University of Massachusetts Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1935

A study of the effect of neutral salts upon the dissociation of benzoic acid by means of the catalytic decomposition of ethyl diazoacetate

Wallace Wyman Stuart University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations 1

Recommended Citation

Stuart, Wallace Wyman, "A study of the effect of neutral salts upon the dissociation of benzoic acid by means of the catalytic decomposition of ethyl diazoacetate" (1935). *Doctoral Dissertations 1896 - February 2014*. 905. https://scholarworks.umass.edu/dissertations_1/905

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarWorks@library.umass.edu.

PHYS SCI

LD

3234 M267 1935

\$932 COP.2 A STUDY OF THE EFFECT OF NEUTRAL SALTS UPON THE DISSOCIATION OF BENZOIC ACID BY MEANS OF THE CATALYTIC DECOMPOSITION OF ETHYL DIAZOACETATE

STUART - 1935

MASSACHUSETTS

11

DATE DUE			
1			

UNIVERSITY OF MASSACHUSETTS LIBRARY PHYS Sci LD 3234 M267 1935 S932 cop.2

A STUDY OF THE EFFECT OF NEUTRAL SALTS UPON THE DISSOCIATION OF BENZOIC ACID BY NEARS OF THE CATALYTIC DECOMPOSITION OF ETHYL DIAZOACETATE

Wallace W. Stuart

Thesis submitted for the degree of Doctor of Philosophy

Massachusetts State College June, 1935

CONTENTS

		Page
I.	INTRODUCTION	1
II.	REVIEW AND DISCUSSION OF LITERATURE	3
	1. Ethyl Diazoacetate	
	2. The Kinetic Salt Effect	
	3. The Calculation of Reaction Rates	
III.	PRELIMINARY EXPERIMENTATION	19
	1. The Apparatus	
	2. The Reagents	
	3. The Experimental Procedure	
IV.	EXPERIMENTAL DATA; PRESENTATION, CALCULATION AND DISCUSSION	33
	Part I. Benzoic Acid and Potassium Nitrate	. 34
	Part II. Perchloric Acid and Potassium Ferchlorate	. 55
	Part III. Benzoic Acid and Potassium Perchlorate	. 79
	Part IV. Benzoic Acid and Potassium	. 109
	Part V. Benzoic Acid without Added Salts	114
٧.	SUMMARY	130
VI.	BIBLIOGRAPHYl.	132
VII.	ACKNOWLEDGMENTS	137

Introduction

The accurate measurement of hydrogen ion concentation has long been an important phase of Chemistry; and one upon which much work has been done. In the case of strong acids (acids which are, at moderage concentration, 100% dissociated) the determination is relatively simple, since it is assumed that total acidity is a direct measure of hydrogen ion concentration, and since the effects of neutral salts are manifested in a relatively simple manner. However, in the case of weak, partially ionized acids the problem becomes more complicated.

There are three general methods by means of which hydrogen ion concentration of a solution may be measured, viz., potentiometrically, by means of the hydrogen electrode or some other electrode, as the quinhydrone electrode, referred to the hydrogen electrode as standard, colorimetrically by means of indicators and catalytically by means of suitable reactions catalyzed by the oxonium $ion(H_3O^+)$.

It is purposed in this work to study the ionization of benzoic acid in solutions of varying ionic strength, measuring the concentration of H₃O⁺catalytically by means of the decomposition of ethyl diazoacetate, and to #### ascertain what relationship, if any, exists between the ionization constant of the acid and the total ionic strength of the solvent medium.

REVIEW AND DISCUSSION OF LITERATURE

I. Ethyl Diazoacetate

Curtius(1)reported the synthesis and general organic properties of a compound which he called ethyl diazoacetate, and to which he ascribed the formula $\stackrel{N}{\xrightarrow{N}}$ CH·COOC₂H₅. In discussing the properties of the compound in this and in a subsequent paper ($\stackrel{X}{\xrightarrow{2}}$), furthus called attention to the fact that the diazo esters react with water with the evolution of nitrogen gas and the formation of the corresponding hydroxy acid in accordance with the equation: N₂CH.COOC₂H₅ + H₂O = HOCH₂COOC₂H₅+N₂

Almost simultaneously Traube(4) published an account of his work with diazo compounds, his investigations being similar to those of Curtius.

Following the lead indicated by Curtius, subsequent workers have made use of the acid catalyzed decomposition of the ester in water solution as a means by which to measure hydrogen ion concentration, investigations being made largely from a kinetic rather than an organic standpoint.

In a comprehensive series of experiments, Fraenkel(6,5), by measuring the volume of nitrogen evolved, established beyond question that the reaction follows the unimolecular law and that the rate of reaction is strictly proportional to the hydrogen ion concentration. As a result of his experiments covering a wide range of concentration and using ten differant acids as catalysts, he showed the close paraleel between the acid catalyzed inversion of sucrose and the decomposition of ethyl diazoacetate, pointing out the much greater sensitivity of the diazo reaction compared to the more common sugar inversion. Hydrogen ion concentrations as low as .0002 M. .were measured. Fraenkel also reported that, when catalyzed with the halogen acids or sulfuric acid, a side reaction occurs, using up the catalyst; and as a consequence the reaction may cease altogether before the ddazo ester is entirely decomposed. The reaction constant, K, when divided by the hydrogen ion concentration gave a value, K_H, which he called the catalytic constant and which was found to be independent of the kind of acid used. The value of the diazo reaction in the measurement of hydrogen ion concentration lies in the fact that K_H may be determined using a strong acid in which the hydrogen ion concentration is known to be equivalent to the total concentration of acid, and then, by means of the relationship

$[H'] = \frac{K}{K_{m}}$

where K is the reaction constant, experimentally determined, the hydrogen ion concentration of the solution of a weak acid may be calculated. Actually the problem is not as simple as this, since in all except very dilute solutions, the ionic strength of the medium may introduce "salt errors". This phase will be discussed at greater length in succeeding sections.

Bredig and Ripley (%) confirmed the work of Fraenkel, observing a side reaction in the case of nitric₁ as well as hydrochloric and sulfuric acids. A the result of a more detailed study of the nature of the side reaction, these investigators concluded that the side reaction might be represented by the equation:

 N_2 CHCOOC2H5+H⁺+NO3 = CH₂(0·NO₂)COOC₂H₅+N₂ when nitric acid is the catalyst.

Because of its extreme sensitivity to hydrogen ion catalysis, Spitalsky (8) employed the diazo reaction in his study of the hydrolysis of potassium dichromate. In this work hydrogen ion concentrations as low as .000098 moles per liter Cumming (9) employed it for the same reason in were measured. his study of amphoteric electrolytes.

As a result of his own investigations and a study of the work of Bredig and Ripley, Otto Munn (10) postulated the following mechanism for the decomposition of ethyl diazoacetate in water:

$$c_{2H_{5}}\circ\circ c \cdot c_{H_{2}} + H^{+} + OH^{-} \Rightarrow c_{2H_{5}}\circ\circ c \cdot c_{H_{2}}N \equiv N^{+} + OH^{-}$$

$$c_{2H_{5}}\circ\circ c \cdot c_{H_{2}}N \equiv NOH$$

$$c_{2H_{5}}\circ\circ c \cdot c_{H_{2}}OH \neq N_{2}$$

the first two reactions being rapid and reversible, while the final irreversible reaction being slow determines the velocity of the decomposition. He also proposed a similar mechanism for the side reaction observed by Fraenkel and Bredig and Ripley.

In studying the reaction kinetics of strong acids and the nature of the hydrogen halides, Hantzehh (11), and Hantzsch and Weisberger (12) made use of the diazo reaction. They observed the similarity between the diazo reaction and the sucrose inversion reaction.

The effect of temperature upon the decomposition of ethyl diazoacetate was reported by Straudinger and Hirzel (43) as a part of their general study of diazo compounds.

More recently, the diazo reaction has been utilized by Brönsted and his coworkers in their study of the kinetic salt effect. An extended review and discussion of their work will be given as a part of the following section on the kinetic salt effect.

II. The Kinetic Salt Effect

Since 1887, when Arrhenius(14,15)in his classical study of the inversion process, showed that kinetic experiments may be profoundly effected by the presence of neutral salts, the effect of salts upon reaction velocity has intrigued the chemist. Following Arrhenius' announcement many tentative explanations(17,18,19 of the so-called neutral salt effect have been advanced, only to crumble/under more rigorous examination and experimentation. As exemplifying this type of explanation may be mentioned the "hydration theory" of Caldwell (19.), who attempted to explain the increasing effect of neutral salts upon the inversion of

sucrose by the increase in concentration of the reactants because

the formation of hydrates decreased the amount of free water in the solution.

However, little real progress was made toward a satisfactory explanation of the problem until the important Debye-Hückel (22) paper was published in 1923 and the results of J.N.Bröhsteds kinetic studies were presented in a series of papers which together comprise the so-called Brönsted Theory of kinetic salt effects.

To account for observed deviations from the classical Mass Action Law, and also as a result of thermodynamic reasoning G.N.Lewis (20) in 1901 introduced the activity concept, according to which the activity, a, of an ion is related to the concentration c, by the expression

:1:

a = fc

where f is the activity coefficient of the ion. In a brilliant mathematical paper published by Debye and Hückel(22.) in 1923, the activity coefficient was shown to depend upon the nature of the solvent, the number of unit charges on the ion and the concentration of electrolyte in the solution. Specifically,

 $-\log t = Az^2 \sqrt{u} + Bu \qquad :2:$

where \underline{z} is the number of unit charges on the ion, \underline{B} is an empirical constant, \underline{u} is the ionic strength of theseolution, defined as the equivalent concentration of the ions times the average valence

$$u = o \frac{Z_{1}+Z_{2}}{2}$$

A is constant for a given temperature and solvent, and has the

following value:

$$A = \frac{N^2 e^3 \sqrt{2\pi}}{2.303 (10 RDT)^{3/2}}$$

where <u>N</u> is Avogadro's number, <u>e</u> is the absolute charge on the electron, <u>D</u> is the dialectrác constant of the solvent, <u>R</u> is the gas constant and <u>T</u> is the absolute temperature. When the solvent is water, and the temperature is 25° C., the value of <u>A</u> (23,24) is taken as 0.5, and for a univalent ion, equation :2: may be rewritten

-log f = 0.5 Vu + Bu :3: 26 Bronsted(25,), in accounting for the effect of neutral salts upon the kinetic process, postulates an intermediatex "critical complex", the velocity of the reaction depending upon the concentration of this complex. Let <u>A</u> and <u>B</u> be two reacting molecules and <u>X</u> be the intermediate complex; then

$$A+B \rightleftharpoons X \to C+D \qquad \qquad :4:$$

and the velocity of the changing of <u>A</u> and <u>B</u> into <u>C</u> and <u>D</u> will depend upon the concentration of <u>X</u> which, in turn, is in equilibrium with <u>A</u> and <u>B</u>. In other words

where <u>V</u> is the velocity and C_x is the concentration of <u>X</u>. The thermodynamic mass action expression for the reaction of <u>A</u> and <u>B</u> to give <u>X</u> may be stated thus:

$$\mathbf{K}_{\mathrm{m}} = \frac{\mathbf{a}_{\mathrm{X}}}{\mathbf{a}_{\mathrm{A}}\mathbf{a}_{\mathrm{B}}} = \frac{\mathbf{C}_{\mathrm{X}}\mathbf{f}_{\mathrm{X}}}{\mathbf{C}_{\mathrm{A}}\mathbf{f}_{\mathrm{A}}\mathbf{C}_{\mathrm{B}}\mathbf{f}_{\mathrm{B}}} \qquad :6:$$

where the \underline{a} 's, \underline{C} 's and \underline{f} 's have the usual meanings.

From :6: we have

$$C_{\mathbf{x}} = \frac{K_{\mathrm{m}}}{f_{\mathbf{x}}} \frac{C_{\mathrm{A}} f_{\mathrm{A}} C_{\mathrm{B}} f_{\mathrm{B}}}{f_{\mathbf{x}}}$$
:7

and sustituting the value of C_x so obtained in :5:, we get

9

$$V \propto C_A C_B \frac{f_A f_B}{f_X} K_m$$
 :8:

OT

$$\mathbf{v} = \mathbf{K}\mathbf{C}_{\mathbf{A}}\mathbf{C}_{\mathbf{B}} \quad \frac{\mathbf{f}_{\mathbf{A}}\mathbf{f}_{\mathbf{B}}}{\mathbf{f}_{\mathbf{x}}} \qquad :9:$$

It becomes immediately apparent from an inspection of :9:, which is the general equation derived by Bronsted to express the velocity of a reaction, that the velocity of a reaction may, in general, be altered in two ways.

That the addition of a neutral salt exercises a profound effect upon the activity coefficient of an ion has already been shown. Thus, by directly changing the value of the expression $\frac{A^{I}B}{fx}$ in equation :9: by the addition of a neutral salt, the velocity of the reaction will be altered. The changing of the velocity of a reaction by changing the activity coefficients of the reactants in the primary reaction is termed by Bronsted the "Primary Salt Effect". Further examination of this phenomenom shows the following rules to be, in general, true:

1. No primary salt effect should be expected in the case of the reaction of an ion with ancuncharged molecule, for, if in equation :4: <u>B</u> is a charged ion, while <u>A</u> is a neatral molecule, then it follows that the charge on <u>B</u> and that on <u>X</u> must be the same, and consequently f_B and f_x should be the same.

It should be noted, however, that this conclusion requires the assumption that the linear term <u>Bu</u> in equation :3: may be disregarded - an assumption certainly ## not justified except in dilute solution, and which is even then open to criticism.

2. The primary salt effect may be positive or negative depending on whether the reaction occurs between ions of like or unlike signs.

The other general way in which the velocity of a reaction may be altered is by changing the concentration of the reactants(C_A or C_B in :9:). When both reactants are furnished by non-electrolytes(unionized) or by strong electrolytes (100% ionized), it is obvious that the addition of neutral salts can have now effect upon the <u>concentration</u> of the reactants, and the only possible salt effect will be of a primary nature. Consider, however, the case in which one of the reactants in the primary reaction is furnished by the dissociation of a weak electrolyte, as for example the weak acid <u>EA</u>. In addition to the primary reaction, there willalso occur a secondary, ionization reaction which may represented as follows

 $HA + H_2 0 \implies A^- + H_3 0^*$:10:

Thus salts, by shifting the equilibrium in this secondary reaction, may alter the concentration of one or both reactants in the primary reaction. This type of salt effect is termed by Bronsted the "Secondary Salt Effect"

I In testing the validity of the general Bronsted theory, and especially the theory of the secondary salt effect, Bronsted Teeterand Streeter(27) made use of the diazo reaction. According to them, the decomposition of ethyl diazoacetate in water, when catalyzed by acid, may be looked upon as a reaction between the uncharged ester molecule and the hydrogen ion to give the intermediate, "critical complex". If <u>A</u> is the diazo molecule,

$$A + H^{+} \rightarrow AH^{+}$$

from which we may write, in accordance with the Bronsted theory

$$V = KO_{A}O_{H^{+}} \frac{f_{A}f_{H^{+}}}{f_{AH^{+}}} : 11:$$

According to these authors, since in <u>dilute</u> solutions the activity coefficient of an ion may be assumed to depend only upon the charge upon the ion and the ionic strength, and in no wise upon the specific nature of the ion, and furthermore, since the activity coefficient of an uncharged molecule may, in dilute solution, be looked upon as one, it follows that $f_{H'}$ and $f_{AH'}$ will be equal, and that f_A will become one in dilute solutions. Reasoning in this way, they rewrote equation :11: in this way:

$$\mathbf{v} = \mathbf{K} \mathbf{C}_{\mathbf{A}} \mathbf{C}_{\mathbf{H}^+} \qquad : \mathbf{12}:$$

and from which they concluded that no primary salt effect should be expected in this reaction. They did not test this conclusion.

They next considered the reaction from the standpoint of possible secondary salt effect, as follows. When the reaction is catalyzed by a strong acid, there obviously is no possibility of a secondary salt effect. Consider the case when a weak acid is used. As has already been observed, the addition of a neutral salt may shift the equilibrium in the secondary or ionization reaction in such a manner as to cause an increase in the concentration of hydrogen ions. From this it would be expected that the value of the classical ionization constant ######

$$\mathbf{K}_{c} = \frac{CHC_{A}}{C_{HA}} \qquad :13:$$

for the weak acid, HA, should change upon the addition of a neutral salt. The thermodynamic ionization constant

$$\mathbf{K}_{a} = \frac{\mathbf{O}_{\mathbf{H}} \cdot \mathbf{C}_{\mathbf{A}}}{\mathbf{C}_{\mathbf{H}\mathbf{A}}} \cdot \frac{\mathbf{I}_{\mathbf{H}} \cdot \mathbf{I}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{H}\mathbf{A}}} : 14:$$

should, however, be a true constant and unchanged by the addition of neutral salts. By assuming f_{H^+} and f_{A^+} to be equal, and making the further assumption that for the uncharged molecule, HA, the activity coefficient in dilute solution is one, equation :14: becomes

$$K_a = \frac{C_{H^+}C_{A^-}}{C_{HA}} \cdot f_1^2$$
 :15:

where f₁ is the activity coefficient of any univalent ion. Reasoning in this manner, Bronsted and Freeter concluded that, when measured by the decomposition of ethyl diazoacetate, the concentration of hydrogen ions furnished by the dissociation of a weak acid should increase steadily upon the addition of a neutral salt, and in consequence the classical ionization constant, K_c, should also increase, but by precisely that amount

whereby K_c when multipled by the square of the activity coefficient should give a true constant, K. These authors studied diazo the decomposition of ethyl acetate by acetic acid in solutions of varying ionic strength of KNO_3 (up to .05 N.). As shown by Table 1 which contains a summary of their data, they found that, as required by theory, the value of K_c does increase with increased salt concentration. They apparently made no attempt to apply their theory quantitatively; that is, to multiply K_c by f_1^2 and see whether K so obtained would be constant througout the salt range to their data studied. The present author has done this, the results being shown in column 3 of Table 1. The values of the activity coefficients were calculated from the Debye-Hückel limiting law.

Te	able 1		
Conc. of KNO3	K _c x 10 ⁵	x 105 ²	-
0	1.85	1.85	
.005	1.94	1.64	
.01	2.07	1.64	
.02	2.15	1.55	
.05	2.30	1.37	

The values of $K_c t_1^2$ so obtained are in no sense constant. For this apparent divergence between the experimental and theoretical results, there are several possible explanations.

In the first place, Bronsted and Teeter assumed the total absence of any primary salt effect, i.e. they assumed the activity coefficients of the hydrogen ion and the critical complex to be identical and the activity coefficient of the uncharged diazo molecule to be one. This assumtion necessitates the disregarding of the linear term <u>Bu</u> in the general Debye-Hückel equation(equation :3:0. In other words, it is necessary to assume that the so-called limiting law is a reasonable approximation of the general Debye-Hückel equation under the conditions of the experiment. Since all concentrations were less than 0.1 H., this assumption was not unreasonable. On the other hand, it is entirely point concentrations that it may not be negligible nature of the ion, and furthermore that it may not be negligible even at concentrations less than 0.1 H., in which case a primary salt effect might be expected to occur. Actually, Brönsted and Daus(28), publishing at a later date, reported a strong primary salt effect in the case of the diazo reaction.

In the second place, Brönsted and Teeter had the same lifticulty with a side reaction between the **alt**rate from the salt, the hydrogen ion from the acid and the ethyl diazoacetate as was reported by earlier investigators. This has already been discussed. Brönsted and Teeter stated that in their calculations only the first portion of the curve was used, presumably before the side reaction manifested itself very strongly. However, since early in the reaction nitregen will be evolved both as a result of the normal reaction and the side reaction, it is entirely possible that even the first readings may be erroneous. Also, if the reaction constant is calculated in such a manner as to require a final or "a" reading, the value of this reading may be rendered uncertain as a result of the side reaction.

