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ABSTRACT

STRESS AND MASS TRANSPORT IN POLYMER COATINGS AND FILMS

FEBRUARY 1995

JOAN KENNETHA VRTIS, B.S., UNIVERSITY OF ILLINOIS

M.B.A., DEPAUL UNIVERSITY

M.MET.M.E., ILLINOIS INSTITUTE OF TECHNOLOGY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by Professor Richard J. Farris

Water sorption in polymers is a common phenomenon. The sorption process can

induce biaxial swelling stresses in polymer coatings causing dimensional instability

commonly observed as curling or bending in the system. This dissertation investigates the

effect of relative humidity on the stresses, mass transport and the dimensional stability of a

bilayerof alkaline processed bone gelatin on a cellulose acetate substrate. Polyvinyl

alcohol), polyimide, epoxy, poly(ethylene terephthalate) and a nickel coating were

investigated for comparison.

A two dimensional bending model was developed which was based on a nonlinear

mathematical modification to Classical Lamination Theory. The model predicts the

dimensional instability, observed as bending or curl, in a gelatin/cellulose acetate bilayer.

The stable, equilibrium shape was related to the minimum potential energy in the system.

Observed curl behavior showed that the gelatin/cellulose acetate bilayer exhibits a

cylindrical geometry at relative humidities less than 54%RH. The bending occurs towards

the gelatin coating indicating that the gelatin was in tension. At relative humidities greater
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than 54%RH, an inversion occurred in which the bilayer forms a cylindrical shape along an

axis 90° to the lower humidity geometry. The cylinder curls towards the cellulose acetate

indicating that the gelatin was in compression and cellulose acetate was in tension.

To test the model validity, the moduli, Poisson's ratio and the humidity expansion

coefficients for each material in the bilayer was required. The materials were

characterized by various methods to determine the required properties. Applying these

results to the two dimensional bending model, the predicted bending phenomenon proved

to be consistent with the observations.

The biaxial swelling stress as a function of relative humidity was investigated.

Gelatin exhibited a stress hysteresis. The stress values determined during desorption were

always higher than those obtained during absorption at the same relative humidity. Similar

hysteresis behavior was observed in polyvinyl alcohol) at relative humidities lower than its

drying humidity. Hysteresis in the epoxy coating was non-existent.

The mass transport properties for gelatin and cellulose acetate were studied. A

holographic interferometry method was developed and compared with a standard

gravimetric technique. The holographic method was validated using PMDA-ODA

polyimide as a standard.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Introduction

Polymers exhibit a high propensity to absorb moisture unlike their material

counterparts, ceramics and metals. Most polymers display this characteristic to varying

degrees. Relative humidity has a direct effect on the dimensional stability of multilayer

polymer coating systems. Dimensional instability due to swelling and thermal stresses is

commonly observed as curling or bending of the multilayer system and in extreme cases,

coating delamination or cracking. This dissertation will focus on those polymers with a

high affinity to moisture, specifically, alkaline processed bone gelatin and cellulose acetate.

Hygroscopic effects on the dimensional stability are investigated and a theoretical model

representing the bending of a two dimensional bilayer polymer system is proposed.

Dissertation Overview

This dissertation will address the stresses and mass transport in polymer films and

coatings. Chapter 1 offers a literature review of problems and phenomena that occur in

polymer coatings and films with variations in environmental conditions, specifically,

relative humidity. Dimensional instability and moisture sorption hysteresis are highlighted.

In chapter 2, the contributing factors to dimensional instability in a

coating/substrate bilayer are introduced. Stresses in coatings are discussed, incremental

linear elasticity theory is outlined and a two dimensional bending model representing the

curling phenomenon in a gelatin/cellulose acetate bilayer is proposed.



The material properties of photographic film components as well as some general

polymer and metal coatings are highlighted in chapter 3. A background of the materials

and the system designed to control relative humidity is discussed. Tensile and shear

moduli, Poisson's ratio, thermal properties, and the degree of crystallinity in each material

are featured.

Swelling strains are investigated in chapter 4. The swelling strain due to varying

relative humidities is presented. Humidity expansion coefficients for the in-plane and out-

of-plane directions for the primary photographic film components are discussed.

Biaxial swelling stresses in coatings and films are detailed in chapter 5. Real time

holographic interferometry is employed to quantify the biaxial stresses in coatings as a

function of relative humidity. The Holographic Interferometry system adapted to accept

relative humidity is outlined. The influence of crosslinking, crystallinity and sorption

cycling on the humidity swelling stresses is also investigated.

Chapter 6 features the mass transport properties of a coating/substrate bilayer

system. The mass diffusion coefficients determined by Holographic Interferometry are

compared with gravimetric results. Biaxial stress as a function of mass uptake is also

correlated.

Conclusions made from this investigation and possible future work in

understanding the mechanisms of the sorption process and the effect of humidity on other

polymer systems is addressed in chapter 7. An analytical solution of the two dimensional

bending model for a bilayer system of gelatin coated on cellulose acetate is presented and

compared to the observed behavior.

Background

There are two phenomena that have been observed in this work and are difficult to

explain: (1 ) dimensional instability in a polymer-polymer bilayer system with varying
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relative humidity and (2) the dependence of the biaxial swelling stress values on the

sorption path. The latter phenomenon is known as "moisture sorption hysteresis". It has

been these observations that have driven this investigation.

Dimensional Instability

Water sorption in polymers is a common phenomenon. The sorption process can

induce swelling stresses in polymer coatings causing dimensional instability commonly

observed as bending in the system. Bending or "curl" has been observed in photographic

films, medical, electronic, aerospace and food packaging applications [1-11]. In

photographic films, the primary system is composed of a gelatin coating on a cellulose

acetate, CA, or polyethylene terephthalate), PET, substrate. Dimensional instability

complicates post coating processing of the film due to the bending of the system. The

bending introduces difficulty in ( 1 ) perforating the 35mm wide multilayer and (2) high

speed processing of the developed product [12]

The gelatin/CA bilayer system exhibits two different bending modes. For this

specifice case, below 54%RH, the gelatin is in tension causing a "positive" curl. A

cylindrical shape results about the x axis. Above 54%RH, an inversion of the cylindrical

shape occurs 90° (about the y axis) to the low humidity curl. The cylindrical geometry

bends towards the cellulose acetate. At the high humidities, the gelatin is in compression

defined in the photographic industry as a "negative" curl. Figure 1 . 1 illustrates this

phenomenon.

Each bending mode depicts the bilayer as a cylindrical shape. The cylindrical form

exists along one of the two principal axes in the plane of the bilayer. Similar

characteristics have been observed for thin unsymmetric laminates of graphite - polyimide

composites [10]. In each case, it is the stress in the system which causes bending to

occur
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Positive Curl
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Negative Curl

Gelatin Cellulose

Acetate

Figure 1 1 Schematic of dimensional instability in a bilayer system of gelatin coated on a

cellulose acetate substrate.

A



The stress is proportional to the product of the modulus and the expansion coefficient as

described in equation (1.1) for a constrained isotropic material.

E[
£ij - SijCcdT-j&JRH - £ dP)j = (1 + v)d(7y - 5yvdcT^ (1.1)

where,

E = tensile modulus 6
ij

" strain

= Kronecker delta a = thermal expansion coefficient

d = differential operator T = temperature

P = humidity expansion coefficient RH= relative humidity

I = reaction expansion coefficient P = extent of the curing reaction

V = Poisson's ratio G
ij

= stress

The material coefficients, E, v, (3, a, and £ can depend upon the temperature,

relative humidity and extent of reaction and still preserve linearity in terms of stress and

strain. For a completely cured system under isothermal conditions and varying relative

humidity, the mismatch of humidity expansion coefficients of each material contributes to

the bending in the system. In photographic film, the bending primarily results from the

difference in humidity expansion coefficients between the photographic emulsion (gelatin

with silver halides) and the support (substrates such as cellulose acetate or poly(ethylene

terephthalate)) [3]. The zero stress state is the stress at which the photographic film lies

flat. For the gelatin/cellulose acetate bilayer investigated, the zero state of stress occurred

at 54%RH and ambient temperature. The zero stress state in photographic films is

dependent upon drying conditions, gelatin coating thickness and the choice of substrate.

It is the decrease or increase in relative humidity from the zero stress state that influences

the bending of the system.
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In addition to the mismatch of the humidity expansion coefficients, viscoelastic

effects that are induced when photographic film is wound into a roll, also contribute to the

dimensional instability [3]. In roll form, the film is flat across its width but assumes a

lengthwise curvature. The phenomenon of lengthwise "plastic flow" is referred to as

"core-set" and has been explained by stress relaxation [3]. Extensive research has been

conducted pertaining to the dimensional instability in photographic films [ 1 ,2, 1 3-15].

Several techniques are available for measuring swelling stresses in films [7,16-20].

The most common techniques measure the strain or bending and use linear elastic

assumptions to determine the stress. These techniques are usually one dimensional

techniques requiring knowledge of the Poisson's ratio to apply the results to a two

dimensional system (ie., a coating on a substrate). Holographic interferometry techniques

directly measure the stress in either a one or two dimensional system The advantage of

this technique is that only the density of the material is required. The techniques

mentioned have advantages and disadvantages. Each is best applied to specific sizes and

geometries.

Predicting the dimensional instability in the coating system is advantageous to

optimizing processing and product design. Modelling is a valuable, economic tool for

estimating process and product design requirements. Several models are available for

predicting the bending of multilayer system as a result of swelling [6, 1 7,21,22]. The one

dimensional models fail to predict the cylindrical shapes observed in a two dimensional

photographic films as a function of relative humidity. Hyer proposed a two dimensional

model to predict the cylindrical shapes in unsymmetric laminates solely as a function of

temperature [23]. A two dimensional model simulating the bending behavior of a

coating/substrate system as a function of relative humidity has not been found in the open

literature.
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Moisture Sorption and Dimensional Hysteresis

Moisture sorption hysteresis is the phenomenon in which different paths exist for

adsorption and desorption of moisture from the same material [24], The mechanical and

How properties of materials exhibiting this hysteresis are often dependent upon the

sorption path [2,25], There are several proposed mechanisms for moisture sorption and

moisture sorption hysteresis [24-35]. Early mechanisms postulated that there was a

distinction between the two principal classes of sorbed water: (a) water which is bound in

some way to the inner and outer surfaces of the absorbant and (b) water which is normally

condensed in the material. These mechanisms did not explain the inherent moisture

hysteresis. Later mechanisms expanded the earlier proposals by introducing the terms,

"bound" and "free" water in the polymer system. "Bound" water represents the water

molecules which are hydrogen bonded to the polymer. Specifically in biopolymer such as

collagen and gelatin, the water molecule hydrogen bonds with the amine or carbonyl

groups in the peptide chain. "Free" water is characterized as the water that fills the

interstices in the polymer network. This is most often the amorphous region. The amount

of "free" water in the system is dictated by relative humidity (recalling that relative

humidity is ratio of the partial pressure of water vapor in air to the equilibrium vapor

pressure of water at the same temperature) and therefore the osmotic pressure (known as

the Donnan equilibrium) [31]. But this again does not discuss the hysteresis phenomenon.

Another mechanism considered is the "Cavity Concept", which addresses the moisture

sorption hysteresis. This "concept" suggests that cavities exist in the polymer (in this case,

gelatin and casein). A cavity is a pore with a constricted neck. Filling the cavities during

absorption is progressive but emptying the cavities during desorption is abrupt [33].

Therefore, there is a difference in moisture content along the desorption and absorption

paths.
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York [25] experimentally tested the theoretical relationships of moisture sorption

hysteresis and concluded that there were three (3) mechanisms in which water can be held:

(a) monomolecular layers of water are bound to the surface (referred to as monolayer

adsorbed moisture), (b) moisture within the material (known as absorbed moisture) and

(c) multimolecular layers of water (termed normally condensed water). The hysteresis

mechanism is explained as follows. Assume a dry material is exposed to a certain relative

humidity, initially the water molecules adsorb on the surface forming a monomolecular

layer. In this phase, the monolayer is subjected to both surface binding forces and

diffilsionaJ forces. In the next step, the diffiisional forces transfer moisture into the

material. Therefore, the moisture is absorbed into the bulk. In addition, as more moisture

adheres to the surface, it condenses forming a multimolecular layer of water. If the

relative humidity (moisture vapor pressure) is reduced, the water molecules at the surface

are initially removed before the diffusion forces removed the absorbed moisture out of the

material. The rate at which the moisture is removed differs from the rate at which the

material takes in moisture.

York's mechanism presents a transport approach. A more recent mechanism which

addresses moisture sorption hysteresis in gelatin films on a molecular scale was deduced

using circular dichroism studies. Before presenting this mechanism, a brief understanding

of the structure of gelatin is required. More extensive details are available in the literature

[36]. In general, gelatin is a derivative of collagen. Collagen is a right hand triple a-helix.

These rigid rod helices are 300 nm in length. Collagen is a polypeptide. Therefore it

consists of a series of amino acids. The three collagen strands are hydrogen bonded to

each other thus stabilizing the triple helical structure.

Gelatin is formed by denaturation of the collagen from the rigid rod system to

three (3) random coils. Gelatin films can either be amorphous or semicrystalline

depending on the drying conditions. A semicrystalline gelatin film is formed by drying the

gelatin at 25°C and ~50%RH.
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The crystallites in the gelatin are renaturated collagen rigid rods known as

"collagen fold crystallites". There are 17 known members in the collagen family of

proteins [37]. The common triple helical structure is composed of three polypeptide

chains with the repeating sequence Gly-Xxx-Yyy. The Xxx is frequently proline and the

Yyy is frequently hydroxyproline. Figure 1 .2 represents the most common polypeptide

groups.

In addition to displaying moisture sorption hysteresis, gelatin films exhibits a small

reduction in stress at low relative humidities. The mechanism that follows accounts for

both of these phenomena. First, it is believed that "bound" water stabilizes the triple helix

by interchain bridging [34] and that the "bound" water is the primary contributing factor to

the hysteresis [33], In general, the conformations of the single chains of the collagen and

gelatin resemble the conformations of poly(L-proline), Form II, which is the trans-

conformation [29]. This was determined using circular dichroism (CD). Since the glycyl

residue occupies every third residue, the poly(L-proline) trans-conformation of the single

collagen or gelatin chains are stabilized only in the triple helical structure. This suggests

that CD measurements are directly related to the triple helix content in collagen and

gelatin. Experimental results have shown that at relative humidities less that 20%, there is

a large decrease in the triple helix content. This suggests that a trans-conformation to cis-

conformation transition exists, since the cis-conformation of polyproline is known to

hinder hydrogen bonding of the water molecule to the oxygen of the proline's carbonyl

groups [29]. The trans- to cis- conformation transition is directly related to the observed

stress reduction at low relative humidities. In addition, it is postulated that moisture

sorption hysteresis is dependent upon the amounts of the cis- and trans- peptide

conformations in the gelatin. In general, as the relative humidity decreases (water content

decreases), the triple helix content decreases and an increase in the number of cis- peptide

bonds is observed [29]. Therefore, hysteresis is related to the amount of cis- and trans-

conformations in the gelatin.
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Figure 1 .2 Common polypeptide groups in gelatin and collagen

10



The moisture sorption hysteresis affects the dimensional stability of a material.

Dimensional hysteresis is the phenomenon in which different dimensions exist for

adsorption and desorption of moisture from the same material. Dimensional hysteresi

observed in gelatin films exposed to various relative humidities [2], The mechanical

properties are affected by the sorption path. In addition, stress reduction is observed

relative humidities less that 20%RH.
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CHAPTER 2

THEORETICAL STRESS AND BENDING MODEL

Introduction

Stresses in coating systems can present adverse effects such as cracking or

delamination of the coating. The stress may also impose a bending moment resulting in

dimensional instability of the system. This is commonly observed as bending or curling.

In this chapter, the origin of stresses in coatings will be presented. Incremental Linear

Elasticity is adopted to theoretically represent the relationship of stress as a function of

environmental conditions. A nonlinear modification of Classical Lamination Theory is

presented which represents the bending phenomenon observed in a two dimensional

bilayer system as a result of humidity gradients.

Stresses in Coatings

Coatings are commercially important. For example, in the electronic industry,

coatings are used as passivation layers to insulate the metal circuits between levels. Food

science relies on the barrier properties of polymer coatings in packaging to reduce

spoilage. And the photographic industry uses coatings as colloid protectors for the silver

halide crystals and as a means to filter light in their color films.

There are two types of stress: stress imposed by an external load and an internal

or residual stress induced by variations in environmental conditions, curing of the coating,

and relaxation due to physical aging, for example. Throughout this text, the internal stress

will be implied.



The most common mechanism of internal stress results from the mismatch between

the expansion coefficients, eg., the thermal expansion coefficient, TEC, or the humidity

expansion coefficient, HEC. For example, in a photographic bilayer system, if the HEC of

the coating is greater than the HEC of the substrate, the coating will be in tension and the

substrate will be in compression at lower humidities. As observed in the specific case, at

relative humidities less that 54%, a gelatin/cellulose acetate bilayer curls towards the

gelatin coating into a cylindrical shape along the x axis. This is known as "positive curl".

Observations at humidities greater than 54%RH show that the bilayer inverts the

cylindrical geometry to the y axis, 90° from the lower humidity curl axis. In addition, the

bilayer curls towards the cellulose acetate. Therefore, the coating is in compression and

the substrate is in tension. This occurs as a "negative curl" in the system. The bending

phenomenon is depicted in figure 2. 1

.

Since a coating is two dimensionally constrained, moisture removal from the

coating by lowering the relative humidity causes in-plane shrinkage of the coating on a

rigid substrate. This shrinkage imposes a tensile stress in the coating. Any volumetric

change would occur in the out-of-plane direction. As mentioned earlier, another

mechanism for stress is physical aging. Physical aging can influence the coating stress by

relaxation or rearrangement of the molecules over time.

The sources of stress discussed above are not an exhaustive list. The mechanisms

outlined are those believed to apply to this investigation. These mechanisms of stress and

others are detailed in the literature [1-8].

The components of stress can be understood further by removing a small

volumetric element from the coating. In an orthotropic system, there are 9 components of

stress. There are 3 normal stresses which are perpendicular to the volume face and 6

shear stresses which align parallel to the volume face. Figure 2.2 provides a pictorial

representation.
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Zero Biaxial Stress

at ~~54%RH
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Cellulose Acetate
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-Acetate

> 54%RH
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Figure 2.
1 Representation of the bending phenomena depicting the result of the mismatch

between humidity expansion coefficients of the coating and substrate. This behavior is

observed in the gelatin/cellulose acetate bilayer system studied in this work.
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Figure 2.2 Representation of the possible stresses in a volumetric element of an

orthotropic coating
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By symmetry arguments, the 6 shear stress components are reduced to 3 shear

components where ay = (for i * j). Since a coating is a two dimensionally constrained

system, the out-of-plane normal stress, o33 is zero. Aleck [9] illustrated that away from

the edge of the coating, the shear stresses, o 13 and g23 are zero. Therefore, the stresses

required to understand a coating system have been reduced from 9 components to 3

components: 2 normal stresses, aj
i
and o22 and a single shear stress, a 12 .

Since the stresses required are in the plane of the coating, a plane stress analysis

can be used to resolve the stress in the coating. This is applied theoretically using linear

elastic assumptions.

Incremental Linear Elasticity Theory

Incremental linear elasticity describes the relationship of stress to strain at

incremental intervals. The strain can be externally applied or induced by environmental or

processing conditions. Incremental linear elasticity assumes the material is homogeneous,

isotropic, elastic and in the small strain regime.

The bending curvature in the coating/substrate system is related to the stress in the

coating. Therefore, it is important to quantify the induced stresses in the system. In an

isotropic material, swelling stresses are purely dilatational and therefore shear stresses are

non-existent. In this case, the swelling stress in an isotropic system is directly proportional

to the humidity expansion coefficients and tensile moduli. Incremental Linear Elasticity

Theory describes this relationship:

E[dejj -5jj(ccdT + (3dRH)] = (l+v)dajj - vSyda^ (2.1)
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where,

E = tensile modulus
Bij

= strain

= Kronecker delta a = thermal expansion coefficient

d = differential operator T = temperature

P
z humidity expansion coefficient RH = relative humidity

V = Poisson's ratio G
ij

" stress

In a coating, the material is constrained in two dimensions. Therefore, under

isothermal conditions, dT = 0, and by definition of a two dimensionally constrained, lineai

elastic, isotropic, homogeneous material, deu = de22 = 0 and do, , = do22 = do. This

reduces Equation (2.
1
) to:

-[Ep7(l - v)] = do/dRH (2.2)

This describes the dependence of the stress in the coating with relative humidity. It is

often assumed that the material constants are independent of humidity changes.

Therefore, as the humidity is increased, the stress in the coating would decrease.

Analogously for constant humidity conditions, dRH = 0, Equation (2. 1) becomes:

-[Ect/(1 -v)] = da/dT (2.3)

In this case, the ratio of the two dimensional stress to the temperature is proportional to

the product of the stiffness and thermal expansion coefficient.

