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Tis a lesson you should heed
Try, try, try again.
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Try, try, try again.

Then your courage should appear.
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You will conquer, never fear.

Try, try, try again.
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ABSTRACT

SYNTHESIS, STRUCTURE AND PHASE BEHAVIOR

OF LIQUID CRYSTALLINE POLYURETHANES

FEBRUARY 1993

FOTIOS PAPADIMITRAKOPOULOS,B.S., UNIVERSITY OF ATHENS, GREECE

M.S., UNIVERSITY OF MASSACHUSETTS

Ph. D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor William J. MacKnight

This dissertation describes the synthesis, structure and phase behavior of

polyurethanes based on the mesogenic biphenol 4,4*-bis(6-hydroxyhexoxy)biphenyl

(BHHBP) and meta substituted tolylene / phenylene diisocyanates. The soiicture-

property relationships were determined as a function of hydrogen-bonding, the position

of the methyl group in the tolylene diisocyanate moiety (TDI) and the biphenol moiety.

The liquid crystalline phase (mesophase) and crystalline phase were investigated

primarily with differential scanning calorimetry (DSC), wide angle X-ray scattering

(WAXS) and infrared spectroscopy. From this combination of characterization

techniques, a more detailed description emerges about the thermodynamic stability and

kinetic accessibility of each phase.

Previous investigation of the (2,4-TDI/BHHBP) mesogenic polyurethane, 2,4-

LCPU-6, has shown that this polymer is a monotropic liquid crystal. The influence of

H-bonding on the structure and phase behavior of 2,4-LCPU-6 was determined by the

synthesis of high molecular wight N-Methyl 2,4-LCPU-6, using a novel high
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temperature polymerization of a biscarbamoyl chloride with the BHHBP mesogenic

diol. The comparison of the structure and physical properties of these two polymers

revealed that H-bonding does not affect the mesophase morphology although its absence

disrupts crystallinity and results in an enantiotropic liquid crystal. In addition, it was

found that the effect of H-bonding on the mesophase-isotropic transition is enthalpic in

nature.

In contrast to the "regular" (a,co-hexane diol) based polyurethanes (PUs),

BHHBP derived polyurethanes (LCPUs) crystallize rapidly from their melts. This is

due to the strong nucleating power of their thermodynamically unstable mesophases

(monotropic L.C.) Hexafluoroisopropanol fast solvent-evaporation casting or rapid

cooling from the melt resulted in thin films or bulk samples with a glassy mesophase

morphology. During the subsequent heating scan, the mesophase to crystal transition

takes place. Considerable amount of effort was expended to understand the nature of

this transition. With the combination of vibrational spectroscopy which provides a

measure of the locaUzed structure, along with DSC and WAXS (which examine the long

range order) we established the microstructural changes occurring in the different

phases.

Applying the results of previously mentioned analysis (kinetic control and phase

perfection), highly oriented fibers were obtained for the mesogenic polyurethanes.

Atomistic molecular simulations coupled with X-ray intensity refinement allowed us to

determine the crystalline chain conformation and packing characteristics for the 2,6-

LCPU-6 and l,3-LCPU-6 (2,6-TDI and 1,3-PhenyleneDiisocyanate (1,3-PDI) derived

LCPUs). On the basis of structural similarity and well resolved WAXS powder patterns

we extended the similar analysis to the "regular" polyurethanes as well (2,6-PU-6 and

l,3-PU-6). The good correlation between H-bonding distance and melting temperature

for these four polymers suggests that melting is primarily controlled by the dissociation

of H-bonds in the ordered domains.
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CHAPTER 1

INTRODUCTION

Polyurethane products historically have proven to be among the most versatile

plastic materials available. The wide range of physical properties from supersoft flexible

foam to tough elastomers, and to long wearing coatings has resulted in many end use

applications.^ Polyurethane elastomers derive their elastomeric properties from phase

separation of the hard and soft, "blocky" type copolymer segments. The hard (urethane)

segment domains serve as cross links between the amorphous soft segment domains,

which are usually polyesters or polyethers.^"'' The wide industrial demand for high

modulus elastomers resulted in reinforced polyurethane elastomers (using milled glass

fibers,'* fillers,^ and ceramics sacrificing processability and recycling capability.

The inherent ability of liquid crystalline polymers to form easily elongated

superstructures under shear fields
^'^ has motivated our laboratory to synthesize and study

extensively biphenol containing mesogenic polyurethanes.^^"^^ The well-known

decomposition temperatures of polyurethanes ^"^'^^ (~ 200 °C) along with the elevated

transitions due to H-bonding impose serious restrictions in designing liquid crystal

polyurethanes. The placement of urethane groups (H-bonding) with respect to the

mesogen greatly influences the transition temperatures. On the basis of this placement, one

10 16 23 *

can classify the literature reported main-chain mesogen containing polyurethanes •
' in

two groups (see Scheme 1.1): Scheme 1.2 illustrates the chemical structures of the first

group where the urethane moieties are attached to the mesogen. This arrangement stiffens

the structure and increases the melting (Tm) and isotropization (Ti) temperatures to

significantiy higher than 200 °C. In order to obtain transition temperatures lower than 200
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°C, limura et al. had to use a twelve methylene spacer (Tm = 174 °C, Ti = 1 86 °C) or

mixture of 6 and 10 methylene spacers (30% and 50% of the HO-(CH2)6-OH). The

separation of the urethane moiety from the mesogen by a spacer lowers considerably the

transition temperatures in the second group (see Scheme 1.3). The longer the spacer

between these two groups, the lower the transitions occur. ^^-^^-^^ The mesogenic

polyurethanes based on 4,4'-bis(6-hydroxyhexoxy)biphenyl (BHHBP) (Scheme 1.3, 3rd-

mesogen with x=6) and meta-substituted toluene diisocyanates have attracted considerable

attention due to their low melting point (170-200 °C), and fast crystallization from their

10.12.13.24

In recent years the mesomorphic state (liquid crystalline phase) has come

increasingly to the forefront of science and technology. The conditions for realizing the

mesomorphic state can be readily expressed in terms of the relative thermodynamic stability

of the crystalline (C), liquid crystalline or mesophase (M), and liquid phases (L).^^'^^ The

Gibbs free energy (G) of each phase can be expressed by the following thermodynamic

equation where S is the entropy, V is the volume, p is the pressure and T is the

dG = V dp - S dT

temperature. At constant pressure (dp = 0) the free energies of the crystal (Gc), liquid

crystal (Gm), and liquid (Gl) decrease with increasing temperature (see Figure 1.1). The

decrease of Gl is steeper than Gm and Gc, since

Sl > Sm > Sc

If, for a moment, we assume that these curves are straight lines, their intercepts can be

expressed in terms of enthalpy and their slopes in terms of entropy. For the simplest case,

where only one mesophase and one crystalline phase is present, the relative position of

each curve witii respect to the otiiers produces three types of mesophases.
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Enantiotropic Mesophase: This mesophase is observed upon both heating and cooling.

It thus appears as a thermodynamically stable phase between the Tc-m and Tm-l (see Figure

I.IA).

Virtual Mesophase: This refers to a mesophase that is potentially possible, however, is

thermodynamically less stable than the crystalline phase at the same temperature. It is

unrealizable upon both heating and cooling due to the great difference between Tc.Land Tm-l

(see Figure LIB).

Monotropic Mesophase: This refers to a mesophase that is thermodynamically

metastable with respect to the crystalline phase. It is a particular case of the virtual

mesophase and can be observed under certain kinetic conditions such as fast cooling. This

is due to the small difference between Tc.Land Tm-l, where a high enough cooling rate can

surpass crystallization and bring the sample into the mesophase (see Figure I.IB).

Too often in polymer science the relationship between microstructure and

macroscopic properties has been obscured by poor structure understanding and by complex

processing conditions leading to non-equilibrium microstructures. Simultaneously

occurring processes, such as H-bond association and mesogenic group alignment, can

result in complex phase behavior and poor structure understanding.^ For the case of

strong intermolecularly interacting polymers like polyurethanes and polyamides, the

existence of a thermotropic liquid crystalline phase and its thermodynamic stability is still a

matter of debate. In addition, factors such as molecular weight, polydispersity,

molecular regularity of the repeat, strengtii of the intermolecular interactions, packing

capability, etc., play a dominant role on the thermodynamic stability of each phase, and

contribute to tiie complexity of this class of materials.^'* Since most of the liquid crystalline

polyurethane literature is dominated by synthetically oriented publications, it is wise to be

cautious about the reported Tm's and Ti's of the polymers of Scheme 1.2 and 1.3. As will

become clearer during the course of this dissertation, in the case tiiat a polymers is a

monotropic liquid crystal, tiie order of the transitions has to be reversed (see Figure 1.1).
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Undoubtedly, a more detailed characterization is required for each particular system in

order to address this argument unequivocally.

Previous investigation of the mesogenic polyurethane, 2,4-LCPU-6, based on the

mesogenic biphenol 4,4'-bis(6-hydroxyhexoxy)biphenyl (BHHBP) and 2,4-toluene

diisocyanate (2,4-TDI), has shown that this polymer is a monotropic liquid crystal. The

inherent complexities of this system such as H-bonding, asymmetric position of the methyl

group in the TDI moiety, biphenol moiety, etc., make the task of determining property-

structure relationships difficult. This dissertation describes a comprehensive study of the

pure hard-phase (BHHBP) based mesogenic polyurethanes (LCPUs). Answers are sought

to the following three sets of questions:

1) What is the effect of H-bonding upon the structure and phase behavior of liquid

crystal polyurethanes? Will the elimination of H-bonding result in a liquid crystalline

system, and of what kind, monotropic or enantiotropic? What is the extent and perfection

of H-bonding in the individual phases.

2) Why do BHHBP based mesogenic polyurethanes crystallize so readily from their

melts, while the a,co-hexane diol based "regular" polyurethanes don't? How much is the

mesophase involved in this process? Can a frozen mesophase nucleate crystallization and if

so, in what temperature range?

3) What is the molecular architecture and conformational characteristics of TDI based,

"regular" and liquid crystal polyurethanes, as a function of the TDI's methyl group

position? How does this methyl group affect the packing in the liquid crystal and crystal

states? How much does the H-bonding participate in the formation as well as the

destruction of the ordered phases?

These expansive questions pervade the entire dissertation. Chapters 2 and 4 focus

on the first question and attack it with two completely different approaches. Chapter 2

utilizes a chemical modification which eliminates the H-bonding. It details the synthesis,

structure and phase characterization of the N-Methyl analogue 2,4-LCPU-6. The
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comparison between the original and the N-Methyl analogue elucidates the effect of H-

bonding upon the structure and phase behavior of LCPUs.

Chapter 3 describes the thermal, optical microscopy and wide angle X-ray

scattering (WAXS) characterization of biphenol containing LCPUs, as well as 1,6-

hexanediol based regular polyurethanes (PUs). It demonstrates the influence of the

biphenol and TDI moieties on the crystallization characteristics for this class of materials.

In addition, it provides specific processing conditions (thermal treatments, elongational

fields and solvent-polymer interactions) that maximize the liquid crystalline and crystalline

phase content. These processing conditions will facilitate a comprehensive structural

characterization of each phase (in Chapter 4) and establish the extent of H-bonding in the

individual phases. Future applications can be readily envisioned in terms of the prime goal

of the project; to maximize the degree of crystallinity and anisotropic character of the hard

domains in polyurethane based thermoplastic elastomers. The key component of this

system is the liquid crystalline state, which can be employed in Uie first stage to elongate

the hard domains and in the second stage to nucleate crystallization.

Chapter 4 applies infrared (IR) spectroscopy to characterize LCPUs around the

underlying phase transitions. It focuses on the highly localized mode of the amide I region

(carbonyl stretching), which is sensitive to conformation through dipole-dipole

interactions.

The conformation characteristics and crystal packing of TDI based, "regular" and

liquid crystal polyurethanes, as a function of the TDI's methyl group positioning are

discussed in Chapter 5. With the help of well resolved WAXS fiber patterns and atomistic

molecular modeling simulations we aim to deduce a detailed structure for the symmetric

LCPUs. A similar analysis will be extended to the "regular" polyurethanes on the basis of

structural similarities and well resolved WAXS powder patterns.
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The conclusions of the dissertation are presented in Chapter 6 within the context of

the general questions given above. The last chapter also includes suggestions for future

work.

Chapters 2, 3, 4 and 5 are written as separate entities to facilitate submission for

individual journal publication. The text, references, tables, schemes and figures for each

chapter are presented sequentially to maintain tiie flow of the manuscript.
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Figure 1.1 Schematic temperature dependence of Gibbs free energy (G) for:

A) representative enantiotropic mesophase and

B) representative virtual mesophase when (Tc.l - Tm-l) is large or

monotropic mesophase when (Tc.l - Tm-l) is small.
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CHAPTER 2

SYNTHESIS OF MESOGENIC N-METHYL POLYURETHANES AND

DEMONSTRATION OF THE EFFECT OF H-BONDING ON POLYURETHANE

LIQUID CRYSTALLINE PROPERTIES

Introduction

A great number of mesogen containing polymers like polyesters, polyethers,

polycarbonates, etc., exhibit thermotropic liquid crystalline phases and strongly ordered

structures in die solid state. ^ Unlike the above polymers, mesogen containing

polyurethanes are strongly interacting through their hydrogen-bonds. A large body of

work details the effect of specific hydrogen-bonding interactions in polyurethane

systems.^'^ The fact that the existence of a liquid crystalline phase and its thermodynamic

stability is still a matter of debate for the mesogenic polyurethanes, has been attributed to

the strong specific interactions of H-bonding.^"^^ The primary focus of this chapter is to

elucidate the effect of H-bonding upon the structure and phase behavior of liquid crystal

polyurethanes.

The polyurethane designated 2,4-LCPU-6 has been shown to exhibit monotropic

liquid crystalline (LC) behavior.^

OH HO
C-NY^N-C-O^CH2)^C>Q-Q-CHCH2)^0

^^^^3
2,4-LCPU-6 n
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Systematic studies of the structural elements of this system, (H-bonding, asymmetric

position of the methyl group in the 2.4-TDI moiety, copolymer effects, etc.) and their

effects on the phase behavior are lacking due to synthetic difficulties and tliermal

instabilities. It is of fundamental interest of this dissertation to understand the property -

structure relationships of 2,4-LCPU-6 and its family of related mesogenic containing

polyurethanes. The mesogen of choice is based on biphenol. The six methylene units on

both sides of the biphenol provide the appropriate amount of flexibility^2.i3 without

diluting the mesogen too much. The resulting molecule, 4,4'-bis(6-

hydroxyhexoxy)biphenyl (BHHBP) exhibits a highly ordered, stable, smectic mesophase.^

H0-{CH2)^O-^^-^^-CHCH2)^0H

BHHBP

The introducuon of BHHBP into various polymers, like polyesters ''^-^^ and

polycarbonates^^"'^ has resulted in mostly smectic A or C mesophases. The incorporation

of BHHBP into polyurethanes based on 2,4-TDI has also been reported to result in smectic

A or C mesophases.^'^'^^ This fact is an indication that the strong intermolecular

interactions introduced by hydrogen-bonding do not govern the mesophase morphology.

The present chapter of this dissertation confirms this hypothesis by examining the phase

behavior of a polymer similar in structure to 2,4-LCPU-6 but without the hydrogen-

bonding.

N-substituted polyurethanes (polycarbamates) have been synthesized in the past,

mainly from the condensation of N-substituted diamines with bischloroformates.^^-^^

However the N-methyl analog of 2,4- LCPU-6 is difficult to prepare in this way due to the

highly unstable nature of the 2,4-TMA diamine (see Scheme 2.1). The synthesis of high

molecular weight N-Methyl 2,4-LCPU-6 (hereafter referred to as NM-2,4-LCPU-6) was

accomplished using a novel high temperature polymerization of a biscarbamoyl chloride

with the BHHBP mesogenic diol (see Scheme 2.2). This novel high temperature
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polymerization is closely related to polyester high temperature polymerization from acid

chlorides and alcohols, and manifests most of the advantages of such reactions. Bilibin et

al.22-25 as well as other researchers^^ reported that this polymerization provides high

molecular weight polyesters with excellent molecular weight control utilizing monomer

stoichiometry. In contrast, normal polyurethane polymerization from the condensation of

diisocyanates and alcohols results in moderate molecular weight polymers with poor

molecular weight control ^'^

This chapter details the thermal and morphological characterization of NM-2,4-

LCPU-6. The results obtained for NM-2,4-LCPU-6 are direcdy compared with those for

2,4-LCPU-6 previously obtained from our laboratory, as well as some new ones. The

tiiermodynamic effects of hydrogen-bonding on the mesophase are clearly demonstrated on

the basis of the observed entropy and enthalpy of fusion,^^'^^ as well as X-ray diffraction

data. Schematic temperature dependencies of the Gibbs free energy^^-^^ for 2,4-LCPU-6

and NM-2,4-LCPU-6, rationalize Uie monotropic-enantiotropic behavior as a function of

H-bond content. In addition to that, some interesting behavior of the NM-2,4-LCPU-6

near its glass transition temperature will be also discussed.

Experimental

Materials. All chemicals were obtained from Aldrich except for 2,4-toIylene

diisocyanate (2,4-TDI) which was obtained from Fluka. The reaction solvents were dried

and distilled before their use and recrystallization solvents were stored previously over

activated 3-4 A molecular sieves. Prepurified Ar and N2 inert gases were previously

passed over BTS catalyst (O2 scavenger)^ ^ and CaCl2 desiccant.

Svnthesis of NM-2.4-LCPU-6. (Scheme 2. 1 & 2.2) Synthesis of BHHBP: In a

500 ml three neck round-bottom flask fitted with a condenser, pressure equalizing dropping

funnel, inert gas inlet and magnetic stirrer, was added 250 ml absolute ethanol and 16.0 g

(0.4 mole) NaOH. Purified Ar was bubbled tiirough tiie solution for 15 minutes.
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Subsequently 18.6 g (0.1 mole) 4.4'-dihydroxy biphenyl was added maintaining the

bubbUng of At for 15 more minutes at ambient temperature to prevent oxidation of the

dianion of biphenol to diphenoquinone (purple color). The resulting slurry is heated to

reflux, and 61.1 g (0.44 mole) 6-chlorohexanol previously purged with Ar, is added

slowly. The reaction mixture is refluxed for 24 hours, cooled to room temperature and

poured into 1 liter of distilled ice water. The crude soUd was washed twice with distOled

water, acidified to pH = 5 - 6 with HCl and filtered. The solid product was washed with

distilled water to pH = 7, dried and recrystaUized twice from dioxane - activated charcoal.

High purity BHHBP can be obtained by fmal recrystallization from ethyl acetate - charcoal

and drying under vacuum at 100 °C for a day, m.p. = 179 °C, yield 70%. Elemental

analysis; Calculated for C24H34O4 : C, 74.57%
; H, 8.87%. Found : C, 74.52%

; H,

8.86%.

Synthesis of 2,4-TMA:^2-34 ^ ^jj^j. ^^^j^ charged with 470 ml of a 1.0 M
diethyl ether dispersion of LiAlH4 and 35.0 g (0.201 mole) of freshly distilled 2,4-TDI

diluted with 150 ml diethyl ether was added slowly with stirring. The reaction mixture was

refluxed for 3 hours before the excess LiAlH4 was decomposed with water. The reaction

complex, LiAl[NR(CH3)]4,^2 ^^s hydrolyzed with 500 ml of a 30% NaOH solution.

After the ether was distilled, the resulting mixture was refluxed for 2 hours. The brown oil

was extracted with ether, dried with CaH2 and vacuum distilled over CaH2 to give 19.9 g

(66% yield) of a colorless liquid (b.p. = 1 17 - 1 18 °C at 0.7 mmHg). This compound

turns yellow after 5 minutes under vacuum. The more stable hydrochloride salt

decomposes above 200 "C prior to melting. Elemental analysis ; Calculated for

C9H16N2CI12 : C, 48.44%
; H, 7.23% ; N, 12.56% ;

CI, 31.78%. Found : C, 48.62% ;

H, 7.22% ; N, 12.41% ; CI, 31.64%.

Synthesis of 2,4-TCC:^-^^ A 1000 ml flask was charged with 300 ml dry, O2 free

ethyl acetate, 37.2 g (0.125 mole) of triphosgene^^ and 7.1 g (0.047 mole) of freshly

distilled 2,4-TMA was added at 25 "C, forming immediately a white precipitate (I).
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Overnight reflux at 55 "C resulted in a clear solution which was distilled to dryness. The

residue was recrystallized three times from a mixed solvent [CClVhexane 3:1, with

charcoal] to yield 7.1 g of 2,4-TCC (55% yield), m.p. = 116.5 "C. Elemental analysis
;

Calculated for C11H12N2O2CI2: C, 48.02%
; H, 4.40%

; N, 10.18%
; CI, 25.77%.

Found: C, 47.98%
; H, 4.30%

; N, 10.12%
; CI, 25.49%.

Polymerization: A dry Schlenk tube with condenser was charged with 0.50000 g

(1.8173 mmole) 2,4-TCC, 0.70167 g (1.8154 mmole) BHHBP (0.1% excess TCC) and

12.0 ml orthodichlorobenzene, freshly distilled over CaH2. The reaction mixture was

maintained between 175- 1 80 °C under a slow stream of dry, O2 free Ar for 96 hours and

precipitated in MeOH. The solid was re dissolved in CH2CI2 and reprecipitated twice with

MeOH, Soxhlet extracted in hot MeOH and vacuum dried to give 0.930 g NM-2,4-LCPU-

6 (yield 87.0%). Its inherent viscosity in CH2CI2 at 30.0 °C was 0.82 dL/g. Elemental

analysis ; calculated for C35H44N2O6 repeat unit : C, 71.40% ; H, 7.53% ; N, 4.76% ; CI,

0.00% Found : C, 71.38%
;
H, 7.51%

;
N, 4.68%

;
CI, 0.18%.

The synthesis and characterization of 2,4-LCPU-6 is described elsewhere.^

^

Characterization Techniques. Inherent viscosity. Inherent viscosities for NM-2,4-

LCPU-6 were determined at 30.0 °C in CH2CI2, using a Cannon-Ubbelohde viscometer.

The NM-2,4-LCPU-6 polymers referred as low and as high molecular weight were

determined to have an inherent viscosity [lUinh = 0.48 dL/g and [r|]inh = 0.82 dL/g

respectively.

Solution NMR. Solution NMR spectra of NM-2,4-LCPU-6 and 2,4-LCPU-6

polymers were recorded on a Varian XL-200 operating at 200 MHz in deuterated solvents.

All spectra were referenced relative to the solvent chemical shift

Optical Microscopy. Optical microscopy was performed on a Carl Zeiss Ultraphoto

n polarizing microscope equipped with a Linkham Scientific Instruments TMS 90

temperature controUer and a TMH 600 hot stage. The hot stage temperature was calibrated

with vanillin and potassium nitrate melting point standards.
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Thermal Analysis. DSC measurements were conducted with a Perkin-Elmer DSC-

7 employing a 20 mlVmin flow of dry nitrogen as purge gas for the sample and reference

cells. The coolant was ice-water bath except for the case of NM-2,4-LCPU-6 polymer

where chopped dry-ice was employed. The temperature and power ordinates of the DSC

were calibrated with respect to the known melting point and heat of fusion of a high purity

indium standard. For exothermic and endothermic processes the peak temperatures were

taken as the transition temperature, while for the glass transition the midpoint of the heat

capacity step was taken as the transition temperature. Long term annealing was performed

under nitrogen or vacuum to ensure the absence of thermal degradation.

X-Ray Diffraction. Room temperature WAXS patterns were obtained with a

Statton X-ray camera using Ni filtered Cu Ka radiation.

Results and Discussion

Scheme 2,1 illustrates the synthesis of the monomers needed to achieve the

synthesis of the NM-2,4-LCPU-6 illustrated in Scheme 2.2. The present polymerization

Scheme was adopted due to the peculiarities of this system which cause several problems

with previously reported methylation techniques. Although it was possible to synthesize

the a,(0-bis-chloroformate of BHHBP,^^'^^'^'' the highly unstable nature of the 2,4-

tolylene-dimethylamime (2,4-TMA) (Scheme 2.1) inhibited the formation of high molecular

weight NM-2,4-LCPU-6 using either mterfacial or homogeneous polymerization in

CH2CI2. In addition the metallation methods of Cooper et al.^^^° using NaH - CH3I in

dry DMF, resulted in severe molecular weight degradation'*^ and only partial methylation,

as indicated from solution ^H-NMR.

