration w| of sequence of length £ in the

melt. The results are as follows. 61

w* =$ D
~ 1 {l - expi-e^) 2

expC-5^) (27)

where

AH
ft, ( )( 1/T-l/T ) (28)

J* r\ IIIR m

and

D = exp ( -2 0* / R T ) (29)

where AH is the heat of fusion per unit, T° is theu m

melting point of the pure polymer, o- is the surface free

energy per unit at the end of the crystallites. The resid-

ual concentration w2 of sequences of length ^ in the co-

polymer prior to development of crystalline region can

be evaluated from the composition of the copolymer.

In case of a copolymer which can be characterized by

a unique probability p that an A unit is succeeded by an-

other A unit, this probability being independent of the

number of A f s preceding the given A unit in the sequence,

Wj could be expressed by the following equation.

w° = 1 - p )

2
p< (30)

5 P
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For a random copolymer the sequence propagation probability

p is equal to mole fraction of A unit ( X. ) , for a block

copolymer p > XA ; and for a copolymer in which alteration

of units is favored p < X .^ A

Except for copolymers with high alternation, d"
1
will

exceed (X
A / P), hence if e"^< p the equilibrium distri-

bution lies above w| for low 5 and below it for large $.

The intersection occurs at

f
D X

A 1 - p | 1
5 = - {in (

—-£) + 2 In ( h-)
1 P

1 - e"*' J(ft + In P )

(31)

The necessary and sufficient condition for crystal-

lization for one or more values of £ can be given as

follows

.

X. * 1

( ) p* > exp ( -0/5 ) (32)

P D

In the ordinary case for which ( XA / p ) ^ 1 / D, fulfill

ment of the condition requires that

(33)
m

where

8, = - In pIm
(34)

This relation defines the melting point of T^ given by
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1 ' Tm - 1 / T
m = -(RMH

u ) In p (35 )

If crystallization is conducted by gradual cooling of

the melt, the increment of crystallinity owing to a small

decrease in temperature must be derived principally from

sequences with lengths less than that for which w^ is

already very small, but greater than 5*. Hence, the se-

quences of length j will on the average enter sequences of

length 3 such that ( j - 3 ) / J is small compared to unity.

From these considerations a useful approximation to the

degree of crystallinity would be obtained by

c °° 0w° = H ( w
< - w

$ ) (36)

Substitution from Equation (30) for w^ and from (27)

for Wj gives the final result shown below.

w
c

= (XA/p)(l-p)
2
p* £p/(l-p) 2

- e^'/U-e"*' )

2

+ 5*{i/<i-p) - i/<w*' )}) (37)

From consideration of the nature of the curves de-

picted by Equation (37), the melting depression observed

experimentally is expected to be appreciably greater than

that calculated according to the equation. Its apparent

value will depend on the sensitivity of the method used for

determining the disappearance of crystallinity even under

ideal conditions of crystallization equilibrium. Some of
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the experimental results on ethylene-propylene copolymers

reported from other laboratory, and the results obtained in

this work are shown in Figure 20 and are compared with the

theoretical value obtained by Equation (35). A value of

^H
u

of 960 cal /mole and a value of T* of 137.5°C reported

6 2by Quinn and Mandelkern were used for the calculation.

The value of p was assumed to be equal to that of the mole

fraction of ethylene. The melting points of 1248B and 1193A

are much higher than those expected from the theory and the
oq £

o

experimental results reported by other workers. ' The

29melting points reported by Swan and by Richardson and

6 3Flory are lower than the values obtained by theory but the

deviation is not great in the high ethylene content region.

However, the difference between the theory and the experi-

mental results becomes substantial in the lower ethylene

61
content region. As was pointed out by Flory part of

deviation of the theory may be attributable to the diffi-

culty to find the true melting point by experiment because

of the peculiar melting behavior of copolymers.

The observed exceptionally high melting points of

1193A and 1248B are thought to attributable to the inhomo-

geneity of compositions of the polymer chains. That is, the

polymers are not completely random but rather have long

ethylene sequencies within a molecule. This reasoning is

further substantiated by comparing the crystallinities of

39
1193A and 1248B with those obtained by other researchers."
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64,65
In Figure 21, crystallinities of ethylene-propylene

copolymers at room temperature are plotted against their

ethylene contents. Some of the copolymers whose ethylene

contents are about 70 mole percent, among which are 1193A

and 1248B, have higher crystallinities than those expected

from the extrapolation from the values observed in the

region of ethylene content of 85 mole percent to 100 mole

percent. These results clearly suggest that the composi-

tions of 1193A and 1248B are not homogeneous.

Another complication in applying Flory's theory to the

ethylene-propylene copolymer is that the assumption of unit

B's not being incorporated into the crystalline phase is

not valid in this case. For ethylene copolymers, it has

been shown that propylene is less effective in disrupting

crystallinity than the higher normal o(-olefins such as

butene, pentene or hexene.
65

In addition to this, it is

known that branched structure of polyethylene expands the

unit cell. It was revealed that small pendent groups, such

as the methyl groups can to a large extent be accommodated

66
in the expanded crystalline lattice.

The newly developed method of fuming nitric acid

treatment was applied extensively to ethylene-propylene

copolymers.
67" 71 Keller

68 "" 70 reported that about 75 % of

the propylene unit was lost by prolonged treatment with

nitric acid. His results show that about 25 % of the pro-

pylene units are in the crystalline core, which is not ac-
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cessible to nitric acid. Most of the propylene units were

shown to be in the amorphous phase and in some defects in

crystalline lattice. As was pointed out by Shida, 71
the

latter were thought to be in large open defects consisting

of highly disordered material or vacancies which might

extend to the crystalline surface.

In Figure 22, the (110) spacing reported by Swan29 is

shown together with the results obtained in this work.

29Swan also showed that the expansion of lattice is most

pronounced in the a spacing, b and c spacing do not change

very much.

The expansion of crystalline lattice affects the mag-

nitude of the heat of fusion. It is expected that the heat

of fusion of ethylene-propylene copolymer is very differ-

ent from that of homopolymer. From Equation (35), one can

derive the following equation.

T /T* * AH /(AH -RT* In p) (38)mm u u m

Assuming T* and p to be constant, one may plot T
m/

T^ as a

function of AH
u

« The result is shown in Figure 23 in sche-

matic fashion. As could be seen in this result, reduction

in AH
y

leads to an increasing depression of the melting

point per unit variation in p. This could also partly ac-

count for the deviation of Flory's theory from experiment.

Because of the complexity, no attempt was made to fit

the Equation (37) with experiment. This difficulty might
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u

u

be greatly reduced if one could know the value of p or AH .

It may be difficult to determine the value of p by IR-

method developed by Bucci, 72
because of the complication

in resolution of absorption bands. The estimation of ah

from the variation of melting temperature on swelling ratio

would be a convenient method for those polymers. This ex-

periment was undertaken but because of some minor diffi-

culties in determining the melting point of the polymers

and mainly because of the lack of time to solve the

problem, it was left behind.

3. Superstructures of the Copolymers

Small angle light scattering patterns of pressed

sheet of 1193A and 1248B are shown in Figure 24. The H
v

scattering patterns of both samples have 4 scattering lobes

orienting 45° at the analyzer and polarizer. V scattering

patterns are almost spherically symmetrical for both sam-

ples. The intensity of V~
v

scattering is approximately 50

times as strong as that of H
v

scattering.

The intensity of scattered light is given by the fol-

73
lowing equation.

I =£2La.. a, cos [ k ( r . ,• s )J
I j J S mil ~ '

(39)
I j

where A
i

and A^ are the amplitudes of light scattered from

the i
th

and j
th

volume elements, k = 27t/A , 9^ is the

wavelength of light in the medium, r . . = r . - r . and is the
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vector separation of the i
th

and j
th

volume elements,

* =
%0 " Sl»

wnere s
Q

is a unit vector along the incident

light ray and s
1

is a unit vector along the scattered ray.

If it is assumed that the anisotropic volume elements have

cylindrical symmetry and the volume element may fluctuate

in the values of the average polarizability, in the aniso-

tropy and in the orientation of the principal axis without

any correlation between them, one might define correlation

functions for fluctuations in average polarizability and in

the magnitude of the anisotropy as follows.

/(r) =
<7i 'l > r

(40)

<7 > av

fir) = * 1 I' (41)T <A >av

where ^. is the fluctuations in average polarizability in

volume element i, and the &^ is the fluctuations in the

thmagnitude of the anisotropy in the i volume element,

(^fjjtyj) r
anc* ^r

represent averages over all pairs of

volume elements at constant scalar separation r, and <>? >
* av

2
and <A ^ is the mean square fluctuations in average

polarizability and the magnitude of anisotropy respectively

th
If the orientation of the principal axis of the i

volume element is not correlated with the value of the

vector r. . and cos
2
©. ., where Q. . is the angle between the

4- V» 4- Vi

principal axes of i and j volume elements, depends only
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°n
lj^JLJI *

one mi9ht introduce an orientation correlation

function defined by

f(r) =<( 3 cos 2
0.. - 1 ) / 2 >r (42)

where the average is taken over all pairs of volume ele-

ments separated by a constant scalar distance r. In case

the fluctuation in magnitude of anisotropy is caused only

by the fluctuations in average polarizability, the inten-

sities of H
v

and V
v scattering could be expressed as fol-

lows .

Oft

Hv -
15 _ „ ,£(r) W(r) ^£ r

2
dr (43)

4 C2
45 &

2

Jf(r) ^t(r) r
2 drj (44)

where

2

yU(r) = 1 + -<||^T(r(r) (45)

and c is a constant, £ ^ s the average anisotropy, and h is

The equations obtained show that the V component

consists of contributions from density fluctuations and

and fluctuations of orientation of anisotropic entities

and of the magnitude of anisotropy of them.
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on the other hand, the H
y component is attributable

to scattering by anisotropic entities.

From these conclusions one could notice that the V
v

scattering for the copolymers is mainly attributable to

density fluctuations. It seems reasonable because the cry-

stallinities of both samples are so small that one could

not expect much contribution from anisotropic crystallites.

The above theory leads to an H
y

pattern without

azimuthal angle dependence. Whereas the observed patterns

depend on azimuthal angle, suggesting that orientation

fluctuations are non-random.