For a one dimensionally constrained strip under isothermal conditions, dT = 0,

do22 = do}} — 0, de|
]
=0 and do, ,

= do, equation (2. 1) is now written as:

-[EP] = do/dRH (2.4)



By combining equations (2.2) and (2.4), Poisson's ratio can be determined

(2.5):

using equation

o=(l
ID

a (2.5)
2D

Stress as a function of environmental conditions, ie., temperature and humidity,

can be resolved by determining the expansion coefficients and tensile modulus of the

isotropic coating. There are several techniques which quantify the stress as a function of

temperature and humidity [10-15]. Chapter 5 provides an outline of some of these

techniques and highlights their advantages and disadvantages.

Incremental linear elasticity is used to quantify the stress in an isotropic coating,

but the dimensional instability in the coating/substrate system is best described by

modelling this two dimensional system using a modification to Classical Lamination

Theory.

Historically, the dependence of relative humidity on the stress and therefore the

dimensional instability in a multilayered system has been a great concern in the

photographic industry and more recently in the aerospace and electronics industries [16-

27]. Mathematical models depicting the dimensional instability observed as bending have

been proposed. Although, these models provide close correlation to the actual

observation, they have been primarily limited to one dimensional systems [18,21,26,27],

The bending curvature dependence on relative humidity observed in this

investigation was described earlier and depicted in Figure 2.1. It is apparent that the one

Two Dimensional Bending Model
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dimensional models presented above would not adequately describe the bending inversion

observed in the gelatin/cellulose acetate bilayer.

Therefore, a two dimensional model is proposed to predict the bending curvature

of a coating/substrate bilayer subjected to various relative humidities. This mathematical

model is based on a non-linear modification of classical lamination theory.

A derivation of classical lamination theory has been presented by Jones [28].

Lamination theory is extensively applied in understanding the stresses and strains in

laminated composite systems. It is commonly used to predict the response of laminates

under external and thermal loads. The basic assumptions of this theory are [29]:

(a.) The width and the length of the laminate must be much larger than the
thickness, (width, length » thickness).

(b.) A perfect interlaminar bond must exist between the laminas. Therefore the
strains in each lamina at the interface are equivalent

(c.) The strain distribution in the thickness direction is linear.

(d.) Continuum mechanics applies. Therefore, the laminas are macroscopically
homogeneous.

(e.) The laminas are linear elastic.

(f.) A line perpendicular to the neutral axis before deformation remains

perpendicular after deformation (KirchofPs Hypothesis).

The general equations have been widely published [28-33]. These equations will not be

reiterated in this text but will be communicated as required in the development of the two

dimensional model.

Classical lamination theory predicts the shapes of unsymmetrical laminates as

saddle structures. Figure 2.3 illustrates this predicted shape. Observations documenting

cylindrical shapes in cured unsymmetrical laminates have been published [34]. These

shapes do not conform to the classical lamination theory.
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Figure 2.3 Possible shapes in an unsymmetrical laminate: (a) flat, room temperature

shape, (b) saddle shape predicted by classical lamination theory, (c) & (d) observed

cylindrical shapes. Note: cylindrical shapes illustrated in (c) & (d) depict the same

bending phenomenon observed in the coating/substrate system represented in Figure 2.1.
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I Iyer [35] proposed a non-linear mathematical modification to the

classical lamination theory that represents the cylindrical structures. His model predicts

the response ofasymmetrical laminates subjected solely to thermal loads.

The two dimensional bending model derived in the remainder of this chapter is

based on I Iyer's work and is designed to predict the response of a coating/substrate bilayer

as a result of swelling due to relative humidity changes.

The Theorem of Minimum Potential Energy [30] is applied to the case of pure

bending. The observed shapes are associated with the minimum energy in the system.

Swelling is purely dilatational and in the observed bending case, the shear stresses are non-

existent [3 1
1

For a generalized elastic body, the potential energy is the summation of the

strain energy of the elastic body, the work done by the surface tractions and the work

done by the body forces. Mathematically, this is represented in equation (2.6) [30]:

W JodV Jt,U,c1S JY'.U.dV
volume surface volume

(2.6)

where,

W

V

potential energy

volume of the system

i

1 ' 1 component ofthe

deformation

Fj component of body force

o) strain energy density function

Tj i

lh component of the surface traction

S surface over which tractions apply

In the absence of external loads and body forces, the Minimum Potential Energy

equation is reduced to:

W JwdV
Vol

(2.7)
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with the strain energy density function described by equation (2.8):

00 =^C
1)kl

e
1J

e
kl
-y

]J

e
lj
ARH

(28 )

where,

Cykl
= elastic constants of the material

ejj = strains in the material

Yij = coefficients are related to the elastic coefficients, C
{
;kh and the humidity

expansion coefficient, p.

ARH = relative humidity gradient

Assuming that the system undergoes a translation, e-j, and rotation, z, about the midplane

as a result of loading, the bending curvature is related to the strains through equations (2.9

- 2. 1
1 ) for the two dimensional case, i, j

=
1 , 2:

5
2w

o <3
2w

^22 =e 22 -z—T (2.10)
5y

o d
2
\v

ei2 =ef2 -z—— (2.11)
exay

In general, the kinematic relations are linear in the small strain regime. In the proposed

model, the strain - displacement equations are given non-linear solutions in order to

approximate the bending phenomenon. This approximation assumes the elongation and

shearing strains and the squares of the rotations are the same order of magnitude and are

small compared with unity [34].
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o da ifdw)
en =T~ +

ox 2\dxJ (2.12)

dv 1

e22 =— + -
<7W

5y 2 ^ Oy J
(2.13)

au av 'awYaw
1 + I

ay dx \dx\dy )j
(2.14)

where,

z

u

V

w

0 at the midplane of the bilayer system

laminate midplane displacement in the x-direction

laminate midplane displacement in the y-direction

out of plane displacement of the midplane

Using large (Lagrangian) strain, the strain - displacement equations allow for the departure

from classical lamination theory. The elastic constants, C
ijkl , are related to the reduced

stiffness constants, Qy, and the coefficient, y^, relates the reduced stiffness, Q«, to the

humidity expansion coefficient, pk . The reduced stiffnesses are detailed in equations (2. 1

5

and 2.16).
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Qii = En(l- V23V32)/A

Q22 = E22(l~ v31v13)/A

Q33 = E33( 1 " V12 v2l)/A

Q12 = En(v2 i + v31v23)/ A = E22(v12 + v13v32)/

A

Ql3 = Ej
l(
v3 ,

+ v2 ,
v32 ) / A = /<;22 ( v13 + v, 2 v23 ) / A

Q23 = E22 (v32 + v2 1
v3 1

) / A = A22 ( v23 + V2iV13)/A

Q44 = G 21

Q55 = Gn
Or>6 = G i2

A = 1 - v12 v21 - v23 v32 - v31 v13 -2

v

12 v32 v13

(2.15)

where, Vy is Poisson's ratio and By and Gy are the tensile and shear moduli, respectively

For the observed bending phenomenon, the transverse shear deformation and

transverse normal stresses can be neglected, reducing equation (2. 1 5) to equation (2.16)

§11 - Q] im
4
+ 2(Q, 2 + 2Q66)mV + Q22 n

4

Ql2 =(Qu +Q22 -QrJmV +Q I2 (m
4 +n4

)

Q22 = Qi in
4
+ 2(Q 12 + 2Q66)m

2
n
2
+ Q22m

4

Q66 = (Ql 1
+ Q22 - 2Q, 2 )mV + Q66(m

2 - n
2

f

where, m = cos 6 and n = sin G which relates the Qjj's to the x, y, z axis. 0 equals zero for

a coating/substrate bilayer in which the principal axis align with the x, y, z axes. The

Stiffness matrix, Qy, for the two dimensional case is reduced to equation (2. 17):
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Qii
=

Ml
l-v12v2]

l-v12 v21
0

v12E

1- V,oV12 "21

'22

1-V12 V21
0

0

0

G12

(2.17)

Equation (2 .8) can be expanded by substitution of these relationships to yield:

1 _ - _ _ 1

w = r Qi i
e

i 1

+ Qi 2©l i
e22 + 2Q66e?2 + - Q22e^2

(2 18)

"(Qi i/4 + Qi 2/3y)ei ,ARH - (q12$ + Q22/3j)e22ARH

Now that the strain energy density function has been determined, the deformations, u, v,

and w as a function of x and y must be selected to minimize the potential energy, W.

Since only an approximate solution is sought, the following assumptions are made:

(a.) In attaining the cylindrical shapes, the midplane elongation strains, en and ej

are independent of x and y and therefore do not vary much from linearity.

(b.) The midplane shear strains are negligible (e°2 = 0) since the swelling is

purely dilatational.

Mathematical non-linearity (as opposed to material non-linearity) is introduced by

adopting the form of deformation, w(x,y) as:

w(x,y) = -(ax2 +by2

) (2.19)

As a result, the cylindrical shapes can be resolved. The axes of bending curvature are

related to constants a and b. In classical lamination theory, a = -b represents the saddle

geometry. Using equation (2. 18), the two cylindrical geometries are defined when a = 0,

b * Oand a ^ 0, b = 0. The choice of the approximate solutions for the deformations, u°

and v°, is influenced by the nature of the observed geometries and must force the shear

strain, e^2 , to equal zero. Equations (2.20) and (2.21) represent these solutions:
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u(x,y) = cx-^-^fi (2.20)

v(x,y) = dy-^-^y
6 4

(2.21)

where, c and d are constants. Incorporating equations (2.20 and 2.2
1
) into equations

(2.12-2.14) yields:

e° r
aby2

Ci i
— cU-c-— (2.22)

o a abx
2

e 22 =d—— (2.23)

e
i2 = 0 (2.24)

Equations (2.22 - 2.24) are inserted into equations (2.9-2.11)

aby
2

d
2w

,
abx

2
d

2w
e22=d-—-z—r (2.26)

a
2w

e
' 2
= 0"^ ^
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Recalling the deformation relationship introduced in equation (2.19), the strains

are reduced to:

aby
2

en = c za
(2.28)

e22 = d
abx

zb (2.29)

e12 =0 (2.30)

a, b, c, and d are generalized coordinates and must be determined. The minimum

of the potential energy, W, is now calculated by finding solutions to a, b, c, and d so that

the first variation ofW is zero. This is accomplished by applying equation (2.31):

5W =
^ da J

5a + 5b +
aw
Kdc J

5c +
VddJ

5d = 0 (2.31)

The application of this derivation is now applied to a bilayer system consisting of a

coating on a substrate. This system is depicted in Figure 2.4.

For the x, y and z coordinate system, the following integration limits are applied:

t^<x<^ (2.32)

y ^ / y- < y <—

-

(2.33)

h k-l * ^< h k (2.34)
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Z

Figure 2.4 Bilayer system of a coating on a substrate. This system represents the bilayer

studied in this investigation. The midplane is positioned at z = 0.
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where.

Lx, Ly - the lengths of the sides of the bilayer system along the i and y axis
respectively 3 '

h = thickness

k = 1,2

Equation (2.7) is now written as:

W "
Ttt . t At

0)
(
a

'
b

' C ' d'Q,
J Jx,P y

b

,
ARH, x, y, zjdxdyd: (2.35)

Substituting equations (2.22 - 2.24) into the strain energy density equation (2.18)

r
2 abcy i »n »W a

2
by

2
z 2 2— 2acz+ / + L + a

2
z
2

^ 16 2

+Qi

abcx
2 o2k2.2„2 „uj..2A

cd-— -bcz +^X-^y
4 16 4

ab
2
y
2
z a

2
bx

2
z

, ,+ adz + + abz
2

I

^Q22

f
2 abdx

2
mt , a

2
b
2
x
4

ab
2
x
2
z u2 2d

z - 2bdz + +
2 16 2

+ b"z'

(Qh# + Qi2$)

(Ql2$ + Q22#)

aby
2

c — az ARH

cdx
bz ARH

J

(2.36)

In lamination theory, the stiffness matrices, Aij, Bij, and Dij are related to the

reduced stiffness, Q 1}
[29]. For the coating/substrate system, the system stiffness matrices

can be similarly calculated. The stiffness elements are calculated from
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2
h —

Aij =

kVh "
'

Q,jdZ
(2.37)

2
h
_

B
'J

=

k?,^-'
Q,jZdZ

(
2 38 >

D,=ij
l]Q,^z

(2 39)

Aij is the extensional stiffness matrix for the bilayer. B
l}

is the coupling stiffness matrix for

the bilayer and Djj is the bending stiffness matrix for the bilayer.

In addition, the in-plane swelling loads, N
x

!

and N
y
\ and the swelling moments,

Mx and Mj,
1

, are defined in equations (2.40 -2.43):

N» = ARHS + Q ]2 p y

h
)dz (2.40)

N? = ARHij^(Q„K+^)dz (2.41)

M X

H
= ARHZ

(

hk

(Q„p x

b
+ Q 12p y

b
)zdz (2.42)

k-1 " k 1

M
y

H
= ARHt

J

hk

( Ql2 p
b
+ Q22 Py

b
)zdz (2.43)

k = l
k -'

Using equation (2.31), take the first variation of equation (2.36) to yield a function [35]

5W = f, (a, b, c, d)5a + f
2
(a, b, c, d)5b + f

3
(a, b, c, d)5c + f

4 (a, b, c, d)5d (2.44)
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From equation (2.44), f,, f
2 ,

f
3 and ^ werc determincd as;

NxLyb NHL2
bf,=0 =

-7F"
+ M "

+-V"- Jlbc + J 2ab2+J 3bc + J 4 ab
2

+J5bd + J 6 bd + J 7ab
2 -B M c + 2J sab + J 9 b

2 -
Bl2 d + 2J 10 ab (2.45)

+D I2 b + Jn b
2
+D,,a

f o
N "L'

a UH Ny L2
a2_0 =~7^ + M

v
+-V~" J

'
ac + J2a b + J ^ ac + J 4a

2
b

+J
5 ad + J6ad f J

7ab
2
+ J

8 a
2
+ B

l2 c + 2J9ab + j
l()
a
2 +D 12a (2.46)

-B 22 d i 2J M ab + D 22 b

f3 _0- - N[ l

i An c .liab + A^d + J^ab-Bna + B^bM a + »l2t> (2.47)

f
4 -O^-Ny 1 +A

l2 c-J s ab i A 22 d I J 6 ab
- B

12 a + B 22 b

where

48 2
1280

j _ ^12^ x A
[2L xL y

3 J4 "
H52

48
6

48

j _ ^22 L x . _ ^iiL y
7

1280
8 "

48

J0=Mi j
_B 12L

2

48 48

48

B22 L x

(2.48)
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By arranging equations (2.47) and (2.48) in terms of c and d and incorporating these

equations into equations (2.45) and (2.46), they can be written in terms of a and b. The
solutions to these equations are determined numerically.

The numerical solution is dependent upon the moduli and the humidity expansion

coefficients for each layer. In chapters 3 and 4, these properties are characterized for a

bilayer system consisting of a gelatin coating on a cellulose acetate substrate. Application

of this model to a bilayer system subjected to various humidities is presented in chapter 7.

In order for the model to be valid, the mid-plane of the bilayer system must be a

developable surface [32] and the second variation of the total potential energy, 52W , must

be positive definite [36].

In pure bending, it is assumed that the mid-plane is the neutral surface of the

system. This condition is satisfied only if the thickness of the bilayer system is small in

comparison to the radius of bending curvature. If the bilayer is bent to an undevelopable

surface, then the mid-plane would have to compensate by stretching during the bending.

For a stable geometric shape, the total potential energy must be minimized. This

requires the coefficients of the matrix of the second variation, 52W, be positive definite.

Stability theory is discussed in detail elsewhere [36].

The following chapters will present the techniques employed to characterize the

bilayer materials. Results of these experiments will incorporated into the numerical

analysis of the two dimensional bending model.
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CHAPTER 3

MATERIAL PROPERTIES

Introduction

The preceding chapter outlined incremental linear elasticity theory and applied a

modified version of classical lamination theory in the development of a two dimensional

bending model for a bilayer system. Both of these theories require knowledge of the

tensile and shear moduli, Poisson's ratio, and thermal and humidity expansion coefficients

of the coating and substrate materials. This chapter will discuss the methods employed for

determining these material properties (humidity expansion will be addressed in chapter 4)

as well as the results of the experiments. Background pertaining to the materials and

details regarding the use of saturated binary aqueous salt solutions to generate relative

humidity are also highlighted.

Experimental

Materials

The materials used throughout this investigation are tabulated in Table 3 .1. An

alkaline processed bone gelatin coating on either cellulose acetate, CA, or polyethylene

terephthalate), PET are the primary bilayer systems investigated.



Table 3.
1

List of coating materials investigated on corresponding substrates

density determined via comparison with known solvent densities
b weight per volume method used to measure density
c PL d

[2] ,

c [3],f[4],g[5]

Coating Materials

a <bAlkaline Processed Bone
Gelatin

Density

(g/cc)

1.428

Coating Substrate

b cCellulose Acetate. CA

Density

(g/cc)

1.291

bPoly(ethylene terephthalate)

PPT
1.40

d 'D 'aPoly(vinyl alcohol), PVOH 1.27

cBisphenol A Epoxv 1.10 Tin Plated Steel n/a

fPolyimide 1.425 Glass n/a

b «Nickel 8.90 Tin Plated Steel n/a

b-£Copper 8.92 Acrylate Base Photoresist on a

Silicon Wafer
n/a

Gelatin Coating on Cellulose Acetate or Polvtethvlene terephthalate) Substrate

The alkaline processed bone gelatin coated on cellulose acetate and PET was provided by

the Eastman Kodak Co., Rochester, NY. The physical properties of photographic

materials are outlined in several sources [6-9],

Chapter 1 provides a detailed summary about gelatin. In general, gelatin is very

sensitive to moisture. It is manufactured from the protein of collagen and used as a

colloid protector in photographic applications [ 1 0, 1 1 ]. Gelatin is a random coil system

comprised of a series of amino acids. It has a high propensity to absorb moisture due to

the hydrogen bonding of the water molecules to the hydrophilic amino acid groups. The

properties of gelatin are controlled by crosslinking and varying the degree of crystallinity

[11-16]. Gelatin absorbs 9 - 15% of moisture at 50%RH [17]. Moisture sorption

39



hysteresis, that is the separat.cn of moisture sorption and desorption isotherms, is a

common phenomenon in gelatins [18]. Therefore the material characteristics are

dependent upon the sorption path (ie. whether measured along the moisture desorption or

absorption path).

Cellulose acetate is commonly prepared by a solution process employing sulfuric

acid as the catalyst with acetic anhydride in an acetic acid solvent [1], Cellulose acetate is

hydrophilic
,
absorbing 2 - 6.5% water in 24 hours [1].

The polyethylene terephthalate), PET, studied is manufactured by the Eastman

Kodak Co. under the trade name, ESTAR® It is biaxially oriented and has a crystallinity

of 34.2% as determined by wide angle x-ray and differential scanning calorimetry

methods. PET absorbs 0.45% moisture at 54% RH [7].

Polyvinyl alcohol) Coat ing on Polvrethvlene torephthalate-i Snh.tr.tP The

polyvinyl alcohol) used in this investigation is a fully hydrolyzed grade polymer,

designated as Airvol® 325, and was supplied by Air Products and Chemicals, Inc. A 10%

w/w PVOH (containing no additives) was blade coated on a PET substrate and dried at

54%RH, 21°C for 24 hours. This grade ofPVOH is used commercially in spin sizing of

textiles, adhesives for envelopes, bookbinding, carton sealing and cigarette filters, surface

sizing and pigment coating in paper production and as films and molded products [2].

PVOH is produced by the hydrolysis of polyvinyl acetate). The amount of

moisture absorbed is dependent upon the percent hydrolysis. The resistance to humidity

decreases with increased hydrolysis. A fully hydrolyzed PVOH is 98.0 - 98.8 mol. %
hydrolyzed [2,19].

Epoxy Coating on Tin Plated Steel Substrate A diglycidyl ether of bisphenol A

epoxy, Shell's Epon® 828 resin, was combined with their V40 crosslinking agent, a
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polyamide, and spin coated onto tin-plated steel. It was cured on a hot plate at 54%RH,
70°C for 2 hours.

Epoxies have tendency to absorb water with the amount absorbed dependent upon

functionality and choice of crosslinking agent. The Epon 828® crosslinked with the V40
curing agent absorbs 3.9% moisture at elevated temperatures [3,20].

Polyimide Coatingim^^ Pyromellitic dianhydride -

oxydianiline, PMDA-ODA, polyimide precursor was supplied by the DuPont Corporation,

Wilmington, DE. A solution of20% polyamic acid in NMP was spin coated on glass and

sequentially cured under vacuum at 85°C for V2 hour, 150°C for >/2 hour followed by a 1

hour cure at 400°C to form a planar isotropic polyimide coating. A free film known as

Kapton® was also provided. This polyimide sheet is anisotropic.

PMDA-ODA polyimide cured at 400°C absorbs 3.6% moisture at 85%RH and

21°C [4].

Metal Coatings. Nickel was electroplated onto tin-plated steel by a local plating

house. IBM provided the copper coated on photoresist/silicon wafer samples.

Relative Humidity Generation

The mechanical and physical properties of polymers are often affected by

temperature and humidity gradients. Relative humidity was controlled using saturated

binary aqueous salt solutions. A list of the inorganic salts is provided in Table 3 .2.