In the third place, the error introduced by assuming the validity of the limiting law in evaluating the quantity $K_c f_1^2$ may not be negligible.

In a more therewish poice of work, Bronsted and King(29), studying the hydroxyl ion catalysis of the decomposition of nitrso-triacetone-amine, first evaluated the primary salt effect in the reaction by using the strong base. NaOH, as catalyst. By correcting the total salt effect observed when the catalyst was a weak base for the primary salt effect, they were then able to separate the two effects. However, they also were only interested in showing that the reaction did substantiate the theory in a rough, galitative menner; they made no attempt to treat their results in a precise, main mathematical way.

From this it appeared that a thorough and significant study of the effect of added neutral salts upon the ionization of a weak acid by means of the diazo reaction would necessitate, first, the measurement of the primary salt effect, using a strong acid as catalyst, secondly, measurement of combined primary and secondary salt effects, using a weak acid as catalyst and in the third place, such a choice of acids and salts as would, if possible, preclude the occurence of a side reaction.

III. The Calculation of Reaction Rate Constants

In a study of this nature, considerable importande attatches itself to the method used in the calculation of the reaction rate. Until recently the usual expression from which the reaction

$$k = \frac{2.303}{t} \log \frac{a}{a-x}$$
 :16:

in which $\underline{\mathbf{f}}$ is the time, $\underline{\mathbf{a}}$ is the initial concentration and $\underline{\mathbf{x}}$ is the amount changed at time $\underline{\mathbf{f}}$.

As early as 1911 Rosanoff, Clark and Sibley(30) observed that a small error in ascertaining the value of \underline{a} may cause a decided error in the value of \underline{b} as calculated above. The usual method of determining \underline{a} was to let the final reading, after complete reaction, represent the initial concentration of the reactant. These authors recommended a method of extrapolation in the determination of \underline{a} . Table 2, taken from their work, is presented to show the decided influence of \underline{a} upon a rate constant calculated as above.

Apropos, the work of Bronsted and Teeter, published in 1924, was doubtless calculated by a formula similar to :16: When it is recalled that Fraenfkel found incomplete evolution of nitrogen to be characteristic of the side reaction, and that g in the above equation is based upon the total amount of nitrogen evolved, another possible explanation of the failure of the data of Bronsted and Teeter to follow the theoretical laws becomes apparent.

Roseveare(31-) has made an exhaustive study of the calculation of rate constants, in which he observes that an equation of the type given above(equation :16:) gives unjustifiable weight to the value of <u>a</u> unless it is known with much greater precision than the values of <u>x</u>. Because of the nature of the diazo reaction, the <u>a</u> value is probably the least He also shows that where the value of <u>k</u> is determined reliable. from an arithmetic average of several values obtained by the

Table 2

(From Rosanoff, Clark and Sibley(30)

1

T	(min.)	a	kl	k
0		65.09 ⁰	****	
7		65.18(?)	.0000302	****
10		65.14(?)	258	
24		64.96	195	.0000275
38		64.88	151	280
55		64.80	119	269
72		64.71	106	269
98		64.58	95	266
296		63.38	79	297
400		62.89	73	283
430		62.81	70	270
500		57.20	67	281
		-20.28		

Data from rate of inversion of cane sugar. k^{1} calculated from <u>a</u> obtained in usual way. <u>a</u> = 65.36⁰ $k^{\frac{1}{2}}$ " " " by Rosanoff, Clark and Sibley by extrapolation. <u>a</u> = 65.09⁰

so-called "inerval formula"

$$k = \frac{2.303}{T_n - T_{n-1}} \log(\frac{a - x_n - 1}{(a - x_n)}) \qquad :17:$$

the final value will be determined by the average of only the first and last values, all intervening values cancelling out.

Guggenheim(32) has devised a method of calculating rate constants for first order reactions which eliminates entirely the "a" value. If a series of readings(for example, changes in nitrogen pressure) are taken without regard as to interval, these readings to be designated the \underline{y} readings, and if a second series of readings, \underline{y} ', are taken in such a manner that there is always a <u>constant</u> time interval, \underline{p} , between the \underline{y} readings and the corresponding \underline{y} readings, then, according to Guggenheim, the straight line obtained by plotting $\log(t^2-v)$ against the time \underline{T} will have a slope $-k \log e$, \underline{k} being the reaction constant.

Since this method of calculation requires no final or end reading (a value), which may be decidedly inexact in this particular reaction, it is especially suited to the reaction being studied, and, except where noted for some particular reason, it is the method of calculation used throughout this study.

PRELIMINARY EXPERIMENTATION

I. The Apparatus

The designing and construction of the apparatus to be used was an essential part of this work. Briefly, the mechanical aspect of the problem was to devise an apparatus which would immediately record extremely small changes of pressure and which would give reproducible results. The problem was further complicated by the tendency for nitrogen to form supersaturated solutions, increasing the solubility of the gas several thousand times with the consequent introduction of major errors. To prevent supersaturation of nitrogen in the reaction mixture it ## was required that the reaction mixture be thoroughly agitated throughout the entire course of a "run". With these requirements in mind, several different types of apparatus and many modifications of these types were tried before a satisfactory form was evolved.

The first type tried was that described by Harned(18) and used by him in investigating the rate of decomposition of H_2O_2 by the measurement of oxygen evolved. This apparatus was later modified by Launer(33) who adapted it to use it in studying rate of reaction of penanganate and oxalate by measuring the <u>pressure</u> of the CO_2 evolved. The Launer apparatus, as well as several minor modifications of the same, proved unsatis factory for this work - and so it will not be further dicussed here except to point out some outstanding objections to it. Bothe Harned and Launer used the common mercury seal stirrer to

agitate the reaction mixture. Since all pressure measurements are predicated upon constant volume, the change in volume due to increased pressure forcing the mercury back into the outer cup of the stirrer introduced a constant source of error. In one of the modifications of this apparatus tried, the stirrer was replaced by a shaking device to insure agitation. The pressure was measured by means of an open end water manometer. This arrangement is susceptible to changes in atmospheric pressure, for which a correction must be made. In many cases the correction factor amounted to one third of the total reading. Reaction constants obtained by the use of this apparatus were not satisfactory for a precise examination of the effect of salts. The apparatus was finally discarded.

An apparatus resembling that used by Brönsted and King(29) in their study of the decomposition of nitrosotriacetone-amine was more satisfactory. Several changes were found to be desirable. A short peice of thick-walled capillary rubber tubing was sustituted for the fine glass spring described by these authors to connect the reaction flask, which must be shaken vigorously, and the manometer, which is stationary. This arrangement was more convenient, facilitating cleaning and filling the the reaction flask; it was found by experimentation to have no discernible effect on the reaction constant. A minor change in the design of the manometer allowed the elimination of one stopcock, while the reaction flask was redesigned, being made bulbs with two instead of one bulb. This type of reaction flask was

very satisfactory in that the upper bulb prevented the splashing of the reaction mixture up into the side arm where it would act as a liquid valve. The apparatus of Bronsted and King as modified for the purpose of this experiment is shown diagramatically in fig.1. The reaction mixture was introduced into flask F, which was then sealed by means of a parafin seaked cork stopper and molten parafin. With stopcock E open the entire system was partially evacuated through T. E was then closed and the evacuation continued until the mercury column rose to the bottom of scale C. An old Beckmann thermometer scale was found to be especially suitable for the measurement of small pressure changes. The reaction flask was then reapidly shaken by means of an electric motor. The form of apparatus just described was used in that part of the experimental work dealing with the effect of potassium nitrate on the dissociation of benzoic acid and the primary salt effect of potassium perchlorate. It will susequently be referred to as apparatus A.

It was found, however, that the evacuation of the reaction flask was not necessary. Preliminary runs showed very definitely that the value of the reaction constant was not effected by the evacuation of the reaction flask. With this established, it was possible to further simplify the apparatus by the elimination of the remaining two stopcocks, which at high vacuums showed some tendency to leak. The simplified apparatus also had other advantages. The morcury in the manometer column, as well as the capillary tube, ishowed less tendency to become fouled, since they were completely sealed from outside contamination. The sealing of the reaction flask was rendered easier and more certain than when it was evacuated. The simplified apparatus, shown in Fig. 2b, was used throughout the remainder of the research, and proved to be more satisfactory than that shown in fig.l. The lower bulb (A in fig.2b) was about half filled with redistilled mercury and a high vacuum pump applied to the upper end of the manometer column. When the pressure had been reduced to less than 5 mm., the tube, E, was sealed off just above the upper bulb, B. The manometer was connected to the reaction flask by means of thick walled rubber tubing in the same manner as apparatus A and the whole apparatus immersed in the thermosthat bath as shown in the figure.

As has been elready pointed out, the reaction mixture must be thoroughly agitated to prevent supersaturation. For this purpose, the reaction flask was fastened to a rack, and this frame shaken by means of the arrangemennt shown in fig.2a. 34.35 Several investigators, have studied the effect of rate of shaking upon the evolution of gasses from supersaturated solutions, and have shown that there is a certain optimum rate rate of shaking which depends upon the size and shape of the flask containing the reaction mixture. Faster or slower rates of shaking decrease the avolution of nitrogen by increasing supersaturation. From this it is apparent that while it isbest to have the shaking machine run at the optimum rate, it is imperative that it run at a constant wate. In the first experiments a small 1/50 H.P. electric motor was used. It was soon found, however, that the load was too heavy for this size

motor, since the speed varied widely with current fluctuations. For this reason a larger, 1/12 H.P. motor was connected to the shaking apparatus by means of a reduction puller, and arrangement which proved entirely satisfactory and which was used throughout the experiment. The shaking arrangement is shown diagrammatically in figure 2 a.

II. The Reagents

1. <u>Ethyl Diazoacetate</u>. The procedure used in this work for the preparation and purification of ethyl diazoacetate was essentially that of Curtius(2,3) modified by Hantzsch(11). The primary amine, glycine, may be reacted, under suitable conditions, with nitrous acid to give the corresponding diazo compound.

 $2NaNO_2 + H_2SO_4 \rightarrow 2HNO_2 + Na_2SO_4$

 $HNO_2 + H_2NCH_2COOC_2H_5 \rightarrow N_2CHCOOC_2H_5 + 2H_2O$

50 gm. of glycine ethyl ester hydrochloride (Eastman Kodak) are dissolved in the smallest possible amount of water and the solution is placed in a salt-ice freezing mixture. To this cold solution is added a concentrated solution of sodium nitrite in water. The whole mixture is cooled, and then treated dropwise with dilute sulfuric acid. After each successive addition of acid the resulting milky white turbidity, which is due to the separation of the insoluble ethyl diazoacetate in minute droplets, is removed by shaking with a small amount of ether, in which the ester is extremely soluble, and thehiecanting the ether-ester solution through a small dry filter. The acid treatments and ether extractions are repeated until there is no longer any

separation of ethy: diazoacetate upon the addition of sulfurie acid. The yield is increased by the addition of 15 gm. of sodium nitrite at this point. The acid treatment and ether extraction is then continued until there is no separation of the diazo ester, but there is instead, considerable formation of free nitrous acid. During the entire reaction, the flask containing the reaction mixture must be kept in the freezing mixture.

The combined ether extracts of the crude ester are then a washed with dilute solution of sodium carbonate until all excess acid is neutralized as indicated by a persistent red coloration of the aqueous phase. The ether solution is then washed three times with water and dried by brief shaking with anhydrous calcium chloride and subsequent standing for 24 hours over fresh calcium chloride.

The main portion of the ether is distilled off ## in vacuum at 30-35°C. from the dried ether solution, and the concentrated ether solution is further purified by being saturated with pure anhydrous ammonia gas. Upon standing for from 24 to 48 hours #### a dark red oily layer of impurities will form. The clear golden solution of the ester is decanted and washed with successive small portions of water until the washings show no tracefof ammonia.

After drying, first over calcium chloride and then over calcium oxide, the pure ethyl diazoacetate is obtained by direct vacuum distillation over calcium oxide, the portion boiling at 49.5-50.5°C.(16mm.) being collected in a flask immersed

in a freezing mixture.

Since granular calcium chloride shows a strong tendency to ##### adsorb ethyl diazoacetate, the adsorbed material resisting even repeated washing with ether, all calcium chloride used for drying the ester solutions should first be fused.

The pure ethyl diazoacetate solution may be kept for several months unchanged in a refrigerator.

Since the preparation was to be used for kinetic experiments, the umphasis was placed uponna pure product rather than a high yield. For this reason, whenever it was a question of increasing the yield at the expense of the purity of the product, the yield was always sacrificed. The theoretical yield based upon mass relationships is 83.6% of the weight of ethyl ester of glycine hydrochloride taken. Because of the nature of the reaction this yield may not be obtained. Fraenkel('5.) and Vanino(36) reported yields of 25 gm. of pure ester from 50 gm. of hydrochloride, corresponding to a yield of 60% of the theoretical. The following data are a summary of the yields obtained in three distinct syntheses of the compound:

Wt. of glycine ethyl ester hydrochloride - - 150 gm. Theoretical yield of ethyl diazoacetatet. - - 126 gm. Actual " " " - - 76.6 " Yield (% of theoretical) - - - - - - - 60.8% The degree of purity of the preparation was checked in several ways.

1. The purified ester was unchanged upon several months

standing.

-

2. There was practically no evolution of nitrogen when the ester was dissolved in pure (conductivity) water. This test indicates the absence of those impurities which would interfere with the use of the preparation for kinetic experiments; 3. There was no appreciable change in the conductivity of a very dilute acid solution upon dissolving ethyl diazoacetate in it. Since the conductivity of a solution it very sensitive to the addition of electrolytes, this test showed the preparations to be relatively free of electrolytes which probably are the only impurities with serious deleterious effect.

4. As a more complete check on the purity of the preparations, a weighed amount of the ester was dissolved in water and quantitatively decomposed by acid. The liberated nitrogen was volumetrically determined, and from a comparison of the percent nitrogen found to the theoretical, a measure of the purity was obtained. The results are given in the following table.

Sample	Vol. N2	Wt. N2	wt. sample	%M2	Theor. %
1	31.4900.	.0393 gm.	0.1608 gm.	24.46	24.60
2	30.04 ⁿ	.0376 ⁿ	0.1534 "	24.50	24.60

Fraenkel(5) reported percentage of nitrogen for several preparations of ethyl diazoacetate as follows: 24.19, 24.45, 24.25, 24.23 and 24.54.

2. <u>Benzoic Acid Solution</u>. Bakers C.P. Benzoic Acid (sublimed) was resublimed and the properly weighed amount dissolved in carbon dioxide free water and the solution made up to one liter in a calibrated flask. This was not further standardized.

3. <u>Standard Perchloric Acid</u>. Approximately 0.1 N. solution of Bakers C.P. Analyzed(meets A.C.S. Standards) Perchloric Acid(60\$) was made up, using conductivity water. This was standardized against pure sodium carbonate, prepared by heating the monohydrate for 36 hours in an oven at 110°C. Dilutions were made from this solution using calibrated volumetric glassware.

4. <u>Standard Salt Solutions</u> were made up by dissolving the proper weight of the salt(Bakers C.P."Analyzed") which had been previously dried to constant weight in an electric oven. Conductivity water(specific conductance less than 3.0x 10⁻⁶) was used in making all solutions and dilutions.

It was found that the dissolving of basic material from the glass in the case of soft glass bottles was not without appreciable effect on the solutions stored in them, the solutions growing steadily more basic as they were kept. For this reason it was found necessary to use only glass stoppered <u>Pyrex</u> bottles for the storage of reagents.

successive states where the party provide a successive state of the second state of the

III. The Experimental Procedure

Although each change in the conditions of the experiment necessitated certain changes in the procedure, the general method of carrying out a "run" may be outlined.

Approximately 25 ec. of pure (conductivity) water, or salt solution of the required concentration, were placed in a small glass stoppered bottle, and in this about nine drops of ethyl diazoacetate were dissolved. It was more convenient to measure the diazo ester by drops rather than weight, since the exact amount of ester used was not important. Exactly 25 cc. of the ester solution were transferred by means of a calibrated pipette to a clean dry receptacle. At all times care was taken to prevent the solutions from dissolving carbon dioxide from the air, since the reaction was sensitive enough to be effected by the carbonic acid formed. Pipettes were protected by a carbon dioxide absorbing tube containing soda-lime.

Exactly the required amount of standard acid solution was added to the accurately measured ester(or ester-salt) solution from a calibrated pipette. The final concentrations of acid and salt were determined from this. This reaction mixture, after thorough stirring, was placed in the reaction flask, and the flask was sealed by means of molten parafin, as already described. After agitating for about five minutes to insure equilibrium between the dissolved and gaseous nitrogen, the initial reading was made. Readings were then made at five minute intervals for a period of 135 minutes (in some cases the reaction was terminated in 90 minutes).

In most cases the reaction flask was then unsealed, thoroughly s wahed and dried; in a few cases the reaction was allowed to go to completion in order to obtain an end("a") value.

Timing was done by means of a Meylan stopwatch, Laboratory number 11, which had recently (1934) been checked against a seconds pendulum. The height of the mercury column on the scale was read by means of a small telescope. Changes in the temperature of the thermosthat bath were indicated by a Beckmann thermometer which had been"set" by means of a Bureau of Standards calibrated mercury thermometer. The maximum temperature variation was .01°C. on either side of the mean.

The general method of calculation has already been , discussed. More specifically, if the first half of the readings are designated the v readings, the last half the v', there results a series of v readings and a corresponding series of y', each of which is separated from the corresponding y reading by a constant time interval, p. By subtracting each v reading from the corresponding v' reding, a series of values, (v'-v), are obtained. The slope of the straight line obtained by plotting log(v'-v) against the time, when multiplied by log e gives -k where k is the reaction constant. The procedure has been to divide the series of log (v'-V) values into two equal groups, indicated for purposes of tabulating by a double space in the data # and then to take the arithmetic average of the log(v:-v) values and the time values for each group. These averages are given on the extreme right of each data sheet. From these values t we simultaneous equations are set up, and the slope determined as shown at the bottom of each data sheet.
For each run, the values of $\log(v^*-v)$ were plotted as abscissae against time as ordinates using a large scale graph. This gave a convenient method of testing the apparatus and to a certain extent the validity of the data, since the result should be a straight linge. For obvious reasons it is not possible to include these graphs in this thesis. In a few cases where readings were, from the graph, obviously in error, theywere eliminated.

Experimental Data

Presentation, Calculations and Discussion.

For convenience the experimental data are divided into several <u>Parts</u>. A short introduction consisting of a statement of the work attempted and the general conditions under which the work is carried out will be given before each <u>Part</u>. An extended discussion of the results of each <u>Part</u> along with calculations made from the data and results of these calculations will be attempted at the end of each Part.

A few words of explanation concerning the tabulation of data are necessary at this time. The time <u>t</u> is given in minutes; <u>v</u> and <u>v</u>', being simply scale readings, have no units. The double spaceing in the middle of the data sheet divides the log(v'-v)values into two groups, and for each group the average time and average log(v'-v) values are given on the extreme right. Readings in parentheses were taken, but were omitted in the calculation because, either as a result of the side reaction already mentioned or because a large scale graph indicated that they were in error.