Another important feature in the light scattering

pattern shown in Figure 24 is that the scattering lobes of

Hv patterns do not have any maximum in them. That is, the

intensity along the scattering lobe decreases with in-

creasing scattering angle. It has been shown that these

features of light scattering pattern could arise from ani-

sotropic entities having rod-like or disk-like superstruc-

tures.
74

In the study of orientation functions of the co-

polymers described in the next section, it was found that

the (110) normals tend to orient perpendicularly to the

stretching direction with increasing strain. This means

that c axis, the principal axis of anisotropy, orients

parallel to the stretching direction. This result favors

the rod-like structures rather than the disk-like struc-

tures .
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Orientation of scattering lobes of the H
v patterns

to 45° to polarizer and analyzer direction shows that the

principal axis of anisotropy lies parallel or perpendicular

to the axis of the rod. Prom the above mentioned c axis

orientation, one could conclude that the principal axis of

anisotropy lies parallel to the rod axis.

4. Orientation of Crystallites

under Deformation

(1) X-ray diffraction measurement of orientation

functions at various temperature. As described in the

previous discussion, the crystallites in the copolymers

used in this work have rod-like structure. These crystal-

lites are embedded in a large amount of amorphous matrix

which is rubbery at temperatures higher than that of the

^-transition. They are thought to be acting as multi-

functional crosslinks. As has been pointed out by Kratky,

7S 7fi
9 the crystallites in those structures may well be de-

scribed by his "floating rod" model. In the case of uni-

axial deformation, one could assume cylindrically symmetric

distribution function with respect to stretching direction.

If the deformation occurs affinely without changing the

volume, one could easily calculate the distribution func-

tion at certain extension ratio X- If tne crystallites

orient randomly at 1* and tne total number of crystal-

lites is N, then the number of crystallites orienting to the
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direction of t and <{> as shown in Figure 25, at the extension

ratio of X, will be given by the following equation.

Nrtrt)d|dt =
(46)

(X 3/2
cos

2
y + >?

/2
sin

2n 3/2

The average value of cos
2

will be given by the following

equation.

n/(J Jo
^)cos7 df d<j>

tt'< cos y> = \^^tt (47)

N(T,4>) dV d<p

0

Then the orientation function will be given by the following

equation.

f = ( S^osfy - 1 ) / 2

1, v3 tan"yX -l— ( 1

2(X
3
-1)

The orientation functions of (110) normals obtained at

various temperature in the copolymers are shown in Figure 26

and Figure 27. The orientation functions of (110) normals

of both samples decrease almost linearly with increasing

strain. As one could see in Figure 16 and Figure 17, it was

not possible to locate (200) diffraction peak in the Bragg

angle scanning of both samples.

Because of this unfavourable situation, a and b axes orient-

ation functions could not be determined by the x-ray dif-
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fraction method. Since the crystallites in these polymers

have rod-like superstructure and are embedded in large

amounts of amorphous matrix, it is thought possible to as-

sume that the orientation functions of a and b axes are the

same to that of (110) normal. In orthorhombic crystal

systems like polyethylene the following equation holds. 48

f
a

+ f
b

+ f
c

= 0 <49)

where f
& , f. and f are the orientation functions of a, b

and c axes. If f = f , one obtains the following result:

f
a ' fb 2" f

c <50 >

The c axis orientation function is given by Equation (48).

By substituting Equation (48) into Equation (50), one may

calculate the a axis orientation function, which is thought

to be equal to the (110) normal orientation function. The

calculated values are shown in Figure 26 and Figure 27 and

are smaller than experimentally obtained value. This means

that the crystallites do not orient as much as expected

from the theory. The failure of the theory to predict the

orientation behavior of the crystallites may be partly due

to the fact that in case of these polymers, there may be

many imperfect crosslinks which allow polymer chains to be

free to move. These might prevent crystallites from ori-

enting affinely.
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The initial slopes of the orientation functions of the

(110) normals were measured from Figure 26 and Figure 27

and are shown in Figure 28. The slopes of both samples do

not change very much with temperature in the low temperature

region. At higher temperatures, especially near melting

temperature, the diffracted x-ray intensity is weak, hence

the larger error is expected in this region than in lower

temperature region. Even though, it seems that the initial

slope of orientation function at higher temperature de-

creases.

In polyethylene, strong dependency of magnitude of

orientation function on temperature is observed even at

28 77lower temperatures. • In polyethylene, the c axis ori-

entation function at a given elongation is greater for the

sample stretched at a higher temperature than at a lower

temperature. It was revealed that this behavior in poly-

ethylene is the clear manifestation of strong interactions

between crystallites. That is, the increased temperature

accelerates the movement of crystallites by releasing the

constraint acting on them. The marked contrast between the

copolymers and the polyethylene in orientational behavior

suggests that in copolymers, the interactions between cry-

stallites are minimized because of the large amount of

amorphous phase. The orientation functions of the copoly-

mers are decreased because the destruction of crystallites

acting as crosslinks allows the molecules between crystal-
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lites to flow. One could confirm that this flow process is

occurring at the temperatures at which orientation func-

tion decreases, by looking at the viscoelastic properties

of the copolymers shown in Figure 9 and Figure 10.

(2) Orientational behavior in small angle light scat-

tering. The small angle light scattering patterns of the

copolymers observed at various strains are shown in Figure

29, 30, 31 and 32. The variation of the light scattering

patterns with increasing strain are almost the same for

1193A and 1248B.

Hv scattering patterns of these copolymers have 4

scattering lobes orienting 45° to the analyzer and polar-

izer directions. Upon elongation of the sample, the 4

scattering lobes move toward the horizontal direction.

At a strain of about 20 %, there develop 4 new scat-

tering lobes. These new scattering lobes lie near the me-

ridian. With increasing strain they also move toward hori-

zontal direction. The intensity of the new scattering lobes

increases with increasing strain. If the sample is relaxed,

the directions of the 8 scattering lobes return toward the

original directions. The intensity of newly developed lobes

decreases with decreasing strain.

H
v

scattering patterns having 8 lobes were observed in

stretched polyethylene films heat treated under constraint.

7ft
In this case, 4 lobes developing during heat treating,

were found to be due to the new crystallites grown, ori-
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enting differently from the original crystallites. This

conclusion was further confirmed by x-ray diffraction tech-

nique. In the case of the copolymers, the amorphous phase

consists of uncrystallizable chains so that one could not

expect further crystallization under the strains applied in

this work. As one could see in the x-ray scattering pat-

terns shown in Figure 33 and Figure 34, no crystallites

orienting differently from the original were found in these

polymers under various strains.

Other cases one observes 8 lobed H
v scattering pat-

terns are with solvent-cast films of styrene-butadiene-

79styrene block copolymers. No crystallites were observed

in the sample. All the scattering lobes were thought to be

due to strained regions about the hard domains of styrene

in this case.

This aspect of light scattering patterns will be fur-

ther discussed in the later section.

The orientation of scattering lobes in H pattern due

to crystallites may be well predicted by the theory devel-

74
oped by Stein, Erhardt, Aartsen, Clough and Rhodes.

The amplitude of scattering from a rod of length L

and infinitesimal thickness may be expressed as follows.

r* e %m « \ t sin(kaL/2)
52,*^ (kaL/2)

(51)

where C is a constant, k is , X is wave length in the
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medium, M is the induced dipole moment, 0 is a unit vector

in the polarization and a is given as follows.

a = ( 1-cosB )sinfcos<J> - sin/ sin<£ sin0 sinyU

- cosV sin0 cosJJL (52)

where / and <^ are the angular coordinates of the rod axis

and Q and jX are the scattering angles as shown in Figure

25.

For anisotropic rods with the optic axis lying along

the rod axis is given as follows.

S( £t) r
M = t?

~ + 0^ £ (53)

where r is a vector along the rod to the scattering element

and expressed as follows.

£ = r ( .i sinY cos<|) + j sinV sin<j> + k cos^ )

(54)

where i, i and k are the unit vectors along x, y and z

directions. S is tne anisotropy given by

S - - <<2 (55)

where and ^ are the polarizabilities parallel and per

pendicular to the rod.

For a distribution of rods where N(f $)df d<J> in the

angular interval djf and d^ with no phase coherence among

them, the total scattered intensities will be given by the
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following equation.

I = KL 2
Jj(M.O?N(y,<J>)

sin
2
(kaL/2)

d* d+2 (56)
o~o (kaL/2)'

where K is a constant.

In case of V scattering E and 0 will be qiven as

follows

.

E = E k (57)

£ = ' (58)

By substituting Equations (57), (58) into (53), one could

obtain M. The value of ( M«0 ) for V
v

scattering will then

be given by

( 12*2 W E ( Scos
2
^ + CL, ) (59)

For H
v scattering

0 = 1 (60)

so that the ( M«0 ) In this case is given by

( M»0 ) Hv
= $E sin)f cos/ (61)

The intensities of H and V scattering are then found
v v 3

by substituting Equations (61) and (59) into Equation (56)

respectively.

If the deformation is well described by affine trans-

formation, one could determine the distribution function of
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rod. The distribution function would be given by Equation

(46) as discussed previously. By substituting Equation

(46) into Equation (56) one could calculate the H and Vv v
scattering patterns. The resulting equations are not

analytically integrable but could be evaluated numerically

by computer. The computation was done assuming that

2 2
C L /47L = 1, E = 1, £= 4, 6t

2
= 1 and kL/2 = 20. The com-

puter program for the calculation is given in Appendix VI.

The calculated results are shown in Figure 35 and Figure 36.

General features of scattering patterns obtained by

theory agree rather well with that obtained by experiment.

However, they are not successful to predict the direction

of scattering lobes in H
v

pattern. As shown in Figure 37,

the angles at which scattering lobes orient with respect to

the stretching direction do not agree very well. This may

partly be attributable to the values of constants used in

the calculation.

The V"
v

scattering patterns of unstretched specimen

has almost spherically symmetric shape. With increasing

elongation, the shape changes to elliptical whose major

axis lies perpendicular to the stretching direction. At

the same time, new scattering lobes parallel to the

stretching direction appear. This new lobes increase their

intensity with increasing elongation and decrease with

decreasing elongation. One might attribute these scattering

lobes to the anisotropy caused by strain field in the amor-
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phous phase. This change of V
v

light scattering patterns

could be explained as follows. Because of the strong scat-

tering from density fluctuations, the V
y patterns of un-

stretched samples were almost spherical, but with stretch-

ing, crystallites are oriented to the direction of stretch-

ing. That enhanced the scattering to the horizontal direc-

tions. General features of V
v scattering calculated by the

theory agree very well with the observed patterns at bigger

extension ratio.