41



Table 3.2. Relative humidity generated by binary saturated aqueous solutions [21,22]

Lithium Chloride (LiCl)

Relative Humidity

(%}

11 ± 1

Valid Temperature

Ranee (°C\

0 - 55

Potassium Acetate (CH^COOK) 22+ 1 15 - 30

Magnesium Chloride (MgCb) 32 ± 1 5 - 45

Potassium Carbonate (K7CCM 43+0 0 - 30

Magnesium Nitrate (Mg?NO^) 54 + 3 10 - 30

Sodium Bromide (NaBrl CO M O 15-25

Sodium Chloride (NaCl) 75 ± 1 0 - 75

Potassium Chloride (KC1) 81 ± 1 10 - 35

Water
100 5 - 95

The relative humidity is transported to the sample by bubbling a compressed gas

through the saturated salt solutions. The compressed gas is either nitrogen or helium

depending on the experimental technique used. A schematic of the relative humidity

transport system is illustrated in Figure 3.1. A Taylor Humidiguide®

hygrometer/thermometer was employed to monitor the humidity and temperature. This

hygrometer has a sensitivity of ± 3% RH. Its sole purpose throughout this investigation

was to ensure the relative humidity and temperature had reached equilibrium. Compressed

gas was passed through Drierite®, CaS04 , to achieve 0%RH. The reported literature

values listed in Table 3.2 are used in all calculations.
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V Safe! Salt Solutions
Sample Chamber

Hygrometer/Thermometer

Compressed ( ias

Figure 3.
1 Schematic of relative humidity generation system,
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Mechanical Properties

M^^^ The tensile properties of gelatin and
cellulose acetate were investigated as a function of relative humidity using a Toyo Baldwin

Tensile Test machine and screw-driven Instron Universal Tensile Test equipment.

Machine compliance for each instrument was determined. Young's elastic moduli, yield

strength and elongation at break were measured as a function of relative humidity.

For each test, uniaxial samples of gelatin and cellulose acetate were fabricated.

The gelatin investigated is an alkaline processed cattle bone gelatin (Kodak designation:

SC5-5S-5020-01, Type IV, Class 84 gelatin with 2% Olin 10G surfactant). The 18.6 um
gelatin coating was removed from the 127 um cellulose acetate substrate (Kodak

designation: 20T1-88) for mechanical testing. The length to width ratio of each sample

was at least 7:
1
(100 mm long by 15 mm wide, on average) to eliminate two dimensional

considerations. A 10 pound (Interface Corp. SM-10) load cell was used to measure the

force and an LVDT (Linear Variable Differential Transformer) was used to measure the

displacement. The strain rate was 1% strain/min. Data was acquired using a PC with an

A/D board interface and later analyzed. Figure 3 .2 depicts the tensile test set-up modified

to introduce varying humidities.

The compliance of the tensile test equipment is an artifact of the equipment design

and therefore the results must be corrected. The machine compliance for both tensile

testers was determined using uniaxial samples of cellulose acetate and PET. The machine

compliance test procedure is outlined in the literature [23,24]. Cellulose acetate samples

were used to test the Instron equipment. The width of the cellulose acetate averaged

15 mm and the mean thickness was 127 urn. The gage lengths varied from 102 to

175 mm. Twelve uniaxial samples of each gage length were tested. Similarly, PET was

used to study the compliance of the Toyo Baldwin equipment.
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Load Cell

Outlet

Environmental

Chamber

Figure 3.2 Tensile test equipment modified with a relative humidity environmental

chamber.
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Uniaxial samples ofEstar®, PET, were used. The width ofthese samples averaged

4.5 mm and the mean thickness was 97.4 pm. The gage lengths varied from 50 to

1 02 mm. A 1

0 pound (SM-1 0) load cell was used to measure the force The erosshead

speed was 50 mm/min.

The following equation was used to calculate the machine complhlance

8T „ L
C =-^- = C

F
"
^ m

AE (3 -0

where, Ca apparent compliance, mm/N

r machine compliance, mm/N

5p total displacement of the machine and sample,

F = force, N

L0 = gage length, mm

A= initial cross sectional area, mm2

E = tensile modulus, N/mm2

The y-intercept on a plot of apparent compliance vs. the gage length is the machine
compliance. The tensile modulus can then be corrected for the machine compliance which
yields equation (3.2):

E =
L,

(3.2A(C
8 -CJ

Other tensile properties (tensile strength, elongation, etc) were determined by standard

analysis [25].

Shear Modulus. For a linear elastic, isotropic material, the shear modulus was

obtained by the simple relationship between to the tensile modulus and the Poisson's ratio

through equation 3.3 [26]:
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where,

G, 2 = shear modulus in the plane of the coating (GPa)

E = tensile modulus (GPa) (Note: E = En =E22) I
v

1 2 = Poisson's ratio in the plane of the coating

For an anisotropic material, the shear modulus in the plane of the film was

obtained by measuring the Young's modulus at some angle, 0, to the principal axes. A

tensor transformation equation for an orthotropic material is applied which relates the

shear modulus to the Young's modulus at angle, 0. The mathematical details are

elaborated elsewhere [27]

1 cos
4
0 sin

4
0 1 1 2v.,

E~
=T~ + _

E~ +
^ (G~~"E^)sin22e

<
34 >

xx ^11 ^22 H U
12 fc-n

Uniaxial samples are cut at a 45° angle from the principal axis and the tensile

modulus determined as described earlier in the text.

Effect of Moisture Sorption Hysteresis on the Tensile Properties . In general,

moisture has a large effect on the mechanical properties of these hydrophilic materials

[7,9]. Moisture acts as a plasticizer resulting in reduced strength and increased elongation

at break. Several mechanisms regarding moisture sorption have been postulated [28-30].

Moisture sorption hysteresis, that is the separation of moisture sorption and desorption

isotherms, is a common phenomenon in moisture sensitive materials [8]. Due to this

moisture sorption hysteresis in gelatin, further tensile testing was performed to investigate

the elastic moduli's dependence on the sorption path.
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The alkaline processed bone gelatin coating investigated (Kodak sample

designation: 8244-
,
5) was fully amorphous (0% crystal.inity) and free of any crosslinking

agent. It was removed from the PET substrate prior to testing. The test sample geometry

was 16.0 pm thick and 50 mm long with an average width of 2.75 mm. Four sets of 10

samples were fabricated. Two sets were used for the desorption run and the remaining

two for the absorption run.

The tensile test was performed on the samples using the Toyo Baldwin tensile test

equipment. The crosshead speed was 20 mm/min. For the desorption run, the gelatin was

initially subjected to 54%RH for 1 .5 hours, then to 33%RH. After 1 .5 hours at 33%RH,

the stress as a function of strain was monitored.

Similarly for the absorption run, the gelatin was initially subjected to 0%RH for

15 hours, then 33%RH. After 1.5 hours at 33%RH, the stress - strain relationship was

determined.

Poisson's Ratio

Poisson's ratio is the ratio of the lateral to axial strains in simple tension. As

derived in chapter 2, if a material is isotropic, linear elastic and homogeneous, Poisson'

ratio can be determined (for small strains) by applying Incremental Linear Elasticity

Theory. Under isothermal conditions, Poisson's ratio is related to the ratio of one

dimensional stress to two dimensional stress through equation (3.5):

U=(1_^1D)
(3.5)a2D

Holographic Interferometry was used to measure the one- and two-dimensional

stresses in the material as a function of relative humidity. Chapter 5 offers a more detailed
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explanation ofthe l [olographic taterferometry technique, in general, the technique i.

based on Vibrating Membrane Theory
1
3

1 1 For a circular geometry, .he vibrating

membrane c(|uation reduces lo

<r2D = 4*2
pR 2 -ai

(J4)

where,

a
2 [) biaxial stress, (MPa)

7i = 3.141

p material density, (g/cc)

l< membrane radius, (cm)

i> n j
resonant frequency, (I I/)

ZjiJ ith zero ofthe nth order Vessel's Function

Similarly for a vibrating string, the equation yields |32|:

^11) 4pl/-L
(35)

ir

where,

r>n) uniaxial stress, (MPa)

I- length of the string, (cm)

nj node of inflection

Since the density ofthe material is known, only the resonant frequencies need to be

determined
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The sample preparation technique is detailed in chapter 5. The one- and two-

dimensional samples were mounted in the holographic chamber so that the resonant

frequency patterns could be superimposed over one another. Therefore, both samples

were exposed to the same environmental conditions for the same time interval. This

eliminated any environmental variation between the samples during testing. Figure 3.3

demonstrates the sample set-up.

Thermal Properties

The degradation temperature, glass transition and melt temperatures and the

thermal expansion coefficients of gelatin, cellulose acetate and PET were determined. TA

Instruments Thermogravimetric Analyzer, TGA, was employed to measure the

degradation temperature and weight loss as a function of temperature. A TA Instruments

Differential Scanning Calorimeter, DSC, was used to determine the Tg and Tm of each

material. In addition, the thermal expansion coefficients of gelatin, cellulose acetate and

PET were investigated using TA Instruments Thermomechanical Analyzer, TMA. Details

of these techniques and the corresponding analysis are available through several sources

[32-34].

Generally in photographic applications, the thermal expansion is less important

than humidity expansion [6]. The thermal dimensional changes in the gelatin/CA and

gelatin/PET bilayer systems are primarily due to the substrate [8]. The glass transistion

temperature, Tg, and melt transition, Tm, for gelatin is highly dependent upon its moisture

content. The Tg and Tm decrease with increasing relative humidity. An extensive study

regarding the effect of humidity on the transition temperatures was documented by

Marshall and Petrie [35,36].
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Figure 3 .3 Holographic interferometry sample set-up for Poisson's ratio determination.
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In their work, it was shown that at higher water contents, the transition

temperatures are lower and the temperature interva. between the Tg and Tm becomes
increasingly larger resulting in a greater separation between the Tg and Tm. At iower
water contents, the opposite holds true. The transition temperatures are higher and the

separation between the Tg and Tm narrows with reduced water content.

ItailQgrayi™^^ The TGA was performed in the temperature range

of 25 to 400°C in nitrogen. The weight loss as a function of temperature and the

degradation temperature were then recorded. The average sample weight was 20 mg.

mfenik^ca^^ The DSCs were mn in nitrogen M a ramp rate

of 10»C/min from 25°C to a temperature below the degradation temperature. Sample

sizes averaged 10 mg.

ItooniecJ^^ TMA was set up for thin films. A small force of

0.001N was applied to the thin, 3 mm wide by 25 mm long sample strip. A temperature

ramp of 5°C/min was then employed and the dimensional change monitored.

Crystallinitv Determination

The percent crystallinity, xc, of gelatin was calculated using the melt enthalpy

method outlined by Kampf [37]. In general, xc is determined using equation (3.8):

AH„r

*c = ^#*100 (3.S)
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where, „

AH
SC = melt enthalpy for the semi-crystalline polymer (cal/g)

AH
C = enthalpy of fusion for fully crystalline polymer (cal/g)

The fully crystalline melt enthalpy of collagen was adopted to determine the degree

of crystallinity in gelatin. This is valid since gelatin is the random coil derivative of

collagen which is a rigid rod, triple alpha helix. The AH
C for collagen was extracted

published results [38,39]. It is based on the melting point depression of a crystalline

polymer by a diluent. This relationship is explained in detail elsewhere [40]. The AH forc

collagen used to calculate the degree of crystallinity is 24 cal/g [41].

Results and Discussion

Mechanical Properties

Tensile Properties and Machine Compliance The machine compliance was

determined by extrapolating a plot of the apparent compliance vs. the gage length to the y

axis [23,24]. The intercept is the machine compliance. Figure 3.4 represents the

compliance data for the screw driven Instron Universal Tensile Test equipment with a 1

0

pound (Interface Corp. SM-10) load cell.

The machine compliance, Cm, for the Instron equipment was 0.00463 mm/N and

Cm = 0.00805 mm/N for the Toyo Baldwin equipment. This data was used to correct the

tensile moduli of the gelatin and cellulose acetate. The apparent moduli and the corrected

moduli are tabulated in Table 3 .3.
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Figure 3.4 Machine compliance determination using ASTM D3379. The y-intercept

represents the compliance for the screw driven Instron tensile test equipment. Similar

results were obtained for the Toyo Baldwin tensile test equipment.
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Table 3.3. Apparent and corrected tensile moduli for gelatingelatin and cellulose acetate

Sample Description Annarpnt Xpncilo \i,wi. i «^i'i'<ni iii i ensue Modulus,
(w/o Machine Compliance

Correction)

CrPa

Tensile Modulus,

(Corrected for

Machine Compliance)

GPa(l()5 psi)

Cellulose ArptatA

(gelatin coating direction)

2.85 ± 0.41 3.72 (5.39)

Cellulose Acetate

(-L to coating direction)

3.07 ±0.64 4.05 (5.87)

Gelatin (33%RH) 3.04 ± 0.44 3.51 (5.08)

Gelatin (43%RH)— v
> L

? RA -4- n 1Qz.oO a: U.Jo 3.09 (4.48)

Gelatin (54%RH) 2.58 ± 0.27 2.75 (3.99)

Gelatin (59%RH) 2.44 ± 0.28 2.48 (3.60)

Gelatin (75%RH) 1.69 ±0.13 1.75 (2.54)

The stifTer the material, the more apparent the affect of the machine compliance.

The machine compliance of the Instron accounts for a 23% difference in the apparent

moduli values from the calculated corrected values. Similarly, the Toyo Baldwin machine

compliance accounts for a 26% variation from the apparent modulus of these materials.

A comparison of the stress vs. strain curves for gelatin are depicted in Figure 3 .5.

It is apparent that the tensile properties are highly dependent on relative humidity. Similar

results are noted in the literature [6,39]. In the plane of the gelatin coating, the material is

isotropic since the mechanical properties were the same in all directions.
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Figure 3 .5 Comparison of stress vs. strain curves for gelatin at various relative humidities

measured using the Toyo Baldwin tensile test equipment with relative humidity chamber.
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It was experimentally determined that the tensile moduli of cellulose acetate are

independent of relative humidity. This is not the case for gelatin. Figure 3 .6 depicts the

effect of relative humidity on the moduli of gelatin and cellulose acetate. Note that

cellulose acetate exhibits two moduli. The anisotropy of the materia, is a result of the film

manufacturing process. For the gelatin/CA bilayer system, the principal directions of the

cellulose acetate are oriented with respect to the gelatin coating direction.

The yield and ultimate strength and the elongation at break of gelatin and cellulose

acetate are highly dependent upon relative humidity. The yield strength of the gelatin is

much greater than its ulimate strength as seen in Figure 3.5. For cellulose acetate the

opposite is true. Figure 3.7 illustrates the typical stress-strain characteristics of cellulose

acetate. Figures 3 .8 and 3 .9 depict the effect of relative humidity on these mechanical

properties. These results correlate well with published values [6,38].

Shear Modulus
.
The alkaline processed bone gelatin is planar isotropic and

therefore using linear elastic assumptions, the shear modulus was determined using

equation (3.3).

The shear moduli for gelatin using linear elastic assumptions and a Poisson's ratio

of 0.37 were calculated as 2.79 GPa at 33%RH and 1.39 GPa at 75%RH. The shear

modulus of gelatin is also highly dependent upon relative humidity.

It was apparent from the tensile test results that the cellulose acetate is an

anisotropic material. Therefore the relationship described earlier in equation (3.4) relates

the shear modulus to the tensile moduli. Uniaxial samples cut 44° from principal axis

(along the gelatin coating direction) were tested as outlined earlier. The compliance

correction was made and the results are tabulated in Table 3.4.
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Figure 3.6 Comparison of the effect of relative humidity on the tensile (Young's) moduli

of gelatin and cellulose acetate.
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Figure 3.7 Typical stress vs. strain curve for cellulose acetate. This test was performed

at 54%RH, 21°C.
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Relative Humidity (%)

Figure 3.8 Comparison of yield strength for cellulose acetate and alkaline processed bone

gelatin. Note: strength values for cellulose acetate were not obtained at 59%RH nor for

gelatin at 85%RH.
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Figure 3.9 Comparison of percent elongation at break for cellulose acetate and alkaline

processed bone gelatin. Note: elongation values for cellulose acetate were not obtained

at 59%RH nor for gelatin at 85%RH.
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Table 3.4. Results of the shear modulus determination on cellulose acetate film.

Angle, 0
(deg.)

Tensile

Modulus

Erfrj^uo, (GPa)

Tensile

Modulus

En, (GPa)

Tensile

Modulus
E„, (GPa)

Shear

Modulus

_ G 17,(GPa)

44 3.472 3,72 4.05 0.94

Effe^fM*m:^^ The effect of

moisture sorption hysteresis on the tensile properties of alkaline processed bone gelatin

(Kodak designation: 8244-1 5) was investigated. The test design was described earlier.

The results are summarized in Table 3.5.

Table 3 .5 The effect of moisture sorption hysteresis on the elastic (Young's) modulus of

alkaline processed bone gelatin. Each sample was equilibrated for 1.5 hours at the

indicated relative humidity.

Relative

Humidity (%)

Sorption

Path

Modulus, E
(GPa)

Yield Strength,

a, (MPa)
Elongation at

Break (%)

0-^33 Absorption 5.55 110.1 5.1

54^33 Desorption 5.24 122.6 4.0

There is no apparent effect on the modulus resulting from moisture sorption

hysteresis. It is evident that the tensile modulus results in Table 3.5 is larger than that

conveyed in earlier tensile test experiments (reference Table 3.3). There are two plausible
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were

reasons. The firs, is that two different gelatin samples from different gelatin batches

used. The gelatin used in this test was stored in a freezer to inhibit aging affects The
gelatin used in the initial tensile properties testing was no. stored in a controlled

environment and therefore physical agmg may have occurred, skewing the results.

Secondly, the gelatin used in the moisture sorption hysteresis test was removed from a

PET substrate This gelatin was coated usmg commercial production equipment The
gelatin used in the initial tensile testing was removed from a cellulose acetate substrate and

was fabricated on laboratory coating equipment.

Poisson's Ratio

Poisson's ratio for gelatin was investigated as a function of relative humidity.

Poisson's ratio was evaluated during the desorption and absorption to determine if there

was sorption path dependence. Table 3.6 summarizes the results.

Table 3 .6 Poisson's ratio for gelatin using holographic interferometry and incremental

linear elastic assumptions.

Relative

Humidity

%

Sorption

Path

1-D Stress, a1D ,

MPa
2-D Stress, <j2d

MPa
Poisson's Ratio, v

(±0.01)

43 -> 33 Desorption 15.58 25.21 0.38

33 -» 43 Absorption 8.88 13.87 0.36

43 -> 54 Absorption 3.97 6,32 0.37
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The PoUson's ratio for gelatin is 0.37 ±0.01. From these results, i, is apparent
that Poisson's ratio is independent of relative humidity and sorption path Table 3.7

summarizes Poisson's ratios for gelatin, eellulose aeetate, epoxy, and polyim.de.

Table 3.7 Poisson's ratio for alkaline processed bone gelatin (removed from CA
substrate), cellulose acetate, epoxy and PMOA-ODA polyimide

Poisson's

Ratio
Gelatin Cellulose

Acetate*1

Kpoxyb PMDA-ODA
Polyimide0

v 0.37 0.34 0.33 _ 0.34

^general Poisson's ratio for polymers [39], b
[40], c CLired at 40o°C, 1% strain applied

Thermal Properties

The thermal properties for alkaline processed bone gelatin, cellulose acetate and

polyethylene terephthalate), PET, are tabulated in Table 3.8. These results correlate well

with literature values.

Gelatin exhibits an initial weight loss at 100°C resulting from water loss. The

amount of water lost is dependent upon the sample's initial moisture content. Thermal

degradation of the gelatin begins at 275°C with weight decreasing rapidly to 400°C, where

it completely degraded. Cellulose acetate exhibits a 10.6% weight loss between 195° and

275° and then rapidly loses weight beginning at 283°C.

Cellulose acetate is manufactured by casting a film from a solvent based polymer

system. Therefore, the initial weight loss is a result of solvent loss.
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The onset of weight loss for PET bedns at 375°r with ™ -cueyns l with no significant prior loss since the
film is manufactured from a melt.

Table 3.8 Thermal properties of alkaline processed bone gelatin, eellulose aeetate and

polyethylene terephthalate) measured by the various thermal techniques described earlier

in the text.

a reported values for dried gelatin [35,36]
b determined during second heating

Property
Gelatin

(SC5-5S-5020-01)

Cellulose

Acetate

PET

Degradation Temperature Td (°C) 275 283 375

Glass Transition, Tg (°Q 217a
124.8 282.8

Melt Transition, Tm (°C) 23 0a 279.1 256.0

bThermal Expansion Coefficient, nm/m°C
(Parallel to Coating Direction (md))

39.6 108 17.0

bThermal Expansion Coefficient, um/m°C
(Perpendicular to Coating Direction (td))

39.5 113 16.6

Decree of Crvstallinity

The Eastman Kodak Co. provided samples of various melt enthalpies, AHm, and

with varying amounts of crosslinking agent. A list of the samples and the corresponding

melt enthalpies and percent crosslinking agent are listed in Table 3.9.
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Table 3.9. Description of the different samples of alkaline processed bone gelatin coated

on either cellulose acetate or PET substrates.