Part I

The Rate of Decomposition of Ethyl Diazoacetate Catalyzed by Benzoic Acid and in the presence of Potassium Nitrate

In studying the effect of added salt on the reaction rate, the first salt to be tried was potassium nitra te. As already discussed in the review of the literature Bronsted and Teeter (27.) studied the effect of the addition of potassium nitrate on the decomposition of ethyl diazoacetate, when catalyzd by acetic acid. While their results showed qualitative agreement with the theory, a quantitative application of the theory was not so successful. Several possible explanations for this discrepancy were given. More specifically, it was decided to avoid as much as possible the effects of the side reaction which they mentioned by calculating the results from the Guggenheim formula, thus eliminating a very doubtful end reading.

Since the effect of the side reaction increases in magnitude as the reaction progresses, only the first readings should be used in determining the reaction constant. In most cases the first eight readings were divided into two parts, giving the $\underline{\bullet}$ and $\underline{v}\underline{\bullet}$ readings. As a result, four values for $(v^{1}-v)$ were obtained, and from these the constant determined in the manner already outlined. While only eight readings were used in the calculation, the remaining readings are given in the data sheets, such readings being inclosed in parentheses.

The data contained in this Part are very unsatisfactory; because of the side reaction it is possible to widely vary the value of the constant by simply changing the number of readings used in the calculation. Check results were difficult to obtain, especially in the presence of high salt concentrations. While these data indicate a decided positive salt effect, it was imposible to treat the results quantitatively.

The Effect of the Side Reaction in Changing the Pate with Time-Decomposition of Ethyl Disconcetate by Benzole Acid

In the Presence of Potassium Nitrate

Cone. of KNO3 0.0833 M.

Conc. Bensois Acid 0.003353 M.

Time	Reading	ading (a-k)		le
0	0	5.090	.70672	
15	428	4.662	.66857	.00763
10	782	4.308	.6348	.00724
15	1091	4.000	.0030	.00691
80	1338	3.752	.8743	.00662
25	1583	3.507	.5440	.00647
30	1798	3.292	.6175	.00650
35	1980	3.110	.4928	.00611
40	2144	8.946	.4093	.00593
45	8289	2.801	.4473	.00576
50	2421	8.660	.4263	.00560
55	2549	2.541	.4050	.00548
60	2671	2.410	.3836	.008-58

= 5090

The Rate of Decomposition of Ethyl Diazoacetate by

Benzoic Acid in Presence of .0835 M. KHO3

Concentration of KEO3 Conc. of Benzoic Acid 0.0833 H. 0.005335

Time	Ŧ	¥*	(A;-A)	10g(v'-	v)
0	0	13.38	13.38	1.1265	Aver. time 2.5
8	428	15.83	11.56	1.0626	" log(y'~y) 1.0945
10	232	17.98	10.16	1,0069	
15	1031	19.80	8.99	.9537	Aver. time 12.8 H log(v'-v) 0.9803
20	(13.38)				
25	(15.83)				
30	(17.98)				
35	(19.80)				
40	(21.44)		1.0945	2.0m -	b
48	(22.89)		0,9805	-12,0m -	0
50	(24 .21)		.1193 :	IF GAL	
55	(25.49)		11 -	-01142	
60	(26.71)			£ • 02630	

The Bate of Decomposition of Bthyl Dissocetate by

Benzole Acid in the Presence of .0853 M. KN93

Cone	02	KHO.
0	0633	5

Conc. of Demissic Acid 0.003535

Timo	¥	ΥI	(v1-v)	105(v'-v)	
0	Ŭ	12.35	12.35	1.0917	
S	3.61	14.68	10.77	1.0322	Aver. time 8.5 i log(v'-v) 1.0619
10	7.10	16.69	9.48	.9775	Annue (11ma 20 1
15	9.66	18.38	6.65	.9309	Aver. Cime 12.0 10g(v'-v) 0.9541
20	(12.35)				
RS -	(14.66)				~
30	(16.59)				
35	(18.38)		1.0819	8.6 m .	b
40	(19.87)		.9841 .	. 12.5 m -	b
45	(21,57)		anterina patrice patrices		
50	(22.70)		• AUTO -	0 03 080	
55	(28.88)		IR :	DINITURO :	
60	(25,12)		×.		

The Rate of Decomposition of Ethyl Dissessetate by

Benzois Acid in the Presence of .0417 M. KHO3

Cons. of KHO. 0.0417 M.

1

Cono. of Benzois Acid 0.003355

Time	¥	¥.	(v**v)	log(v' -v)
0	9.13	21,50	12.37	30984
8	12.90	23.80	10.90	Aver. time 2.8 1.0374 " log(v'-v) 1.0649
10	16.14	25.90	9.76	.9894
15	19.00	27.85	8.85	*9469 "log(v'~v) .9681
20	(21.50)			
25	((23.90)		1.0649	= 2.5 m - b
30	(25.90)		.9681	= 12.8 m - b
35	(27,85)			
40	(29.57)		.0967	- 10.0 m
			20	= 0.00967
			k	- 0. 02227

The Rate of Decomposition of Sthyl Diszoscetate by

Benzoic Asid in the presence of .0417 M. KNOg

Conc. of HNO3 0.0412 M.

Cone. of Bonzoic Acid 0.003533 N.

Time	۷	vt	(V1-V)	log(vi-	()
0	9	12.32	12.32	1.0806	
5	3.70	14.60	10.90	1.0374	Nyer, time 2.5 " log(v'-v) 1.0690
10	6.95	16.70	9.75		Awara adama 30 C
15	9.78	18.60	8.82	.9455	"log(7'~v) 0.9672
20	(12.32)				
25	(14.60)				
30	(16.70)		1.050	0 2.5	im – d
35	(18.60)		.967	12.5	6 + m
40	(20.20)			0 20 0	
45	(21.69)		¢091	- TO+0	
50	(23,20)			m 0.0	0114
55	(24.75)			15 0.0	91138

The Rate of Decomposition of Sthyl Dissoncetate by

Bonzoic Acid in the Presence of .0208 H. KNO3

Conc		20	KINO .
0	546	0200	12

Sone. of Benzole Acid 0.003383 N.

Timo	¥	A.	(A +4A)	10g(*'-	2)
Ø	Q	13.85	13.85	1.1415	
5	4.05	16.48	12.43	1.0946	Aver. time 2.5 log(v'-v) 1.1180
10	7.00	18.87	11.18	1.0084	Among Adams 310 K
15	10.88	21.00	10.22	1.0095	" log(v'-v) 1.0289
20	(13.85)				
25	(16.48)				
30	(18,87)				
35	(21.00)		3 3700	£1 £7 m	
40	(23.03)		7.1180	3.0 E	
45	(25.10)		R. 02399	III Cett	
50	(26.50)		.0891	= 10.0 m	
55	(28.00)		m	- 0.008	91
60	(29.45)		Ŀ	- 0.020	62

The Rate of Decomposition of Ethyl Dissonestate by

Banzoic Acid in the Presence of .0208 M. KNO3

Conc. of KNO3 0.0208 M. Cone, of Benzole Acid 0.002533 M.

Time	V	Ψł.	(v++v)	108(***	7)
0	0	15.37	15.37	1.1867	Ann an de an
5	4.82	18.38	13.86	1.1418	Ayer. time 2.8 Log(7'-7) 1.1642
10	8.51	20.95	12,44	1.0948	
15	12.10	23.38	11,28	1.0583	Ayer. Sime 12.5 Log(v*~v) 1.0736
20	(15.37)				
25	(18.38)				
30	(20.95)				
35	(23.58)		3.1642	- 2.5	m - b
40	(25.70)		2.0736	_ 22.8 1	m - b
45	(27.84)			30.0.	
50	(29.31)		0:0300	20+01	
55	(30.99)		173	0.00	900
60	(32.68)		2°	= 0.0#	057

The Eate of Decomposition of Ethyl Diazoacetate by Benzoic Acid in the Presence of .0104 M. KH03

Conc. of KN03 0.0104 M. Gene. of Homeole Acid 0,003333 H.

Tine	۷	ΨŦ	(w=+w)	10g(71-	7)
0	0	13.68	13.69	1.1361	
5	3.93	16.43	12.60	1,0969	Ayor. the 2.5 log(v'-v) 1.1165
10	7.53	18.63	11.34	1.0846	Amon Adam 10 6
15	10.74	21.05	10.31	1.0133	1.0339
20	(13.68)				
25	(16.43)				
30	(18.83)		1 11.00		
35	(21.05)		1.1105	E G E	~ J
40	(23.10)		1.0339	- 15.5 K	
45	(25.45)		0.0825	- 10.0 m	
50	(26.64)		33	- 0.00086	
55	(23.22)		12	- 0.01948	
60	(29.73)				
65	(31.04)				

The Bute of Decomposition of Sthyl Dissoncetate by

Benzeic sold in the Presence of .0104 N. KNOS

Cone. of MM03 G.0104 M.

Cone. of Bensieks Auld 0.005553%.

Tims	V	T t	(V · · V)	100(11-7	1)
0	0	16.70	16.70	1,2227	
84 \$	4.4'72	19.68	15:24	1.1830	L'SOSS
10	9.10	22.00	15,90	1.1399	1
25	15.18	85.98	12.67	1.1089	1,1213
20	(26.70)			•	
25	(29.95)				
50	(82.90)		1.0029	a 2.5m	- b
325	(26.35)		3.12)3	- 12.5m	- b
40	(23.03)		A 6016	anananan anan ananan a	g - El anterneti-regardingerikanskipensis-prod
45	(30.25)			- 61/31400 M 044	าวร
30	(22.45)				o kén
55	(34.38)		15		
co	(36.15)				

The Rate of Decomposition of Ethyl Diazoacetate by Benzoic Acid in the Presence of .0052 M. KNO₃

Conc. of KNO. 0.0052 M. Gone, of Renzeic Acid 0.003335

Timo	V	4,1	(v+*v)	log(v+-	(v)
0	0	15.99	13.89	1.1421	Amon Adma O.C
5	3.98	18.53	12,71	1.1042	n log(v1-v) 1.1231
10	7.53	19 .82	11.09	1.9678	laren Atun 19 5
15	10.93	21.40	10.52	1.0220	" log(v'-v) 1.0449
20	(13.89)				
25	(16.69)		1.1231 -	2.5 m -	b
30	(19.22)		.0449	12.5 11	h
35	(21.40)	4 41.74		andre-group of	er ve-suik-put
40	(23.30)	(.0782 ==	10.0 m	
45	(25.70)		m <u></u>	0.05782	
50	(27.05)		k =	0.01801	

Tablo 13

The Rate of Decomposition of Lthyl Dissectate by Bonzels Acid in the presence of .0052 ... Liby

0.0058 M.

Cone. of Sensole Acid 0.002533

Tima	v	47.8	(41-14)	log(v:-	v)	
Q.	0	12.00	12.00	3.0792	No. of a line of the	()
5	3.48	2.4.47	11.04	1.0430	a J	07(7° 47) 1 DD32
						AP & C. C. Hand
10	8.40	26161	10.22	1.0004	Access.	44 18 20 B
15	9.38	18.70	9.41	.9740	APP CAL	03(7 -7)
						010000
20	(18.00)					
25	(14.47)					
37)	(16.61)		1 (1875)	8-5 m	+ 0	
35	(18.79)		neocee	7.2.5 3		
40	(20.59)	çe	an Albert of Alb	and the state of the second states	naises andreas and a	
编码	(82,27)		.0697	= 10.0 m		
50	(24.22)		m	- 0.0069	7	
55	(25.77)		10	= 0.0160	5*	
60	(26.81)			se verillende volt	1 9617-	reliable.

The Rate of Decomposition of Ethyl Diszoacetate by

Benzoic Acid in the Absence of Added KNO3

Conc. of KNO3 0.000 Conc. of Benzoie Acid 0.003333 M.

Time V		V ¹	(v*-v)	log(v*-v)		
0 5 10 15	.80 3.03 5.11 6.94	12,98 14.14 15.30 16.32	12.18 11.11 10.19 9.38	1.08565 1.0457 1.0082 .9722	Average time 7.5 n log(v'-v) l.0279	
20 25 30 35	8.68 10.19 11.60 12.93	17.25 18.13 18.90 19.65	8.57 7.94 7.30 6.67	.9330 .8998 .8633 .8241	Average time 27.5 " log(v!-v) 0.8801	
		1.0279 .8801 .1478	7.8 m 27.5 m -20.0 m	- b		

k 0.01702

The Rate of Decomposition of Ethyl Diazoacetate by

Benzoic Acid in the Absence of Added KNO3

Conc. of KNO3

Conc. of Benzoic Acid 0.003333 N.

Time	v	A1	(****)	log(v !-	v)
0	5.02	19.78	14.76	1.1691	
5	7.50	21.00	13.50	1.1303	Average time 7.5
10	9,89	22.12	12.23	1.0874	" log(v'-v) 1,1091
15	11.92	23,13	11.21	1.0496	
20	13.75	24.08	10.33	1.0141	
25	15.40	24.96	9.56	.9805	Average time 27.5
30	16.99	25.78	8.79	.9440	" log(v'-v) 0.9608
35	18.44	26.47	8,03	.9047	

1.1091	1	7.5	22	-	b	
0.9608	=	27.5	m	•	b	
0.1493	=	20.0	-			
	Ħ	0.00	74	1.		
k	=	0.03	170	5		

The Rate of Decomposition of Ethyl Diazoacetate by Benzoic Acid in the Absence of Added KNO₅

Conc. of KNO3 0.00

Conc. of Benzoic Acid 0.003333M.

Timo		w 9	(v=*v)	log(7'-	(1)
0	1.68	17.28	15.60	1.1931	Amount of the P. C.
5	4.28	18.57	14.29	1.1550	Average time 7.0
10	6.64	19.75	13.11	1.1176	1.1370
15	8.77	20.86	12,09	1.0624	
20	10.82	21,87	11.05	1.0434	Avenue time 27.5
25	18.60	22.78	10.18	1.0077	WARTERS OTTO MICH
30	14.30	23.62	9.52	.9694	0.9882
35	15.85	24.41	8,56	.9323	
		1.1370	7.5 m	- b	
		0.9882	- 27.5 m	6 b	

0.1498	•	620.0 m
		0.00744
k		0.01713

Examination of the data reported in this Part shows that the use of potassium nitrate is unsatisfactory for the study of salt effects in this particular reaction. At all salt concentrations duplicate determinations were carried out under identical conditions; however, the reaction constants obtained for duplicate "runs" checked each other only within wide limits. It was found that by changing the number of readings used in its calculation, the value of the reaction constant could be changed almost at will. This was especially true at high salt concentrations and must be attributed to the side reaction alredy discussed. In order to make the data at various salt concentrations comparable, it was arbitrarily decided to use the same number of readings in the calculation of the constant for the differant salt concentration 8. Since this gives only four points from which to determine the value of k, it is a very unsatisfactory arrangement. However, to use more readings would have magnified the effect of the side reaction. It should also be noted that because of the nature of the measurements to be made, the reaction must be allowed to run for at least five minutes before any readings are taken. This time lapse is necessary to allow the saturation of the reaction mixture with nitrogen and can not be eliminated. Hence, it is impossible to obtain readings for the first part of the reaction.

The average values of \underline{k}_{λ} when plotted as obdinates. against the concentration of potassium nitrate in the reaction mixture do not yield a smooth curve. This is shown in Fig. 3 and constitutes further evidence that the data obtained using potassium nitrate is not reliable. The graph does show, however, that there is a positive salt effect, and that the salt effect is probably not linear. These results are in agreement with the Brönsted theory and with the results obtained by Brönsted and Teeter (27) and already discussed.

It must be concluded that the elimination of the final reading("a" value) from the calculation of the reaction constant does not reduce the effect of the side reaction to negligible proportions, even though the value of the constant be based on only the initial part of the reaction. Since the object of this research was the quantitative study of the salt effect, it was apparent that some other salts would have to be found which would not give a significant side reaction with the ester molecule.

Part II

The Rate of Decomposition of Ethyl Diazoacetate Catalyzed By Perchloric Acid and in the Presence of

Potassium Perchlorate

The number of <u>neutral</u> salts from which one may choose is rather limited. With the elimination of all salts of the halogen acids, of nitric acid and of sulfuric acid, all of which are known to give a side reaction with ethyl diazoacetate, the choice is still further restricted.

Examination of the electron formula of perchloric acid

10: H:0:C1:0:

suggested that the perchlorate radical should show tendency to react with the ethyl diazoacetate molecule, since electronically the radical is "saturated". From this it appeared that perchloric acid and the perchlorates might be well suited to the study of salt effects in the diazo reaction.

Experimentation indicated that this reasoning was correct. Table 17-a, in which the value of <u>k</u> is calculated at five minute intervals by means of the formula

$$k \frac{2.303}{t} \log \frac{a}{a-x}$$

shows that <u>k</u> does not change significantly with the time. This table may be compared with Table 3_{χ} which gives similar ##### data for nitrates.

Table 17-a

Showing the Absence of Side Reactions in the Decomposition

of Ethyl Diazoacetate When Catalyzed by Perchloric

Acid

Time	Reading	(a-x)	log(a-x)	k/2.303
0	0	27,00	1.4314	
5	2.35	24.65	1.3918	.00790*
10	4.30	22.70	1.3560	.00753
15	6.11	20.89	1.3199	.00743
20	7.79	19.21	1.2835	.00739
25	9.38	17.62	1.2460	.00741
30	10.84	16.16	1.2084	.00743
35	12.22	14.78	1.1697	.00747
40	13.43	13.57	1.1326	.00747
45	14.58	12.42	1.0941	.00749
50	15.57	11.43	1.0580	.00747
55	16.49	10.51	1.0216	.00745
60	17.33	9.67	.9854	.00743
65	18.11	8.89	.9489	.00742
70	18.80	8.20	.9138	.00739
	a = 27.00			

Conc. of Perchloric Acid 0.000442 M

* Probably in error.

The experiments reported in Part II were designed to allow measurement of the primary salt effect, if any exists, in the diazo reaction. For this reason, the concentration of perchloric acid is not changed throughout this Part. The concentration of added potassium perchlorate is varied from zero in Table 17 to .0714 M. in Table 33. Hence, changes in the value of \underline{k} will be directly due to the added salt. The concentration of both acid and salt is given at the top of each table, and, in all cases, refers to final concentration.

The Rate of Decomposition of Ethyl Diszoscetate by

Perchloric Acid in the Absence of Added Salts

Conc		20	Added	Salt
	Q	.00)	

Conc. of Perchloric Acid COCOLE74 M.

Timo	V	A 4	(v··v)	108(V'-	v)
0	26.70	39,50	11.80	1.0719	
5	27.77	59.10	11.42	1.0577	
10	23.77	39.82	11.05	1.0434	Automa titura 36
16	29.67	40.48	10.81	1.0340	watege the ro
80	30.58	41.07	10.49	1.0208	1.0327
25	31.49	41.65	10.17	1.0073	
30	32.39	42.26	9.87	.9943	
35	33.22	42.80	9.58	.9814	
40	34.00	43.38	9.38	.9722	
45	34.83	43.91	9.08	.9581	trans time to
50	35.60	44.83	8.83	.9460	A Jostalan)
55	36.38	44.94	8.56	.9325	0.9460
60	37.09	48.48	8.36	.9222	· ·
65	37.80	45.92	8.12	.9096	
		1.0327	15 m	- b - b	
		•0867	-35 m .002479		

The Rate of Decomposition of Ethyl Diasoacetate by Perchloric Acid in the Absence of Added Salts

Conc. of Added Salt 0.00 Conc. of Perchloric Acid COCOl474 M.