Since the salts of 2,4-TMA are more stable than the free amine, they were utilized to

improve the yield in the synthesis of the 2,4-tolylene-di(N-methylcarbamoylchloride) (2,4-

TCC). When the freshly distilled 2,4-TMA was added to the ethyl acetate-triphosgene

solution, a white precipitate (l)'^^ was formed instantaneously and protected the 2,4-TMA
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from further degradation. The 2,4-TCC is a very stable compound and easy to purify to

high purity levels. Although the synthesis of the NM-2,4-LCPU-6 (Scheme 2.2)

resembles polyester polymerization^^-^^ from acid chlorides and alcohols, it requires

special conditions to take place quantitatively and to result in high molecular weight

polymer. The fact that no polymer was obtained from solution polymerization carried out

at 90 °C, using bases such as pyridine as an acid acceptor, is attributed to the stability of

carbamoyl chloride/base salts ^'^^ similar to (I). This salt equilibrates with the

hydrochloric/base salt altering the stoichiometry and the efficient removal of the by-product

HCl. In addition, reaction temperatures higher than 1 10 °C resulted in severe discoloration

of the reaction solution probably due to pyridine side reactions. The absence of base was

proven necessary in order to obtain high molecular weight polymer. The reaction without

an acid acceptor starts around 160 "C and was monitored by the evolution of gaseous

hydrogen chloride. The optimum reaction temperature was around 180 "C where the

reaction proceeded moderately. A slow stream of dry, O2 free argon gas was used to

remove the by-product HCl, in order to drive the reaction to completion. Higher

temperauires resulted in lower molecular weight due to the instability of the urethane

jjQj^j42,43 above 195 °C. Solution polymerization in high boiling solvents resulted in

higher molecular weights than melt polymerization. The inherent viscosities, solvent type

and experimental conditions for the melt and solution polymerization are summarized in

Table 2.1. The melt polymerization required much greater control over the polymerization

conditions mainly due to the high viscosity of the melt, poor stirring and particularly the

loss of 2,4-TCC due to sublimation. For this purpose we added a much greater excess of

2,4-TCC compared to the solution polymerization, and lowered the reaction temperamre.

A small excess of 2,4-TCC (0. 1 mole %) proved to be the optimum for the solution

polymerization. This polymerization scheme seems to give excellent molecular weight

control based on monomer stoichiometry (see Table 2.1). Thus, the reaction of carbamoyl

chloride with an alcohol proceeds quantitatively^ under these conditions. The only
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disadvantage of this polymerization scheme is the low reaction rate, because the carbonyl

electrophiUcity of carbamoyl chlorides is much less than that of acid chlorides, due to the

+R resonance effect of the adjacent nitrogen atom. Additionally the low reaction rate is

exacerbated by the narrow temperature window available (160 °C reaction begins - 195 °C

urethane degradation begins). The polyester of isophthaloyl dichloride and BHHBP with

similar inherent viscosity to the high molecular weight NM-2,4-LCPU-6, was obtained in 8

hours compared to 4 days for the latter. Nevertheless, the molecular weights that can be

achieved (at long times) with this method for N- substituted polyurethanes are much higher

than those reported for conventional polyurethanes as well as for N-substituted

polyurethanes.

The solution NMR spectra of NM-2,4-LCPU-6 and 2,4-LCPU-6 are shown in

Figure 2.1. The molecular weight of both polymers was the highest obtained and the

sample concentration was 5% w/v. The high spectral resolution of both samples indicated

a relatively stiff backbone chain. In agreement with the structures, both downfield peaks of

N-H protons of 2,4-LCPU-6 (at 9.29 and 8.52 ppm) have been removed and two new

peaks are present in the spectra of NM-2,4-LCPU-6 (at 3.16 and 3.25 ppm) due to the N-

CH3. The rest of the spectra^ ^ for both samples is virtually the same.

Representative 10 "C/min DSC heating and cooling scans of the NM-2,4-LCPU-6

are presented in Figure 2.2. The curve (A) is usually observed upon heating a sample

which was left at room temperature for more than five minutes. The first peak at 45.6 C is

associated witii die enthalpic relaxation'*^^'' at the glass transition temperature. The second

endotherm around 56 °C is weaker and much broader tiian die first one, and is associated

with die melting of a mesophase. Curve (C) is the representative cooling scan which

shows a very broad exothermic region associated with die formation of this mesophase

which is interrupted by die glass transition. The enthalpy relaxation peak is enhanced

because room temperature is 10 to 15 °C below the Tg and this is the optimum range for

physical aging. In order to avoid die endialpy relaxation which interferes widi die second

20



endotherm, the samples were maintained at temperatures below -20 °C after the cooling

cycle and the heating cycle was started from -30 °C. In this case, curve (B) was obtained

showing a sharp glass transition at 38.6 °C and a broad region of endothermic behavior

associated with the isotropization of the mesophase. The molecular weight seems to have

very little effect on the transition temperatures and enthalpies for both NM-2,4-LCPU-6

samples. Annealing at 50 °C, which is in the middle of the narrow temperature window

between solidification and isotropization, increased the amount of the mesophase as well as

perfecting it, as shown in Figure 2.3.

In order to understand the temperature-phase behavior of NM-2,4-LCPU-6 better

and to provide a basis for the interpretation of the effect of hydrogen-bonding in the LCPU

systems, the optical textures obtained by cooling samples of high and low molecular weight

from the melt to the annealing temperature of 50 "C were studied by polarized light

microscopy. The results are shown in Figure 2.4. Rapid cooling from the melt to

temperatures below the Tg resulted in a "glassy" appearing material with no texture. On the

other hand, cooling rates of 10 "C/min and lower generated around 52-55 °C a very fine

texture (white region on the right and left of Figure 2.4A). It was observed that long

before this fine texture formed, the sample could not be sheared because of high viscosity,

due to the close proximity of the glass transition. Annealing at 50 °C resulted in a threaded

texture formed around air bubbles or dust particles shown clearly in Figure 2.4A,

indicating a nucleation type of growth. Further annealing spread and enhanced the threaded

textures (Figure 2.4B & 2.4C) which are more akin to that reported for a variety of liquid

crystalline polymers. ^-"^ Additional annealmg did not change the texture and no evidence

of banded spherulitic textures appeared. On heating, these perfected mesophases melted

around 60-65 "C. The molecular weight affects the coarsening rate of the threaded structure

and since all tiiis happens near Tg, the low molecular weight sample developed the

morphology more quickly.
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The observations of differential scanning calorimetry and polarized light

microscopy suggest the presence of an enantiotropic mesophase very close to the Tg of the

sample. WAXS was employed in order to establish the nature of this mesophase. Fibers

of the high and low molecular weight NM-2,4-LCPU-6 were drawn from the melt and

quenched in air. The X-ray diffraction pattern for a single fiber of the high molecular

weight sample is shown in Figure 2.5A. The pattern exhibits diffuse equatorial reflections

corresponding to a spacing of about 4.5 A. In addition one can observe four weak off-

meridional reflections at smaller scattering angles. These types of pattems have been

observed for a number of liquid crystalline polymers and low molecular weight

compounds.'*^-^^ They have been attributed to the so-called "Cybotactic" nematic

structure, a morphology intermediate between nematic and smectic C phases. The off-

meridional reflections corresponds to a spacing of approximately 15 A. The fiber, upon

annealing at 50 "C, develops a smectic C phase^^"^^ imbedded in the residual nematic phase

(Figure 2.5B). The pattern exhibits again the diffuse equatorial reflections corresponding

to a spacing of about 4.5 A, while the diffuse off-meridional reflections have mcreased in

number as well as sharpening considerably. The tilt angle is pt = 20° ± T with repeat

length 1 = 58.9 ± 0.6 A (1 = 001)t, and meridional layer spacing d= 58.9 ± 0.6 A

(d = 1 • cosPt). The molecular weight seems to have no effect on the spacing distances and

tilt angle, although the higher molecular weight resulted in fibers with higher orientation.

Having established the basic phase-temperature behavior of the NM-2,4-LCPU-6,

differential scanning calorimetry was used to provide more detailed information about the

effects of tiiermal history. It is noteworthy that since the isotropic to mesophase transition

occurs so close to the Tg lengthy annealing has to be employed in order to achieve an

equilibrium morphology. Figure 2.3 displays the 10 °C/min DSC heating traces of the low

molecular weight sample previously annealed at 50.0 °C for various annealing times. The

measurements fi-om Figure 2.3 of the glass transition temperature Tg, change in the heat

t The layer Une spacings were assigned to 002, 004 (strong), and 006 (weak) and 008 (diffuse) reflections.

For more details see Chapter 3 and 5.
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capacity Acp at Tg and the isotropization temperature Ti versus mesophase-isotropic

melting enthalpy (AH^.i) are shown in Figure 2.6. The increase of the melting enthalpy as

weU as the clearing temperature with the annealing time indicate that the initial mesophase is

very disordered and an appreciable fraction of the polymer is amorphous. This material is

located either in disordered regions between mesophase domains or in the various defects

within the mesophase domains. -j^^ f^ct that a completely amorphous material is not

obtained, no matter how fast the quench was, indicates that the isotropic-mesophase

transition occurs instantaneously^^ with a cooperative mechanism involving aligning of the

mesogenic units. This mechanism leads to a very fine dispersion of the mesophase with a

large quantity of grain boundaries and defects.^'' A secondary mechanism of the

mesophase perfection is observed similar to the crystal perfection during annealing

resulting in higher melting enthalpy and melting temperature.

As has been previously reported^^*^^ low order mesophases such as nematic and

smectic A and C exhibit glass transitions due to their inherent disorder. There is an

increasing interest in the behavior of the glass transition as a function of phase disorder.

Wunderlich et al.^^'^ have addressed this problem from both a theoretical and experimental

point of view. The dependence of glass transition temperature and change in heat capacity

of thermotropic nematic liquid crystal azoxy polyesters on their spacer length and molecular

weight has been reported recently by Blumstein et al.^^"^-' and Percec et al.^^*^.

Zachmann et al.^^-^^, investigating thermotropic liquid crystal copolyesters of

etiiyleneterephtalate (ET), ethylenenaphtiialene-2,6-dicarboxylate (EN) and oxybenzoate

(HB), observed by DSC and DMTA different glass transition temperatures for the liquid-

crystalline phase (TgLC) and amorphous phase (TgO- Characteristically, for the copolyester

of ET/EN/HB (35/35/30) the TgLC was about 40 "C lower than the Tg^ and the relative

amounts of the two phases was governed by the annealing temperature which produced tiie

mesophase. The free volume of tiie chains in the isotropic state, below or above the Tg',

will always be higher tiian their free volume in the mesophase, below or above the Tg^c
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respectively, due to the loss of two translational modes in the mesophase. Zachmann's

interpretation was based on the relative difference of the volumes of the glass transition

AVc (AVc = Vc' - Vc^C) versus the change in volume at the mesophase-isotropic transition

AVt (AVt = Vti - Vt^C) (see Figure 2.7). This approach explains both possible cases, for

Tgi higher or lower than TgLC. The criteria for TgLC < Tgi is AVt < AVc (Figure 2.7A)

while for TgLC > Tgi is AVt > AVc (Figure 2.7B). The magnitude of AVt corresponds to

the mesophase order, while the AVc is related to the difference in the free volume between

the isotropic phase at its glass transition and the mesophase at the glass transition

temperature.

The fact that the glass transition temperamre of the NM-2,4-LCPU-6 is only 20 'C

below the mesophase - isotropic transition affords the possibility to vary systematically the

fraction of mesophase present. In addition, because the mesophase transition occurs so

fast and so close to the Tg, phenomena like "cold crystallization" of the mesophase from the

amorphous phase immediately above Tg, do not interfere with its determination the way

they do in Zachmann's system. The increase of the Tg with the mesophase melting

enthalpy (mesophase perfection) of Figure 2.6 shows that the mesophase has a higher glass

transition (Tg^C) than the amorphous (Tg>). It is noteworthy that AHm,i less than 4 J/g

was not obtainable due to the fast rate of the mesophase formation. The increase of Tg is

linear with AHmj and on the basis of extrapolation the Tg^ seems to be about 6 °C higher

than the Tg'. This can be easily explained with Zachmann's model, assuming that the AVt

> AVc- The above assumption is reasonable since Zachmann's copolyesters exhibit less

ordered nematic mesophases when compared to the more ordered smectic mesophase of

NM-2,4-LCPU-6.

If the increase of isotropization temperature Ti, witii tiie mesophase melting

enthalpy (Figure 2.6) is due to an increase of the mesophase order, tiien the following

explanation is proposed. Assuming AVc remains more or less constant, then AVt is the
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only variable. The AVt increases with the mesophase order, leading to a linear increase of

Tg (Figure 2.8), in accordance with the Zachmann's model.

In addition to the linear increase of Tg a subtle increase in the change of the heat

capacity Acp, within the experimental error, is also observed (Figure 2.6). Presently we

can not propose a model to explain this phenomenon which will imply knowledge of the

differences of the translational, vibrational, and rotational modes^^ of the present system in

its mesophase and amorphous phase.
^

Comparison of 2,4-LCPU-6 and NM-2,4-LCPU-6

Utilizing previously published data^ from our laboratory, we will attempt to draw

conclusions about the effect of the hydrogen bonding on the 2,4-LCPU-6 liquid crystalline

properties based on data comparison with the methylated version, NM-2,4-LCPU-6.

Representative 10 °C/min, normalized DSC heating and cooling scans of the two polymers

are presented in Figure 2.9. For the low molecular weight ([T|]=0.46 dL/g) 2,4-LCPU-6,

upon heating the glass transition is observed at approximately 85 "C. This is followed by a

region of "cold crystallization" peaking at about 1 10 "C but continuing until the onset of

melting as characterized by the endothermic peaks at 158 and 170 "C. Since the polymer

has been identified as monotropic,^ these two endotherms are associated with crystal

melting transitions. Upon cooling, two exotherms at 142 and 138 °C are observed. The

high temperature exotherm is associated with the isotropic-mesophase transition while its

lower temperature counterpart is associated with the mesophase-imperfect crystal transition.

These crystals are associated with the 158 °C endotherm of the heating cycle. In order to

allow a direct comparison of die polarized optical micrographs of the two polymers, we

reprint* in Figure 2.1OA and 2.1OB die mesophase and crystalline phase textures of the of

2,4-LCPU-6 [r|]=0.46 dL/g respectively. The texture of Figure 2.10A has been obtained

* After permission of Smyth et al.^,
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from the melt after shearing and annealing at 130 °C. On the other hand, samples annealed

at 150 °C from the melt give banded sphemUtic textures such as the one shown in Figure

2.10B. The bluish hue is a result of the mercury lamb used for these particular

micrographs. Tungsten lamp has been employed throughout the rest of the optical

micrographs of this dissertation.

More concisive results about the mesophase order of 2,4-LCPU-6 can be obtained

by WAXS. Figure 2.1 1A portrays the WAXS pattem of a 2,4-LCPU-6 [ti]=0.60 dL/g

fiber drawn from the melt. It displays the famiUar "Cybotactic" structure shown also in

MN-2,4-LCPU-6 with diffuse equatorial reflections at about 4.5 A, and inner off-

meridional reflections at about 14 A. Utilizing a specific solvent treatment, which will be

explained in detail in Chapter 3 (Soxhlet extraction in hot MeOH), we can perfect the

thermodynamically unstable mesophase of 2,4-LCPU-6. Figure 2.11B illustrate the

WAXS fiber pattem of the same fiber after soxhlet extraction in hot MeOH for 5 days. The

pattem exhibits again the diffuse equatorial reflections corresponding to a spacing of about

4.5 A, while the diffuse off-meridional reflections have sharpened considerably. The tilt

angle is Pt = 32° ± 1° with repeat length 1 = 59.9 ± 0.6 A (1 = 001)**, and meridional layer

spacing d =51 ± 1 A (d = 1 • cosPt). The repeat lengtii of the 2,4-LCPU-6 in the smectic C

mesophase is slightly longer than in the NM-2,4-LCPU-6, indicating that although the

hydrogen-bonding does not affect the mesophase morphology, it results in a more extended

chain conformation, (see Table 2.2). Heat treatment of the Figure 2.1 IB fiber results into

the highly oriented crystalline pattem of Figure 2.1 IC. The crystallographic analysis of tiie

Figure 2.11C pattem is limited only to tiie inner most reflections associated with the long

repeat of the structure. The tilt angle is pt = 28° ± 1° with repeat length 1 = 50.8 ± 0.1 A (1

= 001)*** and meridional layer spacing d =46.0 ± 0.2 A (d = 1 • cospt). Undoubtedly,

** The layer line spacings were assigned to 002, 004 (strong) reflections. For more details see Chapter 3

and 5.
***

The layer line spacings were assigned to 001. 002, 004 (strong), 006, and 008 reflections. For more

details see Chapter 3 and 5.
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crystal packing results into a c axis shrinkage which has also been observed with the 1,3-

LCPU-6 as well (see Chapter 5).

Utilizing DSC annealing data from both polymers and the familiar relationship

(Tnri = AHm/ASm), the calculated mesophase-isotropic change in entropy for NM-2,4-

LCPU-6 is ASm.i =0.16 J/g,°C. In the case of the monotropic 2,4-LCPU-6^'' the

calculated isotropic-mesophase change in entropy is ASi^n = 0.15 J/g,°C while the

calculated crystal-isotropic change in entropy is ASc4 = 0-24 J/g/C. Comparing the ASm.i

for the NM-2,4-LCPU-6 with the ASi.m of the 2,4-LCPU-6, and assuming the same

degree of disorder for both the molten phases, confirms the conclusion that hydrogen-

bonding has little effect on the mesophase morphology. Table 2.2. In other words, in

these systems the main effect of H-bonding on the mesophase-isotropic transition is

primarily enthalpic in nature^^ and can be easily visualized in Figure 2.9. The transitions in

the 2,4-LCPU-6 are much larger than in the NM-2,4-LCPU-6, but the mesophase-isotropic

AS is almost die same. On the other hand the ASc,i of the 2,4-LCPU-6 is almost 1.5 times

greater than die ASi^m. once again indicating the monotropic nature of the sample (see

Table 2.2).

In order to better elucidate the monotropic-enantiotropic character of both samples,

the schematic temperature dependence of the Gibbs free energy is presented in Figure

2 12.29.30 yj^g phases are represented as solid lines while below the glass transition where

equilibrium cannot be attained, the lines are broken. The above AS values correspond to

the slope changes between phases at the transition. In the case of 2,4-LCPU-6 the

mesophase is less stable than the crystalline phase mainly due to the strong, highly

directional H-bonds in the crystal lattice. Upon cooling from the melt, the material

supercools along the liquid phase Une until it meets die mesophase. The spontaneous

transition to the mesophase provides the necessary nuclei for crystallization and a

transformation takes place to the stable crystal phase. Upon heating the crystal phase free

energy is always less than the mesophase and it melts before it transforms to a mesophase.
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In the case of NM-2,4-LCPU-6 the mesophase is stable relative to the crystalUne phase

because H-bonding is lacking. Unfortunately the glass transition temperature Ues so close

to the mesophase-isotropic transition that it is impossible to observe a crystal phase in NM-

2.4-LCPU-6, if it exists. Although Figure 2.12 carries no quantitative information, it is

quite helpful for a qualitative comparison of the two polymers. The y-axis position of each

curve corresponds to the enthalpy of the individual phase. With the knowledge of the

transition temperatures and entropies, the relative positions of the various phases can be

positioned with a limited amount of freedom. Keeping the curvatures more or less

constant, we observe that the >'-axis difference between the liquid phases (1' - 1) is smaller

than the mesophase phases (m' -m) and the "fictional" crystal phases as well. This is an

additional evidence of the enthalpic contribution of H-bonding since the phase order is

directiy related with its strength and perfection.

The absence of hydrogen-bonding results also in the enhancement of the solubiUty

of NM-2,4-LCPU-6 in most organic solvents, except saturated hydrocarbons and alcohols.

On the other hand 2,4-LCPU-6 is soluble only in polar aprotic solvents like DMF, DMAC,

DMP, DMSO, HMPA, etc..

Conclusions

(1) Scheme 2.2 illustrates a novel general route for the preparation of N-

substituted polyurethanes with high molecular weights and excellent molecular weight

control.

(2) 2,4-LCPU-6 and NM-2,4-LCPU-6 exhibit similar mesophase

morphologies, showing that the presence or absence of H-bonding is not important in

determining the nature of the mesophase, Table 2.2.

(3) H-bonding affects the temperatures of the various transitions, primarily

through an enthalpic effect. Table 2.2.
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(4) The NM-2,4-LCPU-6 is an excellent model to provide understanding of the

glass transition temperature as a function of mesophase perfection. The Tg of the

mesophase is estimated to be 6 °C higher than the amorphous phase Tg, on the basis of

extrapolation to zero fraction of mesophase.
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Table 2.2

Comparison of 2,4-LCPU-6 and NM-2,4-LCPU-6.

Property * 2,4-LCPU-6 NM-2,4.LCPU-6

[Ti] = 0.46 dlVg t [Tllinh = 0.48 dL/g

Tff
0

Tm 158 "C, 170 "C

— - . 56

Ti,in 142 "C 53 °C

ASc.i 0.24 J/g,°C t

ASm,i 0.16J/g,"'C

ASi,m 0.15 J/g,°C t

Mesophase type Sc Sc

Repeat Length, 1 59.9 ± 0.6 A 58.9 ± 0.6 A

TUt Angle, pt 32°±1° 20°±1°

* The transition temperatures correspond to 10 °C/min heating or cooling scans, while the

transition entropies were calculated from annealing experiments using the plateau AH
values.

t From ref. ^.
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SYNTHESIS OF MONOMERS

A. Synthesis of BHHRP

+ Excess CHCHghOH
6

NaOH

HO-<CH
2)^O^J-^J-CHCH 2)^OH

BHHBP

B. Synthesis of 2.4-TMA and 2.4-TCC

OCN

2,4-TDI

1) UAIH4

2) aq. NaOH

CHo HqC

H-Nvx^!*^^N-H

CH3

2,4-™a

+

Excess

COCI2

O CHo HoC O
II I

^ n II

CI-C-Nv-X^N-C-CI

CH

2,4 TCC

Heat

-2HCI

O CHo HoC O
II 1+ ri II

CI-C-Nt/*^N-C-CI 2 CI

(I)

Scheme 2.1 Synthesis of monomers (BHHBP, 2,4-TMA and 2,4-TCC),
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Figure 2.2 10 °C/min DSC heating (A) & (B) and cooUng (C) traces of NM-24-LCPU-6

[Tl]inh=0-48 dL/g. (A) heating trace of a sample cooled 10 "C/min from the

melt and aged around 15 minutes at room temperature, (B) heating trace of

a sample cooled 10 °C/min from the melt, and maintained at -20 °C before

the heating scan. See text for details.
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Figure 2.3 10 °C/min DSC heating traces of NM-2,4-LCPU-6 [Tl]inh=0.48 dL/g

previously annealed at 50.0 °C for various annealing times.
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Figure 2.4 Polarized optical micrographs of NM-2,4-LCPU-6 [Ti]inh=0.48 dL/g

displaying the evolution of a mesophase upon annealing at 50 C. (A) after

10 minutes, (B) after 2 hours, (C) after 6 hours.
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Figure 2.5 WAXS patterns of a fiber of NM-2,4-LCPU-6 [Ti]inh=0.82 dL/g, (A) drawn

from the melt and (B) annealed 2 days at 50 °C. Fiber axis is oriented

vertically.
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Figure 2.6 Heat capacity Acp ( ), clearing temperature Ti (•), and glass transition

temperature Tg (o) vs mesophase-isotropic melting enthalpy (AHm,i) of NM-

2,4-LCPU-6 [ri]inh=0.48 dL/g. Data from Figure 2.3.
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Figure 2.7 Schematic volume dependence as a function of temperature for Tg^c < Tg'

(A) and for Tg^c > Tg' (B). See text for details.
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Temperature

Figure 2.8 Schematic volume dependence as a function of temperature for NM-2,4-

LCPU-6. See text for details.
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Figure 2.10 Polarized optical micrographs of 2,4-LCPU-6 [ri]=0.46 dL/g displaying

the threaded texture of the mesophase (A), and a highly perfected

spherulitic texture of the crystalline phase (B). See text for details.

Reprinted after permission of Smyth et al.^
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(A)

I I

(B)
«

(C)

Figure 2.11 WAXS patterns of a 2,4-LCPU-6 [t|]=0.60 dL/g fiber, drawn from the

melt (A), soxhlet extracted in hot MeOH for 5 days (B), and annealed at

165 °C for 5 more days (C). Fiber axis is oriented vertically.
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CHAPTER 3

PHASE BEHAVIOR DETERMINATION,

OF TDI BASED, REGULAR AND LIQUID CRYSTAL POLYURETHANES

Introduction

Thermotropic liquid crystal polyesters, polyethers, polycarbonates, etc., have been

shown to form stable liquid crystalline phases over a wide range of temperatures.

However, the liquid crystallinity of mesogen containing polyurethanes is still a subject of

debate. Previous investigation of the mesogenic polyurethane, 2,4-LCPU-6,^ based on

the mesogenic biphenol 4,4'-bis(6-hydroxyhexoxy)biphenyl (BHHBP) and 2,4-tolylene-

diisocyanate (2,4-TDI), has shown to be a monotropic liquid crystal.^-^ The inherent

complexities of this system, such as H-bonding, asymmetric position of the methyl group

in the TDI moiety, biphenol moiety, etc., make the task of determining property- structure

relationships difficult. The lack of detailed structural characterization along with the

polyurethane poor thermal stability, above 200 °C,^'^ are the principal reasons for the

uncertainties that exist.