Kodak
Designation for

Gelatin

Gelatin

Thickness

(llm) ±0.5

Melt

Enthalpy

AHm, (cal/g)

Crosslinking

Agent

(%)

Xc

(%)

SC5-5S-5020-01 CA 18.6 a4.0 a0.00 16.7

8244-15 PET 16.0 0.0 0.00 0.0

8244-9 PET 24.6 2.0 3.16 8.3

8244-18 PET 24.5 0.0 0.00 0.0

8244-27 PET 24.5 0.0 1.58 0.0

8744-'? 6 DCTrc I 25.8 4.0 3.16 16.7

8247-1-3 PET 24.5 4.0 1.58 16.7

8247-2-3 PET 25.8 4.0 0.00 16.7

8247-3-3 PET 24.7 0.0 3.16 0.0

8247-4-3 PET 24.8 2.0 0.00 8.3

a values communicated per Beta Ni, Eastman Kodak Co. [43]

The literature value of 24 cal/g for the crystalline melt enthalpy, AHc, of collagen was

used to calculate percent crystallinity, xc , in the gelatin [42],

Conclusions

An overall characterization of the mechanical and physical properties of the

materials under investigation was performed. The measured values correlated well with

published results. This study focused specifically on the material properties of alkaline

processed bone gelatin, cellulose acetate and polyethylene terephthalate). Other materials
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investigated inelude a bisphenol A epoxv, polyim ide, po,y(vi„yl aleoho,), nickel and
copper coatings.

It was observed that the mechanical properties of gelatin and cellulose acetate are

greatly affected by relat.ve humidity. The modulus of gelatin decreases linearly with

increasing relative humdity. The modul, of cellulose acetate are independent of relative

humidity although the yield strength and elongation at break are dependent upon humidity

as is the case for gelatin, ft was determined that the gelatin is isotropic in the plane of the

coating. The cellulose acetate exhibited two moduli in the plane of the film which is

characteristic of an anisotropic material. The shear and tensile moduli of gelatin are not

affected by moisture sorption hysteresis although the trend indicates other mechanical

properties are dependent upon the sorption path.

Poisson's ratio for gelatin (Kodak designation: SC5-5S-5020-01) is 0.37 ± 0.01.

This value was determined using Holographic Interferometry. It was experimentally

determined that the Poisson's ratio for gelatin is unaffected by the moisture sorption

hysteresis.

The thermal expansion coefficients, TEC, for gelatin, cellulose acetate and PET

are not similar. The mismatch between the coating and substrate TEC's contributes to the

dimensional instability in the bilayer systems studied. As stated earlier, the effect of

relative humidity on the gelatin/CA or gelatin/PET bilayer systems is greater than the

effect of temperature.
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CHAPTER 4

SWELLING STRAINS

Introduction

The mismatch between the in-plane humidity expansion coefficient, p, of the

coating with that of the substrate can result in dimensional instability in the bi.ayer system

The humidity expansion coefficients were determined by plotting the humidity swelling

strain as a function of relative humidity for each material. The slope of this curve is the

humidity expansion coefficient. In this chapter, the in-plane and out-of-plane humidity

swelling strains have been investigated. The in-plane humidity swelling strain was

measured using a mechanical technique. The out-of-plane humidity swelling strain was

studied in conjunction with the Smith College Physics Department using a optical

technique known as Double Slit Laser Interferometry. The out-of-plane humidity

expansion coefficient is important for materials that are stored or used in roll from. The

results of the in-plane humidity swelling experiment will be incorporated into the two

dimensional bending model in chapter 7. The swelling strains discussed throughout this

chapter are humidity induced.

Experimental

Prior to discussing the humidity swelling strains in the bilayer system,

familiarization of the terms applied throughout this chapter is prudent. The terms are

represented in figure 4. 1 and the orientation of the in-plane strain and the out-of-plane

strain are illustrated.



Figure 4.
1

Orientation of plane humidity swelling strains. In-plane strain lies in the x-y

plane and out-of-plane strain is in the z-direction. Thickness is also characterized in the z-

direction.
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In-Plane Humidity Swelling Strain

The in-plane humidity swelling strain was determined using an apparatus designed

to measure uniaxial humidity swelling strains in the planar direction
[ 1

J. A schematic of

the apparatus is shown in figure 4.2.

The experiment was performed by securing a 5 x 100 mm uniaxial sample of a

known thickness between the clamps. After the counterweight was hung in place, relative

humidity was introduced into the sample chamber. Relative humidity was generated using

binary aqueous saturated salt solutions which was described in chapter 3. The length

change due to moisture was monitored using a Linear Variable Differential Transformer,

LVDT. The swelling strain was then calculated as the length change due to humidity

exposure divided by the initial length of the sample.

A plot of humidity swelling strain at equilibrium vs. relative humidity was

generated The first derivative of the curve (or the slope) is considered the humidity

expansion coefficient, HEC. In the literature, NEC is synonymous with the symbol, [5, and

is used interchangeably throughout this text.

The effect of the load from the counterweight on the actual humidity expansion

coefficient has also been investigated. Three separate humidity swelling experiments were

performed; each with a different weight. The apparent humidity expansion coefficient was

determined for each experiment as described earlier. The apparent humidity expansion

coefficients were then plotted against the displacement weight which is related to the

counterweight by equation (4.
1
). The displacement weight is defined as:

Displacement Weight = Counterweight - Clamp Weight -

- I ,VDT Core Weight - Friction Weight (4 1)
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Figure 4.2 Apparatus for measuring in-plane humidity swelling strains in the x-y piane
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The friction weight compensates for the friction of the pulleys. It is defined as the

minimum weight required to move the clamp and core. The zero-intercept of the apparent
humldlty expansion coefficient vs. displacement weight curve is considered the actual

humidity expansion coefficient for the material.

Out-of-Plane Humidity Swpllinf^strgjn

Optical methods are commonly employed to measure the thickness of films and

fibers [2,3,4,5,6], An optical technique known as Double Slit Laser Interferometry was

employed to determine the out-of plane humidity swelling strain of the gelatin coating.

Figure 4.3 illustrates the schematic of the optical set-up.

This technique was used to investigate the out-of-plane humidity swelling

characteristics of alkaline processed bone gelatin (# SC5-5S-5020-01
: 16.7% crystalline,

0% crosslinking agent). The initial thickness of the gelatin at 0%RH was measured using

an Olympus CK2 Inverted Microscope. The gelatin was stacked to a (dry) thickness of

197.4 urn. The stacked sample was then secured over one of the 139 urn slits in the laser

interferometry unit. The double slit system was placed inside an optical glass chamber and

humidity was introduced. The fringe shift was monitored. The fringe shift is directly

related to the displacement or thickness change in the film.

Initially the sample was subjected to dry nitrogen gas for 24 hours. The absorption

process began with 23%RH, then 54%RH followed by 75%RH and desorbed to 0%RH

A second run was performed on the same sample with the same sorption cycle. Two

separate samples were run to ensure repeatability.

The refractive index, n, of the gelatin as a function of relative humidity, RH, was

assumed. The refractive index of dry gelatin is 1 .54 and 1 .51 for wet gelatin (100%RH)

[7].
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Figure 4.3 Schematic of out-of-plane humidity swelling strain set-up.
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It was postulated that the refractive index is a linear function between 0 and 100%RH.
Using standard linear regression, the resulting equation is:

n = 1.54-3xl(r
4 (%RH)-l

(4 2)

Mathematically, the thickness change, At, is derived from the refractive index, n,

and the optical path length, o.p.d. by equation (4.3):

o.p.d =(n-l)At
(43)

The o.p.d. is defined as the product of the refractive index of the material and the physical

path length from the light source to the material. The o.p.d. is related to the ratio of the

fringe shift, AN as a function of relative humidity to the average width, N, and the

wavelength, X, of the light source via equation (4.4). In this specific technique, the light

source is a 5 mW helium neon laser.

AN

N
o.p.d.= ^^A (44)

Combining equations (4.3) and (4.4) yields an expression for the swelling displacement,

At.

At^Atn-l)- 1

(4.5)

The humidity swelling strain is calculated as the thickness change due to humidity

exposure divided by the initial thickness of the sample. The slope of the swelling strain vs.

relative humidity yields the out-of-plane humidity expansion coefficient.
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The optical technique described is detailed elsewhere [8]. The disadvantage of this

technique results from the coupled nature of the thickness and refractive index. Therefore

either the thickness or the refractive index of the material must be known in order to solve

for the other.

Results and Discussion

The tendency for moisture (resulting from relative humidity) to enter and swell

materials is dependent upon several factors: (a.) the thermodynamic^ favored dilution

effect on the polymer network, (b.) osmotic pressure effects and (c.) the dependence on

the degree of crosslinking and the network chain conformations (in the case of gelatin)

[14].

In-Plane Humidity Expansion Coefficient

The in-plane humidity swelling coefficients were determined for gelatin and

cellulose acetate by monitoring the swelling strain as a function of time at various relative

humidities. Figures 4.4 and 4.5 represent the characteristic absorption curves alkaline

processed bone gelatin and cellulose acetate at various relative humidities, respectively.

The 25.8 urn thick gelatin film (# 8247-2-3) reached equilibrium in 5 hours. The

127 urn thick cellulose acetate equilibrated at each humidity in 4 hours.
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Figure 4.4 Characteristic humidity swelling strain vs. time curves for alkaline processed

bone gelation. This particular gelatin sample (#8247-2-3) was 16.7% crystalline and had

no crosslinking agent added.
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Figure 4.5 Typical humidity swelling strain vs. time curves for cellulose acetate. At

equilibrium, this information is used to plot the swelling strain against the relative

humidity.
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This would imply ,ha« the mass diffitsion coefficient for the cellulose acetate is greater

than that for the gelatin.

Figure 4.6 represents the dimensional hysteresis observed between the desorption

and absorption paths. In the case of unsupported gelatin (ie., gelatin removed from the

substrate), the desorption swelling strain was greater that the absorption swelling strain.

This is not uncommon and has been observed by others [12].

Figures 4.7 and 4.8 represent typical swelling strain vs. relative humidity curves

during moisture absorption for gelatin (# SC5-5S-5020-0
1
) and cellulose acetate. These

curves were generated from the equilibrium swelling strain vs. time. It was determined

that the gelatin is isotropic in the plane of the coating due to the independence of the

humidity swelling coefficient and tensile modulus on direction in the plane. This was not

the case for cellulose acetate. The humidity swelling coefficient for a uniaxial sample of

cellulose acetate with its principal axis aligned perpendicular to the gelatin coating

direction was greater than a sample aligned parallel to the gelatin coating direction.

As seen in figure 4.7, the humidity swelling strain characteristics for gelatin film do

not behave linearly with relative humidity. This non-linearity has been observed by others

[11]. It was noted later in this investigation
, that the useable relative humidity range for

gelatin films fell between 23% and 75% RH [9]. Therefore, the humidity expansion

coefficient was calculated within this limit.

As figure 4.7 indicates, the gelatin begins to creep around 75%RH. The creep

behavior of gelatin has been published [10]. This creep was due impart to the design of

the experiment in which a small counterweight was hung from the sample to maintain a

constant load. Near 75%RII, the Tg of gelatin is near room temperature which

accentuates this phenomenon. This weight may be imposing a false value for the actual

swelling strain.
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Figure 4.6 Dimensional hysteresis of gelatin (#8247-2-3). This data was generated

a counterweight of 230 g and has not been corrected for zero counterweight load.
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Figure 4.7 Typical swelling strain vs. relative humidity for gelatin (# SC5-5S-5020-01)

This represents the absorption path of a gelatin sample fabricated perpendicular to the

coating direction.
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Figure 4.8 Typical swelling strain vs. relative humidity for cellulose acetate substrate.
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Therefore, experiments were conducted to investigate the effect of the counterweight on
the humidity expansion coefficient on gelatin film.

In these experiments, three counterweights were used: 130 g, 180 g, and 230 g.

The counterweights relate to equivalent displacement weights of 35 g, 85 g, and 135 g,

respectively as described in equation (4.1). The tests were performed as described in the

Experimental section. Figure 4.9 illustrates the results of the absorption experiment.

From the information in figure 4.9, the slope of each curve represents the apparent

humidity expansion coefficient. The actual humidity expansion coefficient was determined

by plotting the apparent humidity expansion with respect to the displacement weight. This

relationship is presented in figure 4.10.

Table 4.
1
summarizes the results of figures 4.8 and 4.10. The humidity expansion

coefficients for cellulose acetate and gelatin differ by a order of magnitude. It is this

mismatch that imposes the bending moment in a bilayer system of gelatin and cellulose

acetate. The anisotropy of the cellulose acetate is apparent by the dependence on the

humidity expansion coefficient on the direction. The samples were prepared along the

principal axes of the cellulose acetate which are oriented parallel and perpendicular to the

machine coating direction of the gelatin. As indicated in figure 4.5, at 100%RH, the

cellulose acetate sample showed signs of creep. This is due to the load on the sample as

required in the test set-up.

Since both gelatins had 16.7% crystallinity and 0% crosslinking agent, there should

be no difference between the HEC's. This is, in fact, the result for the absorption path. A

comparison study of the desorption path was not performed.

The desorption HEC is less that the absorption HEC for gelatin (# 8247-2-3). The

difference between the desorption and absorption swelling characteristics for gelatin has

been published although the dependence of the HEC on the sorption path was not noted

[11,12,13].
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Figure 4.9 The effect of the counterweight size on the absorption swelling strain in

alkaline processed bone gelatin (# 8247-2-3: 16.7% crystalline, 0% crosslinking agent).

The weights indicated are the displacement weights which are related to the counterweight

by equation (4.1).
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Figure 4. 10 Plot of the apparent humidity expansion coefficients vs. displacement weight

for absorption and desorption of humidity in gelatin (#8247-2-3). The actual humidity

expansion coefficients are the ordinate intercepts of the curves.
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The photographic industry customarily determines the humidity expansion coefficient from

the absorption part of the sorption cycle [121.

Table 4.
1
Summary of the actual humidity expansion coefficients for cellulose acetate and

alkaline processed bone gelatins (# 8247-2-3 and SC5-5S-5020-01).

ividit rim Sorption Path Humidity Expansion

Coefficient, p\

(mm/mm/%RH)

Cellulose Acetate (perpendicular to

the gelatin coating direction)

Absorption 6.53 E-05

Cellulose Acetate (parallel to the

gelatin coating direction)

Absorption 4.45 E-05

Gelatin (# SC5-5S-5020-01) Absorption

(23%RH to 75%RH)
4.32 E-04

Gelatin (# 8247-2-3) Absorption 4.00 E-04

Gelatin (# 8247-2-3) Desorption 1.67 E-04

The difference between the desorption and absorption characteristics is known as

hysteresis. The hysteresis mechanisms were discussed in chapter 1 and therefore are not

reiterated in detail here. In general, there are two categories of water in the gelatin

network: "bound" water which is hydrogen bonded to the backbone and hydrophilic side

chains of the gelatin and "free" water which is not bound but instead occupies free space in

the amorphous regions of the network. The amount of "bound" water is dependent upon

the energy to form or break hydrogen bonds. The quantity of "free" water is dependent

upon the osmotic pressure in the system (imposed by the relative humidity). Since the
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osmotic pressure in the network is related to the relative humidity, this pressure would not

be dependent upon the sorption path. Therefore, the amount of Tree" water in the system

should be the same, independent of sorption path. This concludes that the "bound" water

is the primary contributor of the hysteresis characteristics of gelatin.

Out-of-Plane Humidity^Ex^ansjgijC^

The out-of-plane humidity swelling coefficient was determined for bone alkaline

processed gelatin coating (# SC5-5S-5020-01) removed from a cellulose acetate substrate.

Table 4.2 tabulates the thickness change as a function of relative humidity.

The change in thickness from 0%RH for the first absorption run greatly differs

from the second absorption run. There are several possible reasons. First, the gelatin

network collapses forming additional collagen fold crystallites which is a triple a-helix

structure. Since moisture swells in the amorphous region of the polymer, the additional

formation of crystallites after the first sorption run would reduce the propensity for

moisture. This coincides with arguments published by Calhoun and Leister regarding the

relaxation of the gelatin [12].

It is feasible that the constrained drying conditions during film fabrication creates a

film with excess energy. After a first pass through the sorption cycle, the energy is

released. Thus, subsequent runs differ from the first. This is analogous to the thermal

investigations performed by Jennings [15] on polyimide films.

Another reason may be that the sample was not completely dried at 0%RH. Also

recall that the first desorption path indicated that only 1.792 urn of the 6.773 um thickness

change due to swelling was recovered. Therefore the initial thickness is no longer

197.4 um but is instead, 202.4 urn. The "excess" thickness may be due to the remaining

water in the network that is hydrogen bonded to the gelatin.
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The out-qf-plane hum.dity sweffing strain as a taction of relative hum.dity ,s depicted in

Figure 4.1
1. There is a difference in ,he humidity expansion coefficient between the two

sorption runs

Table 4.2 Thickness change of gelatin sample measured by double slit laser

interferometry. Initial thickness at 0%RH is 197.4 pm (8 sheets, 24.68 pm thick of gelatin

stacked).

Sorption Path

Absorption Cycle 1

Desorption Cycle 1

Absorption Cycle 2

Relative

Humidity (%)

0

23

54

75

75

0

0

23

54

75

Fringe

Shift,

AN/N

1.0648

2.5345

2.0041

1.5289

0.4295

1.0177

1.7328

Thickness

difference

U_ni

0

1.264

4.325

6.773

0

1.792

0

0.510

1.739

2.996

Strain

x 102 (rn/m)

0

0.640

2.191

3.430

0

0.907

0

0.258 (0.252)

0.881 (0.859)

1.520 (1.480)

Values in (parentheses) indicate swelling strain adjusted for the change in initial thickness

from 197.4 to 202.4 urn based on desorption run values.
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Figure 4. 1
1 Out-of-plane swelling strain as a function of relative humidity for alkaline

processed bone gelatin coating removed from cellulose acetate substrate. Second

absorption run values adjusted for initial length of 202.4 urn
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Figure 4, 1

1

indicates that the out-of-plane humidi.y expansion coefficient is cither

dependent on the sorption cycle or perhaps the gelatin structure changed resulting in less

moisture absorption Table 4.3 summarizes the out-of-plane humidity expansion

coefficients for each cycle.

Table 4.3 Humidity expansion coefficients for gelatin (# SC5-5S-5020-01
). The HEC's

differ depending on the sorption cycle. Values are indicated for the HEC's from 0%RH to

75%RH and the HEC's from 23%RH to 75%RH [9].

Absorption

Run No.

Humidity Expansion Coefficient

(0%RH to 75%RH)
(mm/mm/%RH)

Humidity Expansion Coefficient

(23%RH to 75%RH)
(mm/mm/%RH)

1 4.31 E-04 5.33 E-04

2 1.80 E-04 2.33 E-04

The in-plane HEC for gelatin (# SC5-5S-5020-01) during the first absorption run

from 23%RH to 75%RH was 4.32 E-04 mm/mm/%RH. This is essentially the same

relationship for the out-of-plane humidity expansion coefficient for absorption run no. 1 if

the HEC is determined using the 0%RH to 75%RH data. From this data, the material is

volumetrically isotropic as opposed only planar isotropic as discussed earlier.

If the 23%RH to 75%RH out-of-plane humidity swelling strain data is applied,

then the gelatin is only isotropic in the plane of coating and is anisotropic out of the plane.

This result coincides with the literature [14]. It has been determined by optical rotation

measurements that gelatin exhibits swelling anisotropy. Swelling anisotropy is the ratio of

the out-of-plane swelling to the in-plane swelling of the gelatin. This ratio should be
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greater than one for alkaline processed bone gelatin dried at 25X and ~50%RH.
Comparing the out-of-piane to the in-plane HEC, the swelling anisotropy is 1.23 for

gelatin (#SC5-5S-5020-01) between the humidity range of 23% to 75%RH.

Conclusions

The in-plane humidity expansion coefficients for gelatin and cellulose acetate were

determined The gelatin HEC (4.00 E-04 mm/mm/%RH) is an order of magnitude greater

that the cellulose acetate HEC (4.45 E-05 mm/mm/%RH) along the gelatin coating

direction. It is this mismatch of the HEC's which contributes to the dimensional instability

in a bilayer system of gelatin and cellulose acetate. In addition, the in-plane HEC of

cellulose acetate perpendicular to the gelatin coating direction is 6.53 E-05 mm/mm/%RH.

This anisotropy of the cellulose acetate is a primary contributor to the inversion of the

cylindrical shapes observed at various humidities (reference chapter 2)

The gelatin shows planar isotropy whereas the cellulose acetate results indicate

anisotropy. The reason for the anisotropy results from the casting process used to

fabricate the cellulose acetate film.

There is a hysteresis in the humidity swelling strain of gelatin. This hysteresis is

apparent by the dependence of the HEC on the sorption path. The absorption HEC is

greater than the desorption HEC as a result of the proposed hysteresis mechanism.