Time	٧	W ¹	(78-7)	log(v'-	*)
0 5 10	24.00 25.00 26.00	35.90 36.60 37.24	11.90 11.60 11.24	1.0755 1.0647 1.0508	
15 20 25 30	26.97 27.87 28.79 29.67	37.88 38.53 39.16 39.70	10.91 10.66 10.37 10.03	1.0391 1.0278 1.0159 1.0013	Average time 15 " log(v'-v) 1.0391
35 40 45 50 55 60 65	30.52 31,36 32.19 32.97 33.75 34.48 35.20	40.29 40.87 41.46 41.95 42.46 42.97 43.45	9.77 9.51 9.27 8.98 8.76 8.48 8.25	.9899 .9782 .9671 .9533 .9400 .9284 .9164	Average time 50 * log(v!-v) 0.9533
		1.0391 .9533 .4 .0858 -m = k	15 m - <u>50 m -</u> 635 m 0.002450 0.005642	b D	

The Rate of Decomposition of Ethyl Diazoacetate by Perchloric Acid in the Absence of Added Salts

Conc. of Added Salts

Cone. of Perchloric Acid CQ001474 M.

Time	¥	Aş	(v1-v)	105(11-	r)
0	19.00	29.90	10.90	1.0374	
5	19.96	30.54	10.58	1.0245	Avanaga tima 10
10	20.88	31.18	10.50	1.0129	" log(stat)
15	21.76	31.77	10.01	1.0004	1.0128
20	22.60	38.55	9.75	.9890	
25	83,48	38195	9.47	.9763	
30	24.27	33.46	9.19	.9633	Average time 37.5
35	25.02	34.00	8.99	.9533	" log(wiwy)
40	25.81	34.53	0.62	.9355	0.9451
48	26.56	35.02	8.46	.0274	
50	27.28	35.50	8.22	.9149	
55	87.90	35.99	8.00	.90794	5
60	28.59	36.48	7.69	,89714	•
65	29.25	36.89	7.64	.88314	8
	In error	(from graph))		
		1.0128	. 10	•0 m • b	
		0.9451	- 37	.5 m - b	
		.0677	27	.5 m	
		-	= 0.	002463	
		k		005667	

The Rate of Decomposition of Ethyl Diazoacetate by Perchloric Acid in the Absence of Added Salts

Conc. of Added Salt C.00 Cone. of Perchlorie Acid COCOl474 M.

Time	v	ψt	(ym tw)	1	log(vt-	a)
0	40.50	50,80	10.30	24 24	1.0199	Average time 7.5
5	41.39	51.39	10.01		1.0004	" loc(v!-v)
10	42.20	51.95	9.75		.9899	0.9948
15	43.07	52.55	9.49		.9769	
20	43.87	53.08	9.21		.9643	Average time 25.0
25	44.64	83.56	8.92		+9504	" log(y!-y)
30	65.40	54,03	8.68		.9385	0,9510
		-			-	
		0.9948	× 7.5		* 3	
		0.9510	- 25.0	B	- 3	
		.0438	-17.5	-		

k - 0.005783

-0.002498

The Rate of Decomposition of Ethyl Diszescetate by

Perchlorie Acid in the Presence of EClog

Cone. of KCl04 0.00447 M.

Conc. of Perchloric Acid 00001474 H.

Time	¥	¥ŧ	(**-*)	log(v!-	v)
0	8.16	19.89	11.73	1.0693	
5	9.81	20,60	11.39	1.0565	
10	10.17	21.30	11.13	1.04650	
15	11.13	21.89	10.76	1.0318	Average time 15
20	12.00	22.47	10,47	1.0199	" log(v'-v) 1.0335
25	12.90	23.18	10.28	1,0120	
30	13.77	23173	9.96	.9983	
35	14.67	24.28	9.61	,9827	
4 0	15.50	24.83	9.33	•9699	
65	16.25	28.57	9.12	,9600	
50	17.08	25.88	8.80	.9445	Average time 50
55	17.82	26.35	8.53	.9309	" log(v/~v) 0.9455
50	18.50	25.84	8.34	.9212	
55	19.20	27.32	8.12	.9097	
		1.0335 .	15 m -	ъ	
		.9455 =	50 m -	Ъ	
		*0880 =	-35 m		
		***************************************	0.002513		
		k -	0.005787		

The Rate of Decomposition of Ethyl Diazocostate by

Perchloric Acid in the Presence of KCl04

Cone. of KCl04 0.00447 H.

Cons. of Perchloric Acid 0.0001474 M.

Time	A	A.1	(****)	10g(v1-	*)
0	3,28	15.03	11.75	1.0700	
5	4.17	15.69	11.52	1.0614	
10	5.23	16.38	11.15	1.0473	
15	6.19	17.00	10.81	1.0338	Average time Lb
20	7.15	17.60	10.45	1.0191	1.0341
25	8.00	18.25	10.25	1.0107	
30	8.67	18.78	9.91	,9961	
35	9.75	19,27	9.52	.9786	
40	10.50	19.88	9.38	.9722	
45	11.35	80.48	9.07	.9576	
50	12.18	21.00	8.82	.9455	Average time 50
55	12.90	21.50	8.60	.9345	" log(v -v) 0.9451
60	13.65	21.98	8.33	.9206	
65	14.38	22.44	- 8.06	.9063	
		3 000 4 3	2.0		
		1.0341 _	(15 m -	D	
		.9451 -	50 m -	b	
		.0880 =	-35 13		
		-112 ==	0.002515		
		k =	0.005792		

The Rate of Decomposition of Ethyl Diszoncetate by

Perchlorie Acid in the Presence of HClog

Conc. of R0104 0.00447

Conc. of Perchloric Acid 0.0001474

Timo	V	W1	(****)	10g(v'-	·v)
0	7.39	18.85	11.46	1.0592	
5	8.39	19.56	11.17	1.0480	
10	9.38	20,25	10.97	1.0362	Average time 15
15	10,35	20.93	10.58	1.0245	
20	11,25	21.48	10.21	1.0090	" log(v'-v) l.0219
25 -	12.10	22.02	9.92	.9965	
30	15.04	22,58	9.54	.9795	
35	13.77	23.09	9.32	.9694	
40	14.59	23,70	9.11	.9595	
6 5	15.35	24,24	8,89	.9489	Among Alas 20
60	16.13	24.72	8.59	.9340	Address frage of
5.5	16.87	25,19	8.58	.9201	0.9354
60	17.58	25.70	8.12	.9096	
85	18.32	26.12	7.80	.8921	
		1.021	.9 16	m - b	
		.933	4 : 50	1 - b	
		.098	6 = -55	m	
		-	a _ 0.00	2528	
			k = 0.00	5922	

The Rate of Decomposition of Ethyl Diazoacetate by

Perchlorie Acid in the Prosonee of KClO4

Cone. of KCL04 0.00895 H.

Conc. of Perchloric Acid C.COOL474 M.

Time	iv vi	(-10)	log(v'-	'-v)	
0	8.43	22.77	24.34	1.1565	
5	9.60	20.59	13.99	1.1458	
10	10.82	24.36	13.54	1.1316	
15	11.91	25.13	13.22	1.1212	Average time 15
20	13.10	25.95	12.65	1.1099	" log(v'-v) 1.1210
25	14.15	86.67	12.52	1.0976	
30	15.20	27.39	12.10	1.0656	
35	16.24	28.05	11.81	1.0782	
40	17.26	28.75	11.47	1.0506	
40	18.38	29.40	11.12	1.0461	and the second se
50	19.23	29.98	10.75	1.0314	Average time 50
55	20.13	30.58	10.40	1.0170	" log(v'-*) 1.0319
60	21.05	31.20	10.15	1.0065	
65	21.93	51.72	9.79	.9908	
		1.1210	= 15 m	- b	
		1.0319	= 50 m	- b	
		0.0891	= -35 m		
			= 0.0025	45	
		k	0.0058	61	

The Rate of Decomposition of Ethyl Disconcetate by

Perchlorie Acid in the Presence of Holds

0.00895 N.

Cone. of Porchierie Acid C.COCI474 M.

Time	v	V [†]	(v*-v)	205(V)-	v)
Q	3.77	23.42	14.05	1.1658	
5	9.97	24.20	14.23	1.1501	
10	11.15	25.01	13.85	2.1418	
15	12.34	25.75	13.41	1.1276	Average time 15
20	13.38	26.02	15.03	1.1149	1.1271
25	14.43	87.00	12.57	1.0393	1
30	15.44	27.75	12.31	1.0903	
35	16.61	28.58	11.07	1.0731	
40	17,45	28.98	11.45	1.0500	
45	28.38	20.61	12.23	1.0504	
50	19.28	30.19	10.91	1.0378	
55	EO.LS	30.73	10.00	1.0253	Average time SE.S
60	21.01	\$1.89	10.87	1.0116	1.0308
65	21,63	31.83	10.00	1,0000	1
70	22.64	38,30	9.69	/.9850	,
		1,1271	- 15.0 m	- h	h.
		1.0508		- b	· · · ·
		0.0953		1	-
		20000 P	- 0,00856	1	
		le		5	e e e e e e e e e e e e e e e e e e e

The Rate of Decomposition of Ethyl Dissoncetate by

Perchloric Acid in the Presence of KClO4

Conc. of XC104 0.0179 M.

Conc. of Parchloric Acid 0.0001474 E.

Time	A	Δ1	(v+-v)	10g(v'-	(*)
0 5 10 15 20 25	6.69 7.95 9.20 10.26 11.39 12.42	20.73 21.54 28.30 28.99 23.74 24.45	14.04 13.59 12.20 12.73 12.35 12.03	1.1474 1.1252 1.1206 1.1049 1.0917 1.0803	Averege time 12.6 " log(v'-v) 1.1130
30 35 40 45 50 55 55 60 65	13.49 14.50 15.47 16.40 17.32 18.20 18.99 19.97	25.11 25.90 26.45 27.0¥ 27.68 29.25 28.80 2 .36	11.62 11.30 10.93 10.67 10.34 10.05 9.81 9.49	1.0652 1.0531 1.0406 1.0222 1.0145 1.0028 .9917* 9773*	Average time 42.5 " log(v'-v) l.0340
	* in er:	000 (from gra 1.1130 = 1.0340 .0790 k	ph) 12.5 m - 42.5 m - -30.0 m 0.002634 0.002036	b b	

The Rate of Decomposition of Ethyl Diszoncetate by

Perchloric Acid in the Prosence of KClO4

Conc. of KC104 0.0179 M.

Conc. of Perchloric Acid 0.0001474 M.

Time	A A;		(v= tv)	10g(71-	log(v'-v)	
0	2.35	16.99	14.34	1.1055		
5	3.62	17.82	14.20	1.1823		
10	6.74	18.67	13.93	1.1439		
15	5.90	19,37	13.47	1.1294	Average time 15	
20	7.12	20.14	13.02	1.1146	1.1291	
25	8,17	20.89	12,72	1.1045		
30	9.80	23.00	12.40	1.0934		
35	10425	22,28	12.03	1.0803		
40	11,30	82.90	11.60	1.0645		
4.5	12,32	23.58	11.26	1.0515	Assessed friend ED	
50	13.37	24.20	10.83	1.0346	Rearing Case of	
85	14.98	24.88	10.60	1.0253	1.0376	
60	15.26	25.49	10.22	1.0094		
65	18.11	26.05	9.94	.9974		
		1.1291 _	15 m	- b		
		1.0376 =	50 m	- b		
		.0915	-35 R			
			0.0026	1.8		
		k .	0.0000	1.5		

The Rate of Decomposition of Ethyl Disconcetate by

Perchlorie Acid in the Presonce of KClOg

Conc. of RC104 0.0179 M. Cone. of Perchloric Acid 0.0001474 M.

Time	¥ 9.90 11.17 12.43 13.68 14.90 15.99	44	(V" V)	10g(v*-v)
6 5 10 15 20 25		9.90 34.94 15.07 11.17 35.98 14.65 12.43 26.65 14.22 13.68 27.45 12.77 14.90 28.20 13.30 16.99 28.96 12.97	1.1791 1.1659 1.1699 1.1289 1.1289 1.129	Averege time 12.5 " log(vi-v) l.1454	
30 35 40 45 50 58 60	17.10 18.22 19.19 20.20 21.20 22.23 23.17	29.70 30.42 31.11 31.73 32.40 33.03 33.67	12.60 12.20 11.92 11.53 11.10 10.80 10.50	1.1004 1.0364 1.0763 1.0637 1.0453 1.0534 1.0212	Average time 45.0 " log(v'-v) 1.0609
65	24.04 * in	34.22 eprop (from 1.1454 = 1.0609 = .0845 = .0845 =	10.13 graph) 12.5 m - 45.0 m - -32.5 m 0.002599 0.005285	1.0056# D	
The Rate of Decomposition of Ethyl Disconcetate by

Perchlorie Acid in the Presence of MC104

Cons. of KCl04 G.0357 H.

Cone. of Perchloric Acid 0.0001474 H.

Time	Y	W.	(4+-4)	10g(v'-	(7)
0	7.05	18.89	11.84	1.0733	999 - Conservation and a second s
5	8.05	19.85	11.50	1.0507	
10.	9905	20,23	11.18	1.0484	A
15	10.00	20.89	10.89	1.0370	MACLEGE CIMO 10
20	10.95-	81.50	10.65	1.0272	1.0347
25	11.97	82.05	10.18	1.0077	
30	12.78	22.60	9.88	.9921	
\$5	13.62	23.17	9.55	.9800	
40	14.48	23.73	9.23	*9658	
le ci	15,26	24.29	9.03	.9557	Automous Island PO
50	2.6.03	24.75	8,72	*9405	Average since ou
55	16.80	25.18	8.28	.9222	0.9393
60	17.52	25.69	8.16	.9117	
66	28,22	26 .14	7.98	,8987	
		1.01.47	15	h	
		+0000 ····	00 8 -	0	
		•0954 =	-35 a		
		17.3	0,002724	1	

The Rate of Decomposition of Ethyl Diszoscetate by

Perchloric Acid in the Presence of KClO4

Cone. of XC104 0.0557 M. Cone. of Perchlorie Acid 0.0001474 N.

Time	V	A.	(v+-v)	log(v'-	(*)
8	10.35	25,51	15.16	1.1807	n - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
8	11.72	26.35	14,63	1.1652	
10	12.99	27.13	14.14	1.1505	
15	14.22	27.95	13.73	1.1377	Average time 15
20	15,40	28.71	13,31	1,1242	1.1385
85	16.53	29.48	12.95	1.1123	
30	17.65	30.21	12.56	1.0990	
55	18.73	30.89	12.16	1.0849	
60	19.84	31.59	11.75	1.0700	
45	20.87	38 .28	11.35	1.0550	Automatic Adams 50
50	21.85	32.85	11.00	1.0414	Realize crue po
55	22.78	33.52	10.74	1.0310	1.0425
50	23.74	34.09	10.55	1.0149	
65	24.64	34.64	10.00	1.0000	
		1.158	5 = 15 a	a = b	
		1.042	5 - 50 8	n - D	
		.0960	0 = -35 8		
		-	a 0.002	8744	
		1	k = 0.000	1319	

The Rate of Decomposition of Ethyl Dissoncetate by

Perchlorie Aoid in the Presence of KClo4

Cone. of KCl04 0.0357 M. Conc. of Perchloric Acid 0.0001474 H.

Time	¥	A 1	(v++v)	log(v*-	(1)
0	15.04	30.60	15.64	1.1914	
8	16.49	31.53	15.04	1.1773	terrene blan 20 F
10	17.90	32.47	14.57	1.1635	Average time 18.5
15	19.22	33.37	14.16	1.1511	1.1564
20	20.58	34.19	13.61	1.1339	
25	21.62	35.05	13.23	1.1216	
30	23,01	36.86	12.85	1.1089	
35	24.24	36.68	12.44	1.0048	
40	25.38	37.42	12.04	1.0806	Lucana time AS.O
45	26.49	38.18	11.69	1.0678	WASTERS STUD POPO
50	27.58	38.90	11.32	1.0538	1.0677
55	28.65	39,60	10.97	1.0402	
60	89.62	40.28	10.66	1.0278	
		1.1564	= 12.0	5m = b	
		1.0677	= 45.0	0 m - b	
		.9887	-32.5	5 28	
		-071	- 0.00	2730	
		k	= 0.00	06287	

The Bate of Decomposition of Ethyl Dissoacetate by

Perchlorie Acid in the Presence of KClog

Conc. of KC104 0.0714 M. Cone. of Perchloric Acid 0.0001474 N.

Time	۷	A1	(v'-v)	log(v' -v	7)
0	10.20	RS.09	18.60	1.2716	
5	11.80	29.87	18.07	1.2570	
10	13.50	30.88	17.83	1,2368	Avenage time 15
15	15.09	31.79	16,.71	1.2230	" las(viev)
20	16.60	38.71	16.11	1.2071	1,2231
25	18.07	33.54	15.67	1.1895	
30	19.49	34.45	14.96	1.1749	
35	20.80	35.30	14.50	1.1614	
40	22.06	36.12	14.06	1.1480	
45	23,27	36.82	13.65	1.1319	American trime 50
50	24.45	37.50	13.05	1.1155	tor(wi-w)
55	25.62	38.20	12.58	1.0997	1.1167
60	26.70	38.98	12.28	1.0892	
65	27.83	39.62	11.77	1.0718	
			1.40		
		1.2231 :	= 16 m	• 0	
		1,1167	= 50 m	- b	
		.1064	-35 m		
		-12	- 0.0030	040	
		k	0.007	001	

The Rate of Decomposition of Ethyl Dissoucetate by

Perchloric Acid in the Presence of KClO4

Conc. of KC104 0.0714 H.

Conc. of Perchloric Acid 0.0001474 H.

T1mo	V	vi	(v+-v)	108(A1-	(v)
0	4.98	19.04	14.12	1.1498	
5	6.08	19.80	13,72	1.1873	
10	7.28	20.54	13.26	1.1225	
15	8.47	21.25	12,78	1.1065	Average time 15
20	9.60	21.93	12.33	1.0310	1.1064
25	10.69	82.60	11.91	1.0759	
30	11.77	23.50	11.53	1.0618	
35	12,76	23.90	11.14	1.0469	
40	13,78	24.54	10.76	1.0318	
45	1.4.69	25.15	30.46	1.0195	Among an Admin 80
50	15.64	25.70	10.06	1.0026	Nyerego time ov
55	16.55	26.14	9,59	.9818	1.0011
60	17.40	86.72	9.32	.9694	
65	18,22	27,25	9.03	.9557	
		1.1064	- 15 m	- b	
		1.0011	- 50 m	• b	
		.1053	35 m		
				009	
		k		929	· ·

The data embodied in Tables 17 through 33 show that the effect of a nemtral salt upon the velocity of decomposition of diazoacetate should n ot be neglected, even though a strong acid is used as catalyst. Plotting the reaction constants as ordinates against the concentration of potassium perchlorate as abscissae(fig. 4) indicates that a simple linear relationship exists between these two variables. This confirms the work of Brösted and Duus (28) who reported a strong linear salt effect for this reaction.

At zero salt concentration(the concentration of the HClO₄ is .000147 M., and hence the salt effect of the acid may be disregarded), the value of the reaction constant, k₀, was found to be 5.705 x 10^{-3} . Several investigators have shown that the so-called catalytic constant, k_{H3}0, obtained by dividing the reaction constant, k, by the concentration of ## H₃0⁺, is a constant independent of the source and concentration of the hydrogen ions.

$$k_{H_30} = \frac{k_0}{H_30^*} = \frac{5.705 \times 10^{-3}}{1.47 \times 10^{-4}} = 38.88$$
 :1:

This value may be compared to those of Fraenkel(5.), who obtained 38.6 using nitric acid and 38.9 using picric acid.