The previous chapter of this dissertation (Chapter 2) examined in details the effect

of the H-bond on the mesophase morphology of 2,4-LCPU-6. This Chapter aims to

establish the effect of biphenol and TDI's methyl group positioning upon the structure an

--G-N

2,4-LCPU-6 n
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phase behavior of regular and mesogenic containing polyurethanes. It describes the

synthesis, thermal analysis, optical niicroscopy, and wide-angle X-ray scattering (WAXS)

of two BHHBP based mesogenic polyurethanes designated as 2,6-LCPU-6 and

H O

N-C-0-(CH2)^o/ ^

2,6-LCPU-6

O-(CH2)^0f

n

O H
II I

C-N
H O

N-C- 0-(CH2)^O-^K^H0-(CH2)^0-

1.3-LCPU-6
n

l,3-LCPU-6. The symmetrically placed methyl group in the 2,6-tolylenediisocyanate (2,6-

TDI) as well as the lack of the methyl group in the 1,3-phenylene diisocyanate afford a

comparison between their phase behavior and that of 2,4-LCPU-6. As will become

apparent in the discussion, the randomly substituted methyl group along the polymer chain

of 2,4-LCPU-6 leads to a lowering of the transition temperatures and the "partial"

stabilization of the mesophase relative to the crystal phase. However the asymmetrical

methyl group complicates substantially the molecular modeling and crystallographic

analysis. Fortunately the transition temperatures of 2,6-LCPU-6 and l,3-LCPU-6 are

within the acceptable limits of polyurethane thermal stability
."^-^

In order to obtain a molecular understanding of the structure and phase transitions of

BHHBP mesogenic polyurethanes it is necessary to assess the role of mesogen as well.

For this purpose, we will also examine the phase behavior of regular type polyurethanes

based on similar diisocyanate moieties and a,Ci)-hexanediol. These regular polyurethanes

(PU) are designated as 2,6-PU-6, l,3-PU-6, and 2,4-PU-6 (see Scheme 3.1 for their

chemical structure).

51



Experimental

All chemicals were obtained from Aldrich, except for 2,4-TDI which

was obtained from Huka. The reaction solvents were dried and distilled before their use,

and recrystallization solvents were stored previously over activated 3-4 A molecular sieves.

Prepurified Ar and N2 inert gases were previously passed over BTS catalyst (O2

scavenger)^ and CaC^ desiccant. N,N-dimethylformamide (DMF) was stirred over BaO

for 2 days, at room temperature, filtered with a 0.45 ^im syringe filter to remove residual

BaO, and vacuum distilled at -30 mmHg and the middle portion was kept. The 2,6-TDI,

1,3-PDI, 2,4-TDI, and a.co-hexanediol were vacuum distilled at -0.5 mmHg and the

middle portion were kept.

Svnthesis of 2.6-LCPIJ-6 and 1.3-LCPU-6. The synthesis of the mesogenic diol

4,4'-bis(6-hydroxyhexoxy)biphenyl (BHHBP) has been reported in Chapter 2. Here we

report the ^H NMR data of BHHBP. ^H NMR (DMF d^) (reported as follows: chemical

shift*, multiplicity, integration, assignment in Figure 3.1): 5 7.94/7.91 (d, 4 H, a),

7.40/7.37 (d, 4 H, b), 4.74 (t, 2 H, h) 4.39 (t, 4 H, g), 3.84 (t, 4H, c) 2.16 (p, 4 H, f),

1.97-1.56 (m, 12H, e + d).

The 2,6-LCPU-6 polyurethane was synthesized by the reaction of BHHBP and 2,6

TDI (Scheme 3.2). A slight excess (0.3-0.7 mol %) of 2,6-TDI was used to compensate

for side reactions involving isocyanate groups. The reaction was run on several scales,

ranging from 3 to 20 g. Higher molecular weights were obtained in the larger scale

polymerization, probably because the influence of impurities was decreased. The

procedure described here is for the small-scale preparation whereas for the larger scale,

which produced the highest molecular weight, the excess 2,6-TDI was 0.5 mol %.

Into a 250 ml flame-dried, tiiree-neck, round-bottom flask fitted with a condenser,

pressure equalizing dropping funnel, inert gas inlet, and magnetic stirrer, were added

* Both chemical shifts of doublets are reported, separated by a "/"•

Only the middle peak, chemical shift of triplets or pentates is reported.

Chemical shifts of multiplets are reported from the higher to lower, separated by
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4.8035 g (12.428 mmol) of BHHBP and 50 ml freshly distilled DMF. Purified Ar was

bubbled through the solution for 15 niin, and its temperature was raised to 45 °C. Argon

was kept flowing slowly through the top of the apparatus continually. Subsequently,

2.1709 g (12.465 mmol) of freshly distilled 2,6-TDI (0.3 mol % excess) and 30 ml of

DMF were added slowly. The temperature was raised slowly to 85 °C and held there for

20 h. As the reaction proceeded, 20 ml more ofDMF was added to keep the solution

viscosity low enough to allow stirring. Finally the reaction temperature was raised to 95

°C, held there for an additional 12 more h and cooled to 45 °C. The warm, viscous solution

was poured into cold filtered MeOH to precipitate the polymer in the form of white, fibrous

material. The polymer was filtered, Soxhlet extracted in hot MeOH, and vacuum dried to

give 6.6 g of 2,6-LCPU-6 (yield 94.3 %), [ti]=0.400 dL/g in HFIP at 30.0 °C. NMR

(DMSO-dfi) (reported in order, as follows: chemical shift, multiplicity, integration,

assignment in Figure 3.1): 5 8.88 (s, 2 H, h), 7.50/7.47 (d, 4 H, a), 7.09 (s, 3 H, j + k).

6.96/6.93 (d, 4 H, b), 4.03 (t, 4 H, g), 3.95 (t, 4 H, c), 2.02 (s, 3 H, i), 1.75-1.65 (broad

s, 4 H, f), 1.65-1.55 (broad s, 4 H, d), 1.5-1.3 (broad s, 8 H, e). Elemental analysis;

Calculated for C33H40N2O6 : C, 70.69%
;
H, 7.19% ; N, 5.00%. Found: C, 70.68% ; H,

7.30% ; N, 4.95%.

The l,3-LCPU-6 synthesis was similar to that of 2,6-LCPU-6, whereas 1,3-PDI

was used instead of 2,6-TDI. A slight excess (0.3-0.7 mol %) of 1,3-PDI was also

employed in order to used to compensate for side reactions involving isocyanate groups.

From the polymerization of 0.95245 g (5.9480 mmol) of freshly distilled 1,3-PDI with

2.2921 g (5.9301 mmol) BHHBP (0.3 mol % excess), 3.15 g of l,3-LCPU-6 were

produced (yield 97.2 %), [ti] =0.402 dIVg in DMF at 30.0 °C. Elemental analysis;

Calculated for C32H38N2O6 : C, 70.31% ; H, 7.01% ; N, 5.13%. Found: C, 70.19% ;
H,

7.00% ; N, 5.13%.

Synthesis of 2.4-PU-6. 2.6-PTI-6 and 1.3-PU-6. The syntheses of these regular

polyurethanes were identical to that of 2,6-LCPU-6, described above. From the
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polymerization of 35.658 g (0.1770 mol) of freshly distilled 2,4-TOI with 20.810 g
(0.1761 mol) of freshly distilled a,o)-hexanediol (0.5 mol % excess). 53.8 g of 2,4-PU-6
were produced (yield 95.3 %), [ti]=0.462 dlVg in DMF at 30.0 °C. Elemental analysis;

Calculated for C15H20N2O4
: C, 61.63%

; H. 6.90%
; N, 9.58%. Found: C, 61.55%

; H,

7.02%
; N, 9.55%.

From the polymerization of 5.0764 g (29.003 mmol) of freshly distUled 2.6-TDI

with 3.4223 g (28.961 mmol) of freshly distilled a.co-hexanediol (0.65 mol % excess),

8.06 g of 2,6-PU-6 were produced (yield 94.8 %). [ti]=0.433 dL/g in DMF at 30.0 °C.

Elemental analysis; Calculated for C15H20N2O4 : C, 61.63%
; H, 6.90%

; N, 9.49%.

Found: C, 61.55%
; H, 6.98%

; N, 9.47%.

The polymerization of 3.0331 g (18.941 mmol) of freshly distilled 1,3-PDI with

2.2272 g (18.847 mmol) of freshly distilled a,co-hexanediol (0.5 mol % excess), yielded

4.90 g of l,3-PU-6 (yield 93.1 %), [Ti]=0.501 dL/g in DMF at 30.0 °C. Elemental

analysis; Calculated for C14H18N2O4 : C, 60.42%
; H, 6.52%

; N, 10.07%. Found: C,

60.28% ; H, 6.59%
; N, 9.98%.

Ch^racterizatiQn Techniques, In the case of 2,6-LCPU-6, intrinsic viscosities were

determined in l,l,l,3,3,3-hexafluoro-2-propanol 99+% (HFIP; Aldrich) at 30.0 °C and in

DMF at 70.0 °C, using a Cannon-Ubbelohde viscometer. Elevated temperatures were

employed to ensure complete solubilization. For the rest of regular and mesogenic

polyurethanes, intrinsic viscosities were determined in DMF at 70.0 °C.

Solution iH NMR spectra were recorded on a Varian XL-300 operating at 300

MHz in deuterated solvents. All spectra were referenced relative to the solvent chemical

shifts.

Optical microscopy was performed on a Carl Zeiss Ultraphoto n polarizing

microscope equipped with a Linkham Scientific Instruments TMS 90 temperature controller

and a TMH 600 hot stage. The hot stage temperature was calibrated with vanillin and

potassium nitrate melting point standards.
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Differential scanning calorimetric (DSQ measurements were conducted with a

Perkin-Elmer DSC-7, employing a 20 mlVmin flow of diy nitrogen as a purge gas for the

sample and reference cells. Th. coolant was ice-water except for the case of the rapid

cooling experiments where chopped diy ice was employed. The temperature and power

ordinates of the DSC were calibrated with respect to the known melting point and heat of

fusion of a high-purity indium standard. Long-term annealing was performed under

nitrogen or vacuum to ensure the absence of oxidative themial degradation.

Room-temperature X-ray diffraction patterns were recorded on flat fihns with a

Station X-ray camera using Ni filtered Cu Ka radiation. The samples, free-standing

fibers, or contained in 1.5 mm Lindemann glass tubes, were mounted directly on the

pinhole with the help of a double-stick tape. The X-ray camera length was calibrated with

the 2.3 19-A diffraction line ofNaF and 3.035-A diffraction line of CaCOs for the wide-

angle range, while for the intermediate angle range, the layer diffraction Unes of the

monoclinic form of n-hexatriacontane, n-C36H74'^ was used. The films were measured for

interplanar spacing data with a Supper circular film measuring device. Well-oriented

samples were produced by drawing fibers out of the melt, with a pair of tweezers. Free-

standing fibers were exposed to thermal and Soxhlet treatment in MeOH, while a weight of

0.5—3 g was attached to their ends in order to prevent shrinkage. No significant

elongation was observed after the end of each treatment.

Results and Discussion

Characterization of 2.6-LCPU-6. Molecular Weight Characterization: The 2,6-

LCPU-6 is soluble in polar aprotic solvents such as DMF, DMAC, DMSO, etc., only at

elevated temperatures (above 70 °C). Hexafluoro-isopropanol (HFIP) was found capable

of solubilizing 2,6-LCPU-6 at room temperature, without significant molecular weight

degradation. Intrinsic viscosity measurements were performed in HFIP (at 30.0 °C) as

well as in DMF (at 70 °C). In the present study two samples of 2,6-LCPU-6 were
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employed. n,e polyme. r^fened to as low molecular weigh, was detemdned ,o have an

inmnsic viscosity of 0.400 dL/g and the polymer refened to as high molecular weight had

an intrinsic viscosity of 0.882 dL/g. Fiom the inttinsic viscosity measurements it is

apparent that a reasonably high degree of polymerization has been achieved for the [n] =

0.882 dIVg sample.

Differential Scanning Calorimetry: Typical 10 °C/min heating and cooling traces of

2,6-LCPU-6 are illustrated in Figure 3.2.

For the low molecular weight polymer (Figure 3.2A). upon heating, a weak step in

heat capacity coiresponding to the glass transition (Tg) is observed at approximately 65-85

°C. This is followed by a broad shallow exotherm, typical of "cold crystaUization", with a

peak at -160 °C. This region of exothermic behavior is typically more intense on the first

heating scan than subsequently. In addition, a strong endotherm with a peak at 190 °C,

followed by a weaker one with a peak at 197 °C, is also observed. The overaU AH^, from

139 °C to 209 °C is 42.0 ± 0.5 J/g. Upon cooling, a sharp exotherm around 158 °C

foUowed by a 25 °C exothermic "tail" is observed. The overaU AHc from 126 to 166 °C is

41.6 ±0.5 J/g.

For the high molecular weight polymer (Figure 3.2B), upon heating, the Tg is

observed at approximately 65-85 °C. This is also followed by a very weak cold

crystallization region, with a peak at -160 °C. Endothermic behavior similar to but slightly

broader than that of the low molecular weight polymer is also observed. The strong

endotherm peaks at 190 °C and the weak one at 197 °C. The overall AHm from 139 °C to

209 °C is 41.4 ± 0.5 J/g. Upon cooling, the sharp exotherm is observed at 151 °C, 1 °C

lower than in the low molecular weight 2,6-LCPU-6. The exothermic tail of this sharp

exotherm extends for 15-20 °C, in a fashion similar to the corresponding exotherm in the

low molecular weight polymer. The overall AHc from 1 15 to 162 °C is 41.8 ± 0.5 J/g.

It is apparent that the high molecular weight sample exhibits thermal behavior which

is very similar to that of the low molecular weight sample, with the exception of the sharp

56



exothenmc peak, on the cooling scan. PattictUar attention was given to ensure complete

isotropization of the two samples, in order to destroy residual oystallinity that might act as

crystallization nuclei. Tkis was accomplished by heating the molten samples 2 to 3 minutes

at elevated temperatures (21(^-225 ^C) before the subsequent cooling scan. In addition,

moisture levels were kept very low by storing the samples in vacuum desiccators before

and after successive measurements. Although the urethane bond is known to undergo a

variety of reactions above 200 ^C,'^^ almost no changes were observed in the time frame of

this experiment apart from a slight yellowing of the samples. Therefore the reason for this

7 °C difference in their sharp exothermic transition temperatures upon cooling must arise

from the molecular weight difference which affects the mobility of the polymers and the

concentration of end groups.

The monotropic liquid crystaUine phase behavior of 2,4-LCPU-6 is well

established.^ The randomly substituted methyl group along the polymer chain of 2.4-

LCPU-6 somewhat destabilizes the crystalline phase and makes the mesophase easier to

observe. In the case of 2.6-LCPU-6. the methyl group is symmetrically placed along the

polymer backbone, leading to a more stable crystal phase than in the case of 2.4-LCPU-

6. • Having this model in mind, we will undertake the task of explaining most of the

features of the 2,6-LCPU-6 polymer. A schematic plot of the temperature dependence of

Gibbs free energy (Figure 3.3) is a convenient way to express the relative thermodynamic

stability of the crystalline, liquid crystalline, and liquid phases (see Chapter 1 for details).

The solid lines in Figure 3.3 represent the equilibrium temperature dependence of each

phase.** Polymers in particular often exhibit marked kinetic effects in the vicinity of the

equilibrium phase transitions. Supercooling is very common because of the high viscosity

of such systems. In particular, polymers usually crystallize with a large degree of

supercooling.^ On the other hand, mesophase formation generally requires less

supercooling.^*^'^ Thus it is possible to observe a mesophase formation upon cooling 2,6-

** Note that each sample can be a composite of many individual phases.
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LCPU-6 rapidly from the melt, without the occuirence of crystallinity. Tk. accessibiUty of

the mesophase is easily seen to be a function of the cooling rate.

Annealing at 165 °C, 5 °C higher than the peak of the shallow cold crystallization

region, has proven to be an effective way to increase the crystallinity of 2,6-LCPU-6. The

10 °C/min heating traces of the high molecular weight 2,6-LCPU-6, previously annealed at

165 C for various times, are presented in Figure 3.4. The strong endothemiic peak at 190

°C is gradually transformed into a single, much sharper endotherm with a higher T^ and

AH^. On the other hand, the weaker endotherm at 197 °C gradually decreases in the

annealing process and eventually disappears into the rising lower temperature, strong

endotherm. Similar behavior is also observed for the low molecular weight sample. As

will be discussed in Chapter 5, WAXS indicates the existence of only one crystal structure

which is subjected to perfection and densification upon annealing. This explains the

gradual shift of the 190 °C peak toward higher temperatures but does not address the nature

of the 197 °C peak. Examination by means of polarizing optical microscopy reveals

unambiguously the existence of two different crystalline domains with different

morphologies. The two domains melt at temperatures very near to the DSC melting points

and have volume ratios comparable to the DSC transition enthalpies. Previous thermal

investigations^ of 2,4-LCPU-6 also disclosed multiple endotherms on melting, which were

explained similarly. The 10 °C/min DSC heating scans for two fiber samples were

incorporated into Figure 3.4 to indicate the amount of crystal perfection that can be

achieved by orientation and long-term annealing. The fiber annealed for 4 days shows a

melting point of 208.6 °C and AHm = 69.8 J/g, -1.7 times greater than the overall AH^ of

Figure 3.2B. It is noteworthy that the 208.6 °C peak can be higher than the equilibrium

melting point due to superheating phenomena.^ Following publications will address in

detail the development of crystallinity in the 2,6-LCPU-6 system.

The effect of cooling rate on the exothermic processes that occur on cooling is

illustrated in Figure 3.5 for the low molecular weight 2,6-LCPU-6. Complete
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isotropization was ensured by preheating the sample to 225 °C for 2 min and holding the

temperature at 210 °C for an additional 1 min, befon. the start of the cooling scan. At the

end of each cooling scan the sample was replaced with a fresh one and the old one was

subjected to WAXS for further phase characterization. From Figure 3.5 it is observed that

as the scanning rate is increased the main peak at 160 °C shifts to lower temperatures and

broadens. In addition a smaller peak at -1 33 °C is observed at the end of the exothemiic

tail. Table 3.1 lists the transition temperatures and enthalpies for the cooling scans of

Figure 3.5. The main peak shifts to lower temperatures 3 times faster than the smaller one.

From a simple deconvolution of the two peaks the enthalpy under the small peak increases

at the expense of the main peak. Similar behavior has been observed for the high molecular

weight 2,6-LCPU-6 as well. Before any decisive conclusion about the nature of these

peaks is drawn it is necessary to take WAXS data into consideration.

X-ray Diffraction, Powder Samples: All X-ray diffraction patterns of powder

samples were obtained at room temperature which is -50 °C lower than the glass transition

temperature of 2,6-LCPU-6. The desired thermal history was imposed on the samples

either in a sealed DSC pan or in a temperature-controlled vacuum oven. The samples were

cooled rapidly to room temperature after the heat treatment. Figure 3.6 presents the X-ray

powder pattern of die low molecular weight 2,6-LCPU-6 sample, cooled at 100 °C/min

from the melt to room temperature (from Figure 3.5). As will become apparent in the

discussion, the eight well-defined rings of Figure 3.6 powder pattern manifest the

crystalline character of this sample. Slightly better resolved X-ray powder patterns have

been obtained from the other samples of Figure 3.5, which have been cooled more slowly.

Similar behavior has been observed for the high molecular weight 2,6-LCPU-6 as well.

From the above DSC experiments it is obvious that these cooling rates are not

sufficient to uncover the mesophase if it exists. Liquid N2 quenching can be an effective

method of providing low levels of contamination as well as cooling rates in the range of

thousands of degrees per minutes. Figure 3.7 illustrates a typical 10 °C/min heating trace
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of a high molecular weight 2,6-LCPU-6 sample quenched into liquid from the melt

(225 °C). The exothemi peaking at 140 °C is the important feature in this DSC heating

scan. The AH under this exotherm, measured from 127 to 157 °C, is 5.8 J/g,

corresponding to a AS = 1.4 x 10-2 J/g-K. In addition, the two well-separated

endotherms, peaking at 1 89 and 197 °C, appear in the same positions as their counterparts

from Figure 3.2. It is noteworthy to mention that the overall AH from 127 to 207 °C is 41.5

J/g, almost identical with its counterpart from Figure 3.2 (41.4 ± 0.5 J/g).

In order to characterize the 140 °C exotherm. X-ray powder patterns were taken

above and below it. Figure 3.8 presents the room-temperature X-ray powder patterns of

four high molecular weight 2,6-LCPU-6 DSC samples with the following thermal history.

All four samples were quenched in liquid N2 from the melt and allowed to return slowly to

room temperature, where the WAXS powder pattern of sample A was obtained. Samples

B and C were subjected to 10 °C/min heating scans, to 125 and 150 °C. respectively, and

cooled at 100 °C/min to room temperature. Sample D was subjected to a 10 °C/min heating

scan, to 165 °C. maintained isothermally at this temperature for 90 min and then cooled at

100 °C/min to room temperature. Even a brief examination of the (A) and (B) WAXS

powder patterns (4—6 rings) serves to confirm their different structures as compared to

those of (C) and (D) (8—12 rings). In fact the C and D patterns of Figure 3.8 are identical

with the crystalline WAXS powder pattern of Figure 3.6.

The X-ray patterns of Figure 3.8A and B exhibit three inner sharp rings

corresponding to the lattice spacings given in Tables 3.2 and 3.3, respectively. These three

sharp reflections can be indexed, within experimental error, as even*** orders of a 57.6

and 58.2 A spacings respectively, indicating a strong layer ordering of biphenyls and TDI

electron-rich moieties as well as a small fiber axis expansion with increase of temperature.

In addition to the three sharp inner reflections, there are a few broad reflections that

*** The odd order reflections are extremely weak and can be observed at highly overexposed, oriented

samples. In particular, the first order reflection is the strongest of all odd order reflections and has been

observed from medium small-angle X-ray scattering diffraction of fiber patterns at 54 A.
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constitute the outer pan of the Figure 3.8A and B powder pattern assodated with the wealc

intermolecular lateral ordering. The strong diffuse halo centered at a spacing of 4.5 A
foUowed by the well-defined outer ring at 4.0 A indicates a higher than smectic-A or C
mesophase but lower than the higher order smectics such as B, G. etc..>»- From the

powder pattern alone, we were unable to characterize the type of mesophase present.

Therefore it was necessary to obtain highly oriented fiber patterns in order to assess that

problem.

The slight expansion of the chain repeat (from 57.6 to 58.2 A) and the small

contraction of the well-defmed outer ring (from 4.05 to 4.00 A) impUes an underlying

lateral ordering process in the mesophase. The ordering is greatly enhanced above 140 T,

where the mesophase to crystal transformation occurs. This is manifested by the increase

in the number of reflections at the wide angles and the smearing of the 002 and 004 as well

as the disappearance of the 008 layer reflection. The crystallographic analysis* of the

Figure 3.8C and 3.8D powder patterns (see Tables 3.4 and 3.5) suggests that the chain

repeat continues to expand at the c-axis (58.4 A and 58.7 A for the 3.8(C) and (D)

respectively) and to contract at the a- and Z^-axis. After 90 min annealing at 165 °C it

reaches a length 1.1 A longer than that of the quenched mesophase.

The remarkable sharpness of the main exotherm upon cooling has drawn

considerable attention during the course of this investigation (Figures 3.2 and 3.4) Even

though it appears to be an isotropic to mesophase transition, X-ray analysis suggests that

the final form of the sample at room temperature is crystalline. The good agreement of

transition enthalpies in the 10 °C/min DSC scans of Figures 3.2, 3.5, and 3.7, along with

the assumption that the same amount of 2,6-LCPU-6 is always involved in the transitions

schematically depicted in Figure 3.3, can provide us with a rough understanding of the

magnitude of the isotropic to mesophase transition. Figure 3.7 indicates that the

mesophase to crystal transition (AHm^ = 5.8 J/g) is 12.3% relative to the crystal to

* Discussed in detail in Chapter 5.
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isoTopic transition (AH., = 47.3 J/g). If the above assumption is co^ect. tl,e iso^op.c-

mesophase transition must account for the remaining 87.7% (AH,.; = 35.7 J/g), indicative

of a strong order in the mesophase. We deUberately ignore the enthalpy of cold

crystallization for reasons of simpUcity, since its contribution is very smaU. These

arguments along with the very small ttansition enthalpy under the lower temperature

exotheim (-5% relative to AH^.i, Table 3. 1) contribute to the composite chamcter of the

main exotherm.

Smyth et al.i in their study on low molecular weight 2,4-LCPU-6, observed that

the main exothermic transition shifts to higher temperatures with slower cooUng rates.

They presented enough arguments to support the conclusion that at low cooUng rates the

two-stage exothermic process (isotropic to mesophase, followed by the mesophase to

crystal transition) is replaced by a single-stage exothermic process, which is remarkably

sharp and narrow. Similarly in 2,6-LCPU-6. because crystallization occurs so fast and

readily, a 10—50 °C7min cooling rate can be considered low. Therefore, due to its higher

mobility, the low molecular weight sample crystallizes faster (7 °C higher) than the high

molecular weight one. Although a single-stage exothermic process which involves

crystallization of the sample explains the behavior upon cooling of the main exotherm, it

fails to address the nature of the lower temperature exotherm. The stabilized mesophase

from copolymers of 2,4-TDI and 2,6-TDI with BHHBP^^ indicates that the isotropic to

mesophase transition occurs in the vicinity of 130 °C. With this in mind we can propose

the following scenario to elucidate the lower temperature exotherm. As the cooling rate

increases, there is less time left for the ordered domain to "space fill" the sample as well as

to perfect itself, leaving more and more sample liquidlike. When the temperature is around

130 °C the liquidlike portions convert to mesophase.