5. The Emerging Scattering Lobes

under Deformation

As has been described briefly in the previous section,

the scattering patterns emerging under deformation are

thought to be attributable to anisotropy caused by strain

field in the amorphous phase around the crystallites. The

origin of these light scattering patterns has been studied

80
using polycarbonate film containing voids, swollen filled

8*1 82 83
rubber, and sulphur-cured 1 ,4-cis-polybutadiene. 1 It

was very firmly confirmed that the anisotropy around the

voids or fillers are the scatterer in these polymers.

In Figure 38 and Figure 39, the light scattering pat-

terns of 1248B at various strain and the micrographs of the

polymer at the same strain and approximately the same place

where light scattering was observed are shown. The micro-

graphs are taken with crossed polaroids and with the
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stretching direction being oriented parallel to the polar-

izer direction.

In the smaller strain range than 20 %, one could see

some crystallites or bright part in the sample. But at

bigger strain than that, there appear streaks on the sur-

face. These streaks are predominant structures especially

at high elongations. At the same time, new scattering

lobes emerge in the H
v

and V
y patterns. As is seen in the

micrographs of elongated samples, these streaks are brighter

than the surroundings. This means that the optic axis of

this streaking structure lies in a somewhat different di-

rection from that of the analyzer and polarizer direction.

The angle that these streaks make with the stretching

direction decreases with increasing elongation, that is, the

streaks orient more toward the stretching direction with

increasing elongation. On the other hand, the light scat-

tering lobes in H
v

pattern orient more toward the horizontal

direction. The angles which the streaks and a H
v

scatter-

ing lobe make with stretching direction are measured and

are shown in Table 5.

The results at various strains show an interesting

feature of the light scattering. As could be seen in Table

5, the two angles make 90* when they are added. This result

could be explained very well as follows:

Suppose the optic axis of these streaks is parallel

to the direction in which they orient. Assume that these
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streaks are on the plane of the film. Then the intensities

of the H
v and V

v components of the scattering will be given

as follows.

a given by Equation (52) will reduce to the following

equation in this case.

a = -sinScos( f - fl ) (62)

N(/,<J>) in Equation (56) will be N, which is the number of

the streaks orienting to the direction when "/ is equal to

the angle CO, which they make with the stretching direction,

otherwise it may be zero. Then Equation (56) becomes

sin
c (q«o)

)

(g(w))
2

+ sin 2
(q(-*Q)

(g(-tf))
2

(63)

I,. = NkL2
( M-0 )

2

Vv ~ ~ Vv

sin (g(w)

)

sin
2 (g(-w)

)

+

(64)

where

g(«) =
2

sin0 cos(<0 -JU ) (65)

( M.O )„ and ( M-0 ) will be given by

( M-0 ) = E( Scos oo + o(
2

)

( M-0 )„ = sin(2(0 )— Hv 2

(66)

(67)
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As one could expect from the Equation (63), the ap-

proximate value of angle fA^ at which H scattering lobes

lie is given by the following equation.

<*-Mh =±9°° °r U>+/*H
=±90° (68)

The increase of intensity of light scattered by these

streaks with increasing strain can be explained by the

increase of the value of % of the structure with increasing

strain. The cause of the structure of these streaks is not

certain at this stage of experiment, but it might be due to

the shearing stress within the sample. Or it might be at-

tributable to the stress concentration around the both ends

of rod-like crystallites. The general feature of the exper-

imental H
v

scattering pattern agrees very well with that of

the calculation. On the other hand, the V
v

scattering due

to the streaks dose not agree very well. This disagreement

may be partly attributable to the fact that the scattering

by density fluctuations could influence strongly for the

scattering at the meridian. The possibility was examined

by comparing H
h

and V
v

scattering patterns. In Figure 41,

the H, , H , V and V, scattering patterns of 1248B elon-
h J v' v h

gated 78.6 % are shown. The H
y

and V
h

patterns are almost

the same but the H
h

and Vv
patterns differ considerably.

In R pattern one no longer observes broad scattering lobes
h

in the meridian. Instead, scattering lobes orienting to the

same direction as that of newly emerging lobes in the H
y
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pattern are observed. These are the results expected from

the theory.

The two strong scattering lobes in the horizontal

direction in the H
h
pattern are attributable to density

fluctuations

.

The results shown in Figure 41 further substantiate

that the optic axis of the streaks found is parallel to

their long axis.

6. Young's Modulus, Strain and Stress

Optical Coefficients

(1) Young's modulus of the copolymers, in non-

crosslinked amorphous polymers of low molecular weight,

flow will occur after relatively short time. However in

crystalline polymers, the crystalline regions or entangle-

ments will restrict the flow process. As has been men-

tioned before, the copolymers used in this work show a

rubbery region, especially in higher crystalline 1248B. In

this region, it would be a good approximation to assume

that the crystallites are acting as crosslinking points.

If this is the case, one may apply the statistical rubber

elasticity theory to the copolymers and could predict the

mechanical and rheo-optical properties of these ethylene-

propylene copolymers.

In Figure 42, the Young's moduli of both samples of

the copolymers are seen to decrease with increasing tern-
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perature. In the ^-transition region, the moduli decrease

abruptly, suggesting that not only the amorphous phase but

also the crystalline phase contribute to moduli. It implies

that the assumptions made here are not strictly true. In

spite of these difficulties, Bueche84 has presented a theo-

retical attempt to describe the mechanical properties on

these bases.

He assumed that the structure of the polymers to be

as follows: The crystallites are rectangular parallele-

pipeds of dimensions o(x*( x\ . The length \ is taken to be

parallel to the chain axis in the crystal. All chains are

assumed to enter and leave the crystal through the ends,

2each of area c( . After leaving the crystal, the chains, if

long enough, will enter a new crystal whose end area is a

distance b from the previous crystallite. On the average,

p
each chain emerging from the crystal will occupy an area CT

of the end face. The number of effective network chains

coming from this single face of the crystal is then given

2 2
by (d /(j )p, where p is the probability that the emergent

chain will continue on into another crystallite.

Since the force constant for each chain is given as

? 2
3kT/R , from statistical theory, where R is the mean

S 5

square length of the chain between crystals and is equal to

3b
2

in this case, k is Boltzmann constant, the Young's

modulus will be given as follows.
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= pkT( b +-\ )/<T
2
b

2
(69)

The method used by Bueche to evaluate the necessary

parameters for the calculation could not be applied to the

copolymers used in this study because of their low crystal-

linities. However if one knows the values of these para-

meters by other methods, Bueche 's theory may be very easy

to apply.

Another approach was made by Nielsen. He assumed

that crystallites act both as crosslinks and as a rigid

filler. According to the statistical theory, the shear

modulus G is given by the equation.

G = JRT / M
c (70)

where J is the density of the polymer, R is the gas con-

stant, and M is the number-average molecular weight be-
c

tween crosslinks • In the case of crystalline polymers one

may assume that M is the number-average molecular weight
c

of an amorphous sequence.

The effect of crystallites as fillers was estimated

86 87
by the theory developed by Guth and Smallwood. It is

expressed as follows.

F(4>) = 1 + 2.5<J>c
+ 14.1

<J>c
2

(71)

where & is the volume fraction of crystallites. Then the
Tc

shear modulus of a crystalline polymer becomes
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G = JRT.F( <|> ) / M (72)

He estimated the value of M of copolymeric rubber as

follows. If the crystallizable unit A and non-crystal-

lizable unit B are present in a chain randomly, the fraction,

n
A
(m), of material A contained in sequences m units long is

. . 88given by

nA(m) = ( i - x
A ) x/"1

(73)

where X
A

is the mole fraction of unit A. The weight frac-

tion of material A contained in sequences exactly m units

long is given by

wA
(m) = m ( 1 - X

A ? x/1
" 1

(74)

Long sequences of A units crystallize at higher temperatures

than shorter sequences of A units. Assuming that at a given

temperature all but only A sequences of length m^ units or

longer are contained in crystallites, the weight fraction

of material A in crystallites is calculated. The resulting

equation is

f
A
(m

Q
) = m

Q
X/O"1 - ( m

Q
- 1 ) X

A
m
0 (75)

If W. is the weight fraction of component A in the co-

polymer, the crystallinity is given by

wC = W. f a (mn ) (76)
A A 0
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The amorphous phase consists of all of the sequences

of B units together with those sequences of A units that are

less than m
0

long. It is thought that the relative number

of amorphous sequences is equal to that of crystalline

sequence. Then the relative number of network chain is

given by Equation (77).

where X_, is the mole fraction of unit B.o

The number average molecular weight of an amorphous

chain is then given by

M = M m
A - mn - 2—^-1 (78)

c A lx
A
moa-xA )

0
xA
m
o ;

where M„ and M„ are the molecular weight of unit A and unit
A B

B respectively*

The volume fraction of crystallites will be given by

<|>c
- i / { 1 + (?c/?a > r- } (79)

where J and f are the densities of crystalline and amor-

phous phase.

If the units are not distributed randomly the proba-

bilities p. or p_ that an A or B units are succeeded by
A B

another A or B units should be replaced to X
A

and X
B

re-

spectively.

From the shear modulus thus obtained the Young's mod-
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ulus could be calculated according to the equation.

E
y

= 2 G ( 1 + U) (8Q)

where J/ is a Poisson's ratio of the polymer.

The Young's moduli of the copolymers were calculated

according to the theory. The calculated values are also

given in Figure 42. In calculation, the Poisson's ratio is

thought to be 0.5 and the densities of crystalline and amor-

phous parts are assumed to be the same to those of poly-

ethylene. The specific volumes of polyethylene crystal and

amorphous phase used in the calculation are given by the

following equation.^ 0

V
a

= 1.1520 + 0.000780 t (81)

V = 1.0020 + 0.000300 t (82)

where and V"
c

are the specific volumes of amorphous and

crystalline parts of polyethylene, t is the temperature in

degrees centigrade.

The calculated value of Young's modulus of 1248B

agrees rather well, but in case of 1193A, the agreement is

poorer. It has been reported that in case of ethylene co-

polymers, for example, branched polyethylene and ethylene-

vinyl acetate copolymers, the calculated value is smaller

89
than the experimental values by a factor of seven to ten.

Compared to those cases, the calculated Young's moduli of
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the copolymers studied in this work agree very well with

that of experiment. From the relatively good agreement

between theory and experiment obtained in the study of the

Young's modulus measurement, it was strongly suggested that

the statistical rubber elasticity theory could be applied

rather well to the low crystalline polymers.