As has been observed, there exists a simple linear relationship between the reaction constant, k, and the molar salt concentration, C. In accordance with the general linear equation, this relationship may be stated mathematically

75

in this manner.

$$k = k_0 + mC \qquad ;2:$$

where <u>m</u> is the slope of the line in fig.4₄ and is numerically 0.0177. Hence, the above equation becomes

$$k = k_0 + 0.0177$$
 (3)

and from which

$$k_0 = k - 0.0177 c$$
 :4

But from :1: it is seen that

$$(H_30^+) = \frac{K_0}{38.88}$$
 :5:

Combining ;4: and :5:, one obtains

$$(H_30^+) = \frac{k}{38.88} - \frac{0.0177}{38.88} C :6:$$

$$= 0.02572 \text{ k} - .00046 \text{ C} :7:$$

The first term in equation :7: is independent of the acid used and of the salt. The second term may be looked upon as the correction factor for the primary salt effect, and hence the coefficient might vary somewhat because of the specific nature of the ions. However, even though <u>m</u> was evaluated in equation :3: using potassium perchlorate as the salt, the extension of the validity of equation :7: to include all salts of the univalent type involves no serious assumptions, since differences in the value of the coefficient of <u>C</u> due to the specific nature of the salt would be very small_x and for low values of <u>C</u> should introduce no significant ## error.

It is not concievable that the linear salt effect discussed in this Part should be due to any further ionization of the perchloric acid, which is already completely ionized. Hence, the effect must be attributed to some other cause, as, possibly, the changing of the activity coefficient of the ethyl diazoacetate, or, since the effect is linear, more probably a"salting out" phenomenon. In any case, correction must be made for this linear effect in studying the secondary salt effect manifested when the reaction is catalyzed by a wack acid. For this reason, in studying secondary salt effects, equation :7: will be used to calculate the hydrogen ion concentration from the reaction constant and the salt concentration.

Part III

The Rate of Decomposition of Ethyl Diazoaceate by Benzoic Acid in the Presence of Potassium Perchlorate-The Effect of Potassium Perchlorate upon The Dissociation of Benzoic Acid

The data presented in Part II showed that no significant side reaction occurs between the ethyl diazoacetate molecule and perchlorates.Hence, it seemed desirable to repeat the work reported in PartI using potassium perchlorate in place of potassium nitrate in an attempt to obtain data from which the effect of added salts upon the dissociation of benzoic acid could be quantitatively studied.

As a result of experience obtained, some minor changes were made. The concentration of benzoic acid added was reduced, thus slowing down the reaction. This made it possible to base the calculation of the reaction constant upon more readings with a consequent improvement in the constant. Apparatus"A" (see discussion of apperatus) was used in the two preceding sections. Apparatus "Et" was used in this section and in the following sections of this work. Constants obtained with this apparatus were more satisfactory tan those obtained with the previous apparatus.

The concentration of benzoic acid was held constant throughout this Part, while the concentration of potassium perchlorate was varied from zero to .0833 M. The data are given in Tables 34 through 51. The Rate of Decomposition of Ethyl Dissocotate by

Benzois Acid in the Absence of Added Salts

Conc. of Added Salt 0.0000

Conc. of Henzoic Acid 0.001040 M.

Time	*	¥1	(v+-v)	10g(v!-	(v)
0	22,35	46.95	18.10	1.2577	
5	30.53	47.80	17.27	1.2373	
10	32.16	40.70	16.55	1.2188	Average time to
15	38.73	40.50	15.77	1.1978	1,2180
20	35.22	50,30	15.08	1.1784	
85	36.65	51.08	14.43	1.1593	
30	37,98	51.80	13.02	1.1405	1
35	39.29	52.49	13.20	1.1208	Average time as
40	40.50	83.15	12.65	1.1021	1.1207
45	41.70	53.75	12.05	1.0810	
		1 9100	10	b	
				2,0	
		T. 1972.01	00 11 -	0	
		•0973 =	-iti m		
			0.003898	-	
		10	0.008963	1 mar 10	

The Rate of Decomposition of Ethyl Dissoucetate by

Benzoie Acid in the Absence of Added Salts

Conc. of Added Salts 0.00

Conc. of Bonzoic Acid 0.001040 M.

Time		Ψŧ	(v=*v)	108(11.	-v)
0	18.30	40.49	25,19	1.4012	
5	17.79	41,77	23.98	1.3798	
10	20.00	42.93	22.93	1.3604	
18	22.18	44.09	21.91	1.3406	Avorage time 18
20	24,20	45.18	80.98	1.3218	" log(v'-v) 1,3415
25	26.12	46,21	80.09	1.5050	
30	28.00	47.21	19.21	1.2836	
**	00 01	40.50	10.00		
40	83 CO		12.08	1.2643	
9 U	07408	4 9+10	17.52	1,2435	
1	33,20	50.00	16.80	1.2253	Average time 50
50	34.80	50.85	16,05	1,2055	¹⁰ loc(ut-u)
55	36.31	51.65	15.34	1.1958	1.2051
50	37.77	52.40	14.63	1.1652	
55	39.17	83.17	14.00	1.1461	
		1.3415	= 16 m	- b ·	
		1.2051	= 50 m	~ b	
		.1364	= -35 m		
		-13	· 0.003	896	
		10	- 0.000	072	

The Rate of Decomposition of Ethyl Diazoacetate by

Benzoic Acid in the Presence of EC104

Conc. of XC104 0.0052 4. Conc. of Benzoic Acid 0.001040 H.

Time	¥	A3	(V* *V)	105(V!-	¥)
0	22.20	42.08	13.42	2.1277	
5	29.45	42,30	12.85	1.1089	
10	30.70	42.89	12.19	1,0360	Assessed to the SE
15	31,87	43.49	11,62	1.0052	R South a)
20	33.00	46.07	11.07	1.0441	1.0660
25	34,06	44.63	10,57	1.0241	
30	38.04	45.17	10.13	1.0056	
35	36.00	45.66	9.66	.9350	
40	36.93	46.17	9,24		
45	37.81	46,60	8.79	.9440	Auguna intere 60
50	38.66	47.01	8,84	,9818	R Jam(stat)
55	39.48	47.44	7.96	.9009	0.9228
60	40.20	47.81	7.61	.8814	
65	40.94	48.21	7.27	.8615	
		1.0660	i = 2.5 m	- b - b	
		.1438	= -35 m		
			= 0,0040	00	
		k	. 0.0094	19	

The Hate of Decomposition of Ethyl Dissoscetate by

Benzoie Acid in the Presence of Kolo4

Conc. of X0104 0.0052 H.

Conc. of Benzoic Acid 0.001040 M.

Time	٧	¥¥.	(44=4)	log(vi-	(v)
0	16,20	35,78	19,88	1.2918	
8	18,10	36,78	18.68	1.2714	
10	19.83	57.69	17.81	1.2508	
15	21.59	\$8.55	16.96	1.2294	Average Sime 15
20	23.19	39.38	16.19	1.2092	1,250S
25	24.78	40.19	15.41	1.1878	
30	26.11	40.96	14.85	1.1717	
35	27.57	41.67	14.10	1.1492	
40	28.89	42,39	13.50	1.1303	
45	30.19	43.00	12,89	1.1102	
50	31.41	43.60	12.19	1.0860	Average time SU
55	38 +57	44.19	11.62	1.0652	1.0879
60	33.69	44.77	11.09	1.0449	
65	34.59	45.20	10.70	1.0294	
		1,2303	. 16 n	- b	
		1.0379	= 50 m	- b	
		.1424	= -35 m		
			- 0.00407	0	
		k	- 0.00937	5	

The Rate of Decomposition of Ethyl Diszoncetate by

Benzoie Acid in the Presence of KClo4

Conc. of MC104 0.0104 H.

Cone. of Benzoic Acid

Timo	v	Aş.	(vtav)	16g(v*-	(V)
0	15.44	33,08	17,64	1,2463	
8	17,24	33,98	16.74	1,2238	
10	18,89	54,79	12.89	1,2011	American Adus 35
15	20.48	35,57	15.11	1.1793	a jestat aj
20	21.89	36,29	14.40	1,1584	1.1305
25	23,28	36,98	13,70	1.1367	
30	24.57	37.68	12,11	1.1176	
35	25.97	28,32	12.45	2.0342	
40	26,99	38.90	11,91	1.0759	
45	28,20	39,48	11,28	1.0523	lucina a dina 50
50	29.20	40.04	10.84	1,0350	B los(stas)
55	30,28	40.53	10,25	2.0107	2.0327
00	32.22	42.05	9.83	.0925	
65	32.19	41.49	9.30	.9685	
		1.1805	15 m	- b	
		1.0327	- 50 m	6 b	
		.1478	-35 m		
			m 0.00	4221	
		k	= 0.00	9721	

The Bate of Decomposition of Ethyl Disconcetate by

Benzoic Acid in the Presence of KCloA

Cone. of XC104 0.0104 N.

Conc. of Bonzoic Acid 0.001040 N.

Time	v	¥1	(v*-v)	log(vi-	(1
0	13,39	31.48	18.10	1.2577	
5	15,19	32,39	17.20	1,2355	
10	16.95	33,22	16.87	1.2124	America Adma 15
15	18,50	34.00	15.50	1.1903	R landwine)
20	20.00	34.80	14.80	1.1703	1,1918
25	21.40	38.53	14.125	1.1501	
20	22.87	36.28	13.41	1.1274	
			Ņ		
35	24.03	36.83	12.80	1.1072	
40	28,34	37.51	12.17	1.0853	
45	26,47	38.00	11.02	1.0652	torong the CA
50	27.64	38.69	11.05	1.0624	Average these co
\$5	28.63	39,21	10,53	1.0224	1.0441
60	29.69	39.76	30.07	1.0000	
\$ 5	30.60	40.20	91.00	.9823	6
		1,1918		- b	
		1.0441		- b	ł
		.1.677	-\$5 m		
			= /p.0042	20	
		k	= 0.0097	18	

Ph

The Rate of Decomposition of Sthyl Dissoccetate by

Bensoie Acid in the Presence of KClO4

Cone. of EC104 0.0209 M.

Conc. of Benzois Acid 0.001040 M.

Time	٧	A3	(1	("-")		10	g(v!-	(v)
0	27.10	39.17	12	.07		1.	0917	
5	28,27	39.73	11	46		1.	0592	
10	29.35	40.29	10	.94		1.	0390	
15	30.40	40+82	10	.42		1.	0179	Average vine 15
20	31.45	41.30	G	.85		*	9934	" log(v'-v) 1.0161
25	32.38	41.80	9	.42			9740	
30	33.36	42,22	(9)	.86			9474	
35	36.17	42.67	6	.50		,	9294	
40	35.00	43.07	8	.07			9069	
45	35.77	48.45	7	.68			8854	Anna Maria PA
50	36.53	43.86	7	.33		1	8681	Avorage time bu
65	37.23	44.17	6	.98			8414	······································
50	37.90	44.57	C	.67			8241	
56	38.85	44.87	Ø	.22		•	8007	
		1.0161	2	15	23		ъ	
		.8647	100 100 100	50	121		5	
		,1514	E.	-35	21			
		-111		0.0	043	25		
		24	-	0.0	000	60		

The Rate of Decomposition of Ethyl Dissoncetate by

Benzeie Acld in the Presence of KClo4

Conc. of KClo4 0.0208 H.

Conc. of Benzoic Acid 0.001040 H.

86.01 87.86 28.48	38.89 39.49	12.88	3.3000	
87.85 28,48	39.49		and the age of the day	
28.48		12.23	1.0874	
	40.10	11.62	1.0652	
29.59	40.68	11.09	1.0449	Average time 15
30.67	41.21	10,54	1.0228	1.0456
31.60	41.73	10.13	1.0056	
32.60	42.23	9.63	.9836	
33.54	48.68	9.14	.9660	
34.44	43.10	8.68	.9385	
35.27	43.51	8.24	.9160	
\$6.07	43,90	7.03	.9938	Nonege crus so
36.80	44.27	7.47	8733	·· 105(4'-4) 0.8946
37.53	44.62	7.09	.8508	
38,22	44.97	6.75	*8295	
	1.0656 -	16 m -	b	
	,8946	50 m -	b	
	.1510 ==	~35 n		
	1100 CT	0.004315		
	51.00 52.60 53.54 34.44 35.27 36.07 56.90 57.53 38,28	51.00 41.73 52.60 42.23 53.54 42.68 34.44 43.12 35.27 43.51 36.07 43.90 36.80 44.27 37.53 44.62 38.28 44.97 1.0456	51.00 41.75 10.13 52.60 42.23 9.63 53.54 42.68 9.14 54.44 43.12 8.68 55.27 43.51 8.24 56.90 44.27 7.63 56.80 44.27 7.63 56.80 44.27 7.63 56.80 44.97 6.75 1.0456 15 m - .3946 50 m - .1510 55 m - .1510 55 m - .0004315 - -	51.60 41.73 10.13 1.0066 $52.60 42.83 9.63 .9836$ $53.54 48.68 9.16 .9609$ $54.44 43.19 8.68 .9385$ $55.27 43.51 8.26 .9385$ $55.27 43.90 7.68 .9938$ $56.07 43.90 7.68 .9938$ $56.80 44.27 7.47 .8735$ $57.53 44.62 7.09 .8506$ $38.22 44.97 6.75 .6295$ $1.0656 = 15 n = b$ $.6946 = 50 n = b$ $.3946 = 50 n = b$ $.1510 = .55 n$ $m = 0.004315$

The Rate of Decomposition of Mthyl Dissoncetate by

Bonzoie Acid in the Presence of KCl04

Conc. of KC104 0.0208 N.

Conc. of Benzoic Acid 0.001040 M.

Time	V	¥1	(v•*v)	10g(v! -	·v)
0 5	27.06 23.14	39.5 2 39 .0 8	11.56 10.94	1.0630	
10 15 20 25 30	29.18 30.20 31.16 32.09 32.91,	39.60 40.10 40.58 41.00 41.45	10.42 9.90 9.42 8.92 8.54	1.0179 .9956 .9740 .9504 .9315	Average time 15 " log(v'-v) 0.9959
35 40 45 50 55 60 65	33.78 34.58 35.31 36.00 36.71 37.32 37.32	41.90 42.28 42.62 42.99 43.34 43.34 43.65 43.94	8,12 7,70 7.31 6.99 6.63 6,34 5,98	.9096 .8865 .9639 .*445 .8215 .8021 .7767	Average time 50 B log(v1-v) 0.8435
		0.9959 = 0.9455 = .1524 = 65	15'm - 50 m - -\$5 m 0.004354 0.01003	b	

The Rate of Decomposition of Ethyl Diszoncetate by

Bonsoic Acid in the Presence of EC104

Cone. of H0104 0.0208 H.

Conc. of Benzoic Acid 0.001040 H.

Time	۷	K,	(v**v)	log(v *-	v) .
0	26.70	39.10	12.48	1.0962	
5	27.95	39.93	11.68	1.0749	
10	29.10	40.38	11.28	1.0523	
15	30.19	40.97	10.78	1.0386	Average time 15
20	31.20	41.48	10.28	1.0120	" log(v'-v) 1.0319
25	32.20	41.98	9.68	.9359	
80	33.14	42.46	9.32	.9694	
35	34,08	42,86	8.78	.9435	
40	34.97	43.29	8.32	.9201	
45	35.74	43.67	7.93	.8993	
50	36.63	44.05	7.52	.8762	WAOTARO TTHO DO
55	37.27	44.47	7.20	.8573	0.8788
60	37.92	44.80	6.96	.8375	
65	38.59	45.16	6.57	.8176	
		1.0319 =	15 m - 1		
		0.9788 =	50 m - 1	>	
		.1531 =	-35 m		
			0.004374		
		1	0.01007		

The Rate of Decomposition of Ethyl Diszoacetate by

Bonzoic Acid in the Presence of KCl04

Conc. of KC104 0.0208 M. Conc. of Benzoic Acid 0.001040 H.

Time	v	A 6	(v+-v)	log(v2-	7)
0	14.39	32.14	17.475	1.2493	
6	16,19	33.00	18.81	1.2256	
10	17.87	33.78	15.90	1.2014	6
15	19.43	34.56	15.13	1.1798	Average time to
20	20.89	35.89	14.40	1.1584	1.1815
26	22.18	36.00	13.82	1.1405	
30	23,60	36.66	13.06	1.1169	
35	24.86	\$7.28	12.42	1.0941	
10	26.05	37.88	11.83	1.0750	
18	27.18	38.46	11.30	1.0531	Averace time 50
50	28.28	38.99	10.71	1.0298	H loc(viev)
55	29.42	39.56	10.24	1.0103	1.0309
30	30.30	40.08	9.72	.9877	
35	31.20	40.50	9.30	.9685	
		1.1816	= 18 m	- b	
		1,0309	50 m	- b	
		,1806	-35 m		
		-	ass : 0.004	1304	
		15		9912	

The Rate of Decomposition of Ethyl Diazoacetete by

Bonzoic Acid in the Presence of KClo

Conc. of KC104 0,0417 M.

Conc. of Benzois Acid 0.001040 M.

Time	À	U I	(VI-V)	205(V1-	v)
0	15.02	33.11	18,09	1.2574	
5	16.98	34.00	17,02	1.2310	
10	18.65	54.80	16.15	1,2082	
15	80.84	35.50	15.35	1.1861	Average time 15
05	21.75	36.30	14.61	1.1646	1.1864
35	23.17	37.00	13.83	1.1408	
30	24.43	37.67	13.09	1,1169	
55	25.79	38.19	12.40	1.0934	
10	26.99	38.79	11.80	1.0710	
15	28,16	39.36	11.20	1.0492	Amanana tima EA
50	29.23	39.96	10.73	1.0306	R lostatas)
65	30.88	40.47	10.10	1.0002	1.0282
50	31.28	40.89	9.6)	.9827	
56	32.23	41.38	9.15	.9814	
		1,1864 -	16 m	- b	
		1.0282 =	50 m	• 3	
		.1582 ==	-35 m		
			0.0045	21	
		¥	0.0104	1	

The Rate of Decomposition of Ethyl Diagoacetate by

Benzoic Acid in the Presence of KCl04

Conc. of KC104 0.0417 M.

Conc. of Benzole Acid O.001040 H.

Time	¥	A1	(V-1A)	log(v' -	(v)
0	28,30	38.10	11.80	1.0710	
5	27.47	38.67	11.20	1.0492	
10	28.56	39,21	10,65	1.0273	
15	26.60	39.70	10.10	1.0043	Average time 15
20	30.62	40.18	9.56	.9805	1.0028 2 Toč(A1-A)
25	31.84	40.60	9,06	.9571	
30	32.43	41.06	8.63	.9360	
35	33,29	41.47	8.18	.9127	
40	\$4.08	41.85	7.77	.8904	
45	34.88	42,20	7.38	.8691	horses along 20
50	38.56	42.58	7.02	.8463	Average time bu
55	36.87	42.86	6.61	.9202	0.8448
60	30,89	43.18	6.29	.7986	
65	37.81	43,50	5.99	.7774	
		1.0038	15 m -	ŏ	
		.8449 -	50 m -		
		.1590 =	-35 m		
			0.004541		
		le m	0.01045		

The Rate of Decomposition of Ethyl Diesoncetate by

Benzoic Acid in the Presence of KClO4

Conc. of KCl04 0.0417 N. Conc. of Benzoic Acid 0.001040 M.

Timo	v	Aş	₽ ₩ [†] -₩)	log(v'	-v)
0	33.42	43.12	9.70	.9868	
5	54.42	43,58	9.16	.9619	
10	35.31	43.97	8.66	.9375	
15	36,16	44.41	8.25	.9164	AAsia Crus 12
20	36.98	44.77	7.79	.8915	0.9156
25	37.77	48.14	7.37	.8675	
50	39.46	45.50	7.04	.8476	
35	39 . 17	45.84	6.67	.8241	
40	39.82	46.17	6.35	.8028	
45	40.42	46.43	6.01	.7789	
50	41.02	46.71	5.69	.7551	Average time 50
55	41.59	46.98	5.39	.7316	" log(v'-v) 0,7570
60	42.10	47.28	5.18	.7143	
65	42.60	47.52	4.92	.0920	
		0.9156 -	26 m -	Ъ	
		0.7570 =	50 m -	b	
		.1586 75	+35 m		
			0.004532		
		14 =	0.02044		

The Rate of Decomposition of Ethyl Diazoacetate by

Benzoic Acid in the Presence of Kolo4

Conc. of KC104 0.0417 H.