The out-of-plane humidity expansion coefficient of gelatin showed a dependence

on the sorption cycle. Assumptions were made regarding the refractive index change of

the gelatin with relative humdity. The out-of-plane HEC, (4.32 E-04 mm/mm/%RH)

determined from 0%RH to 75%RH, indicates that the overall volume of gelatin was

isotropic. If the calculation of the HEC is limited to the 23%RH to 75%RH range, the

gelatin is planar isotropic but anisotropic through the thickness or out of the plane This

observation agrees with that reported in the literature.
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CHAPTER 5

STRESSES IN COATINGS AND FILMS

Introduction

Stresses in coatings often result in dimensional instability of the system [1,2]. This

phenomenon is often observed by the curling or bending of the coating/substrate bilayer.

This has been a great concern in the photographic industry and more recently in the

aerospace and electronics industries [3-9]. The bending of the bilayer is induced by (a.)

the mismatch between the expansion coefficients (both thermal and hygroscopic) [1,10-

14], (b.) physical aging (often termed "degradation") in which the molecular

rearrangement over time changes the material properties [15] and (c.) solvent removal or

chemical reaction resulting in the shrinkage of the material [16]. Understanding the source

of coating stresses is advantageous to optimizing the product design.

There are several techniques available to study stresses in coating and films.

Several of these techniques have been outlined by Maden [17]. Stress measurement

methods are divided into three categories, (a.) techniques which measure the strain (or

radius of curvature) in the system and relate this to stress via linear elastic assumptions,

(b.) techniques which apply a force to the material to measure the resulting displacement

and (c.) techniques that measure the response of the material due to vibration.

In general, the most common method of measuring stress is a beam bending

technique [2]. This is an indirect stress measurement technique based on Beam Bending

Theory. In beam bending
, the strain (in the form of bending curvature) in the system is

measured. Linear elastic assumptions are made to relate the strain to the stress. Thus if a

material is not linear elastic, the technique only provides an approximation. The

disadvantage of using beam bending is that it is a one dimensional technique. To analyze a



s

'as

two dimensional system, Poisson's ratio is required. This imposes additional error into the

calculated stress values. Therefore, a direct method for determining the stress dependenee

on environmental conditions is desired. The technique adopted for this investigation is

Holographic Interferometry.

This chapter will focus on the effect of relative humidity on the stresses in coating

and films. Several materials were investigated: alkaline processed bone gelatin which

machine-coated by Eastman Kodak on substrates of cellulose acetate and PET, polyvinyl

alcohol), PVOH, blade-coated on PET, diglycidyl ether of bisphenol A, (DGEBA), epoxy

spin-coated on tin plated steel and nickel electroplated to steel. In this chapter, real time

holographic interferometry was used to determine the biaxial stresses in coatings and films

as a function of relative humidity

I [Olographic interferometry normally requires the sample to be under vacuum to

eliminate lateral pressure effects imposed by air. Pressure effects depress the apparent

stress values
[ 17] Since the effect of relative humidity on the stresses in the materials is

proposed, the effect of moisture introduction to the sample and its effect on holographic

interferometric results are discussed.

Experimental

Holographic interferometry was used to directly determine the stress in the

coatings and films. Chapter 3 briefly outlined the governing equations for this technique

and further details regarding the mathematical derivation and the effect of air dampening is

discussed elsewhere [17]. In general, holographic interferometry is based on the vibrating

membrane equation:

„ 2
a

2©
oV(D =

p
ap-

(5.1)

97



where,

a biaxial stress in the membrane

V 2 = LaPlacian operator, + +
dr

2
r dr r

2
d62

dz
2

o) = out of plane displacement (or deflection)

P = density of the membrane
a2©

^ 2
out of plane acceleration as a function of time

The membrane equation can be solved for a circular geometry by assuming the

deflection at the outer radius is zero, (o(r = R) = 0. This reduces equation (5.1 ) to:

2
(T2D = 4^pR 2

-^ (52)

where,

a21) = biaxial stress, (MPa)

71 = 3.14

p = material density, (g/cm3
)

R = membrane radius, (cm)

vni
= resonant frequency, (Hz)

Z
ni = i

lh zero of the nth order Bessel's Function

It is apparent from equation (5.2) that only the density of the material is required to

determine the stress in the membrane. Using special sample preparation techniques to

preserve the state of stress in the coating and by performing the test under specific

environmental conditions which reduces air pressure loading effects, the stress in a coating

can be directly measured.
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Sample Preparation

Preparation of the holograph, interferometric membrane sample is critical in order

to satisfy the boundary conditions for the solution to the general equation. The state of
stress in the eoating must be maintained in order to truly characterize its stress. Therefore,

spceial sample preparation techniques are adopted to satisfy this requirement. For a

coating/substrate system in which the substrate is sufficiently thicker and stiller than the

coating, there is no shear or normal traction between the eoating and the substrate beyond

a few film thicknesses from the system's edge Therefore, if a rigid washer is adhered to

the coating * film thicknesses from the edge, the original state of stress is preserved.

Chapter 2 provides a detailed analysis of the state of stress in coating systems Several

methods can be applied to prepare a uniform free Him sample [18,1 9,20]. The method

chosen is dependent upon the material Therefore the methods described below are

specific to each material system

Membranes of gelatin were made by subjecting the bilayer system (gelatm/CA or

gelatin/PET) to a relative humidity which caused the system to be free from stress In the

stress free state, the bilayer is Hal. for gelatin/CA, that relative humidity was - 54%RH.

for the gelatin/Pin' samples, the bilayer was flat at 75%R] I A rigid steel washer was

then adhered to the gelatin coating using Super Glue® and pressure was applied to ensure

uniform adherence. After the glue was dried, the substrate was removed at a take-off

angle of -5°. It should be noted that a release agent between the gelatin and the cellulose

acetate substrate was used in order to aid the substrate removal process. No coating

release layer was required for the gelatin on a PET substrate due to the Pi : I 's relatively

low surface energy.

Air Products Airvol® 325 PVOII was blade coated on a PET substrate which was

secured to a 1/4" sheet ofPMMA and dried at 21°C, 54%RII Membranes were made
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from the b;,ayer system. Analogous to the gelatin membrane preparation, a steel washer
was adhered to PVOH with a 5 minute room temperature eure epoxy from 3M Corp. The
PET was easily removed at a small take-off angle.

An epoxy eoating of Shell's ETON 828 (diglyeidyl ether of bisphenol A type epoxy
resin, with a V-40 (a polyamino amide) curing agent was spin-coated to tin plated steel

and cured a, 70»C for 4 hours. A steel washer was adhered to the epoxy coating using a 5

minute curing epoxy. The complete assembly was submerged in mercury. The mercury

forms an amalgam with the tin thus removing the substrate wh.ch results in a free standing

membrane of epoxy [20].

Nickel was electroplated on tin plated steel by Berkshire Manufacturing. The

sample preparation was the same as the epoxy membrane except Super Glue was used to

adhere the steel washer to the nickel. An amalgam of mercury with tin was utilized to free

the membrane from the substrate.

Holographic Interferometrv and Relative Humidity

In holographic interferometry, the sample is normally tested under vacuum. This

eliminates pressure effects that result in deflated stress values. The deflated stress values

would require a data correction simular to that proposed by Lax [21]. To avoid this

phenomenon when introducing relative humidity to the membrane sample, helium gas wa

used due to its low molecular weight. A nickel membrane was used to investigate the

possible effects of relative humidity on the actual stress values.

Figure 5.1 depicts the holographic interferometry set-up with relative humidity

adaptation. The source of the relative humidity was described in chapter 3.
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In polymers, relative humidity can induce stress by swelling the material

[1,3,10,1 5,22,23
1

Dimensional instability is often observed as a result of this stress. The
humidity induced swelling stress in a coating/substrate bilayer can impose a bending

moment which may cause difficulty in processing [4,9], The equilibrium moisture content

in these materials ,s a function of relative humidity in the atmosphere [24], Moisture

hysteresis between the absorption and desorption paths of the sorption cycle is a common
phenomenon [25-28], Since the relative humidity is related to the moisture content in a

material, the swelling stress is dependent on moisture content. Therefore, the sorption

path also affects the radius of curvature resulting from the stress in the materials [3],

An investigation of the swelling stresses was performed using Real-Time

I [Olographic Interfcromctry. The membrane samples were exposed to various relative

humidities At each humidity, the equilibrium swelling stress in the membrane was

determined.

Swellinu Stress Dependence on Crvstallinitv and Crosslink^

The drying conditions of the gelatin coating dominate its degree of crystallinity

[29], Moisture swelling occurs in the amorphous region of the polymer. Therefore, the

degree of crystallinity can influence the moisture sorption hysteresis loop. Gelatin is

commonly catagorized as cold-dried (or gel type) and hot-dried (or sol type) [30,3 I ].

Cold-dried gelatin is dried at room temperature (25°C) and ~50%RI [,
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Figure 5.1 Holographic interferometry set-up for relative humidity introducti
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Hot-dried gelatin is dried at elevated temperatures (-60X) between 50% to 70%RH The
oold-dried gelatin has the propensity to form collagen fold crystallites which composes the

crystalline portion of the film. The degree of crystallinity is dependent upon the rate a,

which the gelatin is dried [32]. Hot-dried gelatin is a completely amorphous network.

Studies have shown that the mechanical and swelling properties of gelatin are dependent

upon the drying conditions [30-34].

Crosslinking agents, often referred to as "hardeners" in the photographic industry,

are added to the gelatin to improve its mechanical properties [35]. Several crosslinking

agents are available for gelatin [36-38]. Although the mechanical properties are improved

by crosslinking, the swelling properties diminish. A balance between the degree of

crystallinity and the amount of crosslinking is required to balance the mechanical and

swelling properties of gelatin.

Gelatin membranes were made from gelatin/PET samples supplied by the Eastman

Kodak Co. Eastman Kodak characterized the melt enthalpies of each sample. The melt

enthalpy is related to the crystallinity in polymers, Membranes of various crystalline

content were tested. Holographic Interferometry was used to measure the swelling stress

at various relative humidities as a function of crystallinity.

Different percentages of a crosslinking agent were added to the gelatin during

manufacturing. Holographic Interferometry was employed to determine the swelling

stress as a function of percentage crosslinking agent.

Results and Discussion

Holographic Interferometry and Relative Humidity

A nickel membrane was used to investigate the possible dampening effects of

relative humidity on the actual stress values. The membrane was subjected to three
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chfferent environments: vacuum, dry helium and various relative humidity transported via

helium gas. The generation of relative humidity was described in chapter 3. The resonant

frequencies were monitored in each case. At least 10 modes of vibration were recorded

for each test run. The effect of the environment on the actual stress values was analyzed

by comparing the stress vs. vibration mode for each environment. Figure 5.2 provides a

comparison of the stress values in vacuum, helium at 0%RH and helium at 75%RH.
The experimental error for the holographic interferometry is 5%. Therefore, no

corrections of the apparent stress values are required if helium is used as the transport gas.

Figure 5.3 depicts the biaxial stress of the nickel membrane subjected to various

relative humidities. Again, it is apparent that the stress values fall within the experimental

error. Therefore no correction is required as would be the case if air was used as the

transport medium.

Swelling Stress Dependence on Relative Humidity

The gelatin showed very interesting results regarding its swelling stress

dependence on relative humidity. A stress hysteresis was evident and was similarly

observed by others who performed uniaxial stress tests [7]. Each value on the biaxial

swelling stress vs. relative humidity curve represents equilibrium values. In other words,

the stress was allowed to equilibrate at each relative humidity. Figure 5.4 illustrates the

equilibrium stress behavior of gelatin as a function of relative humidity.

Figure 5.5 isolates the desorption behavior of the gelatin (#SC5-5S-5020-01) and

the regression values are summarized in Table 5.1.

The drop of 4 MPa in the biaxial stress at 0%RH between the first desorption run

and subsequent runs was a result of stress relaxation [7]. It has been noted in the

literature that below 20%RH, the gelatin has a tendency to stress relax.
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Figure 5 .2 Comparison of apparent biaxial stress values for a nickel membrane subjected

to three different environments.
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Figure 5.3 Effect of relative humidity on the actual stress values measured on a nickel

membrane using holographic interferometry.
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Figure 5.4 Dependence of relative humidity on the equilibrium biaxial swelling stress of

alkaline processed bone gelatin coating. Hysteresis between desorption and absorption

paths is evident.
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Figure 5.5 Comparison of desorption paths for gelatin subjected to various relative

humidities from 54% to 0%RH.
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Recall that the membrane is under eonstan, strain since a rigid washer was secured to the

coating a, zero stress prior to the substrate removal ., was apparent a, lower humidities

that the membrane exhibited very high stress of 68 MPa. With time (48 hours), the biaxial

stress relaxed to 62 MPa.

Table 5.1 Comparison of linear regression values for desorption runs of gelatin

subjected to various relative humidities.

The absorption mechanism in gelatin differs from the desorption as indicated by the

non-linearity of the absorption curves in Figure 5 .4. The curves are fitted by a 3rd order

polynomial equation. Table 5 .2 provides a comparison of each absorption run

Table 5.2 Comparison of curve fit values for gelatin during absorption. A 3rd order

polynomial regression is used where f(RH) = a + b(RH) + c(RH) 2
+ d(RH) 3

.

Absorption

Run No.

a

JVIPa)

b

(MPa/%RH)
c

(MPa/%RH2
)

d

(MPa/%RH3
)

Correlation(%)

1 65.73 -3.85 0.086 -7.52 x lO"4 100

2,3 61.63 -4.31 0.101 -8.16x 10-4 99.96
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The first sorption cycle is represented in Figure 5.6. The stress drops rapidly with

the introduction of relative humidity. The stress reaches zero at 43%RH. Above 43%RH
the membrane is in tension; below 430/0RH, it is in compression which is observed as

buckling of the membrane. A large hysteresis is also apparent between the sorption paths.

In addition, after 48 hours at 0%RH, the swelling stress dropped 4 MPa. Figures 5.7

illustrates the comparison of each absorption path on the biaxial swelling stress.

Moisture sorption hysteresis was an evident characteristic of this material. Details

regarding moisture sorption hysteresis were introduced in chapter 1. In general, it is

believe to be a result of the network chain conformations. Details regarding the molecular

structure of gelatin are available elsewhere [35,39-42]. The conformation of the single

chains in the triple helix structure of collagen and gelatin resembles the conformation of a

poly(L-proline), Form II, helix which is the trans form of poly(L-proline). Circular

dichroism, CD, studies indicate a decrease in the triple helix content of gelatin at

humidities < 20% [29,43]. The decrease in the triple helix content is due to the increasing

number of cis-conformations with decreasing relative humdity. This is believed to be a

contributing factor to the stress relaxation and therefore the 4 MPa drop in stress in the

gelatin membrane. Since gelatin has a glycyl residue at every third position along the

backbone chain, the poly(L-proline), Form II. It is postulated that the trans-conformations

of the single chains of collagen and gelatin are stabilized only in the triple strand structure

[43]. For clarity, figure 5.8 is provided to depict the cis- and trans-conformations, (Form

I and Form II, respectively) [44]. Circular dichroism is used to determine the triple helix

content and monitor the helix to random coil transitions. Circular dichroism is a common

technique used to investigate biopolymers. Details regarding CD are described elsewhere

[45].
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gure 5.6 First sorption cycle for gelatin initially subjected to desorption from 54%RH.
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Figure 5.7 Absorption characteristics of biaxial swelling stress as a function of relative

humidity for gelatin.
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Poly(L-proline), Form II

Poly(L-proline), Form I

Figure 5.8 Conformations of Poly(L-proline). Form II is the trans-conformation, Form I

depicts the cis-conformation. Form I exists at low relative humidities thus hindering the

hydrogen bonding between water molecules and the oxygen of the carbonyl group.
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The binding of the water molecules to the CO groups in the gelatin are essential

to form the hydrogen bonding which stabilizes the triple helix structure. It was found that

the water molecules are less accessible to bind with the C-0 groups in the cis-

conformation than the trans-conformation. Rao and Das [25] attribute the hysteresis

behavior to different amount of cis- and trans-conformations during the desorption and

absorption paths. Therefore, as the water content in gelatin films decrease, the triple helix

content decreases and an increase in the cis-conformation is observed [43].

The PVOH coating exhibited hysteresis below 54%RH. Recall that the sample

during fabrication was dried at 54%RH, 21°C. Above 54%RH there is no evidence of

hysteresis. It seems apparent that the fabrication conditions dictate the hysteresis in this

material. If that is true, it seems plausible that tailoring the fabrication conditions could

minimize the moisture hysteresis. This is outside the scope of this research and will be

addressed in chapter 7. PVOH is known to form hydrogen bonds with water [46].

Moisture sorption hysteresis arguments regarding the amounts of cis- and trans-

conformations made by Rao and Das [25] are valid for PVOH. Figure 5.9 shows the

sorption characteristics of the PVOH coating.

The sorption paths for each of the two runs were identical and therefore no stress

relaxation was observed. Additionally, the biaxial stress as a function of time was

monitored to ensure equilibrium was achieved at each relative humidity. Figure 5.10

illustrates a typical biaxial stress vs. time curve for PVOH for the absorption cycle of each

run from 0% to 23%RH.

Figure 5. 10 is similar to characteristic mass transport curves. A correlation

between the swelling stress and the mass uptake is discussed in chapter 6.
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Figure 5.9 Sorption characteristics of PVOH. Hysteresis is evident at relative humidities

less than 54%.
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Figure 5.10 Biaxial swelling stress as a function of time for PVOH equilibrated at 0%RH

and subjected to 23%RH.



Sirrular tests were performed on the bisphenol A epoxy coating. In this case no
hysteresis existed. The desorption and absorption paths were the same. Bisphenol A type

epoxy does not undergo conformation changes. Moisture penetrates into the crosslinked

network and acts as a Tree" water, ie„ not bound by hydrogen bonding. The amount of

"free" water in a polymer network is dictated by osmotic pressure (via relative humidity).

Recall that hysteresis is dependent upon the amount of "bound" water in the network. If

little or no hydrogen bonding with the water molecules takes place, then hysteresis is non-

existent. Figure 5. 1
1
depicts the effect of relative humidity on the stress in the epoxy.

Swelling Stress Dependence on Crvstallinity and (W1inldn„

Alkaline processed bone gelatin/PET bilayer samples were provided by the

Eastman Kodak Co. The bilayer samples were stored in a freezer to minimize the physical

aging process prior to testing. Table 5 .3 outlines the specific characteristics of each

sample.

It was observed that the gelatin/PET bilayer lies flat at 75%RH. Therefore the

gelatin membrane samples were made by equilibrating the bilayer in a 75%RH atmosphere

at 20°C. An aluminum washer was adhered to the gelatin with an acrylate adhesive. After

one ( 1 )
hour, the PET substrate was removed from the gelatin coating by peeling at an

angle < 5°. The membrane sample was placed in the holographic interferometry chamber

and equilibrated for two (2) hours at 75%RH, 20°C. The stress as a function of relative

humidity was monitored. Desorption began at two (2) hour intervals allowing for

equilibration at each relative humidity. The sorption cycle was run as follows: 75%RH to

54%RH to 43%RH to 33%RH to 23%RH to 0%RH to 23%RH to 33%RH to 43%RH to

54%RH to 75%RH. This cycle was repeated to investigate the biaxial swelling stress

dependence on the sorption cycle.

117



0 10 20 30 40 50 60 70 80 90 100

Relative Humidity (%)

Figure 5.11 Sorption characteristics of Epon 828/V40 epoxy cured at 70°C. Hysteresis is

essentially non-existent.
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Table 5.3 Percent crystallinity and amount of crosslinking agent in each alkaline

processed bone gelatin coating. Bilayer sampl,

Co.

es were provided by the Eastman Kodak

otiaun. Kodak I.D. No. Crystallinitv (%) Crosslinking Agent (%)
O f% A A r\8244-9

8.3 3.16

8244-18 0 0
0.00

8244-27
0.0 1.58

8244-36
16.7 3.16

8247-2-3
16.7 0.00

8247-3-3
0.0 3.16

8247-4-3
,

_8_3 0.00

Each gelatin membrane in Table 5.3 was subjected to these sorption cycles. Figun

5.12 represents the characteristic stress vs. relative humidity curves for the gelatin sample.

Prior to presenting the results of this investigation, it is prudent to understand the

terms adopted to explain the experimental findings are understood. Figure 5.13 illustrates

the terms used to describe the results.