To demonstrate even further the involvement of crystallization in the main exotherm

upon cooling, we examined the 10 °C/min DSC behavior of a sample annealed at 165 °C for

4 days (Figure 3.9). Stenhouse et al,^^ observed a molecular weight dispersity of 1.42 and
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1.87 for their fresh 2,4-LCPU-6 samples. Because there is very Uttle difference in the way
2.4-LCPU-6 and 2,6-LCPU-6 were synthesized, it is reasonable to assume the

polydispersity of fresh 2,6-LCPU-6 to be comparable to that of the 2,4-LCPU-6. On the

other hand, the polydispersity of the sample annealed for 4 days at 165 °C is expected to be

much higher than 2, due to the well-documented transurethanefication as weU as other side

reactions^.5 ^,^^„g ^^.^ ^j^^^^^ temperature. Figure 3.9 shows, as expected, that die

molecular weight distribution affects only the cooUng trace (3.9b) while the second heating

trace (3.9c) is virtually identical to that of Figure 3.2Ba. On the first heating we observe

the sharp crystal melting endotherm at 210 °C (AHn, = 72.8 J/g). The first cooUng trace

shows a "typical" broad crystallization exotherm peaking at 150 °C (AHc = 40.5 J/g), 1 °C

lower than the sharp crystallization peak of Figure 3.2Ba. This "textbook" behavior of

polydispersity upon crystallization^ proves unequivocally the involvement of crystallization

in tiie main exotherm upon cooling. On second heating, the typical cold crystallization

region around 160 °C is followed by a strong endotherm peaking at 190 °C and a weaker

one peaking at 197 °C (AHn,(i44-2iO) = 40.0 J/g). This shows that very little has changed

in the. sample apart from the polydispersity and a 3% reduction of the crystallization

transition enthalpy.

X-ray Diffraction, Oriented Samples: It is difficult to obtain well oriented samples

of normal polyurethanes primarily due to their low molecular weights. Blackwell et al.'^

employed a polyurethane hard-segment-rich tiiermoplastic elastomer (slowly stretched in

water to -700%, and annealed for 24 h at 130 °C) in order to get the desired orientation.

The slow relaxation rate of liquid crystalline polymers is a great advantage in

obtaining highly oriented samples. The maximum molecular orientation we were able to

accomplish, drawing fibers of high molecular weight 2,6-LCPU-6 from the melt, is

demonstrated in Figure 3.10. As shown in Figure 3.10, there are two basic features to

note: (1) a series of meridional arcs, parallel with die orientation direction, tiiat are all

orders of 57.7 A spacing; (2) a quite broad and diffuse equatorial arc, composed of two
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arcs with spacing of 4.5 and 4.0 A. Tl.ese data are in quaHtative agreement with the

mesophasic Figure 3.8A WAXS powder pattern of 2,6-LCPU-6 quenched in liquid N2
from the melt. Apparently the cooling mte achieved by drawing fibei. from the melt and

quenching them in room temperature air is fast enough to bring the sample into the

mesophase. Unfortunately we can draw very few conclusions about the mesophase

structure of the 2,6-LCPU-6 from this poorly oriented WAXS fiber pattern.

Frequendy orientation as well as domain coarsening can be enhanced with proper

thermal treatment of fibers under stress. This generally results in an increase of the phase

which is stable at the annealing temperature and pressure at the expense of the other phases.

The monotropic Uquid crystalline nature of 2,6-LCPU-6 makes it clear that thermal

treatment cannot be used to enhance the thermodynamically unstable mesophase.

Obviously the task of obtaining higher orientation, with the present molecular weight

sample, is equivalent to finding a way to prevent the polymer from achieving equilibrium.

Plasticization with a low molecular weight compound that will provide partial mobility to

allow tiie system to reorganize was our next attempt. Hot MeOH and room temperature

50% DMF—50% H2O were die two systems we tried. Even though originally we were

reluctant to use the above solvents due to our experience with normal polyurethanes, where

they induce crystallinity, the results were unexpectedly rewarding. Soxhlet extraction (in

hot methanol for 4 days) of the fibers of Figure 3.10 under 0.5—3-g tension resulted in an

appreciable molecular orientation, which is shown in die WAXS fiber pattern of Figure

3. 1 1. Similar results were also obtained from the 50% DMF—50% H2O mixuire. The

removal ofDMF and H2O was ensured by washing the treated fiber in cold MeOH for 12 h

and overnight vacuum drying at 60 °C. An attempt to provide a physical insight into

whatever process is involved to achieve this orientation is based on the following scenario.

Plasticization occurs predominandy in die small mesophase domains which are randomly

oriented along the fiber due to weaker interaction with the strong elongational flow.
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Deposition of the plasticized molecules on the strongly oriented larger domains thickens

them, similar to crystal annealing.

Figure 3. 1
1
exhibits the same features as Figure 3.10. but substantially more

resolved. The much sharper meridional arcs are orders of 57.8 A, only 0.1 A larger than

those of the untreated fibers. This indicates the negligible perturbation of the original

structure resulting from the hot MeOH treatment Significant resolution enhancement is

observed at the wider angles. The quite broad and diffuse equatorial arc of Figure 3.10 has

been split into diffuse four-point, off-equatorial wide-angle reflections centered at a spacing

of 4.5 A with intensity maxima lying between the 004 and 008 layer line spacing, and a

well-defined equatorial arc centered on the 4.0 A spacing. In addition to these wide angle

reflections there is a weak and diffuse equatorial crescent, centered at 3.3 A.

The 57.6—58.7 A is almost twice the value reported for the chain-axis repeat (c

spacing) of the related 2,4-LCPU-6.»-i2.i4 This comes from the fact that previous

researchers have neglected the presence of a backbone kink per monomer repeat, arising

from the meta-substituted benzene ring of the 2,6-TDI, and assumed that the c spacing

arises from one repeat only. Consequently the layer line spacings were assigned to 001,

002 (strong), and 004 reflections instead of to 002, 004 (strong), and 008 reflections. This

explains the assignment difference of this publication relative to previous

publications. ''^2.14 ^jjj become obvious in Chapter 5, the use of a fiber repeat

consisting of two monomer repeat units (dimer) related by a 2-fold screw axis is essential

to obtain regular molecular sequences and packing, as well as to justify the observed

reflection intensities. A centrosymmetric dimer repeat can also justify the observed

intensities. Unfortunately its applicability is restricted only in the disordered mesophase

rather than the ordered crystalline phase where the repulsions of TDI's methyl group (from

the surrounding chains) distort the dimer repeat away from centrosymmetricity (see Chapter

5).
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A dimer repeat has been repeatedly observed in the literature when the backbone of

the monomer is kinked, frequently due to an odd number of atoms per monomer backbone.

For example the crystalline chain-axis repeat proposed by BlackweU et al. for the 4,4'-

diphenylmethane diisocyanate (MDD-l,4-butanediol (BDO) polyurethane^^ consists of

two repeat units. This arises from the odd methylene group on the center of the MDI unit

which introduces a kink in its structure. Similar behavior is observed with the aromatic

polyimide Kapton H (DuPont), synthesized from pyromellitic dianhydride and

diaminodiphenyl ether.^^-i^ ^^ere the ether oxygen introduces the kink. Polyaniline also

displays similar behavior^^ with the nitrogen atom introducing the kink.

It is apparent that the mesophase under investigation is not one of the "classics"

frequently encountered in liquid crystal textbooks.^^ The complex nature of the Figure

3.11 WAXS fiber pattern arises from a superposition of elements, which will be discussed

extensively in Chapter 5. Cuirently we wiU present briefly the basic molecular architecture

that characterizes this system. The presence of a meta substituted benzene ring (2,6-TDI)

introduces a backbone distortion in the structure. Assuming a more or less extended

hexamethylene spacer in BHHBP, the 57.6—58.2 A repeat can be achieved by the

introduction of a 54.0—54.5 ° tilt angle, between the planes of the TDI ring and the

urethane group (see Chapter 5). This angle was determined from periodic boundary^^

energy minimization based on the Dreiding n^o force field, conducted with the Molecular

Simulations Inc., Polygraf module. The biphenol moiety orients with its plane (which

contains the O-O axis) at 51° with respect to the all-trans hexamethylene plane. Based

primarily on the TDI-urethane torsion angle and secondarily on the biphenyl-hexamethylene

torsion angle, die fully extended 2,6-LCPU-6 dimer repeat can be over 70 A long with only

a 15% reduction in the H-bonding energy. This reduction arises primarily from the Hi-

bonding angle (N-H-0) which for the case of 73.2 A long repeat is -164°. Allowing the

dimer as well as its unit cell to relax, we obtain an equilibrium repeat of 57.8 A with H-

bonding angle (N-H-0) of 176°. The crystalline structure of 2,6-LCPU-6, discussed in
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detaU in Chapter 5, suggests the absence of gauche confonnadons in the hexamethylene

spacer. On the basis of this result, and bom the high-order mesophase structure with

repeat length only 0.2-^).5 A shorter than the crystaUine repeat, the existence of gauche

confomrations in the "perfected" mesophase structure is unlikely but not completely ruled

out.

A schematic representation of the mesophase of 2,6-LCPU-6 is iUustrated in Figure

3.12. Biphenyls and 2,6-TDI moieties form alternative electron-dense layers perpendicul

to the fiber axis. These layers along with the 2i screw axis symmetry-element, result

only the even meridional reflections (001: 1 = 2n) to be observed. The strong 004

meridional reflection can be explained by a mirror reflection symmetry element

perpendicular to the 2,6-TDI ring and the fact that the BHHBP portions he in the 014 plane

(see Chapter 5).2i.22
similarly the crystal structure ofMDI-BDO polyurethane reported by

Blackwell et al.^^ ^^^^^ ^^ly a strong 004 reflection. The alternative tilted biphenyls lie at

an approximate distance of ca. 4.5 A from each other and give rise to the four diffuse

equatorial arcs of Figure 3.1 1. Smectic-C mesophases23.24 demonstrate similar

arrangements of the wide angle diffuse arcs. The well-defined equatorial arc at 4.0 A, and

the diffuse equatorial crescent at ca. 3.3 A, indicate a order higher than smectic-C

mesophase^. From the fact that these two reflections are aligned on the equator, combined

with the tilted biphenyls and hexamethylene spacer, we can conclude that they arise from

three-dimensional correlations of the 2,6-TDI moieties (Figure 3.12). This strong

correlation arises from the restricted mobility of the 2,6-TDI moiety due to its meta-

substituted benzene ring (backbone kink). Recently, for a side-chain

poly(organophosphazene) in a smectic-C state, Atkins et al.^^ reported mesophase oriented

patterns which look very much like that of Figure 3.1 1, except for the outer two reflections

mentioned above. The schematic diagram they used to represent the herringbone

arrangement of the side-chain liquid crystal poly(organophosphazene) looks similar to that

of Figure 3.12 with the only major difference being the backbone arrangement (parallel to
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smectic layers (side-chain liquid crystal) vs. perpendicular to smectic layers (main-chain

Uquid crystal)). According to their explanation, the lack of hkl reflections is due to the

absent three-dimensional correlation between the smectic layers. In contrast to side-chain

liquid crystals the main chain liquid crystal of 2,6-LCPU-6 retains this three-dimensional

correlation due to bond connectivity and therefore is expected to demonstrate a higher

order.

Heat treatment of the well-oriented fibers above 140 °C produces highly oriented

crystalline fibers. Figure 3.13 shows the oriented WAXS pattem of the fiber of Figure

3.11 subjected to 5-days annealing at 165 °C. The lattice spacings of the 17 reflections of

Figure 3.13 are in qualitative agreement with the spacings of Figures 3.6 and 3.8C and D,

indicative of the strong order in the crystal phase. The crystallographic analysis will be

discussed in detail in Chapter 5.

Optical Microscopy: Slow heating of 2,6-LCPU-6 indicates partial melting around

192 °C, followed by complete isotropization above 200 °C. Between 192 and 200 °C we

observe a partial molten state which possesses adequate fluidity, widi no birefringence in

the fluid portion.

Upon cooling from the isotropic liquid, a fine white texture is formed -157 °C for

the low molecular weight and 150 °C for the high molecular weight. This fine white texture

persists upon reheating until 194 °C, where it starts to melt slowly as described above. The

sample quenched from the melt with cold air demonstrates a fine schlieren texture.

Soxhlet extraction in hot MeOH coarsens considerably this schlieren texture, which is

presented in Figure 3.14A. In addition to this. Figure 3.14B indicates the existence of

banded spherulitic textures (pointed out by white arrows) embedded in the schlieren

texture. These spherulites were found in low quantities, gathered together in sections of

the sample. Figure 3.14B shows an area of the sample where the sphenilite concentration

is relatively high while most of the sample has the appearance of Figure 3.14A. This is the

result of a non uniform quenching which generates regions rich in crystallinity. Soxhlet
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extraction in hot methanol coarsened the schlieren texture as weU as the small crystals to

result in the Figure 3.14 textures. More uniform quenching and Soxhlet extraction resulted

in lower concentrations of these spherulitic textures, while slower cooUng and Soxhlet

extraction resulted in higher concentrations. Slow cooling rates result in complete

crystallization, which is not amenable to perfection, upon Soxhlet extraction in hot MeOH.

This is due to the highly insoluble nature of the crystal domains in MeOH. Upon heating,

we observe no textural changes in the vicinity of 140 °C where the mesophase to crystal

transition occurs. Funher heating results in the melting of the schlieren texture at -190 °C,

followed by the melting of the spheruUtic texture at -200 °C. This is in qualitative

agreement with the DSC data of Figure 3.7, where we explained the higher melting point

endotiierm as melting of crystalline regions with different morphology. Smyth et al.^

reported similar morphologies for the 2,4-LCPU-6. The spheruUtic morphology was

produced from the isothermal melt, and possessed very high perfection, while the threaded

crystalline moqjhology was produced from the mesophase. We attempted numerous times

with DSC and polarized optical microscopy to crystalUze the 2,6-LCPU-6 from its melt,

over a 35 °C region, above the crystallization temperature without success. The reason for

this as well as the unusual textures shown in Figure 3.14B must lie in the nature of 2,6-

LCPU-6 and is not known at present.

Long term annealing of the schlieren texture of Figure 3.14A resulted in a

substantially brighter threaded structure, which melts higher than 200 °C. This is in

qualitative agreement with the annealing data of Figure 3.4, where the low temperature

endotherm is amenable to perfection.

It might be argued that the phase we call mesophase might arise from the presence

of small disordered crystallites. However, the polarizing optical microscopic data, coupled

witii the X-ray scattering data (based on the relative intensities^^'^^) of Figures 3.10 and

3.1 1) and the detailed DSC analysis, suggest that the term mesophase is more consistent

than the alternative mentioned above.
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Charaa^riz^tion of n-T PPTT 6 Molecular Weight Characterization: Intrinsic

viscosity measurements of l,3-LCPU-6 were perfoimed in DMF at 30.0 °C. The highest

intrinsic viscosity sample we managed to synthesize was 0.402 dlVg. Since DMF at 30.0

°C is a very good solvent for this polymer, its molecular weight is in the medium range.29

Differential Scanning Calorimetry: Figure 3.15 illustrates four consecutive cyclic

DSC scans of a fresh l,3-LCPU-6 sample. In an effort to address the large wealtii of

information contained in this figure we wiU focus our attention at the cooling traces first.

The sample was isothermally annealed at tiie end of each heating scan for 0.5 min at 200 °C

(A), 2 min at 200 °C (B), 1 min at 210 °C (C) and 1 min at 220 °C (D) respectively. Upon

the first cooling (A), we observed a large endotherm peaking at 156.0°C followed by two

smaller exotiierms peaking at 140.6 and 137.6 °C respectively. During the second cooUng

scan die large exotherm shifted sUghtiy lower at 155.5 °C while the two smaller exotherms

remained at tiie same position. Upon the third cooling only the shoulder of tiie fu-st

exotiierm is observed. The rest of the exothermic heat has been relocated to tiie previously

smaller exotherms, at 140.6 and 137.6 °C respectively. For tiie fourth and last coohng

trace, we witnessed the compete elimination of the first exotiierm and only the 140.6 and

137.6 °C exotherms are present. On the basis of prior knowledge obtained from tiie study

of 2,4-LCPU-6^ and 2,6-LCPU-6, this behavior can be explained with the following

scenario. Assuming that the l,3-LCPU-6 is a monotropic liquid crystal, its crystal phase

must be thermodynamically more stable than its mesophase (see Figure 3.3). In the case of

incomplete crystal melting during the preceding heating scan, the remaining crystalUtes will

nucleate crystallization (first exotherm at 156 °C) prior to isotropic-mesophase transition

(second exotherm at 140.6 °C). The portion that did not manage to crystallize at the 156 °C

exotherm, will transform into the mesomorphic state during the second exotherm, and

eventually will crystallize from the mesophase during the third exotherm at 137.6 ^C}

Annealing the sample at higher and higher temperatures (Figures 3. 15C and 3.15D

respectively) we managed to destroy the high melting point (Tm) crystals that act as a
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nucleating agent, and to supercool the polymeric liquid past the isotropic^stal transition.

Some of the melting endothem^s of these high crystals are indicated with an asterisk in

Figure 3. 15. Additional proof is presented in Figure 3.16. In order to observe these high

crystals (endotherms). we maximized the sample ciystallinity by drawing and annealing

l,3-LCPU-6 similarly to the 2,6-LCPU-6. Following the main melting endotherm at

202.2 °C we find a number of high melting endothemis with the 221.4 °C as the most

prominent one. Upon the second heating scan we observe none of these endothemis which

eliminates the possibiUty of baseline artifacts. The structure of these high crystals will

be discussed in detail in Chapter 5.

Having established the monotropic nature of l,3-LCPU-6, the two endothermic

peaks of Figure 3.15 (at -165 and at -180 °C) must be associated with crystal melting.

Polarized optical microscopic data reveals unambiguously the existence of two different

crystalline domains with different macroscopic morphologies similar to these of 2,4-

LCPU-6.* The melting of the threaded and spherulitic crystal morphology corresponds to

the lower (-165 °C) and higher (-180 °C) endotherm respectively.

X-ray Diffraction, Fiber Samples: Figure 3.17A exhibits the WAXS patterns of a

fiber drawn from the melt, and Shoxhlet extracted in hot MeOH for 4 days. It displays

similar structure to the 2,6-LCPU-6 (Figure 3.1 1) except for the lack of the well defined

equatorial reflection at 4.0 A and the weak equatorial reflection of 3.3 A. The 002 and 004

(strong) meridional reflections correspond to a 56.5 A repeat while the broad and diffuse of

equatorial arcs (centered at 4.4 A) indicate an alternative smectic-C structure. Annealing at

165 °C for 5 days transforms the mesophase structure of Figure 3.17A to a well oriented

crystalline fiber with Figure 3.17B WAXS fiber pattern. The crystallographic analysis of

this pattern will be discussed extensively in Chapter 5.

Comparison of the mesomorphic state of the 2.6-LCPU-6. 1 .3-LCPU-6 and 2.4-

LCPU-6. A qualitative picture of the order present in the mesophase structure of 2,6-

LCPU-6, l,3-LCPU-6, and 2,4-LCPU-6 can be obtained from Figures 3.1 1, 3.17A, and

71



2.11B respectively. Tl.e 10 °C/min heating traces of the Uquid quenched samples of

these polymei. (Figure 3.18) can provide us the relative order of the mesophase with

respect to the crystalline phase. The exothermic transition upon heating a sample with

mesophase morphology will be the key element in this analysis. This transition is the

characteristic signature of the monotropic liquid crystalline state, and arises from the greater

thermodynamic stability of the ciystalUne state with respect to the mesophase. Table 3.6

tabulates the transition temperatures and enthalpies for the three polymers of Figure 3.18.

The mesophase^stal transition temperature of 2,6-LCPU-6 (140 °C) indicates the higher

order of this mesophase versus the l,3-LCPU-6 (117 °C), and 2,4-LCPU-6 (115 °C)

respectively. Figure 3. 1 8 can also provide us with a rough understanding of the magnitude

of the mesophase-crystal transition for the three polymers. Table 3.6 indicates that the

mesophase-crystal transitions of 2,6-LCPU-6, l,3-LCPU-6, and 2,4-LCPU-6 are 12.3,

28.4 and 42.4 % respectively. This is indicative of the strong order in the mesophase of

2,6-LCPU-6 followed by l,3-LCPU-6 and 2,4-LCPU-6. The fact that 2,4-LCPU-6

displays the lower amount of order can be easily explained on the basis of the random

placement of the methyl substituent in the TDI moiety. For the case of 2,6-LCPU-6 and

1.3-LCPU-6 the explanation is not straight forward. Chapter 5 will attempt to elucidate

some key structural elements of the two polymers that can provide some sort of

explanation, though it will be far from complete.

Characterization of 2.6-PI J-6. 1.3-PU-6 and 2.4-PU-6. Molecular Weight

Characterization: Intrinsic viscosity measurements of the three polymers were performed in

DMF at 30.0 °C. The highest intrinsic viscosity sample we managed to synthesize for the

2.4-PU-6, 2,6-PU-6, and l,3-PU-6 was 0.462, 0.433, and 0.501 dL/g respectively.

Since DMF at 30.0 °C is a very good solvent for all three regular polyurethanes, their

molecular weights lie in the medium range.

Differential Scanning Calorimetry: Symmetric polyurethanes such as the 2,6-PU-6

and l,3-PU-6 are capable of forming a crystal phase.^*^ For a fresh (Soxhlet-extracted in
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hot MeOH) sample of 2.6-PU-6, we observed upon heating (Figure 3.19A) a weak step in

heat capacity associated with the Tg (-85 °C). foUowed by a broad endothermic region

(peaking at 207 °C, AH^ = 59 J/g) associated with crystal melting. Annealing at 165 °C,

prior to crystal melting, perfects the crystalUne domains and shifts the up to 215 °C

mm = 85.5 J/g). In the subsequent cooling trace (Figure 3.19B) as well as the second

heating trace (Figure 3.19C) the 2,6-PU-6 behaves like a glass with Tg at -73 °C (ACp =

0.42 J/g-°C). Long-term annealing at various temperatures between 95 and 185 °C failed to

restore ciystallinity. indicative of a very low crystallization rate from tiie melt. Plasticization

with smaU molecular weight molecules such as MeOH readily restores the sample's

crystallinity.^^ Similar phenomena have been reported in literature. A classic example is

the bisphenol-A polycarbonate and poly(p-phenylene oxide) which has been attributed to

lack of polymer mobility.^

Comparable behavior is also displayed from the l,3-PU-6 polyurethane. Upon the

first heating scan (Figure 3.20A), we observed a relatively low melting endotherm that

peaks at 137 °C, AHm = 45 J/g. Annealing at 120 °C prior to crystal melting perfects the

crystalline domains, and shifts the Tm up to 145 °C (AHm = 59.4 J/g). The origin of this

surprisingly low Tm of l,3-PU-6 is going to be addressed extensively in Chapter 5.

Similarly to the 2,6-PU-6 polyurethane, the subsequent cooling trace (Figure 3.20B) and

second heating trace (Figure 3.20C) of l,3-PU-6 exhibits the same difficulty to crystallize

from the melt (Tg = 90 °C, ACp = 0.42 J/g-°C). Long-term annealing at various

temperatures between 95 and 130 °C also failed to restore crystallinity.

Figure 3.21 illustrates the 10 °C/min DSC traces of a fresh 2,4-PU-6 sample,

Soxhlet-extracted in hot MeOH for 4 days. Upon the first heating scan a broad step in heat

capacity, corresponding to the glass transition (Tg), is observed at -78 °C (ACp = 0.58

J/g-°C). On the subsequent cooling scan the Tg occurs at -72 °C. Additional hearing

scans, even after long annealing at 10 to 50 °C higher than Tg (at -75 °C, ACp = 0.51
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J/g-°C for Figure 3.21C), indicate the pure amorphous nature of this polymer30 due to the

random placement of the methyl substituent in the TDI moiety.

Conclusions

( 1 )
DSC, X-ray diffraction, and polarized optical microscopic data prove

unambiguously the monotropic liquid crystalline nature of 2,6-LCPU-6 and l,3-LCPU-6.

The isotropic to mesophase transition is approximately 60—70 °C lower than the crystal

melting transition. This very large temperature difference along with the fast crystallization

of 2,6-LCPU-6, results in the mesophase being accessible only with very fast cooUng

rates. Cooling rates higher than 100 °C/min need to be employed in order to avoid

homogeneous nucleation and crystallization and to bring the sample into the mesophase

(Figure 3.3). In the case of l,3-LCPU-6 the crystaUization rate is sUghtly slower and the

isotropic-mesophase can be observed upon moderate cooling (Figure 3.15).

(2) X-ray diffraction pattems obtained from the frozen mesophases indicate

higher than smectic-C order for the mesophase of 2,6-LCPU-6 and a smectic-C order for

the mesophase of l,3-LCPU-6. The zigzag structure proposed in Figure 3.12 is a result of

the kink introduced by the meta-substituted benzene ring of the 2,6-TDI and 1,3-PDI

moiety. DSC measurements also indicate the high order of the 2,6-LCPU-6 mesophase

relative to the l,3-LCPU-6 and 2,4-LCPU-6 mesophases (Table 3.6).