Further improvement of theory could be made by intro-

ducing the non-random distribution of A and B units in a co-

polymer chain. It was also recognized that the morpholo-

gical geometry of the individual crystallites and their

distribution in the amorphous matrix radically affect the

90-92mechanical properties of crystalline polymers.

(2) Strain and stress optical coefficients. Strain

optical coefficients of the copolymers at various tempera-

tures are shown in Figure 43. The strain optical coeffi-

cients of both polymers increase in the temperature region

lower than -40°C. In the higher temperature region, the

strain optical coefficients decrease with increasing tem-

perature. Higher crystalline 1248B has larger strain op-

tical coefficients in the temperature range studied.

The temperature at which the strain optical coeffi-

cients become maxima coincides with that of the (^-transition

found in the study of the viscoelastic properties of the

polymers. The increase of the strain optical coefficient

in this temperature region is attributable to the transition

from glassy state to rubbery state. The decrease in the
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higher temperature region may be due to the decrease of the

amount of anisotropic crystallites. Also because of that

very destruction of crystallites, which act as crosslinks,

the effective number of network chains decrease and the

anisotropy induced in the amorphous phase is thought to de-

crease.

In the temperature region at which the substantial

number of crystallites are melted, the flow process begins

to occur appreciably. This is thought to be the reason for

the marked decrease of the strain optical coefficient near

the melting points of the copolymers.

Stress optical coefficients of the copolymers at vari-

ous temperatures are shown in Figure 44. In the ^-tran-

sition region, the coefficients increase very rapidly with

increasing temperature. They tend to level-off in the rub-

bery region. In the ^-transition region, the coefficients

increase abruptly and level-off again with increasing tem-

perature. In the flow region they decrease with increasing

temperature.

The total birefringence of semi-crystalline polymer

93
may be resolved into three contributions as shown in

Equation (83).

A = <j>c Ac
+ ( l -4>

c
) A

a
+ A

F
(83)

where A is the birefringence per unit volume of crystalline
c

material, A is the birefringence per unit volume of amor-
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phous material, A
p

is the form birefringence.

If the principal refractive indices are available, the

value of A, of the orthorhombic crystal system may be esti-

mated by the following equation.

A
c

= f
a

( n
a " n

c >
+ f

b ( n
b * n

c
} (84)

where f
&

and f are Herman's orientation functions for the

a and b crystal axes, and n
a ,

n
fa

and n
c

are the principal

refractive indices. If f
&

= f = f
11Q , as was assumed in

this work, A will be given by

Ac = f
110 ( n

a
+ n

b " 2 n
c ' (85)

where is the orientation function of (110) normals.

The total birefringence and the crystalline contri-

bution could be obtained by experiment. For the first ap-

proximation one may neglect the form birefringence. Then

the amorphous birefringence contribution could be evaluated

by subtracting crystalline contribution from the total

birefringence. The amorphous contribution could be inde-

pendently calculated by the statistical theory developed by

5
Kuhn and Grun.

In their treatment the actual chain is replaced by an

idealized chain of m universally-jointed ,
randomly-oriented

links, each of length 1. The links are assumed to be opti-

cally anisotropic and characterized by polarizabilities OC^

along and *
2

at right angles to their length. To determine
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the principal polarizabilities of the chain, and their de-

pendence on the distance between its ends, it is required

to know the angular distribution of the individual links

corresponding to a given distance between the ends. The

solution to this problem has been worked out by Kuhn and

Grun, and is represented by the formula

dN = e*ePcOS* -|- sind d9 (86)

in which dN represents the number of links making an angle

between 0 and 0 + dd to the line joining the ends of the

chain. t{ and ji are constants whose values depend on the

distance r between the ends of the chain and are given by

the relations

P-JC* (r/ml) (87)

0( = mf/sinh p (88)

The function in Equation (87) is the inverse Langevin

function.

If the line joining the ends coincides with the x-

axis of a rectangular coordinate system, a given link of the

chain make an angle Q with x-axis, and the plane containing

the link and x-axis makes an angle with the plane con-

taining x- and y-axes, the polarizabilities of the link, for

fields respectively along x- and y-axes are given by the

relations
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0(x
= ^ cos 2

9 + 0(
2

s±n
2
0 (89)

0Cy
= < ^ - 0(

2
) sin

2
0 cos

2

<f)
+ 0(

2
(90)

And the corresponding total polarizabilities of the chain

will be

dN (91)

0(
y

dN (92)

The number of links at angles between Q and Q + d& and

between
<J>

and ^> + d^> is from Equation (86)

dN = e* e P cos0 -\- sin9 d0 d<j> (93)

Introducing this distribution into Equations (91), (92) and

integrating, one obtains the following results*

!f (2r/ml) S

m
(r/ml) ^

If the strain is not sufficiently large to cause any

significant fraction of the total number of chains to assume

lengths comparable with their fully-extended length, the

inverse Langevin function may be represented by the first

term of its series expansion and the Equations (94) and (95)

reduce to the formulas
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m
3

( 0^ + 2^ ) +
2

5
m ( cf\ - 4

2
) ( ml

r

(96)

m ( tf
a -0(

2
) < ml

r

(97)

Suppose that the network contains N of these molec-

ular chains, each consisting of m universally jointed links

of length 1. The junction points of the network will be

continually fluctuating in position, on account of the ran-

dom thermal motion of the chains. For the calculation of

the polarizabilities of the network, they will be assumed

to occupy their average positions. For simplicity, it is

assumed that the distances between neighbouring junction

points in the undeformed network are all equal. These re-

strictions were shown to be unnecessary. Finally, it is

assumed that the junction points move affinely, and the

volume of the network does not change during deformation.

In the unstretched network the "displacement length"

of the assembly of chains may be represented by a set of

vectors which are distributed randomly in direction. If the

network is deformed to the extension ratio X» the original

random distribution of the vectors changes to elipsoidal

distribution as shown in Figure 45. After deformation, the

distribution of the vectors may be expressed by Equation

(46) A given "displacement length" making an angle / with
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z-axis, and the plane containing the displacement length

and z-axis makes an angle <j> with the plane containing x- and

z-axes, the polarizabilities of the displacement length for

fields respectively along z and y axes will be given by

pz
« < tt

- 12
) cos

2
y + y

2
OS)

(99)

Then the difference of polarizabilities of the network in

z and x directions will be given by

P
z

- P
x

= I JN(f ,<J>)( |3z
- ^ ) df d<j> (100)

0 0

By substituting the Equations (98), (99) and (96), (97) into

Equation (100), one can get the following result.

3«rf -« )

= ^y-2- lN(y,4>)r
2
(cos

2
y -sin

2
Jfcos?£)dJd<f>

5ml Ja Jo
P - P
z x

'0 '0

(101)

During the deformation the length of the displacement length

will change from the original length r
Q

to r. r is given by

r = 7? r
Q

2
/ ( cos

2
)f + X

3
sin

2
/ ) (102)

By substituting the Equation (102) and distribution function

(46) into Equation (101) and performing the integration, one

obtains the final result
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Nr 2
«rf -0<

)

z
P
x 1 ~2 ( * - -IT > (103)5ml ^

2 2If r
Q = ml , the equation reduces to

P
z - P* "4" <<, -< ><* 2

- 4-) (104)

From the well known Lorenz-Lorentz equation, one could

calculate the refractive index from polarizabilities . The

Lorenz-Lorentz equation would be given as

"2 "
1

= -^-7CP (105)
n + 2

J

By differentiating with respect to P, one obtains the ex-

pression

An = ~|—TC ^ ^
2 )

2

AP (106)
n

where An is the refractive index difference, and is the

difference in polarizability , n is the average refractive

index.

By substituting Equation (104) into Equation (106),

one obtains the birefringence of the network as

An =
-|f-

(H
^
+ 2)2

N cq-C^HX2
- (107)

n

At small extension ratios, the last term of Equation

(107) will be approximated in the following manner.



67

X2
- -i = 3 0( (108)

where 0< is the strain.

By substituting Equation (108) into Equation (107) one ob-

tains

As is seen in Equation (109), it is expected that the

amorphous contribution is proportional to strain.

The orientation function of the (110) normal was shown

to increase nearly linearly with strain in this case. One

therefore expects the linear increase of birefringence with

increasing strain in small strain region, and that was

found in our experiments. The peculiar decrease of bire-

fringence in the small strain range found in polyethylene

was not found in the polymers used in this work. The main

reasons for the above mentioned behavior of the samples are

thought to be attributable to the low crystallinity and the

lack of strong interactions between crystallites.

From the statistical rubber elasticity theory, one

could know the stress at a given extension ratio. The re-

sult obtained on the same assumption made to calculate the

birefringence is given in the following equation.

An =
2Tt (n

2
+2)

2

N(«/
1
-^

2
).3<* (109)

<r = NkT( X2
-

1 (110)
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where <r is the stress.

Then the stress optical coefficient is given as fol

lows.

An 271 (n
2
+ 2)

2

455cT - ( *i - <*
2

)

n

The stress optical coefficient is a function only of

the anisotropy of the chain link and the mean refractive

index of the polymer. In case of rubber, the validity of

Equation (111) was confirmed by Treloar.'14

For the low crystalline polymers like ethylene -

propylene copolymers used here, the amorphous contribution

to birefringence may be analyzed by the same method as that

of rubber.

Because the crystalline phase is polyethylene, the

principal refractive indices could be assumed to be equal to

that of polyethylene crystals. By substituting the values

94
of refractive indices reported by Bunn into Equation (85)

and using the experimentally obtained values of initial

slopes in Figure 28, the strain optical coefficients at

various temperature were resolved into crystalline ( K )

and amorphous ( K ) contributions. Form birefringence
am

was neglected.

The result of the resolution is shown in Figure 46.

The crystalline contributions of both samples decrease with

increasing temperature as well as the amorphous contribu-
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tions

.

As has been pointed out previously, the variation of

the crystalline modulus in the ^-transition region affects

the Young's modulus of the polymer, but the agreement be-

tween the theoretical and the experimental results were

rather good. One may therefore assume that all the stress

is arising from the rubbery elastic origin. If this is the

case one could calculate the anisotropy of the statistical

unit of the polymer according to Equation (109).

The anisotropics of the statistical units are calcu-

lated from the contributions of amorphous phase to strain

optical coefficient and Young's modulus of the copolymers.