As discussed earlier, gelatin exhibits a moisture sorption hysteresis. Review of

figure 5.12 indicates that the biaxial stress as a function of relative humidity was sorption

path dependent. The ratio of biaxial stress to relative humidity (the slope of the

desorption curve) varies considerably from run #1 to run #2. This is uncharacteristic of

the behavior observed in a gelatin coating extracted from a cellulose acetate substrate

(reference figure 5.4).
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Figure 5.12 Typical biaxial swelling stress vs. relative humidity behavior for alkali:

processed bone gelatin membranes. Biaxial swelling stress was measured using

holographic interferometry. This particular curve was plotted from a gelatin sample with

0% crystallinity and 1.58% crosslinking agent present.
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Figure 5.13 Illustration of terms adopted to describe the results of the biaxial stress

experiments as a function of percent crystallinity and amount of crosslinking agent

(hardener).
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Recall in figure 5.4, the gelatin membrane was fabricated from a cellulose acetate

substrate which is quite hydrophilic. The gelatin membrane prepared for the erystalhnity

and erosslinking investigation was removed from a PET substrate which is primarily

hydrophobic, The zero stress state in a gelatin/eellulose aeetate bilayer occurred at

54%R] I The zero stress state for gelatin/PET was observed a. 75%R| | Besides the

hydrophobics 0fthe substrate materials, the viscoelas.ic nature ofthe substrates plays an

important role [12,1 3], The gelatin/cellulose acetate was stored on a 5" diameter roll

The tension ofthe roll imposes a constant stress on the bilayer system Under this

constant stress, the substrate material tends to creep over time lor the bilayer to be flat,

the stress at the interface between the gelatin and substrate must be zero In other words,

the sum Of the opposing forces equals zero If the substrate has a permanent set (known

as core-set) as a result of creep, the opposing force of the gelatin must be greater than the

force required if the substrate had no permanent set

Additionally, the stress as a function of relative humidity is proportional to the

Stiffness and humidity swelling coefficient The ratio of uniaxial stress to relative humidity

for PET is less than that of the cellulose acetate (0, 1 1 MPa/%RH and 0 16 MPa/%RH,

respectively) These values were the product of the modulus and humidity expansion

coellicicnts As a result, the Rl I required to obtain the same stress in PET as in cellulose

acetate is 1 ,45 times that of cellulose acetate For example, at 54%R] I, cellulose acetate

exhibits a stress of 8.64 MPa l<oi the equivalent stress in PIT, the KM must be 78%.

This value coincides with earlier results

A comparison of the desorption characteristics for gelatin at various cryslallinities

and amounts of erosslinking agent is presented in Figures 5. 14 through 5, 18 The "slope"

indicated in each of theses figures is the ratio of the biaxial swelling stress to the relative

humidity. The slope values were extracted from the biaxial swelling stress vs. relative

humidity desorption data similar to that represented in figure 5, 12.
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8.3

Crystallinity (%)

16.7

Figure 5. 14 Comparison of the first desorption path for gelatin with 0% and 3.16%

hardener and varying percent crystallinity. There is a slight dependence of the stress/%RH

ratio on the crystallinity with 3.16% hardener present.
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Figure 5.15 Comparison of the second desorption path for gelatin with 0% and 3. 1 6%

hardener and varying percent crystallinity. There is a dependence of the stress/%RH ratio

on the % crystallinity with 0% hardener present. This same ratio is independent of

crystallinity when 3.16% hardener was added.
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Figure 5.16 Comparison of the first and second desorption paths for gelatin with 0%

hardener and varying percent crystallinity. There was no dependence on the crystallinity

during the first desorption. The second desorption cycle shows a trend towards increasing

biaxial stress/%RH with increasing crystallinity.
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Figure 5.17 Comparison of the first and second desorption paths for gelatin with 3.16%

hardener and varying percent crystallinity. With hardener present, the biaxial stress/%RH

was independent of the percent crystallinity.

126



go

-2- 0 desorption 1

U desorption 2 / /
-1.5-

-1- / / /

-0.5

0-

1 58 3.16

Hardener (%)

Figure 5.18 Comparison of the first and second desorption runs on the biaxial stress/%RH

in gelatin with 0% crystallinity as a function of% hardener present. A completely

amorphous gelatin shows a slight increase in the biaxial stress/%RH relationship with

increasing amounts of hardener. The higher hardener amounts increase the biaxial

stress/%RH relationship in the gelatin.
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In general, there is a stgnificant difference between the biaxial stress/%RH ratio for

each desorption run. Recall tha, the b.axia. s,ress/%RH proportional to the product of the
stiffness and humidity expansion coefficient. This is represented by the linear elastic

relationship in equation 5.3:

da _ Ej3

dRH (1-v) (53 )

where,

da

gj^ - biaxial stress/%RH ratio or the slope of the biaxial stress vs. RH curve

E = modulus

P = humidity expansion coefficient (also represented by HEC)

v = Poisson's ratio

For example, applying this equation to compare the two (2) desorption runs of an

amorphous gelatin containing 1.58% hardener yields:

For a 30%RH decrease .

Desorption Run #1
:
Slope = -0.933 MPa/%RH biaxial stress = 28.0 MPa

Desorption Run #2: Slope = -1 .625 MPa/%RH biaxial stress = 48.8 MPa

Therefore either the modulus, humidity expansion coefficient have increased

during the second desorption run or that Poisson's ratio has decreased for the same run.

The dependence of the modulus, humidity expansion coefficient and Poisson's ratio on the

sorption cycle was outside the scope of this investigation.

Figures 5.14 through 5.18 indicate that the biaxial stress/%RH is greater for the

second desorption run. With 0% hardener in the gelatin, increasing the % crystallinity
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increases the stress/%RH ratio. Analogously for gelatin with 3.16% hardener added, the

stress/%RH ratio was independent of the % crystallinity for the second desorption run.

The first sorption run showed a slight decrease in stress/%RH ratio with an increase in %
crystallinity for gelatin samples containing 3 .16% hardener.

For a completely amorphous gelatin, an increase in the hardener amount increases

the stress/o/oRH ratio. Although this trend is small, it is apparent for each desorption run.

Table 5.4 summarizes the biaxial stress/%RH dependence on the crystallinity and

hardener in the gelatin.

Analysis of the absorption paths was more complicated due to the 3rd order

polynomial nature of the biaxial stress vs. RH curves. The first derivative of these curves

is equivalent to the biaxial stress/%RH ratio. To simplify the analysis, the moisture

sorption hysteresis loop was investigated. The biaxial stress at 23%RH for the absorption

path was subtracted from the biaxial stress at 23%RH for the desorption path of the same

sorption cycle. The difference indicates the stress hysteresis as a function of sorption

cycle, % crystallinity and % crosslinking agent (hardener) in the gelatin membrane. It was

postulated earlier in this text, that crosslinking and crystallinity would affect the magnitude

of the moisture sorption hysteresis loop. Therefore, comparisons were made with each

gelatin sample. The results are plotted in figures 5.19 through 5.23 and summarized in

table 5.5.
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Table 5.4 A summary of the data from figures 5.14 through 5.18 for gelatin. The slope

indicated in this table is the ratio of the biaxial stress to relative humidity.

Properties
-'Calil liilUIl TT X Desorption #2

Crystallinity (%) Hardener (%) oiupe ^iviJra/ /oKH I Slope (MPa/%RH)

0.0 0.00 -0.907 -0 861

0.0 1.58 -0.933 -1.625

0.0 3.16 -0.988 -1.683

0.0 0.00 -0.907 -0.861

8.3 0.00 -0.948 -1.402

16.7 0.00 -0.845 -1.612

0.0 3.16 -0.988 -1.683

8.3 3.16 -0.951 -1.680

16.7 3.16 -0.898 -1.708
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Figure 5.19 Comparison of the first sorption cycle stress hysteresis loop at 23%RH for

gelatin with various crystallinities and % hardener present. Stress difference was not

obtained for an amorphous sample of gelatin with 0% hardener.
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Figure 5.20 Comparison of the second sorption cycle stress hysteresis loop at 23%RH for

gelatin with various crystallinities and % hardener. Stress difference was not obtained for

an amorphous sample of gelatin with 0% hardener.
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Figure 5.21 Comparison of the first and second moisture hysteresis loops at 23%RH for

gelatin with 0% hardener content. The biaxial stress difference decreases with increasing

crystallinity and increased sorption cycles.

133



35

C3

& 30

o 25
a

09

CO

CD

CO

s

20

15

10

0

0

Loop 1 Loop 2

8.3

Crystallinity (%)

16.7

Figure 5.22 Comparison of the first and second moisture hysteresis loops at 23%RH for

gelatin with 3.16% hardener content. The biaxial stress difference decreases with

increasing crystallinity during the first sorption cycle.
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Figure 5.23 Comparison of the first and second moisture hysteresis loops at 23%RH for

amorphous gelatin. The biaxial stress difference decreases with increasing hardener

content.
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Table 5 5 Comparison of the biaxial stress difference at 23%RH for gelatin as a function

of crystallinity and hardener.

Properties Hysteresis Loop 1 Hysteresis Loop 2

Crystallinity (%) Hardener (%) Biaxial Stress

Difference (MPa)
Biaxial Stress

Difference (MPa)

0.0 1 ^8
1 Jo 39.52 22.00

0.0 J. IO 32.06 13.57

8.3
0_0 36.46 11 CO

16.7 0.0 32.79 15.60

0.0 3.16 32.06 13.57

8_3 3J6 26.21 17.39

16_7 3J6 24.34 12.20

As observed thus far, at specific hardener contents, the magnitude of the moisture

sorption hysteresis loop narrows. This implies that an increase in crystallinity reduces the

amount of "bound" water (or hydrogen bonding of the water to the gelatin hydrophilic

groups). Since the "bound" water dictates the hysteresis in polymers, by reducing or

hindering the hydrogen bonding, the magnitude of the hysteresis loop decreases.

In addition, the sorption cycle contributes to the magnitude of the hysteresis.

Sorption cycle 1 has a higher magnitude of hysteresis than sorption cycle 2. After the

gelatin sample is subjected to 0%RH, the second sorption curve exhibits lower stress.

This may be attributed to the stress relaxation or the increase in the cis-conformations of

the poly(L-proline) and glycyl residues in the gelatin as described in earlier arguments.
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In general, an increase in the crystallinity in the gelatin reduced the magnitude of
the moisture sorption hysteresis loop as compared at 23%RH. The magnitude of the

hysteresis loop was dependent upon the sorption cycle. After the first sorption cycle, the

hysteresis loop narrowed.

Conclusions

Holographic interferometry was applied successfully in the determination of

dependence of relative humidity, % crystallinity and amount of crosslinking agent on the

biaxial stress in a gelatin coating. Helium was used as a transport gas for the relative

humidity to the holographic interferometry chamber. Results indicate that the use of this

low molecular weight gas does not alter the apparent stress values, therefore no correction

to the stress results was required.

Gelatin exhibited a moisture sorption hysteresis. Desorption occurred linearly but

the absorption of relative humidity was non-linear and was fitted with a 3rd order

polynomial. After 24 hours at 0%RH, the biaxial stress in gelatin relaxed by 4 MPa. This

phenomenon coincides with earlier investigations. The stress relaxation was believed to

result from the cis-conformations of proline and glycydl residues in the gelatin. The

conformations inhibit hydrogen bonding between water and the oxygen in the proline

carbonyl group. The amount of the cis-conformation was also believed to contribute to

the moisture sorption hysteresis.

Polyvinyl alcohol) showed moisture sorption hysteresis characteristics. It was

postulated that the coating fabrication conditions could be tailored to control the

hysteresis in this material. For PVOH dried at 54%RH and 20°C. above 54%RH, no

hysteresis exists. Below 54%RH, hysteresis was evident.

No hysteresis was observed for DGEBA epoxy. It is believed that the "bound"

water is a primary contributor to hysteresis behavior in polymers. Since epoxy is a
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crosslinked.network and Utile hydrogen bonding occurs with water, hysteresis is

essentially non-existent.

The moisture sorption hysteresis loop in gelatin was diminished by the addition of

hardener (crosslinking agent) or through increased crys.allinity. The biaxial stress in the

gelatin membrane is dependent upon the sormion path. The biaxial stress decreased after

the first sorption cycle.
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CHAPTER 6

MASS TRANSPORT PROPERTIES

Introduction

"Diffusion is the process by which matter is transported from one part of the

system to another as a result of random molecular motions" [1]. The rate of diffusion per

unit area is proportional to a diffusion gradient by a specific material coefficient known as

the diffusion coefficient, Dm . For a plane case (eg., a film of material), the diffusion

occurs only in one direction which is normal to the plane. Mathematically, the relationship

for a one dimensional diffusion is introduced in equation (6.
1

)

dc _ d
2
c

where,

t = time

z space coordinate in the direction of the film thickness

c = concentration of the penetrant

Dm = diffusion coefficient

Equation (6. 1) is Fick's Law which assumes the diffusion coefficient is concentration

independent [2]. Details regarding the derivation of solutions for Fick's equation are

available elsewhere [1]. Applying the following boundary and initial conditions for one

dimensional Fickian diffusion through a film of thickness, h, to equation (6. 1):



I.C.. c = Cj = 0

B.C. c = ccq

-h/2 < z < h/2

z = h/2

where.

c
i'
ccq

h =

z =

initial and equilibrium concentration, respectively

film thickness

spacial coordinate through the thickness

yields the solution in equation (6.2) [3]

M
M tt

2
n=()(2n + l)

2
exp

-Dm (2n + l)Vt
(6.2)

where,
M c - c,

Moo c - Cj

This is pictorially represented in Figure 6.

1

The effective transport properties of a film sample can be calculated knowing the

sample geometry and the mass uptake (weight ratio) as a function of time. The diffusion

coefficient is determined from the plot of mass uptake, M/M^ vs. time 172
. For a

concentration independent diffusion coefficient and a material to exhibit Fickian diffusion

behavior, two criteria must be met. First, the desorption and absorption curves must be

linear up to M/M^ < 0.6 for small times. Secondly, the absorption and desorption curves

should be identical when superimposed [1]
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Figure 6.
1

Schematic of initial and boundary conditions for mass diffusion through a film
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'ell-

There are four methods used to estimate the effective diffusion coefficient, D
(

for a material exhibiting Fickian behavior: the half-time method, the initial slope method,

the moment method and the limiting slope method.

Using the half-time method to calculate the D
eff

for a plane film ofthickness, h, is

presented in equation (6.3) [3]:

I)
0.04921r

l
l/2

(6.3)

where, t
]/2

is defined as time where M,/M
rX)
= 0.5

The initial slope method uses the initial slope of the M,/lvl a) vs. t
1/2

1
1

1 The initial

slope is proportional to the square root of the effective diffusion coefficient, Deff,
through

equation (6.4);

I)cfr = 71

(slope)h
-a

(6.4)

The moment method uses the entire sorption curve instead of a single point (half-

time method) or a numerical derivative (initial slope or limiting slope method). The entire

curve is integrated and the D
clT

is calculated for a plane sheet (ie., a film) from equation

(6.5) [4]:

Deff
=

12
roo

Jo

M
(6.5)

M
dt

/ /

I4.S



Thelimiting slope method was introduced by Beren |4| For long times, I >t
1/2 a

Plot oflog
(
I-M./mj vs time is linear. The Deff of a film ofthickness, h, is proportion^

to the slope of the line by the relation in equation (6.6):

I),
cir (slope)

4h

7T
(6.6)

This method relies on the later stages of the experiment when the initial conditions are not

well defined

Bes.des the assumptions that the sample obey Fiek's law and that the diffusion

coefficient is concentration independent, a few additional assumptions must be satisfied for

equations (6.3 through 6.6) to be valid. (I) The initial eoneentration of the penetrant (in

this investigation, the penetrant is moisture) in the film sample must be uniform and equal

to zero (2) Equilibrium is obtained instantly at the interface of the sample and the

atmosphere. (3) A step change in the penetrant concentration at the interface begins at t =

0 (4) There are no diffusion limitations in the gas (vapor) phase.

The mass diffusion coefficient is determined using one of several techniques. The

most common are gravimetric techniques
1 1 ]. Other techniques have been designed which

are simpler than the conventional gravimetric methods [6,7 1 In these techniques, the

property measured as a function of time at specific relative humidities is correlated to the

mass uptake. The mathematical relationship was developed elsewhere [8] and is outlined

by Jou
1 7 1

For example, the swelling strain or swelling stress can be monitored as a

function of time. These properties arc then related to mass uptake through application of

linear elasticity theory.

Recall the stress - strain relationship for a one dimensional, homogeneous, linear

elastic, isotropic material subjected to isothermal conditions:
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E[e
xx -p'Ac(x,y,z,t)]=a

; (6.7)

where,

E = tensile modulus

exx = strain

3 = swelling coefficient

c = concentration

axx = stress

Establishing a relationship [7] for the average property through the volume by:

r = -jr(x,y,z,t)dV (6.8)

where,

r = exx> axx>orAc

V = volume of the sample

The average mass uptake per unit volume is expressed by equation (6.9):

Ac(t) =—jAc(x,y,z,t)dV (6.9)

The total amount of moisture absorbed by the film is written as:

M
t
(t) = jAc(x,y,z,t)dV = VAc(t) (6.10)

Equation (6.7) is integrated through the volume to yield equation (6. 11):
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qtx
(t) = E[8

xx -p'Ac(t)] (611)

For a constrained sample, 8XX = 0, therefore equation (6.11) reduces to:

AcJt^-Ep'Acd)
(6.12)

where, Aaxx (t) = Gxx{t)- axx(o).

Analogously for a material under constant stress, axx = 0, equation (6.11) yield s:

Ae
xx (t) = (3'Ac(t) (6.13)

where, Aexx(t)= 6^(0-^(0)

Applying the general relationship of equation (6.8) and normalizing the stress and strain of

equations (6. 12) and (6. 13), the transient swelling stress and strains can be expressed as:

Ac(t)
=

Ao(t)
=

Ae(t)
=

M(t)

Ac(oo) Aa(oo) Ae(oo) m(qo) '

'

Through the relationship of equation (6. 14), the change in stress or strain with time can be

correlated to the mass uptake with time relationship. Therefore, experiments designed to

measure stress or strain as a function of time can be used to determine D
eff.

This relationship was the premise for applying holographic interferometry to the

determination of the mass diffusion coefficients of the materials used in this research.
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Experimental

Holographic interferometry has recently been used to determine the mass diffusion

coefficients of polymers [7], This technique used a one dimensional beam sample of a

polymer coated on a substrate. A hologram was made of the beam sample prior to

moisture diffusion. The beam was then subjected to a specific humidity and the number of

interference fringes as a function of time were counted. From these measurements, the

mass diffusion coefficient was determined.

In this work, holographic interferometry is applied to a two dimensional membrane

sample. The stress is measured as function of time at various relative humidities. A plot

of the normalized stress vs. time 1/2 correlates well with analogous mass uptake

experiments. This technique will be detailed later in the text. A comparison of this

technique to the holographic interferometry beam bending technique [7], swelling strain

technique [6] and a gravimetric technique is presented.

Three materials were used in these experiments: alkaline processed bone gelatin,

cellulose acetate and polyimide (PMDA-ODA). The thickness of the gelatin, cellulose

acetate and polyimide averaged 20 |im,128 urn, and 25.6i.im, respectively. Uniaxial

samples with dimensions 5 mm wide and 100 mm long were used for the Cahn 2000

microbalance. Swelling strain samples were uniaxial averaging 5 mm wide and 100 mm in

length. Membranes of gelatin, cellulose acetate and polyimide were fabricated by the

procedure described in chapter 5 and were used for the holographic interferometry

investigation.

Gravimetric Method

The most common method for determining the mass diffusion coefficient is by a

gravimetric technique. A Cahn 2000 microbalance was employed to determine the mass
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was

uptake and the mass diffusion coefficient of a material [9]. A uniaxial sample was hung

from the microbalance and the mass uptake as a function of time at various humidities

recorded. Figure 6.2 depicts the microbalance set-up. A 5 mg weight was hung from the

bottom of the sample to avoid interaction with the chamber walls. The sample was

initially dried at 0%RH for 24 hours. Relative humidity was introduced and the weight

increase as a function of time monitored until equilibrium was reached. The sample was

once again exposed to 0%RH and the weight loss monitored.

The % weight gain (loss) was recorded as a function of time and a normalized

mass uptake, vs. time^ plotted. The initial slope and half-time methods were

employed to calculate the effective mass diffusion coefficient, D
eff .

Humidity Swelling Strain Method

The swelling strain method designed by Sackinger [6] and used by Jou [7] for

humidity studies was adopted to provide an additional method for determining the mass

diffusion coefficient. A set-up of the apparatus is represented in figure (6.3). The

experimental procedure was described in chapter 4.

In general, the experiment was performed by securing the 5 x 100 mm uniaxial

sample of a known thickness between the clamps. After the 130 g counterweight was

hung in place, relative humidity was introduced to the sample chamber. Relative humidity

was generated using binary aqueous saturated salt solutions which was described in

chapter 3. The length change due to moisture was monitored using a Linear Variable

Differential Transformer, LVDT. The swelling strain was then calculated as the length

change due to humidity exposure divided by the initial length of the sample.
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Figure 6.2 Schematic of Cahn 2000 microbalance used to determine mass uptake as a

function of time at various relative humidities.
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The humidity swelling strain as a function of time was monitored. The normalized

humidity swelling strain vs. time"2 was plotted. The mass diffusion coefficient was

calculated by employing the initial slope and half-time methods described earlier.

Holographic Interferometrv Method

An experimental set-up equivalent to that described in chapter 5 was used to

determine the biaxial stress as a function of time at various humidities. The frequency of

the 2,
1
mode was monitored as a function of time. Initially the membrane was brought to

its zero stress state and then dried at 0%RH. From the zero stress state to 0%RH, the

stress and time were monitored After equilibrium was reached, the membrane was then

subjected to a higher relative humidity and again, the stress and time were monitored. A

normalized stress vs. time 1/2 was plotted as well as the stress as a function of time.