(3) Soxhlet extraction in hot MeOH of the quenched mesophase results in

considerable orientation enhancement as well as phase thickening and perfection. The

value of this technique arises from its ability to perfect an unstable phase, such as the

mesophase of 2,6-LCPU-6, preventing the polymer from achieving equilibrium. Using

this technique, we obtained highly oriented mesophase and crystalline WAXS pattems

which are the basis of the crystallographic analysis to be presented in Chapter 5.
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(4) Polarized optical microscopy studies demonstrate that 2,6-LCPU-6 and 1 ,3-

LCPU-6 exhibit two macroscopically distinct crystal morphologie^a spherulitic

morphology produced from slow cooling and a threaded crystalUne morphology when they

crystallize upon heating from the quenched mesophase.
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Table 3.2

Observed and alculated d spacings of Figure 3.8A X-ray powder pattern.

indexed as orders of 57.6 A
^obsd, A
28.8

14.34

7.20

4.5

4.05

3.3

t Well distinguished.

Intensity

weak, sharp

very strong, sharp

weak, sharp

strong, broad

medium, w.d.*

verv weak, broad

orders of 57.6 A

2

4

6

8

Scaled? A

28.8

14.40

9.60

7.20

Table 3.3

Observed and calculated d spacings of figure 3.8B X-ray powder pattem.

.
indexed as orders of 58.2 A

^obsd. A Intensity orders of 58.2 A ticaicd> A
29.0 weak, sharp 2 29.1

14.55 very strong, sharp 4 14.55

6 9.70

7.28 weak, sharp 8 7.28

4.5 strong, broad

4.00 medium, w.d.*

3.3 very weak, broad

* Well distinguished.
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Table 3.4

Observed and calculated d spacings from Figure 3.8C X-ray powder pattern

unit cell params scattering condtns,

obsd.

a = 4.790 A

b = 10.78 A 001: l = 2n 001: l = 2n

c = 58.4 A hkO: k = 2n hkO: jt = 2n

7= 103
°

hkl: No conditions

Pcalcd = 1-268 g/cm3

h k I ^calcd A ^obsd A Intensity

0 0 2 29.2 29.1 weak, w.d.*

0 0 4 14.60 14.60 strong, w.d.

0 1 1 10.34 10.33 medium, w.d.

0 1 3 9.24 9.20 faint, broad

0 1 5 7.81 7.83 very weak, broad

0 1 7 6.53 6.58 faint, broad

0 1 9 5.52 •

0 2 2 5.17 5.15 medium, w.d.

1 0 1 4.65 4.65 strong, w.d.

1 0 4 4.45

}
4.35 med. strong, broad

0 2 8 4.26

1 -2 2 3.92 3.91 medium, broad

1 -2 6 3.67 3.67 medium, broad

1 -2 8 3.48

1 -3 1 3.16 3.12 weak, broad

t Well distinguished.
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Table 3.5

Observed and calculated d spacings from Figure 3.8D X-ray powder pattern

unit cell params scattering condtns,

obsd.

scattering condtns, P2i/b

a = 4.752 A
b =

c =

r=

10.70 A
58.7 A
103°

001: l = 2n

hkO: k = 2n

001: / = 2n

hkO: k = 2n

hkl: No conditions

Pcaicd = 1-280 g/cm3

h k_ / ^calcd A dphsd A Intensity

0 0 2 29.4 29.2 1 1 4-

weak, w.dJ
0 0 4 14.68 14.68 medium, diffuse.

0 1 10.27 10.27 medium, w.d.

0 3 9.20 9.18 faint, broad

0 5 7.80 7.83 very weak, broad

0 7 6.53 6.56 faint, broad

0 9 5.53 •

0 2 2 5.13 5.14 medium, w.d.

1 0 1 4.62 4.62 strong, w.d.

1 0 4 4.42 4.42 medium, w.d.

0 2 8 4.25 4.22 mead, strong, w.d.

1 -2 2 3.89 3.89 medium, diffuse

1 -2 6 3.65 3.65 medium, w.d.

1 -2 8 3.46 3.45 weak, broad

1 -3 1 3.13 3.11 weak, broad

* Well distinguished.
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CHEMICAL STRUCTURES OF REGULAR POLYURETHANES

OH CHoH O
II I 1 ^

i 11

- C-Nv^'VN-C-O-iCHshO-Or
2,6-PU-6 n

OH HO
C- Nv^%^N-C- 0-<CH2hO -

1 ,3-PU-6 n

OH HO
C- N N-C- 0-<CH2^O -

^ CH n

2,4-PU-6

Scheme 3. 1 Chemical structures of regular polyurethanes.
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Temperature (°C)

Figure 3.5 DSC cooling traces of the low molecular weight 2,6-LCPU-6 for various
cooling rates.
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Figure 3.6 Room temperature X-ray diffraction powder pattern of a low
molecular weight 2,6-LCPU-6 sample, cooled 100 °C/min
from the melt to the room temperature (underexposed, left

half; overexposed, right half).
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Figure 3.8 Room temperature X-ray diffraction powder pattems of high molecular

weight 2,6-LCPU-6 samples which have been quenched in liquid N2 from

the melt, heated 10 °C/min to (B) 125 °C, (C) 150 °C, and (D) (165 °C and

kept 90 minutes at 165 °C) (see letters in Figure 3.7), and cooled 100

°C/min to room temperature (underexposed, left half; overexposed, right

half).
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Figure 3.10 Room temperature X-ray diffraction pattern of a high

molecular weight 2,6-LCPU-6 fiber drawn from the melt

(underexposed, left half; overexposed, right half). Fiber

axis is vertical.
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Figure 3.11 Room temperature X-ray diffraction pattern of a high

molecular weight 2,6-LCPU-6 fiber drawn from the melt,

and soxhlet extracted in MeOH for 4 days (underexposed,

left half; overexposed, right half). Fiber axis is vertical.
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Figure 3.12 Schematic diagram to illustrate structural criteria needed to explain basic

features of the mesophase oriented WAXS fiber pattern of figure 3. 11.

The carbon atoms (black circles) and hetero-atoms (lightly spotted white

circles) portray the less mobile meta substituted 2,6-TDI moiety. The

biphenyl mesogen units (ovals) along with the hexamethylene spacer

(black curly string) portray the more mobile regions. All hydrogens have

been removed for clarity (see text for details). Fiber axis is vertical.
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Figure 3.13 Room temperature X-ray diffraction pattern of the high

molecular weight 2,6-LCPU-6 fiber of figure 3.1

1

subjected to 5 days annealing at 165 °C (underexposed, left

half; overexposed, right half). Fiber axis is vertical.
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Figure 3.14 Room temperature, cross polarized optical micrographs from different

regions of a 2,6-LCPU-6 sample quenched from the melt with cold air and

soxhlet extracted in hot methanol for 2 days: (A, top) The schlieren texture

of the smectic mesophase; (B, bottom) The schlieren texture of the

smectic mesophase along with banded spherulites (indicated with the

white arrows).
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Temperature (°C)

Figure 3.15 Cyclic 10 °C/min DSC heating and cooling traces of an l,3-LCPU-6

sample. The sample was isothermally annealed at the end of each heating

scan for: (A) 0.5 min at 200 °C; (B) 2 min at 200 °C; (C) 1 min at 210 °C;

and 1 min at 220 °C. (See text for details.)
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Figure 3.17 Room-temperature X-ray diffraction patterns of an 1 ,3-LCPU-6 fiber

drawn from the melt, Soxhlet extracted in hot MeOH for 4 days (A), and

annealed at 165 °C for 5 more days (B) (underexposed, left half;

overexposed, right half).
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Scan Rate = 10°C/min

O.Q,-^ ' '
' ' ' . , 1

25 50 75 100 125 150 175 200 225

Temperature (°C)

Figure 3.18 10 °C/min DSC heating traces of a 2,6-LCPU-6 [n] = 0.882 dL/g sample

(A), an l,3-LCPU-6 [ti] = 0.402 dL/g sample (B), and a 2,4-LCPU-6

[r|] = 0.60 dL/g sample (C), quenched into liquid N2 from the melt.
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CHAPTER 4

INFRARED (IR) SPECTROSCOPIC PHASE CHARACTERIZATION

Introduction

In the previous Chapter of this dissertation, the phase behavior of the thermotropic

liquid crystal polyurethane poly(4,4'-bis(6-hydroxyhexoxy)biphenyl-2,6-tolylene

diisocyanate) (2,6-LCPU-6) was examined with emphasis on the mesophase structure

OH CH3 H O

C-N
I II

N-C-0-(CH2h
6

f\.J~\ CHCH2)^0f

2,6-LGPU-6
n

characterization. Detailed thermal, wide-angle X-ray scattering (WAXS), and optical

microscopy investigations have shown that 2,6-LCPU-6 is a monotropic'-^ liquid

crystalline polymer, with its isotropic to mesophase transition 60-70 °C lower than the

crystal melting transition. One of the most striking characteristics of this polymer is the

rapid crystallization of the vitrified mesophase upon heating, which occurs 50-60 °C lower

than the crystal melting transition.

While the microstructural changes and dynamics that govern enantiotropic'-'^ liquid

crystal phase behavior have been active and growing areas of study among the scientific

community-^"^ comparatively little attention has been paid to monotropic liquid crystals.

This arises from the absence of the traditional crystal to mesophase transition observed in

enantiotropic liquid crystals, making them easily amenable to such studies. In the case of

2,6-LCPU-6, healing the vitrified mesophase above its melting point results in a well
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case.
defined mesophase to crystal transition, just the reverse of the enantiotropic

Therefore, it can be treated in a fashion similar to the transition in enantiotropic liquid

crystal polymers.

Vibrational spectroscopy is one of the principal techniques for examining chain-

chain interactions and conformational order in polymers,i2-i6 and their temperature

dependencies. Provided that band overlapping does not occur, the various functional

groups in the chemical repeat unit of 2,6-LCPU-6 can yield useful information about the

degree of conformational orderi^-i"^, the degree of self association in the urethane

moieties^^-2^ and other intra- and intermolecular interactions of rigid aromatic units.^^

Yang et al.^ using specifically labeled partially-deuterium-substituted molecules were able

to determine the extent to which the disordering of aliphatic chains contributes to the overall

entropy of phase transitions compared to the contribution of rigid aromatic groups in

discotic liquid crystalline systems. The strong and specific hydrogen-bonding interactions

in polyurethane systems lead to infrared bands sensitive to chain packing. Lee et al.'^^

utilized this observation to determine the degree of phase separation in segmented

polyurethane elastomers.

The polyurethane used in this study (2,6-LCPU-6) as well as the isomeric 2,4-

LCPU-6 and l,3-LCPU-6(see Chapter 2,3) provides three regular alternating moieties,

based on different functionalities.-^"^ The rigid biphenol units and TDI moieties may be

used to probe the contribution of the intermolecular forces that lead to the ordering of the

liquid crystalline and crystalline phases^-^ On the other hand the hexamethylene sequence

may provide a measure of the intramolecular disorder through the trans-gauche

ratio-^'^^'^^'^^ present in it. With the combination of vibrational spectroscopy which

provides a measure of the localized structure, along with DSC, WAXS, and optical

microscopic measurements (which examine the long-range order of the sample), we hope

to provide a better understanding of the microstructural changes occurring in the different

phases.
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The present work is a continuation of the vibrational spectroscopic investigation of

mesogen containing polyureihanes. Previous efforts by Pollack et al.^^-^s 3,^^.^

al. on the 2,4-LCPU-6 did not address all the microstructural changes occurring in the

different phases. The reason for this lies in the structure of 2,4-LCPU-6. The random

placement of the methyl group along the polymer backbone results in slower crystallization

of the vitrified incsophase upon thermal treatment than is the case with 2,6-LCPU-6. This

leads to a coexistence of both the mesophase and crystal state, complicating the

interpretation. 2,6-LCPU-6 with its highly regular su-ucturc and sharp crystallization from

the vitrified mesophase does not present the above problems.

Experimental

Materials. The synthesis of 2,6-LCPU-6 has been described elsewhere in Chapter

3. In this study, all of the 2,6-LCPU-6 samples had an intrinsic viscosity of 0.400 dL/g at

30.0 °C, corresponding to the low molecular weight sample described in the previous

Chapter of this dissertation.

Characterization Techniques. Thin films of 2,6-LCPU-6 were prepared by casting

a 2% (w/v) solution of the polymer in l,l,l,3,3.3-hexanuoro-2-propanol (99.8+%,

Aldrich) (HFIP) onto disposable aluminum pans (for DSC and WAXS), glass slides (for

optical microscopy), and potassium bromide windows (for IR), at room temperature.

Following the fast evaporation of most of the solvent, in a laminar flow hood, the samples

were vacuum dried at 60 °C overnight to remove residual IIFIP. The complete removal of

solvent was confimied by the absence of the specific IR bands of IIFIP.

Differential scanning calorimetric PSC) measurements were conducted with a

Pcrkin-Elmer DSC-7, employing a 20 niL/min flow of dry nitrogen as a purge gas for the

sample and reference cells. The coolant was an ice-water bath. The temperature and jiower

ordinates of the DSC were calibrated with respect to the known melting point and heat of

fusion of a high-purity indium standard.
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Room-temperature X-ray diffraction (XRD) patterns were recorded on flat films

with a Statton X-ray camera using Ni-filtered Cu Ka radiation. The sample was contained

in 1.5-mm Lindemann glass tubes and was mounted directly on the pinhole with the help of

a double stick tape. The X-ray camera length was caHbrated with the 2.319-A diffraction

line of NaF and 3.035-A diffraction line of CaCOs. The X-ray films were measured for

interplanar spacing data with a Supper circular film measuring device. Furthermore, from

the powder pattern films, the radial XRD profiles were obtained with the use of an

Optronics C-4500 2D microdensitometer and the Polygraf X-ray diffraction software.^^

Optical microscopy was described in the experimental section of Chapter 2.

Infrared spectroscopic data were obtained using an IBM model 32 Fourier

transform infrared spectrometer. Spectra were collected at 2-cm-l resolution. A minimum

of 40 scans was signal averaged and the specttum was stored on magnetic storage media.

The films used in this study were sufficiendy thin to be within an absorbance range where

the Beer-Lambert law is obeyed. Elevated temperature spectra were obtained by placing

thin films between potassium bromide windows, in a temperature-controlled cell. The

temperature was monitored via a thermocouple placed adjacent to the KBr windows and

was controlled within 1 °C. The heating rate was 20 °C/min from room temperature to 90

°C, and 5 °C/min from 90 to 220 °C. Before each spectral acquisition the temperature was

kept constant for 10 min to ensure complete temperature equilibration along the sample cell.

At the end of the first heating scan (up to 220 °C), the sample was cooled slowly to room

temperature, followed by a second, third, and fourth heating scan in a similar fashion.

Results and Discussion

As has been discussed in Chapter 3, the 2,6-LCPU-6 requires cooling rates much

faster than 100 °C/min in order to avoid homogeneous nucleation and crystallization and to

bring the sample into the mesophase. It is easily understood that this kind of behavior

makes difficult the preparation of thin fihns with mesophase morphology appropriate for
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spectroscopic analysis. The need for a quick and versatile way of producing such films led

to a study of the casting behavior of 2,6-LCPU-6 from a variety of solvents, such as

dioxane, THF. DMSO, DMAC, DMF, and HFIP. The solubility of 2,6-LCPU-6 in the

above solvents increases in the order listed, and for the low boiling point ethers such as

dioxane and THF, elevated temperatures need to be employed. Casting a 2% (w/v)

solution of the polymer in the above solvents (except HFIP), at room temperature, resuhed

mainly in films with crystalline morphology* due to crystallization prior to solvent removal.

On the other hand, the great solubility power of HFIP,^'^ along with its low boiling point

(b.p. = 59 °C), produced a thin film with the desired mesophase morphology. Before we

proceed with the vibrational analysis of these thin films, it is essential to understand their

structure and morphology in more detail.

Differential Scanning Calorimetry: Typical 10 °C/min heating and cooling traces of

2,6-LCPU-6 thin films cast from HFIP are illustrated in Figure 4.1. Upon the first heating

scan (a), the fanniliar step in heat capacity, corresponding to the glass transition (Tg), is

observed at approximately 72 °C, along with a small entiialpy relaxation^^ endotherm

peaking at 76 °C. This radier distinct glass transition behavior compared to the broad step

in heat capacity generally obtained from melted samples (Figure 4.4) was the first

indication of the amount of disorder present in the cast fibns due to the rapid solvent

evaporation. The exotherm peaking at 133 °C (AH = 6.6 J/g; AS = 1.6 x 10-2 J/g K) is the

most important feature in this DSC heating scan. In Chapter 3 the nature of this exotherm

was discussed extensively and it has been attributed to the mesophase-crystal transition.

Cheng et al.'^^ observed similar behavior with a thermotropic polyether, and they

characterized it accordingly as arising from the monotropic nature of the liquid crystal.

This exothermic transition upon heating is the characteristic signature of the monotropic

liquid crystalline state. It arises primarily from the greater thermodynamic stability of the

crystalline phase versus the mesophase, which defines the thermodynamic potential for this

* DSC and WAXS analyses were used to characterize the sample morphology.
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transition. A schematic plot of the temperature dependence of the Gibbs free energy

(Figure 4.2) is a convenient way to express the relative thermodynamic stabihty of the

crystalline, liquid crystalline, and liquid phases. The solid lines in Figure 4.2 represent the

equilibrium temperature dependences of each phase.** Additionally, kinetic factors such as

sample mobility (which is a function of chain flexibiUty, mesophase structure, molecular

weight, impurities, etc.) and chemical repeat regularity influence the overall process.

According to Figure 4.2 (first heating scan), the mesophase-crystal transition must be

located immediately above the mesophase-Uquid "intersection", due to the limited mobility

of the highly ordered (higher than smectic C) mesophase.

Following the 133 °C exotherm in Figure 4.1a we observe two endotherms with

maxima at 186 and 197 °C. The overall AH^^from 1 16 to 204 °C is 40.1 J/g. These two

peaks have been assigned to the crystalline melting transitions of two macroscopically

distinct morphologies - a spherulitic morphology produced from slow cooling and a

threaded crystalline morphology produced upon heating from the quenched mesophase.

Similar behavior has been observed for the 2,4-LCPU-6, as well as other monotropic

liquid crystalline polymers.^^ Upon cooling, a sharp exotherm around 157 °C followed by

a 25 °C exothermic "tail" is observed. The overall AHc from 121 to 165 °C is 40.6 J/g.

This exotherm was discussed in the previous Chapter of this dissertation and attributed to a

combined mesophase-crystallization process. The slow cooling rate (10 °C/min) of the first

cooling scan resulted in a crystalline sample, as proven by the absence of the 133 °C

exotherm in Figure 4.1c. Therefore, the second heating scan is expected to follow a

different route on the temperature dependent Gibbs free energy diagram of Figure 4.2,

indicated by the thick broken curve, showing only a crystal melting transition. This in fact

occurs, with the two familiar melting endotherms at 188 °C and 197 °C. The overall AHm

from 133 to 202 °C is 40.3 J/g, almost identical with its counterpart from Figure 4.1a (40.1

J/g).

Note that each sample can be a composite of many individual phases.
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x-ray Diffraction and Optical microscopy: Figure 4.3 iUustrates the radial X-ray

diffraction (XRD) profiles of these thin films as a function of thermal history. The

temperatures noted on Figure 4.3 represent the maximum temperatures to which these films

were exposed during a 10 °C/min heating scan, followed by a quick quench to room

temperature. The room temperaftire (35 °C) radial XRD profile verifies the low degree of

order of these films upon casting, previously inferred from the DSC Tg behavior. The

poorly resolved 002, 004, and 008 smectic layer reflections at 27.3 A (29 = 3.24°), 13.7 A

(29 = 6.45°), and 6.8 A (29 = 13°), respectively, correspond to a 54.9-A repeat, much

shorter than the 57.6 A of the melt-quenched sample. The broad and diffuse wide angle

reflection with a maximum at 4.5 A (29 = 19.8°) is a product of the convolution of the 4.5

A (29 = 19.8°), 4.0 A (29 = 22°), and 3.3 A (29 = 27°) reflections. The strongest 4.5-A

reflection arises from lateral stacking of the biphenyls, while the other two wide-angle

reflections arise from the dimensional correlation of the TDI moieties. Evidentiy the rapid

solvent evaporation results in a less ordered smectic stiiicture with a repeat distance almost

3 A shorter than the "equiUbrium", higher than smectic C, mesophase structure. Funher

proof of the mesophasic character of these thin fibus comes from the schlieren textures

observed under the polarizing optical microscope. These schlieren textures are similar to

those discussed in Chapter 3.

Upon temperauire increase this poorly ordered smectic structure transforms slowly

into a more highly ordered one, as shown by the (125 °C) radial XRD profile of Figure

4.3. The highly resolved 002, 004, and 008 smectic layer reflections correspond to a 58. i-

A repeat, almost identical to the 5 8.2-A repeat from the melt-quenched sample heated at 125

°C. The strong correlation of the smectic layers imposes a better lateral stacking of tiie

chains which results in stronger and sharper wide-angle reflections (4.5, 4.0, and 3.3 A).

Upon furtiier temperature increase the mesophase to crystal transition takes place, clearly

indicated by the (160 °C) radial XRD profile of Figure 4.3. The 002 and 004 reflections of
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the (160 °C) curve coirespond to a 58.5-A repeat which is in complete agreement with the

bulk 2,6-LCPU-6 crystal sructure.

A careful observation of the two crystal melting endotherms of Figure 4.1a shows

that they are separated by a small exotherm, indicative of a melting-recrystallization^o

process. This process occurs faster in the solvent cast films than in the samples quenched

from the melt. However, samples previously annealed at 165 °C, show litUe meWng-

recrystallization between the higher and the lower peak, as indicated at Chapter 3.

Apparently, the method of sample preparation controls the degree of chain entanglement as

well as the free volume, affecting drastically the behavior of this strongly intermolecularly

interacting system. Further demonstration of the effect of sample preparation upon the

underlying transitions is presented in Figure 4.4. A rapid examination of the four scans

(Figures 4.4a-c and 4.1a) indicates that all of them look very much alike, except that of

Figure 4.4c which possesses an additional endotherm at 1 13 °C, 20 °C below the

mesophase-crystal transition. As a result of MeOH soxhlet extraction the sample of Figure

4.4c has been shown in Chapter 3 to exhibit a perfected mesophase strucuire and

macroscopic morphology. In addition, the enthalpy associated with the 113 °C endotherm

is almost the same as that of the 133 °C exotherm (Table 4.1). This sort of behavior

suggests a mesophase melting prior to crystallization. For the rest of the quenched

samples, mesophase imperfections result in melting over a broad temperature range, and

make this transition diffuse and difficult to observe. The fact that this peak occurs 30-40 °C

higher than the Tg, rules out the possibility that it is an enthalpy relaxation peak from a

more ordered "mesophase glass" (see Chapter 2).

Table 4.1 lists the transition temperatures and enthalpies observed for the four

different techniques of freezing the sample into the mesophase (Figures 4.4 and 4.1a).

Moving from left to right, the mesophase-crystal transition temperatures show an apparent

trend toward lower temperatures. The same trend, only much weaker, can be noted for the

threaded morphology crystal melting temperatures, indicating that these crystals developed
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from the mesophase. In contrast to the above, the spherulitic morphology crystal melting

temperature remains constant at 197 °C. The explanation of these phenomena Ues in the

method of sample preparation. Solvent treatment results in greater sample free volume and

fewer chain entanglements, which yields greater mobility and lower transitions. On the

other hand, the spheruUtic morphology crystalHne regions preexisted before the mesophase

to crystal transition, making their melting temperatures insensitive to sample preparation.

Infrared Spectroscopy: The room-temperature infrared spectrum of a HFIP-cast

2,6-LCPU-6 thin film is illustrated in Figure 4.5. A total of 19 out of the 31 observable

peaks and peak shoulders have been assigned (Table 4.2) from spectral comparisons of

2,6-LCPU-6, similar polymers and model compounds in the literature,^*^'*'^^'^'^^ as well

as of our own. Specifically the mesogenic polyurethanes 2,4-LCPU-6 and l,3-LCPU-6

aid in the vibrational peak assignments of the meta-substituted phenylene ring (TDI

moiety). On the other hand, normal polyurethanes like the 2,6-PU-6, 2,4-PU-6, and 1,3-

PU-6, which are polycondensation products of hexanediol with 2,6-TDI, 2,4-TDI, and

1,3-PDI, respectively, aid in the peak assignments of the biphenol moiety. Last but not

least, the low molecular weight diurethanes from the reactions of 2,6-TDI, 2,4-TDI, and

1,3-PDI with MeOH assist in the hexamethylene moiety peak assignments.

There are distinct differences between the spectra measured at room temperature and

those at high temperatures, mainly due to peak shifts (Table 4.2) and intensity changes.

Major differences can be identified between 3200-3500 cm-i (N-H stretch region), 1690-

1735 cm-^ (carbonyl stretch, amide I region), 1500-1550 cm'^ (amide n region), 1590-

1600 cm-l (TDI benzene ring C=C stretch region), 1600-1620 cm-1 (biphenyl C=C stretch

region), and 810-830 cm'^ (biphenyl out-of-plane C-H wag region). The changes

occurring in these regions in intensities, peak sharpness, and peak shifts, will be discussed

in detail in order to understand the 2,6-LCPU-6 phase behavior better.