As the mean refractive index of the copolymer, the experi-

mental value of the polymers determined by an Abbe refrac-

tometer was used. The anisotropy of the copolymers are

shown in Figure 47. They are bigger than that of poly-

propylene reported by Samuels 9 "* and by Tsvetkov
9^ and almost

the same or bigger in the higher temperature region to the

03 97
value of 5.6 A ,

reported for polyethylene.

The anisotropy of the copolymers is thought to depend

on the contents of the comonomer. The calculation of the

anisotropy of the copolymer was reported by Sindo and Stein.

They have shown
98 ' 99 that for the copolymer which consists

of i comonomers each of them has the statistical unit length

of and anisotropy

them are given by

)
.

, the average anisotropy of
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<V*2 } ^ N
i (^2 )

i
L
i
2/ZN

i
L
i
2

(H2)

where N
±

is the number of statistical units of type i per

chain.

From the study of viscosity measurement, it is known

that the lengths of the statistical units of polypropylene

and polyethylene do not differ very much. 100 in this work

therefore, the average anisotropy of the copolymer will be

calculated according to the following equation.

(V^> = ^-VV^p (113)

where X
£

is the mole fraction of ethylene in amorphous

phase, (*C~^2^E is the anisotroPY of polyethylene 1 s statis-

tical unit and (^-O^p is that of polypropylene* For the

95 9

7

calculation, the anisotropics mentioned previously • were

used. The value of X
£

is obtained by subtracting the mole

of ethylene units in crystalline phase from the total.

The calculated values are also shown in Figure 47. As

could be seen in the figure, calculated anisotropics of the

chains increase only slightly with increasing temperature.

That means that the increase of anisotropics with increas-

ing temperature observed in experiment can not be explained

only on the bases of increase of more anisotropic ethylene

units in the amorphous phase. The increase of anisotropics

in the temperature region of 30°C to 50°C may mainly result

from the decrease of Young's moduli of the copolymers. This
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may suggest that it would be necessary to resolve the stress

into entropic and internal energy contributions. If this

could be performed, one could obtain more rigorous values

of anisotropy of the statistical unit.

The increase of anisotropics of statistical unit at

higher temperature may be due to the different dependency

of stress and birefringence on temperature.

One of the encouraging aspects of this result is that

in 1248B, the calculated and the experimental values agree

rather well in the rubbery region, the temperature region

between 0^ -transition temperature and the temperature at

which flow processes become predominant. In case of 1193A,

this temperature region is very narrow and a distinct pla-

teau region was not found in the plot. From this fact one

might say that the model that the crystallites acting as

crosslinks may valid in the temperature region in the co-

polymers .

The true value of anisotropy of the statistical unit

is thought to be smaller than the values shown in Figure 47.

This is because the form birefringence was negrected, and

also because of the expansion of the crystal lattice. The

crystal lattice expands mainly in a spacing. Thus the

anisotropy of the crystal in these copolymers may be bigger

than that of polyethylene. This increases the birefringence

contribution of the crystallites and reduce the contribution

of amorphous phase.
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7. Estimation of Form Birefringence

The birefringences of copolymers elongated 50 % and

swollen to 0.9 of volume fraction of polymer with various

solvents are shown in Figure 48. Both copolymers have a

minimum point in the plot. The minima of both samples occur

when they were swollen by the solvent whose refractive index

is around 1.46. The value is smaller than that found in

polyethylene.

Because of the low crystallinity of the copolymer, the

velocity of swelling is very rapid. In this case, it would

be dangerous to neglect the variation of orientation of

crystallites and amorphous chains during the process. Also

the contribution of strain field around the crystallites may

change by swelling the polymer. Because of these reasons,

one could not obtain the contribution of form birefringence

simply subtracting the birefringence after swelling from the

birefringence before swelling.

If it is assumed that crystallinity and strain field

around the crystallites do not change during swelling, one

could obtain the decrease of birefringence swollen by the

solvent which give minimum in the plot shown in Figure 48

by the following equation.

dA =
<J>.

dA + ( 1 -
<f>c

) dA
a

(114)

where dA , dA and dA are the variation of the total, cry-
c a
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stalline and amorphous birefringence of a polymer.

dA may be given by

dA
c

= df
110 ( n

a
+ n

b * 2 n
c

} (115 >

where df
11Q

is the variation of (110) normal orientation

function during swelling, df
Q
may be estimated from the

change of extension ratio. When a polymer is swollen to the

extent of its volume fraction of v
2

, the extension ratio of

the fastened polymer whose extension ratio is *X0
before

swelling will be changed to the following value after swell-

ing.

1

13Treloar showed that the birefringence of the swollen

rubber is given by the following equation.

An m n£±nL^ n iu^
2

) vi <x
2
- 4- )

n 45 1 2 2 *

(117)

It is shown in the equation that the strain optical coef-

ficient decreases with increasing extent of swelling.

From the equation, the change of birefringence of the

fastened rubber will be given by the following equation.

(v
p-l)Xn

2

cUn = % " Ann (118)

where d*n is the variation of birefringence during swelling
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and 4n
Q

is the initial birefringence.

In case of the copolymers, dAn = (1-6 )dA and *ru may
•c a 0

be equal to the amorphous birefringence contribution of the

unswollen sample.

The total birefringence of the unswollen polymers is

also shown in Figure 48. From the results shown in Figure

46, one could resolve the total birefringence into amor-

phous and crystalline contributions. Substituting the

values of n , n, and n into Equation (115), one could ob-a b c 1

tain the variation of crystalline contribution during swell-

ing. Also from Equation (118) one can estimate the varia-

tion of amorphous contribution. Once these values are

known, the total variation of birefringence caused by the

change of orientational state will be estimated, subtract-

ing the variation of birefringence from the total and com-

paring the value with that at minimum in the plot shown in

Figure 48, one can estimate the magnitude of form birefrin-

gence. In Table 6, the calculated variation of birefrin-

gence during swelling and the magnitude of form birefrin-

gence is shown.

The form birefringence of both copolymers are almost

the same. But the ratio of the form birefringence to the

total birefringence is bigger in lower crystalline 1193A

than in 1248B.

This result seems contradictory, but if the effect of

strain field was considered, this result might reversed,
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because the correction might affect 1193A more than 1248B.

As is expected, the form birefringence is more sig-

nificant in these copolymers than in polyethylene. This

may be attributable to the rod-like superstructures of the

crystallites

.
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IV. CONCLUSIONS AND FUTURE WORKS

1. Conclusions

The dynamic mechanical measurement revealed that there

are three transition processes in the copolymers within the

temperature region studied. The V-transition occurs at

about -120°C, and is thought to be of the same origin as

that of polyethylene. The p-transition is the glass transi-

tion. In higher temperature region than that of the p~

transition, the copolymers are rubbery and their mechanical

and rheo-optical properties are well approximated by a

network crosslinked by crystallites. The V and p-transition

have apparent activation energies of about 7 kcal/mol and

about 11.5 kcal/mol respectively in both polymers.

Both copolymers have very small crystallinities con-

sisting of polyethylene units at room temperature, 18 wt%

and 12 wt% for 1248B and 1193A respectively. Melting points

of the copolymer are higher than expected from Flory's

theory. This is thought mainly due to the non-randomness of

the comonomer distribution within a molecule.

The observed (110) spacings were bigger than that of

polyethylene. Because of the imperfections of the unit cell

the thermal expansion coefficients of (110) spacings of the

polymers are bigger than polyethylene. The lower crystal-

line 1193A has a bigger thermal expansion coefficient than

1248B.
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From the small angle light scattering studies of the

copolymers, it was revealed that the crystallites in both

polymers have rod-like superstructures.

In the studies of the x-ray orientation function

measurement, it was found that the crystallites orient less

than is expected from Kratky's "floating rod" model. The

dependence on temperature is not prominent in the orienta-

tion functions of the copolymers. From those results, it

was suggested that there are no such strong interactions

between crystallites as is found in highly crystalline poly-

ethylene.

The large amount of amorphous materials around cry-

stallites seem to suppress the crystallites to orient ac-

cording to affine transformation, especially at higher

elongation.

The orientational behavior of the crystallites was

studied by small angle light scattering method. From the

H
v

scattering pattern variations with strain, the qualita-

tive orientational behavior was obtained.

In the light scattering patterns, new scattering

lobes were found to emerge at strains of about 20 %.

Microscopic studies of the polymer clearly showed that

streaks appear when seen under crossed nichols, alining in

the stretching direction parallel to analyzer or polarizer

directions. Those streaks seen under the microscope were

thought to be caused by the strain field around the rod-like



78

crystallites. Further study of light scattering suggests

that the optic axis of those streaks is parallel to the

long axis of the streaks.

Static mechanical properties agree rather well with

the theory based on statistical rubber elasticity theory.

Resolution of the strain optical coefficient was

performed according to the two phase model. From the bi-

refringence contribution of the amorphous phase, the aniso-

tropy of the statistical unit was calculated. The calcu-

lated anisotropy was affected by ^-transition due to cry-

stallites and flow processes at high temperatures. The

results suggest that it is necessary to resolve the stress

into entropic and internal energetic contributions. But,

especially in 1248B in which marked rubbery region was

observed, the anisotropy of the statistical unit obtained

experimentally agree very well with the value calculated

from the values of polypropylene and polyethylene.

Estimation of form birefringence resulted larger

contributions than is found in polyethylene. But the true

value may be smaller than is found, since at 50 % elonga-

tion, there may be some reductions of anisotropy caused by

strain field around crystallites during swelling.

2. Future Works

As was mentioned in the study of crystallinity , the

variation of crystallinity with temperature will be better
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discussed if one could know the heat of fusion, or the value

of p, that is the probability that a unit A succeeds the

preceding one.

To know the p, one may need a rigorous experiment

concerned with copolymerization kinetics or other ways to

determine the distribution of the comonomers in a mole-

cule. This sort of experiment may be difficult to do in

this laboratory. So far, neither IR-spectroscopy nor NMR-

spectroscopy seem satisfactory for the purpose.

An easier experiment may be the determination of

heat of fusion. The direct measurement of heat of fusion

by DSC was not successful because of the low crystallinity

and the wide range of melting temperature. One of the

possible methods may be the measurement of melting point

depression by swelling. The melting point may be determined

by measuring the intensities of depolarized light with

crossed polaroid. From the preliminary experiment, it was

known that a strong wide beam is necessary to avoid errors

caused by the surface effects and weak intensities near the

melting point. This could be easily done with a beam ex-

pander and a laser light source.