Results and Discussion

Mass Diffusion Coefficient via Gravimetric Method

Two materials were run using the Cahn 2000 microbalance: gelatin and cellulose

acetate. As mentioned earlier, a 5 mg weight was hung from each unixial sample to avoid

contact with the chamber walls as a result of the gas flow introduced at the bottom of the

sample (see Figure 6.2 for the Cahn 2000 microbalance schematic). A chart recorder and

a computer data acquisition program (LabTech Notebook) were used to monitor the mass

uptake with time. The mass uptake was then normalized and plotted against time 1/2
.
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Figure 6.3 Apparatus for measuring the in-plane humidity swelling strains in the x-y plane.
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If Fjckian diffusion is observed, the initial slope is related to the mass diffusion

coefficient using equation (6.1). Figure 6.4 and 6.5 depict the mass uptake characteristics

at various relative humidities for gelatin and cellulose acetate, respectively.

Alkaline processed bone gelatin (#SC5-5S-5020-01) is the material represented in

figures 6.4. At 23%RH, the gelatin absorbed 6.0% of its weight in moisture. At 54%RH
and 75%RH, the gelatin absorbed 13.4 and 22.2%, respectively. These values correlate

well with literature results [10]. As seen in figure 6.5, cellulose acetate at 54%RH and

100%RH absorbed 1 .9% and 5.1% moisture, respectively. Figure 6.6 provides a

comparison of the % mass uptake of gelatin and cellulose acetate at 54%RH. These

results are compiled in table 6. 1 The normalized mass uptake vs. time 1/2
relationships for

gelatin and cellulose acetate are presented in figures 6.7 and 6.8, respectively.

The absorption of moisture by gelatin was very different than its desorption. Up to

M(t)/M(oo) < 0.6, the curves were identical. Beyond M(t)/M(oo) = 0.6, the diffusion

appeared to increase with concentration as indicated by the higher absorption curve

although it does necessary imply the diffusion is "Pseudo-Fickian" [4]. In a Pseudo-

Fickian diffusion, the absorption and desorption curves would not intersect except at the

origin. Thus, the anomaly between the absorption and desorption curves at M(t)/M(oo) =

0.6 was inherent of the moisture sorption hysteresis exhibited by this material.

This anomaly was not observed for cellulose acetate. It is apparent from figure 6.8

that cellulose acetate exhibits Fickian diffusion.
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Figure 6.4 Mass uptake (%) as a function of time during absorption of23%RH, 54%RH,

and 75%RH from 0%RH for gelatin via gravimetric technique.
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Figure 6.5 Mass uptake (%) as a function of time during absorption of 54%RH and

100%RH from 0%RH for cellulose acetate employing the gravimetric technique.
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Figure 6.6 Comparison of the mass uptake of alkaline processed bone gelatin and

cellulose acetate at 54%RH as a function of time.
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Table 6.
1
Comparison of the mass uptake values of gelatin and cellulose acetate at

various relative humidities.

Gelatin

Relative Humidity (%)

23

54

75

Mass Uptake (%)
Measured

6.0

13.4

22.2

Mass Uptake (%)
Literature*

8.5

13.5

20.0

Cellulose Acetate

54

100

1.9

5.1

* Values were extracted from graph presented in the literature and therefore are average
values.
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Figure 6.7 Normalized mass uptake vs. time 1/2 for gelatin using the gravimetric

technique.
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Figure 6.8 Normalized mass uptake vs. time 1/2 for cellulose acetate using the gravimetric

technique.
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The effective mass diffusion coefficients, D
eff, for the gelatin and cellulose acetate

are presented in Table 6.2. The diffusion coefficients were calculated using the initial

slope and half-time methods.

Table 6.2 The mass diffusion coefficients, D
eff, for alkaline processed bone gelatin

(i d. #SC5-5S-5020-01) and cellulose acetate films using gravimetric technique.

Gravimetri*: Technique Diffusion Coefficient, D^rr, (cm2
/s)

Material Analysis Method Absorption Desorption

Gelatin Initial Slope 4.61 E-09 5.51 E-09

Half-Time 4.62 E-09 5.53 E-09

Cellulose Acetate Initial Slope 5.00 E-08 4.86 E-08

Half-Time 5.02 E-08 4.87 E-08

From Table 6.2, it became apparent that the diffusion coefficient for gelatin is less than

that of cellulose acetate by approximately an order of magnitude. It was earlier postulated

that the gelatin should have a greater mass diffusion coefficient than cellulose acetate due

to its quick response to humidity variations.

To better understand this phenomenon, recall that the diffusion coefficient is a

measure of the movement of a penetrant through a film or sheet. Its units of measure are

cm2
/s. Therefore the diffusion coefficient does not express the amount of penetrant

entering the film but instead indicates the rate at which it enters through the thickness.

Referencing figure 6.6, it was apparent that the amount of moisture absorbed by

gelatin in the first five (5) minutes is ~ 13 times greater than the amount absorbed by
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cellulose acetate in the same time interval. As discussed in prior chapters, it is the amount

of moisture that affects the material properties of gelatin and cellulose acetate. Therefore,

the humidity swelling coefficient combined with the diffusion coefficient are required to

understand the transient dimensional instability behavior of the bilayer system.

Mass Diffusion Coefficient vi a Humidity Swelling Strain MethnH

The humidity swelling strain as a function of time was monitored for a sorption

cycle of0%RH to 54%RH to 0%RH. In this study, only gelatin was investigated. The

results of this investigation are depicted in figure 6.9.

The design of this experiment requires a constant load be applied to the sample. A

1 30g counterweight was used in this case. This is equivalent to a 35g load on the sample.

As indicated in chapter 4, the counterweight causes the gelatin to creep at higher

humidities. This is the reason for the "Pseudo-Fickian" behavior of this material. As a

matter of comparison, the diffusion coefficients were calculated as 1.28 E-08 cm2
/s and

3.5 E-09 cm2
/s for absorption and desorption, respectively. These values were

determined using the initial slope method. This analysis is erroneous since the initial slope

method is only valid for Fickian diffusion and a diffusion coefficient that is independent of

concentration.

Mass Diffusion Coefficient via Holographic Interferometry

As discussed in chapter 5, the transient swelling stress as a function of time was

monitored to ensure equilibrium stress was reached. It was the behavior of the transient
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Figure 6.9 Normalized swelling strain vs time 1/2 for gelatin (#8247-2-3) for sorption

cycle 0%RH to 54%RH to 0%RH. A 130 g counterweight (used as the constant load)

was hung from the sample.
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swelling stress that led to the pursuit of holographic interferon^ for determining the

diffusion coefficient using a two (2) dimensional membrane sample.

Gelatin, cellulose acetate and polyimide (PMDA-ODA) were investigated. The

gelatin membrane was fabricated from a bilayer gelatin on a substrate as described in

chapter 5. The cellulose acetate and polyimide samples were made from films.

A steel washer was adhered to cellulose acetate using a diglycyl ether bisphenol A
type epoxy. The assembly was placed in a 135°C oven for 2 hours. At 135°C, the

cellulose acetate was above its glass transition temperature and the manufacturing stress

stored in the material was released. Upon cooling, the stresses were reintroduced and

stored in tension in the membrane.

A similar procedure was applied to make the polyimide membrane sample. The

polyimide membrane was used as a control. Polyimide has been widely studied and its

mass diffusion coefficient is well documented [1 1,12,13]. Therefore, the holographic

technique applied to diffusion using membrane geometries can be validated using the

polyimide sample and comparing the results to the literature value.

Each material was subject to a specific sorption cycle. The gelatin and cellulose

acetate membranes were initially dried at 0%RH using dry compressed helium gas as the

transport medium. Each was exposed to 54%RH for a defined period of time and then

again subjected to 0%RH. Plots of stress vs. time for gelatin and cellulose acetate are

depicted in Figures 6. 10 and 6. 1 1, respectively.

Cellulose acetate is a biaxially oriented material. Normally to resolve the stresses

in a biaxially oriented material, a square membrane is used and the stresses along the two

principal directions are determined [14]. The determination of the diffusion coefficient

requires the normalization of the swelling stresses. Therefore, by monitoring only the

frequency change of a single mode (in this case, the 2, 1 resonant frequency mode) as a

function of time, the average swelling stress was used determine the mass diffusion

coefficient.
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Figure 6. 10 Three sorption cycles of0%RH to 54%RH to 0%RH for gelatin as

determined from holographic interferometry.
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Figure 6. 1 1 Sorption characteristics for cellulose acetate subjected to 0%RH to 54%RH

to 0%RH as determined by holographic interferometry.
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The mass diffusion coefficients for gelatin (#SC5-5S-5020-01) and cellulose

acetate were calculated from the data presented in figure 6.12 and 6.13, respectively. The

plots of normalized swelling stress vs. time"* for both gelatin and cellulose acetate

indicated that the diffusion was Fickian. Therefore the mass diffusion coefficients were

determined using both the initial slope and half-time methods. Table 6.3 provides a

summary of these results.

Table 6.3 Mass diffusion coefficients of gelatin (#SC5-5S-5020-01) and cellulose acetate

determined using holographic interferometry.

Holographic Interferometry Technique Diffusion Coefficient, D„w, (cm2/s^

Material Analysis Method Absorption Desorption

Gelatin Initial Slope 2.17 E-09 2.11 E-09

Half-Time 2.18 E-09 2.09 E-09

Cellulose Acetate Initial Slope 5.02 E-08 4.87 E-08

Half-Time 5.00 E-08 4.88 E-08

As the results in table 6.3 confirm, the diffusion is Fickian. Two (2) lots of gelatin

were investigated. Both were 16.7% crystalline as determined by the melt enthalpies

values provided by Eastman Kodak Co. The first lot of gelatin (#SC5-5S-5020-01) was

provided on a cellulose acetate substrate and stored in roll form at room conditions which

fluctuated. The second lot of gelatin (#8247-2-3) was received on a PET substrate in flat

sheet form. This lot was stored in a controlled low temperature environment (a freezer) to

slow the aging process.
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Figure 6. 12 Normalized biaxial swelling stress vs. time 172 for gelatin (#SC5-5S-5020-01)

as measured using holographic interferometry method.
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Figure 6. 13 Normalized biaxial swelling stress vs. time 172 for cellulose acetate determined

by holographic interferometry

169



Let
1
gelatin (received on a cellulose acetate substrate) was studied eight (8)

months after its rece.pt. Lo, 2 gelatin (provided on a PET substrate) was stud.ed six (6)

weeks after rece.pt. Because of storage conditions and its application on different

substrates, i, was postulated that the two lots of gelatin might exhibit different diffusion

coefficients. Figure 6. 14 represents the normalized swelling stress vs. time'* resnlts for

gelatin (#8247-2-3).

Table 6.4 provides a comparison of the mass diffusion coefficients for the two lots

of gelatin, #SC5-5S-5020-01 and #8247-2-3, respectively.

Table 6.4 Comparison of mass diffusion coefficients for two lots of gelatin, #SC5-5S-

5020-01 and #8247-2-3. Both lots were 16,7% crystalline.

Gelatin Lot No. Method Diffusion Coefficient. D Qff. (cm2m

Absorption Desorption

SC5-5S-5020-01 Initial Slope 2.17 E -09 2.11 E-09

Half-Time 2.18 E -09 2.09 E -09

8247-2-3 Initial Slope 2.62 E -08 2.65 E -08

Half-Time 2.61 E-08 2.64 E -08

There was a small difference in the diffusion coefficients between the two lots of

gelatin. The #SC5-5S-5020-01 gelatin was older and stored in an uncontrolled

environment (room conditions) and therefore its diffusion coefficient should be lower than

the #8247-2-3 gelatin. The difference was small but apparent.
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Figure 6. 14 Normalized swelling stress vs. time 172 for gelatin (#8247-2-3) using the

holographic interferometry technique.
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Comparison of the figures 6.12 and 6. 14 presents a difference in the absorption

behavior of the two gelatins at a normalized swelling stress > 0.6. The absorption and

desorption curves of Lot 1 gelatin (#SC5-5S-5020-01) are very similar and are almost

identical when superimposed. This is not characteristic of the transport behavior of Lot 2

gelatin (#8247-2-3). Lot 2 gelatin has a higher rate of absorption over longer times than

Lot
1
gelatin. The physical aging of the Lot 2 gelatin was hindered by the controlled

storage conditions and therefore was not subjected to the environmental fluctations

experienced by Lot 1 gelatin.

Gelatin performs many functions in photographic film. One of the requirements of

gelatin is that it must swell to facilitate chemical processing [15]. It was shown earlier in

chapter 5, that the sorption cycle changes the sorption properties of gelatin. Since Lot 1

gelatin was exposed to environmental fluctuations, the sorption characteristics were

altered.

The validity of the holographic interferometry method to determine the mass

diffusion coefficient was investigated using a polyimide (PMDA-ODA) membrane. The

polyimide was exposed to similar sorption cycles and the 2, 1 resonant frequency mode

was monitored as a function of time. Figure 6. 1 5 depicts the normalized swelling stress

vs. time 1/2 characteristics.

The effective mass diffusion coefficient ofPMDA-ODA polyimide was calculated

by the initial slope and half-time methods. The polyimide exhibited Fickian diffusion. The

calculated diffusion coefficient for polymide using this holographic interferometry method

was 2.08 E-09 cm2
/s (absorption, initial slope method) This result agrees with the

reported literature value of 2.00 E-09 cm2
/s [7].

The polyimide diffusion coefficient results from the holographic interferometry

correlated well with the published value. Therefore, holographic interferometry using the

membrane geometry was a valid method for determining the mass diffusion coefficient.

The holographic interferometry and gravimetric results are compared in Table 6.5.

172



1.2

2 4 6 8 10

time 172 (min 1/2

)

Figure 6. 15 Normalized swelling stress vs. time 172 for polyimide (PMDA-ODA) using

holographic interferometry.
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Table 6.5- Comparison of the mass diffusion coefficients for gelatin, cellulose acetate and
polyimide using holographic interferometry and gravimetric techniques.

Material

Gelatin

#SC5-5S-

5020-01

Gelatin

#8247-2-3

Technique

Gravimetric

Gravimetric

Holographic

Holographic

Holographic

Holographic

Analysis

Method

Initial Slope

Half-Time

Initial Slope

Half-Time

Initial Slope

Diffusion Coefficient, Dpff

(cm 2
/s)

Absorption

4.61 E-09

4.62 E-09

2.17 E-09

Half-Time

Initial Slope

2.18 E-09

2.61 E-09

2.62 E-09

5.00 E-08

Desorption

5.51 E-09

5.53 E-09

2.11 E-09

2.09 E-09

2.64 E-09

Overall, the mass diffusion coefficients were the same whether holographic

interferometry or the gravimetric method was used. There was a discrepancy in the
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drffirs.on coefficient, for gelatin between the two methods. Several poss.ble explanafons
can be argued. First, the volume of the Cahn 2000 chamber was greater than the

holographic chamber. I, is possible that the sample in the gravrmetric chamber was not

completely dry for the same drying interval as the holographic interferometry chamber.

This could lead to inflated diffts.on coefficient results. Secondly, recall that a small

weight was hung from the bottom of the gravimetric sample. This was necessay due to

the adverse affect of the sample clinging to the walls of the chamber as a result of the

moisture/compressed gas flowrate. Although the weight was small, gelatin creeps at

higher humidities and this phenomenon could contribute to erroneous diffusion coefficient

results.

The biaxial swelling stress as a function of percentage mass uptake of moisture

was also investigated. Figure 6. 1 6 and 6. 1 7 illustrate the characteristic curves for gelatin

and cellulose acetate respectively. The swelling stress vs. mass uptake curve was fit with

a 3rd order polynomial:

O = -0.035c
3
+0. 736c

2
-8.64c + 67.45 (6.15)

where, c is the % mass uptake and o is the biaxial swelling stress (MPa) for gelatin.

The cellulose acetate showed a different swelling stress vs. mass uptake behavior.

Initially the curve is linear. This inferred that the mass uptake is directly proportional to

the measured stress. An equilibrium plateau was observed at which point the stress drops

only slightly with increasing amounts of moisture. This data was fit by a 2nd order

polynomial:

o = 3.21c
2 - 1 1.43c + 14.67 (6.16)

where, c is the % mass uptake and o is the biaxial swelling stress for cellulose acetate
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Figure 6. 16 Biaxial swelling stress as a function of mass uptake for gelatin during

absorption from 0%RH to 54%RH
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Figure 6. 17 Swelling stress vs. % mass uptake for cellulose acetate during absorption

from 0%RH to 54%RH.
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Conclusions

Alkaline processed bone gelatin, cellulose acetate and polyimide exhibit Fickian

moisture diffusion. Comparison of the diffusion coefficients for two lots of gelatin

.ndicated a slight difference which was the result of storage conditions and physical agmg
Lot 2 gelatin, #8247-2-3, (the newer lot) showed a higher diffusion coefficient. This lot

seemed to have a greater propensity to absorb a larger amount of moisture for the same
time interval as compared to the older lot of gelatin, #SC5-5S-5020-01

A new technique for determining the mass diffusion coefficient was introduced. Its

validity was experimentally verified using PMDA-ODA polyimide with a known diffusion

coefficient. This technique employed holographic interferometry and used a circular

membrane sample geometry to study the mass transport properties of coating and films.

The gelatin and cellulose acetate diffusion coefficients varied by an order of

magnitude with cellulose acetate exhibiting a higher diffusion coefficient. The diffusion

coefficients determined by holographic interferometry for gelatin and cellulose acetate

were 2. 1
1
E-09 cmVs and 5.00 E-09 cm2/s, respectively. This variation was intuitively

thought to be incorrect due to the quick response of gelatin coated bilayer systems to

humidity changes. Observations by the naked eye indicated that gelatin reacted very

quickly to moisture changes. The reason for the quick response to moisture changes by

gelatin was due to the amount of moisture the gelatin picked up in the same interval

compared to that of cellulose acetate or polyimide. This response is not solely related to

the rate at which the moisture penetrated through the film thickness. This phenomenon

was illustrated in a comparison of the percentage of moisture taken up by gelatin with that

of cellulose acetate over the same time interval.

The biaxial swelling stress as a function of the mass uptake of gelatin showed a 3rd

order response. The stress dropped quickly with the introduction of moisture. The same

behavior was not observed for cellulose acetate. The cellulose acetate exhibited a 2nd
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order reponse to the biaxial sweliing stress as a function of moisture uptake, tnitiafly the
stress ,s linearly proportion, to the mass uptake. A, 1.25% mass uptake, the stress begins
to plateau indicating that the material is nearing saturation and the stress decreased

minimally with addition moisture.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation has focussed on the stresses and mass transport properties in

polymer films and coatings. Hygroscopic effects on the dimensional stability in a bilayer

system were investigated and a theoretical model representing the bending of a two

dimensional bilayer polymer system as a function of relative humidity was proposed. The

model is applied and verified in this chapter for the gelatin/cellulose acetate bilayer studied

throughout this work.

Application of the Two Dimensional Bending Model

The dimensional instability of the gelatin/cellulose acetate bilayer was discussed in

the previous chapters. The curvature dependence on relative humdity is presented in

figure 7.
1
where "a" and "b" are defined as the curvature along the x and y axes,

respectively. From observations, it was noted that the bilayer tends to curl towards the

gelatin along the x axis into a cylindrical geometry at relative humidities less that 54%RH

for this specific case. There was no curvature in the y-direction, b = 0, at low relative

humidities. Above 54%RH, the bilayer curled towards the cellulose acetate into a

cylindrical geometry but inverted its axis of curvature to the y-direction. At higher

humidities, the curvature along x was zero, a = 0. At 54%RH, the bilayer was relatively

flat, therefore, a and b are both zero.

The two dimensional bending model developed in chapter 2 was based on the

Classical Lamination Theory with a nonlinear mathematical modification. The Theorem of

Minimum Potential Energy was applied to the case of pure bending.
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Figure 7.
1

Curvature characteristics of the gelatin/cellulose acetate bilayer as a function

of relative humidity
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The observed shapes were therefore associated with the mi„imum energy ,„ the b.layer

system. The governing equation (2.26, for the total potential energy in the system is

reiterated here as equation (7.
1
):

2

(7.1)

Chapter 2 elaborates on the details of the mode, derivation. In general, the first variation

of equation (7.
1 ) yields the function:

8W = f
1
(a,b,c,d)5a+f

2 (a,b,c,d)8b+f3(a,b,c,d)8c+ f
4(a,b,c,d)5d (7.2)

From equation (7.2), f,, f2 ,
f
3 and f4 were determined as:

f
'

:

-
+ M ' 1 ^~ -J|bc + j 2ab

2
+ j 3bc + J 4ab

2

N
x Ly

b M n NfLlb

48
x

48

+J 5bd+J 6bd+J 7ab
2 -B M c + 2J 8ab+J y b

2 -B 12 d + 2J
l()
ab (7.3)

+D,
2 b + J n b

2
+ D,,a

. N''L2 a u N'
[ L2 a

f2=0 =
~4T~

+ M
y

J,ac + j 2 a
2
b + j 3ac + j 4 a

2
b

+J
5ad+J 6ad+J 7ab

2
+ J 8a

2 +D
12 c + 2J yab + J 10a

2 +B
12 a (7.4)

-B22 d + 2J M ab + D22 b

f
3 = 0 = -Nx + A,,c- J,ab + A,

2 d + J
3
ab - B, ,a + B,

2 b (7.5)

f4 = 0 = -Nj,
1

+ A 12 c- J
5 ab + A 22 d + J 6ab-B 12 a + B 22 b (7.6)

183



where.

t
AnL

4

y 2
1 48 J 2

= L
I - A 12L x

2 2
1280 " "IsT

j =
AI2LxLy A L2

4
1152 J6=^

h=^§- h =^L j.B^
1280

2
8 4g

J9 "^-

48
J "

By arranging equations (7.5) and (7.6) in terms of c and d and incorporating these

equations into equations (7.3) and (7.4), c and d can be written in terms of a and b. The

solutions to these equations are determined numerically.