Figure 4.6 displays the amide I region recorded as a function of increasing

temperature for the first and the second heating scan of a freshly cast thin film of 2,6-
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LCPU-6 on a KBr window. The spectra in Figure 4.6 have not been arbitrarily scaled and

are shown on an equal absorbance scale. It is well-known that the infrared absorbance of

H-bonded urethane carbonyl appears at lower wavenumbers than that of free urethane

carbonyl.20.31.32 -phe aniide I infrared spectra of semicrystalline samples such as

nylons^^'^^ and polyurethanes23.35 have been reported to comprise distinct spectral

features due to the degree of carbonyl H-bonding. It has been proposed that there are three

overlapping peaics in the amide I region." In order of increasing wavenumbers, these are

H-bonded carbonyl groups in ordered ("crystalline") domains, H-bonded carbonyl groups

in disordered ("amorphous") conformations, and non-H-bonded (free) carbonyl groups.

Accordingly, the well-resolved peak in the vicinity of 1699 cm"! in Figure 4.6 is assigned

to the ordered hydrogen-bonded (crystalline) carbonyl stretch. Possible multiple peaks

similar to those observed from the asymmetrically substituted 2,4-LCPU-6^^'^^ are less

likely to occur in 2,6-LCPU-6 due to the single type of urethane linkage (ortho to the

methyl group of the TDI moiety) versus the dual type (ortho and para) in 2,4-LCPU-6.

It is apparent from Figure 4.6 that two distinct transitions occur in the spectral

shape. The spectra for the first heating scan (Figure 4.6A) have been separated to facilitate

visualization of a transition that involves the sudden appearance of the well defined ordered

H-bonded carbonyl stretch above 120 °C. The second transition (isotropization) is easily

observable in both first and second heating scans (Figure 4.6A,B) as an abrupt decrease in

H-bonding at the melting point (above 180 °C). The fact that the third and fourth scans are

identical to the second one excludes any possibility of sample decomposition. The freshly

cast film has a mesophase structure as shown on the basis of DSC and X-ray scattering.

The coolmg rate in the IR experiments was less than 10 °C/min, so that any subsequent

scans after the first one involve a crystalline sample.

To make these features clearer, we plotted the peak absorbance of each band as a

function of temperature. There are a variety of methods to extract the peak absorbance

from an IR spectrum. Some of them, such as the pseudo-base-line method, the subtraction
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method, and the curve fitting method have been applied^s to the present system. However,

the pseudo-base-Une method was used mainly, accompanied with curve fitting which will

be discussed later.

Figure 4.7 illustrates the peak absorbance of the first and second heating scans as a

function of temperature for the 1699 cm-1 ordered H-bonded carbonyl band (A) and the

2941 cm-1 CH2 out-of-phase stretching band (B). The CH2 out-of-phase stretching band

has been used in the past as an intemal standard for infrared thermal analysis of

polyurethanes.22.23.25 ^-^^^ ^^^^ ^^^^ p.^^^ included to prove that the

changes in the peak absorbance of the ordered H-bonded carbonyl groups reflect

intermolecular changes, rather than changes arising from sample thickness. In addition,

there is no significant difference observed between the first and second heating scan.

Furthermore, Figure 4.7(B) demonstrates the lack of sensitivity of the CH2 out-of-phase

stretching vibration to the phase transitions occurring within the temperature range of

interest. The same is not true for the first and second heating scans of Figure 4.7(A).

Apart from the melting transition above 180-200 °C, accompanied by a drastic decrease in

the ordered H-bonded amide I absorbance in both scans, there is another transition around

130 °C in the first heating scan only. This corresponds to the mesophase-crystal transition,

which is accompanied by a dramatic increase in the ordered H-bonded peak intensity during

crystallization between 120 and 140 °C. This is in agreement with the results of Chapter 2,

where it was established through H-bonding elimination that the mesophase arises

primarily from the biphenol alignment, and the presence or absence of H-bonding is not

important. Although this transition has been observed previously firom DSC and X-ray

difft-action, IR spectroscopy provides a technique to probe the localized microstructural

changes taking place during this phase transition. In order to analyze the data

quantitatively, it is necessary to resolve the amide I mode into its constituents.

As has been pointed out extensively deconvolution of overiapping peaks

leading to a unique solution is generally not possible. Without previous knowledge of the
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one
band shape, the number, position and breadth of the bands, base-line position, etc.,

can arrive at almost any desired solution. Even with a knowledge of the number of bands,

good prior estimates of the above-mentioned factors are necessary prerequisites for

obtaining valid solutions. For this reason we followed step by step the well-established

amide I deconvolution technique of Painter and Coleman.^^-^^-^*^ In particular, the

essential starting parameters were extracted from the analysis of semicrystalline nylon 1 1 of

Skrovanek et al.-'^.

In summary, each spectrum recorded at different temperatures was resolved into

three components (two above the crystalline melting point), using the following procedure.

(1) The band shape of all three peaks was assumed to be Gaussian. Curve-fitting

attempts allowing band shape to vary proved to favor the pure Gaussian band shape by a

least squares criterion. Imposing Lorentzian band shape on the ordered H-bonded amide 1

peak changes substantially the relative values of the deconvoluted peak area but does not

change the temperature dependence.

(2) A linear base-line was assumed from 1800 to 1630 cm'^ and minimized as well,

during curve fitting. Although the "correct" base-line is rather subjective, the base-line

choice again affects mostly the absolute values of the deconvoluted peak area but does not

change the temperature dependence.

(3) Curve fitting was limited to the spectral data of the amide I region between 18(X)

cm-^ (left end) and 1630 - 1643 cm-' (right end). The low-wavenumber end was

determined as the minimum between the 1699 and 1608 cm"' peak. Although the two

peaks are well separated and the low-wavenumber end lies on a fairiy shallow minimum,

one can anticipate a certain degree of interference from the wing of the 1 608 cm'' peak with

the base line. This deviation is just about visible at the right wing of each spectrum of

Figure 4.8. This does not lead to significant error but is certainly the weakest point of the

curve- fitting procedure.
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Figure 4.8 presents the least-squares fitting results of the amide I region of a HFIP-

cast, 2,6-LCPU-6 thin film from the first heating scan at 120, 140, and 220 °C. Each

spectrum is representative of the series of spectra in between the two phase transitions

mentioned above. The main component of the 120 °C spectra is the disordered H-bonded

amide I band. This is consistent with the DSC and X-ray diffraction data showing that the

sample exhibits smectic mesophase morphology. The higher than smectic C mesophase of

2,6-LCPU-6 has the required chain conformation to place both carbonyls of the TDI moiety

in close proximity with the N-H groups of the neighboring TDI moiety. The variation in

distance and angle between the neighboring N-H and C=0 groups generates the large width

at half-height (Wi/2,d) (55-60 cm-l) of the disordered H-bonded amide I peak with respect

to the 18-25 cm- 1 and 14-15 cm'^ for the "free" and ordered H-bonded amide I peaks.

Above the mesophase to crystal transition (140 °C) the ordered H-bonded amide I peak

increases by more than a factor of 2 compared to the disordered one, as would be expected

for this transition. Upon further heating, sample isotropization occurs, manifested by the

disapearance of the ordered H-bonded amide I peak in the 220 °C spectrum.

The detailed results of the curve fitting of the amide I region throughout the

temperature range 25-220 °C are given in Tables 4.3 and 4.4 for the first and second

heating scans, respectively. The curve-fitting data summarized in Tables 4.3 and 4.4 are

plotted in Figures 4.9 - 4.1 1 to facilitate better visualization of the underlying transitions.

The changes in the areas of the ordered (Aq) and disordered (Ad) H-bonded amide I peaks

(Figure 4.9) show unequivocally that the 130 °C transition is associated with the

mesophase to crystal transition. It is characteristic that the entire fraction of carbonyl

groups which transform to the crystal (ordered) phase originates from the mesophase

(disordered H-bonded carbonyl groups), while the "free" carbonyl content shows a

monotonic increase. The same transition is also visible from the peak position and width at

half-height of the ordered and disordered H-bonded amide I peaks in Figures 4.10 and

4.1 1, respectively. The 130 °C transition is reflected by a sudden decrease in the peak
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frequencies of both H-bonded carbonyl groups (Figure 4. 10). Iliis is indicative of a

substantial lateral ordering taking place in both phases. On the other hand, while the width

at half-height of the ordered H-bonded amide I peak continues to shift to lower values as

anticipated, the disordered one shows a different behavior. Below 130 °C this peak arises

from the mesophase which perfects itself and narrows its width at half-height. Above 1 30

°C the nature of this peak changes. An assembly of imperfect crystalline domains (portion

of the mesophase which did not manage to achieve crystalline order) along witii tiie

remaining amorphous fraction contributes to the width increase observed.

Altiiough the main goal of the curve-fitting analysis was to analyze the mesophase

to crystal transition, it also proved useful in the analysis of the melting transitions. In the

DSC section we observed the melting behavior of crystalline regions with different

macroscopic morphologies. The first heating scan resulted (through a melting-

recrystallization process) in the higher melting point spherulitic rich sample (Figure 4.1a).

On the other hand, the slow cooling rate of the first cooling scan resulted in a threaded

texture rich sample which melts at a lower temperature (Figure 4.1c). Figure 4.9 reflects

these features. Characteristically, the lower value of the Aq at 180 °C versus the 160 and

200 °C values reinforces the evidence for a melting-recrystallization process taking place

during the first heating scan. Figures 4.10 and 4.1 1 indicate substantial changes in the

disordered H-bonded carbonyl portion above 180 °C. It is worth noting that these changes

occur prior to the melting of the crystalline domains (188 and 197 °C from DSC). This

suggests that above 180 °C imperfect crystalline domains cannot exist. Therefore, the

disordered H-bonded amide I peak changes in this temperature region are identified with a

molten, quite mobile H-bonded carbonyl groups shifting its frequency 10 cm"' higher and

its width at half-height 7 cm'^ lower. On the other hand, the changes in the "free" amide I

peak are much smaller upon melting and mostly occur also above 180 °C.

As pointed out previously
.^^•^'^ unlike the N-H stretching region, the total area of

the amide I region (At) does not vary appreciably witii temperature, and the absorptivity
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coefficients can be assumed the same for the three different bands. Skrovanek et al.^^ in

their study of nylon 6 reported the total area of the amide I region to vary approximately

7%. Tables 4.3 and 4.4 as well as Figure 4.9 indicate a 5 and 7% variation for the first and

second heating scan respectively. The values of At for the first heating scans, were found

to be 5 - 6% lower than those for the second heating scan. We believe that this arises

primarily from tiie quick solvent evaporation that produces a sUghtly opaque thin film

which contributes to scattering. The same values of At above the melting point provide

adequate proof of the validity of the above argument. Figure 4. 10 indicates that all three

peaks of tiie first scan exhibit peak positions (v) at higher wavenumbers than those of the

second scan, below the melting point. This is a clear manifestation of the effect of fast

solvent evaporation on the average hydrogen bonding that affects tiie strength of tiie

intermolecular interactions as well as tiie sample free volume.

A measure of the inaccuracy of our curve-fitting analysis is indicated from tiie Vf

curves of Figure 4.10. Theoretically tiie two lines should coincide. By taking the average

of the two Of and not allowing the computer to vary it, we derive less than 1% error in the

area values of Af and Ad and much less for the Aq. In the same study of nylon 11,

referenced above, Skrovanek et al. reported that the fraction of ordered H-bonded amide

groups in nylon 1 1 provides a good estimate of tiie sample crystallinity. On tiie basis of a

similar argument, we can estimate our sample crystallinity to be between 18 and 19%

(Tables 4.3 and 4.4).

In tiie N-H stretching region (3500 - 3200 cm-1) of 2,6-LCPU-6 tiie peak observed

at 3290 cm-1 is assigned to the ordered H-bonded N-H stretch,^^'^^ while the shoulder at

3430 cm-1 is typically assigned to the "free" N-H stretch. Infrared spectroscopic data of

polyamides and polyuretiianes in the N-H stretching region have been used in the past to

calculate some thermodynamic parameters.^^-'^^ However, Coleman et al.20'33.37.4i

pointed out tiie strong dependence of tiie extinction coefficient upon frequency, which is

highly affected by the H-bond strength. Unlike tiie amide I vibration which is sensitive to
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conformation through dipole-dipole interactions, the N-H stretching mode is more or less

conformationally insensitive. Therefore, we did not attempt to extract information similar

to that obtainable from the amide I mode but systematically monitored the temperature

dependence of tiie peak absorbance of the ordered H-bonded N-H stretch (Figure 4. 12A).

Features similar to those observed in the carbonyl stretching region can be seen here.

Molecular simulations of tiie 2,6-LCPU-6 indicate complete H-bonding formation between

the N-H and C=0 groups in the crystal lattice. Therefore, it is expected for the N-H

stretching region to behave similarly to tiiat of the carbonyl. Figure 4.12B shows tiie peak

absorbance of the amide n region (1526 cm-^) as a function of temperature. Its features are

almost identical to tiiose of tiie H-bonded C=0 and N-H stretch mentioned previously.

Figures 4.7 - 4.12 described the changes in H-bonding during the mesophase-

crystal transition. It is also of interest to monitor the behavior of the mesogenic moiety

during this process. Figure 4. 13A depicts the temperature dependence of the peak

absorbances for two different vibrational modes of the biphenyl benzene ring. The peak at

823 cm-^ is assigned to the out-of-plane C-H wag of the biphenyl, while the 1608 cmr^

peak is assigned to the biphenyl C=C stretch, and their peak absorbances are displayed on

the upper and lower parts of Figure 4.13A, respectively. Although the exact influence of

the intermolecular interactions on these vibration modes is not fully established, it is

noteworthy to mention the following features. These peaks, associated with the biphenyl

moiety, exhibit relatively small changes in the vicinity of the mesophase-crystal transition

and somewhat greater changes at the melting transition (Figure 4.13A). In Figure 4.13B

the temperature dependence of tiie 1594 cm'l C=C stretch in the TDI moiety is displayed.

This band exhibits behavior similar to that of the bands associated with H-bonding (Figures

4.7A and 4.12A,B). The direct bonding of the tolylene ring (C=C stretch) to the urethane

groups tiiat undergo extensive H-bonding must be largely responsible for this result. An

explanation can be proposed eitiier on the basis of the presence of a coupled vibration mode

between the benzene ring C=C stretch and the adjacent urethane groups, which undergo
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extensive H-bonding, or upon changes of the spatial arrangement of the bulky tolylene ring

during crystallization. Molecular simulations integrated with crystallographic analysis of

2,6-LCPU-6, presented in Chapter 5, reveal considerable changes in the spatial

arrangement of the TDI rings upon crystallization in order to accommodate their bulky

methyl group, but this argument alone is not sufficient to discriminate between the two

alternative explanations.

Specific methylene bands, such as CH2 rocking and CH2 wagging, have been used

extensively to analyze alkyl chain conformations from the infrared spectra of low and high

molecular weight compounds.^2.i3.i6.i7 -j^^ ^^^^^^^ rocking bands in the vicinity of

730 cm-1 from trans sequences, as well as some specific bands such as gtg', gg, and gtt

(end qauche), and (gtg and gtg') in the 1300-1400 cm-1 region, have been heavily utilized

for this purpose. Unfortunately, we were unable to assign these peaks definitively,

because they were overlapped by other rather intense vibration peaks of 2,6-LCPU-6.

Conclusions

(1) DSC, WAXS, polarized optical microscopy, and infrared spectroscopy

indicate that fast solvent evaporation from HFIP solutions results in 2,6-LCPU-6 thin films

with a glassy mesophase morphology.

(2) The mesophase to crystal exothermic transition (monotropic liquid crystal)

has been observed by DSC between 130 and 140 °C, depending on sample preparation. At

10 - 20 °C below this transition, the mesophase melting occurs, which provides adequate

mobility for crystallization.

(3) Curve fitting analysis of the conformationally sensitive amide I region

resulted in a quantitative assessment of the temperature depedence of H-bonding. The

behavior of the H-bonds correlated well with that expected from the results of calorimetric

and WAXS studies.
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(4) The mesophase to crystal transition has been observed by infrared

spectroscopy to be between 120 and 140 °C, primarily on the basis of the substantial

increase of the ordered H-bonded amide I peak and the decrease of the disordered H-

bonded amide I peak in this temperature ramp. The crystal melting transition occurs

between 180 and 210 °C and is accompanied by the complete disappearance of the ordered

H-bonded amide I peak along with substantial changes in the frequency and width at half-

height of the disordered H-bonded amide I peak.
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Table 4.2

Infrared band assignments for 2,6-LCPU-6.

frequency (cm-^) at

Id C 200 °C Assignment

3430* 3430t free N-H stretch

3290 3307 H-bonded N-H stretch

3039 3034 aromatic C-H stretch

2941 2940 CH2 stretch (out-of phase stretch)

2866 2865 CH2 stretch (in-phase stretch)

1734tt 1740tt "free" amide I mode ("free" C=0 stretch)

1702tt 1720tt disordered H-bonded amide I mode
1697tt 1696tt ordered H-bonded amide I mode

1608 1604 benzene ring C=C stretch (biphenyl > TDI)*

1594 1593 benzene ring C=C stretch (TDI)

1526 1521 amide n

1501 1498 benzene ring semicircle stretch

1464 1464* CH2 deformation

1271 1266 aromatic ether C-0 **

1241 1237 aromatic ether C-0 **

823 821 out-of-plane C-H wag of biphenyl

713 709 out-of-plane N-H wag

652 652 out-of-plane C=0 wag

518 522 out-of-plane quadrant benzene ring bend

(biphenyl)

X estimated from peak deconvolution.

t The present value corresponds to the second heating scan (see text for details),

* The biphenyl moiety contributes mostiy to the absorbance of this peak, with a smaller

contribution from the TDI moiety as well.

** The present assignment bears a small degree of uncertainty because of a great deal of

peak overlapping in this spectral region.
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Figure 4.2 Schematic plot of temperature dependence of Gibbs free energy for

2,6-LCPU-6 (see text for details).
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Figure 4.3 Roora-temperature radial X-ray diffraction (XRD) profiles of HFIP-cast,

2,6-LCPU-6 thin films as a function of thermal history. The noted

temperature corresponds to the maximum temperature to which these films

were exposed during a 10 °C/min heating scan, followed by a quick quench

to room temperature.
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Figure 4.6 FTIR spectra of the amide I region (1640-1800 cm-i), of a HFIP-cast,

2,6-LCPU-6 thin film as a function of increasing temperature: (A) spectra

recorded on the first heating scan; (B) spectra recorded on the second

heating scan.
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Figure 4.7 Peak absorbance as a function of temperature for the 1699 cm"^ ordered

H-bonded amide I band (A) and the 2941 cm-l CH2 out-of-phase stretching

band (B). First heating scan data are indicated with unfilled symbols and

second heating scan data with filled symbols.
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Figure 4.8 Least-squares deconvolution of the amide I region of a HFIP-cast,

2,6-LCPU-6 thin film from the first heating scan at 120, 140, and 220 °C.
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Figure 4.9 Plots of the areas of the "free" (Af), disordered (Ad), and ordered (Aq)

H-bonded peaks as well as the total (At) carbonyl groups obtained from the

amide I region as a function of temperature. First heating scan data are

indicated with unfilled symbols and second heating scan data with filled

symbols.
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Figure 4.10 Plots of the peak frequency of the "free" (Vf), disordered (Vd), and ordered

(Vq) H-bonded carbonyl peaks from the amide I region as a function of

temperature. First heating scan data are indicated with unfilled symbols
and second heating scan data with filled symbols.
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Figure 4.11 Plots of the width at half-height of the "free" CWi;2>f), disordered (W,;2>d),

and ordered (Wi/2,0) H-bonded carbonyl peaks from the amide I region as

a function of temperature. First heating scan data are indicated with
unfilled symbols and second heating scan data with filled symbols.
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CHAPTER 5

CONFORMATION CHARACTCRISTTCS AND CRYSTAL PACKING

OF TDI BASED

"REGULAR" AND LIQUID CRYSTAL POLYURETHANES

Introduction

The solid-state structure of liquid crystalline polymers has been the subject of

considerable interest and research in recent years.^-^ Liquid crystal polyesters^-^ and

polyamides^.^ have attracted most of the attention of the scientific community. Although a

fair number of pubhcations have indicated the strong tendency of liquid crystalline

polyurethanes to crystallize.s i^
there is very little known about their solid-state structure.^ ^

In general, the poor quality of the X-ray diffraction patterns of polyurethanes has been the

major obstacle towards a thorough crystallographic analysis.^^ -^his is usually attributed to

the low degree of polymerization and strong H-bonding which result in poor orientation

and small domain size.

The chain conformation and packing of the diphenylmethane 4,4'-diisocyanate

(MDI) - butane diol (BDO) polyurethane ^''"^o
presents the most complete crystallographic

analysis in the field of polyurethanes and in particular, polyurethane thermoplastic

elastomers. Its structure was deduced from well oriented fiber diffraction patterns of a

slowly stretched (ca. 700%) and annealed (at 130 °C for 24 hours) elastomer, as well as

from the single crystal X-ray analysis of two low molecular weight model

compounds. ^''•^^ Subsequent publications'^^'^^ utilized conformational analysis, based on

empirical and semi-empirical (CNDO/2) calculations, in order to investigate the

intramolecular interactions of the various groups in the molecular repeat. The subject of
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interest was the to.ional angles between phenyl-CH,-phenyl. phenyl-urethane. and

urethane-butanediol. Although good values were achieved for the phenyl-CH,-phenyI and
urethane-butanediol torsions, the phenyl-urethane torsion angle 0 was in disagreement

H H
^

R—/^^^^ where:
X = O for urethanes

\=/% \ X = CHp for amides
/ \ C—

X

H H // \
O R

with the ciystallographic data from the model compounds (90° versus 25° ± 10°). In order

to explain the above discrepancy, BlackweU et al. attributed on the following parameters

that were not taken into account by their calculation; 1) the strong intermolecular interaction

of the H-bond. 2) the packing of the bulky phenyl group, and 3) the ;r-interactions between

the phenyl and urethane groups. Hummel et al.24 as well as Tashiro et al.25 have applied a

potential function to model the effect of electron delocalization in their studies of

p-phenylene polyamides and polyesters. This potential function has the form

-Vn^ cos20 = V^O (i+ cos 20 )/2

and tends to produce planar (0 = 0°) phenyl-amide conformations depending of the

magnitude of tiie constant V^^. According to Hummel et al.,^^ without taking into account

H-bonding, a 7 kcal mol"! value for Vj^^ can yield a minima for polyamides near 30°, with

a corresponding barrier of ca 2.6 Kcal mol"! at 90°. On the other hand, Tashiro et al.^^

estimate the Vji^iob^ around 16 Kcal mol-^ with a corresponding barrier of ca 1 1 Kcal

mol-1. Evidently, the value of V^^ has been a subject of debate, while the contribution of

H-bonding, which averages strengths between 6-10 Kcal mol-^, has not been seriously

considered.

Recent computer software and hardware developments have shortened drastically

the computation time needed to perform these types of calculations.'^^'^^ Utilizing
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periodical boundary conditions non bonding interactions such as H-bonding can be

easily incorporated, even for quite complicated polymers such as proteins. The primary

focus of this chapter is to elucidate the confomiational characteristics and crystal packing of

meta substituted phenylene polyurethanes via molecular simulations and crystallographic

analysis. A direct correlation between the structure, H-bonding and torsional angle 0 has

been established for the 2,6-TDI and 1,3-PDI based polyurethanes. In addition to that, it is

our intention to demonstrate the effect of the TDFs methyl group on the crystalline

structure, and correlate it with the following experimental results.

Polymer Tm rc) Density (g/cm^)

2,6-LCPU-6 209 1.228

l,3-LCPU-6 202 L24i

2,6-PU-6 215 1.274

l,3-PU-6 145 1.265

The above table indicates that the melting point (Tm) of the 2,6-LCPU-6 is 7 °C higher than

l,3-LCPU-6, despite its lower density. On the other hand, a 70 °C difference in the

melting points of 2,6-PU-6 and l,3-PU-6 has been observed, although their densities are

comparable. The strong differences in the wide-angle WAXS patterns of 2,6-TDI and 1,3-

PDI based "regular" and liquid crystal polyurethanes, indicate a distinctively different

packing arrangement. While the crystallographic analysis of liquid crystal polyurethanes

(LCPUs) was based on well oriented WAXS fiber pattems, in order to extend the same

analysis to the "regular" 2,6-PU-6 and l,3-PU-6 polyurethanes as well, we had to rely

solely on their WAXS powder pattems. Although this seems to limit substantially this

comparison, the close structural similarity of the "regular" polyurethanes (PUs) to those of

LCPUs has proven to assist greatly in establishing their packing characteristics.
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Experimental

Maismk. The synthesis and characterization of 2,6-LCPU-6, l,3-LCPU-6.

2,4-LCPU-6. 2,6-PU-6, 1 ,3-PU-6 and 2,4-PU-6 were detailed in Chapier 3. Both the

high ([Ti] = 0.882 dlVg) and low ([t^] = 0.400 dlVg) molecular weight samples of 2,6-

LCPU-6 were studied in terms of their structure, density, and ultimate melting temperature.