The dynamic birefringence measurement which was

originally planned, was not done because of the lack of

time. The dynamic birefringence measurement at low static

strain may give informations about the orientational behav-

ior of crystallites and amorphous chains. If performed at
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larger strain, one might find a contribution from the strain

field around the crystallites.

The study of the strain field around crystallites may

be performed at elevated and lower temperatures. Espe-

cially in the ^-transition region one might find the effects

of the rigidities of amorphous phase on the strain field.

If measurements were performed along with morphol-

ogical studies it might be easier to explain the results.

The resolution of the stress into entropic and inter-

nal energetic contributions may be difficult to perform,

because of the melting of the crosslinking crystallites.



APPENDIX I

THE VALUE OF A FOR THE

CALCULATION OF E

TanO Range or

Amplitude Factor A

( db )

0 31.6

10 10.0

20 3.16

30 1.00

40 0.316

50 0.100

60 0.0316



APPENDIX II

THE COMPUTER PROGRAM FOR THE CALCULATION OF

DYNAMIC STORAGE MODULUS AND LOSS MODULUS

010 PROGRAM VIBRON
020 DIMENSION AL( 150)*TAN(150) * FORCE < 1 50) *LANGE( 1 50

)

030 DIMENSION COS (1 50 ) * E 1 ( 1 50 ) * E2 ( 1 50

)

040 DIMENSION PTO ( 1 50 ) * TO ( 1 50 ) *PT ( 1 50 ) *T ( 1 50

)

045 READ* K2
0 50 DO 060 I=1*K2*1
060 READ * PTO ( I ) * TO ( I

)

070+CALCULATION OF CROSS SECTION
080 READ* >/*TH* ALO* Kl *TP
090 S=d*TH*6. 4668*10. 0**( -6.0)
100*CALCULATI0N OF E PRIME* AND E • DOUBLE PRIME
110 DO 410 I =1 *K1 * 1

120 READ, PTC I )*FORCE( I ) *TAN( I ) * AL( I ) * LANGE( I )

130 IFCAL(I)) 140*190*190
140 I F( AL( I ) + 1 00 .0 ) 150*170*170
150 ALU )=AL0*2.543-0.3-10.0**(-3.0)*AL( I

)

160 GO TO 210
170 ALU )=2 .543*AL0-0 . 1 - 1 0 . 0** ( -3 .0 ) *ALC I )

180 GO TO 210
190 AL( I )=2 .543+AL0+10 .0** ( -3 .0 ) *ALC I

)

200 GO TO 210
210 COS( I ) = 1 .0/(1 .0+TAN< I )**2.0)**0«5
220 I FCLANGE ( I ) -20 ) 230*250*270
230 F=10.0
240 GO TO 290
250 F=3.16
260 GO TO 290
270 F= 1 .0

280 GO TO 290
290 El (I )=2.0*10.0**9.0*AL(I )*COS( I ) /(FORCE ( I )*F*S)

300 E2 ( I ) =E 1 ( I )*TAN( I

)

310*CALCULATI0N OF TEMPERATURE
320 IF(PT(1)) 330*350*350
330 T( I ) =PT ( I

)

340 GO TO 370
350 PTC I )=PT( I )+TD
360 GO TO 370
370 J=0
380 J=J+1
390 IF(PT( I ) .GE.PTO( J) ) 400*410
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400 GO TO 380
410 TC I

> = CT0( J>-T0C J-l > >*<?TC I >-PT0( J- 1 ) > /CPTOC J) -PTO
41 1C< J-l ))+T0( J-l

)

420 WKITEC6U450)
430 DO 440 I=1,K1,1
440 WR I TE ( 6 1 , 470 ) T( I ) ,TAN< 1 ) ,E1 ( I ) ,E2( I

)

450 F0RtfATC3X,*TEMPCC)*,3X,*TAN DELTA*, 3X, *EPRIME(
460CDYNE/CM r 2 > * , 3X , *ED0UBLE*

>

470 F0RMAT(F8.2,6X,F6.4,7X,E1 1 .4,5X,E1 1 .4)
j\ fin

/t d n IT Kin nnr,r«

A QCH 7 J "7
f O

s

^uu .ion f\ _ i Q A rv

•jU j
— 11*7 Q — 1 *7 C n

SOP J I j«U* 1 f u • u

1 1 /: * 1 o j
• I in.n . - n

1 I U •Ui *l DU «U
SOS
so^W w
S07
50RJVC' -ion • o.-i/jo.o
509 •97 .O.-llS-O

-9/j • P • - 1 ^o a 0

S 1 1

5 1

2

-rr • r * -

1

po .0

5 1 4 -Rl .0* - 1 1 0 .0
SIS -ro •p.-ins«n
S 1 fi -77 • s » - 1 oo •

o

I
1

S 1 7 -74 • 1 * -9S .0

S 1 8 -7 1 • ? * -90 .0

5 1 9 -ar # 0 j -P 5 • 0

520 -AZi # Q. -R0 .0
152 1 -6 1 • 5 > -75 .0

•

522 -58 »*3 > -70 «0
-

SP1 - SS . 0 * -6 S •

0

524 -51.7,-60.0
525 -48 .0,-55.0
526 -44. 1

, -50 .0

527 -40.2,-45.0
528 -36 .6,-40 .0

529 -32.5, -35.0
530 -28.7^-30 .0

531 -24 .2,-25.0
532 -20.0,-20.0
533 -15.3,-15.0
534 -10.7,-10.0
535 -6.0, -5.0
536 0.0,0.0
537 5.0,5.0 1



538 10.3 » 10.0
539 15.5 #15.0
540 20 .8 #20.0
541 25.9 #25.0
542 31.1 #30 .0

543 36 .0 #35.0
544 41 .0 #40.0
545 45.8 #45.0
546 50.6 #50.0
547 55.5 #55.0
548 60.5 #60 .0

549 65.3 #65.0
550 70.2 #70.0
551 75.0 #75.0
552 79 .6 #80.0
553 84.5 #85.0
554 89.5 #90 .0

555 94.0 #95.0
556 99 .0 #100.1D

557 104 . 1 # 105 .0

558 109. 4# 1 10 .0

559 114. 3# 1 1 5 .0

560 119. 4# 120 .0

561 124. 7# 125 .0

562 129. 7# 130 .0

563 134.9, 135 .0

564 139. 9# 140 .0

565 145.0* 145 .0

566 149. 7* 1 50 .0

567 1 54. 5# 155 .0

568 1 59 .3* 160 .0

569 164. 2# 165 .0

570 169. 3# 1 70 .0

571 1 74 .2, 175 .0

572 179.2, 180 .0

573 184. 2+ 185 .0

574 189. 2# 190 .0

575 194. 4# 195 .0



APPENDIX III

THE COMPUTER PROGRAM FOR CORRECTION OF

THE DIFFRACTED X-RAY INTENSITIES

10 PROGRAM CORREN
20 DIMENSION PAG ( 50 ) * SFC ( 50 ) * SFHC 50 ) * ASFC ( 1 00 ) * ASFH < 1 00

)

30 DIMENSION BAN ( 1 00 ) * B ( 1 00

)

40 DIMENSION NH( 1 00 ) * NA( 1 00 * 3 ) * HN< 1 00 ) * ANC 1 00* 3

)

50 DIMENSION A ( 1 00 ) * AAN ( 1 00 ) * COUN ( 1 00

)

60 DIMENSION AANRC 100)* POLC 100) * AU ( 100) * ABSN( 100) *COU ( 100)
70 DIMENSION YS I N( 1 00 ) * F I NCO( 1 00 ) *X I N ( 1 00 ) , COUNT ( 1 00

)

80 HEAD* KA
90 DO 1 00 1=1* KA
100 READ* PAG (I>*SFC(1)* SFH ( I

)

1 10 READ* KB
1 20 DO 1 30 I = 1 * KB
130 READ*BAN( I )*B( I

)

140 READ*TH* ABO
150 READ* KC
160 DO 350 I=1*KC
170 READ* AAN (I )*NH(I ) * NA ( I * 1 ) * NAC I * 2 ) * NA( I * 3

)

180 SA=0.
190 DO 240 J=l *3
200 AN ( I * J) =NA( I * J)

210 SA =SA+AN( I * J)
220 HNC I )=NH( I

)

230
240 AC I )=SA/HN( 1 )/3.
250
260 M=0
270 M=M+1
280 IF(AAN( I ) .EQ.BAN(M) ) 300*290
290 GO TO 2 70
300 COUNC I )=A( I ) -B( I

)

310 AANR( I )=AAN( I )*3. 1416/180.
320 POLC 1 )=2 ./( 1 .+COSF(AANR( I ) )**2)

330 AU( I )=ABO*TH*( 1 ./COSFC AANRC I ) ) - 1 . )

340 ABSNCI )=AU(I )/<l .-EXPFC-AU(I )))

350 COUC I )=COUN( I ) *ABSN ( I )*POL< I

)

355 KD=KC-1
360 DO 480 I=1*KD
370 YSINC I )=SINF(AANR( I )/2. )/l .5417

380 J=0
390 J=J+1 „ inn .

, 0
400 IF((PAG(J+D-YSIN(I))*(PAGCJ)-YSIN(I)).LE.O.) 420*410

410 GO TO 390
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460 FINC0CI>=C6.-ASFC(I>)/3.+2.*(l.-ASFHCI)>/3.
470 XINCI >=C0UCKC>*FINC0CI )/l .4936
480 COUNT ( I >=COUC I

) -XI N( I

)

490 WRITE<61*520)
500 DO 510 I=1,KD
510 WRITE(61 * 530 ) * AANC I ) * COUNT ( I

)

520 FORMAT ( 3X * *ANGLE** 4X * * I NTENS I TY*

)

530 F0RMATC3X*F5.2*4X*F10.6>
540 END
550 ENDPROG
600 18
601 0.00*6.000*1.000
602 0.05*5.764*0.947
603 0.10*5.141 *0.818
604 0 . 1 5*4.362*0 .636
605 0.20*3.612*0.482
606 0.25*3.003*0.350
607 0.30*2.538*0.252
608 0.35*2.212*0. 179
609 0.40*1 .983*0.131
610 0.50* 1 .707*0 .073
611 0.60*1.548*0.037
612 0 .70* 1 .423*0.023
613 0.80* 1 .313*0.015
614 0.90* 1 .202*0.010
6 15 1 .00* 1 .096*0.007
616 1.10*0.992*0.005
617 1.20*0.896*0.003
618 1.30*0.802*0.002