The numerical solution is dependent upon the moduli and the humidity expansion

coefficients for each layer. In chapters 3 and 4, these properties are characterized for a

bilayer system consisting of a gelatin coating on a cellulose acetate substrate. The

mechanical and humidity expansion properties are summarized in Table 7. 1 . The Poisson'

ratios for cellulose acetate were chosen to make the reduced stiffness matrix symmetrical

thus simplifying the analysis. The curvature is defined as the inverse of the radius and has

units of length" 1

.
The curvatures, a and b, (nr 1

), were calculated by applying the

following assumptions:

(1
.
ARH is defined as RH

f
- RH

() , where RH
()
= 54% and RH

f
is the

equilibrium relative humidity

(2. When the bilayer is flat (at 54%RH), ARH = 0 and a, b = 0.

(3. At relative humidities < 54%RH, b = 0.

(4. At relative humidities > 54%RH, a = 0.

These assumptions are valid since they coincide by the geometries observed at the

various relative humidities. The assumptions are specific to the bilayer of gelatin and

cellulose acetate.
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Table 7.
1
Summary of the moduli and humidity

cellulose acetate.

expansion coefficients for gelatin and

Material

Gelat in

33%RH

54%RH

75%RH

Cellulose

Acetate

parallel to

coating

direction

perpendicular

to coating

direction

Modulus, E,

GPa

3.51

2.75

1.75

3.72

4.05

Poisson's

Ratio

0.37

0.37

0.37

0.33

0.36

Shear Modulus,

G, GPa

2.79

2.18

1.39

0.94

0.94

Humidity Expansion

Coefficient, P,

mm/mm/%RH

4.00 E-04

4.00 E-04

4.00 E-04

4.45 E-05

6.53 E-05

Note: Poisson's ratios for cellulose acetate arc estimated values
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By rearranging equations (7.5) and (7.6) in terms of c and d and incorporating

these equations into equations (7.3) and (7.4), c and d can be written in terms of a and b.

The solutions to these equations were determined numerically.

Two sample geometries were investigated: a 101.6 mm square sample and a

35 mm by 175 mm rectangular sample. Each consisted of a 19 um thick gelatin coating

on a 1 27 ^m thick cellulose acetate substrate. The curvature for each geometry was

predicted at various relative humidities under isothermal conditions. Applying

assumptions (1 through 4) and solving for a and b leads to three possible solutions for

each scenario. Table 7.2 lists the possible curvatures for each sample geometry.

By deduction, several of the solutions can be eliminated. For the 101.6 mm square

geometry, the lowest radius possible without overlapping is 1.62 x 10-3 m. The equivalent

curvature is 61 .8 m-l. For a solution to be valid, the radius must be greater than the

absolute value of 1 .62 x 10-3 m or the curvature should be less^ ^ rf

61.8 m" 1
.

Using this logic and recalling the curvature observations, only the root, a =

46.25 m- 1

,
is valid for 33%RH and b = 0. Similarly at 75%RH and a = 0, the only

possible root to the solution is -25.97 nr*. At 54%RH, both a and b are zero. This

solution coincides with earlier observations.

For the rectangular sample, the smallest possible radius without overlapping along

the y axis (parallel the width of 35 mm or the "b" radius of curvature) is the absolute value

of 5 .56 x 10-3 m. Analogously for the "a" radius of curvature (in the x direction or along

the 175 mm length), the smallest possible radius without overlapping is the absolute value

of 2.79 x lO-2 m. Therefore, in order for the solution to be valid, the "a" curvature must

be less than the absolute values of 35.8 nr 1 when "b" = 0 or the V must be less than the

absolute value of 180 nr 1 when "a" = 0.
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Table 7.2 Possible eurvatures for a bilayer of gelatin and eellulose acetate.

RECTANGULAR GEOMETRY: 35 mm by 175 mm

33

33

33

54

75

75

75

3.80

0

0

0

-3.37

0

0

0_

~o

3329

0

_0

14.79

-0.15
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Observations of the bending phenomena in the rectangular sample showed no

inversion from the x-axis to the y-axis contrary to the observations recorded for the square

sample. At 54o/
0RH, the rectangular sample was flat. Below 54o/oRH , the sample curled

towards the gelatin along the x-axis. Thus the model must predict a positive curvature

value for "a" and a value of zero for V. Above 54o/
0RH , the sample curved towards the

cellulose acetate along the -x-axis. The model should therefore pred.ct a negative

curvature for "a" and a value of zero for "b".

According to the model, at 33%RH, the gelatin/cellulose acetate bilayer exhibits a

positive "a" curvature (along the x axis) and a V curvature of zero. This coincides with

the predicted curvature of 3.80 m-1 as indicated in Table 7.2 and agrees with the

requirement that the curvature must be less than 35.8 m-1. The model also predicts the

rectangular sample is flat at 54%RH. Again, this is confirmed by observations.

At 75%RH, the model predicts that the rectangular sample can have 3 possible

solutions. Each is valid since they conform to the minimum radius requirement discussed

earlier. Therefore, the correct solution must be validated by observations and must satisfy

the mathematical requirement that the second variation of 52W must be positive definite.

Since, the rectangular sample showed no inversion from the x axis to the y axis as was

observed in the square sample geometry, the only possible solution indicated in Table 7.2

is a negative "a" curvature of -3.37 nr 1 and no V curvature.

Recall that the cylindrical geometric shapes observed are associated with the

minimum potential energy in the system. At the minimum potential energy, the shapes are

considered to be equilibrium stable. To verify the solutions, the second variation of 52W
must be positive definite. Therefore the determinant of 52W must be > 0. The

determinant of 52W is written as:
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(7.7)

The determinant for each relative humidity was positive and therefore the solutions for a

and b equate to stable equilibrium geometries at the minimum potential energy in the

system. Therefore, the two dimensional bending model is valid for the gelatin/cellulose

acetate bilayer.

Figures 7.2 and 7.3 represent the curvatures in the gelatin/cellulose acetate bilayer

as a function of relative humidity for the square and rectangular geometry samples,

respectively. The two dimensional bending model effectively predicts the dependence of

relative humidity on the dimensional instability in the gelatin/cellulose acetate bilayer.

From the model, it was shown that the bending phenomena are dependent upon the

mechanical property dependence on relative humidity as well as the sample geometries.

From observation and model predictions, it was apparent the sample geometry dictates the

inversion phenomena from the x to y axis. The square geometry shows the x to y

inversion phenomenon. A rectangular geometry with a length to width ratio of 5:

1

indicates no x to y inversion but instead predicts a positive to negative curvature along the

length of the sample with increasing relative humidity (eg. +x to -x with increasing RH).

This was confirmed by observations. Further work is required to determine if there exists

a minimum length to width ratio which predicts an x to y inversion. Although this model

only predicts the dimensional instability as a function of relative humidity, temperature

effects on the dimensional stability can be added. This model can be expanded to other

multilayer systems which exhibit similar dimensional instabilities.
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Figure 7.2 Curvature of gelatin/cellulose acetate bilayer as a function of relative humidi

predicted by the two dimensional bending model. Predicted values are for a 101.6 mm
square geometry sample.
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Figure 7.3 Curvature of gelatin/cellulose acetate bilayer as a function of relative humidity

predicted by the two dimensional bending model. Predicted values are for a 35 mm x 175

mm rectangular geometry sample.
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Conclusions

Observations have shown that the dimensional instability of a gelatin/cellulose

aeetate Mayer was dependent upon relative humidity. These observations initiated the

direction pursued in this dissertation.

In general, when a gelatin/eellulose acetate bilayer was exposed to a relative

humidity lower than 54%, the bilayer curled The bilayer ben, towards the gelatin along

the x axis into a cylindrical shape At these low relat.ve humidities, the gelatin was in

tension and the cellulose acetate was in compression. At 54%RH, no curvature was

observed which meant that there was no stress in the bilayer at that humidity. As the

relative humidity exceeded 54%RH, the bilayer exhibited a curvature inversion. The

cylindrical geometry observed at the higher humidities was along the y axis, 90° to the

lower relative humidity shapes. In addition, the gelatin was now in compression and the

cellulose acetate was in tension.

These observations prompted the development of a two dimensional bending

model which relates the curvature of a bilayer to the relative humidity. In addition, the

observed bending phenomena led to the investigation of the biaxial stress in the gelatin

coating as a function of relative humidity.

The two dimensional bending model was based on a nonlinear solution to Classical

Lamination Theory. A similar two dimensional bending model had been derived for an

unsymmetrical composite laminate in which the curvature as a function of temperature and

sample dimensions effects were predicted. This model assumed that the modulus was

independent of temperature. The two dimensional bending model developed in this

dissertation accounts for the dependence of the dimensional instability and the moduli on

the relative humidity.

The two dimensional bending model predicts the observed cylindrical shapes and

the curvature inversion as a function of relative humidity. In general, the model predicted
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that the bending phenomena are dependent upon the mechanical property dependence on
re.at.ve humidity as well as the sample geometries. From observation and mode,
predictions, it was apparent the samp.e geometry dietates the inversion phenomena from
the x to y axis. The square geometry shows an x to y inversion phenomenon. A
rectangu.ar geometry with a .ength to width ratio of 5:1 indicates no x to y inversion but

instead predicts a positive to negative curvature a.ong the .ength of the sample with

increasing relative humidity (eg. +x to -x with increasing RH). This was confirmed by

observations. Further work is required to determine if there exists a minimum .ength to

width ratio which predicts an x to y inversion. Although this model only predicts the

dimensional instability as a function of relative humidity, temperature effects on the

dimensional stability can be added. This model can be expanded to other multilayer

systems which exhibit similar dimensional instabilities.

To solve the two dimensional model, the mechanical and swelling properties of the

materials were required. Several materials were investigated: alkaline processed bone

gelatin, cellulose acetate, polyethylene terephthalate), epoxy, polyvinyl alcohol), PMDA-

ODA polyimide and nickel. It was determined that the mechanical properties of gelatin

are highly dependent upon relative humidity. As the relative humidity increased, the

moduli and strength of the gelatin decreased and the elongation at break increased. The

strength of the cellulose acetate was the only mechanical property which showed a

dependence on relative humidity. The other materials listed were used to study the effect

of relative humidity on the biaxial swelling stress in coatings and films.

The in-plane humidity expansion coefficient for gelatin and cellulose acetate was

investigated using a constant load apparatus. The swelling strain (expansion or

contraction) was measured as a function of relative humidity. From this study, it was

determined that the gelatin coating was isotropic in the plane of the coating which explains

the single humidity expansion coefficient of gelatin, 4.00 E-04 RH" 1

. The cellulose acetate
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wasbW oriented in the plane of the film and exhibited two humidity expansion

coefficients, 4.45 E-05 and 6.53 E-05 »1. The humidity swelling strain vs. relative

humidity was plotted and the slope of the line (between 23o/
0RH and 75o/

0RH) was
determined as the humidity expansion coefficient. The interval between 23o/

0RH and

75%RH was chosen to maintain consistency with industrial analysis.

Gelatin has a tendency to creep at high relative humidity. The effect of the

magnitude of the constant load was investigated. Three loads were applied. It was

apparent from the results, that the humidity expansion coefficient for gelatin was

influenced by the specific applied load. A plot of the apparent humidity expansion

coefficient as a function of the load shows a linear relationship. The actual humidity

expansion coefficient was determined as the ordinate intercept of the apparent humidity

expansion coefficient vs. load curve.

There is a significant difference between the absorption humidity expansion

coefficient and the desorption humidity expansion coefficient, 4.00 E-04 and

1 .67 E-04 RH-l, respectively. This difference may be the result of the creep experienced

by the gelatin or the moisture sorption hysteresis which is inherent of gelatin.

The out-of-plane humidity expansion coefficient was determined using an optical

interference technique known as laser interferometry. Gelatin film was investigated. It

was apparent that the out-of-plane humidity expansion coefficient was not the same as the

in-plane. This out-of-plane anisotropy is commonly seen in gelatin. Literature results

indicate the swelling anisotropic relationship between the out-of plane and in-plane

humidity expansion coefficients should be greater than 1 for gelatin. The swelling

anisotropy in this investigation was 1.23.

The biaxial stress in the coating contributes to the dimensional instability of the

bilayer system. Holographic interferometry was employed to determine the biaxial

swelling stress as a function of relative humidity. In the past, the sample used in

holographic interferometry was investigated in a vacuum atmosphere due to air pressure
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load,„g effects. Since reiative hum idity was required in this study, an investigation was

A mckel membrane was used to determine the effect of relative humidity on the
biaxial stress values. If a lame effect evictaH * „large ertect existed, a correction to the apparent values would be
required. The relative humidity was generated by enjoying binary aqueous saturated

salts which have specific relative humidities at room temperature. A compressed gas was
bubbled through the salt solution to transport the humidity to the holographic chamber
To minimize the pressure effect, helium gas was chosen due to its low molecular weight.

The nickel membrane was subjected to the various humidities which were

transported by the helium gas to the holographic chamber. It was determined that the use

of helium minimized the depression of the actual values. The results of this test were

compared with those found for the nickel membrane in a vacuum atmorsphere. It was

apparent by comparison, that no correction to the data was required and therefore, helium

was the best choice as the transport medium.

Moisture sorption hysteresis is the phenomenon in which different paths exist for

absorption and desorption of moisture from the same material. Dimensional hysteresis

often results. Alkaline processed bone gelatin coating exhibits a biaxial stress hysteresis as

determined by holographic interferometry. The stress hysteresis in gelatin coincides with

the dimensional hysteresis of the gelatin/cellulose acetate bilayer system. At 54%RH, the

bilayer was flat. This is equivalent to zero stress in the coating. As the humidity was

lowered, the bilayer curled to a smaller and smaller radius. This was seen as increased

biaxial stress in the coating. As the humidity was increased, the bilayer quickly increased

its cylindrical radius. This was viewed as a large decrease in biaxial stress. Comparison of

the stresses at the same relative humidity, but along the different sorption paths, indicated

that the stress during desorption was always greater than during absorption.

The moisture sorption hysteresis in gelatin is believed to be related to the amount

of cis- and trans-conformations of proline present. Circular dichroism studies discussed in
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the hterature suggest that the cis-conforntation of proline (which is present in gelatin and
collagen) inhib.ts the hydrogen bonding of the water molecule to the oxygen in proline,
carbonyl group.

The dependence of the biaxial swelling stress in polyvinyl alcohol) and epoxy as a
function of relative humidity was also investigated. The polyvinyl alcohol) was blade

coated on a PET substrate and dried at 54o/oRH
, 20T. Holographic interferon^ result:

revealed a moisture sorption hysteresis at relative humidities less than 54%RH. Above
540/oRH, the hysteresis was non-existent. Therefore, the hysteresis of the PVOH coating

may be controlled by altering the drying conditions. The Epon 828/V40 epoxy showed no

moisture sorption hysteresis. This may be due to the lack of hydrogen bonding of the

water molecule to the epoxy matrix. It is believed that the amount of "bound" or

hydrogen bonded water to the material strongly contributes to the hysteresis.

Alkaline processed bone gelatin was provided with various crystallinities and

amounts of crosslinking agent (hardener) present. The effect of the crystallinity and

amount of hardener on the magnitude of the hysteresis loop at 23%RH was investigated.

The hysteresis loop was defined as the difference between the stress during desorption and

the stress during absorption. The magnitude of the biaxial stress difference in the

hysteresis loop at 23%RH was greatest for amorphous gelatin with no hardener for the

first sorption cycle. With 16.7% crystallinity and 3.16% hardener present, the biaxial

stress difference in the hysteresis loop was the lowest. Therefore, the amount of

crystallinity and hardener affect the magnitude of the moisture sorption hysteresis in

alkaline processed bone gelatin. With no hardener present, an increase in crystallinity

decreases the biaxial stress difference at 23%RH. This may be due to an increase in the

cis-conformation of the proline in the gelatin chain which inhibits the amount of "bound"

water. For an amorphous gelatin, the increase in hardener content decreases the biaxial

stress difference. The biaxial stress difference is also dependent upon the sorption cycle.

The first cycle exhibits higher biaxial stress differences than the second cycle.
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The biaxial swelling stress discussed above was monitored as a function of time to
ensure equilibrium was achieved. Duong the course of that study, it was realized that the
fcaxial swelling stress vs. time behavior was characterise of mass transport behavior
This d 1Scovery led to the study of the mass transport properties using holographic

.nterferometry. Holographic interferometry combined with beam bending theory had been
adopted by earlier researchers to study mass transport. The mathematics relating the

swelling stress to mass uptake was described earlier.

In this work, holographic interferometry using a circular membrane was adopted.

No beam bending assumptions were required, only the density of the membrane was
necessary. The resonant frequency of the 2,1 mode as a function of time at various

relative humidities was monitored as a function of time until equilibrium was reached. A
plot of the normalized biaxial swelling stress vs. time" was analogous to the normalized

mass uptake vs. time"? curve determined via a gravimetric technique. The initial slope

and half-time methods were introduced to calculate the mass diffusion coefficient. The

mass diffusion coefficient for alkaline processed bone gelatin with 16.7% crystallinity and

0% hardener present was 2. 1 7 E-09 cm2/s. Similarly, the mass diffusion coefficient for

cellulose acetate was calculated as 5.00 E-08 cm2/s. It was initially believed that the mass

diffusion coefficient of gelatin would be greater than the cellulose acetate. Through

further study, it was apparent that the amount of moisture absorbed by gelatin was 13

times greater than that absorbed by cellulose acetate over the same time interval. Since

the mass diffusion coefficient represents the time at which the moisture passes through the

thickess of the material, it does not quantify the amount of moisture that is transported

over that same distance.

A study regarding the physical aging effect on the mass diffusion coefficient was

performed using two different lots of gelatin. Each gelatin was 16.7% crystalline and

contained no crosslinking agent. The first lot of gelatin was 8 months old prior to use and

had been stored at room conditions which fluctuate from day to day. The second lot of
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gela«,n Was stored in a controlled low temperature environment (in a freezer) and was
used 6 weeks after rece.pt. The diffus.on coefficient was determined using holographic

mterferometry. A slight dependence on physical aging was noted. The diffusion

coefficient of lot I was less than lot 2. Lo, 1 and 2 had mass diffusion coefficient values

of2.17 E-09 cm 2/s and 2.62 E-09 cmVs, rcspecttvely. In the photographic industry,

Physical agtng affects the swelling characteristics of the gelatin/substrate systems. Physical

aging may affect the amount of moisture absorbed by the gelatin (although this was no,

studied). In this investigation, physical aging indicated only a slight affect on the diffusion

characteristics of the gelatin.

The validity of the holographic interferometry technique was tested using PMDA-
ODA polyimide since this material has a well known mass diffusion coefficient. The mass

diffusion coefficient determined by holographic interferometry was calculated as

2.08 E-09 cm2/s
.

This agreed well with the reported literature value of 2.00 E-09 Cm2/s.

Future Work

There are several areas which time did not allow to investigate in this research.

Some of the ideas described below were suggested by the Eastman Kodak Co. They are

included in this future work section so they will not be lost in the archives of lab

notebooks and research files.

Gelatin is a fascinating material. In this research, it was obvious the attention

focussed on the effects of relative humidity on the dimensional instability, biaxial stress

and mass transport of gelatin and the gelatin/substrate bilayer. Eastman Kodak suggested

the following topics be considered for future research.

( 1 Understand and quantify the in-plane Poisson's ratio of cellulose acetate and Estar®,

PET, and their stress relaxation behavior under plane strain conditions.
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(2. Since phobic films contain silver halide particles, investigating the effect of the
filler part.c.e on the stress in the bilayer. Determine ifthere is a size and shape
dependency on the mechanical and dimensional stability of the bilayer

(3. Learn more about the ou,-of-p,a„e propert.es for the gelatin (filled and unfilled) and
for the bilayer.

(4. Investigate how drying conditions effect the stress in the film.

In addition to these suggestions, the effect of temperature and hygrothermal

conditions on the biaxial stress in gelatin and its substrates should be considered. The
holographic interferometry would work ideally for this investigation.

Expansion of the two dimensional bending model to other bilayer systems is highly

recommended. The PET film pr0vided by Kodak is biaxially oriented. The principal axes

do not align with the gelatin coating direction. Also, the humidity expansion coefficient is

less than cellulose acetate which is probably the reason the gelatin/PET bilayer lies flat at

75%RH vs. 54%RH for gelatin coated on cellulose acetate. As a result, the bending

characteristics will be different. With a PET substrate, the "inversion" from gelatin in

tension to gelatin in compression at cylindrical shapes 90° from each would occur at a

humidity greater that 75%. The dependence of the sample dimensions on the two

dimensional bending model also warrants some investigation.

Lastly, further investigation into the control of the moisture sorption hysteresis in

polyvinyl alcohol) as a function of drying conditions would make for a great study. If the

hysteresis can be controlled, this may lead to a better understanding of the moisture

sorption hysteresis mechanism.
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