Cons. of Benzoic Acid 0.001040 M.

Time	۷	Δ1	(V+-V)	log(v* -	(v)
0	22.10	35.75	13.65	1.1351	
6	23.46	36,38	12,92	1.1113	
10	24.80	37.01	12.21	1.0867	
15	25.99	37.60	11.61	1.0648	Average time 15
80	27.10	38.19	11.09	1.0449	" log(v'-v) 1.0659
25	28.17	38.59	10.42	1.0179	
30	29.19	39.20	10.01	1.0004	
95	50.10	30.60	0.61	0700	
40	53 06	A/3 3 12	0 10	4010A	
ar.	04400 03.00	40.40	0.00	+9090	
SLD .	01.80	40 • 69	8.60	.9345	Average time 50
50	32.75	40.92	8.15	.9112	" log(v!-v)
55	33.50	41.29	7.79	.8915	0.9126
60	34.30	41.69	7.39	.8686	
35	35.07	42.07	7.00	.8451	
		1.0659 =	. 15 m -	b	
		0.9126 =	80 m -	b	
		.1533 =	-35 m		
			0.004380		
		le	0-01009		

The Rate of Decomposition of Ethyl Diszoncetate by

Benzois Acid in the Presence of KClO4

Cone. of KC104 0.0417 M Conc. of Benzoic Acid 0.001040 M.

Time	v	¥4	(¥1-4)	log(vt-	(V)
0	15.58	30,50	14.92	1.1738	
5	17.10	31.27	14.17	1.1514	
10	18.60	31.85	13.25	1.1222	
15	19.92	32.48	12.56	1.0990	Average time 10
20	21.17	33,15	11.98	1.0786	1.1007
25	22,50	38.70	11.20	1.0492	
30	23.49	34.22	10.73	1.0306	
35	24.49	34.75	10.26	1.0111	
40	25.50	35.24	9.74	.9866	
45	26.47	35.70	9,23	.9652	1
50	27.38	36.10	8.88	.9484	Average time bu
55	28.21	36,50	8.29	.9185	0.9628
60	29.06	36.90	7.86	.8943	
65	29.90	37.27	7.47	.8733	
		1.1007 ==	15 m -	ъ	
		.9428 =	50 m -	ď	
		,1579 = -	-35 m		
			0.004511		
		10 =	0.01039		

The Rate of Decomposition of Ethyl Diszoscotate by

Benzoic Acid in the Presence of KClog

Cone. of RC104 0.0833 N.

Conc. of Benzoic Acid 0.001040 M.

Time	v	.A.	(****	log(vi.	-v)
0	18.89	39.70	20.82	1.3185	
5	20.96	40.68	19,72	1.2949	
10	22190	41,59	18.69	1.2716	
15	24.78	42.48	17.70	1.2480	Average time 15
20	26,48	45.30	16.82	1,2258	" log(v'-v) 1.2491
25	28.10	44.10	16,00	1.2041	
30	29170	44.85	15,15	1.1804	
55	31.20	45.55	14.35	1.1563	
10	32.58	45.20	13.62	1.1342	
15	35.99	46.80	12.01	1.1075	
0	35,25	47.45	12.20	1.0864	Average time 50
5	36.48	48.00	11.55	1.0626	" log(v'-v) 1.0864
0	37,58	48.55	10.97	1.0402	
3	38.09	49.09	10.40	1.0170	
		1.2491 =	15 m +	ъ	
		1.0864 =	50 m -	6	
		.1627 =	-35 11		
			0.004645		
		k	0.01070		

The Rate of Decomposition of Ethyl Diszesetate by

Bonzoic Acid in the Presence of KClO4

Conc. of KC104 0.0833 M. Cone. of Benzoic Acid 0.001040 M.

Timo	A	41	(41-4)	10g(y) -	v)
0	30.30	43.89	13.59	1,1332	
5	31.77	44.56	12.79	1.1069	
10	33.10	45.14	12.04	1.0805	Annual Admin 25
15	34.23	45.69	11.45	1.0588	R Jackster)
20	35,39	46,22	10.93	1.0346	1.0590
25	36.46	46.70	10.24	1.0103	
30	37,46	47,20	9.74	.9887	
35	38.42	47.67	9.25	.9661	
40	39.50	48.11	8.75	.9420	
45	40.25	48.85	8,30	.9191	Annual films 50
50	41.02	42.95	7.93	.8993	AAGTAGe CTUR OO
55	41.81	49.28	7.27	.8733	0.8967
60	42.55	49.62	7.07	.8494	
65	43.21	40.04	6.73	.8280	
		7 0700	9 E		
		1.0590	= 15 13	- 0	
		0.2057	= 50 H	- b	
		.1623	= -35 m		
			= 0.0046	56	
		le	= 0.0106	3	

97

In an extension of the discussion of the scondary salt effect already given, consider an aqueous solution of the weak acid, HB. From the modern conception of acids and bases, the following equilibrium may be considered to obtain:

HB + H₂0 \rightleftharpoons H₃0⁺ + B⁻ The classical mass action expression for this equilibrium is written $\frac{c_{H_30^+} c_{B^-}}{K_c}$:1:

CHB .. CH20

$$K_a = \frac{a_{H_30} \cdot a_B}{a_{HB} \cdot a_{H_20}}$$
 :2:

where K_R is a true constant independent of the ionic strength. Since the <u>a</u>'s in equation:2: are related to the <u>c</u>'s in equation :1: by the fundamental law of the activity theory, a = c f, equation :2: may be rewritten:

$$K_{a} = \frac{{}^{a}H_{3}0^{\circ}}{{}^{a}H_{B} \cdot {}^{a}H_{2}0} = \frac{{}^{c}H_{3}0^{+} \cdot {}^{c}H_{B}}{{}^{c}H_{B} \cdot {}^{c}H_{2}0} \cdot \frac{{}^{f}H_{3}0^{+} \cdot {}^{f}H_{B}}{{}^{f}H_{B} \cdot {}^{f}H_{2}0} = K_{c} \frac{{}^{f}H_{3}0^{+} \cdot {}^{f}H_{B}}{{}^{f}H_{B} \cdot {}^{f}H_{2}0} : 3$$
plying the Debye-Huckel expression for the change of the activit;
efficient with ionic strength, and which for a univalent ion

in aqueous solution is

App

COE

$$-\log f = .5\sqrt{u} + B'u$$
 :4:
 $-\log f^2 = \sqrt{u} + Bu$:5:

to equation :3:, one obtains

$$\log K_a = \log K_c - \sqrt{u} - Bu \qquad :6:$$

and

 $\log K_c = \log K_a + \sqrt{u} + Bu :7:$

With this discussion in mind, consider the data given in Tables 34 through 51. In column two of Summary Table A, the average values of the Freection constants at the various salt concentrations are given. These values, when plotted graphically against the corresponding salt concentrations, give the curve shown in Fig.5 χ which indicates a positive exponential salt effect.

By means of the equation derived in Part II, according to which

 $(H_30^*) = 0.02572 \text{ k} - 0.00046 \text{ C}_j$

it is possible to calculate the hydrogen ion concentration from the experimentally determined reaction constant and the salt concentration. By the use of this equation, correction is made for the linear salt effect. Since one benzoate ion must be formed for each hydrogen ion, it follows that the concentration of benzoate ions in the solution must be the same as the concentration of hydrogen ions. Also, since the total concentration of benzoic acid is known, it is a simple matter to determine the concentration of unionized benzoic acid. By substituting these data, which are presented in Summary Table A, in equation :1:, a series of galues of \underline{K}_{c} at various salt concentrations are obtained. By glancing at the column headed \underline{K}_{c} in Summary Table A or inspection of the gréaphical presentation of ##### these data in fig. 6, it is immediately apparent that \underline{K}_{c} is not a true

99

Summary Table A

The Effect of Varying Concentrations of Potassium Perchlorate Upon the Ionization of a Q.001040 M. Solution

Of Benzoic Acid

Salt Conc.	k	H ₃ 0 ⁺ x 10 ⁴	log(H ₃ 0 ⁺) ²	log(HB) Union.
.0833	.01068	2.368	8.7488	4. 9047
.0417	.01035	2.477	8.7879	4.8987
.0208	.009981	2.480	8.7889	4.8987
.0104	.009718	2.461	8.7822	2. 8998
.0052	.009396	2.403	8.7615	4.9031
.0008	.008968	2.317	8.7300	4.9074

Summary Table A (Continued)

log K _c	K _c x 10 ⁵	u	Yu	(log K _e - u)
5.8440	6.98	.0836	.2890	5.5550
5.8891	7.75	.0420	.2047	5.6844
5.8902	7.76	.0211	.1449	5.7453
5.8824	7.63	.0107	.1029	5.7795
5.8584	7.22	.0054	.0735	5.7849
5.8226	6.65	.0002	.0153	5.8073

constant, but rather increases with the salt concentration up to a certain maximum value, after which a further increase in salt concentration causes a decrease in the value of \underline{K}_c .

From these experimentally determined values of K and from the ionic stength of the solution, it now becomes possible to evaluate the constants , log Kg and B , in equation : 7:. It should be observed at this time that the concentration of potassium perchlorate and the ionic strength are not exactly the same, since the ionization of the benzoic acid will contribute some ions to the solution. These two quantities have been assumed to be equal in the foregoing work. This was permissable since the difference is too small to be reflected in the term, 0.00046 C, in the equation derived in Part II. However, the difference, though small, can not be neglected in equation : 7:, which contains a square root term of u . The total ionic strengths of the solutions at various salt concentrations are given in a column under that heading in the summary table, and are slightly larger than the salt concentrations. For the purpose of evaluation of the constants, equation :7: may be rearranged to give

 $(\log K_c - \sqrt{u}) = \log K_a + Bu$:8: Now, if the quantity $(\log K_c - \sqrt{u})$ be treated as one variable while <u>u</u> is the second, then equation :8: may be looked upon as a simple linear equation in which log K_a is the intercept at zero ionic strength and <u>B</u> is the slope. The values of $(\log K_c - \sqrt{u})$

103

and the corresponding values of u are given in columns under those headings in Summary Table A. These two variables are plotted in fig. 7, from which it is seen that a linear relation does exist and that the value of B must be negative. From the values of (log Kc - \sqrt{u}) and the corresponding values of u, the value of B was found to be -3.03. By extrapolation to zero ionic strength, log Kg was found to be 5.8080 . Substituting these values of the constants log K, and u in equation :7: gives $\log K_{0} = \frac{6}{5.8080} + \sqrt{u} - 3.03 u$:9: That this equation accurately represents the data reported in this part is shown by the following table, in which the values of Ke calculated from the above equation are compared to the experimental values. Since these same experimental values were used in the derivings of equation :9: , this table serves merely to show how closely equation :9: represents the experimental data.

u	log K _c (calc'd)	log K _c (exp't)	Ko x 10 ⁵ (calc'd)	K _c x 10 ⁵ (exp't)
.0836	5.8437	5.8440	6.99	6.98
.0420	5.8845	5.8891	7.66	7.75
.0211	5.8890	5.8901	7.75	7.76
.0107	5.8785	5.8824	7.56	7.62
.0054	5.8652 .	5.8592	7.33	7.22
.0002	5.8226	5.9220	6.65	6.65
The value of log K_{a} used in equation :9: was 5.8080, from which the value of K_{a} is seen to be 6.45 x 10⁻⁵. As has been discussed, this value is the thermodynamic ionization constant for benzoic acid, and as true "constant" without regard to ionic strength. This fundamental constant for benzoic acid has been determined by many different methods and is frequently reported in the literature. The following values are taken from the literature. In some cases K_{0} is given in place of K_{a} , in which cases the value of K_{c} given is for extreme dilution. The numbers in parentheses after the name of the investigator refer to the bibliography.

Ke	x	105	ana.	6.0	Ostwald, 1889 (37)
	-		amer vilar	6.9	Buler, 1896 (38)
	83		605/4 5180	6.75-6.81	Schaller, 1898 (39)
	11		19	6.07	Dhar and Datta, 1913 (40)
Ka	x	105	darberte Canyon	6.27	Dippy and Williams, 1934 (41)
	tt		dente. Tauto	6.7%	Kolthoff and Bosch, 1932 (42)
	98		BGPR.	6.46	Ives, Linstead and Riley, 1933 (43)
	Ħ		(Divers (Divers	6.527	Ives, 1933 (44)
	29		allowed	6,295	Saxton and Meier, 1918 (45)
	8		nagar. Alte	6.373	Vogel and Jeffery, 1934 (46)

As has already been observed, equation :9: gives the secondary salt effect for the decomposition of ethyl diazacctate by benzoic acid when potassium perchlorate is the salt. In other words, it gives the effect of the added petacsium perchlorate in

increasing the dissociation of benzoic acid. By means of this equation, it is possible to calculate the value of K_c from a knowledge of the ionic strength of the solution, and from K_c so obtained and the total concentration of benzoic acid, the hydrogen ion concentration in any ###(within the limits studied) salt concentration may be calculated from equation :1:. This method of calculating the hydrogen ion concentration of a benzoic acid solution is much more accurate than the customary procedure of calculating from the usual "ionization constant", which has been shown to vary widely with the ionic strength. Even in the absence of added salts, the salt effect of the ionized benzoic acid is sufficient to cause considerable error except at low ##### concentrations.

K_a in equation :9: is independent of the specific salt present; however, the value of <u>B</u> might possibly depend upon the specific salt present. That is, the value of <u>B</u> for potassium chloride might differ from that for potassium perchlorate. Before the validity of equation :9: can be extended to include salts other than potassium perchlorate, it is necessary to settle this point. Parts IV and V take up this question.

As a partial answer to this question, the work of Grove (47) may be mentioned. Studying the dissociation of monochloro-acotic acid by the catalytic hydrolysis of certain acetals as measured by a dilatometer, this worker found the change in K_e with concentration to be given by

 $\log K_c = (7.150 - 10) + \sqrt{u} - 3.2 u$

Since this worker used a different acid, adifferent"salt"(the "salt" in this case being the ionized monochloro-acetic acid) and measured the velocity of the reaction by a different method, it is extremely interesting to observe that his value of <u>B</u> (i.e. 3.2) compares very well with the value obtained in this work. The value of K_a 600 which is characteristic of the acid alone) obtained by Grove for monochloro-acetic acid is, as is to be expected, different from that obtained in this work for benzoic acid. The work of Grove would tend to support the view that the value of <u>B</u> is independent (or nearly so) of the specific "salt or salts" present, and hence tends to justify the extension of equation :9;

 $\log K_{c} = \overline{5.8080} + \sqrt{u} - 3.03 u$

Part IV

The Effect of Potassium Iodate upon the Rate of Decomposition of Ethyl Diazoacetate when Catalyzed by Benzoic Acid

At the close of the preceding Part the question of the general validity of equation :9: , derived for potassium perchlorate, was discussed. As was pointed out at that time, it seemed desirable to repeat the work of Part III using a different salt, however the question of what salt to use, which would give no side reaction was difficult. Since perchlorates gave no significant side reaction, it seemed at least possible that iodates might also be suitable. For this reason, it was decided to try potassium iodate. It was soon found that the velocity of the reaction was less in a higher salt concentration. of the literature Investigation, showed that the value of the ionization constant for iodic acid is 7.17 x 10⁻² (48). It is probable that there would be slight hydrolysis of the potassium iodate, with the formation of a slightly basic solution. This would account for the decrease in the velocity of the reaction as the concentration of potassium iodate was increased. Since this work was concerned with the neutral salt effect, there seemed to be no object in carrying the work with this salt further. The data taken are presented in the following tables.

Fable 52

The Rate of Decomposition of Ethyl Dissoucetate by

Bonzoic Acid in the Presence of KIO3

Conc. of KIO3 0.0417 M.

Conc. of Henzole Acid Q.001040 M.

Time	A	ΨŦ	(WI-T)	log(vt-	(v)
0	22.35	32.52	10,17	1.0073	
5	25.32	33.00	9.68	.9859	
10	24,23	33.46	9.23	.9052	1
15	25.16	33,90	8.74	.0415	Average this is
20	26.09	54.35	8.26	.9170	0,9412
23	26.85	34.77	7.62	-8932	
30	27.60	35.17	7.56	.8785	
35	28,30	35.62	7.82	.8585	
40	29.00	35.90	6,90	.8388	
45	29.67	36.24	6.57	.8176	turner an Adma RO
50	30.28	36.54	6.26	.7955	Address cres on
55	30.88	36,85	5.97	.7700	0,7971
60	31.44	37.17	5.73	.7581	
65	51.98	87.40	5.42	.7340	
		0.9412 -	15 m -	• b	
		0.7971 =	50 m -	b	
		.1441 =	-35 m		
			0.00411		
		k in	0.00948	1	

The Hate of Decomposition of Ethyl Dissoncetate by

Senzoic Acid in the Presence of KIOs

Come. of E103 0.0417 M.

Conc. of Benzoic Acid 0.001040 M.

Timo	Y	¥1	(106(11-	(V)
0	6.25	21.16	14.91	1.1735	
5	7.67	21.86	14.19	1,1520	
10	8.07	22.61	13.44	1.1284	
18	10.45	23.20	18,75	1.1055	Avorage time 15
20	11.67	23190	12.13	1.0939	1,1072
25	12.82	84.37	11.55	1.0626	
30	13.95	24.98	11.03	1.0626	
35	14.98	25.50	10.54	1.0229	
40	15.99	26,03	10.04	1.0017	
45	16.98	26.50	9.52	.9786	ANALY ED
50	17.90	26.95	9.05	.9566	Average came bo
85	18.78	87.38	8.60	.9345	0.9579
60	19.57	27.83	8.26	.9170	
65	20.38	28,22	7.84	.0943	
		1.1078 =	15 m -	ъ	
		.9579 _	50 m -	b	
		.1493	-35 m		
		•10 m	0.00428		
		k	SSCO.0		

The Rate of Decomposition of Ethyl Diazoacetate by Lenzele Acid in the Presence of KIO3

Cons. of KI03 0.0833 N.

Conc. of Denzoic Acid 0.001040 H.

Timo	¥	ΥI	(wi-w)	log(v!-	v)
0	8.08	21.60	13.52	1.1310	
5	9.45	22.39	12.94	1.1119	
10	10.08	82.90	12.22	1.0871	
15	11.79	23,54	11.75	1.0700	Average time 15
20	12.90	24.00	11.19	1.0468	1.0695
25	13.99	24.67	10.68	1,0286	
30	15.00	25.22	10,22	1.0094	
35	15,98	25.70	9.72	.9877	
40	16.93	25,20	9.27	.9671	
45	17,82	26.65	8.83	.9460	Arrange Adma ED
50	18,69	27.08	8.37	.9227	R 3co(stat)
85	19.46	27.50	8.00	.9053	0,9263
60	20.20	27.90	7.70	.8855	
65	20.95	28.53	7.33	.8681	
	•	1.0695 -	15 m -	ъ	
		.9263 =	50 m -	b	
		.1452 -	-35 m		
			0.00409	il.	
		22 -	0.00032	0	

The Rate of Decomposition of Ethyl Dissoccetete by

Banzele Acid in the Presence of KIO3

Cone. of KI03 0.0832 M.

Conc. of Denzoic Acid 0.001040 N.