They were found to behave similarly, although the higher molecular weight sample resulted

in better oriented WAXS fiber patterns.

Charapt^rization Technique^ The density of each sample was determined by

flotation in a toluene-carbon tetrachloride density gradient column at 21.0 °C. Samples of

each polymer were compressed in vacuum, above their melting points, into a 0.5 mm thick

disk-like specimen and cooled slowly to room temperature. Soxhlet extraction in hot

MeOH and annealing at various temperatures was utilized in order to maximize the

crystallinity of each specimen (see Table 5.1).

Room-temperature X-ray diffraction patterns were recorded on flat films with a

Statton X-ray camera using Ni filtered Cu Ka radiation. The samples, fi-ee-standing

fibers, or 0.5 mm thick films, were mounted directiy on the pinhole with the help of a

double-stick tape. The X-ray camera length was calibrated with the 2.319-A diffi-action

line of NaF and 3.035-A difft-action line of CaCOs for the wide-angle range, while for the

intermediate angle range, the layer diffraction lines of the monocUnic form of n-

hexatriacontane, n-C36H74^^ was used. The X-ray films were measured for interplanar

spacing data witii a Supper circular film measuring device. For the liquid crystalline

polyurethanes, well-oriented samples were produced by drawing fibers fi-om melt. Free-

standing fibers were exposed to thermal and Soxhlet treatment in MeOH, while a weight of

0.5—3 g was attached to their ends in order to prevent shrinkage. No significant

elongation was observed after the end of each treatment. WAXS powder patterns for the

"regular" polyurethanes were obtained from the Soxhlet extracted and annealed samples

utilized in the density determination (see Table 5.1).

148



Differential scanning calorimetric (DSC) measurements were conducted with a

Perldn-Elmer DSC-7, employing a 20 mlVmin flow of dry nitrogen as a purge gas for the

sample and reference cells, TTie temperature and power ordinates of the DSC were

calibrated with respect to the Icnown melting point and heat of fusion of a high-purity

indium standard. The melting point of the samples employed in X-nty and density

detennination were detemtined by a 10 °C/min preheating up to 120 "C in order to maximize

the sample-pan contact, followed by a slow cooling and a subsequent heating scan, 50

past their major endotherm.

Molecular simulations were conducted using the commercially avaUable software

package, polygraf, provided by Molecular Simulations, Inc. The force field utihzed in

order to perform molecular mechanics and molecular dynamics calculations was the

Dreiding H, previously described elsewhere.26 Long-range interactions were taking into

account through periodic boundary conditions. Charges were assigned to individual atoms

according to a method described by Gasteiger.29 X-ray diffraction data and patterns were

calculated by the commercially available software package, CERlus, provided also by

Molecular Simulations, Inc..

Results and Discussion

Despite the extensive structural analysis of MDI based polyurethanes ,i7.i8.2i-23

meta-substituted phenylene (PDI) or tolylene (TDI) diisocyanate polyurethanes have

attracted much less interest, primarily in the areas of infrared analysis. ^^-^^ In order to

proceed with a detailed crystallographic analysis, an in depth understanding of the

conformation and packing characteristics of the TDI or PDI moiety has to be obtained first.

Blackwell et al.^^ used single crystal X-ray analysis to determine the structure of MDI

based model compounds, such as the methanol-capped MDI diurethane. Similar model

compounds have been prepared and studied extensively in our laboratory^ ^•^^•^^ as well as

other laboratories.^^'^-^'^^ On the basis of the structure of the ethanol-capped-2,4-TDI
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model compound - wh.h crystallizes in a none extended fon. (unable to accommodate
the propagation of a polymer-like chain), as well as the partially H-bonded methanol-

capped-1.3-PDI in its crystalline fonu?^ the model compound approach appeared to be not

as straight forward as in the case of MDI based polyurethanes.

Molecular simulations proved to be much more effective. The accuracy of this

technique is determined from each one of the interatomic interactions that .ire taken into

account. In these simulaUons we considered intramolecular as well as intermolecular

degrees of freedom. Tlie intramolecular or covalent interactions have been described in

terms of bond stretching, bond angle bending, bond angle torsion and hybridization

motion. The intermolecular interactions take into account van der Waals. electrostatic, and

Hydrogen-bonding (H-bonding) terms. On the basis of the infrared analysis presented in

Chapter 4 (which suggests the complete H-bonding of both urethane groups in the crystal

phase), and the crystalline structure of meta-substituted aromatic polyamides.^^ Figure 5.

1

illustrates the most favorable conformation in order to achieve complete H-bonding for this

class of materials. Both urethane groups are tilted 50 - 60° towards the same direction with

respect to the tolylcne ring in order to facilitate the approach of the H-bonding sites N-H

and 0=C respectively. This tilt is energetically expensive due to the partial double bond

character of the phenyl-urethane bond. The equilibrium value of the phenyl-urcthane

torsional angle 0 is affected by the strength of ;r-interactions between phenyl and urethane

groups, H-bonding, and packing considerations.

This problem is conventionally dealt with in two stages.^^ The first is to

understand the conformational behavior of isolated polymer chains or even smaller key

elements of each chain. The second is to understand how individual chains interact with

their neighbors. On the basis of this simple scheme, much emphasis was given to the

rotational potential of the phenyl-urethane bond. Figure 5.2 illustrates the conformational

energy as a function of torsional angle
(f)

for the phenyl-methyl-carbamate and o-tolyl-

methyl carbamate, based on the Dreiding 11 empirical force field.^^ These calculations were
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carried out wi,h fuU relaxation of bond lengths, bond angles, torsions, inversions, and non
bonding interactions in each confor,r.,ion angle ^. The default parameters of the D.iding
n force field were udUzed throughout these calculations. In reference to the introductory

.emarks concenung the magnitude of 4e constant default y,o, Oreiding n employs a value

of 15 Kcal mol-' for every exocycUc sp2-sp2 .orsion, slightly smaller than the 16 KcalmoM
used by Tashiro et al.^

For the phenyl-methyl-carbamate (Figure 5.2, filled diamonds), a very shallow

energy minima is observed between 0° and 30° followed by a maximum of 4.2 Kcal moH
at 0 = 90°. These results arise from the fact that bond lengths and angles are able to relax in

order to aUeviate the stress between the N-H and ortho C-H hydrogens. In a similar

calculation, with a fixed set of bond lengths and bond angles {V^^ = 17 Kcal mol-l),

Khranovskii et al.^O reported a much more pronounced minimum at 25°, with 5 and 10

Kcal mol-1 barriers at 0° and 90° respectively. In the case of o-tolyl-methyl carbamate

(Figure 5.2, open squares), two minima were observed at 145° and 55°, with the 145°

minimum 2.0 Kcal lower than the 55° one. The energy differences between the maxima

and the 145° minimum are 7.1, 2.8, and 1.1 Kcal mol-i for 0°, 90°, and 180° respectively.

The corresponding minima from Khranovskii et al.^^ were located at 155° and 70° with

much larger energy differences due to the fixed bond lengths and bond angles.

The 4.2 Kcal mol-l barrier for the phenyl-methyl-carbamate at 0 = 90° has been

verified by the ab initio calculations conducted by Stidham et al.^^ Yigmt 5.3 illustrates

the results of the conformational energy map for the phenyl-methyl-carbamate at the

ST0-3G (0 = 0°, 30°, 60°, and 90°) and 3-21G (0 = 0° and 90°) level. In both levels of

calculation the minimum was found to be at 0° which indicated that the bond lengths and

angles are slightly softer that those of the Dreiding force field. On the other hand, the 3.7

and 3.34 Kcal mol'^ barrier for the ST0-3G and 3-21G level respectively indicate that the

Dreiding II empirical force field represents the phenyl-urethane torsion adequately.
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Evidently, ,hc urethune group prefers to be planar with t^spec. to the phenyl group,

providing it can alleviate the Van der Waals repulsion of the nearest neighbors (H-H or H-

-CH3 for .he two cases presented above). Based on the conformational energy map of

Figure 5.2, a torsional angle' « of ca. 30° can considered more or less a minimum for

both cases. An addiuonal tilt of 20 - 30° will ,«sul, in up to 1 .5 Kcal mol ' higher energy

for each torsional angle. TT-is is the energy that a hydrogen bond has to overcome in order

to bring the urethane group into its most favorable conformation to hyd.x,gen bond (see

Figure 5.1).

MQleglllnr Ar^^hitmurc of mrtn-snbstituteri polvnr^ih-, ^.^ Assuming a more or less

extended BHHBP segment (see Chapter 3) a rough model of an isolated 2,6-LCPU-6 chain

(or in the same manner l,3-LCPU-6 chain) has been constructed and placed in periodic

boundary conditions in order to provide more understanding of how individual chains

interact with their neighbors. For reasons that will become apparent during the course of

this discussion, main emphasis was given to the 2,6-LCPU-6 polymer, which turned out to

be the simplest case. For reasons discussed extensively in Chapter 3 of this dissertation,

the unit cell of each meta-substituted phenylene polyurethane is composed of at least a

single dimer repeat. Energy minimizations based on molecular mechanics and molecular

dynamics^"^ resulted always in the c-axis length of a fully relaxed dimer repeat to be 57.8 ±

0.2 A (see Figure 5.4). This is in excellent agreement with the 57.6— 58.2 A observed

WAXS d spacing of the layer distance for the 2,6-LCPU-6 mesophase structure. Attempts

to either extend or compress the c-axis length of the dimer repeatedly failed when the unit

cell was minimized with no external constrains.

In order to elucidate the nature of this strongly preferred c-axis length, the focus of

attention was drawn on the TDI moiety which acts as a "scissors" swivel. For this

purpose, a fully relaxed 2,6-LCPU-6 dimer repeat was stretched out in the c direction with

a large external force, while the rest of the unit cell parameters (a, h, a, p, y, and p) were

* From this point on the torsional angle (p for the o-lolyl-mclhyl carbamate and consequently for the 2,6-

LCPU-6 will be defined as the complcmeniary angle ol thai used in Figure 5.2.
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minimized simultaneously. After one day of slow computational stretching, a value of 73.2

A was reached for the c-axis. Figure 5.4 (top) Ulustrates the confomiation of the

minimized dimer repeat at fixed c-axis of 73.2 A In addition to that. Figure 5.4 (bottom)

portrays a view along the ^axis of the H-bonded TDl moieties. H.e parameters of interest

are the phenyl-urethane torsional angle 0, the H-bond angle co, and the H-bond distance

H-0 and N-O distance respectively. The 73.2 A repeat exhibits 0 = 44°, co =164°,

H-O distance =1.96 A, and N-0 distance = 2.89 A. On the other hand, the fully

relaxed 57.8 A conformation exhibits 0 = 54°, co =176°, H-0 distance =1.93 A, and

N-O distance = 2.88 A respectively. The profound differences between these two

conformations motivated a detailed mapping at the intermediate extensions. This was

accomplished by the following two step procedure. Using the 73.2 A unit cell as a starting

point, the unit cell is minimized (using molecular mechanics) at first to a lower c-axis

length, by having all axes and angles unconstrained. When the desired c-axis length was

reached, the minimization was aborted, the c-axis was constrained at the present value, and

the unit cell was minimized again using a combination of molecular mechanics and

dynamics.

Figure 5.5 illustrates the results of the above investigation. Evidently, the driving

force for this unit cell contraction is not the H-bonding distance, which remains more or

less constant, but the H-bonding angle co. This is due to the increase of the O) towards

linearity (180°) during contraction, which also increases 0 as well. These two angles affect

the overall energy of tiie system in opposite senses. The H-bond angle w decreases the

energy while the phenyl-urethane angle 0 increases the energy of the system. The

equilibrium length of the unit cell (minimum total energy) is controlled by the competition

between these two angles. According to Figure 5.2, the 2,6-LCPU-6 equilibrium angle (p

of 54° stands only 0.9 Kcal mol"* higher than die equilibrium
(f)
of 35°for the non H-bonded

(?-tolyl-metiiyl carbamate. Therefore, the strong intermolecular force of the H-bond with
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average strengths between 6 - 10 Kcal moH. can easily compensate for the 0.9 Kcal mol l

increase in energy due to the dihedral angle (j).

Crystalline stn.crnre of 2,6-LCPTT-6
,

Figure 5.6 displays a highly oriented WAXS
fiber pattern of 2,6-LCPU-6 along with a sketch of the observed reflections and hkl

assigned indices. Table 5.2 lists the observed and calculated d spacings from Figure 5.6.

These reflections correspond to a monoclinic unit cell with a = 4.783 k,b= 10.66 A, c =

58.6 A, and 7= 103° which obeys a P2i/b space group symmetry. The density of this unit

cell is 1.282 g/cm3, while the experimentally observed density is 1.228 g/cm^ (see Table

5.1). The WAXS pattern of Figure 5.6 displays a series of 00/, Oil, 021, 101, and lY I,

reflections with the 004, 028, and 101 as the most prominent ones. Figure 5.7 presents the

intensity-refined results for the computer-simulated 2,6-LCPU-6 structure of Figure 5.8.

The two chains in the unit cell are displaced relative to each other in order to accommodate

the bulky methyl group of the TDI moiety. The H-bonds Ue on the ac-plane, forming two

dimensional H-bonded sheets, while the TDI rings are stacked parallel to each other (face to

face) (see view along the / 2 0 plane of Figure 5.8). Similar stacking exists for the

biphenyls as well. This arrangement leads to 1.93 A H-bond distance, 1.282 g/cm^ density

and a very strong 101 reflection.

The BHHBP's hexamethylene portions lie on the 028 plane, which give rise to the

intense 028 reflection as well as the 004 reflection. In fact, if all the atoms in this unit cell

were placed on the 028 plane, the meridional 00/ reflections should obey the / = 4n

extinction rule. Apparendy, this is not completely true with the 2,6-LCPU-6 unit cell, but

it is quite close. A very good intensity agreement has been achieved for the meridional

reflections (007, 002, 004, and 006) of the simulated and experimental WAXS fiber

patterns of Figure 5.7B and 5.7C respectively. On the other hand, with the current

software package, we were unable to restrict the hexamethylene chains precisely to the 028

plane due to their great flexibility. Therefore, planes such as the 027 and 029 share

substantial intensity with the 028 reflection (see Figure 5.7A and B). Realizing the
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software limitations as weU as the sizable unit cell of 2,6-LCPU-6 with its 264 atoms
forced us to do only a qualitative X-ray intensity refinement ..ther than a more rigorous

calculation which would be prohibitive with respect to time limitations.

Tk. face to face stacked an^gement of the biphenyl moieties creates an internal

stress in the unit cell which causes the biphenyls to lie on the 104 plane (see view along the

b-^is of Figure 5.8). Tl.is manifests a stepwise translation from one side of the unit cell to

the other and explains the strong 101 reflection (Figure 5.7A). as weU as the medium 104

reflection (Figure 5.7B and C). Th. displacement of the two chains relative to each other is

manifested by the Oil set of reflections. Th. greater the displacement, the stronger the

intensities of the Oil reflections, and in particular the Oil reflection. The schematic

diagram for the mesophase of 2,6-LCPU-6 proposed in Figure 3.12, where the chains are

not displaced relative to each other, is based on the absence of these reflections in the

WAXS fiber pattern of Figure 3. 1 1 . Additional proof of this observation will be presented

in the structure of l,3-LCPU-6. Figure 5.7 indicates that the intensity of the 101 reflection

has been slightly overestimated, where as for the rest of the 101 reflections (103, 105, 107,

and 109) the intensity agreement is poor. In terms of the rest of the reflections in the

WAXS pattern of 2,6-LCPU-6, relatively good agreement has been reached for the iT/

reflections {1 2 0,1 2 2, lY6, and lYS) and iT 1 reflection as shown in Figure 5.7B

and C.

Figure 5.8 illustrates additional information on the key elements of the 2,6-LCPU-6

structure. As can be seen from the view along the a-axis, there are two distinct positions

for the urethane moieties. The A position, which is more or less hnear with the

hexamethylene moiety, shows a 53° ± 2° phenyl-urethane torsional angle 0, while the B

position has a 0 = 58° ± 1°. The greater 0 for the B position is due to the neighboring

methyl group of the TDI moiety, which causes it to rotate further in order to facilitate better

packing. The H-bond distance H-0 is 1.93 A (N-0 is 2.87 A) while the H-bond angle

is 171° ± 4°. The dihedral angle y between the planes that contain the urethane and
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b.phenyl moiety on the other hand is planar and its plane is dlted relative to the

hexamethylene plane by 69° ± 3° and 8 1° ± 5° for the A and B position respectively.

^^^^^^^^^^^^
Similar analysis has been performed for the

l,3-LCPU-6 liquid crystalline polyurethane. Figure 5.9 displays a highly oriented WAXS
fiber pattern of l,3-LCPU-6 along with a sketch of the observed reflections and M/
assigned indices. The reflections indicated with asterisks do not belong in the unit ceU
discussed in this section, but in another unit cell which will be addressed under the 1,3-

LCPU-6 polymorphism section
. Table 5.3 lists the obseived and calculated d spacings

from Figure 5.9. These reflections correspond to an orthorhombic unit ceU with . = 5.01o

A, b = 10.28 A, c = 54.6 A which belongs to a Pbn2i space group symmetiy. The density

of this unit cell is 1.29i g/cm\ while the experimentally observed density is 1.24i g/cm3

(see Table 5.1). The WAXS pattern of Figure 5.9 displays a series of 00/, 021,111, and

121 reflections with the 002, 004, 028, 029, and 114 as the most prominent ones. Figure

5.10 presents the intensity-refined results for the computer-simulated l,3-LCPU-6

structure of Figure 5. 1 1
.
The lack of the bulky methyl group in the PDI moiety results in a

regular zigzag structure with no chain displacement, like the one observed in 2,6-LCPU-6

unit ceU. The H-bonds still lie on the ac-plane, forming two dimensional H-bonded sheets.

The phenylene as well as the biphenyl groups are stacked almost perpendicularly with

respect to each other, in a herringbone type of arrangement (face to edge) (see view along

the 120 plane of Figure 5.11). This arrangement leads to a 1.99 A H-bond distance, 1.29i

g/cm3 density and the absence of a strong equatorial reflection like the 101 of 2,6-LCPU-6.

The distinctly different packing of the l,3-LCPU-6 relative to that of 2,6-LCPU-6

can be attributed mostly to the absence of the bulky methyl group on the PDI moiety.

Although this appears to be true in general, there is still the question why the herringbone

structure is more stable rather than the face to face stacked one. Molecular mechanics

calculations indicate that the herringbone is the most stable structure. The herringbone
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an^gement is the most common motif found in the crystal structures of benzene
naphthalene, andother lower aromatics-Asaresult of the hen^^^^^
ceU density increases by 0.01 g/cm3 relative to that of 2.6-LCPU-6. On the other hand
this arrangement results in a 0.06 A longer H-bond than that of 2,6-LCPU-6 which
explains the 7 °C difference in their melting points. T.e g.at difference in the wide angles

of the two fiber patterns is caused by the existence of a 2, screw axis along the a-axis of the

l,3-LCPU-6 structure. This causes only the even hOO reflections to be observed, and

results in the extinction of the otherwise strong 100 equatorial reflection.

The hexametiiylene portions ofBHHBP do not lie only on the 028 plane, but they

are rather distributed between the 028 and 029 plane. This gives rise to the intense 028

and 029 reflection, but also causes the 002 reflection to be quite intense along with the

most intense 004 reflection. The lack of chain displacement relative to each other,

contributes to the lack of the 07/ set of reflections. The77/ reflections correspond directly

to the herringbone structure. For example, the hexametiiylene moieties he between tiie 114

and 116 plane, while the biphenyls lie between tiie 112 and 114 plane. Good X-ray

intensity agreement has been reached between tiie simulated and experimental fiber pattems

of Figure 5.10B and C respectively. As it will be discussed in the polymorphism section

of l,3-LCPU-6, tiie fiber pattern of Figure 5.9 and 5. IOC arises from the scattering of

more tiian one unit cell. Additional concern has also been raised by DSC experiments

about how much of tiie mesophase is still present in this WAXS fiber pattern. The

presence of tiie mesophase gready alters the intensities of tiie meridional reflections, and

causes tiiem to be far more intense than the simulated ones. In addition to tiiis, software

limitation causes similar problems in restricting tiie hexamethylene chains between tiie 028

and 029 plane, and tiie final product indicates tiiat they are distributed between tiie 029 and

0210 plane. In terms of tiie rest of tiie reflections in the WAXS pattern of l,3-LCPU-6, a

moderate agreement has been achieved for tiie 121 reflections {120, 122, 124, 126, 128,

and 1210) as shown in Figure 5.7.
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Figure 5. 1
1
illustrates addition information on the key elements of the 1 ,3-LCPU-6

stntctute. n.e phenyl-urethane torsional angle « is 55= ± 9». TT-e relatively large error in

this measurement arises from the urethane moiety which is no. perfecUy planar , The H-

bond distance H -O is 1.99 A (N-O is 2.94 A) while the H-bond angle is 175.2° . The
dihedral angle y between the planes of the methane and hexamethylene groups is 9° ± 1°.

The biphenyl moiety on the other hand is planar and its plane is tilted relative to the

hexamethylene plane by 76° ± 1°.

Crv?>Utlling ^tnirrurg of ? 6-Pn-6 For the 2,6-PU-6 and l,3-PU-6 "regular"

polyurethanes, although fibers were drawn from the melt. X-ray diffraction indicated their

complete lack of orientation. On the basis of structural similarity, and with the help of well

resolved X-ray powder patterns, we were able to deduce the crystalline chain conformation

of the "regular" polyurethanes as well. Table 5.4 lists the observed and calculated

reflections from the 2.6-PU-6 WAXS powder pattern of Figure 5.12C. These reflections

correspond to a monoclinic unit cell with a = Mil k,b= 10.4? A, c = 31.5 A, and 7=

103° which belongs to a P2i/b space group symmetry. The density of this unit cell is

1.279 g/cm3, while the experimentally observed density is 1.274 g/cm^ (see Table 5.1).

Figure 5.12 presents the intensity-refined results for the computer-simulated 2,6-PU-6

structure of Figure 5. 13. Similar to the 2,6-LCPU-6 structure, the two chains in the unit

cell are displaced relative to each other to accommodate the bulky methyl group of the TDI

moiety. The H-bonds lie on the ac-plane, forming two dimensional H-bonded sheets,

while the TDI rings are stacked parallel to each other (face to face). This arrangement leads

to 1.92 A H-bond distance, 1.279 g/cm^ density and a very strong 100 reflection. The H-

bond distance is 0.01 A shorter than the 2,6-LCPU-6.

According to the simulated WAXS fiber pattern of 2,6-PU-6 (see Figure 5.12A and

B), the 001, Oil, 021, 1 01, and / 2 / set of reflections can be observed. The medium-broad

inner scattering ring of Figure 5. 12C corresponds to the 002 meridional reflection. The

broad character of this reflection suggests a relatively large variation of c-axis lengths or
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comparable small ciystalline sizes in the c-dimension. TT,e medium shaip Oil reflection

along with the weaker 013 reflection establishes the fact that the chains are displaced

relative to each other in order to accommcxiate the bulky methyl group. The veiy strong

and sharp ring at 4.60 A coiresponds primarily to the 100 reflection, reminiscent of the 101

reflection of the 2,6-LCPU-6. Tkc strong and broad 4.18 A reflection coiresponds to the

024 and 025 planes that arise from the stacking of the hexamethylene moieties. On the

other hand the medium, well distinguished 3.88 A reflection is due to the lY 1 plane

where the TDI moieties are located. Considering the difficulty to interpret a WAXS
powder pattern, relatively good X-ray intensity agreement has been reached, as indicated

from Figure 5.12.

Figure 5.13 illustrates addition information on the key elements of the 2,6-PU-6.

As can be seen fi-om the view along the a-axis, there are two positions for the urethane

moieties. Similar to the 2,6-LCPU-6, the A position which is more or less linear with the

hexamethylene moiety, shows a 53° ± T phenyl-urethane torsional angle 0, while the B

position a 0 = 56° ± 2°. The H-bond distance H-0 is 1.92 A (N-0 is 2.86 A) while the

H-bond angle is 168° ± 3°. The dihedral angle y between the planes that contain the

urethane and hexamethylene groups is 4° ± 1° for the A position and 63° ± 3° for the B

position.

Crvstalline structure of 1.3-PTI-6 Table 5.5 lists the observed and calculated

reflections from the l,3-PU-6 WAXS powder pattern of Figure 5.14C. These reflections

correspond to an orthorhombic unit cell with a = 5.28o k,b = 10.16 A, c = 25.83 A which

belongs to a Pbn2i space group symmetry. The density of this unit cell is 1.334 g/cm^,

while the experimentally observed density is 1.265 g/cm^ (see Table 5.1). Figure 5.14

presents the intensity-refined results for the computer-simulated l,3-PU-6 structure of

Figure 5.15. Similar to the l,3-LCPU-6 structure, the lack of the bulky methyl group on

the PDI moiety results in a regular zigzag structure with no chain displacement, like the one

observed in 2,6-LCPU-6 and 2,6-PU-6 unit cell. The H-bonds still lie on the ac-plane
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are

a

fonning two dimensional H-bonded sheets, while the phenylene and biphenyl groups

stacked in a hemngbone type of an^gement (face to edge). This axrangement leads to

2.22 A H-bond distance, 1.334 g/cm3 density and the absence of a strong equatorial

reflection. Although this organization densifies the unit cell considentbly, it results in a 0.3

A longer H-bond than the 2,6-PU-6 which explains the 70 melting point difference.