APPENDIX IV

THE COMPUTER PROGRAM FOR THE CALCULATION

OF YOUNG'S MODULUS, STRAIN AND STRESS

OPTICAL COEFFICIENTS

010 PROG RAN; INSTRON
020 DIMENSION OL ( 50 ) # /JD ( 50 ) * TH I ( 50 ) , NR< 50 )

030 DIMENSION BX2 ( 50) *BX'l ( 50) *BY2( 50) «BY 1 ( 50

)

040 DIMENSION FX?. ( 50 ) > FX 1 ( 50 ) * FY2 ( 50 > > FY 1 ( 50 )

050 DIMENSION YOUNG ( 50

)

, ALPHAC 50

>

, STRO?( 50

)

0 60 rtEAD » K

0 70 DO 160 1 = 1 *K
0 80 READ » NH ( I > ,BX2( I ) > BX 1 ( I ) ,BY2( I ) * BY 1 ( I

)

0 90 KEAD* FX2 ( I ) * FX 1 ( I ) » FY2 ( I > ,FY 1 ( I

)

> 0L< I

)

» WDC I ) *THI < I )

100 THI (I )=THI (I )*2. 543/1000.
1 10 WD (I )=WD< I ) +2.543/ 1000.
120 ALPHA ( I> = 1 04. 67*10. **(-7.)*(BY2(I)-BY 1(1) )*0L( I )

/

1 30C (BX2 ( I )-BXl ( I ) )/THI ( I

)

140 YOUNG ( I )=9.H*10.**5»*(FY2( I
) -FY 1 ( I ) ) *0L( I >/WD( 1 )

/

1 50CTHI ( I )/(FX2( I
) -FX 1 ( I )

)

160 STKOP( I ) =ALPHA ( I ) /YOUNG ( I

>

170 a'RITE(61 ,200 )

180 DO 190 I = 1 > K

190 WRITEC61*220) NRC I ) » ALPHA ( I ) >YOUNG( I ) , STROP ( I

)

200 F0KMAT(3X,*RUN NUMBER* , 8X , *ALPHA* * 6X , *YOUNGS MODULUS* *

2 10C4X, *STRESS OPT COEFF*)
220 FORMAT ( 3X# I6# 3X#E1 8 »6* 2X#E 1 6 «6*2X*E1 6 »6

)

230 END
240 END PROG
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APPENDIX V

THE COMPUTER PROGRAM FOR THE CALCULATION

OF ORIENTATION FUNCTION OF (110) NORMALS

0025 DIMENSION
0030 DIMENSION
0035 DIMENSION
0040 DIMENSION
004 5 DIMENSION
0050 DIMENSION
0060 READ* NE
0070 DO 0080 1=1 * NE
0080 READ* PAG CI)*SFCC1)*SFHCI)
0090 READ* NA
0100 DO 0200 1=1 *NA
0110 READ*AZI MCI ) * AT I M ( I ) *CR( I * 1 ) * CR C I * 2 ) * CR C I * 3 ) * AM C I *

0120CAMC I *2)*AM( 1*3)
0130 ZIMC I )=AZIMC I )*3. 1416/180.

AMS=0

.

CRS=0.
DO 0180 J=l*3
AMS=AMS+AMC I * J)
CRS=CRS+CRC I * J

>

AMO ( I ) =AMS/ ( 3 • *AT I M ( I )

)

CRY ( I )=CRS/(3 .*ATIMC I )

)

READ * THICK* ALO * AL * ABC
THIC=THICK*ALO/AL
READ*NB
DO 0400 1=1 *NB
READ* ANGLC I ) *BT1MC I )*BACK( 1*1) *BACK( 1*2) *BACK( 1*3)

BAC = 0 .

010 PROGRAM ORIENT
0020 DIMENSION PAG ( 50 ) * SFC ( 50 ) * SFH ( 50

)

AZIMC50)*ATIMC50)*AMC50*3)*CRC50*3) -

Z I M < 50 ) * AMO ( 50 ) * CRY ( 50

)

ANGL( 10) *BTIM( 10) *BACK( 10*3) *BAK( 10) *BRAG( 10)
.
J 0L( 10) *B( 10)*ABSN( 10)*YSIN( 10)*ASFC( 10)
FINCO( 10)*C0MP( 10)*AM0R(50)*CRYS(50)
XCRY C 50 ) * XBUS C 50 ) * XBU ( 50 ) * ASFH( 1 0

)

1 )

0140
0150
0160
0170
0180
0190
0200
0210
0215
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0335
0340
0350
.0355

DO 0270 J=l *3
BAC=BAC+BACKC I * J)

BAKC I )=BAC/C3.*BTIMC I )

)

BRAG ( I )=ANGL( I ) *3 . 1 4 1 6/ 1 80

.

POLCl )=2./(l . +C0SCBRAGCI))**2.)
B ( I )=A8C*THIC*C 1 • /COSFCBRAG ( I ) )-l . )

ABSNC I )=B( I )/( 1 .-EXPFC-BC I ) )

)

YSINC1 ) =SI NFC BRAG ( I )/2.)/l .5417

J=0
J = J+1
IFCCPAGCJ+1 )-YSINCI ) ) * C PAG CJ/-YSINC I )).LE.O.)

GO TO 0340

360*355
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0360 ASFCCI )=CSFCC J*l ) -SFCC J) )*CYSINC I ) -PAG C J) ) /C PAG C J+ 1 )

-

0370CPAGC J) )+SFCC J)
0380 ASFH C I ) = C 5FHC J+ 1

) -SFH CJ))*CYSINCI) -PAG ( J) ) / C PAG ( J+ 1 >-
0390CPAG ( J) ) +SFH ( J

)

0400
0410
0415
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0710
0720
0730
0740
0750
0760
0770
0780
0790

FINC0C1 )=(6.-ASFC( 1 ) ) /3 . +2 . * C 1 . - ASFH C I ))/3.
X I N=POL ( 3 ) +A3SN ( 3 ) * ( BAK ( 4 ) -BAK ( 3 )

)

DO 0420 I=1,NB
C0MPC1 )=XIN*FI NCOC I )/l .4936
DO 0480 I=1,NA
AMORCI >=CAMO< I )-BAK(l >>*P0L(1 )*ABSNC1 )-COMPCl )

CRYSC I > = (CRYCI )-BAK(2) ) *POLC 2 ) +ABSNC 2 ) -COMP C 2

)

XCRY ( I )=CRYSC I )-AMOR( I )

XBUSC I )=XCRYC I ) *COSF C Z I M C I ) ) *SI NFC ZI MC I ) ) **2 .

XBUC I )=XCRYC I )*C0SFCZIMC I )

)

BUNBO=0.
BUNSH = 0 .

NC=NA/2+l
DO 0630 K=1,NC
IFCK.EQ.l) 0550,0540
IFCK.EQ.NC) 0610,0580
BUNSH=BUNSH+XBUSC2*K- 1 ) +4 . *X3USC2*K)
BUNB0=BUNB0+XBUC2*K-1 ) +4 . *XBUC 2*K)
GO TO 0630
3UNSH=BUNSH+2 .±X8USC2*K- 1 ) +4 .*XBUSC2*K)
BUN30=3UNB0+2 .*XBUC2*K- 1 )+4 .*XBUC2*K)
GO TO 0630
BUNSH=BUNSH+XBUSC2*K-1

)

BUN30=3UN30+XBUC2*K-1

)

CONTINUE
AVS 1 N=3(JNSH/BUNB0
AVC0S=AVSIN*C0SFCBRAGC2)/2. )**2 .

0RIF=C3.*AVC0S-1 . )/2.
WRITEC61 ,0790

)

DO 0690 I=1,NA
WRITE C61 ,0800) ,AZIMC I ),AMOC I ) , CRY C I ) ,AMORC I ) , CRYS C I )

WRITEC61 ,0810)
DO 0730 I=1,NA
WRITEC61,0820),AZIMCI ), XCRY CI ) ,XBUSC I ) ,XBUC I

)

WRITEC61,0830)
WR I TEC 61 ,0840), OR IF

WRI TEC61 ,0850)
DO 0780 I=1,NB
WRITEC61 ,0860),P0LC I ),A3SNCI ) ,COMPC I ) , ASFC C 1 ) , ASFHC

I

F0RMATC3X, +AZIMC I )*,2X,*AM0CI )*,4X,*CRYCI )*,5X,

0791C*AM0RCI ) * , 7X , *CRYS C I )*)

0800 FORMAT C3X,F5. 1 ,2X,F10.6,2X,F10.6,2X,F12.7,2X,F10.6)
0810 FORMAT C3X,*A£IMC I )*,2X, *XCRYC I ) * , 4X, *BUS C I )*,

081 1C5X,*X3L)C I )*)

0820 FORMAT C3X,F5. 1,2X,F10.6,2X,F10.6,2X,F12.7)
0830 FORMATC 3X, *ORI ENTATI ON FUNCTION*)
0840 F0RMATC3X,F20 . 15)
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0850 FORMAT <3X* *POL( I ) * , 2X, *ABSN ( I ) * ,4X, *COM?( I >*,5X*
0851C*ASFC( I >**7X**ASFH( I )*>
0860 F0RMATC3X*F10.7*2X*F10 .7 * 2X , Fl 0 . 7 * 2X , Fl 0 . 7* 2X*F 1

0

END
7)

0870
0880
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

ENDPROG
18
0 .00*6 .

05*5.
10*5.
1 5*4.
20*3.
25*3.
30*2.
35*2.