Timo	4	V1	(v+-v)	log(v! .	•7)
0	23.03	32.47	9.39	.9727	
5	84.07	38,98	8.91	.9493	
10	26.89	38.38	8.49	.9289	Assessment frame 90
15	25,70	33.82	8.12	.9098	H Jan(mi an)
20	26,44	34,22	7.78	.2910	0.9114 M.
25	27.16	36.64	7.48	.8739	
30	27.94	34.98	7-24	.8537	
35	28.55	35.37	6.94	.0350	
4.0	29.16	35.70	6.54	e0156	
45	29.77	36.02	6.95	.7959	Amount blue 20
50	30.39	36,34	5,05	.7745	t Jos (star)
58	30.95	36.86	8.71	.7566	0.7754
63	31.47	36.91	5.4	.7356	
65	31,97	37.16	5.18	.7145	
		a ass 4			
		GayLL4	- 10 0	2 + 0	
		.7754			straining second days
		,1560	***************************************		
		-1	:0.00		
		1.4	= 0.008	96	

The Rate of Decomposition of Ethyl Diazoacetate by Benzoic Acid in the Absence of Added Salts - The Dissociation of Benzoic Acid in the Absence of Added Salts

Part V

Provious work with benzoic acid seemed to show that the benzoate ion gives no side reaction. However, benzoate salts are not suitable for the study of neutral salt effects, since they are considerably hydrolyzed in aqueous solution. As was pointed out in Part III , in considering the ionic strength of a solution, one must sake into account not only the concentration of the salt, but also the ions formed by the dissociation of the acid itself. From this it appears that there should be a slight "salt effect" even in the absence of salts in the usual sense, because of the ionization of the acid. Perhaps a better term than salt effect would be ionic effect. The work of Grove(47)) in studying the "salt effect" of the ionized acid upon the dissociation of monochloro-acetic acid has already been mentioned. For these reasons, it seamed of interest to attempt the verification of equation :9;, Part III, by a study of the "salt effect" in solutions of benzoic acid in the absence of added salts.

With this in mind, the rate of decomposition of ethyl diazoacetate by benzoic acid at varying concentrations of acid was studied. The data is contained in the following tables in this Part and in Part I, Tables 14, 15 and 16 and PartIII, Tables 34 and 35.

The Rate of Decomposition of Ethyl Diszoscetate by

Benzoic Acid in the Absence of Added Salts

Time	4	Δ1	(21-2)	105(v'-	7)
0	29.81	43,99	15.18	1.1813	
5	30,22	44.78	14.54	1.1626	
10	51.60	45.46	13,86	1.1417	Jacowa and Adma 35
15	32,93	46.18	13.25	1.1222	averege time 10
20	34.16	46.80	12.62	1.1011	2.1214
25	35.38	47.45	12.07	1.0817	
30	36,55	43.02	11.47	1.0595	
35	37,67	48,60	10,93	1.0386	
40	38.69	49,08	10.39	1.0166	
45	30,65	49,59	9.94	.9974	Awama tima 50
50	40.57	50.11	9.54	.0795	H lostater)
55	41.50	50.60	9,10	.9590	0.9785
60	42,40	51.08	8.63	.9385	
65	43.20	51,51	8.31	.,9198	
		1,1214	= 15 m	- b	
		0,9785	2= 50 m	• b	
		,1409	= +35 m		
			- 0.004	085	
		le:		608	

Conc. of Benzoic Acid 0.001111 M.

The Rate of Decomposition of Ethyl Diszoncotate by Benzoic Acid in the Absence of Added Salts

Time	V	¥¥	(v==v)	log(v! .	v)
0	15.29	36.66	21.37	1.5298	
No.	17.37	37.75	20.38	1.3092	
10	19.30	38.78	19.48	1.2896	
15	21,11	39.70	18.59	1,2693	Average time 15
80	22.68	40.68	17.80	1.2504	" log(v'-v) 1,2697
25	24.54	41.52	16.98	1.2299	
30	26.17	42.37	16.20	1.2095	
35	27.69	43.16	15.47	1.1895	
40	29.13	43,90	14.77	1.1094	
46	30.50	44.63	14.13	1.1501	
60	31.88	45.30	13.42	1.1277	Average time 50
55	33.10	45.99	12.89	1.1102	" log(v'-v) 1.1289
50	34.38	46.60	12.22	1.0871	
55	35.52	47.22	11.70	1.0682	
		3 0000	38 -		
		1. 10097	10 11 +	0	
		1.1289 ==	50 m -	b	
		.1408 =	-35 11		
		-11 ==	0.004022		
		k =	0.009263	-	

Conc. of Benzoic Acid 0.001111 H.

The Rate of Decomposition of Ethyl Diasoacetate by Benzoic Acid in the Absence of Added Salts

Time	V	N3	(v+ -v)	log(v'-v)	
0	23.23	34.79	11.86	1.0630	
5	24.31	35.33	11.02	1.0422	
10	25.35	35.90	10.55	1.0232	Avena time 16
15	26.32	36.30	10.06	1.0026	R los(rist)
20	27.38	36.92	9.54	.9795	1.0018
25	28.28	37.40	9.12	.9600	
30	29.10	37.85	6.75	.9420	
35	29.95	38.86	6.31	.9198	
40	30.71	38.67	7.96	.9003	
45	31.47	39.06	7.59	.8802	turnens time 50
50	32.21	39.45	7.24	.8597	B los(minu)
65	32,90	39.80	6.90	.8389	0.8596
60	53.52	40.12	6.60	.8195	
65	34.16	40.45	6.29	.7966	
		1,0016 .	16 m	- b	
		.8596 .	50 m	- b	
		.1428 =	-35 m		
		-12-	0.0040	061	
		15 -	0.009	52	

Conc. of Denzoic Acid 0.001111 M.

Tuble 59

Conc. of Benkole Actd

The Rate of Decomposition of Sthyl Dismoncetate by Benzoic Acid in the Absence of Added Salts

Time	۷	Δ1	(verv)	log(vt.	-v)
0	27,89	43.69	15.80	1.1987	
10 15 20	31.07 32.52 33.87	45.05 45.66 46.25	14.88 13.96 13.14 12.38	1.1726 1.1449 1.1186 1.0927	Average time 15 " log(v'-v) 1.1179
25 30	35.17	46.76 47.21	11.59	1.0641	
35 30 45	37.52	47.70	10.18	1.0077	
50 55 5 0	40.51 41.42 42.23	48.98 49.35 49.67	9.03 8.47 7.93 7.44	.9557 .9279 .8993 .8716	Average time 50 " log(v'-v) 0.9274
55	42.97	49.96 1.1179 == .9274 ==	6.09 15 m - 50 m -	.8445 b	
		.1905 =	~55 m 0.005444		

The Rate of Decomposition of Ethyl Diszoncetate by Benzois Acid in the Absence of Added Salts

Timo	¥	¥1	(A 1-A)	10g(v* -	~?)
0	18.78	31.09	18,31	1,2630	
5	14.77	31.89	17.12	1.2335	
19	16.59	32.62	18.03	1.2049	
15	18.27	33.30	15.03	1.1770	Average time 18
50	19.83	23.99	14.11	1.1495	" 193(v'-v) 1.1780
25	21.23	34.57	13.29	1.1235	
30	22.70	35.15	12.45	1.0953	
15	23.95	35.69	11.74	1.0697	
10	25.20	35.19	10.99	1.0410	
15	26,33	36.65	10.32	1.0137	
0	27.39	37.09	9.70	.9868	Average time 50
5	28.39	37.50	9.11	.9595	" 105(V'-V) 0.9871
30	29.34	37.89	8.55	.9328	
35	30,22	38.29	8.07	.9069	
		1.1780 -	15 m -	b	
		0.9871 -	50 m -	ъ	
		. 2909 :=	-35 m		
			0.005455		
		k	0.01256		

Conc. of Benzois Acid 0,001905 M.

The Bate of Decomposition of Ethyl Dissoncetate by

Bonsoic Acid in the Absence of Added Salts

Conc. of Benzoic Acid

-		0.003	rand R		
Time	v	ty	(* + -*)	10g(**-v)	
0	27.30	40.43	13.13	1.1183	
5	28.77	41.06	12.29	1.0895	
10	80.04	41.58	11.54	1.0622	
15	31,81	48.07	10.86	1.0358	Average time 12.5
20	32,36	42.48	10.12	1.0052	" log(v'~v) 1.0485
25	33.40	42.92-	9.52	.9786	
30	34.37	43.33	8.96	.9523	
35	35.31	43,69	8.38	.9232	
40	36.20	44.08	7.88	.8965	Amount Adams 10 P
43	37.05	64.67	7.42	.8704	R Jouran er .D
50	37.81	44.77	6.96	.8426	0.8836
55	38.50	45.05	6.55		
60	39.26	45.32	6.06	.78254	
65	39.85	45.56	5.71	.7565*	
	e in e	eror (from	graph)		
		1.0483	18.5 m -	• b	
		0.8836 -	42.5 m -	- b	
		.1647 =	-30.0 m		
		-12 -	0.005491		
		k -	0.01264		

The Rate of Decomposition of Ethyl Diszoncetate by

Benzoic Acid in the Absence of Added Salts

Conc. of Benzoic Xeid 0.001005 M.

C1::::0	۷	¥1	(41-4)	log(v'-	v)
0	27.87	43.25	15.39	1.1869	
5	29.90	44.28	14.38	1.1578	1
10	31.76	45.28	13.52	1.1310	Average time to
15.	33.63	46.20	12.67	1.1028	1.1313
80	35.19	47.16	11.97	1.0781	
25	36.74	47.99	11.25	1.0511	
50	38,80	48.72	10.52	1.0220	Provide Adams 11
35	39.60	49+47	9.87	.9943	n 105(vi-v) 0.9947
10	40.87	50.16	9.89	.9680	
45	42.09	50.78	8.67	.9380	

1,1313	enter Rist	10	121	-	Ð	
.9947	17.25 17.25	35	23	-	b	
.1366	Para A Ugʻatta	-25	IN			
-13	. <u>T</u> r	0.0	005	462		
15	- Andre	0.0)12	69		

The Rate of Decomposition of Ethyl Diazoacetate by

Benzoic Acid in the fibsence of Added Salts

Time	7	A1	(v••v)	10g(v'-	(v)
0	14.35	36,19	21.84	1.3392	
5	17.29	37,68	20.39	1.3094	
10	19.97	39.10	19,13	1.2817	Average time 10
15	22.43	40.48	18.05	1.2565	" log(v'-v) 1.2835
20	24,75	41.76	17.01	1.2307	
25	26.99	42.91	15,92	1.2019	
30	29.05	44.00	14.95	1.1746	
35	31.00	45.00	14.00	1.1461	Average time 35
40	32,85	45.99	13.14	1,1186	" log(v'-v) 1,1465
45	34.56	46.90	12.34	1.0913	
		1.2035 -	10 m -	ъ	
		1.1465 =	35 m -	ъ	
		.1370 =	-85 m		
		-6 =	0.005480		
		k =	0.01262		

Cone. of Benzoic Acid 0.001905 M.

The Rate of Decomposition of Ethyl Diszoncetate by Banzoic Acid in the Absence of Added Salts

Time	V	A 3	(v++v)	10g(v'-	-v)
0	27.16	41.29	14.13	1.1501	
5	28.86	41.77	12.91	1.1109	
10	30.37	42.19	11.82	1.0726	
15	31.72	42.68	10.96	1.0398	Average time 15
20	32.98	42.97	9.99	.9996	" log(v*-v) 1.0373
25	34.18	43,36	9.19	.9628	
30	35.28	43.70	8.42	.9253	
36	36.28	44.00	7.72	.8876	
40	37.20	44.28	7.08	.8500	
45	38.02	44.50	6.48	+8116	
50	38.78	44.74	5.96	+7752	Average time 50
55	39.48	44.96	5.48	.7388	" log(v'-v) 0.7756
60	40.10	45.17	5.07	.7050	
35	40.72	45.30	4.58	.6609	
		1.0373 -	16 m -	b	
		.7756 :	50 m -	b	
		.2617 :	-35 11		
			0.007478		
		15	0.01722		

Conc. of Benzoic Acid 0.003333 M.

The Rate of Decomposition of Ethyl Dissoacetate by

Benzoic Acid in the Absence of Added Salts

Time	v	Aa	(V* •V)	logiv"-	()
0 5 10 15 20 25 30	11.60 13.99 16.21 18.25 20.00 21.77 23.23	31.70 32.41 33.08 33.70 34.21 34.21 34.76 35.19	20.10 18.42 16.87 15.45 14.21 12.99 11.96	1.3032 1.2653 1.2271 1.1889 1.1526 1.1136 1.1077	Average time 15 " log(v'-v) l.1898
35 40 45 50 55 60 65	24.65 25.95 27.09 28.20 29.18 30.09 30.91	\$5.65 36,07 36338 36.68 37.65 37.30 37.67 1,1998 =	11.00 10.07 9.29 9.48 7.87 7.21 6.76	1.0414 1.0030 .9680 .9284 .8960 .8579 .8579	Average time 50 " log(v'-v) 0.9321
		0.9321 = .2577 = -a =	50 E - b -35 E 0.007362 0.01695		

Cone. of Benzoic Acid 0.005333 K.

The Rate of Decomposition of Ethyl Dissoncetate by Benzoic Acid in the Mosence of Added Salts

Timo	4	Vð	(v ³ -v)	108(71-	-7)
,0	16.49	38,09	21.60	1.3344	de a general de la construction de
5	19.90	39.23	19.33	1,2862	
19	22.96	40.20	17,24	1,2365	Average time 10
25	25.69	41.08	15,39	1.1872	" log(v'-v) 1,2362
80	28,18	41.87	15.69	1,1364	
25	30.38	42.85	12,17	1.0853	
30	32,27	43.10	10.83	1.0346	
35	33.98	43.67	9.09	.9863	Average time 35
10	35.57	44.10	8.53	+9309	" log(v'-v) 0.9844
15	36,89	44.56	7.07	.8848	

Cone. of Benzoie Aoid 0.005714 M.

1.2362	- ANALINE ANALINE	10	111	-	b	
0.9844	Part A	35	131	-	b	
,2518	itti	-25	-			
	443	0.	.01	.007		
lc	-	0.	.ce	319		

The Rate of Decomposition of Ethyl Dissoncetate by Benzoic Acid in the Absonce of Added Salts

			-		
Timo	۷	¥1	(¥1-¥)	10g(v'-	2)
0	29.60	45.80	16.20	1.2095	an genine den konstantijn djordigeniske genijke dised
5	32.15	46.63	14.48	1.1008	Avamce time 10
10	34.48	47.34	12.96	1,1092	" log(v'-v)
15	36.50	48.03	11.55	1.0618	1.1107
20	08.08	49.60	10,29	1.0120	
25	39.98	49.08	9.10	.9590	
30	41.45	49.49	8.94	.9053	
35	42.72	49.90	7.18	.8561	Average time 35
40	43.86	50.29	6,43	.9082	0.8572
43	44.20	50.62	5.72	.7574	

conc,	10	Banzoic	Acid
Ő	.005	714 1.	

1.1107	19	10			b	
.9572	anapa	35	m	-	3	
.2535	Cons.	-25				
-01	-	0.0)10	14		
ic	23	0.0)23	25		

The change in the average values of the reaction constant with the acid concentration is shown graphically in Fig. 8. From the average values of the reaction constants and following the same procedure as was outlined in Part III, it is possible to calculate the hydrogen ion concentrations at the various acid concentrations and, from these values, the classical dissociation "constant" for the corresponding acid concentrations. The results of these calculations are given in Summary Table B. From the hydrogen ion concentrations calculated in the above manner, the ionic strengths(u) of the solutions are obtained.

By means of equation :9:, Part SII, which states

 $\log K_c = 5.8080 + \sqrt{u} - 3.03 u$ a series of calculated values for K_c may be obtained for the various ionic strengths. Such a series is given in Summary Table B under the column headed $K_c x 10^5$ (cale'd). By comparing the calculated values with the experimental values for the same concentrations (also given in Table B), it is seen that

the agreement is excellent. This gives a measure of the general validity of equation :9:.

It is also possible to check the general form of equation :9: in another way. Using the experimental values of K_0 and the known values of \underline{u} , a series of values of K_a at the the a different concentrations may be obtained. If equation be valid, K_a should be a constant independent of $\underline{\underline{u}}$, and furthermore it should check the value of K_a obtained in Part III, namely $\overline{\underline{\mu}}$.

Summary Table B

The Ionization Constants of Benzoic Acid in Biferrent Concentrations as Determined Experimentally and As Calculated from Equation :9:

Bonzoic Act Moles/11	ld tor k	(1130")x 10 ⁴	log Ke(exp't)	den för i og nytang synge og
0.001040	.003968	2.317	5.0226	
0.001111	.009341	2.414	5,8259	
0.001905	,01259	3.250	8.8259	
0.003333	.01709	4.409	5.0273	
0.005714	.02319	5.992	5.9463	

Summary Table B (Continued)

Kex 10 ⁵ (exp't)	Kex 10 ⁵ (cale'd)	U	ŢŪ	Xax 10 ⁵ 40010H
6.65	6,65	.00023	.0151	6.43
6.70	6.66	.00024	.0156	6.48
6.70	6.69	.00032	.0179	6.43
6.72	6.73	.00044	.0210	6.42
7.08	6.77	.00060	.0246	6.66

• This series of values of Kn are calculated from experimental values of K₀ obtained in this Part and is to be compared to 6.43 x 10^{-5} obtained in Part III 6.43 x 10^{-5} . The values of K_a calculated from the data in this Part are given under a column so designated in the summary table. It is apparent that except for the last value in the column, the value of K_a is constant and agrees very closely with that obtained in Part III using potassium perchlorate as the salt. As the concentration of benzoic acid is increased above a certain point, the data tends to become more questionable since the reaction proceeds too reapidly to permit precise measurement of the rate constants. At concentrations of benzoic acid above 0.005714 M., it was deemed impracticable to obtain rate constants with the equipment used. The value obtained at 0.005714 M. is questionable; and this probably explains why the value of K_a calculated from it fails to agree with the other values obtained.

While equation :9: is excellently checked by the data given in this part, it is easy to overstate the importance of this. It must be observed that the salt concentration was necessarily very low in this Part, and for this reason the correction due to the linear term in equation :9: was extremely small. This much, however, may be safely said': The work of this Part, as far as it goes, completely verifies equation:9:, which probably is valid for all aqueous solutions of benzoic acid in the absence of other salts, since the solubility of a small error in benzoic acid is so low as to prevent the linear term(the only term questionable) in equation:9: from having much influence on the calculated value of K_e.

Summary

(1)AAn apparatus has been designed for the determination of reaction rates by the measurement of the pressure of an evolved gas.

(2). This apparatus has been applied to a study of the effect of neutral salts in various concentrations on the rate of decomposition of ethyl diazoacetate, catalyzed by perchloric and benzoic acids; and from this study the effect of neutral salts on the ionization of #### benzoic acid has been deduced.

(3). The velocity of decomposition of ethyl diazoacetate catalyzed by benzoic acid has been studied in the presence of several different concentrations of potassium nitrate, and the salt effect was found to be positive and exponential. This is in accord with theory. A_{A}^{n} interfering side reaction prevented quantitative treatment of results.

(4). The velocity of the same reaction catalyzed by perchloric acid and in the presence of varying concentrations of potassium perchlorate has been studied; the salt effect in this case was positive and linear over the range of concentrations studied. From this work, the following equation passformed, relating hydrogen ion to salt concentration and reaction constant, was derived: $(H_30^*) = 0.02572 \text{ k} - 0.00046 \text{ G}$ where the last term is a correction for the linear selt effect. This equation is valid only for the diazo reaction.