According to the simulated WAXS fiber pattern of l,3-PU-6 (see Figure 5.14A and

B), the 001 02U 111, and 121 set of reflections can be observed. The strong and broad

inner scattering ring as well as a faint ring at twice the radius of the fii.t one correspond to

the 002 and 004 meridional reflections (see Figure 5.14C) Similar to the 2,6-PU-6 the

broad character of this reflection suggest a relatively large variation of c-axis lengths or

comparable smaU crystalline sizes in the c-dimension. The medium-strong, weU-

distinguished 4.73 A reflection corresponds mainly to the 110 plane, which is quite

prominent due to the herringbone stacking. Similar to the l,3-LCPU-6, the 021 and 1 11

reflections dominate those causing the greater intensity. The 113 is the most intense of the

111 reflections, while the 025 and 026 are among the strongest 021 reflections because the

hexamethylene chains lie on these planes. Considering the strong overiap of equally

spaced reflections and the limited resolution of the present WAXS powder pattern,

relatively good X-ray intensity agreement has been reached, as indicated from Figure 5.14.

Figure 5. 15 illustrates additional information on the key elements of the l,3-PU-6

structure. The phenyl-urethane torsional angle 0is 53° ± 7°. Similarly to the l,3-LCPU-6,

the relatively large error in this measurement arises from the fact that the urethane moiety is

not perfectly planar. The H-bond distance H-0 is 2.22 A (N-0 is 3.18 A) while the H-

bond angle is 172° ±1°. On the other hand the dihedral angle /between the planes of the

urethane and hexamethylene groups is 22° ± 5°

Polvmorphism of 1 .3-LCPU-6. As has been mentioned previously, the 1,3-

LCPU-6 fiber pattern of Figure 5.9 and 5. IOC is a result of more than one structure. In

particular, the reflections indicated with asterisks have not been addressed by the
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ciystallographic analysis of the herringbone structure of l,3-LCPU-6. Specifically, the

equatorial reflection at 4.0 A is located where there are no other nearby reflections from the

calculated WAXS fiber pattern of the heninglx,ne structure (see and compare Figure 5.10B
and C). According to extensive molecular simulations perfom^ed for the face to face
stacked U-LCPU-6 (see Figure 5.16), this stmcture possesses a strong iTo reflection

that can explain the 4.0 A reflection. In addition to that, its very strong 101 reflection that

can also address the inner equatorial reflection of Figure 5.9, marked by one asterisk.

According to these reflections, the structure of Figure 5.16 is expected to melt at higher

than 202 °C (melting point of the herringbone structure), because of its shorter H-bond

distance (H-O distance of about 1.89 to 1.91 A). Indeed, a number of small endothemis

over 202 °C have been observed for highly crystalline fibers of the l,3-LCPU-6, with the

221 °C endotherm as the most prominent one (see Figure 3.16).

Corrgl^tiQn of mglting points and H-honH Hi<:fpnrpc
,

Figure 5.17 plots the H-bond

distances versus the melting point temperatures of the crystallographically investigated 2,6-

PU-6, 2,6-LCPU-6, l,3-LCPU-6 and l,3-PU-6 samples. On the basis of the good

correlation between the H-bond distance** and the melting temperature, it is suggested that

melting is primarily controlled by tiie dissociation of H-bonds in the ordered domains.

This result is in agreement with the dramatic depression of the transition temperatures of the

N-methyl substituted polyurethanes presented in Chapter 2 of this dissertation. In addition

to that, preliminary studies on the increase of the melting point upon perfection of the 2,6-

LCPU-6's unit cell (which causes the H-bond distance to become shorter) suggests a

similar effect of the H-bond strengtii on the melting point temperature for this class of

materials.

* * The comparable (near 1 80°) H-bonding angle (to) for the four polymers allows cos^O) to be taken as a

constant.
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Conclusions

1) The competition between the phenyl-urethane torsional angle 4* and the H-
bonding angle <.controls the c-axis length of the meta substituted phenylene or tolylene

diisocyanate based polyutethanes.

2) The steric hindrance of the TOI's methyl group makes the herringbone

arrangement of the TOI rings unfavorable. TTte final stacked anangemen. decreases the

density and strengthens H-bonding by decreasing the H-bond distance.

3) The good correlation between the H-bond distance and the melting temperatui^

suggests that melting is primarily controUed by the dissociation of H-bonds in the ordered

domains.
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Table 5.1

Observed* and calculated' densities for "regular" and mesogenie polyureAanes,

Polyurethane

sample

Compressed,
and slowly

cooled at 25 °C,

2,6-LCPU-6

13-LCPU-6

2,4-LCPU-6

2,6-PU-6

l,3-PU-6

2,4-PU-6

1.233

1.211

1.263

1.255

1.232

Annealed
at 160 °C
for 3 days.

Density (g/cm^)

Soxhlet extracted

in hot MeOH and
annealed **

Density Ce/cm^)

1.241

1.211

Calculated,

unit cell density,

Density (g/cm^)

1.274

1.265

1.226

1.291

1.279

1.334

t Measured in a toluene-carbon tetrachloride density gradient column at 21 0 °COn the basis of crystallographic analysis.

**
??JJ^oP!f^on?^

extracted in hot MeOH, vacuum dried at 60 °C, compressed at
110 C(20 C aboye their glass transition temperature) to minimize the void
contribution to density due to solvent evaporation, and annealed 20-30 °C below
their melting point in order to maximize the degree of crystallinity.

# The crystallographic analysis of 2,4-LCPU-6 is not available at the present.
2,4-PU-6 is an amorphous polymer.
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Table 5.2

Observed and calculated d spacings from Figure 5.6, 2,6-LCPU-6 WAXS fiber pattern,

un it cell params

a = 4.783 A
Z>= 10.66A

c = 58.6A

r= 103 °

scattering condtns . obsd

001: / = 2n

hkO: k = 2n

scattering condtns, Pl ^/b

hkl: No conditions

001: l = 2n

hkO: k = 2n

Pcalcd "" 1.282 g/cm3
Pobsd = 1.228 g/cm3

h k
/ ^calcd A ^obsd A

.
Intensity

0 0 2 29.30 29.06 medium, sharp
0 0

0 0

4 14.65 14.67 strong, sharp
6 9.77 9.76 weak w.d.*

0 1

0 1

1 10.23 10.23 medium, sharp

3 9.17 9.12 weak, w.d.*

0 1 5 7.77 7.85 weak, w.d.

0 1 7 6.52 6.62 weak, w.d.

0 1 9 5.52 5.61 faint, w.d.

0 2 0 5.19

1 5.15
0 2 2 5.11

medium, sharp

0 2 8 4.24 4.24 med. strong, w.d.*

0 2 10 3.89 3.90 weak, w.d.

1 0 1 4.66 4.66 very strong, sharp

1 0 4 4.44 4.44 medium, sharp

1 -2 0 3.94 3.94 medium, diffuse

1 -2 2 3.90 3.90 medium, diffuse

1 -2 6 3.65 3.68 medium, w.d.*

1 -2 8 3.47 3.48 weak, w.d.

1 -3 1 3.13 3.13 weak, w.d.

* Well distinguished
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Table 5.3
Observed and calculated d spacin.s from Figure 5.Q 1 3

unit cell params scattering mnHme obsd

'

a = 5.010 A
b = 10.28 A
c = 54.6 A
a = p=y=90°

Pcalcd = 1.29i g/cm^

hOl: /i + / = 2n
Okl: k = 2n
hOO: k = 2n
OkO: k = 2n
001: l = 2n

n
1

A:
/_

0 0 2

0 0 4

0 0 6

0 0 8

U 0 12

U L 0

U I 2

AU L 4

U L 7

Z 0
0

U L

nU Z 1 1
1

1

nu c
D

AU

2

4

6

7

2 0

2 2

2 4

2 6

2 8

2 10

Scaled A

27.30

13.65

9.10

6.83

4.55

5.14

5.05

4.81

4.29

4.11

3.92

3.57

4.55

4.50

4.44

4.28

4.04

3.90

3.59

3.56

3.47

3.34

3.18

3.00

1.241 g/cm3

<^obsd A

27.38

13.64

9.02

6.84

4.55

5.14

5.03

4.83

4.27

4.08

3.87

3.53

4.53

4.60

4.45

4.23

4.08

3.87

3.63

3.58

3.51

3.34

3.17

2.98

•LCPU-6 WAXS fiber pattern

scattering condtns. Phn 7
,

hkl. No conditions
hOl\ h + l = 2n
Okl: k = 2n

hkO: No conditions

hOO: k = 2n
OkO: k = 2n
001: l = 2n

Intensity

strong, sharp

very strong, sharp

weak w.d.*

medium w.d.

faint, broad

medium, sharp

weak, w.d.*

weak, w.d.

weak, w.d.

med. strong, sharp

med. strong, sharp

medium, w.d.*

weak, w.d.

medium, sharp*

medium, broad

med. strong, diffuse

medium, diffuse

weak, broad

weak, diffuse

weak, diffuse

medium, diffuse

med. strong, sharp

weak, diffuse

weak, diffuse

? Well distinguished.

This reflection might not belong in this unit cell and be a result of polymorphism
See text for details.
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Table 5.4

Observed and calculated ^spacings from Figure 5. 12C,
2,6-PU-6 WAXS powder pattern.

unit cell params

a = 4.722 A
6= 10.47 A
c = 31.5 A

7= 103 °

Pca]cxi = 1.279 g/cm3

h_ k /

0 0 2

0 1 1

0 1 3

0 2 0

0 2 1

1 0 0

0 2 3

0 2 4

0 2 5

-2 1

-2 2

-2 3

-2 4

-2 5

-3 1

scattering condtns . obsd

001: l = 2n

hkO: k = 2n

£oh%d

^calcd A

15.75

9.71

7.32

5.10

5.04

4.60

4.59

4.28

3.96

3.85

3.76

3.64

3.48

3.30

3.07

1.274 g/cnP

^obsd A

}

)

}

}

15.75

9.71

7.30

5.09

4.60

4.18

3.88

3.72

3.55

3.35

3.06

scattering condtns, P2 i/b

hkl: No conditions

001: l = 2n

hkO: k = 2n

Intensit;

medium, broad

medium, sharp

weak, broad

strong, w.d.*

very strong, sharp

strong, broad

medium, w.d.*

very weak, w.d.

medium, broad

faint, broad

weak, diffuse

* Well distinguished.
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Table 5.5

Observed and calculated d spacings from Figure 5.14C.
1 ,3-PU-6 WAXS powder pattern.

unit cell params

a = 5.280 A

10.16A

c = 25.83 A
a = p=Y=90°

Pcalcd = 1.334 g/cm3

h k /

0 0 2

0 0 4

1 0 1

0 2 0

1 1 0

0 2 2

0 2 3

1 1 2

1 1 3

0 2 4

1 1 4

1 2 1

0 2 5

1 2 3

0 2 6

scattering condtns. ohsd

hOl: h + l = 2n

Okl: k = 2n

hOO: k = 2n

OkO: k = 2n

001: l = 2n

P^sd

^calcd A

1.265 g/cm3

^obsd A

12.92

6.46

5.17

5.08

4.69

4.73

4.66

4.38

4.12

3.99

3.79

3.62

3.62

3.37

3.28

12.92

6.60

5.04

4.75

4.40

4.08

3.72

3.41

3.21

scattering condtns, Pbn2i

hkl: No conditions

hOl: h + l = 2n

Okl: k = 2n

hkO: No conditions

hOO: k = 2n

OkO: k = 2n

001: l = 2n

Intensity

strong, broad

faint, diffuse

weak, broad

med. strong, w.d.*

weak, broad

med. strong, broad

strong, broad

weak, broad

medium, w.d.*

* Well distinguished.
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Figure 5.1 Favorable conformation of meta-substituted phenylene diurethanes in order

to achieve complete H-bonding.
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73.2 A 57.8 A

Figure 5.4 Conformational characteristics of 2,6-LCPU-6 molecular repeat at

maximum c-axis extension (73.2 A) and in a fully relaxed unit cell (57.8

A). See text for details.
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Figure 5.5 Dependence of H-bond distance, phenyl-urethane torsional angle (({)), and

H-bond angle (co), as a function of the c-axis length for the 2,6-LCPU-6
dimer repeat.
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Figure 5.6 Room temperature X-ray diffraction pattern of a high molecular weight 2,6-

LCPU-6 fiber drawn from the melt, soxhlet extracted in hot MeOH for four

days, and subjected to 5-days annealing at 165 °C (upper part). Sketch of

the observed reflections along with their assigned hkl indices (lower part).
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2,6-LCPU-6 unitcell

view along the 120 plane

Unit cell, (monoclinic^

a = 4.783 A
b= 10.66 A
c = 58.6 A
y= 103°

Space Group:

P2i/b C2h

Density:

calc: 1.282 g/ml

exp: 1 .228 g/ml

H-bond Distance:

H-0= 1.93 A
N- 0 = 2.87 A

H-bond Angle:

N^0= 17r±4°

Phenvl-Urethane

Torsional An^le:

Position A: 53° ±2

Position B: 58° ±1

Figure 5.8 (Conrinued.)
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Figure 5.9 Room temperature X-ray diffraction pattern of a l,3-LCPU-6 fiber drawn

from the melt, soxhlet extracted in hot MeOH for 4-days, and subjected to

5-days anneaUng at 165 °C (upper part). Sketch of the observed reflections

along with their assigned hkl indices (lower part).
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010

100

000
001

l,3-LCPU-6 unit cell

view along the 120 plane

Unit cell, rorthommhir^ Soace Group!
a = 5.010 A PKnO
Z?=10.28A
c = 54.6 A Density:

calc: 1.291 g/ml

exp: 1.241 g/ml

H-bond Distance:

H-0= 1.99 A
N - 0 = 2.94 A

H-bond Angle:

N-R-0 = 175.2°

Phenvl-Urethane

Torsional Angle:

55° ±9°

Figure 5.11 (Continued.)
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Figure 5.16 Proposed polymorphic structure of l,3-LCPU-6 with phase
to phase stacked PDI and biphenyl rings. This structure

exhibits a strong 110 equatorial reflection at -4.0 A. See

text for details.
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Figure 5.17 Plot of the H-bond distances versus the melting point temperatures of the

crystallographically investigated 2,6-PU-6, 2,6-LCPU-6, l,3-LCPU-6 and

l,3-PU-6 polyurethanes. See text for details.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Conclusions

This dissertation presents a comprehensive study of pure hard-phase "regular"

(a,co-hexane diol) and mesogenic (BHHBP) based polyurethanes. The inherent

complexities of these systems, such as H-bonding. biphenol moiety, and asymmetric

position of the methyl group in the TDI moiety, have been addressed in a systematic

fashion throughout this dissertation. Conclusions of the individual chapters have already

been presented with respect to their individual accompUshments. The overall conclusions

of this thesis are presented here in the context of the three general questions set forth in

Chapter 1.

The effect of H-bonding upon the structure and phase behavior of liquid crystal

polyurethanes is the main theme of the first question. Previous investigations have shown

that the mesogenic polyurethane (2,4-LCPU-6) is a monotropic liquid crystal. In order to

investigate tiie effect of H-bonding in this system, we synthesized the N-metiiyl analog of

2,4-LCPU-6 (NM-2,4-LCPU-6), which possesses a similar structure to 2,4-LCPU-6 but

without the H-bonding. Thermal and morphological characterization of the NM-2,4-

LCPU-6 provided the necessary data to perform a close and valid comparison of these two

polymers. The main result of this investigation is that the presence or absence of H-

bonding is not important in determining the mesophase morphology, even though the

isotropic to mesophase transition of the NM-2,4-LCPU-6 is -90 °C lower than for the 2,4-

LCPU-6. Careful DSC annealing experiments indicate tiiat H-bonding affects the

temperatures of the various transitions, primarily through an enthalpic effect. Since H-
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bonding contnbutes considerably greater to the stability of the more ordered crystalline-

phase than the more disordered mesophase. it results in the enantiotropic liquid-cr,stalHne

nature of the NM-2,4-LCPU-6 versus the monotropic one of the 2,4-LCPU-6.

n.e extent and perfection of H-bonding in the individual phases of liquid crystal

polyurethanes is the last part of the f.st question. In order to address that, we chose to

study the well documented (Chapter 3 and 5) mesophase to crystal transition of the 2,6-

LCPU-6 by infrared spectroscopy. Cutve fitting analysis of the confonnational sensitive

amide I region resulted in a quantitative assessment of the temperature dependence of H-

bonding. Th. substantial increase of the ordered H-bonded amide I peak, accompanied by

the comparable decTease in the disordered H-bonded amide I peak, during the mesophase to

crystal transition indicate the disordered nature of H-bonding in the mesophase. This

behavior correlates well with the calorimetric and WAXS data obtained for this polymer.

The subject of the second question is the contribution of the BHHBP mesogenic

diol in the crystallization of liquid crystal polyurethanes (LCPUs). We have seen in

Chapters 2 and 3 that all three LCPUs crystallize readily from the melt, versus the a,(0-

hexane diol based "regular" polyurethanes which do not. This son of behavior is due to a

mesophase assisted crystallization. The relative rigidity and excellent packing

characteristics of BHHBP mesogen result in a smectic-type mesomorphic state that exhibits

considerable positional and orientational order. This state, frequently called mesophase,

arranges the molecular repeats in close proximity with each other. At this stage, the

specific intermolecular interactions along the polymer chains initiate a secondary process

which increases the density and results in crystallization. All three LCPUs demonstrate a

remarkable capability to nucleate crystallization from the mesophase. Upon 10 °C/min

cooling, the mesophase-crystal transition trails the isotropic-mesophase transition from 0

to 5 °C for the 2,6-LCPU-6 and 2,4-LCPU-6 respectively, while the l,3-LCPU-6 is

somewhere in between. Surprisingly enough, their frozen mesophases can also nucleate

crystallization upon heating. This usually occurs at the temperature range where the
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mesophase gets adequate mobility and is about to melt, ^s is manifested between 11^
140 °C and is detennined on the basis of the underlying mesophase order (see Table 3.6).

The third and last question involves the molecular aix^hitecture and packing

characteristics of meta-substituted phenylene-diisocyanates. TT^ese type of diisocyanates

introduce a "kink" in the polymer backbone and result in a zigzag-type structure. Atomistic

molecular simulations indicate that the phenyl-urethane torsional angle, which controls the

c-axis length of the polymer, controls also H-bonding through the N-H-O angle. The

competition between these two angles governs the length of the repeat and the perfection of

H-bonding. The intramolecular architecture of this repeat remains more or less the same

with the introduction of a methyl group ortho to both urethane groups (2,6-tolylene-

diisocyanate, 2,6-TDI). The same is not true for their intermolecular arrangement into the

crystalline lattice. The steric hindrance between the methyl group and the TDFs benzene

ring makes the herringbone arrangement of the TDI moieties unfavorable and results into a

different crystalUne packing than for the 1,3-phenylene-diisocyanate (1,3-PDI) based

polyurethanes. Although the resulting stacked arrangement decreases the unit cell density,

surprisingly enough, it increases H-bonding by decreasing the H-0 distance. Based on

the mesophase WAXS fiber patterns of 2,6-LCPU-6 we can claim that the mesophase

exhibits similar stacking of the TDI moieties to the crystal one. Unfortunately, the lower

order of the l,3-LCPU-6 mesophase does not provide adequate WAXS evidence to infer

the stacking of the PDI moieties at this state.

The contribution of H-bonding in the formation and disruption of the ordered phase

has been a subject of great interest throughout this thesis. The good correlation between

the H-bonding distance* and melting temperatures for the 2,6-LCPU-6, l,3-LCPU-6, 2,6-

PU-6, and l,3-PU-6, suggests that melting is primarily controlled by the dissociation of H-

bonds in the ordered domains. With regards to the participation of H-bonding in the

formation of the ordered phase, things are not so straight forward. On the basis of the

* The comparable (near 180°) H-bonding angle (co) for the four polymers allows cos^u to be taken as a

constant.
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polymorphism observed wiU, *e l,3-LCPU-6, we can infer the secondary role of H-
bondirrg upon crystal formation. ApparenUy, packing consideration is the primary force

*at dictates the crystal packing although H-bonding contributes to a somewhat lower

extent.

Future Work

The continuation and expansion of this research promises to be fruitful and

challenging. The suggested investigations listed below include the extension of this work

towards the field of thermoplastic elastomers, as weU as individual investigations in order

to clarify certain aspects of LCPUs.

1) The potential appUcability ofLCPUs as a hard phase in themioplastic

elastomers has been a matter of great interest for our laboratory since the beginning of this

project. It is worth mentioning the prime advantages and disadvantages of LCPUs versus

the regular PUs currently used in the production of thermoplastic elastomers. Starting from

their advantages, one has to mention their inherent abUity to form easily elongated

superstructures under shear fields. This can be utUized to obtain anisotropic hard domains

that can lead to anisotropic elastomers as well. In addition to that, they possess the

capability to crystallize readily from die melt, versus the regular polyurethanes which do

not. The crystalline nature of the hard domains holds a great potential towards increasing

the useful temperature window of operation from -90 °C to -160 °C without sacrificing

processability or recyclability. As an outcome of this thesis, a number of disadvantages

have also surfaced, besides the significant manufacturing cost of BHHBP. The relative

amount of H-bonding per unit volume for LCPUs is about one half less than that of the

regular polyurethanes. Since the mesophase glass-transition temperature (Tg) is not much

higher that the Tg of the disordered glass (see Chapter 1), we can expect a rather small

loss^ of the ultimate elastic properties of a LCPU based elastomer compared to the regular
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one (see T,s and density measurement in Cl^apte,. 3 and 5 .espectively). In orier to

uulize the full potential of LCPUs, it is essential to inoease as much as possible the hard

domain co^stallimty. TTis can be accomplished in a two stage pnxess described below. At
the fTS, smge the elastomer is extruded a, telatively high speed in orier to achieve

considerable orientadon of d,e hard domains. While under strain, treatment in hot med,anol

will additionally perfect the orientation and annihUaUon of the hatd domains, aldiough this

is not that vital. The second stage involves careful heat treatment under strain around 100-

140 °C. where the mesophase^^rystal transfomiation occurs. If everything goes as

planned, we should have a thennoplastic elastomer with anisotmpic, highly crystalline hard

domains.

2) The lower melt viscosity of nematic mesophases has attracted considerable

attention in the field of liquid crystals.^ Processing of themioplastic elastomers with their

polyurethane hard-phase in the nematic state holds a great potential in order to acheive

complex-shaped elastomeric objects. Biphenol mesogens have been shown to exhibit

mainly smectic mesophases as a result of their rigid and highly regular shape. In addition

to that, the periodic backbone "kink" introduced by the TDI moiety reduces even more the

longitudinal degree of freedom, and assists in the formation of smectic mesophases.

Reduction of the mesogen regularity along with a relatively linear backbone has shown to

lead to nematic mesophases, where there is complete loss of lateral order.^-'* Mesogens

based on substituted stilbenes and azo- or azoxybenzenes, incorporated in main chain

polyesters and polyethers, have been shown to exhibit stable nematic mesophases as well

as a crystalline order at lower temperatures.^-^ On the other hand, the use of linear

diisocyanates (e.g. hexamethylene-diisocyanate), will provide the desired backbone

linearity discussed above. The limited polyurethane stability^-^" (-200 °C) poses an

additional restriction to the choice of mesogen, spacer and diisocyanate. Evidently, this

research requires a fair amount of fine tuning in order to attain a nematic mesophase with

behavior comparable to the present LCPUs.
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3) The detenninadon of *e crystalline sm.cture of 2.4-LCPU-6 can be also qui.e

challenging. Figure 3. 1 1.C illusw.es a highly oriented 2.4-LCPU-6 WAXS crystalline

fiber pattern capable of supporting a detailed cystallogniphic analysis. This son of

analysis holds the potential of addressing the packing of the randomly substituted TOI's

methyl group alone the stacking of the backbone "kinks". One way to approach this

problem is to apply an aperiodic array of methyl substimtions, according to the well defined

aperiodic X-ray analysis of Blackwell et al.^-^^ i^

4) Although the local structure of the TDI. PDI, and biphenol have been rigorously

addressed in this thesis, their mesophase and crystal mobility remains largely unclear.

Smith et al.^'^ utilized solid-state 13C-NMR to study the microstructure and dynamics of the

crystalline phase of 2,4-LCPU-6. The frozen mesophase to crystal transition presented in

this dissertation provides a unique opportunity to study the local structure and the dynamics

of this reorganization. Recent developments in deuterium solid-state NMR spectroscopy

have made these kinds of studies feasible, providing that the sample contains a weU-defmed

deuterium label. The exchange of the four ortho to the hydroxy-groups biphenol protons,

with deuterons can be accomplished easily, by treating biphenol in a D20/EtOD/NaOD

solution. Incorporating this deuterated biphenol into the 2,6-LCPU-6 and l,3-LCPU-6 can

provide enough signal to noise to study the local environment and dynamics of the biphenol

mesogen. Utilizing more elaborate chemistry, it is possible to deuterium-label the urethane

and hexamethylene spacer,'^ and integrate the contribution of the individual moieties in the

phase behavior of LCPUs.
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