0

0
0

0

0
0

0

000* 1

764*0
141,0
362*0
6 12*0
003*0
538*0
212*0

0.40* 1 .983*0
0.50* 1 .707*0
0.60* 1 .548*0
0.70* 1 .423*0
0 .80* 1 .313*0
0.90* 1 .202*0
1 .00* 1 .096*0
1 . 10*0 .992*0
1 .20*0 .896*0.003
1 .300*0 .802*0.002

000
947
818
636
482
350
252
179
,131

,073
,037
023
,015
.010
.007
.005



APPENDIX VI

THE COMPUTER PROGRAM FOR THE CALCULATION

OF LIGHT SCATTERING PATTERNS FOR ROD-LIKE

CRYSTALLITES

5 PROGRAM LIGHT
10 DIMENSION RAZC50)*AZ(50>,RTHC50>*THC50>
15 DIMENSION QL ( 50

)

, V I ( 50

)

, VH ( 50

)

20 HEAD >

R

2 5 READ » SK
30 READ * NA
40 READ* NB
42 REAP i NE
44 READ * NF
70 READ* DA * DP
72 READ * B

1

74 READ * B2
,

80 RS=R*+0.75
90 RN=R*+1 .5
100 DO 440 I =1 ,NA
1 10 AN=I
1 15 RAZ( I >=B1 *(AN- 1 .

)

120 AZ(I )=3.1416*RAZCI>/180.
1 30 DO 390 J= 1 * NB
140 BN=J
145 rlTHC J)=B2*BN
150 TH ( J ) = 3 • 1416*RTH(J>/180«
160 QL< J)=TANCTH< J)

)

170 YV=0.
180 YH=0.
190 DO 360 K=1*NE
195 EN=NE
200 CN=K
210 AL=CCN-1 .)*3.1416/EN
220 DO 360 L=1*NF
225 FN=NF
230 DN=L
240 ?H=2 .*(DN- 1 . ) *3 • 1 4 1 6/FN
2 50 A=( 1 .-COS(TH( J) ) > * S I N ( AL > *COS< PH ) - S I N C AL > *S I N< PH >

*

260CSIN(TH( J) >*SINCAZ( I ) ) -COS ( AL ) *S I N ( TH ( J ) ) *COS ( AZ ( I )

)

270 ASI=SINCSK*A)**2/SK**2/A**2
2P0 SV*(l •+4«*C0SCAL)**2)**2
290 SH« 1 6 • *<COS(AL) *SI N(AL) *Sl NCPH) ) **2

300 DS*RS*SINCAL)*DA*DP/CRN*SIN(AL)**2+C0S<AL)**2
310C/RN)**! .5
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320 SSV = SV*ASI DS'
330 SSH=SH+ASI *DS
3A0 YV=YV+SSV
350 YH= YH+SSH
360 CONTINUE
370 VI(J)=YV
380 VH(J)=YH
390 CONTINUE
400 tfRITE(j6! >450>

1 0 //HI TE (61 * 460 ) > RAZ ( I )

420 a'RITEC61 >470>
430 DO 440 J=l »NB
440 WRITE (6 1 ,480

)

, RTH( J) , GL( J) > VI ( J),VH( J)
450 FORMAT (3X,*AZ( I )*)
460 FORMAT C3X,F6 .2)
4 70 FORMAT (3X,*TH(J)*>5X**QL(J)**10X#*VT ( J)

*

» 1 OX , *VH ( J) *

)

4 80 FORMAT (3X,F6 .2#3X,E1 1 .4, 3X,E1 1 .4,3X,E1 1 .4)
490 END
>«00 ENDPROG
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CAPTIONS FOR TABLES

1. Some properties of 1248B and 1193A samples.

2. The solvents used for form birefringence measurement

and their densities and refractive indices.

3. The calculation of the activation energies of the

f and "/-transitions of 1248B and 1193A samples.

4. The positions of the diffracted x-ray intensity maxima

and the (110) spacings of 1248B and 1193A samples at

various temperatures.

5. The angles which streaks and the H
v

scattering lobes of

1193A and 1248B samples make with stretching direction.

6. The estimation of the form birefringence of 1248B and

1193A samples.
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CAPTIONS FOR FIGURES

1. The variation of the x-ray diffracted intensity with

Bragg angle.

2. Schematic diagram of the set-up for Young's modulus,

strain and stress optical coefficient measurement.

3. The schematic diagram of the dynamic x-ray apparatus.

4. The co-ordinate system for the calculation of orien-

tation function of the (110) normals.

5. Schematic diagram of the apparatus for photographic

light scattering.

6. The sample holder and the cell for the form birefrin-

gence measurement.

7. Schematic diagram of the set-up for form birefringence

measurement

.

8. The variation of the birefringence of swollen samples

with their volume fraction

9. The variation in E f and E" with temperature at the

frequency of 3.5,11, 35 and 110 Hz for 1248B sample.

10. The variation in E' and E" with temperature at the

frequency of 3.5, 11, 35 and 110 Hz for 1193A sample.

11. The variation in tanS with temperature at the

frequency of 3.5, 11, 35 and 110 Hz for 1248B sample.

12. The variation in tan$ with temperature at the

frequency of 3.5, 11, 35 and 110 Hz for 1193A sample.
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13. The variation of the f -transition temperatures of

branched polyethylene and ethylene-propylene copolymers

with their ethylene content.

14. The variation in the value of reciprocal of the

p-transition temperature with frequency.

15. The variation in the value of reciprocals of the

^-transition temperature with frequency.

16. The variation of the x-ray diffraction intensities at

various temperatures with Bragg angle for 1248B sample.

17. The variation of the x-ray diffraction intensities at

various temperatures with Bragg angle for 1193A sample.

18. The variation of the (110) spacings of Marlex, 1248B

and 1193A samples.

19. The variation of the crystallinities of 1248B and 1193A

samples with temperature.

20. The variation of the melting point of ethylene-

propylene copolymers with their ethylene content.

21. The variation of crystallinity of ethylene-propylene

copolymers with their ethylene content.

22. The variation of the (110) spacing of various ethylene-

propylene copolymers with their ethylene content.

23. The variation of Tm/Tm with AH^.

24. The small angle light scattering patterns of undeformed

1248B and 1193A samples.

25. The co-ordinate system for the calculation of light

scattering patterns.
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26. The variation of the orientation functions of the (110)

normals at various temperatures with strain for 1248B

sample.

27. The variation of the orientation functions of the (110)

normals at various temperatures with strain for 1193A

sample.

28. The variation of the initial slope of the orientation

functions of the (110) normals with temperature for

1193A and 1248B samples.

29. The variation in H
v and V

v
light scattering patterns

with strain for 1248B sample.

30. The variation in H
v

and V
v

light scattering patterns

with strain for 1248B sample.

31. The variation in H
v

and V"
v

light scattering patterns

with strain for 1193A sample.

32. The variation in H
v

and V
v

light scattering patterns

with strain for 1193A sample.

33. The variation in x-ray diffraction pattern with strain

for 1248B sample.

34. The variation in x-ray diffraction pattern with strain

for 1193A sample.

35. The variation in calculated H
v

light scattering

pattern with extension ratio for the rod-like cry-

stallite

36. The variation in calculated V
v

light scattering

pattern with extension ratio for the rod-like
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crystallite.

37. The variation of angle which a H
y scattering lobe makes

with stretching direction with strain for 1193a and

1248B samples.

38. The variation in H
y ,

V
v light scattering patterns and

in micrograph with strain for 1248B sample.

39. The variation in Hy ,
V
v

light scattering patterns and

in micrograph with strain for 1193A sample.

40. The calculated H
v

and V
v

light scattering patterns for

the streaks in 1248B sample strained 62.6 %.

. 41. The light scattering patterns and a micrograph for

1248B sample strained 78.6 %.

42. The variation of Young's modulus with temperature for

1248B and 1193A samples.

43. The variation of strain optical coefficient with

temperature for 1248B and 1193A samples.

44. The variation of stress optical coefficient with

temperature for 1248B and 1193A samples.

45. The co-ordinate system used for the calculation of

strain and stress optical coefficients of the network.

46. The variation of the total strain optical coefficient

and the crystalline contribution of strain optical

coefficient with temperature for 1248B and 1193A

samples

•

47. The variation of anisotropy of the statistical unit

with temperature for 1248B and 1193A samples.
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48. The variation of birefringence of the swollen samples

with the refractive index of the solvent for 1248B

and 1193A samples.
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Table 2 The Solvents used and their Density and Refractive

Index

Solvent Density

(g/cm
3

)

Refractive

Index

Cyclohexane

Carbon Tetrachloride

Ethylbenzene

Benzene

Chlorobenzene

Tetralin

Trichlorobenzene

0.7785

1.5940

0.8670

0.8786

1.1058

0.9702

1.4542

1.4266

1.4607

1.4959

1.5014

1.5250

1.5451

1.5671



Table 3 The Calculation of Activation Energy

^-transition

Frequency

(Hz)

110

35

11

3.5

1 2 4 8 B

Transition
Temperature

(°C)

-44

-48

-52

-56

1000/T

4.36

4.46

4.52

4.61

Activation Energy 11.8 kcal/mole

1 1 9 3 A

Transition 1000/T
Temperature

(°C)

-45 4.38

-50 4.48

-54 4.56

-63 4.76

11. 3 kcal/mole

( cf . Activation Energy of Polyethylene 38 kcal/mole )

"/-transition

Frequency

(Hz)

110

35

11

3.5

1 2 4 8 B

Transition 1000/T
Temperature
CO

-108 6.05

-111 6.18

-115 6.32

1 1 9 3 A

Transition 1000/T
Temperature
CO

-119 6.48

Activation Energy 7.0 kcal/mole

( cf. Activation Energy of Polyethylene

-110

-113

-117

-120

6.13

6.25

6.40

6.54

7.2 kcal/mole

11-15 kcal/mole )



Table 4 The Position of Peak Maxima and the (110) spacing

1 2 4 8 B
Temperature Amorphous (110) (110)

halo Diffraction Spacing

(•O ( •)
( •) (A)

I 27.5 18.9 21.0 . 4.225

40.4 18.9 20.9 4.245

51.0 18.8 20.85 4.260

61.2 18.6 20.75 4.280

70.0 18.45 20.65 4.300

81.0 18.40

85.0 18.45

90.0 18.40

95.0 18.40

100.0 18.40

Temperature

(
#C)

29.5

34.0

39.5

45.5

53.0

58.0

63.0

70.2

75.0

Amorphous
halo

( •)

18.85

18.85

18.80

18.70

18.60

18.50

18.50

18.45

18.40

(110)
Diffraction

( °)

20.80

20.80

20.75

20.60

(110)
Spacing

(A)

4.260

4.260

4.280

4.310



Table 5 The Angles which Streaks and H
v

Scattering Lobes

make with Stretching Direction

Strain co Mi
( % ) ( o

( ) (
O)

39.5

62.6

79.1

105.0

154.7

101.5

50.2

27.7

63.0

54.7

50.5

47.0

42.1

45.0

55.0

60.8

31.0

33.8

37.0

40.5

51.0

46.0

33.8

29.0



Table 6 The Estimation of Magnitude of Form Birefringence

1193A 1248B

(xlO~
3

) (xl0~
3

)

X dA 0.25 0.34
c c

(1-X )d* 0.33 0.37
c a

Total Variation 0.58 0.71

Total Birefringence 4.75 6.70

Form Birefringence 1.43 1.39

29 % 21 %
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