(5). The effect of concentration of potassium perchlorate on the velocity of the reaction catalyzed by benzoic acid has been studied; the salt effect was found to be positive and exponential.

(6). The hydrogen ion concentration has been catalytically determined for solutions of benzoic acid in the presence of varying concentrations of potassium perchlorate.

(7). The classical ionization constant of benzoic acid has been calculated from these data and found to vary with the salt concentration.

(8). The thermodynamic ionization constant has been likewise calculated and found to be independent of the salt concentration and to have the value 6.43×10^{-5} .

(9). The classical ionization constant of benzoic acid has been found to be related to the ionic strength (\underline{u}) of the solution by the expression

log K = 3.8080 + 10 - 3.03 u

(10). This equation has been verified for aqueous solutions of benzoic acid at concentrations from \$\$\$\$\$\$0.001 to .006 M. in the absence of added salts.

Bibliography

- (1) Arrhenius, S.;
 2. physik. Chem. 1, 110 (1887)
 Cited by
 Brönsted, J.N. and Grove, C.
 "The Kinetic Determination of Hydrogen-Ion Concentration in Aqueous Solution."
 J. Am. Chem. Soc. 52, 1394 (1930)
- (2) Arrhenius, S.;
 "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren."
 2. physik. Chem. 4, 226 (1889)
- (3) Arrhenius, S.;
 "Über die Anderung der Stärke schwacher Säuren durch Saltzzusatz."
 Z. physik. Chem. 31, 197 (1899)
- (4) Bowe, L.; "The Neutral Salt Effect." J. Phys. Chem. 31, 291-298 (1927)
- (5) Bredig, G. and Fraenkel, W.; "Wasserstoffionenkatalyse" Z. Elecktrochem. 11, 525-528 (1905)
- (6) Bredig, G. and Ripley, P.F.;
 "Kinetik der Einführung von Säuren in des Diazoessigestermolekul, besonders mit Hilfe von Neutralsalzen." Ber. 40, 4015 (1907)
- (7) Brönsted, J.N.; "Acid and Basic Catalysis." Chem. Rev. 5, 335 (1928)
- (8) Brönsted, J.N.;
 "Zur Theorie der chemischen
 Reaktionsgeschwindigkeit."
 Z. physik. Chem. 102, 169-207 (1922)

- (9) Brönsted, J.N. and Duus, H.C.;
 "Die Nitramidkatalyse der einfachen NH₂-Basen. Nitramidkatalytische Studien II."
 Z. physik, Chem. 117, 299-311 (1925)
- (10) Brönsted, J.N. and King, C.V.; "Secondary Kinetic Salt Effect." J. AM. Chem. Soc. <u>47</u>, 2523 (1925)
- (11) Brönsted, J.N. and La Mer, V.K.; "Activity Coefficients of Ions in Very Dilute Sollutions." J. Am. Chem. Soc. <u>46</u>, 555 (1924)
- (12) Brönsted, J.N. and Teeter, C. E.; "On Kinetic Salt Effect." J. Phys. Chem. 28, 579-587 (1924)
- (13) Caldwell, R.J.; "Studies of Processes Operative in Solution." Proc. Roy. Soc., London, <u>78A</u>,272-293 (1906)
- (14) Cumning, A.C.; "Die Affinitätskonstanten amphoterer Elektrolyte". Z. physik. Chem. 57, 578 (1907)
- (15) Curtius, T.;
 "Über Diazoverbindungen der Fettreihe. I. Diazoessigsäure, Diazoacetamid, Pseudodiazoacetamid." Ber. 18, 1283-1293 (1985)
- (16) Curtius, T.; "Über Diazoessigsäüre und ihre Derivate." J. prakt. Chem. 146, 396 (1888)

(17) Curtius, T.; "Uber Hydrazin, Stickstoffwasserstoff und die Diazoverbindungen der Fettreihe." Ber. 29, 759-787 (1896)

- (18) Debye, P. and Hückel, E.; "Zur Theorie der Elektrolyte" Physik. Z. 24, 185-206 (1923)
- (19) Dhar, N. and Datta, A.K.; "Dissociationskonstanten von monobasischen Säuren." Z. Elektrochem. 19, 407-409 (1913)
- (20) Dippy, F.J.F. and Williams, F.R.;
 "The Chemical Constitution and Dissociation
 Constants of Monocarboxylic Acids."
 J. Chem. Soc. 1934, 1888-1892
- Euler, H.;
 "Über die Abhängigkeit des Dissociationsgrades einiger Säuren von der Temperatur und über ihre Dissociationswärme."
 Z. physik. Chem. 21, 256-271 (1896)
- (22) Fraenkel, W.; "Zur chemischen Kinetik des Diamoessigesters." 2. physik. Chem. 60, 202 (1907)
- (23) Grove, C.;
 "The Dissociation of Monochloro-acetic Acid
 in Aqueous Solution."
 J. Am. Chem. Soc. 52, 1404-1407 (1930)
- (24) Guggenheim, E.A.; "On Determination of Velocity Constants of a Unimolecular Reaction." Phil. Mag. (7) 2, 538 (1926)
- (25) Hantssch, A.; "Über die Natur der Halogenwasserstoffe." Ber. <u>58</u>, 612-641 (1925)
- (26) Hantzsch, A. and Weissberger, A.;
 "Reaktionskinetische Untersuchungen an starken Säuren."
 2. physik. Chem. 125, 251-263 (1927)

- (27) Harned, H.S.; "Notes on Neutral Salt Catalysis." J. Am. Chem. Soc. <u>40</u>, 1461 (1918)
- (28) Huber, F.C. and Reid, E.E.; "Influence of Rate of Stirring on Rection Velocity." Ind. Eng. Chem. 18, 535-538 (1926)
- (29) Ives, D.J.G.; "The Determination of Dissociation Constants of Monobasic Acids." J. Chem. Soc. <u>1933</u>, 731-137
- (30) Ives, D.J.G., Linstead, R.P., and Riley, H.L.; "Investigations of the Olefinic Acids. Part VIII. Dissociation Constants." J. Chem. Soc. 1933, 561
- (31) Jeffery, G.H. and Vogel, A.I.; "The Thermodynamic Dissociation Constant of Benzoic Acid at 25°C. from Conductivity Measurements." Phil. Mag. 18, 901-909 (1934) See also: Chem. and Ind. 53, 779 (1934)
- (32) Kolthoff, I.M. and Bosch, W.; "The Ionization of Benzoic Acid and the Activity Coefficient of the Benzoate Ion in the Presence of Neutral Salts." J. Phys. Chem. <u>36</u>, 1695 (1932)
- (33) Kraus, C.A. and Parker, H.C.;
 "The Conductance of Aqueous Solutions of Iodic Acid and the Limiting Value of the Equivalent Conductance of the Hydrogen Ion". J. Am. Chem. Soc. <u>44</u>, 2429-2449 (1922)
- (34) La Mer, V.K., King, C.V. and Mason, C.F.; "Activity Coefficients for Electrolytes." J. Am. Chem. Soc. <u>49</u>, 363 (1927)

- (35) Launer, H.F.;
 "The Kinetics of the Reaction between Potassium Permanganate and Oxalic Acid. J. Am. Chem. Soc. <u>54</u>, 2597 (1932)
- (36) Lewis, G.N.; "The Law of Physico-Chemical Change." Proc. Am. Acad. 37, 49-69 (1901)
- (37) Lewis, G.N.; "Outlines of a New System of Thermodynamic Chemistry." Proc. Am. Acad. 43, 259 (1907)
- (38) Mumm, 0.; "Die Kinetik des Diazoessigesters und das Verdünungsgesetz." 2. physik. Chem. 62, 589-600 (1908)
- (39) Ostwald, W.; Z. physik. Chem. 3, 369 (1899) Cited by; Dippy, F.J.F., and Williems, F.R. (loc. cit.)
- (40) Pedersen, J.;
 "The Effect of Shaking upon the Evolution of Gazes from Supersaturated Solution and Its Importance in Measurement of Velocity of Certain Chemical Reactions." J. Am. Chem. Soc. 49, 2681-2689 (1927)
- (41) Rosanoff, M., Clark, R. and Sibley, R.;
 "A Reinvestigation of the Velocity of Sugar Hydrolysis."
 J. Am. Chem. Soc. 33, 1911 (1911)
- (42) Roseveare, W.E.; "Methods of Calculating Rate Constants." J. Am. Chem. Soc. 53, 1651 (1931)

- (43) Saxton, B. and Meier, H.F.;
 "The Ionization Constants of Benzoic Acids at and the three Monochloro-benzoic Acids at 25°C. from Conductance Measurements." J. Am. Chem. Soc. <u>56</u>, 1918-1920 (1934)
- (44) Schaller, R.;
 "Messungen der elektrischen Leitfahigkeit an verdünnten Lösungen bei Temperaturen bis 100 C.
 Z. physik. Chem. 25, 497-524 (1898)
- (45) Spitalsky, E.;
 "Über den Zustand der Chromate und der Chromsäure in wässeriger Lösung."
 Z. anorg. Chem. <u>54</u>, 265-314 (1907)
- (46) Straudinger, H. and Hirzel, H.; "Diazo Compounds. XIV. Decomposition of Derivatives of Ethyl, Diazoacetate by Heat." J. Chem. Soc. 112, 178-179 (1917) also "Über die Zersetzung von Diazo-essigester-Derivaten in Warme." Ber. 49, 2522 (1916)
- (47) Traube, Wilhelm; "Über einen neuen Weg zur Gewinnung aliphatischer Diazoverbindung." Ber. 29, 667-670 (1896)
- (48) Vanino, Ludwig; Präparative Chemie, (Zweite auflage) Zwei Land, Organischer Teil, p.307 Stuttgart, F. Enke (1921)

BIBLIOGRAPHY

- (1) Curtius, T.;
 "Über Diazoverbindungen der Fettreihe. I. Diazoessigsaure, Diazoacetamid, Pseudodiazoacetamid."
 Ber. 13, 1983-1993 (1885)
- (2) Curtius, T.;
 "Über Diszoessigsäure und ihre Derivate."
 J. prakt. Chem. <u>146</u>, 398 (1988)
- (3) Curtius, T.; "Über Hydrazin, Stickstoffwasserstoff und die Diezoverbindungen der Fettreihe." Ber. <u>28</u>, 759-787 (1896)
- (4) Traube, Wilhelm;
 Ober einen neuen Weg zur Gewinnung aliphatischer Dissoverbindung.
 Ber. <u>22</u>, 667-670 (1896)
- (5) Fraenkel, W.;
 "Zur chemischen Kinetik des Diszoessigesters."
 Z. physik. Chem. <u>60</u>, 202 (1907)
- (6) Bredig, G. and Fraenkel, W.; "Wasscratoffionenkatalyse." Z. Elektrochem. <u>11</u>, 525-528 (1905)
- (7) Bredig, G. and Ripley, P. F.;
 "Kinetick der Einführung von Säuren in des Dissoessigestermolekul, besonders mit Hilfe von Neutrelselsen."
 Ber. 40, 4015 (1907)
- (8) Spitalsky, E.:
 "Über den Zustand der Chromste und der Chromsäure in wässeriger Lösung." Z. anorg. Chem. <u>54</u>, 265-314 (1907)
- (9) Cumming, A. C.;
 "Die Affinitätskonstanten amphoterer Elektrolyte."
 2. physik. Chem. <u>57</u>, 578 (1907)
- Mumm, 0.;
 "Die Ninetik des Diazoessigesters und des Verdünun sgesetz."
 Z. physik. Chem. <u>62</u>, 589-600 (1908)

- (11) Hentgsch, A.; "Uber die Natur der Halogenwasserstoffe." Ber. <u>58</u>, 612-641 (1955)
- (12) Hantzsch, A. and Weissberger, A.; "Reaktionskinetische Untersuchungen an starken Säuren." Z. physik. Chem. <u>125</u>, 251-263 (1927)
- (18) Saudinger, H. and Hirzel, H.; "Disso Compounds. Miv. Decomposition of Derivatives of Ethyl Dissoscetate by Hest." J. Chem. Soc. <u>112</u>, 178-179 (1917) also "Über die Zersetzung von Disso-essigester-Derivaten in Warme." Ber. <u>48</u>, 2522 (1916)
- (14) Arrhenius, S.;
 Z. physik. Chem. 1, 110 (1887)
 Cited by Brönsted, J. N. and Grove, C.
 "The Kinetic Determination of Hydrogen-Ion Concentration in Aqueous Solution," J. Am. Chem. Soc. <u>32</u>, 1394 (1930)
- (15) Arrhenius, S.; "Über die Keaktionsgeschwindigkeit bei der Inversion von Rohrsucker durch Sauren." Z. physik. Chem. 4, 226 (1889)
- (16) Arrhenius, S.;
 "Über die Anderung der Stärke schwacher Säuren durch Saltzunstz."
 Z. physik. Chem. <u>21</u>, 197 (1899)
- (17) Boxe, L.; "The Neutral Salt Effect." J. Phys. Chem. <u>31</u>, 291-298 (1927)
- (19) Harned, H. S.; "Notes on Seutral Salt Catalysis." J. Am. Chem. Soc. <u>40</u>, 1461 (1918)
- (19) Celdwell, E. J.; "Studies of Processes Operative in Solution." Proc. Roy. Ecc., London, <u>784</u>, 872-295 (1906)
- (20) Lewis, G. N.; "The La. of Physico-Chemical Change." Proc. Am. Acad. <u>27</u>, 49-69 (1991)

- (21) Lowis, G. H.; "Outlines of a New System of Thermodynamic Chemistry." Proc. Am. Acad. <u>48</u>, 259 (1907)
- (22) Debye, P. and Hückel, K.; "Zur Insorie der Elektrolyte." Physik. Z. <u>24</u>, 185-206 (1923)
- (23) Brönsted, J. H. and La Mar, V. K.; "Activity Coefficients of Ions in Very Dilute Solutions." J. Am. Chem. Soc. <u>46</u>, 555 (1924)
- (24) La Mer, V. E., King, C. V. and Mason, C. F.; "Activity Coefficients for Electrolytes." J. As. Ches. Soc. <u>42</u>, 363 (1927)
- (25) Brönsted, J. N.; "Acid and Basic Catalysis." Chem. Fev. <u>5</u>, 335 (1998)
- (28) Bränsted, J. N.; "Zur Theorie der Chemischen Reaktionsgeschwindigkeit." 2. physik. Chem. <u>102</u>, 169-207 (1922)
- (27) Brönsted, J. N. and Teeter, C. E.; "On Kinetic Salt Effect." J. Phys. Chem. <u>28</u>, 578-587 (1824)
- (28) Brönsted, J. N. and Duus, H. C.; "Die Nitramidkatalyse der einfachen NH₂-Basen. Nitramidkatalytische Studien II." Z. physik. Chem. 117, 209-311 (1925)
- (20) Brönsted, J. N. and King, C. V.; "Secondary Kinetic Salt Effect." J. Au. Chem. Soc. <u>47</u>, 2523 (1925)
- (30) Bosenoff, M., Clerk, R. and Sibley, R.;
 "A Reinvestigation of the Velocity of Sugar Bydrolysis."
 J. Am. Chem. Soc. <u>28</u>, 1911 (1911)
- (31) Roseveare, W. E.;
 "Kethods of Calculating Rate Constants." J.Am. Chem. Soc. 53, 1651 (1931)
- (32) Guggenheim, E. A.;
 "On Determination of Velocity Constants of a Unimolecular Reaction."
 Phil. Mag. (?) <u>2</u>, 538 (1926)
- (23) Lowner, H. F.; "The Einstics of the Reaction between Potassium Permangenato and Oxalic Acid." J. Am. Chem. Eoc. <u>54</u>, 2597 (1951)
- (34) Huber, F. C. and Reid, E. E.;
 "Influence of Rate of Stirring on Reaction Velocity." Ind. Eng. Cher. 18, 535-538 (1996)
- (35) Pederten, J.; "The Effect of Shaking upon the Evolution of Geses from Supersaturated Solution and Its Isportance in Measurement of Velocity of Certain Chemical Reactions." J. Am. Chem. Soc. <u>49</u>, 2681-2689 (1927).
- (36) Vanino, Ludwig; Préparative Chemie, (Zweite auflage) Zwei Band, Organiscuer Teil, p. 207 Stuttgart, F. Enke (1921)
- (37) Ostwold, W.; Z. physik. Chem. <u>5</u>, 369 (1899) Cited by Dippy, F. J. F., and Williams, F. R. (<u>loc. cit.</u>)
- (38) Euler, E.;
 "Öber die Abhöngigkeit des Dissociationsgrades alniger Säuren von der Temperatur und über ihre Dissociationswärme."
 2. physik. Chem. <u>21</u>, 258-271 (1896)
- (39) Schaller, R.;
 "Messungen der elektrischen Leitfahigkeit an verdünnten Lösungen bei Temperaturen bis 100°C."
 Z. physik. Chem. <u>25</u>, 497-504 (1898)
- (40) Dhar, N. and Datta, A. K.;
 "Dissociationskonstanten von monobasischen Säuren."
 E. Elektrochem. 19, 407-409 (1913)
- (41) Dippy, F. J. F. and Williams, F. R.;
 "The Chemical Constitution and Dissociation Constants of Monocarboxylic Acids." J. Chem. Soc. <u>1924</u>, 1938-1982
- (42) Kolthoff, I. N. and Bosch, W.; "The Ionization of Benzoic Acid and the Activity Coefficient of the Benzoate Ion in the Presence of Neutral Salts." J. Phys. Chem. 28, 1695 (1931)

- (43) Ives, D. J. G., Linstead, H. P., and Riley, H. L.; "Investigations of the Olefinic Acids. Part VIII. Dissociation Constants." J. Chem. Soc. <u>1932</u>, 561
- (44) Ives, D. J. G.;
 "The Determination of Dissociation Constants of Monobasic Acids."
 J. Chem. Soc. <u>1975</u>, 731-787
- (45) Saxton, B. and Meier, H. F.;
 ^aThe Ionization Constants of Benzolc Acid and the Three Monochloro-Banzolc Acids at 25°C. from Conductance Measurements.^a J. Am. Chem. Soc. <u>56</u>, 1918-1920 (1934)
- (48) Jeffery, G. H. and Vogel, A. I.;
 "The Thermodynamic Dissociation Constant of Benzoic Acid at 25°C. from Conductivity Measurements."
 Phil. Mag. 18, 901-909 (1954)
 See also: Chem. and Ind. 55, 772 (1984)
- (47) Grove, C.; "The Dissociation of Monochiero-acetic Acid in Aqueous Solution." J. Az. Chem. Soc. <u>52</u>, 1404-1407 (1930)
- (48) Kraus, C. A. and Parker, H. C.; "The Conductance of Aqueous Solutions of Iodic Acid and the Limiting Value of the Equivalent Conductance of the Hydrogen Ion." J. Att. Chem. Soc. <u>14</u>, 3429-3448 (1902)

ACENOWLEDOMINTS

The author desires to express his appreciation to the Department of Chemistry of the Massachusetts State College for making possible the carrying out of this work.

More especially the author wishes to acknowledge his indebtedness to Doctor Paul Serex for suggesting the broad outlines of the problem and for his constant advice and encouragement throughout the work. Thanks are also due to Doctor Richard W. Fessenden, frequent discussions with whom brought forth many helpful suggestions; and to Doctor Joseph S. Chamberlain for assistance in the Organic synthesis necessary in the work.

The author also wishes to express his appreciation to Dr. W. S. Hitchie, Dr. C. A. Peters and Mr. F. M. Parrott for their many helpful suggestions and for their aid in reviewing this manuscript. 137

Approved by:

Paul Series

~ R

G.W. Polerman

Date: May 29, 1935